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Abstract

The foreign exchange (Forex) market has over 5 trillion USD turnover per day. In addi-

tion, it is one of the most volatile and dynamic markets in the world. Market conditions

continue to change every second. Algorithmic trading in Financial markets have received

a lot of attention in recent years. However, only few literature have explored the applica-

bility and performance of various dynamic multi-objective algorithms (DMOAs) in the

Forex market. This dissertation proposes a dynamic multi-swarm multi-objective parti-

cle swarm optimization (DMS-MOPSO) to solve dynamic MOPs (DMOPs). In order to

explore the performance and applicability of DMS-MOPSO, the algorithm is adapted for

the Forex market. This dissertation also explores the performance of different variants

of dynamic particle swarm optimization (PSO), namely the charge PSO (cPSO) and

quantum PSO (qPSO), for the Forex market. However, since the Forex market is not

only dynamic but have different conflicting objectives, a single-objective optimization

algorithm (SOA) might not yield profit over time. For this reason, the Forex market was

defined as a multi-objective optimization problem (MOP). Moreover, maximizing profit

in a financial time series, like Forex, with computational intelligence (CI) techniques is

very challenging. It is even more challenging to make a decision from the solutions of a

MOP, like automated Forex trading. This dissertation also explores the effects of five de-

cision models (DMs) on DMS-MOPSO and other three state-of-the-art DMOAs, namely

the dynamic vector-evaluated particle swarm optimization (DVEPSO) algorithm, the

multi-objective particle swarm optimization algorithm with crowded distance (MOPSO-

CD) and dynamic non-dominated sorting genetic algorithm II (DNSGA-II). The effects

of constraints handling and the, knowledge sharing approach amongst sub-swarms were

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

mailto:u16403381@tuks.co.za


explored for DMS-MOPSO. DMS-MOPSO is compared against other state-of-the-art

multi-objective algorithms (MOAs) and dynamic SOAs. A sliding window mechanism

is employed over different types of currency pairs. The focus of this dissertation is to

optimized technical indicators to maximized the profit and minimize the transaction

cost.

The obtained results showed that both dynamic single-objective optimization (SOO)

algorithms and dynamic multi-objective optimization (MOO) algorithms performed bet-

ter than static algorithms on dynamic poroblems. Moreover, the results also showed that

a multi-swarm approach for MOO can solve dynamic MOPs.

Keywords: Dynamic multi-objective optimization, nature-inspired computation, tech-

nical indicators, foreign exchange, Forex, computational intelligence, swarm intelligence;

NSGA-II, DVEPSO, MOPSO, Multi-objective optimization.
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“What has been will be again, what has been done will be done again;

there is nothing new under the sun.”

— Ecclesiastes 1:9, The Bible.
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Chapter 1

Introduction

Look here, you who say,“Today or tomorrow we are going to a certain town

and will stay there a year. We will do business there and make a profit.”

How do you know what your life will be like tomorrow? Your life is like the

morning fog—it’s here a little while, then it’s gone. What you ought to say

is,“If the Lord wants us to, we will live and do this or that.”

— James 4:13 - 15, The Bible.

The financial market, especially the stock and foreign exchange (Forex) markets, is

one of the most complex and dynamic markets in the world. Because of its complexity,

many factors have to be considered before an investor can profit from the market. A

number of traditional tools called technical indicators (TIs) have been developed to aid

investors to predict the trend of price movement in order to make informed decisions

and maximize profit. However, traders are still faced with issues like: 1. Which TI is

best suited for a particular market, 2. The best parameter combination for a TI for

a particular market. 3. How to combine the signals of TIs to confirm a trend or an

investment decision.

The availability of advance technology and data has encouraged and given rise to

the use of computational intelligence (CI) techniques to address the above problems in

relation to the use of TIs to maximize profit in the Forex market [40]. Moreover, the

application of CI algorithms to the Forex or stock markets have shown good results

1
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Chapter 1. Introduction 2

[8, 35, 43] despite the contradictory statement of efficient-market hypothesis (EMH),

namely that the market follows a random walk and that any profit is by chance [28].

CI algorithms, however, were not traditionally developed for finance and economics. In

view of that, a high level of adaptability is needed in order to apply CI algorithms to

financial markets [37]. CI algorithms or applications need to factor into account the

following practical realities of the financial market:

• Dynamic: the financial market is very difficult to predict. A good solution now

might be the worse solution in the next minute. The nature of the market keeps

changing all the time, since the market is being influenced by many factors, in-

cluding economic news [30]. Using a static algorithm for Forex market might not

yield returns over time.

• Multimodal: the algorithms should be able to provide a set of solutions to enable

investors to make an informed decision. Moreover, different pairs of parameter sets

can generate the same profit output in training data, but a different or the same

profit output on test data. Hence, the financial market is multimodal in nature.

• Diversity: Not only is the financial market dynamic, but the nature of every

market is different. For example, in the Forex market, the EURUSD currency pair

has less volatility as the USDZAR currency pair (see Table 3.1). The algorithm

should be able to adapt to such diversity. It is difficult for one algorithm or model

to perform well across all markets.

• Multi-objective and decision making: The main objective of many investors

is profit. However, investors also consider factors like risk, transaction cost, etc.

to make decisions. The algorithms should be able to find good trade-off solutions

for decision making.

