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In the fight against endemic infectious diseases — which disproportionately affect the
developing world — the effective use of scarce resources is of paramount importance.
For vaccine preventable diseases, vaccination campaigns should be of optimal
efficiency, a goal which is dependent on effective disease surveillance as well as
a thorough understanding of the disease’s spatial epidemiology. Several recent
approaches show grc'gg}e ! ﬁgg‘gﬁi 21 f'LBflTWi;faiglty SihddPStand the high resolution
spatial aspects of eplelSHite PSS Lé’l&‘ieésééiof&'ﬁﬁ?{}fng a single introduction, but do not
account for the conppleptidgoinieMertt Pteh WnWkeisife diseases. This thesis describes the
development and uéésgpftenﬁgglmtechmques that can be applied to better understand
endemic diseases and epidemics originating from multiple introductions, towards
improved control and eventual elimination.

Using observation times and accurate geographic coordinates along with partial
genome sequences of the virus, nearly 200 rabies cases detected in rabies endemic
KwaZulu Natal province, South Africa over a 15 month period were analysed.
Introductions from outside the province were found to be rare, while significant
spatial-genetic clustering was shown to exist within the province. By reconstructing
the causal links between cases at the individual case level, this clustering was shown to
be the result of distinct transmission cycles. Although a large number of transmissions
over long distances point to a significant anthropogenic influence in the transmission
of rabies in the study area, the individual endemic clusters had very little contact
and remained independent.

Demographic reconstructions showed that current control efforts are having a
marked effect in reducing the number of cases throughout the region. Meanwhile,
reconstruction of direct and indirect transmission links between cases allowed for an
accurate inference of the true number of cases affecting the study area, which showed
that surveillance in this region currently detects upwards of 50% of cases. Taken
together, the results described here allow for the design of more directed control

strategies tailored to the area under study, while also allowing for the improvement of
iii
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endemic disease, al%ﬁi%@%&%ﬂ%?&ﬂ%%ﬁynami% at the individual

case level.
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Literature review

1.1. Introduction

Submitted in partial fulfillment of the requirements for the

Rabies encephalitis, degree Mahier1Srisstiawindibspradsl of Matnidierand deadly zoonotic diseases,

. Agricultural $cien§es, University of Pretpria ]
is caused by the glo%)ally distributed Lyssavirus genus of negative-stranded RNA
r\@ors: Prof. L.H. ,Nel & Prof, W. MaerlElter

viruses (World Healit;lgep )reanization, 2004). The type species of this genus, and the
primary cause of rabies in most of the world, is rabies virus (RABV; World Health
Organization, 2004; International Committee on Taxonomy of Viruses, 2013). RABV
is primarily transmitted by biting and moves along peripheral nerves from the site of
infection to the central nervous system, where it replicates and causes a serious and
invariably fatal neurological disease (Warrell & Warrell, 2004). The Lyssavirus genus
currently encompasses twelve recognized species, and three putative species — Bokeloh
bat lyssavirus, Ikoma lyssavirus and Lleida bat lyssavirus — were recently described
(Freuling et al., 2011; Marston et al., 2012; International Committee on Taxonomy
of Viruses, 2013; Ceballos et al., 2013). On a global scale, lyssaviruses display the
highest diversity in Africa, which may indicate that this genus first evolved here: five
of the recognized species as well as one putative species occur in Africa. Rabies virus
has an almost global distribution, while Duvenhage virus, Lagos bat virus, Mokola
virus, Shimoni bat virus and Tkoma lyssavirus are associated exclusively with Africa
(although it should be noted that both Shimoni bat virus and Ikoma lyssavirus have
only been isolated once; Rupprecht et al., 2002; Markotter et al., 2008a,b; Kuzmin
et al., 2010; Marston et al., 2012).
Although RABV is usually transmitted by biting, with the virus inducing behavioural

changes such as aggression in infected animals, the high numbers in which virus is
shed in the saliva of its hosts means non-bite transmission can occasionally occur

when the saliva comes into contact with the mucous membranes or broken skin of

© University of Pretoria
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susceptible animalst(r%wgm@gbtoﬁ‘ ﬂatm%»sﬁ gan be transmitted by a wide

range of mammals, %@Jﬁ%@%‘%ﬁ'{iﬁ%"@m'ﬁM@Eﬁ!vusually responsible for the
transmission cycles in each host (Rupprecht et al., 2002). Two such independently

maintained variantspredarisl BersardheMofdrica. The canid variant circulates among

it rtial fulfillment

members of the Canidae family:particiarivedomestic dogs (Canis lupus familiaris),

jackals (Canis mesomelas and :Canis" i distius) and bat eared foxes (Otocyon megalotis),
while the mongoose variant circulates among members of the Herpestidae - mainly
the yellow and slender mongoose (Cynictis penicillata and Galarella sanguinea,
respectively) (Von Teichman et al., 1995; Sabeta et al., 2003; Nel et al., 2005; Sabeta
et al., 2007). While other wild animals, humans and livestock are susceptible to
all variants of this virus, they are “dead-end” hosts that do not contribute to the
maintenance or further spread of RABV (Childs, 2002).

Rabies remains %ﬁ%ﬁ;@r@ggyﬁggﬁgwmmg dtb?orld, and it is one of 17
diseases regarded bfetdituiendetet baleltOf Ssettlgation as neglected tropical diseases
(World Health Orgeasmiseivione20022043)w.Gakire rabies is also endemic throughout
large parts of South’ K‘ftrengf%vzhere it leads to between 10 and 30 human cases per
year, the majority of which are in children (48.8%) and young adults (21.8%; Bishop
et al., 2010; Weyer et al., 2011). Although these numbers are low, one should also
consider the high cost of prevention, the losses incurred due to spill-over infections in
livestock, and the traumatic nature of disease symptoms, leading entire communities
to live in fear (Cleaveland, 1998). Rabies caused an estimated loss of 1462000
disability-adjusted life years globally in 2010 (95 % uncertainty interval: 852000 to
2659000), down from 3234000 (95 % uncertainty interval: 1866000 to 6509 000)
disability-adjusted life years in 1990, but still a major problem (Murray et al., 2013).
However, quantifying the true burden of rabies with confidence is extremely difficult
because rabies cases are widely believed to be vastly under-reported (Cleaveland,
1998; Nel, 2013).

Globally, more than 95% of human cases may be attributed to bites from rabid
domestic dogs (World Health Organization, 2002; Cleaveland et al., 2006). This
is illustrated by the fact that the KwaZulu Natal province of South Africa (KZN),
where rabies is most prevalent in domestic dogs, has also historically had the highest
numbers of human cases (Bishop et al., 2010; Weyer et al., 2011). Between 1983
and 2007, 79% of the South African laboratory-confirmed human cases occurred
in this province (Weyer et al., 2011). For this reason, and because post-exposure

treatment of humans is more expensive and does nothing to address the actual source

© University of Pretoria



. . pidemiglagical m ipg of rabies
il g
1.2 Molecular epidemiology ogaiqgaﬁmrﬁﬁl %;‘ﬁ:, I\ dog
ou rica

Epidemiotogical modeling of rabies
of infections, the elirprarsonigsiompattivgays lidedegl on the control of this disease

in domestic dogs (C%@%Dﬁ%%}@éﬂ&%l,ﬂi%%%ﬁlbo et al., 2010, 2011). This

has been achieved in most of the developed world, through vaccination and control

of dog movement (Fiagdet&/BerhMuY/atearXilla et al., 2008). In these countries,

n partial fulfillment of the rec

rabies still persists in wildlife “hyfliumaicases-are extremely rare (King et al., 2004;
Velasco-Villa et al., 2008). With. this ifi iind, and to demonstrate the feasibility of
rabies elimination in developing countries, three demonstration projects have been
launched with support from the Bill and Melinda Gates Foundation and the World
Health Organization — in the Visayas Archipelago of the Philippines, south-eastern
Tanzania and KwaZulu Natal, South Africa (Lembo et al., 2011). An overarching
aim of these projects is to generate information about the challenges unique to each

setting, and how they can be successfully overcome, with the view of applying the

knowledge gained irge;“hrzg aé@?@ﬁi%@:%?ﬁ@éﬁgﬁmg elsewhere (World Health
Organization, 2010} ditkeySekaeesr Heivessint obPreld success of these campaigns will be
an improved understamdingrof rabieg Rramsiksion dynamics in the targeted regions.
The work described héte Als o contribute towards such knowledge through the use
of both existing and novel techniques combining epidemiological and genetic data

for the fine-scale resolution of epidemic dynamics.

1.2. Molecular epidemiology of canid RABV

1.2.1. Genomic variability

As members of the Mononegavirales, lyssaviruses have a single-stranded, negative-
sense RNA genome approximately 12000 nucleotides in length (Tordo & Poch,
1988). They share a conserved gene order, and five proteins are encoded: the
phosphoprotein (P gene), RNA-dependent RNA polymerase (large, or L gene) and
nucleoprotein (N gene) make up the inner capsid, while the matrix protein (M gene)
and glycoprotein (G gene) respectively form part of the inner and outer layers of the
envelope (Wunner et al., 1988). RNA viruses evolve rapidly, a consequence of short
generation times and the lack of proofreading activity in the virus-encoded RNA-
dependent RNA polymerase responsible for replication of their genomes (Jenkins
et al., 2002). It is not surprising therefore that point mutation is one the major forces
driving lyssavirus evolution (Badrane & Tordo, 2001). However, the substitution

rate of RABV is relatively low compared to other RNA viruses. The synonymous

© University of Pretoria
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substitution rate ing m&fﬁ Wgﬁéﬂdgﬂaws has been calculated as
5.27 x 107* (£0.23 g@gﬁfﬁ)%ﬁ%ﬁ;ﬂiﬁi&ﬁWﬁMﬂem%%M, while the synonymous
substitution rate calculated for partial G gene sequences from the same dataset was
4.1 x 107 (£0.3 X THeodstub Hatrdigms meliesitg per year (Holmes et al., 2002).! By

t{u\m\mmt of the rec

comparison, the synonymous substitufionaate of of a spectrum of RNA viruses has
been calculated to lie betweetf6.8% 104 dnd 7.9 x 1072 (Jenkins et al., 2002).
This stochastic accumulation of point mutations is followed by strong purifying
selection (Badrane & Tordo, 2001). This causes RABV to have a much lower
non-synonymous substitution rate than the rate of accumulation of synonymous
substitution rates, thus lowering the overall substitution rate. The non-synonymous
substitution rate of European RABV isolates has been calculated as 2.85 x 107°
(£0.265 x 107°) substitutions per site per year in the N gene and 5.06 x 107°
(£0.85 x 107°) for ﬁg%f%;ga@gﬁg'e & Eﬁéﬁ?ﬁ(ﬁﬁﬂﬁgﬁéﬁd@t al., 2002). Meanwhile,
the mean overall nulksetiete! Seitssest Wttty atBeterddculated for a globally representative
group of RABV is6lesbasrsvias HNKe o W (9586eposterior interval [PI]: 1.1 x 107
3.6 x 1074) substititions et site per year for the N gene and 3.9 x 10~* (95 % PI:
1.2 x 107%-6.5 x 10~*) substitutions per site per year for the G gene (Bourhy et al.,
2008). The range of overall substitution rates for RNA viruses has been estimated
as between 7.5 x 107 and 2.8 x 1073 (Jenkins et al., 2002). This strong purifying
selection may be due to the diversity of cells that this virus infects, where an
advantageous mutation in one cell type would be deleterious in other cell types or
hosts, implying strong purifying selection one would not expect for many other viruses,
along with the absence of immune selection which drives high mutation rates in the
genes encoding viral surface proteins of viruses such as human immunodeficiency
virus 1 and bovine respiratory syncitial virus (Holmes et al., 2002; Johnson et al.,
2002). RABV spends most of its time in the central nervous system where it appears
to remain hidden from view of immune cells (Murphy 1977; Charlton et al. 1997;
Roy & Hooper 2008; section 1.3.1). A third explanation suggested by Holmes et al.
(2002) is the influence of stochastic processes such as population bottlenecks, which
would decrease the power of natural selection, including immune selection. However,
Bourhy et al. (2008) showed that the ratio of non-synonymous to synonymous
substitutions was much higher on external than internal branches of a maximum
likelihood phylogenetic tree constructed from sequences representative of terrestrial

(i.e. not bat-borne) RABV diversity from around the world. This indicates that

!These are the two genes most frequently used for phylogenetic analyses of lyssaviruses.
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most of the mutatippgdivfigiom patiways iandei never become fixed (Pybus

et al., 2007; Bourhgaot:ﬂ;:'ﬁ.% s nigrKwkalieNatald o significant role in the
evolutionary history of RABV, one would have expected some deleterious mutations

to become fixed dugp dbesBshastisifohbaddhis process introduces (Ohta, 1992;
Bourhy et al., 2008). Althoughievery-trapsmission should theoretically constitute

u

Prof. LH._Nel & Prof. W. Markotter

a population bottleneck for pathégens, Tééent studies of intra- and inter-host viral
population dynamics suggest that the population bottlenecks during transmission
are not necessarily narrow for all viruses (Murcia et al., 2010). If this proves to be
the case for RABV, it may go some way to explain why relatively few mutations
become fixed, but this would also reduce the effectiveness of population bottlenecks in

reducing both the genetic variation of RABV and the effect of diversifying selection.

1.2.2. Overview. Bf ¥H& gioBa) sAHEEN Niie4dEs of rabies virus

Agricultural Sciences, University of Pretoria

Although rabies hagugssonrs: re _(mt_e,\l(eil i%rgovglﬁasr%gerdogs since antiquity (Neville, 2004;
Baer, 2007), modernsdaspRABYV appears to have originated much more recently.
Phylogenetic evidence strongly supports the hypothesis that this virus first originated
from other lyssaviruses infecting the Chiroptera, before spilling over to — and becoming
established in — members of the Carnivora (Badrane & Tordo, 2001; Bourhy et al.,
2008). Through molecular clocking based on G gene sequences, Badrane & Tordo
(2001) detected two separate host switches that appear to have occurred between 888
and 1459 years ago. Using a much larger dataset (almost 4 times larger), Bourhy et al.
(2008) dated the most recent common ancestor (MRCA) of a globally representative
dataset of Chiroptera- and Carnivora-associated RABV to 749 years ago (95 % PI:
363-1215 years ago) based on N gene sequences and 583 years (95 % PI: 222-1116
years ago) based on a smaller dataset of G gene sequences. However, this study
included relatively few Chiropteran RABV isolates (25 sequences of bat RABV isolates
versus 126 sequences of carnivore RABV isolates), and indeed the age estimate for
the MRCA of all carnivore isolates included was similar to that of the whole dataset
at 761 years old (95 % PI: 373-1222 years). Nevertheless, the phylogeny constructed
by Bourhy et al. shows evidence of only one switch to the Carnivora, followed by a
rapid radiation of lineages. It is possible that this host switch occured in southern
India, since carnivoran isolates from the Indian subcontinent and Sri Lanka form
the most divergent clade, occupying a basal position in phylogenetic reconstructions
based on both the N- and G-gene (Bourhy et al., 2008). Chiropteran RABV still

causes fairly frequent spillovers into carnivores (Leslie et al., 2006; Kuzmin et al.,
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2012), and it is theyqigirsHkidsi pHthWaysaradogg dog rabies in antiquity has
since died out, follo?g%i%ﬁ/ %‘%@%%%%W%gﬂl more recent times, or that

these cases were caused by a different lyssavirus that is now extinct (Badrane &
Tordo, 2001; Bourly&ddafus 280¥3rdlis Mdnemigyer unclear why RABV is no longer
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Phylogenetically, the carnivéian.linéages sf RABV strongly correlate to geographic
location of origin, but also form distinct variants associated with specific host species
(Smith et al., 1992; Von Teichman et al., 1995; Sabeta et al., 2003; Bourhy et al.,
2008; Kuzmin et al., 2012). On a global scale, Bourhy et al. (2008) found that RABV
lineages from various carnivoran hosts are phylogenetically interspersed within dog
lineages, which they argued reflects the role of dogs in disseminating rabies to the
majority of the other carnivoran hosts. Using a 200 base pair partial sequence of the

conserved N-gene, S egﬂit agi_'gtig 'ggg'ggﬁ?ﬂéﬁgﬁﬁgqgiﬁzﬂﬂ?gﬁ lineages differing by more
than 10 % among 59t edenresABYY séfgrites (Table 1.1). While five of these
lineages were also géommaph bedllH disti ot WSthibheret al. identified a widely distributed
lineage comprising% PEOIates from the US, Central and South America, North
and Central Africa and Western Asia. This lineage also contained vaccine strains
derived from historic European isolates, leading the authors to suggest that this
“cosmopolitan” lineage was widely disseminated from Europe as a result of European
colonialism. This hypothesis is supported by analysis of the substitution rate of
Lyssavirus G genes, which dates the most recent common ancestor of cosmopolitan
lineage RABYV isolates to between 1493 and 1717 (Badrane & Tordo, 2001). Kissi
et al. (1995) used complete N-gene sequences to identify eight lineages among the
69 global isolates of carnivoran RABV they examined (Table 1.1). Again, most
lineages were associated with specific geographic areas, but an additional lineage
(designated the Arctic lineage) was widely distributed in the northern hemisphere. In
agreement with the results of Smith et al. (1992), some isolates from Africa and Latin
America, along with all European and Middle Eastern isolates, were more closely
related to each other and to the European-origin vaccine strains than to any of the
other designated lineages. A subsequent study using complete sequences of both the
N and G genes and a much larger sample size confirmed and expanded the wide
distribution of both the Arctic-related and Cosmopolitan lineages (Bourhy et al.,
2008). Since the evolution of RABV is constrained by strong purifying selection
(section 1.2.1), Bourhy et al. argued that these global phylogeographic patterns

are the result of stochastic processes rather than natural selection. In this scenario,
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much of the Varlathmaﬁgmif oh spatlwaysim addgiemporal scales as a result of

range expansions ( g"b%k%;%“?m*(@%bﬂé‘mab%?) are lost over time due
to genetic drift, leading to the spatially and genetically distinct lineages observed

at a global scale (Bpraddoils Berd?dSs-Mfigayase, this also means that the picture

Sbm ted in partial fulfillment

presented in Table 1.1 may bgs{ratiste] ‘i;;:hp}igveiﬂ%heless such global phylogeographic
studies have value in that thej allow
although arguably the focus should move towards using full genomes if one hopes to

gain an accurate picture of the origin of RABV.

Table 1.1: Global rabies virus lineages associated with the Carnivora

Smith et al. (1992)° Kissi et al. (1995) Bourhy et al. (2008)

Africa 1 (North, Central
Llneage I ngtgls)ttﬁigm paraalldllﬂm‘glﬁhaém Agﬁm@&)ts fordthe
dlstrlbuted%ﬁrlcultural SaenEﬁMpg?%ﬂﬂi@rEast
Supervisors: Prof. L.H.waﬁﬁrkolé{iai@éFellb

Lineage II (South Asm)

Lineage III (South-East
Asia) Asia Asian

Lineage IV (China)

Lineage V (South-East
Asia and China)

Cosmopolitan

Africa 2 (West Africa) Africa 2
Africa 3 (Southern Africa 3
Africa)
Arctic (widely Arctic-related
distributed)

Indian subcontinent

?Adjacent cells indicate the designation used by the various authors, with many of the earlier
lineages collapsed into single clades as more isolates were included.
bLatin America 2 is likely bat associated and therefore not included in this table.

1.2.3. African lineages of rabies virus

Surveillance for rabies is deficient throughout most of Africa, and it is difficult to

get a clear view of RABV diversity on the continent, with the picture being skewed
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towards southern 4 HAsmMissionpathwagsiinndgg intensive (Swanepoel et al.,

1993). Nevertheless%%b&?ﬁﬁﬁ%??&%ﬂl%'mﬁi@i’ng to three of the lineages
described above have been identified in Africa and are believed to be descended

from progenitor virupgsgdadredBeashigusitionantavents (Kissi et al., 1995; David et al.,
2007). The Africa 1 clade, a suhset-of fheslobally distributed Cosmopolitan lineage,
is further divided into Africa;1&,fotind throughout North and West Africa as well
as Madagascar, and Africa 1b, distributed throughout southern and East Africa,
while the distinct Africa 2 clade is widely distributed throughout West Africa (Kissi
et al. 1995; Bourhy et al. 2008). The Africa 3 clade represents the mongoose variant
of RABV (section 1.3.2), found among the Herpestidae of the central plateau of
southern Africa (Kissi et al., 1995; Nel et al., 2005; Davis et al., 2007). In the study
by Kissi et al. (1995), one isolate — from a human case in Egypt — did not group with
any of the African ?gggéi ag;‘gf@(?g‘ﬁ%ﬂiﬂbﬁé&ﬁ%;jﬂoﬁ@fgfﬂ%ﬁé@tes from the Middle East
and Egypt (includifgieteassirees ey sl ) David et al. (2007), designated
a fourth clade (AfSieevishy, Peontainifagroall. fouendigyptian isolates sequenced and a
vaccine strain from Tsthel. “Where this clade fits in the global diversity of RABV is
unclear. The Africa 4 clade appears ancestral to European vaccine strains, which are
in turn ancestral to the rest of the Cosmopolitan clade (David et al., 2007). However,
while there was strong bootstrap support for the branches leading to the Africa 4
clade (99 %), the branch leading from there to the Cosmopolitan clade received only
72 % bootstrap support. These Egyptian isolates are closely related to cases in the
Cosmopolitan lineage, and from the present limited evidence it would appear that
the Africa 4 clade is simply another subset of the Cosmopolitan lineage. This is
also the classification used by Bourhy et al. (2008) for the single Egyptian RABV

sequence available at the time (sequenced by Kissi et al. 1995).

1.2.4. The canid variant in South Africa

Despite the long history of canid-associated RABV on a global scale, this variant of
the virus is relatively new in southern Africa (Swanepoel et al., 1993). Phylogenetic
evidence confirms that all canid RABYV isolates in southern Africa stem from a
common ancestor, and form part of the Africa 1b group of the Cosmopolitan RABV
lineage, consistent with being introduced by European colonizers (Nel et al., 1997;
Davis et al., 2007). The first confirmed outbreak of rabies in dogs in South Africa
occurred between 1892 and 1894 in the Eastern Cape province, after importation

of an infected dog from England (Swanepoel et al., 1993). After eradication of this
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epidemic, rabies wagpgahsphigsie Jsathways iiS deben two children died following

bites from a yellow %%%%cﬁé}?i%@%tﬁmﬂﬂdtw@wnepoel et al., 1993). There

had been occasional reports of a rabies-like disease following exposure to several

members of the HerpgssiliasSBarhsrddemblidig-£8th century (reviewed by Swanepoel

ial fulfillment f t

et al., 1993), which was laters¢omfimmed e be-caused by a genetically distinct and
host-specific variant of rabies:¥itiis"(Vori “Téichman et al. 1995). Despite occasional
spill-over events, this variant has never become established in domestic dogs, which
has limited its effect on humans (Von Teichman et al., 1995; Nel et al., 2005; Weyer
et al., 2011).

