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Abstract5

Recently, promising clinical advances have been made in the development of antimalarial drugs6

that block the parasite transmission and also cures the disease and has prophylactic effects, called7

transmission-blocking drugs (TBDs). The aim of this paper is to develop and analyze a population8

level compartmental model of human-mosquito interactions that takes into account an intervention9

using TBDs. We do this by extending the SEIRS-SEI type model to include a class of humans who10

are undergoing the treatment with TBDs and a class of those who are protected because of successful11

treatment. Before we proceed with an analysis of the model’s stability and bifurcation behaviours,12

we start by ensuring that the model is well-posed in a biologically feasible domain. Mathematical13

analysis indicates that the model exhibits a forward and backward bifurcation under certain condi-14

tions. Results from our analysis shows that the effect of treatment rate on reducing reproduction15

number depends on other key parameters such as the efficacy of the drug. The projections of the16

validated model show the benefits of using TBDs in malaria control in preventing new cases and17

reducing mortality. In particular, we find that treating 35% of the population of Sub-Saharan Africa18

with a 95% efficacious TBD from 2021 will result in approximately 82% reduction on the number of19

malaria deaths by 2035.20

Keywords: Transmission-blocking antimalarial drug, mathematical modeling, data fitting, treatment21

coverage, drug efficacy, bifurcation analysis, numeral simulation22

1 Introduction and Motivation23

Malaria is a vector-borne infectious disease caused by the replication of protozoan parasites of the genus24

Plasmodium inside red blood cells. It can be transmitted to vertebrates, including humans of all ages,25

by female mosquitoes of the genus Anopheles, when they feed on blood. Malaria is one of the most26

severe public health problems worldwide, being one of the leading causes of death in many developing27

countries, where young children and pregnant women are most affected [70, 69]. According to the28

WHO malaria report (2019) [70], there were an estimated 228 million cases of malaria worldwide in29

2018, resulting in around 405000 deaths. The WHO African Region carries a disproportionately high30

share of the global malaria burden with as much as 93% of malaria cases and 94% of malaria deaths31

recorded in Africa in 2018, [70].32

For almost a century, several strategies and methods have been developed, at both the population33

and cellular levels, in an effort to control malaria transmission and spread. These range from the34
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non-therapeutic prevention and control measures (such as insecticide treated bed nets, indoor resid-35

ual spraying and other vector control measures), to antimalarial drugs (for prophylaxis, treatment36

and transmission blockage) [21, 48, 71]. Nonetheless, as mentioned above, despite the efforts, malaria37

remains a major global health problem. One of the major challenges facing malaria control is the38

continuous emergence of resistance to the first line of antimalarial drugs and insecticides. Another im-39

portant problem is that most of the antimalarial drugs are not active against sexual stage P. falciparum40

parasites, called gametocytes, which are responsible for the spread of malaria from person to person41

via mosquitoes.42

Recent studies indicate that to achieve global eradication of malaria, it will be necessary to use43

interventions that block the transmission of the Plasmodium from humans to mosquitoes and back,44

[21]. One way of doing this is to directly target the parasite using transmission-blocking interventions45

(TBIs). These can be broadly classified as transmission-blocking drugs (TBDs) or transmission-blocking46

vaccines (TBVs), [21]. Both approaches intend to stop the transmission of gametocytes from humans47

to mosquitoes in one of the ways described below.48

For the treatment of uncomplicated malaria, WHO recommends the use of artemisinin-based drugs49

that have the capacity of acting against both asexual blood stage and the gametocyte stages of the50

parasite, [4, 9, 15, 71]. However, malaria parasites have showed resistance to the artemisinins, charac-51

terized by a reduced rate of parasite clearance and thus allowing for their partial transmission, hence52

more sophisticated drugs should be used. We note that each antimalarial drug has different attributes,53

including killing efficacy against the parasites, duration of effect, gametocytocidal activity, mosquito-54

cidal activity, liver-stage activity (especially, for Plasmodium vivax ), dosing schedule and toxicity, [58],55

according to which they can be classified, [6, 56]. For example, gametocidal antimalarial drugs (which56

form a large group of TBDs) are designed to inhibit the development of the sexual forms of the parasite57

in blood and block its transmission to mosquitoes, [61]. Thus, as indicated in [58], a key to the optimal58

drug design for malaria elimination and control is the integration of the results obtained from analysis59

of mathematical models for the human-mosquito population level transmission dynamics of malaria60

with those coming from the cellular-level pharmacokinetics and pharmacodynamic (PK/PD) models.61

In particular, the population level models can suggest the deployment strategy and quantify effective62

treatment coverage and endemicity-level.63

Over the past century, many population level malaria models with various levels of complexity,64

not considering, however, the TBDs, have been developed and analysed by many authors. The first65

compartmental differential equation models of malaria as a host-vector disease were developed by Ross66

in [55] and later Macdonald [42]. Their conclusions that the endemicity of malaria is most sensitive to67

the changes in the mosquito survival rate and that malaria can persist in if the mosquito population is68

sufficiently large, as well as the relation of the prevalence of infections to the so-called basic reproductive69

number, are still fundamental in malaria research. Several authors have extended the Ross-Macdonald70

model in various directions, see e.g. [3, 5, 16, 24, 46, 49, 67] and references therein. Recently, the71

climate change has become an important aspect in malaria modelling, see e.g. [26, 44, 49, 74]. Some72

other mathematical models include the age-structure, see e.g. [7, 25, 31], and the treatment using the73

usual antimalarial drugs [20, 47].74

As mentioned above, the paper considers special types of antimalarial drugs, called TBDs, that are75

designed to be administered to the humans, so that they either target the parasite within the human-76

host or during the parasite’s developmental stages within the mosquito after ingested during the blood77

meal. In general, according to [57, 66], TBDs can be classified as follows.78

(i) Drugs targeting the malaria parasite within the human-host. This category includes: (a)79

drugs killing asexual stages of the parasite so that their progression to gametocytes is stopped/reduced;80

(b) drugs reducing the commitment of asexual parasites to gametocytes within the human cycle;81

(c) drugs directly targeting immature and mature gametocytes within the human; (d) drugs82

providing chemo-prophylaxis by directly acting on sporozoites, hence halting the infection.83
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(ii) Drugs targeting the parasite in the vector. This category includes drugs that target the84

developmental stages (ingested gametocytes in the midgut of vector, male and female gametes,85

zygote, ookinete, oocyst and the sporozoites) of the parasite.86

(ii) Drugs targeting the vector itself. These are special drugs, known as endectocides [57, 66],87

that are administered to humans and intended to kill the mosquito when ingested at a blood88

meal.89

Commonly used antimalarial drugs such as primaquine and artemisinin have gametocidal activity90

for Plasmodium falciparum [9, 51]. Primaquine (PQ), methylene blue (MB) and atovaquone (ATQ) are91

clinically approved antimalarial that have transmission-blocking properties, [9, 21]. The gametocyto-92

cidal activity of compounds is known to differ, with most current artemisinin compounds having high93

efficacy against the early stages (stages I − IV ) of gametocyte, however, some compounds, including94

primaquine and tafenoquine, attack the later, mature, stage V , [58]. While these transmission-blocking95

properties of common drugs have been known for some time, it was realized that for eradication of96

malaria it was necessary to develop drugs specifically designed to completely block Plasmodium para-97

sites transmission, [4].98

There have been many promising clinical advances in the discovery of TBDs, see [4, 9, 21, 66], but99

to the authors’ knowledge, there have been few attempts to model the impact of TBDs on the malaria100

transmission rates and the spread of the disease at the population level, which depend strongly on the101

macroscopic variables such as the deployment strategy, treatment coverage, efficacy of the drugs used102

and the endemicity levels. We note the research by Bretscher et al. (2017), [12], where a mathematical103

model was used to estimate the transmission reduction that can be achieved by using drugs of varying104

chemo-prophylactic or transmission-blocking activity.105

The aim of this paper is to fill this gap by investigating the impact of the treatment with TBDs on106

malaria dynamics. To do so, we formulate a mathematical model for the human-mosquito population107

level transmission dynamics of malaria that considers a treatment using TBDs and provide its qualita-108

tive analysis. To get quantitative results, we fit the proposed model to the data from the Institute of109

Health Metrics and Evaluation (IHME)-Global Burden of Disease (GBD) for Sub-Saharan Africa, [54]110

by using the ”lmfit” package, which is a non-linear least-squares minimization and curve-fitting package111

in Python, [45]. We believe that our model can provide important mathematical and epidemiological112

insights into the effects of TBDs on the malaria transmission rates and, thanks to its flexibility, it113

can help in designing and implementation of the treatment in a best way for the disease control and114

elimination.115

The paper is organized as follows. In Section 2, we formulate the model and in Section 3 we present116

its mathematical analysis. In particular, in Subsection 3.3 we study the dependence of the control117

reproduction number on the treatment coverage rate and the efficacy of the TBD and in Subsection 3.5118

we carry out a rigorous study of the existence and the number of endemic equilibria and a possibility for119

occurrence of the backward bifurcation. The mathematical analysis and obtained results are validated120

by fitting the model into real data in Section 4.121

2 Model Formulation122

We use the standard deterministic malaria disease transmission model with an SEIRS structure for123

humans and an SEI structure for mosquitoes, as introduced in [16, 19, 46], augmented by the com-124

partments of individuals who are under treatment with TBDs and those are successfully treated and125

protected.126
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2.1 Model’s assumptions and variables127

