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SUMMARY

MODELLING OF TUBERCULOSIS TRANSMISSION RISK FOR A RESEARCH

FACILITY IN EMALAHLENI, SOUTH AFRICA

by

Ralf Ronald Küsel

Supervisor(s): Prof. I. K. Craig

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Electronic Engineering)

Keywords: Airborne infectious disease, epidemiology, mathematical modelling, My-

cobacterium tuberculosis, risk of transmission

A detailed mathematical modelling framework for the risk of airborne infectious disease transmission

in indoor spaces was developed. This modelling framework enables the mathematical analysis of

experiments conducted at the Airborne Infections Research (AIR) facility of eMalahleni, South Africa.

A model was built using this framework to explore possible causes of why an experiment at the AIR

facility, from 31 August 2015 to 4 December 2015, did not produce expected results. In this experiment

the efficacy of upper room germicidal ultraviolet (GUV) irradiation as an environmental control was

tested. However, the experiment did not produce the expected outcome of having fewer infections in

the test animal room than in the control room. The simulation results indicate that dynamic effects,

caused by switching the GUV lights, power outages, or introduction of new patients, did not result in

the unexpected outcomes. However, a sensitivity analysis highlights that significant uncertainty exists

with risk of transmission predictions based on current measurement practices, due to the reliance on

large viable literature ranges for parameters.

This work builds on the commonly used Wells-Riley equation for the circumstance of the research

facility by including additional mechanisms and dynamics. The model framework is given modularly,
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to assist in the manipulation of the model for different research questions that are wished to be explored

using such a facility. The developed mathematical model is found useful in improving understanding of

the risk of infection of airborne infectious diseases in indoor spaces, and in the theoretical exploration

of the experiment. Especially the dynamics of the model helped to investigate whether the switching

rate of the upper room GUV lights was adequately slow so that one room did indeed get more infectious

particles than another.
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LIST OF ABBREVIATIONS

AC Air changes

AIDS Acquired immune deficiency syndrome

AIR Airborne Infections Research

BCG Bacillus Calmette–Guérin

DNA Deoxyribonucleic acid

GP Guinea pig

GUV Germicidal ultraviolet

M. tb Mycobacterium tuberculosis

HIV Human immunodeficiency virus

MDR Multi-drug resistant

MPC Model predictive control

TB Tuberculosis

TST Tuberculin skin test

UVGI Ultraviolet germicidal irradiation

WHO World Health Organisation

IMPORTANT DEFINITIONS

The important definitions for some of the common terms, used throughout the text, are given below to

provide clarity and consistency when interpreting the text.

tuberculosis bacteria: bacteria that are capable of causing tuberculosis disease

tuberculosis disease: the state of an infection from tuberculosis bacteria where detrimental heath

effects are experienced

tuberculosis infection: when tuberculosis bacteria are introduced into the host’s system

latent tuberculosis infection: the state of an infection from tuberculosis bacteria where no detrimental

health effects are experienced (the host’s immune response is able to keep the infection in check)

active tuberculosis: the state of an infection from tuberculosis bacteria where tuberculosis disease is

experienced

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 CONTEXT OF THE PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 RESEARCH OBJECTIVE AND QUESTIONS . . . . . . . . . . . . . . . . . . . . 2

1.4 APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 RESEARCH CONTRIBUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 2 LITERATURE STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 CHAPTER OVERVIEWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 MICROBIOLOGICAL CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Actinobacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Corynebacterineae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.4 Mycobacterium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.5 Mycobacterium tuberculosis complex . . . . . . . . . . . . . . . . . . . . . 7

2.2.6 Mycobacterium tuberculosis subspecies . . . . . . . . . . . . . . . . . . . . 8

2.3 TRANSMISSION OF MYCOBACTERIUM TUBERCULOSIS . . . . . . . . . . . . 8

2.4 PATHOGENESIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 STATES OF TUBERCULOSIS INFECTIONS . . . . . . . . . . . . . . . . . . . . 10

2.6 TYPES OF TUBERCULOSIS ACTIVE DISEASE . . . . . . . . . . . . . . . . . . 10

2.7 SYMPTOMS OF PULMONARY TUBERCULOSIS . . . . . . . . . . . . . . . . . 11

2.8 DIAGNOSIS AND TESTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.9 TREATMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9.1 Treatment of active (non drug-resistant) TB . . . . . . . . . . . . . . . . . . 13

2.9.2 Treatment of drug-resistant TB . . . . . . . . . . . . . . . . . . . . . . . . . 14

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2.9.3 Treatment of latent TB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9.4 Bacillus Calmette–Guérin vaccine . . . . . . . . . . . . . . . . . . . . . . . 14

2.10 EPIDEMIOLOGY AND RISK OF TRANSMISSION . . . . . . . . . . . . . . . . . 15

2.11 AIRBORNE INFECTIOUS DISEASE RESEARCH FACILITIES . . . . . . . . . . 16

2.12 CONTROL ENGINEERING AND INFECTIOUS DISEASES . . . . . . . . . . . . 17

CHAPTER 3 RISK OF TRANSMISSION MODELLING FRAMEWORK . . . . . . 19

3.1 CHAPTER OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 RISK OF TRANSMISSION MECHANISMS . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 New infections in the susceptible populations . . . . . . . . . . . . . . . . . 21

3.2.2 Infections without an incubation period . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Infections with an incubation period . . . . . . . . . . . . . . . . . . . . . . 23

3.2.4 Generation of infectious particles . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.5 Dispersion and distribution of infectious particles . . . . . . . . . . . . . . . 25

3.2.6 Removal of infectious airborne particles through air filtration . . . . . . . . . 26

3.2.7 Removal of infectious airborne particles using GUV lights . . . . . . . . . . 27

3.2.8 Modelling assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CHAPTER 4 AIRBORNE INFECTIONS RESEARCH FACILITY MODEL AND

SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 CHAPTER OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 EMALAHLENI AIR FACILITY MODEL . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 GERMICIDAL ULTRAVIOLET IRRADIATION STUDY . . . . . . . . . . . . . . 33

4.4 STUDY PARAMETER ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . 36

CHAPTER 5 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 CHAPTER OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 GUINEA PIG POPULATION SIMULATION RESULTS . . . . . . . . . . . . . . . 42

5.3 INFECTIOUS PARTICLE SIMULATION RESULTS . . . . . . . . . . . . . . . . . 43

5.4 SENSITIVITY OF THE SIMULATION PARAMETERS . . . . . . . . . . . . . . . 46

5.5 SUPER-SPREADERS AND THE STUDY . . . . . . . . . . . . . . . . . . . . . . 53

5.6 SIMULATION FIT AND EXPERIMENT OUTCOME . . . . . . . . . . . . . . . . 57

CHAPTER 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



6.2 RESEARCH QUESTION ANSWERS . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 SUGGESTIONS FOR FURTHER WORK . . . . . . . . . . . . . . . . . . . . . . . 61

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ADDENDUM A AIR MODEL DIFFERENTIAL EQUATION SOLUTION . . . . . . . 77

A.1 INFECTIOUS PARTICLES IN THE WARD . . . . . . . . . . . . . . . . . . . . . . 77

A.2 INFECTIOUS PARTICLES IN THE ANIMAL ROOMS . . . . . . . . . . . . . . . 78

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1 INTRODUCTION

1.1 CONTEXT OF THE PROBLEM

Tuberculosis (TB) remains a severe health threat in the world, despite advances in treatment and

diagnosis in the past decade [1]. In South Africa especially, there is a call to improve the public

health response [2]. Of significant importance in the reduction of incidence is the interruption of

transmission [3, 4]. The disease is caused by the Mycobacterium tuberculosis (M. tb) pathogen, and

the main method of transmission is via aerosoled droplets that are expelled through the respiratory

tract of a host [5].

The global tuberculosis epidemic is a major cause for concern. Nine million people developed active

tuberculosis and 1.5 million deaths were attributed to tuberculosis in 2013 [6]. Tuberculosis is one

of the most common causes of death due to a single infectious disease [7] and places an enormous

burden on the global community, especially in South-East Asia, Sub-Saharan Africa and Eastern

Europe [8]. The lack of availability and affordability of health care is a barrier to the effective treatment

of infectious diseases, especially in low and middle income countries [9]. In 2014, the funding gap

was almost US$ 2 billion, which was 21.25 % short of the required amount [6].

Quantifying the risk of transmission of airborne infectious diseases is useful in the evaluation of the

effectiveness of an infection control strategy. As an infection control strategy, rapid active case finding

of infected individuals and community intervention is the more effective method [10–12]. However,

active case-finding is much more expensive than the alternative passive case-finding [13]. Therefore,

environmental control, such as ventilation and ultraviolet germicidal irradiation (UVGI), remains an

important consideration for the reduction of the risk of transmission of an airborne infectious disease

[14, 15]. Environmental factors are especially important in the time between infection and diagnosis of

the infection. Although the time from the initiation of treatment to the time the treatment renders the
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CHAPTER 1 INTRODUCTION

individual non-infectious can be rapid [16], for the reduction in risk of infection, environmental factors

are also important, especially in nosocomial settings.

A mathematical model can serve as an effective tool to quantify the risk of transmission of airborne

infectious diseases [17]. Mathematical models not only help in understanding, but have the advantage

that an exploration of a theoretical concept through mathematical simulation is typically quicker and

cheaper than conducting an experiment [18, 19]. Simulation can thus be used to increase the chance

of a successful experiment by identifying potential problem areas before the start of the experiment.

Mathematical models are an important part of the design of intelligent systems, where quantitative

models help to gain a deeper understanding of the process involved and allow for systematic design of

appropriate responses to the problem [20].

1.2 PROBLEM STATEMENT

The Airborne Infection Research (AIR) facility in eMalahleni conducts experiments on different

aspects of the infectious disease: Tuberculosis (TB). A mathematical model can be used in this facility

to assist in the prediction and analysis of experiments.

1.3 RESEARCH OBJECTIVE AND QUESTIONS

The objective of the research will be to use a control engineering approach to model the risk of

transmission within the AIR facility. The goal of the model is to produce a representation of the risk of

transmission within the AIR facility that can be used to analyse an experiment conducted at the facility.

The goal of the analysis will be to investigate why the experiment conducted from 31 August 2015 to

4 December 2015 did not produce the results that were expected. The expected result was that fewer

infections would have been found in animal room 1, which was the control room, as opposed to animal

room 2, which had the test environmental control intervention.

1.4 APPROACH

The systematic approach that will be taken to meet the research goals, will begin with the modelling

process. To create the model, different mechanisms and their respective models will be investigated.

This will create the building blocks from which the model for the facility can be constructed. This

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

approach will be used to allow for these mechanisms to be used in the construction of a model for a

different scenario.

Data from an experiment, that was conducted at the AIR facility, will be used to create a simulation

of the experiment. Parameters, and parameter ranges, will be obtained from literature. A parameter

estimation will be performed to fit parameters, within their literature ranges, with the objective to

minimise the difference between the experiment and simulation results. This will then serve as the

baseline of the parameters that will be used for the simulation.

In addition to using literature to build a model framework and a model for the facility, the time to

steady state will be investigated. Additionally, a sensitivity analysis will be conducted, as well as

considering the scenario of having a super-spreader.

1.5 RESEARCH CONTRIBUTION

This research will contribute to the modelling of the risk of transmission, by providing a clear summary

of different mechanisms. A method for the use of the mechanisms, as basic building blocks, will be

provided to allow the creation of risk of transmission models for different situations. A model for the

AIR facility will be created and provided. A parameter estimation is performed to identify the quanta

generation per infector for the experiment conducted at the AIR facility from 31 August 2015 to 4

December 2015. The research also helps investigate why that experiment did not produce the results

that were expected.

This research contributes to scientific literature through a peer reviewed article and a conference

article:

• R. R. Küsel, I. K. Craig, and A. C. Stoltz "Modelling the airborne infection risk of tuberculosis

for a research facility in eMalahleni, South Africa," Risk Analysis, Vol. 39, No. 3, 2019, pp.

630–646.