A second wave of canid rabies reportedly entered South Africa in 1950. The
disease is believed to have spread from neighbouring Botswana into what is now
the Limpopo province (Figure 1.1), where it first infected domestic dog populations

before spreading to jgﬁ%%aeﬁ%@! i%?gﬁlﬁgg%@%%?§gﬁzﬂ%7 Swanepoel et al., 1993).

agister Sciel

The epidemic rapidigicspreadetsstivusety pePertedly entering Mozambique in 1952,
where it spread throwelioutPehe tenterlo-twdvetensely populated southern parts of the
country (Swanepoel276 “u .,bjéﬁé). From here, the epidemic is believed to have spread
to Swaziland in 1954 and finally to have re-entered South Africa from southern
Mozambique in 1961, spreading through northern KZN into the densely populated
coastal and central areas (Swanepoel et al., 1993). Control efforts led to eradication
of the disease in KZN by the end of 1968, but the epidemic is believed to have
been re-introduced from Mozambique in 1976 when large numbers of refugees fled
into South Africa from newly independent Mozambique (Swanepoel et al., 1993).
This second wave spread throughout KZN and into Lesotho (first detected in 1982)
and the Eastern Cape province (in 1987), and has remained present and largely
uncontrolled in these areas since (Swanepoel et al., 1993; Bishop et al., 2010). With
the development of molecular phylogenetic techniques, it became possible to confirm
the exact origin of new incursions. In 2002, rabies spread from Lesotho to the
Free State province, an area where historically only the herpestid variant of RABV
was found (Swanepoel et al., 1993; Ngoepe et al., 2009). This was followed by a
re-introduction of rabies from Zimbabwe to dogs in the northern districts of Limpopo
in 2005, which resulted in 21 confirmed human deaths and a further 9 suspected
deaths (Cohen et al., 2007). Although subsequent control efforts have caused a
marked decline in the number of dog rabies cases in Limpopo (Figure 1.2), this
newly introduced phylogenetic variant has become established in northern Limpopo
(Sabeta et al., 2011).
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Figure 1.1: Map of sou négnuﬂ?rsl(czlgns e%wf}'ﬁgert ¢ (}))rogzelrcl)ggs of South Africa. South African provinces

are indicated in green,swhileneighbeuring meuntnisxate shown in a lighter shade with names in
capital letters (LSO: LesathensaWds Swaziland). Based on data from the Municipal Demarcations
Board of South Africa (www.demarcation.org.za, accessed October 2012).

Since its reintroduction in 1961, RABV has spread throughout most of South Africa
and is now endemic in many areas (Figure 1.2). This spread of rabies throughout
South Africa and particularly eastern southern Africa has left a discernible fingerprint
in the spatial-genetic distribution of RABV isolates from this region. RABV isolates
from the Limpopo and North West provinces are closely related, and circulate mainly
in black-backed jackals (Zulu et al., 2009). Zulu et al. (2009) also found a close
genetic relationship between isolates from Limpopo and some from Mpumalanga,
but these appear to be merely the result of occasional translocation of dogs. Rabies
has been under control in most of Mpumalanga for 20 years, and only recently
expanded in range to cover a large part of this province (Mkhize et al., 2010). In
fact, more recent RABYV isolates from Mpumalanga were found to be closely related
and clustered with the single isolate available from Swaziland, with Limpopo isolates
grouping ancestrally to isolates from Mozambique and KwaZulu Natal, which are
in turn ancestral to the Mpumalanga isolates (Mkhize et al., 2010). Isolates from
KZN are also ancestral to those from the Eastern Cape and to the closely related
isolates from Lesotho and the Free State province of South Africa (Coetzee & Nel,
2007; Ngoepe et al., 2009; Weyer et al., 2011). Biek et al. (2007) found a similar

pattern of the present day spatial distribution being determined by events during
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the initial colonisatipanemitssion pathwayS drtldegnerica, and argued that this

may be explained b Ol}%ﬁs e iccKwadubieNataloe expansion. This model
arises from simulation studies showing that advantageous and neutral mutations

(and possibly even slightkydBetasiaus Malenisans) occurring at the leading edge of
a range expansion are far mgpesgiceessHik I surviving and becoming established
than mutations arising later (Ediionds" €t “al., 2004; Klopfstein et al., 2006). This

is because the later mutations (or lineages) do not have the same opportunities of

expansion, since the available niche is already filled (i.e. in the case of pathogens,
less susceptible hosts are available to fuel range expansion; Biek et al., 2007; Brunker
et al., 2012).
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Figure 1.2: Annual incidence of animal rabies cases in South Africa as reported to the
OIE (World Organisation for Animal Health) between 1996 and 2012. Data for individual
provinces was only available from 2006 onwards (KNP indicates the Kruger National Park,
shared between Limpopo and Mpumalanga). Based on data from OIE Handistatus 2 (1996
to 2004, www.oie.int/hs2/) and the World Animal Health Information Database (2005 to 2012,
www.oie.int/wahis_ 2/public/wahid.php/Diseaseinformation/statusdetail).

1.3. Epidemiology of RABV

1.3.1. Pathogenesis

Because of its use of conserved receptors to enter cells, RABV can infect all mammals
(Rupprecht et al., 2002). The virus is primarily transmitted by biting, although any

exposure where virus-laden saliva comes into contact with the peripheral nervous
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system (e.g. exposmfgﬁsvﬁ]gmgmmm@hm%gcuts or grazes) can result in

successful transmiss@%bjﬁis%ﬂ%%@éﬁz Mﬁ;y,lllf)m@.tﬂvABV is known to replicate

to some extent in striated muscle cells at the inoculation site before it enters the
peripheral nervous sygrteabrilY BepSrdlis Radhintdd74). However, it is thought that the

arial fulfillment of the requi

virus may also enter the peripheraf-nervens-system immediately if the inoculum is
large (Fishbein & Robinson, 1993, Fréii ‘tHe edges of the peripheral nervous system,
RABYV particles are passively transported to the central nervous system (CNS), where
the majority of replication takes place (Murphy, 1977). Clinically, rabies typically
presents in either a furious form, involving behavioural changes and particularly
aggression which accommodates the bite transmission of RABV, or a paralytic
form, characterised by progressive paralysis. There is evidence to suggest that these
different manifestations may be caused by the exact regions of the CNS in which the
virus replicates, alt@?gﬁﬁ%@g&%@?ﬁ?ﬂﬁ%ﬁi@?ﬁ@%ﬁlﬁ?}%ﬁ%@ cfiﬁf{:felrential infection (Smart
& Charlton, 1992; Mgt 2KerceesValkeroetdrom the CNS, virus particles spread
passively along the 1evervisandenfof e perphieratonerves to reach most organs, including
the salivary glands,27\7x§ﬁée?1§e%ﬁle3 virus replicates further and is shed in high numbers
into saliva (Yamamoto et al., 1965; Murphy, 1977). Although this process is believed
to be broadly conserved amongst all mammals and RABV variants, some variations
have been noted. For example, there is little evidence of bite-transmission among
greater kudu (Tragelaphus strepsiceros), the only mammal outside the Carnivora and
Chiroptera known to maintain rabies independently (Barnard et al., 1982; Mansfield

et al., 2006).

1.3.2. The reservoir host

An important concept in understanding the epidemiology of RABV and any other
pathogen is that of the host or maintenance population. Traditionally, the reservoir
host of an infectious disease has been defined as one that is capable of independent
maintenance of the disease (Cleaveland & Dye, 1995). However, Haydon et al.
(2002) argued that the concept of a reservoir host must be defined with reference
to a target population, the population that one seeks to protect. They noted that
multiple sub-populations (or species) might constitute a maintenance population
even if some or indeed all of these sub-populations are incapable of maintaining the
pathogen independently of the others. Thus, they defined a reservoir as “one or more
epidemiologically connected populations or environments in which the pathogen

can be permanently maintained and from which infection is transmitted to the
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target population” ﬂf%ﬁgmiggi mwlaggoiw tlsglarge number of animals that

can be infected, orfi@biegendemic KiwaduluNatalansmit RABV and act as
outh Africa

potential reservoirs. Domestic dogs are the primary reservoir of rabies throughout

the developing worltheddthiemerdraiid Midaehests also exist, sometimes apparently
acting as a part of the reservait eranfection-oft-humans (sensu Haydon et al., 2002).

Lembo et al. (2008) found thaty.altliough there is no evidence for independent

maintenance of RABV in wildlife in the Serengeti, there is strong evidence to suggest

frequent transmission between species. Thus, the wildlife hosts still form part of
the maintenance population, even though they are not necessarily an indispensable
component of it (Lembo et al., 2008).

Numerous phylogenetic studies have reported that rabies appears to spread in

several geographically distinct cycles in black-backed jackals (Canis mesomelas),
side-striped Jackalsi;g’g&mgsg@%%§jﬁmiﬂm§q§%E?LF{}:If?nzi&@s (Otocyon megalotis) in
southern Africa, witdiclivielrcistesseUniveiiyop Betedd transmission than transmission to
or from domestic degssBighat Net@lof. ¥90Sabeta et al., 2003, 2007; Zulu et al.,
2009; Sabeta et al.,%fﬂtﬂtferﬁat these species have sufficiently high densities to be
able to maintain RABV independently of dogs has been disputed (Rhodes et al.,
1998), and is in contrast with results from elsewhere in Africa, where the virus was
found to co-circulate in domestic dogs and wild canids (Cleaveland & Dye, 1995;
Lembo et al., 2007). Evidence for such co-circulation between dogs, jackals and
foxes has also been found in South Africa (Sabeta et al., 2007; Zulu et al., 2009).
However, in some areas with low human population densities (to which dog densities
are closely correlated) RABV is isolated almost exclusively from bat-eared foxes
(Sabeta et al., 2007). Similarly, the phylogenetic clusters associated exclusively with
jackals are found in western Limpopo, an area dominated by large game ranches
and lower human densities (Zulu et al., 2009; Sabeta et al., 2011). Rhodes et al.
(1998) concluded that jackal populations would need an average population density
of 1.4 individuals/km?, while the actual density of side-striped jackals observed was
only 1 individual/km? in the 150km? of commercial farmland they studied. From
this they concluded that jackals in Zimbabwe would be unable to maintain RABV
indefinitely in the absence of re-introductions from domestic dogs. Although it is
likely that the demographic parameters and contact rates observed in this population
(and therefore their estimate of the threshold density for RABV maintenance) will be
broadly similar in both side-striped and black-backed jackals across southern Africa,

it is entirely possible that different habitats could sustain higher densities of jackals.
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In addition to reports of independent cycles in these hosts, RABV seems to circulate

in shared cycles in qth&ldarsaRernaid i tviatigrzAends further support to the idea of a

metapopulation reservoir. Zuhie at-{PH9%4otind that in the commercial farming
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areas of Limpopo and North :West, Virtisés isolated from dogs and jackals clustered
together, indicative of co-circulation, while clusters from the communal areas of
Limpopo and Mpumalanga included only one jackal-associated isolate. It would
appear therefore that in areas where both dogs and jackals are present, they have
sufficient contact to maintain a shared epidemiological cycle, an observation with
significant implications for control efforts. This is in agreement with the observations
of Rhodes et al. (1998), which showed that the incidence of rabies in dogs and jackals
were closely (:orrelajfe\%"g1 aglster @;é,, tgg Ifrgﬂgﬁmﬁ? ggl'@tur;fa?r{ d%imbabwe In areas where
the virus co- c1rcula’ﬁ‘é@c'&M@ﬁgﬂh@sb@%@ﬂiﬁf&'ﬁﬁ@ RABYV in dogs should also lead to
a reduction in the swmibereof asdsPisl Yavkede (Cleaveland & Dye, 1995; Rhodes
et al., 1998). Howe%éfpt 'ta for the whole of Limpopo do not show a decrease in
jackal cases despite a marked decrease in the number of cases in dogs in response
to recent vaccination campaigns (Sabeta et al., 2011). This again indicates that at
least in some parts of Limpopo, rabies in jackals is independent from the disease in
dogs. In the arid and sparsely populated Northern Cape where bat-eared foxes are
prevalent, lack of water and food would seem to preclude high population densities.
However, these same factors could increase the contact rate between individuals as
they are forced to roam over wide areas. To date, no study has combined detailed
epidemiological observations and modeling with phylogenetic data (an approach
which would undoubtedly clarify this situation), but the phylogenetic observations
are compelling. In fact, it is difficult to imagine an alternative explanation for
the phylogenetic observations, unless very large numbers of dog cases (and thereby
genetic diversity of RABV) are being missed. However, such an explanation might
still not explain the persistence of RABV in large parts of the sparsely populated
Northern Cape. Bingham (2005) argued that jackals in Zimbabwe lack the spatial
separation required for them to show a metapopulation structure, and that this
explains why RABV is not independently maintained in these animals. In dogs, such
structure is thought to be critical in the long-term maintenance of RABV in the
face of local extinction caused by its high virulence (section 1.3.4), with dogs having

distinct sub-populations wherever there are human populations (Bingham, 2005).
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Although this argumﬁgﬁu ppﬁﬂmybedﬁ@(@ RABYV persistence in jackal

populations throug uﬁ'@ﬁ&%‘?ﬂ%’é‘i‘l@a Kwrdulyr Natal, why RABV appears to be
maintained independently by jackals in parts of South Africa, or why South African

jackal populations wekhhasBambragd Misfierspély from those in the rest of southern
Africa. In reality, it is likely geeombination oi-ost density and population structure
that determine whether indepéiident miaifitenance of this deadly virus is possible.
In theory, such co-circulation means the (meta)population that must be vaccinated
to achieve rabies control is much larger than it would be otherwise (and less accessible
if part of the reservoir is wildlife). Bingham (2005) argued that this means rabies
control will require ever increasing resources and that current control strategies are
unlikely to work in future. This may be true if the goal is to achieve total elimination
of RABV. However, to protect a specific population (e.g. humans or endangered
wildlife) it should b%“ér{ge i ECIemae ol qféculty Lﬁgﬁ;tﬁlgg é;inlﬁﬁaopulatlon that transmits
the virus to this “taﬁ%@ﬂ'tﬁdﬁﬁfa‘ﬁ%ﬁh’wqﬁyﬁ@ reigde of humans, this source of infection
is domestic dogs irsummewe trbfanH. 98 “pPresf weasest¢World Health Organization, 2002;
Cleaveland et al., 26()%65ter1b gle3d although rabies persisted in foxes throughout most
of Europe until recently, cases of spill-over events to humans were rare (Malerczyk
et al., 2011; Freuling et al., 2013). Although it could be argued that the free-roaming
nature of dogs in Africa makes it much more difficult to prevent re-introduction to
dog populations in Africa than it was in Europe, recent experience suggests otherwise.
Despite the presence of seemingly independent wildlife reservoirs in the Limpopo
province of South Africa, rabies was successfully brought under control (Sabeta et al.,
2011). In this province, the eventual source of re-introduction was not black-backed
jackals, amongst which rabies remained endemic in some parts of the province, but

domestic dogs in neighbouring Zimbabwe (Cohen et al., 2007; Sabeta et al., 2011).

1.3.3. Epidemiology of rabies in dogs

Although much more is known about the epidemiology of wildlife rabies, which
affects the developed world, several recent studies have focussed on understanding the
transmission of dog rabies in natural settings in Africa in more detail. Understanding
the transmission dynamics of RABV has important applications in the design of
control measures, where these parameters inform mathematical models. In Tanzania,
where only the Africa 1b variant of canid RABV is present (which is also the only
canid-associated lineage in South Africa, section 1.2.3 and section 1.2.4), the mean

incubation period in dogs has been found to be 22.3 days (95% confidence interval
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[CI]: 20.0-25.0 dayﬁ}ﬂﬁ%mﬁggibﬁt[yé RR#Ys inldessh the incubation period is

variable and extre @%%ﬁn%ﬁﬁgﬁﬁﬂﬁvﬁgﬁﬁ'}u@@%een reported (reviewed by

0
Fekadu, 1993), epidemiological models show that this has limited impact on the
population-level dyresigs et BdicsdGlaspiarst & Dye, 1995). This may be because

raments for the

of the short life-span of dogs dhthe-devetopime-world (2.4 to 3.4 years, Kitala et al.
2001), which means very few.dags. Wotild"§trvive long enough to become infectious
in the rare situations where a longer incubation period is required for some reason
(Cleaveland & Dye, 1995). Following the incubation period, the salivary glands
become infected (section 1.3.1), allowing the virus to be spread when other animals
or humans are bitten. However, the time-window for transmission is quite small
— dogs are infectious for only 3.1 days on average (95% CI: 2.9-3.4 days) before
succumbing to rabies, causing the number of secondary cases to be low in most cases
(Harmpson et ol 2009yt pad lient o e s f

Another consequfé%i'é@t‘M1 pHircesralrivfeldtistiawindow and the fatality of RABV
infection is that rabiesiepidenticateeydlidalofChilds et al., 2000; Hampson et al.,
2007). The numbér S Potential hosts rapidly decreases (Bingham, 2005), thus
decreasing the number of new infections (a factor which is density-dependent; Beyer
et al., 2011). At this time, RABV may become extinct in the local population, only
to be reintroduced from a neighbouring population once the local dog population has
grown beyond a miminum threshold (section 1.3.4), or could persist with low levels
of infection in larger populations (Beran & Frith, 1988; Bingham, 2005). In southern
and eastern African dog populations, these cycles have been found to occur over
a period of between 3 and 6 years (Hampson et al., 2007). Hampson et al. (2007)
argued that responsive vaccination campaigns actually sustain this periodicity and
decrease the period between epidemics. This is because fewer dogs in the population
are killed by the virus, which means the population recovers more rapidly. Thus,
if vaccination is not sustained, the majority of these animals will be susceptible to
infection in the next cycle of the epidemic (Hampson et al., 2007). Carroll et al.
(2010) showed that higher population growth rates or carrying capacity also lead to
rabies epidemics occurring at increasing intervals.

Synchrony between rabies epidemic cycles in southern and eastern Africa has been
found over distances of up to 1000 km, which Hampson et al. (2007) ascribed to
possible repeated long-distance transportation of latently infected dogs or to the
involvement of wide-ranging wildlife such as hyenas. Indeed, road-distance has been

found to be a better predictor of rabies spread than geographic distance in North
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Africa, suggesting tharighvissioppatiwaysiin dgger by transporting infected,
) ) : ; atal .

RABYV incubating dg%pul{ih%%gy%rm@d%m eorridors for dog movement

r
(perhaps linked to the availability of food along roads; Talbi et al., 2010). In contrast
however, contract traesag i BahgduanMbilighels more-or-less in the middle of the
region studied by Hampson ef-glt 7 ssliowed that the mean distance of RABV

rel

ors: Prof. LH.Nel & Prof_W._Markotter

transmission among dogs in flis-aréa"was 0.88 km, and although the distribution
of observed distances follows a long-tailed gamma distribution with transmission of
up to 16 km, these were rare and all values within the 95% confidence interval was
below 1 km (0.83-0.92km; Hampson et al., 2009). The involvement of humans in
transporting rabid animals has frequently been cited as a major contributor to the
long-distance dispersal of RABV (Denduangboripant et al., 2005; Coetzee & Nel,
2007; Lardon et al., 2010; Talbi et al., 2010). Bourhy et al. (2008) noted that the
strong subdivisi0nsilﬂﬁiﬁg%ﬁggggggyﬂiﬁ@gﬂ%@ﬁ:‘f;@ryhSub—populations indicates
that historically, mfsiisHe2eensss ety thR €@ major driving force behind RABV
dispersal, although sheyisamnetorubitadig fday. arolerin the transcontinental transport of
RABV, such as must Fave occurred to explain the distribution of the Cosmopolitan
lineage of RABV (section 1.2.2). However, these global subdivisions could simply be
a reflection of historical or current limitations of human movement by for example
geopolitical boundaries, and very little is known about the transmission of rabies
and the involvement of humans at the local, within-country level. Indeed, Talbi
et al. (2010) found that transmission rarely crossed geopolitical borders in North
Africa, which one would not expect from natural animal movement. Thus, a key
unanswered question that remains is whether human-mediated movement may blur
metapopulation boundaries to the extent of creating large, continuous endemic cycles,
and at what scale independent disease control programmes will remain effective if
this is the case.

A large amount of information regarding the factors that influence RABV transmission
among sub-populations of dogs was generated by a recent study using bite-histories
as an indirect way of measuring disease occurrence in rural Tanzania (Beyer et al.,
2011). This study evaluated several competing spatial models of rabies spread,
each incorporating different combinations of epidemiological factors which might
explain the observed patterns of spread. From the four best supported models
(which were more-or-less equally well supported), it could be inferred that rabies
transmission between villages is strongly influenced by the distance between the

villages (negatively, i.e. decreasing with increasing distance) and the size of the
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dog population in Hyangingssiornipathwiysidn degitively). The size of the dog

population in the ﬁ@ﬁt%&bﬂ@%tﬂ@@&ns to be less important —

this parameter only mattered in the case of very small populations of less than
150 dogs, which haygeadseBarahfRiNa&tfe¢ansmitting rabies. Crucially, these

it

metapopulation models showed:that-yaccipation targeting only the modelled district
lead to a predicted 50% reduétion. i Fabiés occurrence, while eliminating external
sources of infection through a broader vaccination campaign would lead to a 81.7%
reduction in rabies occurrence (Beyer et al., 2011). Clearly, it is important to
investigate at what spatial scale vaccination should be applied and to understand
the source of infections in a specific area before effective control strategies can be

designed.

- itted iy parti ] e requirements for the
134 MGChanlﬁgﬂg/‘&ttﬁﬁkﬁgﬁmmw of Natural and
Agricultural Sciences, University of Pretoria

For a pathogen to pseul;%rivsist&sztggf_rL%eN e(|)£ ggy%@cﬁ}arﬁggyveen susceptible hosts must be high
enough to ensure comtdspamsk-tvansmission. Equally important however, particularly in
the case of a pathogen such as RABV which rapidly kills its hosts after only a short
transmission window, is a constant supply of susceptible hosts through new births or
immigration (Cleaveland & Dye, 1995). These factors imply a minimum population
size, often termed the critical community size, below which the epidemic will die
out (Lembo et al., 2008). These two factors also form the basis for control efforts
against rabies and other diseases of domestic animals — restricting the movement
of susceptible and infected hosts and more importantly reducing the number of
susceptible hosts through vaccination (World Organisation for Animal Health &
Food and Agriculture Organization, 2012; World Health Organization, 2004). Given
the fatality of RABV, it may be expected that either the host birth rate or the critical
community size would have to be extremely large to maintain a constant supply
of hosts. At a small scale, Beran & Frith (1988) found that rabies was endemic
and continuously present in parts of the city of Guayaquil, Ecuador that had dog
densities higher than 680 unvaccinated dogs/km?, but occurred only sporadically
in areas with lower dog densities. However, RABV has been found to persist
in populations as sparse as 5.3 dogs/km? in Tanzania (Cleaveland & Dye, 1995).
Although several explanations involving atypical disease manifestations such as an
infectious carrier state or recovery from illness can be suggested for persistence within
host populations with such low densities (Fekadu, 1993; Cleaveland & Dye, 1995),

there is very little evidence to support the existence of these phenomena (Rupprecht
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et al., 2002). Blng}ﬁ@n@m@.mlpdtﬂwbybe.ﬁe@ﬁence takes place only at the

metapopulation lev?bml?ﬁli%cgﬂtceﬁmml&‘rmqgﬁltroductlon in various local

populations. This argument is in agreement with Haydon et al.’s definition of a

reservoir host (sectiqihdoderhs Bérisasaaaavisliareydd explain the conflicting results from
Ecuador and Tanzania — in the-srhanssetting-c¢xamined by Beran & Frith (1988),

high dog densities may lead &6 Highi‘¢ontact rates, removing the metapopulation

structure that allows rabies to persist in much smaller sub-populations in the rural
regions of Tanzania examined by Cleaveland & Dye (1995).