In this dissertation, a new dynamic multi-swarm multi-objective particle swarm op-

timization (DMS-MOPSO) is proposed. The purpose of the muti-swarm is to enable

the algorithms to track different promising solutions (or trends). DMS-MOPSO is used

to optimize four TIs. To apply of metaheuristics to real world problems (Forex) two

conflicting objectives are optimized: the net profit and transaction cost are maximized
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Chapter 1. Introduction 3

and minimized simultaneously. DMS-MOPSO is compared against other nature inspired

state-of-the-art dynamic multi-objective algorithms (DMOAs).

1.1 Objectives

The main objective of this dissertation is to develop a particle swarm optimization (PSO)

based multi-objective algorithm (MOA), namely DMS-MOPSO, to solve dynamic multi-

objective optimization problems (MOPs). To accomplish this objective, the following

sub-objectives were identified:

• To provide a literature review of the trend in DMOA and single-objective opti-

mization algorithms (SOAs) for the financial market.

• Develop a simulation for automated trading for the Forex market.

• Identify different types of trading currency pairs to run the simulation on.

• Identify different types of technical indicators and trading rules for the experiment.

• Identify a set of performance measures that adequately quantifies the performance

of DMOAs for the FOREX market.

• Identify and analyse the performance of different state-of-the-art DMOAs.

• Develop and analyse the performance of DMS-MOPSO.

1.2 Contributions

The novel contributions of this dissertation include the following:

• The first analysis of the applicability of dynamic PSO algorithms to the Forex

market.

• The first analysis of the effects of decision models (DMs) on MOAs during auto-

mated trading.
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Chapter 1. Introduction 4

• The first adaptation of non-dominance based multi-swarm PSO for a MOP.

• The adaptation of MOAs for the Forex market.

• An overview of current applications of MOAs to the Forex market.

1.3 Dissertation Outline

The remainder of the dissertation is organised as follows:

• Chapter 2 presents background information on optimization. The concepts of dy-

namic problems and environments, and also presents some background information

on DMOAs and dynamic SOAs were presented. Moreover, single-objective opti-

mization (SOO) variants of PSO algorithms used in this study, which also forms

the bases of the proposed algorithm, DMS-MOPSO, and highlights some of the

state-of-the-art DMOAs and DMs for DMOAs were presented.

• Chapter 3 discusses and provides background information of the financial mar-

kets, especially the Forex market, which is the real world dynamic problems that

optimization algorithms introduced in the study solves. The Chapter also pro-

vides a literature review of work already done on the application of computational

intelligence algorithms to the financial market. Moreover, details on the experi-

mental setup for this study, and the simulated trading system for the experiment,

including the data used, also discussed.

• Chapter 4 investigates the performance of different variants of dynamic PSO,

namely the quantum PSO (qPSO) and charge PSO (cPSO), on optimizing TIs in

the Forex market in order to maximize profit. The results obtained are compared

with both the performance of standard particle swarm optimization (sPSO) and

a time-series particle swarm optimization (tPSO) algorithm on the USDJPY and

USDZAR currency pairs.

• Chapter 5 investigates the effects of five decision models on three state-of-the-art

dynamic MOAs, namely the dynamic vector-evaluated particle swarm optimization
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Chapter 1. Introduction 5

(DVEPSO) algorithm, the multi-objective particle swarm optimization algorithm

with crowded distance (MOPSO-CD) and the dynamic non-dominated sorting ge-

netic algorithm II (DNSGA-II).

• Chapter 6 discusses the proposed algorithm, i.e. the DMS-MOPSO algorithm.

Moreover, this chapter also discusses the results obtained by different variants of

DMS-MOPSO and other state-of-the-art algorithms.

• Chapter 7 summarises the conclusions of the studies conducted in this dissertation

and highlights possible future work from the study.

Incuded are the below appendices which gives more information, and for quick and

easy referencing:

• Appendix A provides a list of the important acronyms used or newly defined in

the course of this work, as well as their associated definitions.

• Appendix B lists and defines the mathematical symbols used in this work, cate-

gorised according to the relevant chapter in which they appear.

• Appendix C lists the publications derived from this work.
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Chapter 2

Background

Optimization Theories

This section presents background information on optimization. Section 2.1 discusses the

concept and theories of optimization, including optimization problems and the type of

solutions. Section 2.2 specifically discusses the definition and concepts of multi-objective

optimization (MOO) and MOPs.

2.1 Single-Objective Optimization Theories

The aim of optimization algorithms is to find a solution to an optimization problem by

using a search mechanism. An optimization problem is made up of a set of decision

variables and one or more objective functions, which are subject to a set of constraints.

An optimization problem may differ with respect to the type of decision variables and

covariants, the number of optima, etc. Important concepts, such as objective functions,

decision variables, constraints, the types of solutions and single-objective optimization

problems (SOPs), are discussed below.

2.1.1 Objective function

The aim of an optimization algorithm is to maximize or minimize the quantity repre-

sented by the objective function. An optimization problem with only one objective is

6
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Chapter 2. Background 7

known as a SOP, while an optimization problem with more than one objective function

to be optimized simultaneously is called a MOP. An optimization problem can be clas-

sified as a linear, quadratic or nonlinear optimization problem if the objective function

is linear, quadratic or nonlinear in nature respectively.