• D. Strydom, R.R. Küsel, and I.K. Craig "When is it appropriate to model transmission of

tuberculosis using a dose response model?" IFAC-PapersOnLine, Vol. 50, No. 2, pp. 31-36,

2017.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OVERVIEWS

This chapter will provide background for insight into the problem of understanding the pathogen that

is investigated in this text. To develop this understanding, the properties of this disease will be the

focus of this chapter. However, the background on the context of how control engineers can contribute

to the body of science in understanding and combating this disease will also be provided. Additionally,

the epidemiology of the disease will be discussed, which will lead into the rest of the text.

Tuberculosis (TB) is an infectious bacterial disease that can cause serious illness and is potentially fatal

when left untreated [5]. Mycobacterium tuberculosis is the predominant causative agent of tuberculosis

disease in humans [21]. In general, TB is an airborne infectious disease that is spread when a person

that has active TB expels the pathogen in aerosol droplets from the respiratory tract. When the expelled,

aerosol droplets containing the pathogen are inhaled by an uninfected person the bacteria can cause

infection.

To describe the disease in more detail, several different concepts of tuberculosis must be discussed.

These are:

1. microbiological classification,

2. transmission,

3. pathogenesis,

4. types of tuberculosis disease,

5. symptoms,

6. diagnosis and testing, and
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CHAPTER 2 LITERATURE STUDY

7. treatment.

The microbiological classification is the first concept discussed, because this provides background to

the properties of the bacteria.

2.2 MICROBIOLOGICAL CLASSIFICATION

Characteristics of the causative agent, Mycobacterium tuberculosis, can be explained through the

taxonomy, which categorises organisms into named groups (taxon) based on shared characteristics.

Because the taxa have a hierarchical rank, the characteristics of each taxon, the organism is categorised

under, are applicable to that organism. The general hierarchical rankings are: kingdom, phylum,

class, order, family, genus and species; however, rankings of phylum is not applicable to the kingdom

Bacteria [22]. The taxonomy of Mycobacterium tuberculosis is given in Table 2.1 down to the rank of

species.

Table 2.1. The hierarchical rankings for the taxonomy of Mycobacterium tuberculosis.

Kingdom Bacteria

Class Actinobacteria

Order Corynebacteriales

Family Mycobacteriaceae

Genus Mycobacterium

Species Mycobacterium tuberculosis

The different characteristics of the taxa from Table 2.1 are discussed in more detail below.

2.2.1 Bacteria

Bacteria are unicellular organisms that have an organisation of the chromosome as a nucleoid in the

cytoplasm without an endomembrane [23]. This means that, although bacteria have a cell wall, there is

no membrane separating the genetic material in the cell. Recombination of bacteria is characterised by

a parasexual processes [23].

Most bacteria reproduce through the mechanism of binary fission [24]. This is an asexual reproduction

process where the cell grows until it divides in half. The process begins with a replication of the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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chromosome. As the deoxyribonucleic acid (DNA) is copied through the replication process, the cell

elongates. Once the entire chromosome has been replicated and separated, the cell wall pinches inward.

This then results in the division into two new cells, which means that the growth rate of bacteria, under

favourable conditions, is exponential.

2.2.2 Actinobacteria

Actinobacteria are characterised as being Gram-positive bacteria with a high proportion of guanine and

cytosine content in their DNA [25]. Gram-positive bacteria have multiple, thick peptidoglycan layers

in the cell wall, as opposed to Gram-negative bacteria that have only a narrow peptidoglycan layer in

the cell wall. Peptidoglycan is a polymer consisting of amino acids (peptido-) and sugars (-glycan)

that has a mesh-like organisation.

The Gram stain test uses crystal violet to suffuse a sample with colour. Gram-positive bacteria withhold

the stain and give the sample a purple appearance under a microscope. The Gram stain test is used to

quickly classify bacteria into two broad categories [26].

The type of cell wall is an important characteristic affecting the toxicity and anti-biotic responses of the

bacterium. For example, the bactericidal antibiotic penicillin impedes the cell membrane growth, which

leaves the cell vulnerable to destruction through osmosis because the the bacterial cell is generally

more salty than its environment.

2.2.3 Corynebacterineae

The Corynebacterineae are characterised as being acid-fast bacteria. In Mycobacterium tuberculosis

this is due to the high mycolic acid content in the cell wall [27]. Isoniazid is a bactericidal first-line

tuberculosis antibiotic, which inhibits the mycolic acid synthesis of the cell wall of the bacterium cell,

causing it to die.

Acid-fast bacteria are resistant to the decolourisation by an acid solution. This causes the bacteria to

retain the original stain colour after the sample has been decolourised by an acid solution, whereas the

rest of the sample will not retain the stain colour.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

2.2.4 Mycobacterium

Mycobacteria are the only genus in the family Mycobacteriaceae, and are characterised as being

aerobic (requiring oxygen), non-motile (incapable of motion) and rod-shaped [28]. Mycobacterium are

the causative agents of two major diseases in humans: tuberculosis and leprosy.

2.2.5 Mycobacterium tuberculosis complex

Although Mycobacterium tuberculosis is the predominant causative agent of tuberculosis in humans,

it is not the only Mycobacterium species that can cause tuberculosis disease. The Mycobacterium

tuberculosis complex is a group of genetically related Mycobacterium species that can all cause

tuberculosis disease. Most of the Mycobacterium tuberculosis complex species have different biological

hosts, but can still cause tuberculosis disease in humans through zoonotic transmission. In Table 2.2

the different species in the complex are given, together with their typical hosts.

The transmission of zoonotic tuberculosis occurs through close contact with infected animals or

consumption of contaminated animal products, such as unpasteurized milk [29]. Of the zoonotic

forms of tuberculosis, most cases are as a result of transmission from cattle, and the primary causative

agent is Mycobacterium bovis [21]. The treatment of Mycobacterium bovis is made more challenging,

because Mycobacterium bovis is innately resistant to pyrazinamide, which is one of the first line drugs

used to treat tuberculosis. However, tuberculosis disease caused by transmission of Mycobacterium

tuberculosis is significantly more prevalent in humans than zoonotic transmission, with about 98%

of TB cases being caused by Mycobacterium tuberculosis [21]. Therefore, this text will further only

focus on tuberculosis caused by the Mycobacterium tuberculosis pathogen.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

Table 2.2. The Mycobacterium tuberculosis complex species, and the host in which they are predomin-

antly found.

Species Host

Mycobacterium africanum Humans

Mycobacterium bovis Cattle

Mycobacterium canetti Unknown [30]

Mycobacterium caprae Cattle or goats [31]

Mycobacterium microti Vole, cats or lamas

Mycobacterium mungi Mongoose [32]

Mycobacterium orygis Bovidae [33]

Mycobacterium pinnipedii Seals [34]

Mycobacterium suricattae Meerkat [35]

Mycobacterium tuberculosis Humans

2.2.6 Mycobacterium tuberculosis subspecies

Although the main properties of the organism is explained through the species, the different genetic

variants are classified into subspecies, with strains being a grouping of these subspecies. The subspecies

of Mycobacterium tuberculosis (M. tb) are not detailed in Table 2.1 because the number of variations

is too numerous for this text to consider all of them. However, it is important to note that the

different strains of Mycobacterium tuberculosis have a variation in pathogenity [36], meaning that

the ability to cause disease varies between these different subspecies. The drug-resistance of some

tuberculosis infections is also attributed to the genetic differences between Mycobacterium tuberculosis

strains [37–39].

2.3 TRANSMISSION OF MYCOBACTERIUM TUBERCULOSIS

TB is an airborne disease and is spread through aerosol infectious Mycobacterium tuberculosis patho-

gens that are expelled from the respiratory tract of an individual with active TB disease. A single

viable TB bacillus, once inhaled, can be sufficient to produce infection [40].

Respiratory actions such as breathing, coughing, sneezing, speaking, singing, and spitting all expel

particles from the respiratory tract, with the quantity and size distribution of these particles varying

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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between these different actions and between individuals [41,42]. The smaller expelled particles tend to

remain airborne for much longer periods than the larger expelled particles. The average size of droplet

nuclei from a cough is between 0.6 - 5.4 µm [43], where a size of less than 10 µm is considered a

’small’ particle [44]. From a cough-generated aerosol experiment, it was found that coughing can

generate between 18 to 3798 infectious M. tb, ’small’ droplet particles per hour from individuals with

active disease [41].

Tuberculosis is typically infectious as an active disease, from the onset of coughing until about two

weeks after treatment has started [45]. However, the health of a patient influences their contagiousness,

as there is some correlation between the bacillus count in a sputum smear analysis and the infectiousness

of the patient. A delay in diagnosis and treatment therefore affects transmission [46, 47].

2.4 PATHOGENESIS

Pathogenesis describes the manner in which the disease develops. With Mycobacterium tuberculosis,

the infection begins with the deposition of the bacteria in the alveoli after inhalation of an aerosol

droplet containing the bacteria [48, 49]. Here the pathogen encounters the host’s innate immune

response, and is ingested by the alveolar macrophages.

Macrophages are white blood cells which engulf foreign material that does not present proteins of

the host on the surface of the material. Once the foreign material is ingested by the macrophage, it

gets disassembled by being fused with the lysosome, which is an organelle that contains hydrolytic

enzymes. After the foreign material has been dissembled, it is presented by the macrophage as an

antigen to engage the adaptive immune response. The antigens stimulate T helper cells, which in turn

produce cytokines that stimulate cytotoxic T cells, antibody producing B cells and activate phagocytes,

like macrophages, to be more bactericidal [50–52]. This complex process of the innate and adaptive

immune system is necessary for the body to be able to appropriately respond to, and remove, pathogens

while not destroying the body’s own cells.

With Mycobacterium tuberculosis, however, the macrophage is often not able to dissemble the bacteria,

but instead the bacteria is able to replicate in the cell. In this case, the bacteria eventually kills the

infected macrophage, releasing the now multiplied bacteria. However, cytotoxic T cells are able to

kill the extracellular bacteria, and are able to disintegrate infected macrophages [53]. Additionally,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

through the cytokines interferon gamma and tumour necrosis factor, macrophages are activated to

kill Mycobacterium tuberculosis [49]. Immune cells recruit to the site of infection, and attempt to

wall in the bacteria. This is known as a granuloma. The centre of the granuloma begins to form

caseous necrosis, which is a collection of dead cells and tissue that have the appearance of soft, white

cheese. If the bacteria is cleared, such as through treatment, then necrotic tissue heals with scarring

and calcification.

2.5 STATES OF TUBERCULOSIS INFECTIONS

Upon primary infection with Mycobacterium tuberculosis, the immune system is usually able to

suppress the infection, and after mild flu-like symptoms, the recovery process usually begins [54].

However, in about 5 % of TB infections, the host immune response is not able to suppress the infection

and the primary infection progresses into a state of active disease. This active disease can be classified

as a number of different types, based on the site formation of granulomas in the body.

However, in the other 95 % of primary infections, the bacilli are not completely eradicated by the

immune system, and the bacilli are in a stalemate with the immune system, the infection remains

dormant [55]. While the tuberculosis infection is dormant, this state of infection is known as a latent TB.

An individual may be latently infected with TB for the duration of their lives without ever experiencing

further symptoms.

However, from its latent state, the tuberculosis infection may become reactivated, and this happens

to approximately another 5 % of the individuals that were infected. The risk of reactivation greatly

increases in immunocompromised individuals [5, 54]. For this reason, the tuberculosis epidemic

increased with the emergence of the human immunodeficiency virus (HIV) epidemic [56].

2.6 TYPES OF TUBERCULOSIS ACTIVE DISEASE

Several different types of TB disease exist; however, the different types can be categorised into two

broad groups:

1. pulmonary TB, and

2. extrapulmonary TB.
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Pulmonary TB is the infection of the lungs, whereas extrapulmonary TB is when the infection occurs

outside the lungs. Extrapulmonary TB can affect almost any organ system in the body [57], and often

results from hematogenous dissemination of the pathogen, meaning that the bacteria is spread via the

bloodstream. In Table 2.3 the most common forms of extrapulmonary tuberculosis are listed.