In reality, persistence of RABV in many regions is likely to be the result of
a combination of factors, including constant maintenance in densely populated
areas with introductions to outlying areas as well as transmission between these
more rural areas. The key point is that sub-populations smaller than the critical
community size can egr@t I Cl%lt'lg!g‘mé’fgﬁ Wﬁatuﬁj@f%f‘& pathogen, provided there
is sufficient contact AseedieehStensesdUnivtrety shifsefstpulations of susceptible hosts, a fact
which provides bothuehshehgosHankappwrakities for control. While long-distance
transmission may [6ad TSt perputuating epidemics over large areas, targeting
control efforts at key areas or transmission links between small sub-populations has
the potential to disrupt maintenance without having to reach the entire population

(Figure 1.3).

A B

//\

/ \%o
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/ \\0

. RABV maintenance population O Non-maintenance population

Figure 1.3: Maintenance of rabies in a metapopulation and potential targets for control. A: In a
continuous, heterogeneous landscape, different populations of hosts may be involved in maintenance
of RABV to varying degrees because of various factors such as size of the host population, population
turn-over, etc. (indicated by colour between red [capable of independent maintenance] and gray
[incapable of indefinite maintenance]). These populations seed cases to other populations to varying
degrees (indicated by arrow size), which is again determined by various intrinsic and extrinsic
factors. B: If the key connections between populations can be identified, these can be prioritised in
control programmes to disrupt the continuous cycle of re-introduction, before targeting specific
maintenance populations.
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1.3.5. Understqﬁé&%%%g%gjg?&ﬁgéﬁmﬁduaI case level

rabies endemic KwaZulu-Natal,
A key component ofSdfattiv@drican] of infectious diseases is an understanding of the

various factors that influence transmission through the heterogeneous (meta)populations

and across the hete-%%%q%gﬁg?éﬁﬂggéﬁéﬂﬁ"&/Zﬁlhch it occurs (Ferguson et al., 2003;

degree jentiae in the Faculty of Natural an
gric
St

Keeling et al., 2003; Beyer etAalA:'?(sTl“lijowards this goal, the traditional approach
in epidemiology has been to stidy contact patterns between hosts. This has yielded
great success in the study of infectious diseases of humans and some infectious
diseases of agricultural crops and livestock where records of human contacts or of
plant or animal movements are often available (e.g. Ramstedt et al., 1990; Kiss
et al., 2006), or where the memorable nature of disease symptoms allow for detailed
contact tracing after disease spread (e.g. Lembo et al., 2008; Hampson et al., 2009).
However, not all contacts result in disease transmission, and establishing the exact

ubmitted in partial fulfillment of the requirements for the

causal relationshipdglebres Wegisterciseiadiotie Fagelly elMetvreleand be subjective, particularly

Agricultural Sciences, University of Pretoria
when many cases occur over a short time period in close proximity to each other or

when cases may be Kiéﬁi;%&ﬁg&&fzﬁﬁéya;%itzid.

A more rigorous method of establishing causal relationships is to consider the
genetic relationships of the infecting agents. Early attempts at understanding spatial
transmission patterns by integrating spatio-temporal data with genetics involved
inferring some sort of phylogeny or parsimony network from the genetic data (in
some cases also including temporal data), before considering spatial and other
epidemiological information related to cases in a second step (e.g. Biek et al., 2007;
Cottam et al., 2008). However, this ignores phylogenetic uncertainty and does not
adequately accommodate the covariance between the genetic, spatial and temporal
data (Lemey et al., 2009). This is problematic, because not only are these three data
types influenced by the same transmission process, but they also influence each other
both directly and indirectly through their own influence on transmission, and it is
this very system which we are trying to understand (Figure 1.4).

More recently, two distinct approaches to solving this problem have been developed
in parallel, based on advances in population genetic and epidemiological modeling
respectively. Both these methods analyse all three data types in an integrated,
model-based setting, thus allowing all sources of uncertainty and correlation to be
accommodated. In addition, both are Bayesian and investigate the relationships
between cases using Monte Carlo Markov chain (MCMC) sampling techniques, thus
allowing the incorporation of prior knowledge and the simultaneous estimation of

various unknown model parameters (Drummond et al., 2002; Ypma et al., 2012).
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Because they approgﬁhﬁgmgg@mpﬁ@hmgqh dﬁgrent angles (and in fact from

entirely different ﬁel?c?ﬂ?ﬁe S 6 Kwa dule-Natale strengths and weaknesses,

and arguably complement each other. While the exact choice of method will of

course be driven byTHag dor6s ek svid hemdiisase should also be taken to account for

nd p t IHH\met of the requirements for the

the assumptions of each modgﬂz enie i th Fouty of Natral an

S S nces, University of Pretora

isors: Prof. L.H. Nel & Prof. W. Markotter
275p mber 2013

Transmission
®
©

Spatial data <MTemporal data *Gene tic data

(locations of cases) (alleles/genotypes)

Submitted in partt i i
degree Magister Scientiae in the Faculty of Natural and

Figure 1.4: Correlatlol%rb%%wgte%cf Ceesdattjtnév e egfupbrgt ¥ understand the process of transmission.

Spatial, temporal and ggnetig.data g@nN’gQLWQdWWQgstand the unseen process of transmission
because each transmissioq inyelves movement of the pathogen (a; section 1.3.3), is sequential in
time, and the timing between one transmission and the next is determined by, and can be predicted
from knowledge of, the pathogen’s epidemiology (b; section 1.3.3), and each transmission event is a
population bottleneck for the transmitted pathogen, potentially leading to the fixation of observable
genetic changes (c; section 1.2.1). However, because these processes occur on the same time-scale
(Grenfell et al., 2004) and are all influenced by the same process of transmission (Pybus et al.,
2012) and also in turn influence this process, they indirectly affect each other — circulation of the
pathogen in a given area decreases the number of available hosts, leading to a decrease in the rate
of transmission (d; section 1.3.4), while accumulation of mutations over time may eventually lead
to subtle changes in the epidemiology of the pathogen, thus also affecting the rate of transmission
(e). Concomitantly, the time between transmissions determines the amount of mutations that can
accumulate between observed cases (f; section 1.2.1), and also how far infected hosts (or virus
particles) can move, thus determining the spatial influence of every infection (g; section 1.3.3). In
addition, the relatively small spatial influence of every infection compared to the size of the area
under study means transmission is a local process, causing spatial clustering of genetically related
cases (h).

1.3.5.1. Approaches based on population genetic modeling

The first of these approaches uses standard nucleotide or amino acid substitution
models in conjunction with a coalescent model that relates the timing and genetic
divergence between cases to population genetic processes, with a diffusion model
to account for movement of the pathogen across geographic space (Lemey et al.,
2009, 2010). These models can simultaneously be fitted to the observed data while
co-estimating a phylogeny, which is used to record the genetic relationships between

cases (Lemey et al., 2010).
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The coalescent ngpgpisiiissionepathiwagyeimnddgte correlation between data-

types caused by thﬁ%ﬁﬁ%&?&@i%%m%@@f—ﬂbseendants from a common
ancestor (Kingman, 1982; h in Figure 1.4). It has since been expanded in a variety
of ways to accommoplpdsddiffe et hensRdnangaietic processes and to study different
aspects of evolution (Kingmgii2Bdf=IHe“core concept of all of these variants
remains the same however, afid.involves working backwards from the genomic or
sub-genomic sequences of n individuals sampled from a large population to find
common ancestors for pairs of sequences, thus building a genealogy for the sampled
individuals which expresses when in the past individuals shared common ancestors
(Kingman, 1982). This is done by using a model of genetic drift to calculate the
probability that the sequences from two individuals coalesce (i.e. that the sequences
are identical) in the preceding generations (Kingman, 1982, 2000). Although it is
possible to use othq?:gget‘j agl'gtl?'ig gﬁ?ﬁﬂglﬁgﬁI;@?gk?’ﬁg?%f;ﬁ"éoalescent model used the
neutral Wright-Fisheicustiedensesiejdeivwetetidassumes a neutrally evolving locus,
non-overlapping genevertiongrefnicHwib ehrok i parkerrar (1982) noted essentially means that
each individual chooseg it abcestor independently and at random from all possible
sequences in the previous generation. This means the probability (and hence the
rate) of coalescence is determined by the total size of the population® (N) from
which the n individuals were sampled (Kingman, 2000). Variants of the original
coalescent model accommodating a wide variety of demographic processes have been
developed by simply allowing the value of N to vary in different steps according to
the assumed demographic process (e.g. exponential growth following an introduction
or logistic growth typical of adaptation before rapid population growth and finally
depletion of hosts; Kingman, 1982; Pybus & Rambaut, 2002). More recent advances
also allow the demographic process in question to be inferred directly from sequence
data while estimating the genealogy (Pybus & Rambaut, 2002; Minin et al., 2008;
Drummond et al., 2005). Drummond et al. (2002) developed a method of rescaling
the number of generations between coalescent events to calendar time by taking
into account known dates at internal nodes (e.g. dates estimated from known fossil
ancestors of a set of individuals) or at the tips of the tree (e.g. pathogen sequences
sampled at different times during an epidemic) or by taking into account the rate of

sequence evolution under a particular model of nucleotide or amino acid substitution.

2More accurately this should be the effective population size, N,, which is the number of individuals
in an idealised population (i.e. a population conforming to the simplifying assumptions made
by the specific model of genetic drift) with the same distribution of alleles as the sampled
population.
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The framework destgap@rhy Sonnpathvay ,é forms the basis of the now

widely used BEAS?O%?ﬁe%ﬁ?gU&%Wﬁ;%M% sampling trees) package,

a suite of programs for the testing of evolutionary hypotheses and estimation of

evolution-related parjupishss BidihAdocWonBnthe integration of genetic and temporal
data (Drummond & Rambaug M. es it

i ty of Pretori:

Prof_L.H. Nel & Proff W. Nfarkotti

This assemblage of evolutigiiary. models has been coupled with models of spatial
diffusion, the first of which considered diffusion between discrete locations (e.g. towns
or countries). This model acts in a manner similar to the techniques used for ancestral
state reconstruction, modeling rates of changes in location states through a continuous
time Markov process® (Lemey et al., 2009). From these pairwise instantaneous
transition rates, it is relatively straightforward to calculate the probability of a
descendant having transitioned to a different state from its ancestor during the
time between them L@rﬁé‘? agl—?sltp:ré ?I%Lil‘t'if;'eﬁggf@f ngﬂof'“mlfgg’;?@tween the occurrence of a
descendent and its %&ﬂ@é@t@ﬁ%e&ﬁsﬁé"k‘?&ié’lﬂd?ﬁéﬁr'from their genetic divergence using
the framework of Dﬁ@mmelﬁdf et €2002). dekeribed above. The most parsimonious
migration process willAnivoke the smallest number of transitions between different
locations, which means most of these transition rates (or 'migration rates’) will
have a high probability of being zero (Lemey et al., 2009). Lemey et al. adapted a
sampling technique called Bayesian stochastic search variable selection in order to
estimate which rates should actually remain zero while separately estimating rates
of migration that explain the phylogeographic patterns observed, thus discarding
inferred migration scenarios invoking large numbers of small migration rates in
favour of the most parsimonious scenario. Following the Markov chain Monte Carlo
inference, a Bayes factor test can be used to determine the statistical support for
invoking each type of migration (e.g. from location A to B) in explaining the observed
spatial-genetic patterns. Thus, this model allows the most parsimonious migration
history to be inferred for the pathogen, whilst allowing for a measure of the confidence
in this inference, in contrast to explicitly parsimony-based analyses. This technique
has been used to test different hypotheses regarding the spread of rabies in North
Africa by using different combinations of prior distributions for the probability that
particular transition rates are zero (i.e. allowing migration between some locations
to be more likely to be invoked to explain the observed data than others; Talbi et al.,

2010). Various parameters can be used to inform the choice of these priors, such as

3 A Markov process is a process in which the probability of the next state or value is only conditional
on the present state, and not on any earlier states.
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simple geographic Qﬁéﬁﬁﬁh@iﬁ’ﬁebéhhm Wegtions (Lemey et al., 2009) or

measures of acces& r%gHF MZUIU Natal,
]
The discrete dlffusmn model can only account for migration between sampled

locations, and henqgdpfsniteenssrddstivrmegizesampling, and also does not allow

mitted in al fulfillment of the

migration rates to vary over timéselemeysetiat2009). These problems are overcome
by continuous diffusion modé&ls, wheére iiovement from the sampled locations is
modelled by a stochastic process which has been termed a relaxed random walk
(Lemey et al., 2010). By treating the landscape as a continuous entity rather than
focussing on discrete locations, unsampled locations can be invoked as sources.
As with the discrete reconstructions, the reconstruction of ancestral locations is
analogous to ancestral state reconstruction, where random walks have been used

to reconstruct continuous traits for some time (Schluter et al., 1997). In this case,

the random walk 15339“36 ag,sterﬁzggﬂi ¥ th‘i‘ﬂFé’l y of'ﬁnggﬁ%ﬁeprocess and thus to infer
probable locations fé%%ﬂ@'a?ﬂ%é%dﬁ"%f%?f@ ©iderved cases (the internal nodes) by
constructing a Marlaenvishaiofof 12 MitafeisioMakotecations sampled from a mutivariate
normal distribution’for €8¢ 20r131grat10n along a branch to the previous node (Lemey
et al., 2010). Although the directionality of such a diffusion process may seem
arbitrary, constraints are imposed by the phylogeny, because the diffusion processes
along multiple branches must converge on a single location at the root of the tree.
The multivariate normal distribution describes the probability of any given location
being sampled at every step of the migration process, which means the rate of
migration can be modelled by changing the shape of the distribution so that more
distant locations become less or more likely to be chosen. However, in the case of
location change, a simple random walk drawing the incremental location changes
from a single probability distribution would only model Brownian diffusion, where the
rate of migration from any one location to another is fixed in time and over the entire
phylogenetic history (Lemey et al., 2010). To allow variation in the migration rates
among branches, Lemey et al. used the same strategy as that used in the relaxed
clock model (Drummond et al., 2006). In this approach, independent scalars alter
the migration rates of different branches of the phylogeny by rescaling the probability
distribution from which new locations are drawn. These rate scalars are themselves
drawn from a second probability distribution, thus allowing variation in rates whilst

still maintaining control over the type and amount of variation*. Assuming a gamma

4Note that the rate scalars are drawn independently and identically (Lemey et al., 2010), i.e
drawing a specific rate scalar does not affect the probability of drawing any other rate scalars
subsequently.
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prior distribution fot ghpsnhission pathways iacdgg:s are drawn from a Student’s
t-distribution, Whic?ohéﬁﬁwgsﬁmzﬁwnwmldistribution (Lemey et al.,

2010). This means locations further from the mean become more likely, and results
in a range of dispergdonsnressss rauitbllesyze flights (Lemey et al., 2010), which

bmitted in partial fulfillment of the req

have been shown to accurately approximate-the movement of foraging animals for
example (reviewed by Reynolds & . Rhcdés; 2009).

This combination of evolutionary and geographic diffusion models have primarily
been used to investigate various aspects of the past invasion dynamics of epidemics
(Lemey et al., 2009, 2010; Raghwani et al., 2011). However, Pybus et al. (2012)
showed that it can also be used to calculate spatial epidemiological parameters. These
authors argued that a phylogeny can be used to correct for the spatial autocorrelation

between genetically related cases because its branching pattern represents a record of

the history of trans@ggggi : é&ﬁ?@l@é@fﬂ%’@ﬁ@ﬂ?@%fﬁ J¢ al. (2011) noted that the
phylogeny is actualPgrietilyelaaensp oo pidietefathe transmission tree, which would
represent the true IsramishirfwfstiitgaonivtMaksmnission. This is because phylogenies
assume a structure %ﬁ%’%%ﬁ%ﬁled cases only form tips of the tree, while in reality a
cross-sectional sample from an epidemic would contain both ancestors (i.e. internal
nodes) and descendants (Jombart et al., 2011). In addition, the fact that the structure
of the phylogeny takes only genetic data and the date of sampling into account may
limit its resolution. Resolution of epidemic dynamics at the individual case level
would require at least one mutation per transmission, which is unlikely for rabies
virus (section 1.2.1). Furthermore, although it is straightforward to calculate spatial
epidemiological parameters from the inferred ancestral locations and branching
patterns (Pybus et al., 2012), the lack of an explicit epidemiological formulation
makes the calculation of other parameters describing the transmission process more
difficult. However, recent progress has been made in linking epidemiological and
coalescent models (Volz et al., 2009; Frost & Volz, 2010), which, if implemented into
the framework described above may remedy this last problem. As an alternative
to coalescent models in the above framework, it may also be possible to use the
birth-death models developed by Stadler et al. (2012). These models do have an
epidemiological formulation and have been used within the BEAST framework to
estimate the basic reproductive number of HIV from sequentially sampled genetic

data and their date of sampling.
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1.3.5.2. Approacheﬁabm'?dsglbﬁpmhwbﬂ @ageling

rabies endemic KwaZulu-Natal,
A more direct appr@outh Afidchanding transmission is to directly reconstruct the

series of transmission events linking cases or areas (thus using the actual transmission

tree to account for }é??zgﬁé’istg%ﬂ)a&l% g@l@ﬂ? autocorrelation). If the aim is to

ptlf
n the Fac Itnyt \d

understand transmission (rather than gxfolgﬁlon) this approach has the advantage of
having a direct link to the eplcfemlologlcal processes that generated the data, making
the investigation of epidemiological parameters much simpler. Directly modeling the
epidemiological processes also means that this technique can be tailored to specific
pathogens simply by incorporating existing knowledge of epidemiological parameters
such as the incubation and infectious periods as prior information, which should
increase its power to discriminate between closely related cases.

Numerous statlstlcal ag)proaches have been develoged for the reconstruction of

Submitted 1n partial fulfillment of the requirements for the

pathogen transmissiesreetMegistefSaentdniy dhoriagtyd! N@@@BnCottam et al., 2008; Heijne

Agricultural Sciences, Univérsity of Pretoria’

et al., 2009; Cauchemez et al., 2011; Ypma et al., 2012), but very few make use of
genetic data. Cotté}ﬁe':{ifb@'ﬁzgﬁ(?o“ge')&s%%(ﬁ”artkﬂirt using genetic data in addition to
epidemiological data significantly reduces the number of possible transmission trees
and allows for a better assessment of the likelihood of different trees. This is even
better illustrated in an integrated framework, where Ypma et al. (2012) showed that
a combination of temporal and genetic data leads to significantly better resolution
when compared to transmission trees constructed from just geographic and temporal
data, while the trees are even better resolved when all three data types are combined.

As discussed above, early approaches to estimating transmission trees from a
combination of epidemiological and genetic data used a sequential approach, which
has several disadvantages. The first attempt at combining the different data types
in a single analysis was by Ypma et al. (2012), who designed a single, modular
likelihood function to calculate the probability of transmission trees sampled from
the space of all possible trees using an MCMC sampling technique. This likelihood
function took into account the date of infection, date of culling, geographic location
and a genome sequence of each farm infected with avian influenza A virus (H7N7)
during a recent epidemic in The Netherlands. The time component of their likelihood
function calculated the probability of potential source farms being infectious at the
date that a given farm was infected, with the probability of a farm acting as a
source declining exponentially after all poultry on it has been culled (this is necessary
because influenza virus can be transmitted via fomites remaining on the farm).

The geographic component of the likelihood function used a distance kernel that
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describes the relatippgliprhission pathwayeimdogeographic distance such that

closely located famg@otgﬁﬁ ﬁ%ﬁ%ﬂ&yﬁ&@étﬁg‘“ﬂ@b The genetic component
consisted of a likelihood function that assigns different probabilities to transition,
transversion and delpfigudnetBEiagrdas MENidHERetween the source and the sink farm

ubmitted in partial fulfillment oiph

(the exact probabilities wereseoestimaged -with the transmission tree and other
unknown parameters). Usingta.singlé likélihood function allowed Ypma et al. to
take into account the sources of uncertainty arising in the different components
that determine the transmission tree. However, these authors made a number of
simplifying assumptions, many of which may influence the resolution and accuracy of
this method when applied to diseases with more complex epidemiological features. For
example, they assumed that the dates of infection of each farm was known without

error, and also did not account for variability in the incubation period (Ypma
et al., 2012). This ze%gg;t aggg@égﬁgwﬁgﬁtﬁgq Lty f%ﬁﬂy problematic for RABV,
which is known to Hveskuiziadisheenitdiveetagibisidly extremely long incubation periods
(section 1.3.3). Anctheskdypfassuimptionvadkinowledged by Ypma et al. is that the
different component2s7355tregb§s2s()1lfmed to be independent. Thus, while the reconstructed
transmission tree can be used to account for the spatial-genetic autocorrelation
between observations (h in Fig. Figure 1.4) when estimating spatial /epidemiological
parameters, it does not account for many other sources of correlation, such as the
accumulation of mutations over time (Ypma et al., 2012).

Morelli et al. (2012) addressed these problems by constructing a joint likelihood
function taking into account the major sources of correlation in their data of a foot-
and-mouth disease virus epidemic in the United Kingdom. This likelihood function
assesses the probability of a potential source having infected a given farm by using
the date on which infection was first reported, the suspected date of infection, the
date on which the host-population was culled, the location and a genome sequence
for each farm. Like Ypma et al., the causal relationships between farms were assessed
in a Bayesian setting, allowing efficient sampling from the space of all possible
transmission links using MCMC simulation. In this approach, the probability of a
given farm acting as a source of infection to another farm was determined by its
infectious period compared to the date of infection of the sink farm, its geographic
distance from the sink farm, and the probability of the sequence observed at the sink
farm arising from that observed at the source farm in the time that elapsed between
the observations (Morelli et al., 2012). The probability of a farm being infectious

at any given time and the dates of farms becoming infectious was calculated using
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an epidemiological gpgAsimissidns patRwalsei a@ﬁgg)f symptoms first appearing
are drawn from a @%ﬁl%@!ﬁ%ﬁ%@@eméﬂlﬂnd estimates from experts

based on disease symptoms, thus taking into account uncertainty in these estimates.