The total human population Nh is divided into six classes. In addition to the standard susceptible Sh,128

exposed Eh, infectious Ih and naturally recovered with immunity Rh classes, we introduce two more129

classes, Th for individuals who undergo the treatment with TBDs and Ph for those who were successfully130

treated, cured and are protected, so that they are noninfectious. In short, the Rh class consists of those131

human individuals who recovered and are immunized due to natural (innate or adaptive) immunity132

but can be still infective to mosquitoes. On the other hand, the individuals in the Ph class have133

undergone the treatment with a TBD and are cured and protected; they do not transmit gametocytes134

to mosquitoes. At any time t, the total human population is Nh(t) = Sh(t) + Eh(t) + Ih(t) + Th(t) +135

Rh(t) + Ph(t).136

People enter the susceptible class either through birth (at a constant total birth rate Πh) or after137

recovering from the disease, at a per capita rate ρh. They are assumed to die naturally at a per capita138

rate µh or move to the exposed class if they are bitten by an infectious mosquito and the sporozoites are139

passed on to them. The rate of infections in the susceptible human population is assumed to be given by140

Λvh = βvhbIvSh/Nh, where b is the average mosquito biting rate and βvh is the probability that a bite141

by an infectious mosquito on a susceptible human leads to an infection. We assumed that the exposed142

mosquitoes do not transmit malaria to humans due to the parasite extrinsic incubation period which is143

temperature dependent and, e.g. for P. falciparum, ranges from 10 to 14 days. [41]. On the other hand,144

though the incubation period of malaria in humans in most cases varies from 7 to 30 days, the exposed145

individuals are infective to mosquitoes. As follows from [41], the gametocytes (the transmissible stage of146

Plasmodium), are produced by a small fraction of merozoites that differentiate into them upon entering147

the red blood cells, although gametocytes of P. vivax, P. ovale and P. malariae can also arise from148

emerging liver stage merozoites. This implies that, in the latter cases, the individuals also can transmit149

to mosquitoes during the pre-erythrocyte stage. Furthermore, the P. falciparum gametocytes may linger150

in peripheral blood up to several weeks after an asexual parasite infection has been cleared (whether151

by natural immunity or by drugs) [41] so that after certain period of time one may get a reinfection152

by other infectious mosquitoes bite, but one can still can transmit due to the previous infection. To153

include this possibility in our model and give it more flexibility, we introduced a parameter ζ ∈ [0, 1),.154

Exposed individuals either die at the rate µh or move to the infectious class at rate νh. Infectious155

individuals either die at a rate µh + δh, recover at a rate γh or start treatment with a TBD and move156

to the Th class (at a rate αh). Recovered individuals are assumed to die at a rate µh or gradually157

lose their immunity and move to the susceptible class at a rate ρh. Concerning people undergoing the158

treatment, they are assumed retain some lower level of infectiveness and can be successfully treated and159

move to the protected class at a rate ψ1(pe) (which is assumed to be increasing with the drug’s efficacy160

pe), move back to the infectious class Ih (at a rate qhψ2(pe), where ψ2 is assumed to be decreasing161

with pe), recover and move to Rh at rate (1 − qh)ψ2(pe), or die at the rate µh. Here, qh and 1 − qh162

are the probabilities where individuals in Th class move back to Ih class and Rh class, respectively.163

Individuals in the protected class Ph either die at the rate µh or lose their protection and move back164

to the susceptible class at a rate ϑ.165

The total Anopheles female mosquito population Nv is divided into three classes, susceptibles Sh,166

exposed Eh and infectious Ih. So, at time t, the total mosquito population is Nv(t) = Sv(t) + Ev(t) +167

Iv(t). Mosquitoes enter the susceptible class either through birth (at a constant total birth rate Πv).168

They are assumed to die naturally at a per capita rate µv or move to the exposed class, and the169

gametocytes passed on to the midgut of the mosquito after biting an infected human from the exposed,170

infectious, under treatment or recovered class. The rate of infection of a susceptible mosquito is assumed171

to be given by the standard incidence force of infection Λhv =
βhvb

Nh
(ζeEh + ζrRh + ζtTh + Ih), where172

βhv is the probability that a bite by a susceptible mosquito on an infected human leads to an infection173

of the mosquito. Here we introduce the relative infectivities, 0 ≤ ζe < ζr < ζt < 1, that account for the174

reduction in the transmission from, respectively, an exposed, recovered, treated human to susceptible175
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mosquito. Exposed mosquitoes either die at the rate µv or move to the infectious class at rate νv and176

infectious mosquitoes die at the rate µv. A pictorial representations of the compartments and flows are177

shown on Fig. 1.

Figure 1: Flow diagram showing the malaria transmission dynamics between human and mosquito
populations with a transmission-blocking drug treatment.

Variables Description Quasi-dimension

Sh susceptible humans H
Eh exposed humans H
Ih infected humans H
Th undergoing treatment humans H
Ph protected (successfully treated and noninfective) humans H
Rh recovered humans H
Sv susceptible mosquitoes V
Ev exposed mosquitoes V
Iv infectious mosquitoes V

Table 1: State variables, their description and corresponding quasi-dimension, where the dimension H
denotes the number of human-individuals in the population, and the dimension V the number (density)
of vectors in the female mosquito population.

178

2.2 Model Equations179

The mathematical model we study in this paper for the transmission dynamics of malaria with TBDs180

treatment is given by the following non-linear system of ODEs.181



6



dSh
dt

= Πh + ρhRh + ϑPh − ΛvhSh − µhSh,

dEh
dt

= ΛvhSh − (νh + µh)Eh,

dIh
dt

= νhEh + qhψ2(pe)Th − (δh + γh + αh + µh) Ih,

dTh
dt

= αhIh − ψ1(pe)Th − qhψ2(pe)Th − (1− qh)ψ2(pe)Th − µhTh,

dPh
dt

= ψ1(pe)Th − ϑPh − µhPh,

dRh
dt

= γhIh + (1− qh)ψ2(pe)Th − ρhRh − µhRh,

dSv
dt

= Πv − ΛhvSv − µvSv,

dEv
dt

= ΛhvSv − (νv + µv)Ev,

dIv
dt

= νvEv − µvIv,

, (1)

where Λvh and Λhv are the forces of infections from vector to human and from human to vector,
respectively. As mentioned before, they are given by

Λvh(Iv) =
βvhb

Nh
Iv, Λhv (Eh, Rh, Th, Ih) =

βhvb

Nh
(ζeEh + ζrRh + ζtTh + Ih) . (2)

The description of the parameters is given in Table 2.182

Adding the rates of change for humans and mosquitoes, respectively, gives

dNh

dt
= Πh − δhIh − µhNh and

dNv

dt
= Πv − µvNv. (3)

Note that (1) without the fourth and fifth equations, that is, without Th and Ph variables, is a standard183

SEIRS-SEI model studied by several authors, see e.g. [16, 19, 46].184

3 Mathematical Analysis185

In this section we present a mathematical analysis of the model and, in particular, we study its well-186

posedness, the existence of the equilibria, their stability and the bifurcation behaviour. We observe187

that since ψ1(pe) is the rate at which individuals successfully progress from Th to Ph, it should be188

an increasing function of the drug’s efficacy pe. On the other hand, ψ2(pe) is the rate at which in-189

dividuals move back to Ih from Th due to the failure of the drug and hence it should be a decreas-190

ing function of pe. Thus, in this work we use the simplest functions satisfying these requirements,191

ψ1(pe) = rhpe and ψ2(pe) = (1− pe)θh.192

3.1 Basic mathematical properties of the model193

We begin by ensuring that (1) is well-posed in a biologically feasible domain. Let

x(t) =
(
Sh(t), Eh(t), Ih(t), Th(t), Ph(t), Rh(t), Sv(t), Ev(t), Iv(t)

)
(4)
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Parameters Description Quasi-dimension

πh per capita constant recruitment rate of susceptible humans T−1

πv per capita constant recruitment rate of susceptible
mosquitoes

T−1

Πh constant total recruitment rate of susceptible humans HT−1

Πv constant total recruitment rate of susceptible vectors V T−1

βvh the probability of transmission from infectious vector
(mosquito) to susceptible humans during bite

dimensionless

βhv the probability of transmission from infectious humans to
susceptible vectors during bite

dimnsionless

b the average biting rate of mosquitoes on humans H(V T )−1

Λvh force of infection from infectious vectors to susceptible hu-
mans

T−1

Λvh force of infection from infectious humans to susceptible vec-
tors

T−1

νh constant progression rate of exposed humans to infected hu-
mans

T−1

αh constant rate of treatment of infected human with TBD T−1

ρh waning rate of immunity
γh natural recovery rate of infected humans by immune re-

sponse
T−1

pe drug efficacy: probability that the drug eventually clears
parasites

dimensionless

rh rate of individuals treated with TBDs progressing into pro-
phylaxis protection

T−1

ϑ rate of losing of prophylaxis protection to become suscepti-
bles

T−1

θh rate of slackening/ineffectiveness of TBDs leading to relapse
or natural recovery with a probability of qh or 1− qh, resp.