2.1.2 Decision variables

The objective function value is a result of decision variables. The decision variables are

a n dimensional vector. An optimization problem with one decision variable (n = 1)

is known as a univariate problem, while an optimization problem with more than one

(n > 1) is known as a multivariate problem. An optimization algorithm makes changes

to the decision variable(s) in each iteration in order to find a good solution. Moreover,

decision variables with continuous, integer or a permutation of integer values, make

an optimization problem a continuous, discrete or combinatorial optimization problem

respectively.

2.1.3 Constraints

Any optimization problem may be subject to a set of constraints. These constraints

limit the values that decision variables can have or be assigned by the optimization

algorithm. A constraint can either be an equality or inequality constraint. An equality

constraint limits the assignment of values to a decision variable to a specific value, such

as gx = 3. An inequality constraint on the other hand, limits value assignment to a

range or boundary, such as −1 < gx < 1, or gx < 0 or gx > 0.

2.1.4 Type of Solutions

The aim of a single objective optimization algorithm when solving a SOP is to find a

single near optimal solution. However, the obtained solution can be classified according

to its quality, as follows:
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Global minimum

A global solution is called a global minimum when minimizing or a global maximum

when maximizing. A minimization problem is assumed for this section. As depicted

in Figure 2.1, the global optimum is the best solution amongst all solutions. A global

optimum is mathematically defined as f(x∗) <= f(x),∀x ∈ F , where x∗ is the global

optimum of the objective function, f , and F is the feasible solutions from the search

space. A problem with only one global optimum is called unimodal, while a problem

with multiple optima is referred to as multimodal.

Strong local minimum

A strong local optimum is mathematically defined as f(x∗N) < f(x),∀x ∈ N , with x 6= x∗

and x∗N 6= x∗, where x∗N is the strong local optimum of the objective function, f , and

N ⊆ F . Figure 2.1 depicts a strong local minimum.

Weak local minimum

A solution is said to be a weak local optimum if f(x∗N) ≤ f(x),∀x ∈ N , with x∗N 6= x∗,

where x∗N is the weak local optimum of the objective function, f , and N ⊆ F . Figure

2.1 illustrates a weak local minimum.

2.1.5 Single-objective Optimization Problem

Using the concepts discussed above, a SOP is mathematically defined as:

minimize: f(x)

subject to: gi(x) ≤ 0, i = 1, ..., ng

hj(x) = 0, j = 1, ..., nh

x ∈ [xmin, xmax]nx

(2.1)

where nx is the number of decision variables, x = (x1, x2, ..., xnx) ∈ S ⊆ Rnx . Further-

more, gi, hj and x ∈ [xmin, xmax] are the inequality, equality and boundary constraints

respectively.
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Chapter 2. Background 9

Figure 2.1: Types of optima

2.2 Multi-Objective Optimization

The aim of a MOO is to find a trade-off between multiple objectives. In a real world

decision-making process, there exist multiple criteria or objectives. The availability of

multiple objectives (which may be in conflict with each other) create a challenge to

arrive at a specific or a single solution. In the context of the Forex and stock markets,

an investor and decision makers have to make a decision to buy or sell a currency or

shares by taking into consideration factors like: how to minimize risk, maximize profit

or minimize loss, minimize the cost of trade or transaction, among others. In order to

maximize profit, which is the main aim of an investor, more profitable transactions or

trades have to be made. However, the more trades you make, the higher the cost of

trade or transaction (whether you make profit or loss on a trade).

2.2.1 Multi-objective problems

Unlike a SOP where it is required to minimize or maximize a single objective function or

to find only one optimal solution, a MOP consists of more than one objective function,

which have to be minimized or maximized, and may be conflicting in nature. Both an

MOP and a SOP are subject to a number of constraints. A MOP is mathematically
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Chapter 2. Background 10

defined as:

minimize: F (X) = (f1(x), ..., fk(x))

subject to: gi(X) ≤ 0, i = 1, ..., ng

hj(X) = 0, j = 1, ..., nh

X ∈ [Xmin, Xmax]nx

(2.2)

where gi, hj and X ∈ [Xmin, Xmax] are the inequality, equality and boundary constraints

respectively.

2.2.2 Pareto-optimal Set and Pareto Optimal Front

The optimal solution or optimum for a SOP is not the same for a MOP. It is much more

complicated to solve MOPs, especially when objectives are conflicting. In MOO, a good

improvement for one objective might lead to the worsening of other objectives. MOO

algorithms need to find a good trade-off between objective functions, hence the task is

to find a set of solutions that balance the trade-off, namely the non-dominated set or

Pareto-optimal set (POS). The Pareto front (POF), on the other hand, is the associated

objective vectors of the decision vectors that lead to the POS [27]. The POS and POF

are defined below.

Domination

A decision vector, X1, is said to dominate a decision vector, X2 (X1 ≺ X2), if and only

if the following conditions are met:

• X1 is at least as good as X2 in all objectives, i.e. fk(X1) ≤ fk(X2), ∀k = 1, .., nk,

and

• X1 is strictly better than X2 for at least one objective, i.e., ∃k =1, ..., nk:fk(X1) <

fk(X2).

where nk is the number of objective functions.
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Weak Domination

A decision vector, X1, is said to weakly dominate, �, a decision vector, X2 (X1 � X2),

if and only if:

• X1 is at least as good as X2 in all objectives, i.e. fk(X1) ≤ fk(X2), ∀k = 1, .., nk,

A decision vector, x∗, is called Pareto-optimal when it leads to the best trade-

off. In other words, there is no other decision vector, x 6= x∗ ∈ F (feasible space),

that dominates x∗. The POS is a set of all Pareto-optimal decision vectors, and the

associated objective vectors form the POF .