Farms first becomepégabiouRem e siBReAax that symptoms appear and remain
infectious until the date of cuflines which-was-known with certainty. The probability

tversity

isors: Prof. LH. Njl & Prof . Markotter

of specific dates of infection @s-calciilatéd by drawing the unknown duration of
the incubation period between infection and the appearance of symptoms from
another probability distribution (whose shape was co-estimated in the analysis).
Once the range and probability of possible infection dates were known, Morelli et al.
calculated the probability of the observed genetic sequence at the sink farm arising
in the time between potential source farms and every subsequently infected farm
using a simplified model of mutation which affords all types of mutations the same
probability (equival?ggp;’e%g%té;r 'gg%gi—!@fﬂtm@ﬁi%%ﬂﬁzﬁgfg’r%él%otide substitution; Jukes
& Cantor, 1969). Tieulseeopsfstei UndpstttBrandeween farms was accommodated in
the joint likelihoodSeqristi Grf. i &frexpuniendially declining transmission kernel,
dependent only on %Bscfptge%g‘gggircle distance between farms.

Although both these approaches were developed to reconstruct the transmission
tree linking infected farms, this was merely due the limited granularity of the
data available. Both approaches should theoretically be able to reconstruct causal
relationships down to the individual case level if sufficiently resolved data are available
(Ypma et al., 2012; Morelli et al., 2012). However, exactly how much resolution is
required in each of the data types (spatial, temporal and genetic), and how feasible
it is to generate large volumes of such data remains to be seen. These factors can be
expected to vary with the epidemiology of different pathogens, since the genetic data
of infections with shorter incubation and infectious periods will necessarily contain
less differences between every infection. Morelli et al. showed that their technique
was accurate using simulated data, but it failed to resolve some clusters of cases
when applied to observed data, with some competing transmission links having fairly
high posterior probabilities. This was despite the fact that the dates of symptoms
first appearing was known with high confidence and despite a mean substitution
rate of 2 x 1075 substitutions per site per day during one of the epidemics analysed
(Morelli et al., 2012). However, the amount of resolution gained from genetic data by
Morelli et al.’s technique could be improved considerably using a more realistic model
of nucleotide substitution, preferably one tested for its fit to the data in question
using techniques such as those described by Posada & Crandall (1998). The model

28

© University of Pretoria



: . Epidemiological modeling of rabies
14 AlmS Of thlS Study transmission pathways in dog
rabies endemic KwaZulu-Natal
South Africa

Epidemiotogical modeling of rabies
of Morelli et al. als¢yafrisridsiba p‘ﬁﬁvﬁﬁyg faliddgs just one sequence, and that
all cases are observ?g}ﬁ?e%%gi%gﬂéz KwadsusiNAataling and accounting for the

contribution of unsampled farms should increase resolution even further.

What all of the gppggacheBdsesdhibaopdieye have in common is their focus on

ubmitted in partial fulfillmen

. . . . S tof thq requirements for the . . .
relatively simple epidemic scenatios:-A&fl:assime that the epidemic arises from a
single index case and proceeds:ficin’ thére"with no further introductions and with all
or nearly all cases being observed. Thus, significant improvements will be needed if

we hope to apply such techniques to endemic diseases.

1.4. Aims of this study

Although rabies has been successfully eliminated from domestic dogs in North

ioed throughout much of the

America and most GRS AHIRR SN
developing world. ﬁg%gtﬂggge’rﬁcoesbgﬁ\f%? thieHiease and save human lives in these

areas, sustainable, ezéﬁs‘c’eiﬁg‘fggfggi@aﬂﬂrgﬁﬁfé%'@ﬂk%ﬁategies that make the best possible
use of the scarce resources available for this task will be needed. In recent years, an
international collaboration funded by the Bill and Melinda Gates Foundation and
coordinated by the World Health Organisation was established to show that canine
rabies elimination is both feasible and sustainable in the developing world (Lembo
et al., 2011). The work described here forms part of a scientific support programme
funded by the UK Medical Research Council aiming to help make this possible. A
key requirement of all strategies developed for the three demonstration sites is that
they should be broadly applicable and transferable to other sites, towards eventual
elimination of rabies in domestic dogs.

The principle aim of this study was to develop a coherent strategy for better
understanding the spatial epidemiology of endemic rabies, which would allow for the

design of more effective and efficient vaccination campaigns. Specifically:

1. To investigate the current rabies situation in the KwaZulu Natal province of
South Africa

Using existing molecular epidemiology tools, the goal was to compare the
present situation after several years of active rabies control programmes to
the picture given by historic data. In addition to providing important data
that could be used to assess the efficacy of current control strategies in the

face of incomplete surveillance, this analysis was required to better understand

29

© University of Pretoria



Epidemiological modeling of rabies

14 AlmS Of thlS Study transmission pathways in dog
rabies endemic KwaZulu-Natal
South Africa

|dem| ical modeling of rabies
the available Q@ﬁhg q)ﬁpﬂ@wgy‘ssmp@l@gld to place results from more

detailed ana1y§ao [gﬁcﬁi}gﬁmlc KwaZulu-Natal,

rica

2. To develop an approach for reconstructing the transmission trees linking cases

Theodorus Bernardus Mollentze
Of endemlc rables Submitted in partial fu \H\met of the ents !h

degree Magister Scientiae in the Fac I(y fN ( \
Agricultural Sciences, Un wwwwww ty of Pretoria

Although recent advances-inthe fieled-of spatial infectious disease epidemiology
allow detailed investigation of the transmission dynamics of epidemic diseases at
the single case-level, these methods are not compatible with endemic infectious
diseases. Thus, a key aim was to expand the scope of such methods to allow
investigation of rabies transmission in unprecedented detail. At the same time,
it was important to keep the approach general enough to allow its application
to other endemic diseases.
Submitted in partial fulfillment of the requirements for the

3. To apply thidearewlgisdeswduoped thetduliopidatol data from the canine rabies

Agrlcultural Sciences, University of Pretoria
elimination project in KwaZulu Natal
Supervisors: Prof. L.H. Nel & Prof. W. Markotter

This would albosertobeacqproof of concept using real-world data, and would also

lead to a better understanding of the evolving endemic situation in this area.

4. To make specific recommendations that will allow improvement of the rabies

elimination programme in this area.
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Molecular epidemiology of rabies in
KwaZulu Natal, South Africa

Submitted in partial fulfillment of the requirements for the
2.1. IntroduEiamt s Unvasty of Prera

Supervisors: Prof. L.H. Nel & Prof. W. Markotter
Despite the availabjlify, of saf and effective vaccines against rabies virus (RABV),
rabies remains endemic throughout most of the developing world (World Health
Organization, 2002). Two genetically distinct and host-specific variants (previously
termed ‘biotypes’) of rabies virus are known to circulate within South Africa, one
affecting small mammals of the Herpestidae family, particularly mongooses, and the
other affecting members of the Canidae (Von Teichman et al., 1995). The Canidae-
associated variant appears to have several wildlife hosts in southern Africa (Sabeta
et al., 2003, 2007; Zulu et al., 2009), but the source of most human infections is
domestic dogs, the primary host of this variant, and it is in these animals that the
disease must be controlled if we hope to eliminate the disease in humans (Sabeta
et al., 2003, 2007; Zulu et al., 2009; Weyer et al., 2011; Lembo et al., 2011).

In South Africa, the rabies problem is particularly acute in the KwaZulu Natal
province (KZN). Apart from during recent epidemic outbreaks in other provinces —
and despite the presence of active control programmes — the overwhelming majority
of South African cases in both domestic dogs and humans occur in KZN (Figure 1.2;
Bishop et al., 2010; Weyer et al., 2011; Lembo et al., 2011). The success of RABV
in this province has been ascribed to the poverty affecting this area (Brown, 2010),
but the true causes are likely to be much more complex. KZN is the second most
populous province in South Africa, and is home to approximately 10267 300 people
(19.8 % of the South African population; Statistics South Africa, 2012). As is common

throughout South Africa and many other sub-Saharan African countries, a significant
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proportion of the pepglasiviission paehwaysaindggtory labourers, with frequent

circular migration bg@gﬂ?ﬁt WﬁﬁW&ME'ﬂﬁl@& provinces of South Africa
(Posel & Casale, 2003; Posel & Marx, 2013). KZN shares international borders with

three countries and THesdaciaBbordgns Miietwve separately administrated provinces
(Figure 2.1), and rabies is engentic-thronetio

wt the region (Swanepoel et al., 1993;
Coetzee & Nel, 2007; Ngoepéret.al.2009; Mkhize et al., 2010). These factors,

together with the wide distribution of dwellings in rural areas and the hilly terrain

in most areas, creates unique problems for rabies control and the establishment of a

rabies free area.
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Figure 2.1: Topographic map of the KwaZulu Natal province of South Africa showing international
and provincial borders as well as major mountain ranges. Background colour indicates altitude
based on version 2.1 of data from the Shuttle Radar Topography Mission (Farr et al., 2007), at a
resolution of 3" (approximately 90 m), while contour lines indicate altitude in steps of 150 m. For
clarity, contour lines were smoothed to a resolution of 50” (approximately 1500 m).

Terrestrial RABV isolates typically show discernible genetic clustering by location
of origin even at relatively small scales (section 1.2; Kissi et al., 1995; Coetzee &
Nel, 2007; Talbi et al., 2009). RABV isolates from South African domestic dogs fall
into two broad phylogenetic lineages, with isolates from the Limpopo and North
West provinces grouping entirely separate from isolates from eastern southern Africa
(the Mpumalanga, Free State and KwaZulu Natal provinces of South Africa as
well as Mozambique and the Kingdoms of Swaziland and Lesotho; Ngoepe et al.,

2009; Mkhize et al., 2010). Further clustering by province or country can be seen
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within these lineagegralibanisidon slgg@mgg§ﬂﬁ;o&mgs from KZN and Mozambique

receive only modera?ogu!%ﬁs%?i%g@&ﬁ)%m%émg%10). At an even finer scale,
Coetzee & Nel (2007) showed that although the KZN isolates they sequenced share

a 98.9% sequence idpptdgohisad e XsirhlseG-L intergenic region, they form two
major RABV subfamilies witfym-averagessequence divergence of 1.9% between the

tdria

families. Even more specific spéafial-génetic clustering was discernible within these
subfamilies, despite the relatively short region sequenced (592 nucleotides) and the
fact that all isolates represented cases from a single year. Such clustering is typical
of RNA viruses, with their short generation times and rapid mutation rate, and
finding ways to relate observed spatial-genetic patterns to the epidemiological and
population genetic processes that caused them is an active area of research (reviewed
by Brunker et al., 2012).

Coetzee & Nel ai%ﬁg%‘iﬂg%gﬂgg%’gw;e aﬁ;‘;@gfﬁ?&ﬁ@?ﬁ%hey identified represent
independent epidemfetadied Scrtces] Yppestoseftbiaiaifly, designated subfamily A, consisted
mainly of viruses is®hatied: ittt he. Nedstal Wivtriets, stretching from the Mozambique
border downwards to gouthern KZN (Figure 2.1). The majority of cases detected
in KZN belonged to this subfamily, and were more closely related to isolates from
the neighbouring Eastern Cape province than the viruses in subfamily B (Coetzee
& Nel, 2007). The viruses in subfamily B were more closely related to each other,
and were isolated from northern KZN, bordering the Mpumalanga Province of South
Africa as well as Swaziland. In fact, isolates from this subfamily group closely
with isolates from the Mpumalanga province (Coetzee & Nel, 2007; Weyer et al.,
2011). Coetzee & Nel also identified a small cluster of cases grouping with viral
sequences from the Eastern Cape province. These cases seem to point to fairly
frequent introductions across provincial borders, which would provide challenges for
rabies control programmes. A similar situation exists at the border between KZN
and the Free State province of South Africa — all sequenced RABYV isolates from past
human cases in the Free State have been found to group closely with KZN isolates
from dogs (Weyer et al., 2011). It is unclear whether this is the result of several
unsuccessful and unrecorded incursions of RABV into the Free State prior to the
reported emergence of RABV in this province in 2005, or simply due to exposures
that occurred in KZN. The border between KZN and the Kingdom of Lesotho can be
expected to be less amenable for such interactions, with the Drakensberg mountain
range forming a significant barrier (Figure 2.1). Nevertheless, KZN isolates group in

an ancestral position to isolates from a shared epidemiological cycle affecting Lesotho
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and the Free Statetl?p ; (N%Qﬁ)g et al., 2009). Although the

phylogenetic suppogﬁl%?aﬂgfnca enKwadlyr Natala relationship would be in
agreement with historic reports describing the spread of RABV from KZN to Lesotho

in 1982 (Swanepoel B eglortdBarndrlts Wistka the virus eventually spread to the Free

partial fulfillment of

State province of South Africa={Negeperetigl=3009), illustrating the potentially long

el & Prof. W.

lasting impact of such cross-BoFder transiiissions.

The independently administered provinces of South Africa have had varying levels
of success in controlling rabies, and very little is known regarding the epidemiological
situation in the countries bordering KZN. Given the important implications of
cross-border introductions in disease control programmes and the wealth of partial
genome sequence information available to elucidate the patterns of RABV spread in
eastern southern Africa, surprisingly little is known about the dynamics of RABV

transmission in the ?@gi@ﬁg‘_’l‘s]ﬁt&sr Cleﬁlgé'ﬂlir? Ing‘gb ty offﬁ”;tt‘?é‘fafltan dé%‘éssments have been made
of the origin of newAHitytiRhestas Wiverles! Pisiai of South Africa, no comprehensive,
statistically rigoroissreniedyess Lof Netogshbrderttransmissions have been attempted.
This chapter describes ﬁgegﬁglysm of recent genetic and epidemiological data from
KZN, as well as existing data from the surrounding region, towards an improved

understanding of both the fine-scale and regional dynamics of RABV transmission.

2.2. Materials and Methods

2.2.1. Data collection

All cases testing positive for rabies virus by fluorescent antibody test (Dean et al.,
1996) at the Allerton provincial veterinary laboratory of the KZN Department of
Agriculture and Environmental Affairs during routine passive surveillance in KZN
from 1 March 2010 to 8 June 2011 were selected for analysis (n=195; Appendix A,
Table A.1). Five cases were negative by PCR (see below) after multiple attempts
and were excluded from further analysis. The sequence generated for one isolate,
from an unrecorded wildlife species, matched the herpestid variant of rabies virus by
BLAST (Altschul et al., 1990) and was also excluded. Brain samples were stored at

—80°C before and after processing.
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2.2.2. Primer de&\@hission pathways in dog

rabies endemic KwaZulu-Natal,
To amplify as large SopthsiAlfricacgion of the G-L intergenic region for subsequent

analysis (chapter 3), new primers were designed based on an alignment of full

genomes for terres?h%?d?{%@@mi&ﬁﬂiﬁ?ﬂ%’?ﬁﬁed a recently sequenced herpestid

RABYV variant genome (unpu};mquj. ’T’he"ﬁe primers were designated GL4614F (5’-

H. Nel & Prof. W.

GATTTTGTAGAGGTTCACC-3’) and GL5632R (5-GACCTGGAGCAATTGTCTG-3’), and

amplify a 1019 nucleotide region from position 4614 to position 5632 on the Pasteur
rabies virus genome (Tordo et al., 1988; GenBank accession number NC_001542).

2.2.3. RNA extraction

RNA extraction was performed using TRIzol reagent (Invitrogen), following the
manufacturer’s ins gggfe ﬁgglstfrr}gijvﬂtkge Iﬁrﬂécul{y urens frdhel00 mg of original brain
material was homog®diF8ah3csispeodarspisebisng in 700 11 TRIzol reagent. Following
incubation at roorfuteirperatirde fofoh WnMatetes, 2001l chloroform (Merck) was
added before gentl;z Sffltf;yf%é;m%he solution. This solution was then incubated at
room temperature for a further 3 minutes, before centrifugation at 12000 x g for 15
minutes. The aqueous phase was transferred to a new 1.5 ml Eppendorf tube and
mixed with 500 ul isopropyl alcohol (Merck). This solution was then incubated at
room temperature for 10 minutes, before centrifugation at 12000 x g for 10 minutes.
After removing the supernatant, the RNA pellet was washed with 1ml 75 % ethanol
(Merck) by gentle mixing followed by centrifugation at 7500 x g for 5 minutes. The
supernatant was removed and the RNA pellet allowed to air-dry for 10 minutes. The
RNA pellet was then redissolved in 50 pl nuclease-free water (Promega) by incubating

it at 55 °C for 10 minutes, and stored at —20 °C until use.

2.2.4. Reverse-transcription polymerase chain reaction

For reverse transcription, 2 pmol GL4614F was incubated with 51l of a 1:4 or 1:9
dilution of RNA at 70°C for 5 minutes. After a further 5 minutes in an ice bath,
4.1 pl nuclease-free water, 4 ul Improm-II reaction buffer (Promega), 3mM MgCl,
(Promega), 0.5 mM of each deoxyribonucleotide (dATP, dTTP, dGTP and dCTP;
Roche), 20 units Protector RNase inhibitor (Roche) and 1 unit Improm-II reverse
transcriptase (Promega) was added. This was followed by incubation at 25°C for
5 minutes, 42°C for 60 minutes and finally 70°C for 15 minutes, using an ABI

2720 thermal cycler (Applied Biosystems). The entire reaction mixture was used
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for PCR by addingtlapgii 1pktAways 9h (degi32R, 10 pl DreamTaq buffer

(Fermentas), 1.25 ulgﬁp'ﬁﬁe%{’} WGIM!PGM%A& ) and 67.5 1l nuclease free

water. This reaction was incubated at 94 °C for 1 minute, followed by 40 cycles of
94°C for 30 secondshabdSruiBenthifisoMdtienisk 72 °C for 90 seconds, before a final

fulfillment of the

incubation step of 72°C for 7 ﬂnﬂﬂi(ﬁ}{sé Histis-ie same thermal cycler as above.

rrrrrrrrrrrrrrrrrrr & Prof. W. Markotter
27 September 2013

2.2.5. Visualisation and purification of PCR products

To allow visual inspection of amplicons, 10l of each PCR product was added
to 5pl sucrose loading buffer (0.25% bromophenol blue, 40 % sucrose; both from
Merck). This was electrophoresed at 100 V for 40 minutes in an agarose gel containing
1% (w/v) agarose (Lonza) in 40 ml TAE buffer (40 mM tris-acetate, 1 mM EDTA,

pH = 8.5; Promegay and 90000 g o£ihiditmhromide (Sigma-Aldrich).
PCR amplicons xﬁ%ﬁ@f fgﬁ’gﬁéﬁc’ﬂw ﬂgf({fwe%éwagv 381 and PCR cleanup system

(Promega), fOHOWIngeF\,}%gs nlglmafnLquz}\‘(éltBl';%lfr & instructions. In short, the remainder of
the PCR reaction misgtatse auas electrophoresed as before, but with 10 ul sucrose
loading buffer. Excised gel slices containing DNA bands of the appropriate size

! membrane binding solution (Promega) at 60°C, before

were melted in 1plmg™
centrifugation through a silica membrane minicolumn assembly at 12700 x g for 1
minute. The membrane-bound DNA was then washed twice with membrane wash
solution (Promega) before elution with 50 ul nuclease-free water (Promega). Purified

PCR products were stored at —20 °C.

2.2.6. Sequencing

The purified PCR amplicons were sequenced with both the forward (GL4614F) and
reverse primer (GL5763) in separate reactions using the BigDye Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems). Reactions contained 2 pl 2.5x BigDye
reaction mix, 1pl 5x BigDye sequencing buffer, 3.2 pmol primer, 3.9 ul template and
0.9 ul nuclease-free water (Promega). Cycle sequencing was performed by using the
same thermal cycler as above to incubate reactions at 94 °C for 1 minute, followed
by 25 cycles of incubation at 94 °C for 10 seconds, 50 °C for 5 seconds and 60 °C for
4 minutes.

Next, the sequencing reactions were precipitated by adding 1 ul of a 125 mM EDTA
solution (ethylenediaminetetraacetic acid; Promega), 1yl of a 3 M sodium acetate

solution (CH3COONa; Sigma-Aldrich) and 25ul 100 % molecular-grade ethanol
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(Merck) to each reatiansnhissioncpathwaygs iweddy vortexing before incubation
t t tugabigs; 16 KadausNatabifugation at 12700 x g f
at room tempera u?outh rﬁ%@ , usN ugation a x g for
22 minutes. The pellet was washed twice with 100 ul 70 % molecular-grade ethanol
(Merck) by centrifugpfiydsitid BErd & froléniménutes. The supernatant was removed

and the pellet dried at 94 °C for #-rnimiites-Thereactions were then frozen at —20 °C,
before being submitted to thé séquencing facility of the Faculty of Natural and

Agricultural Sciences, University of Pretoria, where the pellets were reconstituted in
20 pl formamide and analysed on an ABI PRISM® 3100 or 3500xL automated DNA
sequencer (Applied Biosystems).

Sequence reads were assembled using CLC Main Workbench version 6.6.2 (CLC
Bio) and manually checked for conflicting base-calls, after which a BLAST search
(Altschul et al., 1990) was performed to ensure sequences belonged to the canid

genetic variant of IZ{S BRfed in partial fulfillment of the requirements for the
egree Magister Scientiae in the Faculty of Natural and

Agricultural Sciences, University of Pretoria

2.2.7. Phylogeftetie: dnialysis: Fer v voroer

27 September 2013
All canid variant consensus sequences were aligned using the FFT-NS-i algorithm of
MAFFT version 6 (Katoh & Toh, 2008). Sequences were trimmed to equal length (760
nucleotides, encompassing the last 224 nucleotides of the glycoprotein gene, the G-
L intergenic region, and 118 nucleotides of the polymerase gene, based on the genome
of the Pasteur rabies virus strain). The overall mean distance between sequences in
the alignment was calculated using MEGA version 5 (Tamura et al., 2011). Next, the
best fitting DNA substitution model was selected using Akaike’s information criterion
in jModelTest version 2.1 (Akaike, 1974; Darriba et al., 2012). The best fitting model
was identified as the 3-parameter model described by Kimura (1981). This model was
used to construct a Bayesian phylogeny in BEAST version 1.7.3 (Drummond et al.,
2012), using a strict molecular clock with a broad substitution rate prior consisting
of a uniform distribution between 1 x 107® and 1 x 1072, Relaxed clock models were
tested but showed no evidence of rate-variation among branches, supporting the
assumption of a strict molecular clock. The best-fitting demographic model was
determined to be one describing exponential growth using both path sampling and
stepping stone sampling (which were in agreement) of individual Markov chains
of 50 million iterations each, saving every 5000th step (Baele et al., 2012). This
model was used to construct two Markov chains of 50 million steps each, saving
every 10000th step. The resulting estimates were checked for convergence and the

posterior estimates of trees were combined after a burn-in of 10 % of each chain, and
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The alignment described abgye WA, iy a,l;gned using the FFT-NS-i algorithm of
MAFFT after the exclusion of 13 cases lacking coordinates (Appendix A, Table A.1).
Next, a Mantel test was performed to test for evidence of spatial-genetic correlation
using version 1.5-2 of the “ade4” package for the R statistical programming language
(version 2.15.1), with 9999 permutations (Mantel, 1967; Dray & Dufour, 2007; R
Core Team, 2012). This was based on a genetic distance matrix calculated under the

model of Kimura (1980) using version 3.0-8 of the “APE” R package, and a matrix

of great-circle geogr%m@eg%‘g%ﬁ%ﬁ(ﬁﬁﬁle(aplﬂheedre%%iqun@fgr haversine formula described
by Sinnott (1984) & BreATE eI dr sl BBk imated to 6371 km (Moritz,

1980; Paradis et al. SU%Q\QSéLrQ Prof. L.H. Nel & Prof. W. Markotter

Single nucleotide prodsaresphisms were identified from the alignment of all sequences
with coordinates using the “DNAbin2genind” function of version 1.3-7 of the
“adegenet” R package (Paradis et al., 2004; Jombart, 2008). In this calculation,
all polymorphism was included by setting the minimum frequency of mutations
considered to 176 (176 is the number of sequences in the alignment). This was used in
a spatial principal components analysis (SPCA) based on inverse geographic distances
with a minimum distance of 1 x 10~ before points are considered as separate, again
using the “adegenet” package (Jombart, 2008; Jombart et al., 2008). The statistical
support for this spatial clustering was assessed using the global and local Monte

Carlo tests described by Jombart et al. (2008) with 9999 permutations.