T−1

ωh = qhθh rate of slackening/ineffectiveness of TBDs leading to relapse T−1

σh = (1− qh)θh rate of slackening/ineffectiveness of TBDs leading to a nat-
ural recovery

T−1

ζe reduction of the infectivity of exposed humans to vectors Dimensionless
ζr reduction of the infectivity of recovered humans to vectors Dimensionless
ζt reduction of the infectivity of under treated humans to vec-

tors
Dimensionless

νv rate at which exposed mosquitoes become infectious T−1

µh natural death rate of humans T−1

µv natural death rate of mosquitoes T−1

Table 2: Parameters, their description and corresponding quasi-dimension.

denote its forward solution when it exists. Let n ∈ N. For x = (x1, . . . , xn), we use the notation x ≥ 0194

and x > 0 if xi ≥ 0, respectively, xi > 0 for all i = 1, . . . , n, and hence195

R≥0 = {x ∈ R : x ≥ 0} = [0,∞), R>0 = {x ∈ R : x > 0} = (0,∞),

Rn≥0 = {x ∈ Rn : x ≥ 0}, Rn>0 = {x ∈ Rn : x},

Rn∗≥0 = {x ∈ Rn≥0 : 0 < x1 + x2 + · · ·+ xn}.

(5)

Due to biological interpretation, the solutions to (1) are expected to be nonnegative if such are the
initial conditions. However, the RHS of (1) is not defined for Nh = 0 or Nv = 0 and even if we extended
the definition by setting it equal to zero in such a case, it would remain discontinuous and thus outside
the scope of standard analysis. Thus, though the case of initial conditions satisfying Nh(0) = Nv(0) = 0
is obviously tractable as it gives separately evolving disease free human and vector population, we focus
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on the interplay of nontrivial human and mosquito populations and thus assume that(
Sh(0), Eh(0), Ih(0), Th(0), Ph(0), Rh(0)

)
∈ R6∗

≥0,
(
Sv(0), Ev(0), Iv(0)

)
∈ R3∗

≥0 (6)

196

Theorem 1 (Solvability, positivity and boundedness of solution) 1. System (1) with initial197

condition satisfying (6) has a unique global in time solution in R6∗
≥0 × R3∗

≥0.198

2. The biologically feasible region Ω = Ωh × Ωv ⊆ R6∗
≥0 × R3∗

≥0, where

Ωh =
{

(Sh, Eh, Ih, Th, Ph, Rh) ∈ R6∗
≥0 : 0 < Sh + Eh + Ih + Th + Ph +Rh ≤

Πh

µh

}
, (7)

Ωv =
{

(Sv, Ev, Iv) ∈ R3∗
≥0 : 0 < Sv + Ev + Iv ≤

Πv

µv

}
(8)

is positively invariant and attracting with respect to system (1).199

Proof : System (1) can be written as

x′ = f(x), x(0) = x0, (9)

where x is defined by (4) with the corresponding initial condition x0 and f is the vector valued200

function representing the right hand side of the system. Since x0 ∈ R6∗
≥0 × R3∗

≥0, Nh(0) 6= 0 and201

Nv(0) 6= 0 and the right hand side of (1) is well defined at t = 0. Further, f ∈ C1(U), where202

U = {x ∈ R9, x1 + . . . x6 > 0 and x7 + x8 + x9 > 0} is an open set and thus, for any x0 ∈ U , (9) has a203

unique solution x : [0, τ)→ U on some (maximum) interval of existence [0, τ), where τ > 0 depends on204

the initial condition.205

Next we observe that for all i, fi(x) ≥ 0 whenever x ≥ 0 satisfies xi = 0 and thus the assumptions206

of [59, Proposition A. 17] are satisfied yielding that any solution
(
Sh, Eh, Ih, Th, Ph, Rh, Sv, Ev, Iv

)T
of207

system (1) with initial conditions (6) remains non-negative in the interval of its existence [0, τ).208

Further, adding the first six equations of (1) and using the nonnegativity of Ih and Nh, we get

Πh − (µh + δh)Nh ≤
dNh(t)

dt
≤ Πh − µhNh (10)

on [0, τ) and the comparison theorem, [8, 32], yields

e−(µh+δh)t
(
Nh(0)− Πh

µh + δh

)
+

Πh

µh + δh
≤ Nh(t) ≤ Πh

µh
+

(
Nh(0)− Πh

µh

)
e−µht. (11)

Similarly, adding the equations for the mosquito population and solving the resulting equation gives

Nv(t) =
Πv

µv
+
(
Nv(0)− Πv

µv

)
e−µvt (12)

on [0, τ). Hence, Nh(t) and Nv(t) are bounded from above on [0, τ). Moreover, using Nh(0) > 0 and
Nv(0) > 0, by continuity, Nh(t) > 0 and Nv(t) > 0 on [0, τ ]. Thus, there are constants 0 < c ≤ C such
that

c ≤ Sh(t) + Eh(t) + Ih(t) + Th(t) + Ph(t) +Rh(t) + Sv(t) + Ev(t) + Iv(t) ≤ C, t ∈ [0, τ),

which, together with the nonnegativity of each summand, shows that the solution is in a compact subset209

of U for all t ∈ [0, τ), Thus, by [52, Corollary 2, Section 2.4], τ = ∞, that is, the solution is global in210

time.211
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Finally, by taking the limits as t→∞ in (11) and (12), we have

lim
t→∞

supNh(t) ≤ Πh

µh
and lim

t→∞
supNv(t) =

Πv

µv
.

In particular, Nh(t) ≤ max
{
Nh(0), Πh

µh

}
and Nv(t) ≤ max

{
Nv(0), Πv

µv

}
for all t ≥ 0. This establishes212

the positive invariance of the set Ω. On the other hand, if Nh(0) > Πh
µh

, then Nh(t) either decreases213

below Πh
µh

(and thus solution enters Ω in a finite time), or it approaches Πh
µh

as t → ∞. Also, Nv(t)214

converges to Πv
µv

as t→∞. Summarizing, the set Ω is positively invariant and attracts all solutions to215

system (1) emanating from R9∗
≥0. �216

Next, we analyze the malaria model under TBDs treatment, that is, system (1). We begin with217

determining its disease-free equilibrium (DFE) and the corresponding control reproduction number.218

3.2 Disease-free steady equilibrium and control reproduction number219

System (1) has a disease free equilibrium point given by

x∗0 =

(
Πh

µh
, 0, 0, 0, 0, 0,

Πv

µv
, 0, 0

)
.

Using the the next-generation matrix method based on the approach and notation used in [22, 64], see
Appendix 5, we calculate the control reproduction number, RT for (1). It is given by

R2
T = R2

0ξ (αh) , (13)

where R0 is the basic reproduction number calculated, when the treatment rate αh is set to zero in (1)
(that is, in the model without TBDs treatment), given by

R0 =

√√√√(γhνhζr + µhνh + νhρh + (Γ4µh + Γ4ρh)ζe

)
Γ6bβvhνv

Γ4(µh + νh)(µh + ρh)(µv + νv)µv
(14)

and

ξ (αh) =
Aαh + 1

Bαh + 1

with

A =
ζe(µh + ρh)Γ5 + νh

(
(µh + ρh)ζt + Γ2ζr

)
(Γ5 + Γ1)

(
(Γ4ζe + νh)(µh + ρh) + νhγhζr

) and B =
Γ5

Γ4(Γ5 + Γ1)
, (15)

where220

ωh := qhθh, σh := (1− qh)θh, Γ1 := (1− pe)ωh, Γ2 := (1− pe)σh, Γ3 := perh,

Γ4 := δh + γh + µh, Γ5 := Γ2 + Γ3 + µh, Γ6 =
Πvbβhvµh

Πhµv
.