Pareto-optimality is one of the methods used to solve MOPs. Moreover, one of

simplest ways to solve MOPs is by using weighted aggregation. This method assigns

weights to each objective function where the weights sum up to 1. It allows for a MOP to

be solved as a SOP. However, the main problem is how to determine the best weights for

each objective function. For details on both weighted aggregation and Pareto-optimality

methods, refer to [27, 36].

Dynamic Environments

Most CI algorithms and their applications, such as PSO applications for the stock and

Forex market, assume that the search space or the environment is static. However, the

financial market is one of the most complex and dynamic environments in the world,

and it is very sensitive to external information, such as economic news [30, 17]. A good

optimal TI might perform poorly in the advent of new information.

This Section discusses the concepts of dynamic problems and environments, which

include both background information on DMOAs and dynamic SOAs. Section 2.3 dis-

cusses the definition and concepts of SOPs and environments. Section 2.4 discusses

the definition and concepts of dynamic multi-objective optimization (DMOO) and the

various type of environments for DMOO.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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2.3 Dynamic Single-objective optimization problem

A dynamic SOP is defined as:

minimize: f(x, t)

subject to: gi(x, t) ≤ 0, i = 1, ..., ng

hj(x, t) = 0, j = 1, ..., nh

x ∈ [xmin, xmax]nx

(2.3)

where nx is the number of decision variables, x = (x1, x2, ..., xnx) ∈ S ⊆ Rnx . gi, hj and

x ∈ [xmin, xmax] are the inequality, equality and boundary constraints respectively.

The aim of a dynamic optimization algorithm is to find:

x*(t) = minx∈F (t)f(x, t) (2.4)

where x*(t) is the optimum at time step t.

To keep or improve the performance of an optimization algorithm in a dynamic envi-

ronment such as Forex, one main objective is the continued tracking of the optimum

by detecting changes and adapting to the changing environment [27, 47]. The following

subsection discuss various classification of dynamic environments.

2.3.1 Eberhart et al.’s Classification

Eberhart et al. defined the following types of dynamic environments [26]:

• Type I environment, where the value of the objective function, f(x*, t) does

not change. However, the location of the optimum, (x*, t), in the search space is

subject to change.

• Type II environment, which is the reverse of type I. The location of the optimum,

(x*, t), in the search space does not change. However, the value of the objective

function, f(x*, t), do change.

• Type III environment, where both the location of optimum, (x*, t), and the

objective function, f(x*, t), are subject to change.

The severity of change leading to the new location of the optimum is measured by

the severity parameter, ζ. The above environment types are summarized in Table 2.1.
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Table 2.1: Dynamic Environment defined by Eberhart et al.

Optimum Location

Optimum Value No Change Change

No Change Static Type I

Change Type II Type III

2.3.2 Branke’s Classification

Branke defined the following characteristics of dynamic environments [13, 12]:

• Frequency of change, also referred to as temporal severity, which indicates

whether changes occur continuously at a regular or irregular time interval (or

between evaluations).

• Severity of change, which is also known as spatial severity, measures how far

or close the location of the new optimum (x*, t) is from its old location (or old

optimum’s). The changes can be gradual or abrupt.

• Predictability of change, indicating whether the changes follow a pattern or

trend which can be learned or predicted.

• Cycle length / cycle accuracy, that indicates whether the environment returns

to its formal (or to similar) state after a certain period of time.

2.3.3 Duhain’s Classification

Duhain also proposed new categories of dynamic environment based on temporal and

spatial severity [23], namely:

• Static or quasi-static, where the environment is considered static if there are

no temporal and spatial severity. Moreover, if the environmental changes are in-

significant to the scale of the problem and do not also affect the performance of the

optimization algorithm, the environment can be considered as static or quasi-static.
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Table 2.2: Dynamic Environment defined by Duhain [23, 33].

Spatial Severity

Temporal Severity Low High

Low Static Abrupt

High Progressive Chaotic

• Progressively changing. This is the type of environment where the frequency

of change (temporal severity) is high or frequent, but with a low or small sever-

ity of change (spatial severity) rate. Progressively changing environments give

room for optimization algorithms to utilize previous knowledge to find a nearby

optimum. Moreover, static optimization algorithms might still perform well in this

environment, since continuous evaluation might lead to the optimum [27].

• Abruptly changing is the reverse of a progressively changing environment. There

is a higher rate of spatial severity with a lower rate of temporal severity. Unlike

progressively changing environments, knowledge of the previous optimum will not

assist in predicting the next optimum. This means static optimization algorithms

might perform poorly in an abruptly changing environment.

• Chaotic, where both spatial severity and temporal severity have higher rates of

severity. In chaotic environments optimization find it difficult algorithms to track

the optimum and to adapt to change, since the algorithms have a small time window

to make the required adjustments.

Duhain’s types of environments are summarized in Table 2.2.