Pulmonary TB is the most common form (and more common group) of TB disease, because TB is

usually airborne transmitted, making the lungs the initial site of infection. However, both extrapulmon-

ary and pulmonary TB infections may also occur simultaneously. The simultaneous manifestation of

pulmonary and extrapulmonary TB is the most common manifestation of TB disease in HIV positive

people [58]. This text, however, will focus on pulmonary tuberculosis, because it is the more important

in the consideration of the transmission of the pathogen.

Table 2.3. The most common forms of extrapulmonary tuberculosis [57].

Name Site of infection

Abdominal tuberculosis gastrointestinal tract, liver, spleen or pancreas

Bone and joints tuberculosis bones or joints

Genitourinary tuberculosis kidneys, bladder or genitals

Lymph node tuberculosis lymph nodes

Miliary tuberculosis an infection that has spread to two or more sites

Tuberculous meningitis central nervous system

Tuberculous pleurisy layers of tissue around the lungs

2.7 SYMPTOMS OF PULMONARY TUBERCULOSIS

The typical symptoms that characterise the onset of pulmonary TB are fatigue, weight loss and a

persistent cough. As the individual’s health condition worsens, these symptoms can extend to chest

pains, fever and night sweats. There may also be blood in the coughed up sputum, where sputum is

a mixture of saliva and mucus. The sputum and blood from the infection are caused by the caseous

necrosis in the granulomas. The initial symptoms are similar to other respiratory infections, making

tuberculosis difficult to diagnose from the symptoms [46].
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2.8 DIAGNOSIS AND TESTING

A patient who is exhibiting some or all of the symptoms of tuberculosis disease, should obtain assistance

from a medical professional. Many of the symptoms are similar to other respiratory diseases, such

as the common cold or influenza; however, there are some clinical differences from which a medical

professional could suspect a tuberculosis infection. If a tuberculosis infection is suspected, then there

are various tests that can be performed in an attempt to obtain a positive identification. The different

types of tests can be grouped as:

• a chest x-ray,

• a tuberculin skin test,

• sputum smear microscopy,

• a culture test, and

• interferon gamma release assay.

A chest x-ray can show the signs of pulmonary tuberculosis disease because large granulomas can

appear as abnormal shadows on the lungs. However, this test is not specific because these abnormal

shadows are not conclusive proof of a tuberculosis infection, and should be used in conjunction with

other testing methods. Although this method is not specific, it is often used as a screening method

because it is relatively quick to administer and yield results.

The tuberculin skin test (TST) can identify a tuberculosis infection, but does not indicate whether the

infection is latent or active. For the test, an intradermal injection of tuberculin is administered, with

the intent to monitor the skin’s response at the site of the injection. Tuberculin is a purified protein

derivative that is made out of M. tb. If the host has a tuberculosis infection, the skin will react by

forming a raised and hardened area, known as an induration, at the site of the injection. After a waiting

period of two to three days, the diameter of the induration is measured, and a classification is made

based on medical risk factors. However, the test can give a false positive if a person previously received

the Bacillus Calmette–Guérin (BCG) vaccine or due to nontuberculosis mycobacteria. Although this

method does not give a conclusive positive, it is often used as a screening method because it is relatively

quick to administer and yield results.
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Sputum smear microscopy can quickly identify tuberculosis disease, but is only 50−60% sensitive [59].

For the test, samples of sputum are collected, smeared onto a thin glass slide, stained and analysed

using a microscope. Sputum is a mixture of saliva and mucus that is coughed up from the respiratory

tract. The stain that is used highlights acid-fast bacteria, allowing the M. tb bacteria to be seen more

easily under a microscope.

A culture test involves first growing the bacteria before analysing them under a microscope. Sputum

samples, with suspected tuberculosis bacteria, are placed on culture media and allowed to incubate. To

test the drug susceptibility of this particular bacterial sample, the bacteria is grown in the presence of

diluted solutions of the different drugs. If the bacteria is able to successfully grow in the presence of

the drug, it is resistant to this drug. Although culturing is a more accurate method and can give drug

susceptibility results, it takes several weeks for the test to be completed.

The interferon gamma release assay can be used to diagnose TB infection by detecting interferon

gamma cytokines, that are produced by the immune system in response to a TB infection. This method

is more accurate than the TST, and does not cross react with the BCG vaccine; however, it also cannot

distinguish between active or latent tuberculosis.

2.9 TREATMENT

Tuberculosis is a curable disease, and is treated through the use of antibiotic drugs. However, the

selection of the antibiotic drug regimen and course length, depend on the form of the disease and

the strain of the bacteria. The treatment for latent tuberculosis is different to the treatment for active

tuberculosis disease. Additionally, if the bacterial strain is resistant to some antibiotic drugs, then the

regimen must be carefully selected so as to still be effective. The treatment of tuberculosis therefore

starts with positive diagnosis of the disease, and ideally with some drug-susceptibility testing of the

bacterial strain.

2.9.1 Treatment of active (non drug-resistant) TB

In the case of drug-susceptible tuberculosis, the first line antibiotic drug regimen is prescribed. The

first line drugs are the combination of anti-tuberculosis drugs that are most effective, while having

the least severe side-effects. The World Health Organisation recommends treatment as a six month
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course, where the first two months are with the drugs: Isoniazid, Rifampicin, Pyrazinamide and

Ethambutol. The last four months of the treatment are with just Isoniazid and Rifampicin [60]. It is

important that patients comply with the prescribed treatment and complete the course fully, otherwise

there is a significant risk that the bacteria will mutate into a strain that is resistant to the administered

antibiotics [39].

2.9.2 Treatment of drug-resistant TB

There are two different classifications for drug-resistant tuberculosis: multi drug-resistant and ex-

tensively drug-resistant. Tuberculosis is classified as being multi drug-resistant when the bacteria

is resistant to either of the first line drugs, Isoniazid or Rifampicin. In multi drug-resistant cases,

the second line drugs must be administered. The drug regimen for multi drug-resistant tuberculosis

depends on the drug resistance, but should combine at least four different antibiotics, and should be

continued for at least four months after the patient tests negative [60].

Extensively drug-resistant tuberculosis is the classification of an infection with bacteria that is resistant

not only to the first line drugs Isoniazid and Rifampicin, but also to at least two of the second line

drugs. Extensively drug-resistant tuberculosis has a very low survival rate and the side-effects of the

drugs are also severe.

2.9.3 Treatment of latent TB

Latent tuberculosis can be cured, and is typically done with a Isoniazid for nine months, or Isoniazid

and Rifapentine for three months. However, if the patient has known contacts with drug-resistant

tuberculosis, the treatment regimen is modified. Latent tuberculosis should be treated if the patient has

a higher risk of contracting active tuberculosis, such as HIV positive patients.

2.9.4 Bacillus Calmette–Guérin vaccine

The Bacillus Calmette–Guérin (BCG) vaccine is the only vaccine against tuberculosis. Although the

vaccine is not very effective in adults, it does provide protection to children against disseminated forms

of tuberculosis disease. The vaccine is produced out of Mycobacterium bovis that is attenuated so that

it loses its ability to cause disease in humans; however, it is still able to confer some immunity against
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Mycobacterium tuberculosis.

2.10 EPIDEMIOLOGY AND RISK OF TRANSMISSION

Epidemiology is the study of the occurrence and distribution of health-related events, states, and

processes in populations, and the application of this knowledge to the prevention and control of

health-related problems [61]. In 2003 it was estimated that approximately a third of the population

of the world was infected with Mycobacterium tuberculosis [56]. Although only 5% to 10% of those

that are infected with Mycobacterium tuberculosis actually develop active tuberculosis disease in their

lifetime [5, 52, 54], this estimate still indicates that tuberculosis is a major health problem.

More recent statistics of the global tuberculosis burden indicate that in 2017 TB was one of the top

ten leading causes of death, and the number one cause of death due to a single infectious agent [62].

The estimated incidence of tuberculosis in 2017 was that 10 million people got sick with tuberculosis

disease [62]. Although the disease is curable, the estimated mortality in 2017 was that 1.57 million

people still died due to tuberculosis [62]. To establish the incidence of tuberculosis, a re-estimate of

the global latently infected population was done in 2014, and indicated that approximately 23% of

people are latently infected [63].

Epidemiology of tuberculosis involves a number of different aspects that contribute towards combating

the incidence and mortality of tuberculosis [64]. The main aspects of tuberculosis epidemiology

include

• identifying risk factors for the transmission and activation of tuberculosis infections,

• identifying the individuals or networks at greatest risk of disease,

• identifying, evaluating and supporting public health interventions, and

• obtaining and communicating the public health information.

However, the aspect that is of greatest interest for this text, is the study of the risk factors influencing

the transmission of the disease. Because M. tb is primarily transmitted through the airborne route, there

is great benefit in understanding and implementing measures to control this route of infection.
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In the study of airborne infectious diseases, animals are often used as a method of detecting the risk

to humans [65]. Human to guinea pig transmission is a common method that is used to study air

disinfection techniques [66–70]. This usually requires the sentinel animal to be placed in a different

room to the source of the pathogen, with mechanical ventilation used as a proxy for the risk of infection

in the ward.

This method of studying the risk of transmission of airborne diseases goes back to the experiments

by William F. Wells between 1930 and 1955 to identify whether pathogens can indeed be truly

airborne [71]. Together with his protégé Richard L. Riley, they formulated an equation to quantify the

risk of transmission for indoor spaces. The Wells-Riley equation [72] remains the most commonly

used model to quantify the risk of transmission for indoor spaces [17]. However, the Wells-Riley

equation is limited to situations in which the infected individuals are in the same zone as the susceptible

individuals [73]. These assumptions make the Wells-Riley equation not actually hold for the modelling

of airborne infectious disease research facilities where the sentinel animals are not in the same

airspace.

2.11 AIRBORNE INFECTIOUS DISEASE RESEARCH FACILITIES

The first airborne infectious disease research facility for the study of tuberculosis was created by

William F. Wells and Richard L. Riley in 1954 at a hospital in Baltimore, United States of America

[40,66,74]. The purpose of this facility was to prove tuberculosis is infectious via the respiratory route.

This was done by observing whether guinea pigs, that were breathing air vented from the six person

tuberculosis ward in the hospital, would become infected.

The facility had two animal chambers in the penthouse of the hospital, which housed the guinea pigs

that were used as sentinel animals. The ventilation system of the tuberculosis ward was designed to

channel the suspected infectious ward air over the guinea pig chambers. However, the air to one of the

two chambers was irradiated with ultraviolet light for disinfection, and the animals in this chamber

served as the control group. For the duration of the study, regular sputum culturing was performed

on the human patients, and patients with sputum negative results were moved out of the ward and

replaced with patients with sputum positive results. The guinea pigs were tested on a monthly basis

using the tuberculin skin test method. The results of the experiments conducted at this facility proved

the hypothesis that tuberculosis is transmitted via the airborne route.
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Following the proof that some infectious diseases are transmitted via the airborne route, research on

tuberculosis as an airborne infectious disease has been further conducted at multiple different facilities

on a laboratory scale (such as [75–77]). However, in this text, facilities studying the transmission

of wild strains of tuberculosis will be focused on. As such, the next major research facility for the

study of tuberculosis was built at the Hospital Nacional Dos de Mayo in Lima, Peru [69]. The facility

was similar in design to that of Wells and Riley, and was used to conduct research on the airborne

transmission of tuberculosis by patients co-infected by HIV and environmental controls.

Shortly after the creation of the facility in Peru, another was built next to the tuberculosis hospital

in Emalahleni, South Africa [70]. This facility too was based on the design of Wells and Riley,

with two animal chambers that receive ventilated air from a tuberculosis ward with infectious human

patients. The main purpose of this facility was the study of multi-drug resistant tuberculosis airborne

transmission and environmental controls. This facility is where the research covered in this text was

conducted, and will be further detailed in subsequent chapters.