(16)

The condition RT < 1 is necessary condition to prove the DFE of the system is locally asymptotically221

stable, [35, 36, 38, 64]. Hence, we have the following theorem.222

Theorem 2 (Local stability of DFE) The disease-free steady state x∗0 of system (1) is locally asymp-223

totically stable if RT < 1, but unstable if RT > 1.224

Proof : The proof follows the lines of [64, Theorem 2] and [65, Lemma 2], see, Appendix 5. It can also225

be proved by determining condition for which all eigenvalues of the model at the DFE have negative226

real parts, see for e.g. [10, 11, 14, 37].227
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3.3 Variation of RT with respect to αh228

While one could expect RT to be a decreasing function of the treatment rate αh, this is not always the229

case. In fact, since individuals in the treated class Th are also infectious, a rapid increase of this class230

is not always beneficial. Therefore, the effect of the treatment rate αh on RT will depend on other231

characteristics of the drug, such as pe, rh and θh etc. This is reflected in the following proposition.232

Proposition 1 Define

C1 := (θh (1− qh) (ρh + µh − (µh + δh) ζr)− (γhζr + µh + ρh) rh) νh,

C2 := νh

(
(µh + γh + δh) (µh + ρh) ζt + (µh + δh) ζrθh (1− qh)

− µh (θh + ρh) (1− qh)− µhζrγh − µh2 − θhρh
)
,

C3 := (µh + δh + γh)
(

(µh + ρh + δh + γh)µhζe + (δh + γh) ζeρh

+ (µh + ρh + γhζr) νh

)
.

(17)

RT is a strictly decreasing function of αh if and only if C1pe + C2 ≤ 0. In particular,233

1. if C1 < 0 and C2 ≤ 0, then RT is a decreasing function of αh for all values of pe,234

2. if C1 < 0 and C2 ≥ 0, then RT is a decreasing function of αh if and only if pe ∈ [min{1,−C2
C1
}, 1],235

3. if C1 > 0 and C2 ≤ 0, then RT is a decreasing function of αh for all values of pe ∈ [0,min{1,−C2
C1
}],236

4. if C1 > 0 and C2 ≥ 0, then RT is an increasing function of αh for all values of pe ∈ [0, 1].237

Proof : By calculating the derivative of RT with respect to αh we obtain that RT is a decreasing
function of αh if and only if A−B ≤ 0, where

A−B =
C1pe + C2

C3 (perh + µh + θh(1− pe))
.

Since 0 ≤ pe ≤ 1 and µh > 0, perh +µh + θh(1− pe) > 0. Also, clearly C3 > 0. Hence the sign of A−B238

is equal to the sign of C1pe + C2. Thus, we discuss the following cases:239

1. Let C1 < 0 and C2 ≤ 0. Then C1pe + C2 ≤ 0 for all values of pe ∈ [0, 1]. Therefore, RT is a240

decreasing function of αh for all values of pe ∈ [0, 1].241

2. Let C1 < 0 and C2 ≥ 0. Then solving C1pe + C2 ≤ 0 for pe provides pe ≥ −C2
C1
≥ 0. However, pe242

is a probability, so C1pe + C2 ≤ 0 is satisfied only if pe ∈ [min{1,−C2
C1
}, 1].243

3. Let C1 > 0 and C2 ≤ 0. Then solving C1pe + C2 ≤ 0 for pe provides pe ≤ −C2
C1

. Since pe ∈ [0, 1],244

then C1pe + C2 ≤ 0 if pe ∈ [0,min{−C2
C1
, 1}].245

4. If C1 > 0 and C2 ≥ 0, then C1pe + C2 ≥ 0 for pe ∈ [0, 1] implying that RT is increasing with αh246

for all values of pe in [0, 1]. �247

We denote the number min{1,−C2
C1
} by pce and define it to be the critical efficacy of the TBD. Note248

that the treatment with TBDs is said to be a perfect treatment if it cures malaria 100% and blocks249

the formation or maturation of gametocytes, so that the malaria parasites will not be transmitted. So,250

given pe ∈ [0, 1], the TBD is a perfect treatment if pe = 1 and totally ineffective if pe = 0.251

In the following remark, we determine the sign of C1 in terms of the drug’s parameters (the same252

can be done for C2).253
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Remark 1 In Proposition 1, we can observe that254

1. If ρh + µh < (µh + δh) ζr, then C1 < 0.255

2. If ρh + µh > (µh + δh) ζr, and256

(a) rh >
θh (1− qh) (ρh + µh − (µh + δh) ζr)

γhζr + µh + ρh
, then C1 < 0.257

(b) rh <
θh (1− qh) (ρh + µh − (µh + δh) ζr)

γhζr + µh + ρh
, then C1 > 0.258

To investigate graphically how RT varies with αh, we used parameter values collected from previously259

existing literature, which are summarized in Table 3. Using the parameter values to be the baseline260

values indicated in Table 3 except that we set βvh = 0.33, βhv = 0.833 and b = 4.4, in Subfigure 2a we261

plotted RT (αh) as the treatment rate αh increases, while in Subfigure 2b we plotted RT (αh, pe) when262

both the treatment rate αh and efficacy of the TBD, pe, increase in their non-negative domain. In this263

case, we get approximately C1 = −8.33 × 10−5 < 0 and C2 = −7.42 × 10−5 < 0 with −C2
C1

= −0.859.264

Hence, we have the first case in Proposition 1. In Subfigure 2a we fixed pe = 0.97 and let αh vary265

from 0 to 1. In this case, the value of RT = RT (αh) decreases asymptotically to R0
A
B as αh increases266

and it approaches R0 when αh approaches 0; in particular, RT (0) = R0. On Subfigure 2b, RT (αh, pe)267

decreases faster since both pe and αh are increasing simultaneously.
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At αh = 0, we have R0

For large αh,
 we

have R0√
A/B

Plot of RT(αh) vs. αh

(a) Plot of RT (αh) vs. αh
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(b) Plot of RT (αh, pe) vs αh, pe

Figure 2: A 2−D and 3−D plots of RT (αh, pe) given in equation (13) when both the treatment rate,
αh, and efficiency rate of pe of TBDs increase in their non-negative domain. To plot this figure, we
used the baseline values of the parameters indicated in Table 3, except for βvh = 0.33, βhv = 0.833 and
b = 4.4. These parameter values yield the first case in Proposition 1, that is, C1 < 0 and C2 < 0. In
Subfigure 2a, we fixed pe = 0.97 and plotted RT as αh ranges from 0 to 1, and in Subfigure 2b, we let

both αh and pe to vary. In this case R0

√
A
B ≈ 0.598 and R0 ≈ 5.01.

268

We have observed that the control parameters, αh, pe, rh and θh play into the variations of RT .269

So, in the next subsection, we investigate its normalized sensitivity analysis.270

3.4 Sensitivity analysis271

In epidemiological modelling, studying the sensitivity of the reproduction number to variations in the
model’s key parameters is important for choosing the optimal intervention, see [68]. In this section,
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Parameter Range of Possible Values Baseline Value Used Dim Reference

Πh [2.7× 10−5, 100] 5 H × day−1 assumed
Πv [0.002, 200] 10 V × day−1 assumed
βvh [0.01, 1] 0.022 1 [17]
βhv [0.072, 1] 0.24 1 [17]
b [0.1, 30] 0.33 H × V −1 × day−1 [17]
νh [0.067, 0.20] 0.1 day−1 [17]
δh [1× 10−5, 5× 10−2] 1.8× 10−3 day−1 [29, 12, 17]
ϑ [0.0, 0.1] 0.05 day−1 [12, 29]
ρh [5× 10−4, 1.1× 10−2] 0.005 day−1 [16]
γh [3.5× 10−5, 0.2]] 3.5× 10−3 day−1 [12, 17]
αh [0, 1] 0.75 day−1 estimated
pe [0, 1] 0.97 1 [12, 29]
rh [0, 0.2] 0.2 day−1 [12]
qh [0, 1] 0.6 1 assumed
θh [0.0, 0.2] 0.15 day−1 estimated

σh = (1− qh)θh [0.0, 0.2] 0.06 day−1 [12]
ωh [0.0, 0.2] 0.09 day−1 estimated
ζe [0.00001, 1] 0.001 1 assumed
ζr [0.005, 1] 0.05 1 assumed
ζt [0.02, 1] 0.08 1 assumed
νv [0.005, 0.33] 0.08 day−1 [12, 17]
µh [2.74× 10−5, 0.033] 4.5× 10−5 day−1 [17, 46]
µv [0.03302, 0.1] 0.0477 day−1 [17, 46]

Table 3: Parameters, their ranges and baseline values used for this study, dimension and references.
Several of the ranges for the parameter values are directly taken from [17], where they used data for
the high and low transmission areas. Other parameter ranges are adapted from [12, 29] and some are
estimated for the purpose of this study.

we investigate the normalized local sensitivity (or elasticity index) of the control reproduction number
RT given in (13) to changes of the parameters of the model. Specifically, we are interested in the
parameters related to the TBD; that is αh, pe, rh, σh, ωhand ζt, where σh = (1−qh)θh and ωh = qhθh.
The normalized local (forward) sensitivity index of the output RT to a parameter p, denoted by ΨRT

p ,
is given, [62, 68, 75], by

ΨRT
p =

p

RT
∂RT
∂p

.