2.4 Dynamic Multi-objective Optimization

As discussed in Section 2, SOA is required to minimize or maximize a single objective

function or find only one optimal solution. MOPs, however, consist of more than one

objective function, which have to be minimized or maximized, and may be conflicting in
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nature. Just like a SOP, a MOP can also be dynamic, which is the situation in financial

markets and other real world domains.

2.4.1 Dynamic Multi-objective optimization problem

A dynamic MOP (DMOP) is defined as:

minimize: F (X, t) = (f1(x, t), ..., fk(x, t))

subject to: gi(X, t) ≤ 0, i = 1, ..., ng

hj(X, t) = 0, j = 1, ..., nh

X ∈ [Xmin, Xmax]nx

(2.5)

where nx is the number of decision variables, x = (x1, x2, ..., xnx) ∈ S ⊆ Rnx . gi, hj and

X ∈ [Xmin,Xmax] are the inequality, equality and boundary constraints respectively.

The aim of a dynamic optimization algorithm is not to find a single optimum, but to

track the POF over time:

(POF ∗, t) = F (X*(t)) = (f1(x*, t), ..., fk(x*, t)) ∀X∗ ∈ (POS∗, t) (2.6)

where (POF ∗, t) is the optimum POF found at time step t.

The next section presents the different types of dynamic environments for DMOO.

2.4.2 Dynamic Environments for multi-objective optimization

Farina et al. [29] proposed four types of dynamic environments for a MOP, which is

similar to what Eberhart et al. [26] introduced, namely:

• Type I environment, where the values of the objective functions (POF ∗, t) do

not change. However, the location of optima or decision variables (POS∗, t) in the

search space is subject to change.

• Type II environment. In this environment, both the location of optima (POS∗, t)

and the values of the objective functions (POF ∗, t) are subject to change.

• Type III environment. This type of environment is the reverse of type I. The

location of the optima (POS∗, t) in the search space does not change. However,

the values of the objective functions (POF ∗, t) do change.
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Table 2.3: DMOO Dynamic Environment defined by Farina et al.

POS

POF No Change Change

No Change Type IV Type I

Change Type III Type II

• Type IV environment, where both the location of optima (POS∗, t), and the

values of the objective functions (POF ∗, t), do not change. However, the problem

is subject to change.

Farina et al’s. types of DMOO environments are summarized in Table 2.3.

Single-Objective Optimisation Algorithms

This Section discusses SOO variants of PSO used in this study. Section 2.5 provides an

overview of the fundamentals of PSO, while Section 2.6 discusses the various topological

structures used in PSO algorithms. Moreover, Section 2.7 presents different variants of

dynamic PSOs used in this study.

2.5 Particle Swarm Optimisation

PSO is a population-based optimisation algorithm, which was inspired by the social be-

havior of birds within a flock. Particles move within a search space to find an optimal

solution. The movement of a particle within the search space or solution space is in-

fluenced by its experience (personal best or pBest) and the knowledge of its neighbours

(global best or gBest of the swarm).

2.5.1 Basic Particle Swarm Optimisation

PSO was formally introduced by Kennedy and Eberhart [25]. Each particle (individual)

within a swarm (population) represents a candidate solution in the search space. The
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position of a particle is represented as an n-dimensional vector and moves within a n-

dimensional search space. Each particle has a fitness value, which is used to determine

the pBest and gBest which influences movement within the search space. Additionally,

each particle has a velocity with which it moves within the search space, since the step

size is determined by the velocity.

The position of particle xi(t) at time step t is updated by adding the velocity vi(t),

to the previous position, xi(t− 1), mathematically defined as:

xi(t) = xi(t− 1) + vi(t) (2.7)

with

vi(t) = ωvi(t− 1) + c1r1i(t)[xpBest,i(t)− xi(t)] + c2r2i(t)[xgBest(t)− xi(t)] (2.8)

where ω is the inertia weight which controls the exploration and exploitation of the swarm

[25]. The influence of the personal best, pBest, and global best, gBest, is controlled by

acceleration coefficients c1 and c2 respectively. r1 and r2 are sampled from a uniform

distribution U(0, 1).

Information or knowledge sharing amongst particles is based on the topological struc-

ture of the PSO. Section 2.6 gives an overview of different variants of neighborhood

topologies for PSO.

2.6 Neighborhood Topologies

This section discusses the most widely used PSO neighborhood topologies, namely star,

ring and Von Newmann.

2.6.1 Star Topology

The original PSO introduced by Kennedy and Eberhart [25] utilized the star topology.

The star topology is where all particles are directly connected to each other as illustrated

in Figure 2.2(a). The star topology is also known as the gBest PSO, where all particles

move towards the global best (best solution in the swarm) [27]. The star topology is

commonly used for PSO implementations (including applications for financial markets),
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Algorithm 1 Basic PSO

1: Create and Initialize an n-dimensional swarm

2: While stopping condition is false

3: For each particle i = 1, . . . , ns

4: // set the personal best

5: If f(xi) < pBest

6: pBest← xi

7: EndIf

8: // set the global best

9: If pBest < gBest

10: gBest← pBest

11: EndIf

12: EndFor

13: For each particle i = 1, . . . , ns

14: update the velocity using equation 2.8

15: update the position using equation 2.7

16: EndFor

17: EndWhile

since it has the ability to converge faster than other topologies. However, it also has a

higher tendency of getting trapped in local minima [27].