2.2.9. Bayesian discrete-state phylogeography and demographic

reconstruction

In addition to the 189 sequences generated above, all G-L intergenic region sequences
for the canid genetic variant of RABV publicly available from the countries and South
African provinces surrounding KZN were included in a discrete-state phylogeographic
analysis (Appendix A, Table A.2). These sequences were aligned as before and
trimmed to equal length (610 nucleotides).

The fit of various DNA substitution models to this data were compared with
MODELTEST via the PALM parallel computing pipeline, using Akaike’s information
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Akaike, 1974; PosaRi Ic uiNatal, 2009). The best-fitti
(Akaike, 1974; osgou?ﬁ %‘ﬁ'ﬁl}!, K)W?;M 1 2009) e bes ing
substitution model (a transversion model with equal base frequencies and gamma-

distributed rate varpbtisgerasrRagsiies Melishised in a phylogeographic analysis in
BEAST version 1.7.5 (Drungmend-el el ?01), with a constant size coalescent

ors: Prof. L. Nel & Pr Markotter

model, a uniform distributed,Iioléciilar“clock rate prior between 1 x 107° and

1 x 1072 substitutions per site per year and calibrated using the sampling years
of all sequences. Locations for internal nodes were inferred using an asymmetric
continuous-time Markov model with Bayesian stochastic search variable selection to
identify the most parsimonious diffusion process (Lemey et al., 2009). One Markov
chain of 50 million steps was constructed for each of three molecular clock models (a
strict clock model and a relaxed clock model with either log-normal or exponentially
distributed rate va gga;gg ag[%t%erlr(ggi J@?ﬁ'ﬁ%@eéﬁ?mﬁmﬁ dté‘*very 5000th step. There
was no evidence to fejedrelrsisnssntpitincof it variation among branches. Of the
two specifications fowpetlses: b kedia kot mddediethe log-normal version showed less
autocorrelation and wis chosen for subsequent analyses.

Next, the constant size coalescent model described above was replaced with a
Bayesian skyride model with a time-aware Guassian Markov random field smoothing
prior, to co-estimate the demographic patterns in the region under study (Minin et al.,
2008). Under this specification, four Markov chains were sampled for 50 million steps
each, retaining every 5000th step. The chains were inspected visually for convergence,
after which the associated posterior distributions of trees were combined, keeping
every 10000th sample after removing a burn-in of 20% of the samples from each chain.
The phylogenies in this sample were summarised as a majority consensus phylogeny
using Dendroscope version 3.2.2, while a Bayesian skyride plot was generated by
summarising the sampled demographic parameters into 100 bins using Tracer version
1.5.0 (Minin et al., 2008; Rambaut et al., 2009; Huson & Scornavacca, 2012). A
Bayes factor test was performed to identify supported migration rates between the
analysed regions using SPREAD version 1.0.4 (Lemey et al., 2009; Bielejec et al.,
2011).

2.3. Results and Discussion

To gain an up-to-date view of the current epidemiological situation in KZN, all
RABV-positive cases detected between 1 March 2010 and 8 June 2011 were selected
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cities and major towns (Figure 2.2 B). The majority of cases — both in terms of the

actual number of caprsfarldiBEehTrgRINIBRERGensity — were reported in the densely

ubmitted in partial fulfillment.of the

populated southern coastal regign: particilarhy-in the Ugu district municipality and
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the eThekwini metropolitan mﬁmmpa ity (Figure 2.3). However, when viewing this
data in terms of the human population in the affected areas (which is generally
closely correlated to dog numbers), eThekwini appears less affected, with the Ugu
and uThukela district municipalities carrying most of the burden (Figure 2.3 D). It
should be noted however that this is only a “snapshot” of the current rabies situation
— analyses of a much longer period than the 15 months presented here would be

needed to critically assess which areas need to be prioritised for control measures.
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Figure 2.2: Dates of detection and location of origin of all cases included in this study. A:

Time-series of all cases detected between 1 March 2010 and 8 June 2011 in KwaZulu Natal. B: Map

of KwaZulu Natal showing the cases detected in the context of major roads, towns and cities. Note

that in addition to the 180 cases shown on this map, a further 15 cases were detected for which

coordinates were not recorded (road and town data copyright OpenStreetMap contributors).
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The G-L intergenic region of 190 (97.44 %) of the detected cases was sequenced
(Appendix A, Table A.1). This genome region was chosen due to its high variability
and the large numbers of partial sequences available from previous studies of RABV
in southern Africa (e.g. Sabeta et al., 2003; Coetzee & Nel, 2007; Mkhize et al.,
2010; Ngoepe et al., 2009; Zulu et al., 2009; Weyer et al., 2011). Despite the high
variability of this genomic region and of RNA viruses in general, many sequences were
identical, a reflection of the dense sampling undertaken in this study. Nevertheless,
clear phylogenetic clustering of cases can be distinguished, which correspond to their
geographic region of origin (Figure 2.4). This pattern was confirmed by a Mantel

test (Mantel, 1967), which shows clear evidence of correlation between geographic
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Figure 2.3: Rabies cases detected in animals by fluorescent antibody test between 1 March 2010
and 8 June 2011 in each of the administrative districts of KwaZulu Natal (KZN). A: Map of the
administrative districts of KZN with districts shaded according to the relative number of cases
detected there during the study period. The same data are displayed in B. C: The proportion of
cases detected in each district as a function of district size, with the y-axis in cases/km). D: The
proportion of cases detected in each district as a function of the human population in the affected
area (based on data from Statistics South Africa, 2012).

and genetic distance with a correlation coefficient (r) of 0.5068 and a simulated
p-value of 0.0001. As discussed in section 1.3.5, such spatial-genetic correlation can
be expected from local transmission processes, and it is thus likely that these clusters
reflect either separate, diverging branches of the same “global transmission tree”,
independent transmission cycles (i.e. unlinked transmission trees), or a combination
of both. Based on the large distances between several of the phylogenetic clusters,
the latter option seems most likely.

To gain a more quantitative view of the spatial clustering of genetically related
cases, a spatial principal component analysis (SPCA) was performed. This technique

operates in a similar manner to principal component analysis, which summarises
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Figure 2.4: Phylogenetic clustering of the cases sequenced in this study. The main figure shows a
majority consensus phylogeny constructed using BEAST version 1.7.3 with a strict molecular clock
and an exponential growth demographic model, while the inset shows the sampling locations of the
cases from each cluster for which coordinates were available. Phylogenetic clusters are indicated by
differing symbols and colours and labelled with numbers as used in the text. Branch lengths are
in substitutions per site per year, as indicated by the bottom scale bar, and numbers at internal
nodes indicate the posterior probabilities of the inferred branching patterns.

multivariate data as a number of uncorrelated “components” by maximizing the
amount of variance in the data reflected by each component (Jombart et al.,
2008). In the case of sSPCA, it is the product of variance and Moran’s spatial
autocorrelation index (Moran’s I) that is maximised when defining each component
(which encompasses groups of cases here), thus allowing complex spatial-genetic
patterns to be discerned (Moran, 1948, 1950; Jombart et al., 2008). This analysis
also revealed statistically significant spatial structure, with a simulated p-value of
0.0001, leading to rejection of the null hypothesis of no spatial structure in favour of
the alternative hypothesis of positive spatial autocorrelation, or “global structures”.
By contrast, there was no significant evidence to support an alternative hypothesis
of negative spatial autocorrelation (i.e. highly dissimilar virus variants in close

quarters), with a simulated p-value of 0.3326 when the null hypothesis was that
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separates cases from the majéiity.of KZN“from those observed along the southern
coast (Figure 2.5 B). The second component shows differences between cases in the
extreme north of KZN from most other cases, with some cases in the southern coastal
region showing the same, but weaker spatial-genetic pattern. These northern-most
cases could be expected to be different from those in the rest of KZN due to their
separation by the Lebombo mountain range and Lake St. Lucia (Figure 2.1), but it
is unclear why the geographically distant cases in the densely populated south would
follow the same paﬁggéziit g@gﬁ‘gﬁ%!ﬁlﬁ%ﬁﬁ%ﬂﬁ%ﬁﬁ ;tr?ghﬁecessarﬂy reflect genetic
similarity between gfiseluiah Sthecea-tiversies diBietdrisand those in the south — it merely
indicates that they sshesesthe. sanve &patittlvaeaetic pattern). The third component
distinguishes betweon ¢ases in eastern and western KZN, and again also separates a
number of cases in the south from their close neighbours (though with fairly weak
spatial-genetic structure), while the fourth component further delineates clusters of
cases in the west and south (Figure 2.5 B). Taken together, the results from this
analysis delineate at least 9 spatial-genetic clusters (Figure 2.6). These clusters
broadly correspond to the phylogenetic clusters, although the sPCA analysis provided
less resolution in some cases, with the spatially intermingled phylogenetic clusters 20
and 21 and the more distant phylogenetic cluster 16 showing very little dissimilarity
from each other. This analysis did however resolve the single, unresolved nodes
making up phylogenetic clusters 6 to 14 to various clusters, but support for this is
fairly weak (Figure 2.6).

The results from both the phylogenetic analysis (which takes genetic data and
observation dates into account) and the sPCA analysis (which takes genetic data and
observation locations into account) show a number of diverging groups of cases. Since
genetic separation of pathogen sequences can only occur through time or independent
evolution and the cases analysed here were sampled over a relatively short period,
these clusters likely reflect independent epidemiological cycles or transmission trees.
Such independence may be a sampling artefact, with many dogs being infected
already by the time sampling was started as well as a potentially large number

of undetected cases. However, it would be surprising if either analysis contained
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Figure 2.5: Spatial-genetic clusterine amene cages, A: A decomposition of the eigenvalues or

UPeYVISOrS
“scores” for identified bBaStlal HBH%:ILPaI components (\; represents the eigenvalue for component 7,

with ¢ being sorted from the highest to the lowest score). The z-axis shows the amount of genetic
variance encompassed by each principal component, while the y-axis shows the amount of spatial
autocorrelation explained by each component. Dashed horizontal lines show the total range of
variation of Moran’s I for different groupings of the analysed cases, while the dashed vertical line
indicates the amount of genetic variance when considering all alleles as a single component/group.
Since the first four scores explain the majority of genetic variance, only these were interpreted
further. B: Scores from component 1-4 plotted by sampling location, showing the spatial-genetic
structuring between clusters of cases. The sizes of squares indicate the values of the scores, with
large black squares (representing highly positive scores) being well distinguished from large white
squares (representing highly negative scores; Jombart, 2012).

sufficient resolution to discriminate between branches of the same transmission tree
separated by only a few unsampled cases. For some of these clusters, geographic
causes of separation are obvious (e.g. the northern-most cases separated by the
Lebombo mountains or the separation of western and eastern clusters in central
KZN due to distance), but the observation of a number of spatially overlapping yet
independent clusters is harder to explain.

On a broader scale, both sets of results point to the existence of four isolated spatial
clusters of cases (Figure 2.4 and Figure 2.6), which appear to be largely independent.
Indeed, the better resolved phylogenetic analysis shows only one overlap between
these broad spatial clusters, with one case from phylogenetic cluster 20, which occurs
primarily in southern KZN, appearing in eastern KZN. The northern-most cluster is

homogenous and distinct from all other cases, and appears to be part of a cross-border
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Figure 2.6: Combined scores from the first four spatial principal components indicated on the
majority-rule consensus phylogeny from Figure 2.4, showing close agreement with the clusters
identified from genetic data and date of sampling. Numbers indicate the phylogenetic clusters
designated in Figure 2.4. The value of scores from each component determine the relative amount
of colour contributed, with scores from component one contributing red, scores from component
two contributing green and scores from component three contributing blue. Scores from component
four determine the intensity of the colour produced. The inset shows the spatial distribution of
these clusters.

endemic cycle shared with neighbouring Mpumalanga or Mozambique (see below).
The eastern and western clusters are also fairly homogenous, with little mixture
between different phylogenetic clusters. However, the southern cluster is much more
diverse, consisting of five freely mixing phylogenetic clusters. This region of KZN is
densely populated and urbanised, and it can be expected that movement of both
humans and dogs occurs with greater frequency and ease there, although there is
clearly some barrier to prevent complete mixing.

Since rabies is endemic throughout eastern South Africa and in the countries
bordering KZN, it can be expected that at least some of the more distantly related
phylogenetic clusters observed arose as a result of independent introductions from
outside the province. This possibility was further investigated by reconstructing

the locations of origin of the ancestors of all cases from KZN and surrounding
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provinces and counﬁpmqgfm. Ehwiayscincdegion sequences were available.
This dataset sparlrlegaépl‘f'){%i?I (%ﬁlﬁ:ﬂ"%alﬁ"(’ﬁ%m%l\i?ﬁﬂh consisted of 637 sequences

(Appendix A, Table A.2). The most recent common ancestor (MRCA) of the
analysed isolates wpgessbHRABerhSauhavsaasurred in 1978 (95% PI: 1977-1979)
in KZN (Table 2.1). Historieaktenents-gate-the re-introduction of RABV from
Mozambique into KZN to 1976, .after first“éntering Mozambique in 1952 from what
is now the Mpumalanga province of South Africa (Swanepoel et al., 1993). Only
6 sequences were available from Mozambique and no historic sequences exist from
either Mpumalanga or northern KZN. It is thus possible that the later date given by
the analysis here is because the older lineages have died out completely or simply
were not sampled. Indeed, while rabies would have been established in Mozambique

by 1978, the demographic reconstruction shows a pattern typical of a newly emerged

epidemic in the ﬁr%bdés;gglster ch'e’t‘”'ﬁ'l’i'@tdf tbe re uraIIf %f@hlng an endemic stage in

ree jentiae In the acufty

1988 (Figure 2.8). Iteshdl %@ﬁbﬁé&’%ﬁfé\?@%hat the date estimate for the MRCA
is based on a slighﬁbye"l@w Reffdative et plvsiarer of 147.72, while >200 is typically
recommended (the S ni%%le%mple sizes of all parameter estimates not relating to

the molecular clock were well over 200).

Table 2.1: Posterior probabilities of the estimated origin of the most recent common ancestor of
all available, sequenced isolates from eastern southern Africa

Location of Posterior
origin probability
KwaZulu Natal 0.72
Mpumalanga 0.18
Mozambique 0.05
Swaziland 0.03
Eastern Cape 0.02
Lesotho 0.01
Free State 0.00

The analysis detected several introductions from KZN to other locations included
in the analysis soon after the estimated date for the MRCA, although the location
estimates for most nodes occurring close to the root — including that of the root itself —
were fairly ambiguous, with low posterior probabilities (Figure 2.7; Table 2.1). A
close relationship was inferred between cases from Mpumalanga and the few available
from Mozambique, but the direction of spread remained ambiguous. Indeed, this

relationship is so ambiguous that other scenarios of spread involving Mozambique,
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many of which make ssfoivopathways. iivtdegd significant levels of support

(Table 2.2). Two u?ﬁ rlcgﬂiGIl'é(Ufar%Hié&'N@&?kZN to the Eastern Cape
(in 1983 [95% PI: 1982-1984] and 1984 [95% PI: 1981-1986]) were much better

supported, with a posdsgiessIBehakiliExibhattlsZN was the source of 0.85 and 0.95

respectively (the posterior prohabilitigs:forthe phylogenetic groupings at these node
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yyyyyyy

were 0.99 and 1 respectively)..Thiése"ddates are earlier than the first reports of rabies

in the Eastern Cape from 1987 (Swanepoel et al., 1993).
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Figure 2.7: Majority consensus phylogeny showing the most probable locations of hypothetical
ancestors (internal nodes) reconstructed using the method described by (Lemey et al., 2009). Branch
lengths indicate time, estimated under a relaxed clock with rates for different branches varying
according to a log-normal distribution. The colour of branches indicates their inferred geographic
location, while symbols at the tips of the tree indicate the phylogenetic clusters shown in Figure 2.4.
Numbers at nodes are posterior probabilities, with the first number representing the posterior
support for that specific phylogenetic clustering and the second representing the support for the
inferred geographic location of that node.
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Figure 2.8: Time-smagthed Bayesian glovaide Rlof,estimated for eastern southern Africa, showing

changes in the effectivg;lggi)lni%rt%g size (N.) over time. The solid black curve shows the mean

effective population size, while the dashed curves indicate the upper and lower bounds of the 95 %
posterior interval for this estimate. The blue line shows the detected cases in this region (where
data are available), based on data from the OIE World Animal Health Information Database
(http://www.oie.int /wahis_ 2/public/wahid.php/Diseaseinformation/statusdetail). Vertical lines
indicate the reported dates of historic events relating to RABV emergence in this region (reviewed
by Swanepoel et al., 1993): a — the re-emergence of RABV in KZN, b — the spread of RABV from
KZN to Lesotho, ¢ — the spread of RABV to the Eastern Cape province of South Africa, d — the
spread of canid-associated RABV from Lesotho to the Free State province of South Africa (Ngoepe
et al., 2009), and e — the start of a large epidemic outbreak in the Mpumalanga province of South
Africa (Mkhize et al., 2010).

Coetzee & Nel (2007) suggested that RABV may have entered the Eastern Cape
during the first KZN rabies epidemic between 1964 and 1968, where it could have
remained undetected in the former apartheid homeland of Transkei before being
re-introduced to KZN after the virus was eliminated there. This argument was
used to explain the existence of two distinct subfamilies of RABV in KZN, one of
which was closely related to rabies sequences from the Eastern Cape (Coetzee & Nel,
2007). Although the phylogeograhic analysis did detect an earlier introduction to
the Eastern Cape with an unresolved origin, this was estimated to have occurred in
1981 (95 % PI: 1979-1984) at the earliest, and the resulting cases were not related
to cases from KZN (Figure 2.7). With the inclusion of many much older sequences
from KZN than those analysed by Coetzee & Nel, the present analysis shows that
the relationship between the majority of cases from the Eastern Cape and KZN is

not as close as previously thought. In addition, the direction of spread for the major
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Table 2.2: Reconbtm(i: 'Igé? ? ﬁ)i% H\/\Géj Iolr%] Of%rgrgls)suthern Africa occurring at

rates supported to be 1 ere ore than three, the generally
recommended cut-off leg lg(ﬂ{ %T X consuyv ere 51gm cant y s’upported (Lemey et al., 2009)

Migration Bayes

Theodorus Eﬂ”f‘f‘.{ﬁ Mollentze factor
Eastern Cape provmc;@ ﬁMpuH;;alanga province 84401.20
Mozambique — Free State province 282.80
KwaZulu Natal province — Free State province 279.88
Free State province — Mozambique 102.94
Mozambique — Swagziland 60.87
KwaZulu Natal province — Eastern Cape province 32.61
Free State province — KwaZulu Natal province 31.73
Free State province — Eastern Cape province 29.63
Eastern Cape province — KwaZulu Natal province 16.37
Mpumalang‘autptrmdlmaema& flfittees bt parRemze for the 15.50

gree ister Scientiae in the Faculty of Natural and

Mozamblquﬁgﬁﬂiﬁ%% s, University of Pretoria 13.05
Lesotho — Free State rovmce 9.20
Swaziland — Supse:étsec;:sber 2, . Nel & Prof. W. Markotter 4.04
Mpumalanga province — KwaZulu Natal province 3.16

introductions is inferred to be from KZN to the Eastern Cape with a high level of
support.

Although rabies seems to have remained in a stable endemic state in this region
for more than a decade, this is no longer the case (Figure 2.8). The demographic
reconstruction showed a marked decrease in the effective population size from 2003
onwards, which continued until the 2008 outbreak in Mpumalanga (e in Figure 2.8).
This epidemic appears to have peaked during 2009, after which the effective population
size resumed the decline of previous years (this peak in incidence in Mpumalanga is
visible in both the demographic reconstruction and the surveillance data in Figure 1.2).
Worryingly, surveillance data from 2012 shows a marked increase in rabies incidence
in KZN (Figure 1.2). This may be due to an increase in surveillance activity, as
appears to have happened during 2006-2008 when the strong decrease in effective
population was not reflected in the surveillance data. However, the upper estimate of
the 95 % posterior interval of the demographic curve also shows some evidence of an
upward trend in 2011, and recent reports suggest that RABV has in fact spread to
areas of KZN where the virus had previously been eliminated (K. le Roux, personal
comunication).

In addition to introductions of RABV from KZN to the surrounding regions, the
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phylogeographic anpfgnsafission athwalys i gﬁgs—introductions to KZN from

these regions. Th@?ﬁ@%}%ﬁl}%é&%@@#&@@ﬁﬂlcam support as sources of

introduction to KZN required to explain the observed spatial distribution of genetic

variation (Table 2.2} Bhylogsaschicdilaimisnentiom the previous analyses appears to
represent the modern-day deseéndants of Goetzee & Nel's “subfamily B” — which

& Prof W.

they suggested may have beeifiintréducéd from Mpumalanga (Coetzee & Nel, 2007;
Figure 2.7) — although there is insufficient support to resolve this relationship beyond
a common ancestor which was estimated to have occurred in Mpumalanga with a
posterior probability of 1. This “subfamily” was more widespread in KZN in 2003
(Coetzee & Nel, 2007), while canid rabies was not endemic in most of Mpumalanga,
including the areas neighbouring KZN, before 2008 (Mkhize et al., 2010). The
ancestral relationship of KZN and Mozambique sequences to these isolates was also
observed by Mkhlz‘?igzgﬁﬁgg?@”é@eﬁ,ﬂ@ﬂ@ aci%%ﬁfﬁ%@ﬂﬁ‘éerelationship to the single
sequenced case avaiidterdrsisicsSwansismef fsfthough this relationship was poorly
supported in the phydvgeopsaphits &ralydisprofehus, the present evidence suggests
that the cases of suﬁ%é%?iﬁ}?” 01r3ep1resent a cross-border endemic cycle present in parts
of Mozambique, Mpumalanga and KZN and possibly spread throughout Swaziland
situated between them.