We did not include the analytic expressions of the sensitivity indices since the expression forRT involves272

a square root and its derivatives with respect to the parameters are rather long.273

The normalized local sensitivity coefficients given in Table 4 are dimensionless and they show the274

relative changes of RT with respect to a selected parameter p. More specifically, if ΨRT
p = z, then a 1%275

increase in the parameter p results in a z% increase if z > 0 (decrease if z < 0) in RT . For example, a276

10% increase in the efficacy of the TBD pe results in a 10.3% reduction in RT , when other parameters277

are fixed as in Table 3. So, a highly efficient transmission-blocking antimalarial drug has the potential278

to reduce transmission of malaria.279

Among the parameters appearing in the considered model, RT is most sensitive to rh, the rate at280

which treated individuals become protected. The next most influential parameter is the efficacy of the281

transmission-blocking drug pe and then the treatment coverage rate αh. RT is least sensitive to ωh, the282

rate at which the TBD wanes, leading to reinfection.283
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Para. (p) short description Sensitivity Index

pe drug efficacy: probability that the drug eventually clears
parasites

−1.03

αh treatment rate of infected humans with TBDs −0.363
rh rate at which treated individuals with TBDs to successfully

progress into prophylaxis protection
−0.135

ζt reduced infectivity of humans under treatment to
mosquitoes

+0.107

σh rate of slackening/ineffectiveness of TBDs leading recovery
due to immunity

+0.023

ωh rate of slackening/ineffectiveness of TBDs leading to rein-
fection

+0.0049

Table 4: Forward local sensitivity indices of the reproduction number the malaria model with treatment
via TBD. We used the baseline values from Table 3 except that we set βvh = 0.33, βhv = 0.833 and
b = 4.4. These parameter values yield the first case in Proposition 1, that is C1 < 0 and C2 < 0..

3.5 Existence of endemic equilibrium points and bifurcation analysis284

In this section we find the equilibria of the model, analyse their stability and, in particular, determine285

whether the model (1) exhibits a backward bifurcation the existence of which has important implications286

for the disease control and management.287

To determine endemic equilibria, (S∗h, E
∗
h, I
∗
h, T

∗
h , P

∗
h , R

∗
h, S

∗
v , E

∗
v , I
∗
v ), we solve the algebraic equa-

tions by letting the left hand side of system (1) to zero. So, from the first six equations for human
compartments we obtain:

T ∗h =
αh

(Γ5 + Γ1)
I∗h, P ∗h =

αhΓ3

(ϑ+ µh)(Γ5 + Γ1)
I∗h, R∗h =

(γh(Γ5 + Γ1) + Γ2αh)

(ρh + µh)(Γ5 + Γ1)
I∗h, (18)

E∗h =
Γ5(αh + Γ4)

νh(Γ5 + Γ1)
I∗h, Λ∗vhS

∗
h =

Γ5(νh + µh)(αh + Γ4)

νh(Γ5 + Γ1)
I∗h, (19)

where Λ∗vh is the force of infections of humans at the equilibrium point, given by

Λ∗vh = βvhb
I∗v
N∗h

. (20)

Observe that Λ∗vh = 0 if and only if I∗v = 0. From the second equation of (19), either Λ∗vh = 0
which implies that I∗h = 0, and hence we obtain the DFE, or Λ∗vh 6= 0, implying I∗h 6= 0. Moreover,

from the second equation of (19) and using the expression of Λ∗vh in (20), we obtain βvhb
I∗v
N∗h

S∗h =

Γ5(νh+µh)(αh+Γ4)
νh(Γ5+Γ1) I∗h. Thus I∗v 6= 0 yields S∗h =

Γ5(νh+µh)(αh+Γ4)N∗
h

νh(Γ5+Γ1)βvhbI∗v
. From (3) we see that the equilibria for

the total populations are

N∗h =
Πh − δhI∗h

µh
and N∗v =

Πv

µv
.

Hence, an endemic equilibrium point exists if Ih lies between 0 < I∗h <
Πh
δh
.288

Next, from the three equations for the mosquito population in (1) at equilibrium we obtain

S∗v =
Πv

Λ∗hv + µv
, E∗v =

Λ∗hv
νv + µv

S∗v , I∗v =
νv
µv
E∗v =

νv
µv(νv + µv)

Λ∗hvS
∗
v . (21a)

Hence, we have

I∗v =
νvΠv

µv(νv + µv)

Λ∗hv
Λ∗hv + µv

, (21b)
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where Λ∗hv is the force of infections of mosquitoes at the equilibrium point, given by

Λ∗hv = βhvb
ζeE

∗
h + ζtT

∗
h + ζrR

∗
h + I∗h

N∗h
= C0

I∗h
N∗h

, (22)

so that I∗v = K0C0
I∗h

C0I∗h + µvN∗h
, where K0 and C0 are given in Appendix. Now, substituting (21b)

into (20), we get

Λ∗vhΛ∗hvµv(νv + µv)N
∗
h + Λ∗vhν

2
v (νv + µv)N

∗
h − βvhbνvΠvΛ

∗
hv = 0 (23)

and, after long computations, we get Λ∗hv =
Chvφ8Λ∗vh
φ1 + φ7Λ∗vh

. Hence, (23) becomes

a0Λ∗2vh + a1Λ∗vh + a2 = 0, (24)

where

a0 = µvK7φ7(Chvφ8 + µvφ7), (25)

a1 = Chvφ8µvK7φ1 + 2φ1φ2µ
2
vK7 + CvhνvΠvChvφ8(D01 −D00)

=
µ2
vK7φ

2
1

µh

(Chvφ8µvK7φ1 + 2φ1φ2µ
2
vK7 + CvhνvΠvChvφ8D01

µ2
vK7φ2

1

−R2
T

)
, (26)

a2 = µ2
vK7φ

2
1 − CvhνvΠvChvφ8D02 = µ2

vK7φ
2
1

(
1−R2

T

)
, (27)

where K1, · · · ,K7, φ1, · · · , φ8 and D00, D01 D02 are positive quantities given in Appendix. Here, the289

expression for R2
T from (13) can be written as R2

T =
CvhνvΠvChvφ8D02

µ2
vK7φ2

1

.290

By using the properties of roots of a quadratic equation in (24), we summarize the existence and
the number of EE point(s) scenarios. We use the approach introduced in [50]. For this, we rewrite (24),
as

Λ∗2vh + b(K −R2
T )Λ∗vh + c(1−R2

T ) = 0, (28)

where

b =
µ2
vK7φ

2
1

µhµvK7φ7(Chvφ8 + µvφ7)
, c =

µ2
vK7φ

2
1

µvK7φ7(Chvφ8 + µvφ7)
,

K =
Chvφ8µvK7φ1 + 2φ1φ2µ

2
vK7 + CvhνvΠvChvφ8D01

µ2
vK7φ2

1

.

Clearly, b > 0, C > 0 and K > 0. Solving this quadratic equation for Λvh yields

Λvh =
−b(K −R2

T )±
√
b2(K −R2

T )2 − 4c(1−R2
T )

2
,

provided that this exists as a non-negative real number. We note that the equilibrium points in (??)291

are written in terms of I∗h, and thus, to obtain the endemic equilibria once we solve (24) for Λ∗vh, we292

can obtain I∗h.293

Now to investigate for non negative roots of (24), let us denote its discriminant by

∆(R2
T ) := b2(K −R2

T )2 − 4c(1−R2
T ) = b2R4

T + (4c− 2kb2)R2
T + b2k2 − 4c.

We require that ∆(R2
T ) ≥ 0, otherwise the quadratic equation (28) does not have real roots, and hence294

there is no endemic equilibrium for such values of R2
T .295
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Hence, solving ∆(R2
T ) = 0 yields

RT1 =

√
Kb2 − 2c− 2

√
b2c(1−K) + c2

√
2b

, RT2 =

√
Kb2 − 2c+ 2

√
b2c(1−K) + c2

√
2b

, (29)

provided that they exist as real roots. Recalling that 0 ≤ R2
T < 1 if and only if 0 ≤ RT < 1, we have296

the following theorem.297

Theorem 3 (1) If RT > 1, then equation (28) has one positive root and thus model (1) has one EE298

and a DFE (which always exists).299

(2) If K ≥ 1, then equation (28) exhibits a forward bifurcation, that is, it has300

(i) no positive roots if 0 ≤ RT ≤ 1, in which case, (1) has only a DFE,301

(ii) a unique positive root if RT > 1, in which case, (1) has one EE and a DFE.302

(3) If 0 < K < 1, then 0 < RT2 < 1 and equation (28) exhibits backward bifurcation, that is, (28) has303

(i) no positive roots if 0 ≤ RT < RT2 , and (1) has only a DFE,304

(ii) one double positive root if RT = RT2 , and (1) has one EE and a DFE,305

(iii) two positive real roots if RT2 < RT < 1, and (1) has two EEs and a DFE,306

(iv) a unique positive root if RT ≥ 1 so that, (1) has one EE and a DFE.307

Proof : The proof follows similar steps to the proof of [50, page 3] for the case b > 0, c > 0 and K > 0.308

We note here that the existence of positive endemic equilibrium point(s), when RT < 1 for our model
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Figure 3: Backward bifurcation diagram showing the cases considered in Theorem 3. We used the
baseline parameter values in Table 3 and we set pe = 0.75, ζe = 0.01, ζr = 0.05, ζt = 0.08, b = b = 2.0,
and we obtained RT = 0.971 and RT2 ≈ 0.8689 so that RT2 < RT < 1, which shows the existence of
backward bifurcation [30, 53].