2.6.2 Ring Topology

The ring topology was also introduced by Kennedy and Eberhart [25]. The ring topology

is also known as the lBest PSO, where each particle is connected to the n immediate

particle(s) to form a neighborhood. The overlapping of neighborhoods, as depicted in

Figure 2.2(b) ( n=2), assist in convergence to a single solution. Each particle is attracted

towards its best neighbor. Convergence is very slow since information flow or sharing is

slow. Moreover, the ring topology covers more of the search space (better exploration)

as compared to the star topology, resulting in a quality solution and better performance

on multi-modal problems [27].
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2.6.3 Von Neumann Topology

The Von Neumann topology was introduced by Kennedy and Mendes [38]. The Von

Neumann topology is very similar to the ring topology. However, particles are connected

in a grid like structure. Figures 2.2(c) and 2.2(d) depict the 2D and 3D versions of the

Von Neumann topology, respectively. Just like the ring topology, the Von Neumann

topology’s convergence is also very slow, since information flow or sharing is slow, which

also reduces the chance of premature convergence.

The selection of a PSO neighborhood topology is problem dependent. Each topology

has its advantages and disadvantages. Therefore, there is no single topology that can

be deemed as the best. However, the Von Neumann topology has outperformed other

topologies on a large number of problems [38]. Various other topology forms have been

proposed, such as the pyramid, wheel, four cluster, etc. [27].

2.7 Dynamic Particle Swarm Optimisation Algorithms

The standard PSO was not developed for dynamic environments. However, most real

world problems are dynamic in nature. To keep or improve the performance of a PSO in

a dynamic environment, such as Forex, one main objective is to continue tracking optima

by detecting changes and adapting to the changing environment [27, 47]. Most studies

use standard PSO and try to fine tune parameters to detect and follow trends in the

Forex market. But there is an extent to which PSO parameter tuning limits or promotes

optima tracking [27]. In dynamic environments PSO tends to suffer from outdated or

stale memory and a loss of diversity [27].

Many techniques have been developed to make the standard PSO self-adaptive to

dynamic environments. Some dynamic variant PSOs include: cooperative split PSO

[55], predator-prey PSO [54]), cPSO [10] and qPSO [9].

One of the techniques to detect change in a dynamic environment is to use sentry

particles [27]. Change is detected by comparing the previously stored sentry particle

cost/fitness to its currently evaluated fitness. Change is said to have occurred if there is

some difference between the two values. When a change is detected, the algorithm has

to react accordingly to increase diversity to enable tracking of the optima. A few simple
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(a) Star Topology (b) Ring Topology

(c) 2D Von Neumann Topology (d) 3D Von Neumann Topology

Figure 2.2: PSO Neighborhood Topologies

approaches to increase diversity were introduced [27]:

• Do not reinitialize the swarm. This is with the hope that the changes are minor

and the swarm has not converged.

• Reinitialize the entire swarm. Here any gained knowledge will be lost.

• Reinitialize part of the swarm. Part of the gained knowledge is retained.

Although the above solutions do not completely eliminate the problem of outdated or

stale memory, they assist to increase diversity and exploration [27, 47].

The following subsections discuss the various dynamic PSO algorithms used in this

dissertation.
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2.7.1 Charged Particle Swarm Optimisation

The cPSO was intruduced by Blackwell and Bentley[10], which is based on the principles

of electrostatic energy with charged particles. The goal of the charged particles is to

introduce a repulsive force among particles to preserve diversity. At the same time

particles are also attracted to the center of mass of the swarm to enable convergence to

a solution. The velocity update equation is modified by adding particle acceleration, ai,

as follows:

ai(t) =
ns∑

l=1,i6=l

ail(t) (2.9)

where the repulsion between particles i and l is defined as:

ail(t) =



( QiQl

||dfil(t)||3
)

(dfil(t)) if Rc ≤ ||dfil(t)|| ≤ Rp (2.10a)(QiQl(dfil(t))

R2
c ||dfil(t)||

)
if ||dfil(t)|| < Rc (2.10b)

0 if ||dfil(t)|| > Rp (2.10c)

where dfil(t) = xi(t) − xl(t), Qi and Ql are the charged particles i and l, and Rc and

Rp are the core radius and perception limit of each particle i, respectively. Particles

with Q = 0 are natural particles, and do not contribute to the velocity calculation. In

other words, velocity or acceleration is calculated using the standard PSO (equation

2.8). However, particles with Q > 0 (charged) contribute to the velocity calculation, and

thereby, experience inter particle repulsion from other charged particles. But, charged

particles only experience repulsion when the difference between two charged particles

falls within [Rc, Rp].

Blackwell and Bentley[10] proposed three types of swarms: a natural swarm, a

charged swarm and an atomic swarm. For the purpose of this study, only an atomic

swarm, which consists of both charged and natural particles in the swarm, is used, since

the atomic swarm performs the best in dynamic environments [10].
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2.7.2 Quantum PSO (qPSO)

QPSO is an extension of an atomic swarm version of cPSO, and was also introduced by

Blackwell and Bentley[9]. It is based on quantum principles by replacing the orbiting

electrons with a quantum cloud. Electrons’ movement or position is based on a probabil-

ity distribution governed by the cloud, and is not based on an electron’s previous position

or classical trajectory dynamics. The calculation of the position of charged particles does

not use a velocity update, but the new position is randomized within a ball of radius

rcloud, centered around the global best at every iteration. The difference between cPSO’s

and qPSO’s charged particles is that qPSO’s charged particles do not repel from each

other and are not influenced by the local and global best. Natural particles follow the

classical trajectory dynamics to enable converge to a single solution. The randomization

of charged particles might improve the chance that a good solution is useful for natural

particles. Hence, having both charged and natural particles within a swarm enables a

good balance between exploration and exploitation [9].