2.12 CONTROL ENGINEERING AND INFECTIOUS DISEASES

In the case of infectious diseases, not only is the effect on an individual important, but also the

effect on the population. Epidemiology and networks of directly transmitted infectious diseases are

fundamentally linked, because an individual has a finite number of contacts to whom the infection

can be passed [78]. Thus, the control of the disease for an individual, could have implications for

the population as a whole. By considering the individuals’ response to infection in the context of a

population, it has been shown in an HIV contact network that by ’controlling’ certain individuals,

the spread throughout the population can be controlled [79]. Because the effect on the population

is important, for airborne infectious diseases it is useful to quantify the risk of transmission of the

pathogen.

Quantifying the risk of transmission can also be useful in the evaluation of the effectiveness of an

infection control strategy. As an infection control strategy, rapid active case finding of infected

individuals and community intervention is the more effective method [10–12]. However, active case

finding is much more expensive than the alternative passive case finding [13]. Therefore, environmental

control, such as ventilation and germicidal ultraviolet (GUV) lights, remains an important consideration

for the reduction of the risk of transmission of an airborne infectious disease [14, 15]. Environmental
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factors are especially important in the time between infection and diagnosis of the infection. Although

the time from the initiation of treatment to the time the treatment renders the individual non-infectious

can be rapid [16], for the reduction in risk of infection, environmental factors are also important,

especially in nosocomial settings.

A mathematical model can serve as an effective tool to quantify the risk of transmission of airborne

infectious diseases [17]. Mathematical models not only help in understanding, but have the advantage

that an exploration of a theoretical concept through mathematical simulation is typically quicker and

cheaper than conducting an experiment [18, 19]. Simulation can thus be used to increase the chance

of a successful experiment by identifying potential problem areas before the start of the experiment.

Mathematical models are an important part of the design of intelligent systems, where quantitative

models help to gain a deeper understanding of the process involved and allow for systematic design of

appropriate responses to the problem [20].

With a mathematical model, control engineering can help with the study of diseases by considering

them as a dynamic process that can be considered by both its transient and steady-state behaviour [80].

In this way, control systems’ knowledge basis and methods can be applied to the modelled problem to

give a different perspective on the disease. Some examples of this are:

• Optimal control of epidemics [81]

• Feedback systems for drug delivery [82]

• HIV/AIDS control and optimal initiation of therapy [18, 19]

• Selective pinning control in an HIV contact network [79]

However, the first step to being able to apply this control engineering knowledge, is to model the process.

The subsequent chapters will establish the model, and use it to analyse a medical experiment.
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FRAMEWORK

3.1 CHAPTER OVERVIEW

In this chapter, a framework for developing and manipulating a risk of transmission model for an

indoor space, and specifically for an airborne research facility, will be outlined. This will then be used

in the subsequent chapter to create a model to analyse a specific experiment in an airborne research

facility.

3.2 RISK OF TRANSMISSION MECHANISMS

The approach to model development that is followed by this text, is one of defining multiple different

effects of the risk of transmission within indoor spaces as individual mathematical descriptions. These

mathematical descriptions can then be combined. Where the mechanisms are linear, the law of

superposition is applicable; where the mechanisms are nonlinear, an alternative approach is given. This

allows freedom to construct relevant models for different situations and research questions.

The model will be given in a deterministic, mechanistic, nonlinear state-space and continuous time

format. Mechanistic physical laws are used to define the model, instead of using empirical modelling

to fit data. The deterministic model represents an average expected risk of transmission, which is

assumed to be the same as the average of an equivalent stochastic model. The deterministic model is

chosen as opposed to a stochastic probabilistic model [83] or a Markov chain model [84]. As a result of

using the expected risk of transmission, the modelling process will be simplified by removing the need

to specify the uncertainty through the definition of random variable distributions in the model.
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The probability that the pathogen deposits on the alveolar of an individual follows a Poisson distribution

[40,85]. This probability distribution is described through an exponential function, similar to the result

of solving a linear differential equation. Since other influencing factors on the risk of transmission can

be expressed in terms of rates of change, this allows for the use of differential equations to describe the

model.

A convenient way in which to represent a model is the state-space format that relates the inputs and

state variables through simultaneous, first-order differential equations. An advantage of the state-

space format is its relevance in control systems theory, which can assist in the study of infectious

diseases [19, 79, 86]. Methods for parameter extraction are well developed in control systems theory,

and provide tools for determining unknown parameters in a model from measurements [87–89].

The Gammaitoni-Nucci model also follows a state-space format [90] and, in contrast to the Wells-

Riley equation, allows for the consideration of non-steady state conditions of airborne infectious

particles [91].

Within the state-space format, the state variables are the smallest subset of system variables that fully

describe the system [92]. The determination of these system values is dependent on given initial values

of the state variables and the forcing functions. Four different categories of state variables are defined

for the model framework used in this paper; however, in the construction of a model, the number of

state variables within each category may vary. The first category is the groups of susceptible individuals

that represent the populations with the potential of being infected. The second and third categories

of state variables are the groups of infected individuals and the groups of exposed individuals. The

distinction between the infected and the exposed population classifications depends on the definition

of infection used in the model, and whether an incubation period is included in the model [93]. The

final category of state variables considered, is the number of infectious aerosol particles within a

space.

Parameters in the model will be given as non-time varying to avoid confusion between parameters and

state variables.
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3.2.1 New infections in the susceptible populations

New infections in the susceptible population Si, are described as an average probabilistic reduction of

the susceptible population based on the expected exposure to the pathogen. Susceptible populations

that are geographically separated can be defined as populations in different zones and denoted with

their subscript i. A zone is an air space, which can be a room or parts of a room [73, 94].

The rate of new infections is proportional to the pulmonary ventilation rate pi (m3·s−1) of the sus-

ceptible population and the concentration of infectious particles that the susceptible population is

potentially exposed to [90]. The concentration of infectious particles is given as the fraction of

the number of infectious particles Ci(t) (quanta) over the volume Vi (m3). An infectivity term θi

(quanta−1) allows for the consideration of a fraction of the re-breathed air that is inhaled, but does

not cause infection, where, for example, not all of the inhaled pathogens land on alveoli [95]. The

infectivity term also addresses the dimensionality problem of the Wells-Riley equation, even if it is

taken as unity [17].

New infections in the susceptible populations are described mathematically, in this model framework,

by:

dSi(t)
dt

=−piθi
Ci(t)

Vi
Si(t) . (3.1)

The use of respirators as an intervention method can be included into the model by multiplying (3.1)

with an extra factor R that reduces the risk of infection based on the efficacy of the respirator [96].

The usage of the subscripts for the susceptible population or zone under consideration allows for the

consideration of different susceptible populations or zones. This is because a population could be

assumed to be present in more than one zone, depending on the manner in which the zones are defined.

The zones could be defined as something with physical barriers, like rooms in a hospital, or as sections

with different airflow, if the air is considered as not well mixed [73, 94]. When considering air that

is not well mixed in a room, the susceptible population can be assumed to be exposed to infectious

particle concentrations from more than one zone at the same time. The expected fraction of time spent

in each of these zones fi accounts for the susceptible population not being able to be in all the zones at

the same time. The infectious particle concentrations multiplied by the expected time fraction of zone
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m to n will then be summed, so that

dSx(t)
dt

=−pxθxSx(t)
n

∑
i=m

fi
Ci(t)

Vi
, (3.2)

where the susceptible population x comes into contact with the infectious particles concentrations of

zones m to n.

The pulmonary ventilation rate can also be taken as unique for each individual, then the mathematical

expression can be given as

dSx(t)
dt

=−
Nx

∑
j=1

(
p juS j(t)

n

∑
i=m

Ci(t)
Vi

)
, (3.3)

where uS j(t) is an indicator function, and takes the value 1 when individual j is still part of the

susceptible pool, but changes to 0 when that individual becomes infected. The total number of

(starting) susceptibles in population x is given by Nx.

Although the option of considering air that is not well mixed was presented here, for the remainder

of this text it will be assumed that the air is well mixed and that x = i. This simplifies the framework

presentation and will be the situation that will be considered in subsequent chapters.

3.2.2 Infections without an incubation period

New infections, when no incubation period is considered, are treated as the increase of the infected

population due to the average probabilistic reduction of the susceptible population based on the

expected exposure to the pathogen. The rate at which the infected population grows due to exposure to

the pathogen is given by

dIi(t)
dt

= piθi
Ci(t)

Vi
Si(t) . (3.4)

Equation (3.4) is the complement of (3.1). This ensures that the total population size remains constant

when no external factors, such as birth or deaths within the population, are considered. It is assumed

viable to leave out the consideration of these when modelling an airborne infectious diseases research

facility.
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3.2.3 Infections with an incubation period

The incubation period of the disease is important to consider when the measurement of the risk is

performed using a sentinel animal. To include an incubation period, an extra epidemiological population

is introduced as another state variable, namely the exposed individuals population category [93].

The exposed individuals are a hypothetical state, where the individual has been infected, but is

asymptomatic. This can also mean that the individual responds negatively to the diagnosis and testing,

however, this depends on the model and the situation considered.

If an incubation period is considered, then the individuals first become exposed before they transition

to the infected state. The exposed population Ei then increases based on the expected exposure to the

pathogen. The rate at which the exposed population grows due to exposure to the pathogen is given

by

dEi(t)
dt

= piθi
Ci(t)

Vi
Si(t) . (3.5)

The transition from the exposed to the infected state is based on an incubation period delay rate αx. The

terms that then govern this mechanism in the exposed and the infected individuals, is given as

dEi(t)
dt

=−αiEi(t) (3.6)

in the exposed individuals population, and

dIi(t)
dt

= αiEi(t) (3.7)

in the infected individuals population.

Equation (3.5) is the complement of (3.1), and (3.6) is the complement of (3.7). This ensures that

the total population size remains constant when no external factors, such as birth or deaths within the

population, are considered.
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3.2.4 Generation of infectious particles

Infectious particles are assumed to be generated in the airspace through the expulsion of small,

pathogen-containing aerosol particles by infected individuals [44, 97, 98], with the infectivity of an

airborne disease taken to be directly linked to these cough-generated aerosols [41, 47].

The infectious particles in a zone Ci(t) are modelled in units quanta. A quantum of infection is defined

as the number of infectious particles that would infect 63.2% (i.e. 1− e−1) of the population, if every

member of the population was exposed to this quantity of infectious particles [40]. The quanta is a

hypothetical infectious dose unit and describes the infectivity as well as the infectious source strength

of an epidemiological outbreak [17].

The total average size distribution of coughed droplet nuclei is approximately 0.5-6 µm [43] and there

is a proven increase of aerosol particles, in the region of microbial particle sizes, of 3-4 µm due to

human room occupation [42]. Therefore, a direct link between the number of infected and the quantity

of infectious particles in an indoor space seems reasonable.

The rate at which infectious particles are generated in a zone is proportional to the rate of quanta

expelled by an individual φi (quanta · h−1). If the infectious individuals Ii(t) in a zone are each

assumed to generate quanta at the same rate on average, then the rate at which quanta in a zone is

generated is given by

dCi(t)
dt

= φiIi(t) . (3.8)

where φi is the function that describes the generation of quanta by the infectious population Ii(t) that

expels quanta into zone i.

It is, however, possible to also define a different quanta generation function for each individual, such

that the mathematical expression then becomes

dQi(t)
dt

=
Ni

∑
k=1

φik(t)wik(t) , (3.9)

where wik(t) is an indicator function, and takes the value 0 when the potential infector k is not

contributing to the quanta generation in a zone, and is 1 when that infector is. This means that the total
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number of potential number of infectors, Ni and their infectiousness when they are infectious must be

known a priori.

The quanta generation rate φ is backwards calculated from epidemiological data. The quanta generation

rate (quanta · h−1) is in the range of 1.25−30840 quanta · h−1, depending on the situation [90,91,99];

however, for an average TB patient, the range is between 1.25−12.7 quanta · hour−1 [99]. Inherent

in the backwards calculation of the quanta generation rate is the viability loss and the deposition loss

of the pathogen, therefore these mechanisms should not be considered twice when using the quanta of

infection [17, 100].

However, the quanta of infection does not have to be used as the unit of infectious particles, and φ

could be set equal to an equivalent dose response function. An example of this is to set

φ = Gβ , (3.10)

where G is the emission rate of pathogens per infected individual, and β the alveoli disposition

fraction [101]. However, when doing so, the implications of moving from a hypothetical infectious

dose unit (quanta) to an actual infectious dose unit need to be carefully considered. The viability of the

aerosol pathogen, for instance, would then need to be taken into account.