Apart from the series of introductions from the Eastern Cape represented by
phylogenetic cluster 1 discussed above, all other phylogenetic clusters of cases
sequenced here represented diversity previously observed in KZN (Figure 2.7). With
the inclusion of many older sequences from KZN, it becomes clear that the very
distant phylogenetic clusters 4 and 5 from southern KZN represent distinct lineages
which have been endemic in KZN for some time (lineage 3 and 4 in Figure 2.7).
Phylogenetic cluster 15 — which represents almost all of the diversity observed in
eastern KZN (Figure 2.4 B) — is also resolved as a distinct, but younger lineage
(designated lineage 2 in the figure). The ancestry of the remaining clusters (indicated
as lineage 1 in the figure) could not be resolved, although much of the diversity within
these clusters appears to have arisen after 2007 (95 % PI: 2005-2008). This last
observation is at odds with the marked decline in effective population size observed
at a regional level during this time (Figure 2.8), although it should be noted that
the density of sampling was much higher for these cases than for most of the dataset
analysed, with previous authors sequencing only limited numbers of cases from any

given region and year.
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2.4. ConCIUsﬂ%ﬂsmlssmn pathways in dog

rabies endemic KwaZulu-Natal,
From the “snapsho‘ﬁ%ﬂﬁt&&t‘@ABV diversity in KZN presented here, it is clear

that rabies remains_widespread throughout KZN. The problem is particularly acute
heodorus Bernardus Mollentze
along the densely populated south

independent lineages occur. lehepse" lmeage.s have been distinct for several decades,

27 September 2013

with the split between the ancestor of lineages 1 and 2 and the ancestor of lineages 3

0035ty ~where the majority of cases and four

iae in the Facult

and 4 occurring shortly after the introduction of rabies to KZN in 1976. In some
cases, this separation may simply be due to spatially distinct endemic cycles (e.g.
the separation of lineage 2 from the unresolved clusters grouped into lineage 1),
but the observation of co-occurring lineages in southern KZN is more difficult to
explain. A likely explanation would be that these lineages arose elsewhere and were
subsequently introdpged. by ,;ggggr@,mme&gfqh@,em%p%qm@p areas of southern KZN.
The 1re—introductionféfi%ac ity ’SK'Z'N I}é% 'igggﬁfgg h%h ascribed to the movement
of dogs incubating &éﬁ(}g by migrants from Mozambique (Swanepoel et al., 1993),
and there is no reasoswtebsizppose that this introduction involved just one lineage.
However, the phylogeographic analysis including all available G-L region sequences
from surrounding areas (which is by far the most commonly sequenced genomic region
in this area) showed no evidence of introductions from elsewhere. Although historic
introductions from further afield may a possibility, no previous studies using many
of the older sequences included here have found any evidence for this. Thus, the only
remaining solution is that the extremely limited number of samples from Mozambique
skewed the analysis, leading to historic introductions being missed. Indeed, the
inferred location for the root of the tree is fairly uncertain, and Mpumalanga — where
the closest relatives of the few RABV isolates from Mozambique occur (Mkhize et al.,
2010) — has a small level of support as the location of the root (Table 2.1). Such
an explanation would also explain the inference of the Free State province as the
origin of the epidemiological cycle shared with Lesotho, in contrast to the fact that
rabies was not detected in this province until fairly recently (Ngoepe et al., 2009).
Thus, one can propose a scenario in which at least the oldest lineages, representing
the ancestor of lineages 1 and 2 and that of lineages 3 and 4, may have arisen from
independent introductions from Mozambique during the initial epidemic from 1976
onwards. In the case of lineages 1 and 2, whose grouping was poorly supported, this
may even hold true for the individual lineages themselves. However, in the absence

of more data from Mozambique this is mere speculation.
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The sparse distrigpgighiissions pathgagstimdog! KZN and particularly the

north-east seems tol; z i tﬂ%ﬁ%ﬁ&%ﬁ‘é@l&ﬁlywﬁéﬂag detected by surveillance
(Figure 2.2 B). Although there is no direct way of linking effective population size

to the exact numberhef fs5eSBMGdeEIMSHRRGEC reconstruction presents a possible
solution to allow examinatiog=gf:epideiniologieal trends despite poor surveillance.

Prof L. Nel &

From the currently available:geiéfic ‘data it can be inferred that control measures
applied prior to 2003 had very little effect at a regional level. Thus, the changes in
control strategies from late 2002 onwards are worth investigating, and may yield clues
relevant to designing new control strategies elsewhere. It is also worth noting that
the extent of this decline is not reflected in surveillance data (although provincial
level data are not available prior to 2006), which points to an increase in surveillance
efficacy at the same time as a reduced number of infections.

At a smaller sca egg%gi%%ir g%gfgﬁ@?‘&@%@gg%ﬁﬁérs are discernible within
KZN. This is suppdigisdtisg IsisetsspliprseaRigo@ igure 2.4) and spatial-genetic data
(Figure 2.6). The déereasedrfesslntiofrdftNerdatter can be ascribed to the fact that
the sPCA takes 011123; sceffémfffé%%nce /absence of single nucleotide polymorphisms into
account, while in reality the type of nucleotide change also carries some information,
since some changes are more likely than others (e.g. transitions are more likely
than transversions, substitutions are more likely than insertions/deletions, etc.).
None of the analyses employed here take into account epidemiological factors, which
have the potential of increasing resolution even further. Thus it is not possible to
determine the exact causes of the fine scale genetic clustering observed — although it
seems likely that they may reflect individual branches of the network of transmission,
determining the order of transmissions and the causality between individual cases
would be required to understand transmission dynamics at this scale.

As an encouraging sign for potential rabies elimination, the majority of these
phylogenetic clusters do not reflect recent introductions to the province, and indeed
very few historic introductions to KZN were detected. Thus, introductions are
either rare or they do not become established in the province and are therefore
not detected. This means that elimination of canid RABV in KZN, as well as
maintenance of this rabies-free status, should be feasible in theory. This goal will
however require an increasingly cost-effective approach in the face of declining political
will with declining numbers of human deaths from rabies. In particular, the finding
of seemingly independent clusters of cases suggests that independent, smaller-scale

control programmes may be feasible. However, there is some mixing between clusters,
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and it is difficult to ﬁ%ﬁbﬁh|§§1wwwayse¥ﬁe@dé such mixing will be given the

possibility of large ﬁ%ﬁ%@ﬁﬂ%d&WQZ&Nﬂ@f@lg currently no quantitative

rica
data on the efficacy of surveillance in this region, although the general agreement

between surveillancerfatasris Bhedanosmametrends detected from available genetic

r the
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data provides some level of agsirance that-at-feast a sizeable proportion of cases is
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3.1. Introduction

Understanding the spatial aspects of disease transmission is increasingly recognised
as an essential component of successful control strategies (Ferguson et al., 2003;
Keeling et al., 2003; Beyer et al., 2011). However, disease transmission is usually
a highly elusive event and reconstructing the causal relationships between cases
(i.e. ‘who-infected-who’) in outbreaks of infectious disease remains a challenging
problem. In this regard, the availability of high throughput, affordable pathogen
genome sequencing to complement conventional space-time incidence data promises
a step-change in our ability to understand pathogen transmission at the level of
individual cases. However, if we are to make full use of these advances in sequencing
technology, they must be matched by advances in statistical methodology.

Two different but complementary approaches that use spatial, temporal and

pathogen genetic information to reconstruct the dynamics of epidemics have been

!The models described in this chapter were designed by Dr. Samuel Soubeyrand (Institut National
de la Recherche Agronomique) with input from me and Prof. Daniel Haydon (University of
Glasgow). Quality control and all additional analyses of the output were performed by me. This
work will soon be published as: Mollentze N., Nel L.H., Haydon D., & Soubeyrand S. (2013).
A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases
from space-time-genetic data (submitted).
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developed in recentpgpgmisSioRtpathiwayd: i degd on coalescent models that

assume some form olﬂ(%ﬁu%}ﬁ% %M%ﬁ!}é‘lwgéﬁte the demography of the

pathogen to its evolution, while implementing a diffusion model to account for the

movement of the pattigeeBaraedadMsirpase (Lemey et al., 2010). This approach

partial fu u}me nt of the

has the advantage of being Felatively-robust-to the intensity of epidemiological

Nel & Prof \W. Yarkotter

sampling, but because such médélsido not lidve an explicit epidemiological formulation,
the inferences cannot easily be related to real epidemiological processes. Although
coalescent models with an explicit epidemiological focus have recently been developed
(Volz et al., 2009; Frost & Volz, 2010), they have yet to be integrated into a framework
that accounts for the spatial aspects of disease transmission. The second approach
is more forensic in nature, explicitly recognizing the host population structure and
the epidemiological processes that govern the interaction of host and pathogen.
This second appro?;gre;t%ggtagr Cl'eiwtigg”fnlqéw tyo gleat g?fé%bdels of transmission and
reconstructs the tré&i@ﬁ‘is%ﬁiﬁ“"@fe'é”'Y%fﬂ‘é(?ﬁl':r’igo"'who infected-whom’, thus allowing
direct investigationsefrepideanislogitalprodesses (Ypma et al., 2012; Morelli et al.,
2012). However, curtent methods cannot handle large numbers of missing infections,
and therefore require a high proportion of infected hosts from the outbreak to be
present within the sample.

Both these techniques have been applied within epidemic contexts and to data
that are assumed to be monophyletic (i.e. arising from a single introduction). When
pathogens are sampled from infected hosts in an endemic context, the epidemiological
situation is potentially more complex. In this context, the connection between cases
applies at two scales (Figure 3.1 A). At the scale of the entire endemic region, all cases
may be related in some way (through the global transmission tree), leading to genetic
relatedness and spatial autocorrelation between sampled cases. However, in a given
study region (even one that has been exhaustively sampled), only some cases will be
directly related through chains of transmission, and many chains of transmission may
exist that are only indirectly related to each other by virtue of sharing a common
ancestor outside the sampled area. The sample of pathogens within the study area
is therefore polyphyletic. The picture is further complicated because surveillance is
unlikely to be exhaustive, and therefore the sampling will be incomplete. Undetected
or unsampled cases will reduce the detectable correlation between cases that are
nevertheless causally related. Thus, if we hope to use genetic data to understand the
detailed transmission biology of endemic pathogens the challenge will be to develop

algorithms that can accommodate the polyphyletic nature of pathogen population
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Figure 3.1: Modeling the transmission of endemic diseases. A: All cases in the study region are
L bapitted:in, prrtial, fuli t i f et
in some way related boﬁl&g%ﬁﬂéﬂélﬁh glhfﬂ'g %T%El‘gﬁ B%Ié%ﬁgf@g%u£ ﬂ_’)cli‘llif part of a larger epidemic that

originated from a singleAqugﬁ}}b %Ee egﬁaﬁi mp;g:yvy,if%ﬁﬁgﬁ Iaatn some cases go undetected, makes

determining dependence among transmission chains difficult. O’s represent sampled cases, while
X’s represent unsamplédbervises. PB: (THdlepétthiefigh Markbidstes both in terms of genetic diversity and
in terms of the geographsepsphecddisvaded. In the relatively short observation window (compared
to the time for which the pathogen has been established in the area), three types of relationships
are apparent. Cases directly infected by another sampled case are easily linked into a chain of
transmission (pink/purple). Cases caused by a case outside the study area will be more closely
related to the common ancestor of all sampled cases than to any other cases (red and yellow), while
some cases can be linked to sampled cases through unsampled intermediary cases (green).

This chapter describes the development of a novel technique for the reconstruction
of transmission trees of endemic diseases and polyphyletic epidemics. This technique
represents an extension of previous work in this field (Morelli et al., 2012) to
accommodate the complexities inherent to polyphyletic and partially sampled
outbreak data containing space, time and genetic information. By accounting
for the potentially high number of unsampled cases of infection, this technique also
allows inference of the infected host population size over the study period and region,
thus providing upper and lower estimates of the number of undetected or unsampled
cases. This approach can be expected to be particularly useful for investigation of
endemic RNA viruses, because their mutation rates are high enough for population
genetic and epidemiological processes to occur on similar timescales, and spatial
expansion and epidemiology leaves a discernible fingerprint on the genetic structure
of these viruses (Grenfell et al., 2004; Davis et al., 2007; Biek et al., 2007).

The technique was applied to endemic rabies virus (RABV) in the KwaZulu
Natal province of South Africa (KZN) to demonstrate how it allows for a better

understanding of the spatial epidemiology of endemic viruses. Such knowledge is

o6

© University of Pretoria



Epidemiological modeling of rabies

3.2 Materials and Methods transmission pathways in’ dog

rabies endemic KwaZulu-Natal
South Africa

Epidemiotogical modeling of rabies
crucial for advancir]g‘ahgﬁﬁg@ib(ﬁngﬁtﬂv&@fg afogccination campaigns — some
of which have been &%ﬁ%@%@&!ﬁé&%@&%%@' to eliminate the disease in

rica
question. RABV has become endemic throughout the developing world (World Health

Organization, 2002)TltdgotipRatharthmmbikifdethrough direct contact of saliva from

ubmitted in partial fu\hHmemgthe rec

an infected animal with broke oy peneirated-skin of a susceptible host (Rupprecht

yyyyyyy

factors. First, rabies has a highly variable incubation period (Charlton et al., 1997;
Hampson et al., 2009) and second, rabies has a very large host range that includes
all mammals, many of which would play no part in the onward transmission of the
virus (i.e. many hosts are ‘dead-end’ hosts; Rupprecht et al. 2002). Nevertheless,
the majority of infections in humans are associated with rabid domestic dogs (Canis
lupus familiaris; World Health Organization 2002; Cleaveland et al. 2006), and it is

in dogs that the dis%&%'@‘ﬁﬁi@tpiﬁgakféﬁ'ﬁm}g@@f et et %1 humans is to be reduced

egree Magister Scientiae in the Faculty o ral and
(Lembo et al" 2011)\'gr|cu|tura| Sciences, University of Pretoria

Supervisors: Prof. L.H. Nel & Prof. W. Markotter
27 September 2013

3.2. Materials and Methods

3.2.1. Data preparation

Thirteen of the 189 cases sequenced in chapter 2 lacked GPS coordinates and
were therefore excluded from the transmission tree reconstruction (Appendix A,
Table A.1). The remaining 176 trimmed sequences (section 2.2.7) were realigned
using the FFT-NS-i algorithm of MAFFT version 6 (Katoh & Toh, 2008).

The hypothetical ancestral sequence of all cases was reconstructed from this
alignment using the FastML server under the generalised time reversible model
(Rodriguez et al., 1990; Ashkenazy et al., 2012).

3.2.2. Transmission tree construction?

We then designed an inference algorithm and a post-processing analysis in a Bayesian
framework providing joint and marginal posterior distributions for the unknown
parameters (see below). Inference was performed using an interacting Markov
chain Monte Carlo (MCMC) algorithm based on Metropolis-Hastings updates. This

2The following model descriptions (section 3.2.2 and section 3.2.3) are given in their intuitive form.
A more formal, mathematical description can be found in Mollentze N., Nel L.H., Haydon D.,
& Soubeyrand S. (2013). A Bayesian approach for inferring the dynamics of partially observed
endemic infectious diseases from space-time-genetic data (submitted).
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algorithm simultangeaabniissiompathways aicog model parameters, hidden

variables and transx?g%i?ﬁsz rlc.;nic KwaZulu-Natal,

3.2.2.1. Generalisatjorn,gf the basic mosieh .
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The core algorithm used herjéié'ﬁsg@ﬁé}‘éﬁSatlon of the algorithm of Morelli et al.
(2012; described in section 1.3?%".'?3”%0 allow its application to any directly transmitted
disease. Morelli et al. calculated the date of infection of farms from a probability
distribution centred around assessments by experts of the age of foot-and-mouth
disease virus lesions on each farm. However, the ability to determine the age of
infection is rare amongst viral diseases, and even when this is possible, such data
may not be recorded. We therefore employed the epidemiological model already used
to estimate the probability of cases being infectious at any given moment to also

Submitted in partial fulfillment of the requirements for the

estimate the probakbdgitd ddagidten Heiproissiblee datiesobNdmieetion. As a simplification, we
Agricultural Sciences, University of Pretoria

assumed that cases are detected shortly after death, thus reducing the epidemiological
model to one akin tojjtﬁéi%f&giéj :HSge gsli{céfcgp%ﬂiaﬁkftt—eiﬂxposed—Infectious—Removed (SEIR)
compartmental model (Figure 3.2). In this model, a susceptible host ¢ becomes
infectious at time Timf , thus entering the ‘exposed’ compartment. It remains in this
compartment for time-period L;, drawn from a probability distribution of incubation
periods with a strict prior distribution (based on the results of Hampson et al. (2009)
in the case of rabies; section 1.3.3), before becoming infectious. The host remains
infectious for time-period D;, drawn from a probability distribution of infectious
periods (again based on the results of Hampson et al. for rabies) and is then either
immune against re-infection for life or, as is the case for rabies, dead. Because we
assume that cases are observed shortly after the end of the infectious period and the
observation date is known, we can estimate both the probable infectious period and
the probable date of infection for all cases. From this data it is possible calculate the
probability of a transmission from any host j to any host ¢ based on the probability
of j being infectious at the time of ¢’s infection (Figure 3.2), with various values
for Tl-mf being drawn from its calculated probability distribution during the MCMC
estimation procedure (Morelli et al., 2012).

However, as described in section 1.3.5.2, this forms only part of the probability
of transmission between hosts. The spatial component of the likelihood equation
was modified to accommodate a wide variety of spatial transmission patterns by
replacing the exponential transmission kernel with the exponential-power spatial

transmission kernel described by Austerlitz et al. (2004). This kernel is often used in
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Figure 3.2: Calculating the probability of possible transmission events. Disease progression is
modelled in two stages: susceptible host ¢ becomes infected at time Timf , and incubates the virus
for duration L;. At the end of the incubation period, the host becomes infectious for duration D;
before being removed from the population (either because of death or life-long immunity). At this
point, the case is observed, with the date (7,°%¢) and location (X?**) being recorded and a partial
pathogen genome sequence (S?%) being observed. Thus, the probability of a transmission from any
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dispersal studies and can take a variety of shapes, making it well suited to a range
of endemic situations where often very little is known regarding spatial transmission
patterns. We also replaced the simplified substitution model of Morelli et al. with the
Kimura 3-parameter model, which was the best fitting DNA substitution model for
the dataset according to Akaike’s information criterion (determined using jModelTest
version 2.1; Kimura, 1981; Akaike, 1974; Darriba et al., 2012). This model takes into
account the different probabilities of transitions (mutations from U <» C and A <
G), and two types of transversions (U <+ A and C <+ G versus U <> G and A < C)

and can thus be expected to increase the discriminatory power of the approach.

3.2.2.2. Extension to polyphyletic transmission trees

In a partially sampled outbreak any given infected host which was sampled might
have been infected by: (1) another sampled host (through direct transmission),
(2) an unsampled host which has been infected directly or indirectly by a sampled
infected host (termed “indirect transmission” here) or (3) an unsampled host which
has no ancestors within the sample, i.e. transmission from an exogenous source
(Figure 3.1). The model of Morelli et al. (2012), allows for only a single virus
introduction (i.e. a single “exogenous” transmission) followed by direct transmissions

for the rest of the outbreak. Thus, the model is only appropriate for exhaustively
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at any point in time and thusygalboiﬂé‘“ “thé probability of different transmissions. In
our model, this is equivalent to the approach taken for direct transmisions, where
each sampled infected host species able to transmit the virus can be a source of
infection (in the case of rabies, typically carnivores but not humans or livestock).
These are modelled by the probability distribution Py, defined over the geographic-
genetic space and evolving in time (represented by coloured cones in Figure 3.1 B).
P irect is dependent on the infection time of the host (estimated as described above),

its incubation dura??@ﬁtﬁsm el %qgéculty ieniiafsdivation time (observed), a

ree Magister
spatial dispersal keI’I\féFlﬂ%ﬁﬁ'lﬁﬁ'ﬁ't@él)U&Yf& yiehBtsterizion rates for the sequence evolution
(estimated) Supervisors: Prof. L.H. Nel & Prof. W. Markotter

Each sampled infected host which can spread the disease can also be an indirect

source of observed infections even after its removal, as a consequence of unsampled
intermediate hosts: Case A (sampled) infects B (unsampled) which infects C
(unsampled) which infects D (sampled). Since these unsampled cases extend the
influence of Case A in both geographic and genetic space, their effect can be modelled
by allowing cases to continue moving and evolving after their death (represented
by the green and red cones in Figure 3.3). This is represented by probability
distribution Pj,giect, again defined over the geographic-genetic space and evolving
in time. As is the case for Pyiect, Pindireet depends on the infection time of the
host, its incubation duration, a dispersal kernel and the substitution rates. The
spatial influence contributed by sampled cases is harder to determine. We considered
two different specifications for the dispersal kernel governing indirect transmissions
(Kingireet)- In the first specification, we conservatively assume that Cigiect is the same
as the dispersal kernel used for the direct transmissions, thus allowing only movement
over transmission distances observed for (single) direct transmissions. However, this
does not adequately accommodate a scenario encompassing multiple unsampled
intermediate cases, where greater distances between the indirectly connected cases
would be possible. We therefore also considered a more liberal specification, where
K indirect 1s @ uniform distribution over the whole study region, thus allowing unsampled

intermediate hosts to carry the virus to any location within the sampled region.
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while o’s represent obsqgé/,q}gfmﬁgﬁgci g y@g%ﬁoq%;agﬁg in both the genetic and geographic space
will be extended by cases further down the transmission chain. Thus, the effect of unsampled cases

can be modelled by allGudangsesifioftd ot dafieofnWviagesterd evolving after their death, as illustrated
by the green and red c@hésptehbetB$3way, we can detect the indirect causal connection between the
light and dark green cases in the figure caused by an unsampled intermediate case whose host was
infected by the light green case and which then went on to infect the host of the dark green case.

In a similar vein, the source of exogenous transmissions can be modelled as a
probability distribution P.,, defined over the geographic-genetic space and evolving
in time (represented by the grey cone in Figure 3.1 B). P, can be completely
specified based on an ancestral virus sequence (determined a priori through ancestral
state reconstruction, in our case using FastML, although any algorithm can be used),
a time for the ancestral sequence, and the same substitution rates as above (both of
which are co-estimated with the transmission tree). The ancestral sequence and the
sampled infected hosts generate a mixture M of spatio-temporal-genetic distributions
(Pezos Pairect and Pingirect) from which the infection events are drawn. Estimating
the source that infected a given host involves assessing in which component of the
mixture model M the infection of the host arose.

Conceptually however, the source of both types of transmissions involving unobserved
ancestors (indirect and exogenous) can be modelled in the same way — as being
external to the sampled dataset, meaning the transmissions arise in P.,,. Thus,
to reduce complexity and computation time we distinguished only between direct
and “unsampled” sources in the first instance (only Pyt and Pey, are used to
define M), with a post-processing algorithm to distinguish between indirect and true

exogenous transmissions. In the previously described monophyletic model (Morelli
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conservative and liberal specifications of IC;,q:ect described above.
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Figure 3.4: The inferred causal relationships among detected cases can be used to estimate the
true number of cases despite incomplete surveillance using a mark-recapture strategy. Here, lineages
in the second half of the observation period are considered ‘recaptured’ if one of its ancestors was
sampled in the first half of the study period.