309

can be also shown using the method applied in [34].310

The main reason to investigate the occurrence of backward bifurcations is that if it occurs in a model,311

then the usual condition RT < 1 is not sufficient to completely control the transmission of the disease312

and RT should be reduced further, below another threshold, to ensure the eradication of the disease.313

Thus, understanding the reasons a backward bifurcation and finding possible ways of preventing it is314

of utmost importance, [30, 34, 53].315
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Remark 2 From the bifurcation theorem (Theorem 3), we see that a TBD is capable of eliminating
malaria infection from the population if and only if RT < R#, where

R# =

{
1 if K > 1 (forward bifurcation)
RT2 if K < 1 (backward bifurcation)

.

On the other hand, we have RT < R# if and only if
R2

0(Aαh+1)
Bαh+1 < R#2, that is,

(R2
0A−BR#2)αh < (R#2 −R2

0),

where A and B are defined in (15). Hence, we discuss the following cases.316

1. If R2
0A−BR#2 > 0, then RT < R# if and only if αh <

R#2 −R2
0

R2
0A−BR#2

.317

2. If R2
0A − BR#2 < 0, then RT < R# if and only if αh >

R#2 −R2
0

R2
0A−BR#2

. Note that the sign of318

R# −R0 plays a role here.319

Remark 3 We have shown numerically that both the above conditions can happen (at least mathemat-
ically). However, for epidemiological interpretations (for realistic parameter values of our model), we
consider only the condition R2

0A−BR#2 < 0. In such a case, RT < R# if and only if

αh > α#
h :=

R#2 −R2
0

R2
0A−BR#2

=


1−R2

0

R2
0A−B

if K > 1 (forward bifurcation)

RT2 −R2
0

R2
0A−BRT2

if K < 1 (backward bifurcation)

,

where A and B are given in Equations (15), and RT2 is given in Equation (29).320

This equation implies that in clinical trials, for any efficacious transmission-blocking antimalarial drug321

to effectively control malaria transmission, we require αh > α#
h . We note that K is also a function of322

αh. So the formula above should be understood as follows. For a given αh we determine K and on this323

basis we vary other parameters to make α#
h smaller than αh.324

We see that α#
h is the critical treatment coverage rate, which is the minimum coverage rate value325

above which the TBD is capable of eradicating malaria infection from the human population and is326

able to block transmission of malaria parasites, assuming that the drug is efficacious. Note that α#
h is327

obtained when RT = R#.328

Particularly, when K > 1, (no backward bifurcation), that is, when R# = 1, the disease will be
eliminated if and only if

αh > αch =
1−R2

0

R2
0A−B

.

Next we will investigate how α#
h changes with respect to pe when K > 1, using the parameter values329

in Table 3. Figure 4 shows the graph of the critical value α#
h = αch(pe) =

1−R2
0

R2
0A(pe)−B(pe)

as pe ranges330

between 0 and 1. We can see from Figure 4 that when pe = 95%, the minimum treatment coverage rate331

αch is approximately 39%. However, when pe is 55%, we observe that the minimum coverage rate jumps332

to 43%.333
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Figure 4: A plot of αch(pe) as a function of the efficiency rate pe. To plot this figure, we used the
parameter values to be the baseline values indicated in Table 3 except that we changed b = 4.48 = b
and µh = 4.5× 10−4. For these set of parameter values, A0 −B0 < 1.

Remark 4 We note that the mathematical analysis is presented here just to illustrate basic local prop-334

erties of the model. The main aim of the paper is to introduce a model providing a mathematical335

framework for studying population effects of transmission-blocking drugs and providing support for cur-336

rent biochemical research, [1, 9, 15, 21, 61, 57, 66]. Since mathematically the model is similar to other337

epidemiological models such as discussed [2, 10, 11, 14, 13, 19, 37, 40, 65], further stability results338

concerning the disease free equilibrium can be studied using methods developed in [35] or [10, 14]. Nev-339

ertheless, as we already showed the existence of an endemic equilibrium when RT < 1, the DFE cannot340

by globally asymptotically stable in this case. Similarly, the stability of endemic equilibrium which occurs341

when RT > 1 can be studied using the methods of [10, 11, 37]. However, due to the large size of the342

model, the resulting conditions would be cumbersome and not that informative.343

4 Data fitting and parameter values estimation344

In order to calibrate mathematical models, researchers require time series data that describe changes345

in one or more states of the studied system and use them to fit the model to observations so that its346

solutions can be used to predict the behaviour of the real system in situations for which experimental347

data are not available. Model fitting involves parameter estimation, that is, identification of the pa-348

rameter values that best account for an existing set of data, and then fit the solution curves of the state349

variables in the model. It also provides statistical tests for parameters [23]. In this section, we present350

curve fitting and provide parameters estimations by fitting data into the model given in (1).351

4.1 Data description352

The World Health Organization (WHO)-Global Health Observatory (GHO) and the Institute of Health353

Metrics and Evaluation (IHME)-Global Burden of Disease (GBD), estimate the number of malaria354

deaths and cases every year and the corresponding sets of data can be obtained from the WHO-GHO,355

[72], and the IHME-GBD, [33], web-sites. These estimated data for number of deaths and cases are356

are done per country and malaria regions. As we mentioned in Introduction, some of the commonly357

used antimalarial drugs block malaria transmission with certain efficacy. Thus, we fit the full model (1)358
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with a TBD treatment, using the data from IHME-GBD for the estimated number of malaria caused359

deaths in the years 1998 − 2017 for Sub-Saharan Africa as a region (these data are also summarized360

in the website of “our world in data” [54]). Hence, we used initial data to be the population sizes of361

Sub-Saharan Africa in t0 = 1998. That is, Sh(t0) = 6 × 108, [63, 73], Eh(t0) = 3.7 × 108 assumed,362

Ih(t0) = 2.2 × 106, [33, 54], δhIh(t0) = 696652, [33, 54], Th(t0) = Ph(t0) = 0, Sv(t0) = 5 × 106, and363

Ev(t0) = 2 × 105, Iv(t0) = 1 × 105, all assumed. We assume the transmission-blocking efficacy pe364

of standard drugs in this period was 0.55 and the introduction of modern TBDs is accounted for by365

increasing pe after 2017.366

4.2 Curve fitting and parameter values estimation367

In order to fit and estimate the parameters of system (1), we used the ”lmfit” which is a non-linear
least-squares minimization and curve-fitting package in Python programming language. As it is directly
mentioned in [45], initially inspired by (and named after) the Levenberg-Marquardt method, ”lmfit”
provides a high-level interface to non-linear optimization and curve fitting problems for Python. It
builds on and extends many of the optimization methods of scipy.optimize. We preferred to use ”lmfit”
since it provides a number of useful enhancements to data fitting problems such as the ease of changing
fitting algorithms without changing the objective function, improved estimation of confidence intervals,
improved curve-fitting and many pre-built models for common line shapes, [45]. We note here that for
many data fitting processes, in order to do a non-linear least-squares fit of a model to data, the main
task is to write an objective function that takes the values of the fitting variables and calculates an
array of values that are to be minimized, typically in the least-squares sense, and the objective function
should return an array of (data-model), perhaps scaled by some weighting factor, ε, such as the inverse
of the uncertainty in the data. For such a problem, unlike to a traditional non-linear fit, the chi-square
χ2 statistic is often defined as [45]:

χ2 =
n−1∑
i=0

[
ymeasti − ymodelti

]2
ε2i

,

where ymeasti is the set of measured data at time point ti, y
model
ti is the solution of the model at time ti.368

Most often εi = 1 for all i = 1, 2. · · · , n− 1.369

We first write (1) as
ẏ = f (t,y,θ) , y(t0) = y0, (30)

where, y = (y0, · · · , y8) represents the vector of the model variables , f = (f0, f2, · · · , f8)T is vector of
right side functions and θ is vector of unknown of parameters of the model. The main procedure is to

estimate model parameters by searching for the vector of parameters θ̃ =
(
θ̃1, θ̃2, · · · , θ̃m

)
, where m is

the number of model parameters, that minimizes the sum of squared differences between the observed
(measured) data and the corresponding model solution [18], given as

θ̃ = arg min

n−1∑
i=0

(
ymeasti − ymodelti

)2
,

subject to system (30). To get the best fit we use the temporal variation of the residuals given by

res(ti) = f(ti, y
meas
ti ,θ)− ymeasti .