3.2.5 Dispersion and distribution of infectious particles

The proximity of infected individuals to susceptible individuals, in relation to the ventilation air

ducts, can be an important factor [15]. In situations where the air in the room is not well-mixed, this

can be modelled by using different zones and the transfer rate of infectious particles between these

zones [73, 84, 94].

The rate at which infectious particles are dispersed out of and diffuse into different zones or into the

environment, is dependent on the air movement in a zone. The physical law of conservation of mass is

used here as the modelling principle. This implies that infectious particles in a zone are assumed to

stay in that zone unless they are removed through air movement or decay from that zone. The removal

of infectious particles from a zone due to air movement is given by the mathematical expression

dCi(t)
dt

=−Qi

Vi
Ci(t) , (3.11)
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CHAPTER 3 RISK OF TRANSMISSION MODELLING FRAMEWORK

where the function Qi describes the airflow out of the zone in volume of air per unit time. The

environment is assumed to be an unmodelled sink of the pathogens, so as to obey the conservation of

mass theory.

The increase of infectious particles in zone i due to the removal of infectious particles from another

zone, j, is then given by

dCi(t)
dt

=
Q j

Vj
C j(t) ,where j 6= i. (3.12)

Equation (3.12) assumes that Q j(t) is not only the airflow out of zone j, but also the airflow into zone

i. The model indirectly accounts for temperature changes between zones through the consideration of

volumetric airflow, because the rate at which infectious particles are moved between zones is directly

proportional to the volumetric airflow rates. Volumetric airflow rates are proportional to temperature

conditions according to Charles’s law, which forms part of the ideal gas law [102].

The equations for the dispersion and diffusion of infectious particles do not account for the dynamics

involved in the dispersion of infectious particles from infected individuals into the zone through

coughing, speaking and other respiratory expulsions [103–105]. If the zone is not well-mixed or

the susceptible population is assumed to be in the same zone as the infected population, then these

dynamics may be an important consideration.

3.2.6 Removal of infectious airborne particles through air filtration

The removal of infectious particles can be achieved through air filtration, if air in the facility passes

through an air filter between a zone containing infectious individuals and a zone containing susceptible

individuals [96, 100]. This is handled by defining the filter in a zone

dCi(t)
dt

=−QriηriCi(t) , (3.13)

where ηr is the efficiency of the filter at removing the pathogen from the circulated air Qr passing

through the filter.

Air filtration was not investigated in the experiment at the AIR facility that will be discussed in the

next section; however, this mechanism is still mentioned here for completeness.
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CHAPTER 3 RISK OF TRANSMISSION MODELLING FRAMEWORK

3.2.7 Removal of infectious airborne particles using GUV lights

The removal of infectious particles due to germicidal ultraviolet (GUV) irradiation will be assumed

manifested as an exponential decay of the bacteria, with none of the bacteria being resistant to the

irradiation [96, 100, 106, 107]. This is then modelled as

dCi(t)
dt

=−kiHiCi(t) , (3.14)

where ki is the standard decay rate constant due to GUV light for the microbe considered and Hi is the

UV fluence (µW· cm−2) of the fixture [106]. The range of the standard decay rate constant k (m2J−1)

for M. tuberculosis is between 0.0987−0.4721m2J−1 [108, 109].

Upper room GUV irradiation can be included in the model in two different ways. The first is to define

a separate zone in which the GUV irradiation acts in a room with a transfer of infectious particles

between the upper and lower room, based on the air mixing. The second method is to model the

upper room GUV irradiation as affecting only a fraction of the zone, with the air being assumed to be

well-mixed in this zone. This changes the mathematical expression of (3.14) to

dCi(t)
dt

=−ViU

Vi
kiHiCi(t) , (3.15)

where ViU is assumed to be the volume of the part of the zone i that is exposed to the ultraviolet

germicidal irradiation.

The ultraviolet fluence is a function of time if the fluence changes, for example if the GUV lamps are

switched on and off on alternating days.

3.2.8 Modelling assumptions

This model serves only to capture the risk of transmission and would thus need to be considered within

the framework of a greater epidemiological model if long time frames that investigate airborne disease

epidemics is to be considered.

This modelling framework assumes that the quanta that has been expelled as aerosoled droplets stay in

the zone unless they are specifically removed through the usage of dynamics that determine this in the

designed model.
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The unit of time that is chosen for the modelling is not as important as that it is consistently applied in

all parameters’ unit definitions.
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CHAPTER 4 AIRBORNE INFECTIONS RESEARCH

FACILITY MODEL AND

SIMULATION

4.1 CHAPTER OVERVIEW

As an example of how the modelling framework from Chapter 3 can be used, a model will be

developed for the Airborne Infections Research (AIR) facility at eMalahleni (formerly known as

Witbank), Mpumalanga [70, 110, 111]. Experimental data that was obtained from a study, on the

effectiveness of upper room ultraviolet irradiation (GUV) irradiation, conducted at the AIR facility, are

then compared to model predictions. The study at the AIR facility was run from 31 August 2015 to 4

December 2015.

4.2 EMALAHLENI AIR FACILITY MODEL

The Airborne Infections Research (AIR) facility in eMalahleni is alongside the Mpumalanga provincial

multidrug-resistant (MDR) tuberculosis referral hospital, and is used to conduct experiments on

the efficacy of different interventions aimed at reducing TB transmission, and in particular MDR

tuberculosis transmission. These interventions included upper room GUV irradiation, surgical face

masks used by TB patients, and portable room air disinfection units.

The AIR facility consists of wards for TB patients and two animal rooms, and is based on the design

of the research facility used by Riley from 1958-1962 [74]. The wards consist of three rooms, with

two beds in each room, patient ablutions and a patient day room. A maximum of six patients can be

accommodated in the AIR facility. A layout of the ward area and the patient rooms is shown in Figure

4.1.
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Patient Day

    Room

Patient Room

 Patient

Ablution

Animal

 Room

   One

Animal

 Room

  Two

Male

Shower

Female

Shower

Airlock Airlock

Patient Room

Patient Room

Figure 4.1. The layout of the wards and animal rooms of the Airborne Infections Research (AIR)

facility in eMalahleni.

The assumption in the model will be made that the air is well-mixed because there are paddle fans

in each of the ward rooms to help facilitate the air mixing in the room. The air turnover rate, or air

changes per hour (AC · h−1), of the paddle fans used in the AIR facility is approximately 57 AC ·

h−1 [111]. This is much greater than the ventilation rate, which was estimated to be between 3-6 AC ·

h−1. This means that for each air change that occurs, the air in the room is circulated approximately 10

times. Using these paddle fans, the assumption of well-mixed air seems reasonable. Otherwise a zonal

model can be expanded to conform to imperfect air-mixing [94].

The facility is described by two sets of susceptible populations Sx(t), representing the guinea pigs in

each animal room and a single population of infectious individuals Iw(t). Three zones are considered

in this model. The first zone considered is the ward i = w, which consists of the three rooms, common

room and toilets where the infectious patients stay. The other two zones considered are the spaces

occupied by the cages in each of the two animal rooms; i = 1 for animal room one and i = 2 for animal

room two. Since the guinea pigs only have access to the space their cage occupies, only this space

will be considered as a zone. The volume considered in each of these zones is given by Vi. There are

no paddle fans in the animal rooms, therefore the air the guinea pigs are exposed to is only moved
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through the ventilation system. However, the inlet ventilation air into the animal rooms is split up

and delivered through an installed diffuser in front of each of the cages. This system ensures that the

sentinel animals, in their cages, are each exposed to approximately equal amounts of ventilation air, as

well as having good airflow over each cage space.

Nine state variables are used to describe the AIR facility. Three states describe the number of infectious

particles in each of the three zones Ci(t). Six states describe the guinea pig populations; three for each

animal room: x = 1 for animal room one and x = 2 for animal room two. The guinea pig population

is described through classification as infected Ix(t), exposed Ex(t) or susceptible Sx(t). The model is

given in (4.1)-(4.9).

dS1(t)
dt

=−pθ
C1(t)

V1
S1(t) (4.1)

dS2(t)
dt

=−pθ
C2(t)

V2
S2(t) (4.2)

dE1(t)
dt

= pθ
C1(t)

V1
S1(t)−αE1(t) (4.3)

dE2(t)
dt

= pθ
C2(t)

V2
S2(t)−αE2(t) (4.4)

dI1(t)
dt

= αE1(t) (4.5)

dI2(t)
dt

= αE2(t) (4.6)

dCw(t)
dt

= φwIw−
Qw

Vw
Cw(t)− kwHw

VwU

Vw
Cw(t) (4.7)

dC1(t)
dt

=
Q1in

Vw
Cw(t)−

Q1out

V1
C1(t) (4.8)

dC2(t)
dt

=
Q2in

Vw
Cw(t)−

Q2out

V2
C2(t) (4.9)

Patients, as the source of the infectious particles Iw, are recruited for the study, based on referral by the

adjoining multi drug-resistant tuberculosis hospital. Only individuals with lab confirmed positive acid-

fast bacilli (AFB) sputum smear test results are considered for inclusion in the study. The patients are

intended to remain at the AIR facility for two weeks. They are required to spend at least 20 hours a day

within the facility, although most spend more than this due to their illness. The timeline of the patients

admitted at the AIR facility for the study is given in Figure 4.2. It will be assumed that the generation

of quanta is representative of an average, constant value φw for all infected individuals.

By using the theoretical quanta of infection, the uncertainty of a number of factors can be lumped into
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Figure 4.2. The timeline for the patients admitted to the AIR facility and the duration of their admit-

tance. On the y-axis is the patient number. (Patient names are excluded for confidentiality.)

the variable φ , allowing for easier estimation of this parameter in the face of uncertainty. The quanta of

infection does not, however, give a realistic indication of the number of infectious particles in a zone,

but was chosen, instead of a dose response model, because of the problem of a lack of infectious dose

data for infections in humans [17].

Each animal room contained 90 guinea pigs, which served as a sentinel animal model for the risk

of airborne transmission of TB. Outbred, specific pathogen free, Dunkin-Hartley guinea pigs were

used in the experiment, with an equal number being male and female. Two guinea pigs are kept in a

cage, but each animal room has 50 cages, leaving 10 cages unused per animal room. It is assumed that

all the guinea pigs have the same constant average pulmonary respiratory rate p = p1 = p2 and that

they are equally susceptible to infection θ = θ1 = θ2. The incubation period of the pathogen is given

by α = α1 = α2, the time taken from infection until the guinea pig exhibits symptoms of infection

or reacts positively to tuberculin skin test (TST) diagnosis. Infected animals are euthanised and not

replaced during the course of an experiment. Animal care was overseen by a licensed laboratory

veterinarian and all protocols were approved by the Animal Use committees of the South African

MRC, the US CDC, and Harvard Medical School.
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The ventilation system airflow out of the wards Qw is routed to either of the two animal rooms. The

animal rooms receive ventilation air from either the patient ward Qi in or high efficiency particulate

arrestance (HEPA) filtered outside air on alternate days. The ward air is assumed to be contaminated

with the pathogen, and HEPA filtered outside air is assumed to be pathogen-free. The animal room

ventilation is such that when animal room one receives ward air, animal room two will receive HEPA

filtered outside air. The airflow out of the animal rooms Qiout is assumed to be equal to the combined

airflow into an animal room. This assumption is made because no direct measurement for the airflow

rate out of the animal rooms is available; however the airflow out is controlled to maintain a constant

negative pressure in the animal rooms.

On the days that animal room one receives the ward air, upper room GUV lights are turned on inside

the wards. The fluence of the UV light fixtures Hw is then either equal to the output fluence of the

fixture or zero, depending on whether the GUV fixtures are on or off. The standard decay rate constant

due to GUV irradiation for M. tuberculosis is given by kw. Animal room two is assumed to be the

control room for this experiment, aimed at determining the efficacy of upper room GUV light, and

receives ventilation air untreated by GUV lights.