3.2.3. Population size estimation

To determine the true number of cases represented by indirect transmission links, a
mark-recapture technique was applied to the virus lineages identified in the previous
analysis. In this approach, the cases are divided into two categories based on their
observation dates. Any host sampled in the second time-period is considered as
recaptured if it was directly or indirectly infected by a host sampled in the first part
of the data set (Figure 3.4). Thus, if the exact transmission tree were known, the
true size of the population of infected hosts could be determined using standard

mark-recapture statistics taking into account uncertainty regarding changes in the
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3.3. Results and Discussion

A novel method for reconstructing transmission trees using space-time and genetic
data from partially sampled endemic diseases was developed and applied on 176
canid-associated rabies cases for which detailed epidemiological data were available
(Appendix A, Table A.1). This represents all but 13 of the canid-associated cases
detected in KZN oxﬁé@fﬁﬁ?&@fﬁ&i “ﬁﬂ%‘fﬂéﬁ}ﬂg@‘;“mfe aspg%tgée) The dataset contained

. Agricultural Sciences, Univeysity of Pretori . . .
153 rabies cases detefted in domestic dogs, 1 case detected in a jackal (which species

was not recorded butPEeh €5 HCNLibA O oMEN it was most likely Canis mesomelas)
and 22 cases detecéé(fp;?bgé%estic livestock (Appendix A, Table A.1). Livestock
typically do not transmit rabies, and these cases were explicitly treated as dead-ends
for transmission in the model. When considering only direct transmissions, there
were several independent chains of transmission and many transmissions over long
distances. (Figure 3.5 and Figure 3.6 A and B). The mean distance between the
most probable directly connected cases was 14.9km (0.025- and 0.975-quantiles:
0.0km and 56.1 km; Figure 3.6 A and B), in stark contrast to the mean transmission
distance of 0.88 km observed by contact tracing in rural Tanzania (Hampson et al.
2009; section 1.3.3). Occasional long-distance transmissions in this area, particularly
along the major highways that follow the KZN coast (Figure 2.2 B), have been
identified before based on phylogenetic patterns and have been ascribed to motorised
transportation of dogs (Coetzee & Nel, 2007). Road distances have also been shown
to be a better predictor of rabies dissemination than absolute distances in northern
Africa, again implying that humans are responsible for long distance transmission
of rabies (Talbi et al., 2010). The long distances and short time-periods between
cases in the transmission tree (Figure 3.6) provide further evidence for motorised
transportation of infected dogs, but such transmissions were not restricted to any
one area and instead appear to be a common feature of the epidemiology of rabies in
this area. This might be due to the high prevalence of circular human migration and

migrant labour in many parts of KZN, with urban-dwelling migrants visiting their
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Figure 3.5: Transmission tree showing the direct pairwise transmissions with highest posterior
probabilities. Transmission links between cases are represented by orange arrows (and dots when a
transmission links cases at the same location), while red dots represent cases for which no direct
ancestor was detected. The inset shows an enlarged view of connections in the densely populated
southern coast of KZN, were the majority of cases where detected.

The majority of cases could not be linked through direct transmissions — 69 (95 %
posterior interval [PI]: 60-79) direct transmissions were identified, while unsampled
sources were the most likely link for the remaining 107 (95% PI: 97-117) cases.
The conservative specification of our post-processing algorithm identified a further
37 (95% PIL: 27-47) indirect transmission links over the 15-month study period,
while the liberal version of the algorithm identified 67 (95% PI: 57-78) indirect
transmissions (Figure 3.7). When considering both direct and indirect connections,
there are many separate, unjoined transmission trees (Figure 3.8). For the most
probable connections under both the conservative and liberal specifications of the
algorithm, these transmission trees can be grouped into 8 distinct spatial clusters
(Figure 3.8; although the clusters do not represent exactly the same cases between
the two specifications). Transmission between different spatial clusters was rare —
only one such transmission was detected with the conservative specification of the

algorithm, and ten such transmissions with the liberal specification. In addition,
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Figure 3.6: Posterior distributions of the transmission distances, incubation period and infectious
period of directly connected cases. A: Transmission distances between all a posteriori directly
connected cases. B: Distances between connected cases corresponding to the direct transmission
links with the highest posterior probabilities (i.e. only the most probable links). C & D: Posterior
distributions of the incubation period and infectious period of directly connected cases. The
distributions in C and D were obtained by aggregating the respective posterior distributions of all
cases responsible for direct onward transmission in the transmission tree.

such transmissions do not appear to seed substantial additional numbers of cases,
as only one instance of onward spread in the new cluster was detected under either
specification, causing just one additional case in both instances. Interestingly, four
of the inter-cluster transmissions identified under the liberal specification involved
transmission from one cluster to another and then back to more-or-less the same
location, before onward transmission in the original cluster, further supporting the
hypothesis of migrants moving dogs back-and-forth between their urban and rural
homes.

Among the most probable connections, between 44 % and 24 % of all cases had
no detectable origin in the study area (conservative and liberal specifications,
respectively), while between 29 % and 12% of cases were also not linked to any
subsequent cases (grey squares in Figure 3.8). Both versions of the post-processing

algorithm detected no indirect transmissions in the first quarter of the sampling
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Figure 3.7: Pairwise fransmissions with the highest posterior probabilities in each quarter of the

sampled period, including indirect transmissions. Grey dots represent all cases since the start
of the sampling period, while red dots represent cases appearing in that quarter that have an
exogenous source. Orange arrows represent direct transmission events, with orange dots representing
direct transmission between cases at the same location. Blue arrows and dots represent indirect
transmissions inferred using the conservative (A) and liberal specification (B) of the post-processing
algorithm. Note that detected cases (grey dots) are displayed cumulatively. Q1-Q4: First to fourth
quarter of the sampling period.

period (Figure 3.7) and it is likely that the majority of cases missing ancestors
during this period represent dogs already infected by the start of the sampling
period. This interpretation is further supported by the observation that the number
of unconnected cases (cases inferred as infected by an external source) dwindles in
the subsequent quarters, before stabilising late in the second quarter (Figure 3.7
and Figure 3.9). Thus it would appear that the variable and occasionally long
incubation period, along with incomplete surveillance, necessitates sampling for at
least 6 months before the dataset contains the majority of lineages present in the
area. The number of unconnected cases stabilises over the last period of the data
series at a posterior median of 2.27 (95% PI: 0.6-5.1) and 0.2 (95% PI: 0.0-1.3)
per month for the conservative and liberal post-processing algorithms respectively
(Figure 3.9). As described above, the reality is likely between these two extremes.
Nevertheless, the relatively high numbers of unconnected cases means that these

values likely still represent a combination of lineages that have not been previously
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detected in addition to introductions from outside the study area. Indeed, the
phylogeographic analyses described in chapter 2 detected very few introductions,
and comparison with these results shows that the majority of these unconnected
cases represent lineages previously sampled in KZN (Appendix A, Figure A.1). In
the phylogeny, the relationships between many of these cases could not be resolved
beyond common ancestors existing several decades ago. However, some unconnected
cases in lineage 1 show no more genetic diversity than other cases which are connected
by the transmission tree reconstruction algorithm, particularly under the conservative
specification (Figure A.1). It may be that there is an upper limit to the number
of undetected cases between any two cases beyond which the relationship is no
longer detectable (at least with the method described here) although the genetic
separation between these cases and other, unconnected cases show no evidence for
this. Alternatively, the choice of strict prior distributions conditioned on data from
Tanzania for the incubation and infectious periods of infections, necessitated by
the need to detect and account for unsampled cases, may lead to some connections
involving outliers being missed if the true distribution of RABV incubation and

infectious periods is slightly different between KZN and Tanzania.
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Figure 3.9: Number of cases with no detectable source in the dataset per month of the sampling
period. A: Number of cases infected by an exogenous source under the main inference algorithm
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To gain a better2usaderstzomeding of the surveillance failures leading to the high
number of indirect connections detected, the true number of cases occurring in the
study area was estimated by using a mark-recapture-based approach. This yielded
a posterior median estimate of 389 cases (95 % PI: 260-881) using the conservative
specification of the post-processing algorithm, and 195 cases (95 % PI: 182-298)
using the liberal specification, over the 15 month study period (Figure 3.10). Again,
these values can be interpreted as a lower and upper bound of the true estimate.
Although the apparent undetected connections described above may lead to a slight
over-estimation of the true number of cases, this is balanced by the undetected
lineages evident from the phylogeographic analysis (Appendix A, Figure A.1). The
herpestid-associated genetic variant of rabies virus is rare in KZN, which means the
five cases which could not be sequenced were most likely representatives of the canid-
associated variant. Thus, surveillance detected 194 cases of the canid-associated
variant, or between 49.9 % and 99.5% of all canid-associated cases (based on the
posterior medians of the conservative and liberal specifications, respectively). The
areas where surveillance is poor can be deduced from the locations of indirect links

(Figure 3.7), providing a powerful tool for improving detection rates.
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Figure 3.10: Estimated total number of animals infected by the canid-associated variant of rabies
virus in KZN over the sampled period. Curves show the posterior distribution of cases under
the conservative (dotted curve) and liberal (solid curve) specification of the transmission kernel
(Kindirect)- As dlscusse§uh'iﬂ'ﬁfé’ ﬁemrtr@hél%ﬂh@%@ﬁib@fehesem'e%héﬁ: between these two extremes.
The dashed vertical hﬁgg geﬁgurﬁ'siﬁlgice'iﬁﬁ e@':rstlh}f (')c:tglcsugltgy At Netgehane the analysis, while the dotted
vertical line shows the number of cases detected by survelllance (including 5 which could not be
confirmed as belongingsteertheschoid-asderiabed vaNamdter see text for details).
27 September 2013

3.4. Conclusions

To successfully control rabies and other endemic diseases in a changing landscape,
a detailed understanding of their spatial epidemiology is required. The method
described here allows for the detailed reconstruction of the transmission events
of endemic infectious diseases, providing information that can be used both in
designing more efficient control strategies and to measure and improve the quality of
surveillance programmes. Although the reconstructed connections are in agreement
with phylogenetic data, the resolution is significantly improved. In addition, the
reconstructed transmission tree allows the direction of transmission to be discerned,
an important factor to consider in the design of control programs, particularly when
disparate areas are connected by only few transmissions as the case is here.

The long distances characterising many internal transmissions point to a significant
anthropogenic influence on the epidemiology of rabies in KZN. The causes of this
phenomenon require further study, but it is clear that education campaigns should
form an integral part of the rabies control programmes in this area. Such long
transmission distances complicate the detection of unsampled cases — cases linked by
unsampled intermediary cases would be indistinguishable from a scenario where a case
with a long incubation period was transported over a long distance. Despite these

long-distance transmissions, clear spatial groupings could be discerned (Figure 3.8).
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In addition, the fre@mr}ﬁgg}dﬁtQWWngmWsdﬁg cause most of these spatial

clusters to consist og%béﬁﬁm%c'aﬂ% Kwadulu-Natabounding cases (Figure 3.7).

Identifying the connections of surrounding cases to specific clusters enables more

directed vaccinatioppegdiste BargstneMeienpuch smaller core areas would allow

mitted in p al fulfillmer

control of rabies over large areass=Inadditions identifying the spatial scale at which
independent control strategiég.can beé applied means it is possible to replace the
current thin spread of limited resources across the province with intense, focused
campaigns that move across the province on an annual basis.

By applying the methods described here to data from multiple years, important
information will be revealed about how to iteratively improve surveillance and
adapt rabies control strategies by identifying areas to be prioritised during annual
vaccination campaigns. In addition, these methods can easily be adapted to other
endemic diseases, /‘gg%lster c:er%iag’?r%r&ul gtﬁgﬂgfwuggéhemruses make them ideal
candidates for this A&@h‘@a&i‘e“@apﬁ@(ﬂ‘aﬂﬁp "géuraging is the fact that the small
genome region sequéweeebhérd provd debiswiiieient resolution for this analysis, making
the generation of a(fé(sfﬁg T data for large numbers of cases feasible even in resource-

poor areas.
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Concluding remarks

Despite marked decreases in the number of cases evident in both surveillance data
and demographic reconstructions, rabies remains widespread throughout most of
KZN. Increasing sﬁé@%}iﬁ t'alﬁgwent Ofp:tg)i%ﬂ(; ﬁ Sty fﬁrgt)h generates new challenges,
and subsequent cam%glflélﬁasl %%flfffefkenlverswéé)apfembe increasingly efficient given that a
disease with an eveg‘;’?ﬁgﬁ%gﬁ%&gHptfbglld"h(‘—':val\%""fﬁﬁpact is unlikely to remain a public
health and political priority. Thus, sustainable and efficient rabies control strategies
are needed, particularly because the control strategies designed and tested in KZN
are intended for eventual application to other areas, where resources may be much
more limited. The design of these strategies are crucially dependent on detailed
knowledge of rabies transmission and epidemiology in the settings where they are to
be applied, which in turn depends on increasing surveillance efficacy and improved
statistical analyses.

The results presented here point to several important recommendations for KZN.
Given the relatively independent nature of spatial clusters of cases, as well as
the low number of introductions from outside the province, it may be pertinent
to examine alternative rabies control strategies consisting of compartmentalised
campaigns targeting key areas. This can easily be achieved using mathematical
modeling, which should consider the potential impact of the small numbers of inter-
cluster transmissions and introductions that do occur, and how their effect can
be counteracted using various configurations of temporally overlapping campaigns
targeting the different areas. Redesigning control strategies would also require a
better understanding of the potential effect of introductions to areas where RABV
is near elimination. For example, the transmission trees in KZN show that the
rare inter-cluster transmissions which could be detected do not become established,

which may also explain the low number of introductions from outside KZN that

71

© University of Pretoria



. Epidemiological modeling of rabies
Concludlng I‘emarks transmission pathways in dog
rabies endemic KwaZulu-Natal
South Africa

Epidemiotogical modeling of rabies
were detected. It ppandinissiontipatHwaysdpodag simply because of resource

limitation (see the %\%ﬁi%ﬁﬁgﬁ@“gﬁ%ﬂﬂtmﬁglvmodel of range expansion
in section 1.2.4), in which case eliminating rabies locally would require constant

vigilance as well as FgastivGoutdel Muntagies such as dog-movement restrictions
to prevent re-emergence. ThysiHirther snyestigation to establish the cause of this

e

H. Nel & Prof.

phenomenon will be an impdifait Tiéxt“Step. The spatial barriers preventing or
slowing the spread of rabies also require investigation, as these can be reinforced with
less resources than other strategies aimed at stopping transmission between specific
areas (Russell et al., 2006). In this regard, the ability to reconstruct transmission
trees for endemic diseases using only partial genome sequencing will allow relatively
simple generation of large datasets of transmissions in various areas spanning several

years.

A further challen g%@%ﬁ_ﬂ?{lﬁ%@?fhﬁg_

ree cientiae in

adequate surveillamgsctiirasstisttUniverehy dfetedadeveloping world. When very few

cases are detected, StrswishtsiReofdiffi ol Fres. oMt the efficacy of control programmes

(or indeed to determine Where to apply control programmes) and there will be no

f@@s?@@?ﬁtl?;@ﬁgﬁﬁ?gﬁéeelimination is the lack of

clear indication of when elimination is achieved. Townsend et al. (2012) developed a
mathematical model that could be used to calculate the time delay between RABV
no longer being detected by inadequate surveillance and the point at which the
virus is truly eliminated. This model showed that vaccination could be halted
after six months of no longer detecting cases, provided that surveillance is able to
detect at least 10 % of cases (Townsend et al., 2012). The methods to estimate the
true proportion of cases being detected demonstrated here can be used to improve
surveillance and could be combined with the model of Townsend et al. to calculate
the required length of control programmes more precisely. In the case of KZN, where
upwards of 50 % of cases are being detected, the time period before vaccination can be
halted is likely to be much shorter. However, in rabies endemic areas such as southern
Africa, there remains a constant threat of re-introduction. Although introductions
appear not to become established in clusters of existing cases at present, the exact
causes of this remain to be established. Thus, while rabies remains endemic in the
surrounding area it is likely that buffer zones and constant surveillance to allow rapid
response to new outbreaks will be needed indefinitely. This means that the only
way to achieve sustainable elimination is by using a concerted, regional approach. A
first step, which would directly benefit the KZN rabies control programme, would

be to improve the quality of surveillance in neighbouring regions. By detecting and
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characterising morqp@e@iﬁﬁggidwiplﬁtﬁwﬁsgscmld@jgs and provinces, it would be

possible to examinegqgédgﬁlﬁﬁ%g@ﬁ Kwadulu-Natala rapid response. To make
these data truly useful, and to allow the use of analyses such as those presented

here to determine thgeggurse Rérimtans sl mases, accurate geographic coordinates
should be collected for all casess=Erom the-restlts presented here, it is clear that

r
Scie

| & Prof. . Markotter

the surveillance system in KZNisefféctive,"and this expertise should be shared at a
regional level.

There is no technical barrier to prevent effective control of canid-associated rabies
across the region. Most of Mpumalanga managed to remain rabies free until recently
despite the presence of endemic canine rabies in two neighbouring countries as well
as two neighbouring provinces, while dog rabies had largely been under control

in Limpopo for several years prior to re-emergence, despite the presence of Canid-
associated rabies in ﬁg@l;&%ﬁ%ﬁ@1?%15@2‘%3@@@%535)%5"8abeta et al., 2011). There
is no evidence of irdégi]éitncesiMilifsityebftesits in the eastern parts of southern
Africa, making elim$watikon Ruff. ¢eth el PashiwsMekesrer more feasible. These examples also
highlight the difficultied*d rr%%ﬁntaining a rabies free status however — rabies spread
from a remaining endemic area to once again affect most of Mpumalanga, while the
spread of rabies from neighbouring Zimbabwe into Limpopo led to numerous human
deaths and now remains out of control in many areas (Cohen et al., 2007; Mkhize
et al., 2010; Sabeta et al., 2011).

The novel transmission tree reconstruction algorithm demonstrated here can be
used to investigate the epidemiology of various other endemic pathogens for which
sufficient data are available. In particular, the posterior distribution of possible
trees can be tested for statistically significant patterns correlating with specific
landscape or sociological features, to test various hypotheses about the spread of
specific pathogens. It may also be of interest to study the evolution of pathogens at
the single case level, where the increased resolution of this method, together with its
explicit incorporation of epidemiological knowledge, may lead to novel insights. In
this regard, some improvements remain to be added, such as a variety of models of
nucleotide evolution as well as more complex epidemiological models to accommodate
for example vector-borne pathogens or other types of data that may be available.
For many datasets of endemic infectious disease, the ability to accommodate missing
data may also be needed. Although the results of Ypma et al. (2012) show that
transmission tree reconstruction with missing sequence data is highly uncertain, it

should be relatively straightforward to overcome the unavailability of geographic
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coordinates for hmlt@@ﬁglmtggm@f prathwalys didog of the inferred transmission

links will undoubte?obu'?ﬁ fﬂ}%%;@lp Hwadu-Natabncertainty in the dates of
detection, since many cases may not be detected immediately. Meanwhile, the

resolution of this mythedomioBerhsdmuriysater if full genome sequences are used,
the generation of which is incregsinely heeoming more accessible. Although it would

of . LH.YNel & Prof. W. Markot:

require much greater computational’ power, it may also be possible to increase the
resolution even further by modeling the actual sequences that are transmitted, rather

than relying on the differences between observed sequences.
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Additional figures and tables

Table A.1: Rabies cases detected in KwaZulu Natal between 1 March 2010 and 8 June 2011
Submitted in partial fulfillment of the requirements for the
degree Magister Sciemtiae i the Facutty of Naturatand

Case Date Agriculturil_I(S)cSiEné:esélegisversity of PretoriaL&titude Longitude Accession
number P (degrees)  (degrees) number
Srprrvisors—Prof—=H—Net&Prof—W—ivarkotter

10/129 2010/ OQZG@tembiﬁl%f;lﬁed captine -30.62 3045  KC660293
10/128  2010/03/05  Canis lupus familiaris -30.78 30.13 KC660323
10/146  2010/03/12  Canis lupus familiaris -27.35 30.87 KC660234
10/155  2010/03/19  Canis lupus familiaris -27.75 30.90 KC660179
10/157  2010/03/20  Bos taurus -28.60 29.92 KC660255
10/153  2010/03/21  Canis lupus familiaris -28.60 29.92 KC660207
10/154  2010/03/21  Canis lupus familiaris -29.98 30.65 KC660233
10/164  2010/03/22  Bos taurus -28.30 30.15 KC660254
10/167  2010/03/22  Canis lupus familiaris -28.25 31.47 KC660224
10/173  2010/03/23  Bos taurus -28.73 30.23 KC660183
10/168  2010/03/25  Canis lupus familiaris -29.38 30.77 KC660240
10/175 2010/03/26 Bos taurus -29.52 30.93 KC660227
10/188  2010/03/29  Canis lupus familiaris -28.25 31.47 KC660196
10/183  2010/04/02  Canis lupus familiaris -27.00 32.08 KC660341
10/184  2010/04/02  Canis lupus familiaris -30.02 30.85 KC660282
10/212  2010/04/10  Canis lupus familiaris -28.72 30.23 KC660230
10/202  2010/04/11  Canis lupus familiaris -27.52 30.97 KC660201
10/203  2010/04/12  Canis lupus familiaris -27.70 30.35 KC660167
10/195  2010/04/13  Canis lupus familiaris -30.45 30.65 KC660329
10/205  2010/04/16  Canis lupus familiaris -29.83 30.80 KC660244
10/209  2010/04/16  Canis lupus familiaris -30.58 30.32 KC660285
10/207  2010/04/19  Canis lupus familiaris -28.72 30.23 KC660229
10/220  2010/04/22  Canis lupus familiaris -30.12 30.48 KC660327
10/229  2010/04/24  Canis lupus familiaris -30.73 30.42 KC660351
10/233  2010/04/27  Canis lupus familiaris -28.32 31.52 KC660222
10/2362 2010/05/02  Canis lupus familiaris N.R. N.R. KC660235
10/237  2010/05/03  Canis lupus familiaris -29.90 30.77 KC660328

