Preparation and physico-chemical investigation of anatase TiO₂ nanotubes for

a stable anode of lithium-ion battery

Supporting Information

O. Fasakin^{a,b}, Kabir O. Oyedotun^b, Mesfin Kebede^c, Mark Rohwer^c, Lukas Le Roux^c, Mkhulu

Mathe^c, M.A. Eleruja^a, E.O.B. Ajayi^a, Ncholu Manyala^b*

^aDepartment of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife 220005, Nigeria

^bDepartment of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028, South Africa

^cEnergy Materials, Materials Science and Manufacturing, Council for Scientific and Industrial Research (CSIR), Pretoria, 0001, South Africa

*Corresponding author's email: Ncholu.Manyala@up.ac.za. Tel.: + (27)12 420 3549; Fax: + (27)12 420 2516

KEYWORDS: Stirring hydrothermal, TiO₂ nanotubes, Anode, Lithium-ion battery, Capacity.

Figure S1. Energy dispersive X-ray (EDX) of plane epoxy resin substrate/ TiO₂, with compositional elements at % (inset shows EDX of plane epoxy resin substrate).

Figure S2. XPS survey spectra of (a) Anatase TiO₂ pristine and (b) Anatase TiO₂ nanotubes.

Core level	Position	Area	FWHM	
$\mathrm{Ti}2p_{1/2}$	461.62	16163.47	1.437	
$\mathrm{Ti}2p_{3/2}$	455.91	35110.84	0.705	
O1s	528.93	10779.17	1.786	
O1s	527.15	45213.7	0.89	
C1s	283.52	2709.86	1.74	
C1s	282.04	3922.80	1.02	

Table S1a: XPS Parameters of Pristine anatase TiO₂

Table S1b: XPS parameters of Anatase TiO₂ Nanotubes

Core level	Position	Area	FWHM	
$\mathrm{Ti}2p_{1/2}$	462.22	25420.17	3.17	
Ti2 <i>p</i> 3/2	455.95	10131.57	1.15	
O1s	527.49	10014.57	1.16	
O1s	529.86	15007.29	3.44	
O1s	534.05	21339.18	2.37	
C1s	283.00	3654.63	2.65	
C1s	289.63	7195.26	3.94	

Figure S3. SEM morphology of the TiO_2 nanotubes anode material after cycling test.