Dynamic Multi-Objective Optimization Algorithms

When sloving DMOOs, the aim of MOAs is to keep track of the POF, i.e. be able to

detect changes in the environment and respond accordingly. Similar to dynamic SOPs a

commonly used technique for detecting a change is the use of sentry particles. Moreover,

the algorithms need to respond to the change accordingly. Most responses are geared

towards increasing population diversity.

This Section discusses the state-of-the-art DMOAs and DMs for DMOAs. These

algorithms are compared against the newly proposed DMOAs in this dissertation. Sec-

tion 2.8 discusses the components of MOPSO-CD and how the SOO PSO algorithm was

adapted for MOPs. Sections 2.9 and 2.10 discuss DNSGA-II and DVEPSO algorithms

respectively. Finally, Section 2.11 highlights decision models used to make a decision

from a POS.
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2.8 Multi-Objective Particle Swarm Optimization with

Crowding Distance

The original multi-objective particle swarm optimization (MOPSO) algorithm was pro-

posed by Coello Coello et al [18]. Since its proposal, different variants have been proposed

to improve its performance. MOPSO uses an external archive to store non-dominated

solutions and a mutation operator to mutate a percentage of the population to introduce

diversity. MOPSO was the only MOA to cover the whole POF for the test functions

used in [18]. A new variant of MOPSO, namely MOPSO-CD [49], was proposed to in-

crease population diversity. MOPSO-CD incorporates crowded distance into MOPSO

to select the global best and to remove solutions with the least crowded distance from

the external archive when the archive exceeds its limit. This approach therefore also

improves diversity in the external archive. The global best, gBest, is selected from the

top n percent of the sorted external archive. Algorithm 2 lists the various steps of the

MOPSO-CD algorithm. The main components of MOPSO-CD are discussed in more

details below.

2.8.1 Archive

The purpose of an archive in MOPSO-CD is to keep track of the found non-dominated

solutions at each iteration. Non-dominated solutions are added to the archive based on

the following:

• There is pair-wise comparison between the solution of a particle of the main pop-

ulation during initialization. Only the non-dominated solutions are added to the

external archive A.

• When the archive, A, reaches its limit, A is sorted in descending order by crowding

distance value. Randomly selected particles (e.g. 5 percent) from the bottom of A

is removed and replaced with new non-dominated solutions from the population.

Sorting according to crowding distance helps introduce diversity into the archive,

unlike the original MOPSO algorithm which uses an adaptive grid.
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Algorithm 2 MOPSO-CD

1: Create and Initialize a swarm, ns

2: Store the non-dominated particles in Archive, A

3: While stopping condition is false

4: Compute the crowding distance for each particle in A

5: Sort the non-dominated solutions in A in descending crowding distance

values

6: For each particle i = 1, ..., ns

7: Randomly select the gBest from A

8: Compute the new velocity

9: Calculate the new position

10: Manage boundary constraint violations

11: Perform mutation

12: Evaluate particle

13: EndFor

14: Update Archive, A

15: For each particle i = 1, ..., ns

16: Update the pBest

17: EndFor

18: EndWhile

2.8.2 Selecting a gBest or a leader

Adapting a SOO PSO for MOO, one of the challenges is how to select and update the

gBest. At each iteration MOPSO-CD selects the gBest from the top of the archive (non-

dominated solutions) A, which is the sparse (least crowded) region of the archive, leading

to a good balance between exploration and exploitation.

2.8.3 Mutation Operator

The mutation operator of MOPSO was maintained for MOPSO-CD. One of advantages

of PSO is its fast convergence. This feature can be good and bad at the same time. Faster

convergence can make the algorithm get stuck in a local optimum. The mutation helps
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Algorithm 3 MOPSO-CD Mutation Operator

1: Procedure mutationOperator(particle, dims, curIt,maxIt,mutrate)

2: if flip((curIt/maxIt)5/mutrate) then

3: whichdim ← random(0, dims− 1)

4: mutrange ← (upperbound[wichdim] − lowerbound[wichdim]) ∗ (1 −
currentgen/totgen)5/mutrate

5: ub ← particle[whichdm] +mutrange

6: lb ← particle[whichdm]−mutrange
7: if lb < lowerbound[whichdim] then

8: lb ← lowerbound[whichdim]

9: end if

10: if ub > upperbound[whichdim] then

11: ub ← upperbound[whichdim]

12: end if

13: particle[whichdim] ← RealRandom(lb, ub)

14: end if

15: EndProcedure

Comment: where particle, dims, curIt, maxIt and mutrate are particle

to be mutated, dimensions, current iteration, maximum iterations and

mutation rate respectively.

to prevent the algorithm from producing a false POF. Mutation is applied to all particles

from the beginning of the run. Then the rate of mutation is linearly reduced after every

iteration. This makes the algorithm explore more at the initial stage and explore less at

the later stage. Algorithm 3 highlights the various steps of the MOPSO-CD mutation

operator.