N.R: not recorded; N.S: not sequenced (RT-PCR unsuccessful)
! Herpestid-associated variant of RABV (excluded from analysis)
2 Excluded from analysis (RT-PCR unsuccessful or coordinates not recorded)
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South Africa

ical modeling of rabies
*Pathways in dog

rabies endemic KwaZulu-Natal,

Case A \ . Accession
aumber Date  SouthSAfrica Latitude = Longitude aumber

10/2452 2010/0_'[ Canis lupus familiaris N.R. N.R. KC660166
10/252  2010,/05/heod Of@ayﬁsemﬁ{%%MHUmtze -27.48 3052 KC660163
10/261  2010/05/16  Carys Tugs dam s~ -28.62 29.83 KC660228
10/277  2010/05/17 Canis. lupmﬁWLMIis -30.75 30.25 KC660322
10/268  2010/05/18  Canis Tupus familiaris -30.42 30.57 KC660305
10/267  2010/05/19  Canis lupus familiaris -29.88 30.80 KC660243
10/269% 2010/05/19  Canis lupus familiaris N.R. N.R. KC660265
10/272  2010/05/19  Canis lupus familiaris -28.72 30.23 KC660275
10/274  2010/05/23  Canis lupus familiaris -30.68 30.50 KC660299
10/271  2010/05/24  Canis lupus familiaris -28.73 31.53 KC660209
10/278  2010/05/26  Canis lupus familiaris -30.75 30.45 KC660303
10/2861  2010/06/08 :;Iilif;lﬁed wildlife -28.03 29.98 KC660352
10/294  2010/06 Canis lufpus famzlzams -28.54 30.59 KC660185
10/295  2010/0G} EQ"tteddi‘ A TEh Bkl eq“"ewféﬂé“ the 30.58  KC660297

c:e tlae the acu ty of Natural and

10/305 2010/0@7§9u|tur g@gﬁc by iy lof Pietoria -50. 30.23 KC660315
10/307  2010/06/29  Canis lupus familiaris —28.58 29.89 KC660211
10/308 2010/0680visors: Cephils Ml & fashifalpghotter _28 58 29.89 KC660226
10/309 2010/06] 3eptemb@afds lupus familiaris -28.72 30.56 KC660216
10/310  2010/07/01  Canis lupus familiaris -29.85 30.77 KC660246
10/314  2010/07/05  Canis lupus familiaris -28.63 30.18 KC660184
10/317  2010/07/06  Canis lupus familiaris -28.07 32.15 KC660238
10/318  2010/07/06  Canis lupus familiaris -28.73 31.82 KC660248
10/321  2010/07/06  Canis lupus familiaris -27.41 30.95 KC660221
10/324  2010/07/07  Canis lupus familiaris -29.83 30.78 KC660326
10/325  2010/07/07  Bos taurus -28.19 31.00 KC660218
10/327  2010/07/09  Canis lupus familiaris -29.98 30.15 KC660311
10/331  2010/07/16  Canis lupus familiaris -28.68 31.92 KC660194
10/342  2010/07/23  Bos taurus -30.10 30.75 KC660325
10/347  2010/07/28  Canis lupus familiaris -30.73 30.40 KC660298
10/351  2010/07/30  Canis lupus familiaris -29.90 30.85 KC660318
10/352 2010/07/30 Canis lupus familiaris -29.73 30.60 KC660200
10/353  2010/07/30  Bos taurus -30.10 30.48 KC660320
10/355  2010/08/02  Canis lupus familiaris -31.00 30.23 KC660324
10/366 ~ 2010/08/06  Canis lupus familiaris -28.81 30.17 KC660161
10/367  2010/08/06  Canis lupus familiaris -28.70 31.85 KC660273
10/369 2010/08/11 Canis lupus familiaris -28.60 31.33 KC660217
10/370  2010/08/11  Canis lupus familiaris -28.52 30.08 KC660165
10/376  2010/08/16  Canis lupus familiaris -28.78 31.85 KC660219
10/379%  2010/08/17  Canis lupus familiaris N.R. N.R. KC660269
10/385 2010/08/23 Canis lupus familiaris -28.32 30.10 KC660262
10/387  2010/08/24  Canis lupus familiaris -30.45 30.62 KC660287
10/392  2010/08/25  Canis lupus familiaris -29.77 30.93 KC660350
10/393  2010/08/25  Canis lupus familiaris -30.47 30.65 KC660291
10/395  2010/08/27  Canis lupus familiaris -27.39 32.08 KC660340

N.R: not recorded; N.S: not sequenced (RT-PCR unsuccessful)
! Herpestid-associated variant of RABV (excluded from analysis)
2 Excluded from analysis (RT-PCR unsuccessful or coordinates not recorded)
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ical modeling of rabies
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I?I?ISIEZ)GI‘ Date  SouthSAfrica Latitude = Longitude Anclfrerf]ign
10/397 2010/0_'[ Canis lupus familiaris -30.98 30.20 KC660331
10/400  2010,/08V/hBgod Of@ayﬁsemﬁ{ﬂlﬁMHUmtze -29.85 30.80  KC660317
10/401  2010/09/01  Carys fmsdampbiaris- = -28.60 32.07 KC660241
10/410  2010/09/06 Canis. lupu&uﬁ&mﬂmns -29.97 30.51 KC660295
10/420  2010/09/13  Canis Tupus familiaris -28.00 30.00 KC660195
10/425  2010/09/14  Canis lupus familiaris -27.85 30.26 KC660225
10/440  2010/09/22  Canis lupus familiaris -28.17 31.18 KC660223
10/441  2010/09/23  Canis lupus familiaris -28.72 29.97 KC660278
10/445  2010/09/27  Canis lupus familiaris -28.77 30.23 KC660172
10/447  2010/09/27 Bos taurus -28.60 29.94 KC660181
10/452 2010/09/29 Canis lupus familiaris -28.25 30.33 KC660162
10/453%  2010/09/29  Canis lupus familiaris N.R. N.R. KC660236
10/456  2010/09/29  Canis lupus familiaris -30.23 30.40 KC660330
10/458  2010/0%(Bkiteed 1 ppisl bl of she requirerdlheblor the 2081 KCG60334
degree Mﬁér é‘glentlae in the Faculty of Natural and

10/459  2010,/0N e leur d 8arscleporiibiditglefPratona - 50 30.63  KC660319
10/460  2010/09/30  Canis lupus familiaris -27.77 30.82 KC660212
10/461 2010/ 08 fs0visors: Cephils Ml & fashalpghotter 27,75 29.92 KC660164
10/462 2010/097 Septemb@efids lupus familiaris -28.16 30.63 KC660176
10/463  2010/09/30  Canis lupus familiaris -29.57 30.63 KC660245
10/472  2010/10/05  Canis lupus familiaris -29.97 30.78 KC660231
10/479  2010/10/07  Canis lupus familiaris -27.64 32.38 KC660348
10/481  2010/10/08  Canis lupus familiaris -28.00 31.85 KC660247
10/485  2010/10/12  Canis lupus familiaris -29.85 30.77 KC660250
10/488  2010/10/12  Canis lupus familiaris -28.75 30.42 KC660215
10/492  2010/10/14  Canis lupus familiaris -28.73 30.23 KC660252
10/495  2010/10/15  Canis lupus familiaris -30.52 30.58 KC660313
10/496% 2010/10/18  Canis lupus familiaris -28.73 30.23 N.S.

10/498  2010/10/19  Canis lupus familiaris -30.00 30.62 KC660281
10/504  2010/10/21 Canis lupus familiaris -29.98 30.76 KC660177
10/506 ~ 2010/10/21  Canis lupus familiaris -29.98 30.92 KC660204
10/508  2010/10/22  Canis lupus familiaris -27.90 31.63 KC660173
10/509  2010/10/25  Canis lupus familiaris -30.01 30.53 KC660294
10/515  2010/10/26  Canis lupus familiaris -28.75 31.87 KC660272
10/517  2010/10/27  Canis lupus familiaris -28.60 29.92 KC660180
10/518  2010/10/27  Canis lupus familiaris -28.98 31.78 KC660263
10/524  2010/10/28  Canis lupus familiaris -30.50 30.57 KC660314
10/525  2010/10/28  Bos taurus -30.23 30.40 KC660321
10/527%  2010/11/01  Canis lupus familiaris -29.92 31.00 N.S.

10/528  2010/11/01  Canis lupus familiaris -29.85 30.90 KC660214
10/530  2010/11/01  Canis lupus familiaris -29.85 30.77 KC660178
10/531  2010/11/03  Canis lupus familiaris -30.33 30.72 KC660304
10/532  2010/11/03  Canis lupus familiaris -30.58 30.32 KC660300
10/533  2010/11/03  Canis lupus familiaris -30.58 30.32 KC660283
10/536  2010/11/04  Canis lupus familiaris -28.47 30.14 KC660169

N.R: not recorded; N.S: not sequenced (RT-PCR unsuccessful)
! Herpestid-associated variant of RABV (excluded from analysis)
2 Excluded from analysis (RT-PCR unsuccessful or coordinates not recorded)
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10/541 2010/1_'[ Canis lupus familiaris -29.83 30.73 KC660168
10/552  2010,/11/heod Of@ayﬁsemﬁ{ﬂlﬁMHUmtze -30.00 30.92  KC660199
10/557  2010/11/13  Canys Tugs dammmris-=  -30.45 30.65 KC660296
10/560% 2010/11/16  Canmisdupusdfamiliaris ~ N.R. N.R. KC660242
10/562  2010/11/17  CaiisTapus familiaris  -30.30 30.25  KC660308
10/564  2010/11/17 l;iili’:fﬁed Jackal -28.50 31.92 KC660259
10/572  2010/11/17  Canis lupus familiaris -28.60 29.92 KC660174
10/579%  2010/11/18  Canis lupus familiaris N.R. N.R. KC660258
10/583 2010/11/19 Canis lupus familiaris -29.99 30.82 KC660316
10/593  2010/11/24  Bos taurus -30.11 29.81 KC660335
10/600 2010/11/26 Canis lupus familiaris -28.60 29.42 KC660276
10/608  2010/11/30  Canis lupus familiaris -28.73 31.80 KC660274
10/613 2010/ 1? Canis lufpus famzlzams -28.77 31.95 KC660271
10/614  2010/158 I LN TR RidIS eaERiEF e 31,05 KC660191
ty of Natural'an
10/624 2010/11*%(5'6“'“”Spge‘f‘fl*(‘}fﬁ@’qu WEAPIBE Pretoria o7 g6 30.56 KC660253
10/633 2010/ 12peravisors: Cph s Hubrh & faahalfaMpgkotter 3000 30.55 KC660280
10/635  2010/12768tembBIqurus -30.77 3012 KC660332
10/641  2010/12/13  Equus ferus caballus -29.78 30.58 KC660251
10/644  2010/12/14  Canis lupus familiaris -28.35 31.40 KC660190
10/655 2010/12/20 Canis lupus familiaris -30.30 30.25 KC660292
10/656  2010/12/21  Canis lupus familiaris -30.05 30.87 KC660267
10/659  2010/12/21  Canis lupus familiaris -27.72 30.05 KC660171
11/02 2011/01/04  Canis lupus familiaris -30.03 30.87 KC660232
11/15%  2011/01/07  Canis lupus familiaris N.R. N.R. KC660312
11/16%  2011/01/10  Canis lupus familiaris N.R. N.R. KC660188
11/28 2011/01/14  Canis lupus familiaris -29.90 30.36 KC660309
11/29 2011/01/14  Canis lupus familiaris -27.41 32.65 KC660342
11/51 2011/01/24  Canis lupus familiaris -28.62 31.73 KC660337
11/54 2011/01/24  Clanis lupus familiaris -30.50 30.62 KC660302
11/55 2011/01/24  Canis lupus familiaris -30.65 30.53 KC660307
11/56 2011/01/24  Canis lupus familiaris -30.55 30.53 KC660286
11/61 2011/01/26  Canis lupus familiaris -29.90 31.00 KC660239
11/62 2011/01/26  Clanis lupus familiaris -27.52 32.58 KC660347
11/63 2011/01/27  Canis lupus familiaris -28.78 31.88 KC660197
11/66 2011/01/28  Canis lupus familiaris -30.50 30.45 KC660284
11/672  2011/01/28  Canis lupus familiaris N.R. N.R. KC660339
11/84 2011/02/02  Canis lupus familiaris -29.73 30.80 KC660249
11/96 2011/02/08  Canis lupus familiaris -27.42 32.69 KC660345
11/99 2011/02/09  Canis lupus familiaris -30.87 30.37 KC660213
11/100%  2011/02/11 Canis lupus familiaris N.R. N.R. KC660288
11/101  2011/02/14  Canis lupus familiaris -28.70 30.23 KC660277
11/108 2011/02/15 Canis lupus familiaris -28.85 31.82 KC660260
11/115  2011/02/16  Canis lupus familiaris -29.32 31.27 KC660256

N.R: not recorded; N.S: not sequenced (RT-PCR unsuccessful)
! Herpestid-associated variant of RABV (excluded from analysis)
2 Excluded from analysis (RT-PCR unsuccessful or coordinates not recorded)
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Table A.1 - contmﬂ%.fgﬁ'ﬂi%r?’ 0

South Africa

*Pathways in dog

ical modeling of rabies

rabies endemic KwaZulu-Natal,

I?I?ISIEZ)GI‘ Date  SouthSAfrica Latitude = Longitude Anclfrerf]ign
11/120 2011/0_'[ Bos taurus -27.40 32.67 KC660349
11/121  2011/02/hgodorgs 567%{&%%9”%28 -28.80 30.03  KC660210
11/1242 2011/02/21  Cangs figesdampuris-=~ N.R. N.R. N.S.

11/127  2011/02/23  Canisdupus.familiaris  -29.08 31.57  KC660192
11/129%  2011/02/24  Canis Tupus familiaris -28.75 29.87 N.S.

11/144  2011/03/07  Bos taurus -28.90 31.02 KC660270
11/178  2011/03/22  Canis lupus familiaris -28.90 31.04 KC660338
11/181  2011/03/23  Canis lupus familiaris -27.40 31.35 KC660279
11/185  2011/03/24  Canis lupus familiaris -30.04 30.62 KC660187
11/186  2011/03/25  Canis lupus familiaris -27.15 32.40 KC660343
11/188  2011/03/28  Canis lupus familiaris -30.00 30.52 KC660264
11/191  2011/03/29  Canis lupus familiaris -28.77 31.92 KC660261
11/195 2011/03/29 Canis lupus familiaris -30.05 30.62 KC660310
11/240  2011/04 Canis lutpus famzlzams -28.68 31.90 KC660198
11/241  2011/04f BQ'tteda‘ W paIR Rt 'eq“"e%ﬁé“ the 3183  KC660189

c:e tlae the acu ty of Natural and

11/203 2011 /o&/ﬁzum Q@éﬁc A o Pitoria -28.0 31.78  KC660336
11/208  2011/04/08  Canis lupus familiaris —28.07 29.95 KC660170
11/200  2011/08ReTvisors: Bish kttyMgk& Prof. W. Markotter _9g 99 30.00  KC660206
11212 2011/047 BaprembdBali¥aurus 98.72 30.23  KC660175
11/217  2011/04/18  Canis lupus familiaris -30.32 30.73 KC660301
11/2212  2011/04/19  Canis lupus familiaris N.R. N.R. KC660205
11/224  2011/04/20  Canis lupus familiaris -27.55 29.95 KC660160
11/232  2011/04/28  Bos taurus -27.88 31.45 KC660266
11/251  2011/05/06  Canis lupus familiaris -28.24 31.56 KC660182
11/252  2011/05/09  Bos taurus 27.55 20.92  KC660220
11/257  2011/05/09  Canis lupus familiaris -30.00 30.77 KC660333
11/262  2011/05/11  Canis lupus familiaris -26.94 32.77 KC660344
11/268 2011/05/16 Canis lupus familiaris -30.03 30.83 KC660186
11/270  2011/05/17  Canis lupus familiaris -30.05 30.88 KC660202
11/272  2011/05/17  Canis lupus familiaris -30.75 30.43 KC660290
11/273  2011/05/17  Canis lupus familiaris -30.75 30.44 KC660289
11/284  2011/05/27  Canis lupus familiaris -28.90 31.05 KC660193
11/296  2011/05/31  Canis lupus familiaris -27.70 29.92 KC660268
11/300% 2011/06/01  Canis lupus familiaris N.R. N.R. KC660306
11/305  2011/06/06  Canis lupus familiaris -27.55 32.67 KC660346
11/306% 2011/06/07  Canis lupus familiaris N.R. N.R. N.S.

11/308  2011/06/08  Lnspecified caprine -28.92 31.22 KC660257

species

N.R: not recorded; N.S: not sequenced (RT-PCR unsuccessful)
! Herpestid-associated variant of RABV (excluded from analysis)
2 Excluded from analysis (RT-PCR unsuccessful or coordinates not recorded)

© University of Pretoria

79



Epidemiological modeling of rabies

Additional figures and tables transmission pathways in dog

rabies endemic KwaZulu-Natal

South Africa

Table A.2: Pubhshgpr'g)?m g g?% 'b? aongeg%lgh? Sastern southern Africa

ransm|SS|on
Location S Afric ccession’ numbers
Lesotho Unknown 17 2000~ EU163385 — EU163401

Theodorus Bernardus M(Q)ﬂgztze
Canis lupBE i S 2000 «EU123929 — EU123934

MommbIane - fuitaris T
Unknown 1 2006 EU123930

Swaziland Canis lupus 1 2004 FJ842763
familiaris

Bos taurus 1 2005 DQ431338

Canis lupus 33 1988 -  AF303072, DQ431253, DQ431254,
familiaris 2007 DQ431257, DQ431262, DQ786033,
DQ841404 — DQ841422, GQ918293,
GQI18295, GQI18321, GQI83417,
Submitted in partial fulfillment of the requird@9®34ai&h&3Q983490, GQI83525,
deg.ree Magistgr Scientiag in t.he Faculty o%%gggg

Otocyon 7 1998 - AF177097, DQ431276 — DQ431278,
SupsiaTo fgt LH- Nel & Prof. Wolarottyn 431282, DQ431283, DQ431305

Canis lupus 72 1984 EU163289 — EU163291, EU163294,
familiarss 2007 EU163297, EU163298, EU163308,

Eastern Cape

Free state EU163310, EU163312 ~ EU163317,
EU163319, EU163322 — EU163325,
EU163327 — EU163333, EU163335 —
EU163341, EU163343 — EU163350,
EU163352 — EU163361, EU163363 —
EU163368, EU163372 — EU163380,
EU163382 — EU163384, GQO18282,
GQ983491, GQI83538
Caracal 1 2005 GQ918329
caracal
Otocyon 5 1991~ AF303059, DQ431289, DQ431291,
megalotis 2001  DQ431294, DQ431295
Unknown 2 1984  GQU83482, GQIS3510
Moumal Canis lupus 67  2008— AF177098, AF303069, EF686057,
bumatanga ¢ miliaris 1986  EF686058, EF686068, EF686071,

EF686072, EF686077 — EF686080,
EF686086, EF686096, EF686097,
EF686101 — EF686104, EF686106,
EF686113, EF686120, EF686125,
EF686131, EF686140, EF686146,
EF686151, FJ842721 — FJ842736,
FJ842739, FJ842740, FJ842742 —
FJ842762, GQI18318, GQI83495

Canis 1 1999 AF303063
mesomelas
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Table A.2 COD“’%P%% migsion pathways in dog

emi

Location rs%bdfﬁ eAr}:(rjI%g(!lﬁt K‘Nﬁz u IMEMBQ lnumbers

range

Bos taurus

21

2003~

DQ841424 — DQ841426, DQ841545,

KwaZulu Natal | heodorus Bernardus Moflentzek 660175, KC660181, KC660183,

Submitted in partial fulfillment of the req
degree Magister Scientiae in the Faculty of

e
Agricultural Sciences, Univer

sity of Pretoria

Supervisors: Prof. LH. Nel & Prof. W. Markotter
27 September 2013

uirements
f Natural

for

=K 660206, KC660218, KC660220,
KC660227, KC660254, KC660255,
K(C660266, KC660270, KC660320,
K(C660321, KC660325, KC660332,
KC660335, KC660349

Canis lupus
familiaris

378

1980 -
2011

AF079904, AF177100 — AF177102,
AF303081, AY605042, DQ841427 —
DQ841541, GQI18283, GQI18284,
GQI18286, GQI18287, GQI18289,
GQI18290, GQI18296, GQI18298,
GQI18301 — GQI18303, GQI18307,

Submitted in partial fulfillment of the requ%@grltgsfggtﬁe GQI18311, GQI18316,
degree Magister Scientiae in the Faculty of NRQi83hd, GQ918320, GQI18322,

Agricultural Sciences, University of Pretori@Q9183237 GQ918325 — GQI18328,

Supervisors: Prof. L.H. Nel & Prof. W. Mark«:)tte(r;}(Q

27 September 2013

918330, GQI83385, GQI83387,
(GQ983390, GQI83393, GQI83394,
GQI83397, GQIS3400 — GQIS3403,
GQI83410, GQI83413, GQI83415,
GQI83420, GQI83422, GQIS3425,
GQI83427 — GQI83430, GQI83434,
GQI83436 — GQI83438, GQI83440 —
GQI83442, GQI83444, GQI83447,
GQI83450, GQI83452, GQI83454,
GQI83457, GQI83458, GQIS3461,
GQI83465, GQIS3468, GQIS3469,
GQI83472 — GQI83474, GQIS3ATT,
GQI83480, GQI83486, GQIS34R9,
GQI83492, GQI83496, GQI83501 —
GQI83503, GQI83505, GQIS350S,
GQI83512, GQI83519, GQIS3520,
GQI83522, GQI83526, GQI83531 —
GQI83533, GQIS3540 — GQIS3542,
KC660160 — KC660174, KC660176 —
KC660180, KC660182, KC660184 —
KC660205, KC660207 — KC660217,
KC660219, KC660221 — KC660226,
KC660228 — KC660250, KC660252,
KC660256, KC660258, KC660260 —
KC660265, KC660267 — KC660269,
KC660271 — KC660319, KC660322 —
KC660324, KC660326 — KC660331,
KC660333, KC660336 — KC660348,
KC660350, KC660351

Felis catus

1

1999

GQI83527
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Epi
Table A.2 — COIltl‘thl%(l}] i858 ui‘)%Pﬁeiways in dog

Location

r jﬁs end_emiﬁt K‘Nﬁz UIMC&@BQ lnumbers
outh Africa range

KwaZulu Natal

Equus ferus 2 2003— AY605005, KC660251
Thendaryus Bernardus Mofjentze

Submitted in par
ister

. | degree Magi
O’UZS ariegscs

ent of the for
n the Faculty of Natural an

w93 DQS8A1403

Unspecified™ ™7 2003- DQ841542 — DQ841544, KC660253,

caprine 2011 KC660257, KC660293, KC660334
species

Unspecified 1 2010 KC660259

jackal

species

Unknown 11 1984— GQ918281, GQI18299, GQI18306,

2005 GQI18331, GQI83414, GQIV3464,
GQI83470, GQIS3493, GQIS351S,
Submitted in partial fulfillment of the requ(g@ggggﬁgglt,hGQ983535
d

degree Magister Scientiae in the Faculty of Natural an
= 5

Agricultural Sciences, University of Pretoria

Supervisors: Prof. L.H. Nel & Prof. W. Markotter
27 September 2013
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rabies endemic Kwa. atal,
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Figure A.1: Cases belonging to independent transmission trees (indicated by colour) and spatial
clusters (indicated by symbols) and completely unconnected cases (indicated by grey squares)
mapped onto a phylogeny of all G-L intergenic region sequences available for eastern southern
Africa. The colours of branches represent their most likely location of origin reconstructed using a
discrete diffusion model, as described in Chapter 2. Symbols and colours at the tips of the phylogeny
match those in Figure 3.8, with figure A representing results obtained under the conservative
specification of the transmission tree reconstruction algorithm and figure B representing results

obtained under the liberal specification.
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