For the purpose of data analysis, we used inferential qualitative data analysis methods which show370

correlations, regression and analysis of covariance to generalize results and predictions. Our algorithm371

provided the ”Fit Statistics” such as chi-square, reduced chi-square, bayesian info criteria, akaike info372

criteria and correlations. However, we did not present the values as they are not important to our373

objective here. A fitted curve is shown on Figure 5. Using the algorithm used to obtain the fitted374

curve, we estimates values for the model parameters. Depending on the method of estimation they use,375
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Figure 5: A fitted curve for malaria caused deaths, δIh, for the model under treatment via TBDs,
(system (1)), using data from IHME-GBD [27, 54] in years 1998 − 2017 for Sub-Saharan Africa as
one region. While fitting the curve, we also conducted parameter values estimation using our fitting
algorithm and we got, measured per year, ρh = 1.42571563, Cv = 0.07183827, Ch = 2.60330271, µh =
1.1457×10−5, νh = 0.21382367, δh = 0.000695, γh = 9.7967×10−7, Πh = 3.9714×106, Πv = 4.0012×
106, νv = 0.08502137, µv = 8.87970645, ζe = 0.99918687, ζr = 0.03958800, ζt = 0.00336839, ϑ =
0.23576108, ωh = 1.37089493, rh = 1.4245×10−6, σh = 0.0035, pe = 0.38365352 and αh = 0.28695193.
Note that here the time unit is one year, in contrast to in Table 3 where the unit of time is one day.

there are differences in the data obtained from WHO and IHME. There is also a difference between the376

number of estimated and reported confirmed cases or deaths in the WHO data system. We remark that377

we did not use data from WHO since their data are limited to the years 2010 − 2017 and our model378

has more parameters as compared to the number of data points in these years.379

Remark 5 We observe that the fitted demographic parameters are not realistic which is due to the380

simplified logistic model used to describe the demographic processes, see [43, Pages 36-37]. Our interest381

is, however, in analyzing the effect of the TBD on the evolution of the disease and thus we continue with382

the current model in a slightly artificial demographic scenario, for the sake of mathematical tractability383

of the problem. In reality, in Sub-Saharan Africa regions, the average life-expectancy at birth of humans384

as of 2018 is 61.25 years, [60], and thus approximately µh = 0.016 per year, with a rough estimate of385

Πh = 30× 106 total births per year on average, [63, 73].386

Our model results fit well to the data and it reflects the transmission dynamics of malaria in Sub-387

Saharan Africa as stated by the IHME-GHO and WHO. Estimated and reported numbers by both388

WHO and IHME have shown that the number of malaria caused deaths in Sub-Saharan Africa has389
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fallen since 2007. The fitted solid red curve is obtained by assuming that the transmission-blocking390

efficacy of common drugs was 0.55. Here we see that the rate at which successfully treated infectious391

humans become prophylaxis protected, rh, is very small, with estimated value of rh = 1.43× 10−6, see392

Fig. 5.393

To predict the number of malaria deaths in Sub-Saharan Africa, we projected the fitted model394

by extending the time period up to the year 2035 with the same 55% blocking efficacy of the drugs395

(the red dashed curve on Figure 5). Thus, using our model with a 55% transmission-blocking, there396

will be approximately 349185 number of malaria caused deaths and 132.6 million number of cases in397

Sub-Saharan Africa in the year 2025. These number will be reduced approximately to 214170 deaths398

and 79.6 million cases in 2035.399

This is compared with a scenario in which a 95% efficacious TBD becomes available from 2021, see400

the dashed black curve. The model predicts that in Sub-Saharan Africa there will be an estimated401

178043 malaria related deaths in 2025 and 98343 related deaths in 2035. Since, according to IHME-402

GBD, [27, 54], there were approximately 543289 malaria deaths in the region in 2017. Thus our model403

projects at least an 81.8% reduction in the number of malaria deaths by 2035 and, comparing drugs404

with 55% and 95% efficacy, using the later will save 115827 lives in 2035 alone. This translates into the405

cumulative number 2.1 million lives saved between 2020 and 2035 if we manage to improve the efficacy406

of transmission-blocking from 55% to 95%.407

It is important to note that this effect is obtained just by using a 95% efficacious TBD starting from408

2021 and holding all other malaria control measures (that is, parameters of the model) unchanged. If,409

in addition, other control measures, such the treatment coverage, are applied the number of malaria410

cases and deaths will be reduced even more.411

To observe how varying the treatment coverage rate and the efficacy impacts the dynamics of412

malaria model (1), we simulate the system for different values of αh and pe, as can be seen on Figures413

6 and 7. For both figures we used parameter values obtained from our data fitting, which are listed in414

the caption of Figure 5, except for Figure 6, where we let the treatment coverage rate to have values415

αh = 0, 0.001, 0.08, 0.2, 0.5, 0.75, 0.90, with pe = 0.39 fixed, whereas in Figure 7, we fixed αh = 0.29416

and let pe to take efficiency rates of 0%, 25%, 60%, 75%, 97% and 100%.417

The trajectories on Figure 6 show that when αh = 0, that is, there are no individuals undergoing418

the treatment, the trajectories for individuals under treatment or who are prophylaxis protected remain419

zero. When αh begins to increase, then the trajectories of Th and Ph continue to rise. When αh < 0.2,420

the disease can not be eliminated completely in short period of time (at least it requires more than421

100 years), see Subfigures 6a and 6b for αh = 0, αh = 0.01, αh = 0.08 and αh = 0.2.. However, when422

the treatment coverage rate is increased to αh = 0.5, the number of infected individuals and malaria423

deaths decreases radically, see Subfigures 6a and 6b for αh = 0.5, αh = 0.75 and αh = 0.9. In Subfigures424

7a and 7b, we simulated the numbers of infected humans and malaria caused deaths as we vary the425

efficacy rate pe of the transmission-blocking drug. The results in these subfigures show that the number426

of infected individuals is highly sensitive to the pe and a 97% efficacious TBD can result in a 100%427

control of transmission of malaria in a long run. From Subfigure 7c, we observe that treating a malaria428

patient with a zero efficacy TBD does not have any impact on the patient and thus the trajectory for429

pe = 0 stays constant for larger times. However, when the TBD is more than 25% efficacious, then430

individuals will get treated and move to class Ph. In Subfigure 7d, it is shown that when pe = 0, the431

solution trajectory for Ph remains zero since no one has got successfully treated. Solution trajectories432

for the total human population with 55% efficacious TBD and the treatment coverage rate of αh = 0.35433

are shown on Subfigure 7e. We recall that we use the initial data introduced in Section 4.1.434
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Figure 6: Simulations showing the effect of varying the parameter αh on the number of and proportion
of infected, undergoing treatment with TBDs and prophylaxis protected humans. We used parameter
values to be the estimated values obtained from data fittinf and are listed on the caption of Figure 5.
Here, we let αh to vary between 0 and 1. We used the following initial data; Sh(t0) = 800×106, Eh(t0) =
369.3 × 106, Ih(t0) = 220 × 106, Th(t0) = 0 = Ph(t0) = Rh(t0), Sv(t0) = 5 × 106, Ev(t0) = 200000,
and Iv(t0) = 100000, where t0 = 0 corresponds to the year 1998. These initial data have been used as
initial guess for the purpose of data fitting on Figure 5.
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Figure 7: Simulations showing the effect of varying the parameter pe on the number of infected, taking
treatment, protected and malaria caused deaths. All parameter values and initial conditions are the
same as in Figure 6 except that we vary pe between 0 and 1. Here αh = 0.35 fixed. Subfigure 7e shows
a simulation of total human population for a fixed pe = 0.55 and αh = 0.35.
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5 Discussion and conclusion435

One of the current topics in malaria research is to design interventions to block gametocyte trans-436

mission to the vectors (female Anopheles mosquitoes) or sporozoites transmission to humans, in order437

to control and eradicate the disease. The main idea is to disrupt the parasites’ reproduction and its438

further development in the mosquito, thus breaking the life cycle of the parasite, [39]. In this paper, we439

formulated and analyzed a mathematical model for the transmission dynamics of malaria that considers440

a treatment using a transmission-blocking antimalarial drug (TBD). The formulated model consists of441

nine compartments. Mathematical and epidemiological implications of the TBDs are assessed using dif-442

ferent methods such as determining the effective treatment reproduction number RT , critical treatment443

rate α#
h , sensitivity analysis, backward bifurcation analysis and data fitting.444

We validated our model by fitting it to real data obtained from the IHME-GBD web-site. We445

used a non-linear least-squares minimization and curve-fitting package in python known as ”lmfit”.446

The fitted curves of the model well reflect the data and agree with the current dynamics of malaria447

in Sub-Saharan Africa. Together with fitting the state curves, we have also estimated values of the448

parameters in the malaria model. Our projected model results show that if, in addition to the existing449

control strategies against malaria, other control measures such as a highly efficacious TBD with high450

treatment coverage are applied, the number of malaria cases and deaths can be greatly reduced in451

a few years. Thus, an ultimate goal in an effort to completely eliminate and eradicate malaria is to452

design a novel transmission-blocking treatment that can cure malaria patients and completely block453

the formation or maturation of gametocytes so that the malaria parasites will be not passed on.454