The two animal rooms in the facility are maintained under animal biosafety level 3 conditions [112].

The temperature in the animal rooms is kept at 22± 1◦C, with a relative humidity of 50± 10%.

Workers are required to wear a 3M 6000 full face respirator. It can therefore be assumed that the only

source of infection of the guinea pigs is from the air from the patients through the ventilation system.

Additionally, the workers must shower before entering and upon exiting the animal room area. The

showers and airlocks are indicated in Figure 4.1.

The model for the AIR facility, given by (4.1) to (4.9) has been solved in Addendum A. This has been

done to provide an alternative to using numerical integration to simulate using the model. However, in

this text the simulations are done using numerical integration.

4.3 GERMICIDAL ULTRAVIOLET IRRADIATION STUDY

The AIR facility study that ran from 31 August 2015 to 4 December 2015 will be simulated using the

model given by (4.1) - (4.9). The simulation is performed by solving the model using the Runga-Kutta

integration method with a fixed time step of 1 minute per time step [113,114]. The parameters required
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to solve the model are obtained from a variety of sources. The ward, duct and animal cage dimensions

are obtained from measurements at the facility and given in Table 4.1.

The ventilation rates, the GUV fixture fluence and the infectious source are taken as time varying

parameters to accommodate the study situation. The ventilation data and the GUV fixture switching

are obtained from the Supervisory Control and Data Acquisition (SCADA) system installed in the AIR

facility. This gives a real-time measurement of the airflow rates between the different zones of the

facility. The ventilation airflow rate data from the SCADA system for the airflow out of the ward is

given in Figure 4.3 and the measured airflow into and out of the two animal rooms is given in Figure

4.4.

Table 4.1. The measured parameters from the AIR facility used for the simulation. The parameters are

defined in their most convenient units.

Measurement Value

Aduct:ward out 0.09m2

Aduct:ward−animal room 0.015m2

Aduct:animal roomcleanair 0.034m2

Ncage 50

Vward room1 3.0m×4.8m×2.6m

Vward room2 3.2m×4.8m×2.6m

Vward room3 2.9m×4.8m×2.6m

Vward commonroom 5m×4m×2.6m

Vcage 0.56m×0.35m×0.36m

Vw 164.8m3

VUw 21.7m3

Va1 174.8m3

Va2 174.8m3

The upper room GUV fixture fluence is 5 µW · cm−2 when it is on [111], and the fluence is taken as

zero when it is off. The GUV light is assumed to uniformly irradiate the space in the patient ward

above a height of 2.1 m, or a volume of VwU = 21.7 m3. The on and off switching data is obtained

from the SCADA system, and the resulting GUV fluence in the ward is shown in Figure 4.5.
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Figure 4.3. The volumetric air flow rate from the patient wards to the animal rooms, which is calculated

by taking the measured SCADA system values in (m · s−1) and multiplied by the area of the duct.
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(a) Animal room one
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(b) Animal room two

Figure 4.4. The volumetric air flow rates into the animal rooms Qx in (top) are calculated by taking

the measured SCADA system airflow velocity (m · s−1) and multiplied by the area of the duct. The

volumetric air flow rates out of the animal rooms Qxout (bottom) are calculated by taking the ward air

flow rate Qx in and adding the measurement of the HEPA filtered air flow rate into the animal room.
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The infectious source parameter Iw is defined by the number of patients at the AIR facility and is

obtained from the patient timeline, Figure 4.2. Patients are arbitrarily assumed to enter and leave the

AIR facility at the start of a work day, which is taken to be at 6 AM. The number of patients in the

wards for each day of the study is shown in Figure 4.6.

The exact time of day that new patients are being admitted and patients are being discharged is not

known. The assumption that patients only enter and leave the facility at 6 AM is chosen, because

it simplifies the timing for the purpose of the simulation. This is also the time that was set for the

automatic switching of the ward air from one animal room to the other by the SCADA system.

The remaining model parameters needed for the simulation are taken from literature. The source of

these parameters is given in Table 4.2, along with the literature reference. Where the given parameters

in Table 4.2 are ranges, the actual value used for the simulation still needs to be determined. For

this simulation, the GUV irradiation decay constant is chosen to be the lowest value of its range,

kw = 0.0987.

Table 4.2. The parameters used for the simulation and their source. The parameters are defined in their

most convenient units.

Parameter Value Source

φ 1.25 - 12.7 quanta ·h−1 [99]

p 0.23 m3 ·h−1 [66]

θ 1 quanta−1 [17]

α 0.03 - 0.2 day−1 [115]

k 0.0987 - 0.4721 m2 · J−1 [106]

H 5 µW · cm−2 [111]

4.4 STUDY PARAMETER ESTIMATION

Due to the range of the quanta generation rate, φw, and the incubation period, α , that is given within

the literature, a parameter estimation problem is set up. This is to estimate the parameter values within

the ranges given in Table 4.2 that best fit the data obtained from the AIR facility.
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Figure 4.5. The upper room GUV fixture fluence H in the AIR facility. The GUV lamps were switched

on during the days animal room one received ward air and were switched off during the days animal

room two received ward air.
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Figure 4.6. The total number of patients in the wards during each day of the experiment. All of these

patients are assumed to expel infectious particles at the same hourly rate.
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A least squares, cost function minimisation approach is used in the parameter estimation [89]. This

method involves the minimisation function solving the model given by (4.1) - (4.9) for a set of φw and

α chosen by the minimisation function, then evaluating the cost of the solution. Through an iterative

process, the minimisation function chooses a set of φw and α to minimise the cost.

The minimisation cost function is set up to be

J(α,φ) = ∑
j=1,2,3

(I1(t j)− I1, j)
2

+ ∑
j=1,2,3

(I2(t j)− I2, j)
2

+R · (H(α−αmax) · (α−αmax)
2

+H(αmin−α) · (αmin−α)2

+H(φ −φmax) · (φ −φmax)
2

+H(φmin−φ) · (φmin−φ)2) (4.10)

The cost function’s first term describes the error between the simulation output, Ix(t j), and the TST

results, Ix, j, of the number of infected in each animal room, x, for each of the TST measurements, j.

The Heaviside function, H, is used to penalise solutions that fall outside of the range allowed for the

parameters, as given in Table 4.2. The tuning factor, R, is used to penalise a solution that lies outside

the constraint range more than the error between the simulation output and TST results. The tuning

factor is set to R = 100, ensuring that the minimisation function does not violate the given parameter

ranges from Table 4.2.

The Nelder-Mead simplex search function is used as a derivative-free based minimisation algorithm

for this problem [116]. The quanta generation rate for the simulations is found to be φw = 2.5 and

the incubation period is α = 0.03. This was found with a final minimisation cost function value of

J = 300. The root mean square error (RMSE) is 13.48 .

The parameters units with a time aspect are all scaled in the simulation so that all the units and the

integration time step match up. Although this is an obvious step, it is important to remember for the

validity of the simulation results. Additionally, the initial conditions used for the simulation are given

in Table 4.3.
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The solution of the model, for each iteration of the minimisation function, is obtained using the

Runga-Kutta integration method with a fixed time step of 1 minute per time step [113, 114].

The simulation results, of the 31 August 2015 to 4 December 2015 experiment at the AIR facility,

are given in Figure 4.7, for the state variables of the guinea pig infected, exposed and susceptible

populations for each of the animal rooms and the number of infectious particles in each of the three

zones. The TST results of Table 4.4, that fall within the period of the simulation, are also incorporated

into Figure 4.7.

If the parameter estimation is again performed in the unbounded scenario, then the new values for

the quanta generations rate is φw = 61.5 and for the incubation period is α = 0.0027. This gives

only a slightly better RMSE of 11.02. Preference is therefore given to the literature bound viable

results.

Table 4.3. The initial conditions used for the simulation.

Initial condition Value

S1(t0) 90

S2(t0) 90

Cw(t0) 0

C1(t0) 0

C2(t0) 0

I1(t0) 0

I2(t0) 0

E1(t0) 0

E2(t0) 0
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Table 4.4. Tuberculin skin test results for the two animal rooms. The total considered to have been

infected per animal room is given by the sum of the number with positive TST results and the number

euthanised.

20 Aug 2015 01 Oct 2015 30 Oct 2015 25 Nov 2015

Animal room 1 positive TST: 0 0 9 11

Animal room 1 euthanised: 0 0 0 11

Animal room 1 total infected: 0 0 9 22

Animal room 2 positive TST: 0 0 2 5

Animal room 2 euthanised: 0 0 0 14

Animal room 2 total infected: 0 0 2 19
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Figure 4.7. The infected (solid), exposed (dashed) and susceptible (dotted) guinea pig (GP) populations

in the AIR facility. The animal room one guinea pig populations (top) receive ward air during days

when the upper room GUV fixtures are on, and animal room two guinea pig populations (bottom)

receive ward air during the days when the upper room GUV fixtures are off. The total number of

infected guinea pigs that were observed during the experiment (triangle), and as given in Table 4.4.
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CHAPTER 5 RESULTS AND DISCUSSION

5.1 CHAPTER OVERVIEW

The simulation results, of the 31 August 2015 to 4 December 2015 experiment at the AIR facility,

are given in Figure 4.7 and Figure 5.2, for the state variables of the guinea pig infected, exposed and

susceptible populations for each of the animal rooms and the number of infectious particles in each of

the three zones. The TST results of Figure 4.4, that fall within the period of the simulation, are also

incorporated into Figure 4.7.

5.2 GUINEA PIG POPULATION SIMULATION RESULTS

The TST results are taken as the measure of the number of infected guinea pigs. As an animal model,

the guinea pig has a similar disease progression as a result of infection by the M. tuberculosis pathogen

as that of humans, albeit synonymous to the response of the unsuccessful immune response of a

human [65, 117]. This makes guinea pigs well suited for airborne M. tuberculosis transmission studies

as sentinel animals [118]. However, this measure of infectiousness is problematic, because it does not

account for the complexity and dynamics of disease manifestation in the guinea pig.

The exposed guinea pig population is an unmeasured state that attempts to account for some of the

disease manifestation complexities and dynamics by introducing an incubation period. This is an

attempt at modelling the delay between infection by the pathogen to diagnosis through a visible

induration from a TST. However, the exposed guinea pig population result is theoretical, and should

be considered with care; reversions [70], for instance, have also not been included in the model.

The difference between the simulated number of infected guinea pigs and the experimental results

(that is, the difference between solid line and triangles in Figure 4.7) is shown in Figure 5.1. It can
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be seen that the simulated animal room one infected population better reproduces the experimental

measurement of infected animals initially, but the simulated animal room two infected population is a

much better fit for the end of the experiment.

01 Oct 30 Oct 25 Nov
Date of observation

-10

-5

0

5

10

15

E
rr

or

Figure 5.1. The error of the prediction giving the difference between the number of infected from the

experiment and the simulated results. The left bars indicate the difference for animal room one, and

the right bars for animal room two.

5.3 INFECTIOUS PARTICLE SIMULATION RESULTS

The number of infectious particles in the zones is an unmeasured, ’internal’ state of the model. These

states account for higher order dynamics in the prediction of the infected population, but their absolute

value is theoretical, and should be considered as such. The unmeasured states of the quanta of infectious

particles in the three zones is shown in Figure 5.2, and an arbitrary two day period is shown in Figure

5.3 to show the day to day pattern. Considerable fluctuations in the number of quanta in the zones can

be noted from Figure 5.2, with three mechanisms attributed as responsible for these fluctuations.