We believe that our model can provide some insights into the effect of TBDs in terms of malaria455

transmission control and thus help in the drug development and regulatory decision-making processes,456

leading to a more affordable and effective drug therapy. The results obtained from our model should457

be also useful for the development of improved models that can incorporate the clinical drug pharma-458

cokinetics and pharmacodynamic properties.459
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37. Khan, M., Shah, S. W., Ullah, S., and Gómez-Aguilar, J. (2019). A dynamical model of asymp-555

tomatic carrier zika virus with optimal control strategies. Nonlinear Analysis: Real World Appli-556

cations, 50:144–170. 9, 17, 29557

http://ghdx.healthdata.org/gbd-results-tool
http://ghdx.healthdata.org/gbd-results-tool


26
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Appendix647

Computation of control reproduction number648

To calculate the control reproduction number, RT for (1), we use the the next-generation matrix method649

based on [22, 64]. For this, let us rewrite system (1) as:650 {
x′d = f1(xd,xs),

x′s = f2(xd,xs),
(31)

where xd = (Eh, Ih, Th, Rh, Ev, Iv)
T are the infectious compartments and xs = (Sh, Ph, Sv)

T are
the disease free ones. Thus, the DFE of system (31) will be

x∗0 = (x∗d,x
∗
s) = (E∗h, I

∗
h, T

∗
h , R

∗
h, E

∗
v , I
∗
v , S

∗
h, P

∗
h , S

∗
v) =

(
0, 0, 0, 0, 0, 0,

Πh

µh
, 0,

Πv

µv

)
.

We recall that to determine the control reproduction number, due to the Schur factorization, it is651

sufficient to use only the diseased (infected) compartments, see [64, Lemma 1] and [28, Section 7.7].652

So, using the system for x′d, let Fi be the rate of appearance of new infections in the compartment653

i, V−i be the rate of transfer of individuals out of the compartment i by all other means and V+
i be654

the rate of transfer of individuals into the compartment i by all other means. Set Vi = V−i − V
+
i and655

F = [Fi] , V = [Vi] , i = 1, 2, · · · , 6 and hence656

F =



IvShbβvh
Eh+Ih+Ph+Rh+Sh+Th

0
0
0

(Ehζe+Rhζr+Thζt+Ih)Svbβhv
Eh+Ih+Ph+Rh+Sh+Th

0


, V =



Eh(µh + νh)
(Γ4 + αh)Ih − Γ1Th − Ehνh

(Γ1 + Γ2 + Γ3 + µh)Th − Ihαh
−Γ2Th − Ihγh +Rh(µh + ρh)

Ev(µv + νv)
Ivµv − Evνv

 . (32)

Then their corresponding Jacobian matrices, F and V , respectively, evaluated at the DFE x∗0 are,657

F =

[
∂Fi
∂xj

(x∗0)

]
=



0 0 0 0 0 bβv
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Γ6ζe Γ6 Γ6ζt Γ6ζr 0 0
0 0 0 0 0 0

 and

658

V =

[
∂Vi
∂xj

(x∗0)

]
=



µh + νh 0 0 0 0 0
−νh Γ4 + αh −Γ1 0 0 0

0 −αh Γ1 + Γ5 0 0 0
0 −γh −Γ2 µh + ρh 0 0
0 0 0 0 µv + νv 0
0 0 0 0 −νv µv

 ,

where659

ωh := qhθh, σh := (1− qh)θh, Γ1 := (1− pe)ωh, Γ2 := (1− pe)σh, Γ3 := perh,

Γ4 := δh + γh + µh, Γ5 := Γ2 + Γ3 + µh, Γ6 :=
Πvbβhvµh

Πhµv
, Γ7 := Γ1 + Γ5.
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Thus, the control reproduction number, RT , which is the spectral radius of the next generation
matrix, G = FV −1 is computed to be:

RT =

√√√√Γ6bβvhνv

[
νh(µh + ρh) (Γ7 + αhζt) + (Γ2αh + (Γ7)γh) νhζr + ζe

(
Γ4Γ7 + Γ5αh

)(
µh + ρh

)]
(Γ4Γ7 + (Γ5αh) (µh + νh) (µh + ρh) (µv + νv)µv

.

This can be written as
R2
T = R2

0ξ (αh) ,

where R0 and ξ (αh) was defined in (14). �660

Proof of Theorem 2 (locally stability of DFE)661

Here we show that the DFE of model (1) is locally asymptotically stable. The proof follows the lines662

of [64, Theorem 2] and [65, Lemma 2]. To simplify the notation, we write:663

xi ∈ (Eh, Ih, Th, Rh, Ev, Iv, Sh, Ph, Sv), i = 1, 2, · · · , 9, xdi ∈ (Eh, Ih, Th, Rh, Ev, Iv), i = 1, 2, · · · , 6 and664

xsi ∈ (Sh, Ph, Sv), i = 7, 8, 9.665

(A1) Clearly from (32), we can easily observe that if x ≥ 0, then each Fi, V+
i , V

−
i ≥ 0 for each i = 1, ..., 9,666

where the inequalities are entry-wise.667

(A2) If a compartment is empty, then there is no transfer out of that compartment. Let any state668

variable, xi ∈ (Eh, Ih, Th, Rh, Ev, Iv, Sh, Ph, Sv) be zero. Then, from (32), it is obvious that669

V−
i = 0. In particular, if xi ∈ xs, then V−

i = 0. We already have showed that the system (31) has a670

non negative, bounded and unique solution provided that the initial data is positive.671

(A3) From (32), we can see that F7 = 0 = F8 = F9. That is, Fi = 0, for i > 6. Thus, the incidence of672

infection for uninfected compartments (Sh, Ph, Sv) is zero.673

(A4) We can easily observe from (32) that if x ∈ xs, then we have Fi = 0 and Vi = 0 for i = 1, · · · , 6.674

Furthermore, the corresponding disease-free subsystem675

dSh
dt

= Πh − µhSh, (33)

dSv
dt

= Πv − µvSv. (34)

has an equilibrium point (Πh

µh
, Πv

µv
) which is globally asymptotically stable.676

(A5) For the diseased (infected) subsystem, that is, for 1 ≤ i, j ≤ 6, we have the matrices given677

in (33) and (33). Thus, we observe that matrix F is non-negative. The determinant of V is678

det(Ṽ ) = µv(µv + νv)(µh +ρh)(µh + νh)
(

Γ5(Γ4 +αh)−Γ1αh

)
. But, Γ5(Γ4 +αh)−Γ1αh = Γ5Γ4 + Γ5αh−679

Γ1αh = Γ5Γ4 + αh(Γ2 + Γ3 + µh) > 0. Hence, the matrix V is non-singular. We can also easily see680

that V is an M-matrix. Hence, by [65, Lemma 2], all eigenvalues of F − V have negative real681

parts. Therefore, by [64, Theorem 2] and [65, Theorem 1], the DFE x∗
0 of system (1) is locally682

asymptotically stable if RT < 1, but unstable if RT > 1. �683

We note that the local stability of the DFE can also be proved by determining condition for which684

all eigenvalues of the model at the DFE have negative real parts, see for e.g. [10, 11, 14, 37].685
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Some coefficients determining the occurrence of backward bifurcation686

To simplify notations, during the computations of the endemic equilibria and the backward bifurcation687

analysis, we set688

K1 = Γ5 + Γ1, K2 = ϑ+ µh, K3 = νh + µh, K4 = αh + Γ4, K5 = ρh + µh,

K6 = γh(Γ5 + Γ1) + Γ2αh, K7 = νv + µv, Cvh = βvhb, Chv = βhvb,

C0 = βvhb
(ζeΓ5(αh + Γ4)

νh(Γ5 + Γ1)
+

ζtαh
(Γ5 + Γ1)

+
ζr(γh(Γ5 + Γ1) + Γ2αh)

(ρh + µh)(Γ5 + Γ1)
+ 1
)

= Cvh

(
ζeΓ5K4

νhK1
+
ζtαh
K1

+
ζrK6

K5K1
+ 1

)
,

K0 =
νvΠv

µv(νv + µv)
.

and

D00 = K5K2K3Γ5K4, D01 = K2νhρhK6 +K5νhϑαhΓ3, D02 = µhK5K2K3Γ5K4 = µhD00.

Furthermore, we set689

φ1 = K3Γ5K4ΠhK5K2, φ2 = Γ5K4ΠhK5K2, φ3 = ΠhK5K2K1νh, φ4 = αhΠhK5K2νh,

φ5 = αhΓ3ΠhK5νh, φ6 = K6ΠhK2νh, φ7 = φ2 + · · ·+ φ6,

φ8 := ζeφ2 + φ3 + ζtφ4 + ζrφ6.
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