The first mechanism that impacts the fluctuations in the number of infectious particles is the number of

patients in the wards. This is clear from (4.7); however, it can also be seen when comparing Figure 4.2

and 5.2. As an example, the average number of number of quanta on a day when the GUV lights are

on can be compared during the first few days in October versus middle November. On 2 October 2015,

six patients are in the ward and the average number of quanta is 3.8; however, on 15 November 2015,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

43

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5 RESULTS AND DISCUSSION

31 Aug 01 Oct 01 Nov 04 Dec
0

5

10
C

w

31 Aug 01 Oct 01 Nov 04 Dec
0

0.1

0.2

0.3

C
a1

31 Aug 01 Oct 01 Nov 04 Dec
0

0.1

0.2

0.3

C
a2

Figure 5.2. The number of quanta Cw (patient wards), Ca1 (animal room one) and Ca2 (animal room

two) in each of the zones considered for the AIR facility.

only two patients are in the ward and the average number of quanta is 1.4. The average airflow out of

the ward is similar on the two days, being 0.0793 m3· s−1 on 2 October 2015 and 0.0674 m3· s−1 on

15 November 2015.

The second mechanism that impacts the fluctuations of infectious particles in the zones is the ventilation

rate. For the two animal rooms (Figure 4.4) this is expected to have a big impact on the fluctuations,

because of the switching between ward air and clean HEPA filtered outside air on alternate days. When

no ward air is supplied to the respective animal room, there is no source of infectious particles, and the

clean air supply quickly removes the infectious particles that are in the animal room.

However, not only are the fluctuations of the air flow rate into the animal rooms significant, but so

are the fluctuations in the airflow out of the wards. This airflow fluctuates due to day-night swings in

temperature, because the temperature feedback controller of the ward outlet fan was run in manual

mode. The airflow fluctuation is especially noticeable on the simulated number of infectious particles

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

44

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5 RESULTS AND DISCUSSION

01 Oct 02 Oct 03 Oct
0

5

10

15
C

w

01 Oct 02 Oct 03 Oct
0

0.1

0.2

C
a1

01 Oct 02 Oct 03 Oct
0

0.1

0.2

C
a2

Figure 5.3. The number of quanta Cw (patient wards), Ca1 (animal room one) and Ca2 (animal room

two) in each of the zones considered for the AIR facility. However, only a two day period is shown to

highlight the day to day pattern seen in Figure 5.2.

in animal room two, as seen in Figure 5.3. The facility also experienced a number of power outages,

due to an unstable supply from the national South African electrical grid during this period, causing

the ventilation (and GUV fixtures) to switch off for the short span of time between the power outage

and the time taken before the backup diesel generator switched in.

When the average ward air received by each of the two animal rooms from Figure 4.4 is compared, it is

found that animal room one gets 12.7% less ward air than animal room two. The average combined air

into the animal rooms is 10.7% higher than the average measured air out of the ward. These deviations

are most like a result of inaccuracies with the air flow measurement instruments, and give an idea of

the typical uncertainty surrounding these measurements.

The third mechanism that impacts the fluctuations of infectious particles in the zones, is the upper room

GUV irradiation. However, this fluctuation is intended from the experiment design. It can be seen
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CHAPTER 5 RESULTS AND DISCUSSION

from Figures 5.2 and 5.3 that animal room one receives approximately half the number of infectious

particles as opposed to what animal room two receives. This is due to the upper room GUV irradiation

lowering the number of infectious particles in the wards on the days when it is on. This then also

translates to fewer number of simulated infections in animal room one.

5.4 SENSITIVITY OF THE SIMULATION PARAMETERS

There is significant uncertainty surrounding some of the parameters that were used in the simulation,

which is mostly due to the large viable ranges of the parameters obtained from literature. To quantify

the uncertainty, two sensitivity analyses were performed on the parameters used in the simulation.

Both sensitivity analyses were conducted by keeping all parameters constant, and varying only a single

parameter at a time.

The first sensitivity analysis aims to illustrate what the effects of uncertainty in the parameter values

taken from literature are. The α , k and φ parameters were each varied by their range given in Table

4.2, and the number of patients Iw in the ward each day was increased and decreased by one. The

resulting predictions for the number of infected guinea pigs in animal room one and animal room

two can be seen in Figure 5.4. From this analysis, the impact of not knowing the true values of α ,

k and φ on the simulation outcomes is demonstrated. However, of greatest concern to the accuracy

of simulation results is the quanta generation rate parameter, φ , which has the biggest impact on the

simulation results for its plausible literature range. From the value used in the simulation, φ can vary

by 458%, which means the outcome of the simulation (the predicted number of infected guinea pigs)

for animal room one can vary by 351% and for animal room two can vary by 256%. However, model

parameters that have been obtained through instrumentation measurements by the SCADA system are

expected to have low uncertainty (on the order of 1−10% for typical instrumentation [119]).

The second sensitivity analysis aims to illustrate the relative uncertainty in the different model para-

meters by increasing and decreasing each by an equal amount one parameter at a time. The resulting

predictions for the number of infected guinea pigs in animal room one and animal room two, when

each parameter was arbitrarily increased and decreased by 50% while keeping the others constant, can

be seen in Figure 5.5. From this analysis, it can be seen how the error of the true parameter value

and the estimated value would affect the accuracy of the simulation results. It can also be noted that

an uncertainty in some parameters is indistinguishable from an uncertainty in others, for example,
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the uncertainty in pulmonary respiration rate p, the quanta generation rate φ and the susceptibility

to infection θ all affect the simulation outcome equally. This means that by estimating the quanta

generation rate φ , any error between the true and simulated values of the pulmonary respiration rate

or susceptibility to infection, would result in a corresponding error between the true and simulated

value of the quanta generation rate. Additionally, the airflow Q1in and Q1out have a similar effect on the

results, but in different directions, giving the same overall band of uncertainty; Q2in and Q2out affect

animal room two instead of animal room one.

The sensitivity of the model to the quanta generation rate parameter, φ , indicates a research gap

around the quanta of infection. Refining the constituent mechanism of the quanta of infection, can be

beneficial in improving the predictability of simulations. This would also improve the understanding

of factors that play a role in the mechanism of TB transmission. However, the quanta of infection

unit of measure transparently represents this uncertainty, because it is a hypothetical unit. To refine

the understanding of transmission and move away from the quanta of infection unit, would require

additional measurements or other forms of experimental data [120].
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(a) α

(b) k

Figure 5.4. The sensitivity of the number of infected guinea pigs (GP) when each of the parameters is

varied by their literature given range, as in Table 4.2. The black line indicates the simulated number of

infected guinea pigs, and the gray area the band of variation. The number of patients in the ward, Iw,

was varied by ±1 patient.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

48

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5 RESULTS AND DISCUSSION

(c) φ

(d) Iw

Figure 5.4. The sensitivity of the number of infected guinea pigs (GP) when each of the parameters is

varied by their literature given range, as in Table 4.2. The black line indicates the simulated number of

infected guinea pigs, and the gray area the band of variation. The number of patients in the ward, Iw,

was varied by ±1 patient. (Continued.)
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(a) p, φ and θ

(b) α

Figure 5.5. The sensitivity of the number of infected guinea pigs (GP) when each of the parameters is

varied by ±50%. The black line indicates the simulated number of infected guinea pigs, and the gray

area the band of variation due to varying the parameter.
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(c) H and k

(d) Qw

Figure 5.5. The sensitivity of the number of infected guinea pigs (GP) when each of the parameters is

varied by ±50%. The black line indicates the simulated number of infected guinea pigs, and the gray

area the band of variation due to varying the parameter. (Continued.)
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(e) Q1in and Q1out

(f) Q2in and Q2out

Figure 5.5. The sensitivity of the number of infected guinea pigs (GP) when each of the parameters is

varied by ±50%. The black line indicates the simulated number of infected guinea pigs, and the gray

area the band of variation due to varying the parameter. (Continued.)
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5.5 SUPER-SPREADERS AND THE STUDY

With the study outcome and the simulation, a situation that must be considered is whether one patient

in the ward could have caused the majority of the infections. This is along the theory that there are

perhaps some people that are more infectious than others when they have active tuberculosis disease.

These individuals are then known as ’super-spreaders’ [121].

To consider this situation, the average generation of quanta, φw, is considered as unique for each of the

13 patients, as shown in Figure 4.2. This would then change (4.7) to be:

dCw(t)
dt

=
13

∑
n=1

(φwnIwn)−
Qw

Vw
Cw(t)− kwHw

VwU

Vw
Cw(t) (5.1)

The same methodology is then followed for the parameter estimation, again a least squares, cost

function minimisation algorithm is used. However, the cost function is now set up to be:

J(φn=1,...,13) = ∑
j=1,2,3

(I1(t j)− I1, j)
2

+ ∑
j=1,2,3

(I2(t j)− I2, j)
2

+R ·
13

∑
n=1

(H(φn−φmax) · (φn−φmax)
2

+H(φmin−φn) · (φmin−φn)
2) (5.2)

The first term of the cost function describes the error between the simulation output, Ix(t j), and the

TST results, Ix, j, of the number of infected in each animal room, x, for each of the TST measurements,

j. Refer to Section 4.4 for a detailed description of the parameter estimation methodology. The value

of α = 0.03 is kept from the previous minimisation output, and is not solved again here.

The final minimisation cost function value of J = 290 was found, which is slightly lower than the value

of 300 when considering the same value of the quanta generation rate φ for all the patients. The results

of this simulation, with the individual quanta generation rates per patient, are shown in Figure 5.6 and

5.7.

The difference in the results when considering individual patient quanta generation rates (Figure 5.6)

and when considering an average infectivity (Figure 4.7) is negligible. However, comparing Figure 5.7
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and 5.2, it can be seen that a higher quanta level was expected until the November data point when

considering individual patient quanta generation rates.

This simulation indicates that it does not seem as if it was the result of a super-spreader that caused

animal room 1 to have higher than expected guinea pig infections.

Table 5.1. The quanta generation rate for each of the patients when solved individually.

Patient φwn

01 2.5065

02 1.6987

03 2.2434

04 3.4697

05 1.7437

06 2.8572

07 2.7587

08 2.3840

09 0.9989

10 1.9375

11 1.6158

12 1.5696

13 0.9965
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Figure 5.6. The infected (solid), exposed (dashed) and susceptible (dotted) guinea pig (GP) populations

in the AIR facility. The animal room one guinea pig populations (top) receive ward air during days

when the upper room GUV fixtures are on, and animal room two guinea pig populations (bottom)

receive ward air during the days when the upper room GUV fixtures are off. The total number of

infected guinea pigs that were observed during the experiment (triangle), and as given in Table 4.4.

Simulated for each patient having an unique quanta generation rate.
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Figure 5.7. The number of quanta Cw (patient wards), Ca1 (animal room one) and Ca2 (animal room

two) in each of the zones considered for the AIR facility. Simulated for each patient having a unique

quanta generation rate.
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5.6 SIMULATION FIT AND EXPERIMENT OUTCOME

The major mechanism that influences the difference between the simulated results of the two animal

rooms, is the upper room GUV irradiation. Based on the parameters used, the simulation indicates

that animal room one should have fewer infections than animal room two. However, animal room one

actually had more infections than animal room two. This result is different to what was expected, both

from the initiation of the experiment and from the simulation results.

To check whether there was enough contact time of the GUV irradiation with infectious particles,

considering the high air turnover rate of 57h−1 due to the paddle fan, the time taken for infectious

particles to decay will be compared to the time that air particles are expected to be in the upper room

space. Solving (3.14) gives that the time taken for infectious particles to decay is τ = 1
kiHi

, which for

this experiment was 203 seconds. While the time that air particles are expected to be in the upper

room space is
(

VUw
Vw
·air turnover rate

)−1
, which for this experiment was 480 seconds. This means

that on each circulation of air in the room, it is expected that
(
1− e−480/203

)
= 90.6% of the infectious

particles in that air will decay. Considering that approximately ten units of air are circulated per unit

of air that is extracted from the room, it is concluded that there is sufficient contact time of the upper

room GUV irradiation with the infectious particles.

A potential reason for the difference in expected to experimental results could be as a result of

unmodelled dynamics of the disease manifestation. It could be that the actual number of infected

in animal room two is under-represented by the last diagnosis. To remove some of the uncertainty

regarding the incubation period, and unmodelled dynamics revolving around this, it is recommended

that the sentinel animals be kept for another month after the end of the exposure to ward air. This has

been done in a previous experiment [70], and is now the standard that is used by the AIR facility.

Although the guinea pig and TST is still the most relevant clinical endpoint [122], a difficulty exists

with using guinea pig TST results as the measurement for the number of infected. Because the TST

cannot be conducted at higher frequency intervals, only three data points per animal room are available

for this experiment. This makes it impossible to ensure that the data is a perfect representation of the

actual trend. It is unknown whether data points are slightly skewed through the natural variation that

results from slightly different responses to the exposure of the ward air by different animals. Using a

large number of guinea pigs for an experiment does reduce the risk of the data not showing the true

mean. Therefore, the AIR facility does try to ensure that an adequate number of guinea pigs is used in
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the experiments conducted to give a representative sample of the number of infected. The TST is also

still the best method of indicating infection in the guinea pigs.

The simulation results depict the expected results of fewer infections in animal room one well, as

can be seen from Figure 4.7. This implies it is unlikely the fluctuations in airflow and the disruptions

from power outages resulted in the experiment producing the unexpected results of more infections

in animal room one. This is because the airflow rate data (Figures 4.3 and 4.4) and GUV switching

data (Figure 4.5) were taken from the SCADA system. Therefore, the fluctuations in airflow and the

disruptions from power outages were directly incorporated in the simulation outcome.

The simulation also indicates the dynamic effects of the GUV lamp switching on the infectious particles

is much faster than the switching cycle of air between animal rooms. This can be seen from Figures

5.2 and 5.3, where there appears to be a spike in the infectious particles entering animal room one

whenever ward air is switched to this animal room. These spikes are caused by the time taken by the

GUV lamps to reduce the number of infectious particles in the ward, and hence the rate of infectious

particles transferred to animal room one. This implies the unexpected experiment results are unlikely

to be caused by the change in steady-state of the infectious particles in the ward that happens after

switching the state of the GUV lamps.

Based on these observations, it is the opinion of the author, that the unexpected experimental results

were not caused due to negligence on the part of the AIR facility. The phenomenon observed is not yet

understood, and will require further investigation.
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Mathematics is a concise language with well-defined rules for manipulation. A mathematical model

of a system is a useful tool to help with the understanding of the problem and with the theoretical

exploration of ideas. The given framework description on the risk of transmission of an airborne

infectious disease in indoor spaces is modular in nature. This makes the modelling process simpler

through the presentation of different mechanisms and how these mechanisms can be combined to

describe different situations. The given approach was demonstrated through the simulation of an

experiment, conducted at the AIR facility from 31 August 2015 to 4 December 2015.

The simulation helped investigate potential reasons for the experiment not producing the results

that were expected. Although the cause of the experiment not producing expected results was not

ascertained, it was found that it was not due to an oversight on the part of the AIR facility. This

indicates that there is some mechanism or dynamic surrounding the risk of transmission of tuberculosis

that is not yet fully understood, and requires further research. The sensitivity analysis further shows

that accurate simulation predictions are challenging to achieve when using the quanta of infection unit,

due to very large uncertainty surrounding the quanta generation rate.

6.1 CONCLUDING REMARKS

Through the time spent studying, investigating, researching and modelling tuberculosis, it is clear that

the control engineering contribution that can be made to the study of this infectious disease is very

different than that to HIV [19]. This research began thinking to replicate the work done with HIV, but

only on a different disease. This implied investigating the immunological response to tuberculosis,

obtaining a suitable model, and using the treatment as a control handle. However, this thinking turned

out to be erroneous.
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Control theory is a useful tool when investigating a topic in the universal language of mathematics.

However, to apply effective control, a degree of freedom in manipulated variables is required, and

another major requirement is that of information or measurement. On both these fronts there were

significant challenges when considering tuberculosis.

On the requirement of information, TB is diagnosed as positive or negative, with no real quantitative

data on the level of TB. Sputum analysis does give a bacterial load ranking; however, there are some

issues even with this. Firstly, this information can be highly dependent on the manner in which the

sputum was obtained; how the patient coughed when generating the sputum, and from which site

of infection in the lungs is the sputum. Secondly, the sputum takes a long time to culture (15-20

days). The only other real manner to obtain a quantitative measurement of bacterial loads, would be

to perform a bronchoscopy on the patient. This procedure involves putting the patient under general

anaesthetic, manoeuvring the bronchoscope down the throat, and taking a swab of the lung. However,

the risks of the procedure far outweigh any value in obtaining the quantitative bacterial loads.

On the requirement for manipulated variables, the treatment regime is a poor handle. The World Health

Organisation (WHO) dictates conservative standard practices, and the risk of antibiotic resistance

forming would outweigh any slight cost benefit in optimising this regime. Treatment is begun as soon

as diagnosis is made, and the challenge in public heath is more on the side of diagnosing tuberculosis

early, rather than a question of when to initiate therapy.

However, this is only looking at the contribution that control engineering can do on the individual’s

level of abstraction, in terms of system biology [123]. On the population level, slightly more control

handles present themselves. However, there is probably only a very small niche area in which

this contribution can be made, as the investigation of the population level falls into the domain of

epidemiology. Therefore, to not just replicate an epidemiological study, but to add a contribution, the

dynamics of the ’system’ would need to be investigated.

This work has set the foundation to attempt a contribution in this niche area, by starting the process

of being able to build a population level model, where the dynamics of control actions, such as

environmental influences or upper room germicidal ultraviolet irradiation can make an impact. However,

this does depend on the measurements available to allow for improved control.
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6.2 RESEARCH QUESTION ANSWERS

Although the research question of why the experiment conducted at the AIR facility did not produce the

expected result, it can be stated the unexpected experimental results were not caused due to negligence

on the part of the AIR facility. The phenomenon observed is not yet understood, and will require

further investigation.

This indicates that there is some mechanism or dynamic surrounding the risk of transmission of

tuberculosis that is not yet fully understood, and requires further research. The sensitivity analysis

further shows that accurate simulation predictions are challenging to achieve when using the quanta of

infection unit, due to very large uncertainty surrounding the quanta generation rate.

6.3 SUGGESTIONS FOR FURTHER WORK

• Investigate the experiment from a biological perspective for a deeper rationale of why the

experiment did not produce the expected outcome.

• Develop a state estimator that can give an estimation of the number of bacilli present. This could

be a useful tool to be used in health care facilities as a method of indicating when a facility is

at risk. (What state feedback would be available? Would there be a method to determine the

number of infected individuals as an automated measurement? Perhaps the measurement of

carbon dioxide as an indication of re-breathed air could prove useful for this.)

• If the bacilli measurement is assumed to be available, could the number of infected individuals

be estimated? (For example through a state estimator.) Other measurement data, such as carbon

dioxide levels might assist in this.

• Develop a Model Predictive Controller that always minimises the risk of transmission, while at

the same time optimises on the environmental comfort (chill factor) that patients may experience.

• Develop a Model Predictive Controller that always minimises the risk of transmission, while

at the same time tries to reduce the energy cost of a heating, ventilation and air-conditioning

(HVAC) system.

• Is there benefit of ’blasting’ a whole room with high intensity UV light when no people are

detected to be present?

• Can the transmission mechanisms discussed in this text be extended to a population level with

localised clusters? (Perhaps by classifying nodes in the network as different zones that people
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move in between.) Then can these population models be used to identify where intervention of

environmental controls would be most effective? (Maybe if an area is identified as having high

prevalence, what is the impact of focusing on these public locations? What dynamics can be

manipulated to help with the public health intervention with this?)

• Model Predictive Control (MPC) of a population, where assumptions can be made that a focus on

public intervention leads to quicker diagnosis (reduce the period that infector spreads the disease

without knowing about it), quicker treatment (assume that an infector becomes non-contagious

after a short period, usually about two weeks to a month after starting treatment). However,

public intervention is constrained through cost. The public intervention can come in various

forms: education, better access to facilities for diagnosis (mobile TB clinics?), and better access

to drugs. Environmental control factors could also be considered, such as distribution of GUV

lights. Disturbances can come from reactivation of latent TB.

• If the population model is converted into a probability based model for the ’actual’ plant, how

does Model Predictive Control (MPC) fair with a probability based model? It might be necessary

to still have the model of the MPC controller be continuous, even when the model of the ’actual’

plant is probability based.
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ADDENDUM A AIR MODEL DIFFERENTIAL

EQUATION SOLUTION

The solution of the differential equation model of the eMalahleni AIR facility model (4.1) - (4.9) is

derived for the case of all parameters being constant over the time period being considered and for an

initial zero condition of the infectious particles in the air. The time period considered is assumed to be

taken as [0; t].

A.1 INFECTIOUS PARTICLES IN THE WARD

To solve the set of differential equations, the differential equation for the contaminated air in the ward

(4.7) will be started with:

dCw(t)
dt

= φwIw−
(

Qw

Vw
+

VwU

Vw
kwHw

)
Cw(t) ,

which is rearranged to have the state variable on the left hand side, giving

dCw(t)
dt

+

(
Qw(t)

Vw
+

VwU

Vw
kwHw(t)

)
Cw(t) = φwIw(t) . (A.1)

This is a first order linear differential equation and can be solved by integrating both sides of the

equation after multiplying with an integration factor. Assuming that the parameters remain constant

over the period of time under consideration, the integration factor is obtained to be

exp
(∫ (

Qw

Vw
+

VwU

Vw
kwHw

)
dt
)
= exp

((
Qw

Vw
+

VwU

Vw
kwHw

)
t
)

(A.2)

Both sides of the equation of (A.1) can be multiplied with the integrating factor (A.2) and then

integrated with respect to time.
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ADDENDUM A AIR MODEL DIFFERENTIAL EQUATION SOLUTION

exp
((

Qw

Vw
+

VwU

Vw
kwHw

)
t
)

Cw(t) =
∫

φwIw exp
((

Qw

Vw
+

VwU

Vw
kwHw

)
t
)

dt +Const

exp
((

Qw

Vw
+

VwU

Vw
kwHw

)
t
)

Cw(t) =
φ Iw exp

((
Qw
Vw

+ VwU
Vw

kwHw

)
t
)

(
Qw
Vw

+ VwU
Vw

kwHw

) +Const

∴Cw(t) =
φwIw(

Qw
Vw

+ VwU
Vw

kwHw

) +Const× exp
(
−
(

Qw

Vw
+

VwU

Vw
kwHw

)
t
)

Using the initial condition of Cw(0) = 0,

Const =− φwIw(
Qw
Vw

+ VwU
Vw

kwHw

) .

This then gives

Cw(t) =
φwIw(

Qw
Vw

+ VwU
Vw

kwHw

) (1− exp
(
−
(

Qw

Vw
+

VwU

Vw
kwHw

)
t
))

(A.3)

A.2 INFECTIOUS PARTICLES IN THE ANIMAL ROOMS

After substituting (A.3) into (4.8) and (4.9), a similar process is followed to derive the time solution to

the infectious particles in the animal rooms for an initial zero condition and constant parameters.

dCi(t)
dt

=
Qi in

Vw
Cw(t)−

Qiout

Vi
Ci(t) ,

into which (A.3) is substituted, and the equation rearranged, to give

dCi(t)
dt

+
Qiout

Vi
Ci(t) =

Qi in

Vw

 φwIw(
Qw
Vw

+ VwU
Vw

kwHw

) (1− exp
(
−
(

Qw

Vw
+

VwU

Vw
kwHw

)
t
))

Simplifying this equation, and letting

Ψw(t) = 1− exp
(
−
(

Qw

Vw
+

VwU

Vw
kwHw

)
t
)

,

gives

dCi(t)
dt

+
Qiout

Vi
Ci(t) =

φwIwQi inΨw(t)
Qw +VwU kwHw

(A.4)
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ADDENDUM A AIR MODEL DIFFERENTIAL EQUATION SOLUTION

The integrating factor in this case is: exp
(

Qiout
Vi

t
)

. The solution to (A.4) is thus:

Ci(t) =
φwIwQi inVi

(ViQw +ViVwU kwHw−VwQiout)Qiout
+Const2 exp

(
−
(

Qiout

Vi

)
t
)

Using the initial condition of Ci(0) = 0,

Const2 =−
φwIwQi inVi

(ViQw +ViVwU kwHw−VwQiout)Qiout
.

This then gives

Ci(t) =
φwIwQi inVi

(ViQw +ViVwU kwHw−VwQiout)Qiout

(
1− exp

(
−
(

Qiout

Vi

)
t
))

(A.5)
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