2.8.4 Update pBest

Unlike the standard PSO operations, the pBest is the last to be updated. The current

pBest is replaced by the new position if the new position dominates the current pBest.

However, if none dominates the other, the pBest is randomly selected between the current
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pBest and the new position.

2.9 Dynamic Non-dominated Sorting Genetic Algo-

rithm II

The non-dominated sorting genetic algorithm II (NSGA-II) was proposed by Deb et

al. [22] to solve the problems other multi-objective evolutionary algorithms faced in

relation to computational complexity and non-elitism. NSGA-II introduced a less com-

putational non-dominate sorting approach, which performed better than the compared

algorithms on tested benchmarks. However, it was not developed to solve dynamic

problems. DNSGA-II is a modified version of NSGA-II for dynamic problems [21]. Indi-

viduals are randomly selected from the parent population and re-evaluated to check for

change. If a change is detected, a percentage of the population (randomly selected) is

either replaced with random solutions, or mutated solutions [22, 21]. This dissertation’s

study only employs the mutated version of DNSGA-II. Algorithm 4 lists the various

steps of the DNSGA-II algorithm. The main components of NSGA-II are discussed in

more detail below.

2.9.1 Fast Non-dominated Sorting

Deb el al. [22] introduced fast non-dominated sorting in NSGA-II to speed up the sorting

process for combining parents and offspring, R. The fast non-dominated sorting follows

the following process:

• The first individual in R is placed in a new population, nP .

• A pair-wise comparison is made between each individual in R, xi, with individuals

in nP , x
′
i.

• If xi dominates any individual in nP , x
′
i is removed from nP .

• If no individual in R dominates xi, xi is placed in nP .
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• However, xi remains in R and is not placed in nP if an individual in R dominates

xi.

• After a pair-wise comparison between all individuals in R, the new population,

nP , becomes the first front. The individuals in nP are removed from R and the

whole process is repeated to determine the next front until all fronts have been

found (R is empty). All individuals within a front is assigned a rank equal to the

front number, referred to as the Pareto-rank.

2.9.2 Selecting a New Generation

After each individual has been assigned a Pareto-rank, the crowding distance for each

individual is computed. Tournament selection is used to select an individual for the next

generation, Pi+1. In order to select the next generation, the following criteria are used:

• If Pi+1 has not reached its limit, individuals are added to Pi+1 starting from the

first front.

• If the remaining individuals in the same front will exceed the limit of Pi+1, crowded

distance is computed for the front and the individuals in the front sorted in de-

scending order. The top individuals are selected, hence individuals with the highest

crowded distance values are selected. This approach introduces more diversity into

the set of non-dominated solutions.

Unlike MOPSO, DNSGA-II does not use an archive to preserve elitism. However, select-

ing the next generation using crowding distance may remove non-dominated solutions

from more dense regions of the POF and preserve non-dominated solutions from less

dense regions [33].

2.9.3 New solutions

A percentage of the parent solutions is re-evaluated to detect any change in the envi-

ronment. Deb et al. introduced new solutions into the new generation if a change was

detected. One of the following approaches is used to respond to changes:
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Algorithm 4 DNSGA-II

1: Create and initialize a random parent population, P

2: Compute and sort parent population based on non-domination level

3: While stopping condition is false

4: Select parents for crossover to produce offspring

5: Perform offspring mutation

6: Check for change

7: Combine parents and offspring, R

8: Respond to change

9: Compute Pareto-ranking for, R

10: Sort R according to Pareto-ranking

11: Select new generation, Pi+1

12: EndWhile

• A percentage of R is randomly selected and replaced with new randomly created

solutions. This approach does very well in an abrupt environment.

• With the second approach, a percentage of R is mutated. The solutions to be

mutated are randomly selected. This approach performs well in environments with

a low frequency of change.

2.10 Dynamic VEPSO

DVEPSO is an adapted version of the vector-evaluated particle swarm optimization

(VEPSO) algorithm for dynamic environments, proposed by Helbig and Engelbrecht [33].

It is a co-operative approach for solving dynamic MOPs. The population of particles is

divided into different sub-swarms, where each sub-swarm optimizes only one objective

function and is only evaluated with the same objective fucntion. Information is shared

among the sub-swarms by selecting the gBest from a neighbouring sub-swarm according

to a knowledge sharing strategy [31]. With the random selection strategy, selecting the

gBest can result in selecting the gBest from the same or another sub-swarm. Random
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Algorithm 5 DVEPSO

1: Create and Initialize a population and sub-swarms

2: While stopping condition is false

3: Check for change

4: Respond to change

5: Perform PSO iteration

6: if new solutions are non-dominated then

7: if space in archive then

8: add new solutions to archive

9: else

10: remove solutions from archive

11: add new solutions to archive

12: end if

13: end if

14: Select sentry particles

15: EndWhile

selection of gBest showed better performance than the ring strategy [31]. Therefore, this

dissertation’s study employs the random selection strategy.

DVEPSO uses sentry particles to check for changes at every iteration, and if a change

is detected by a particular sub-swarm, a portion of the swarm is re-initialized or re-

evaluated. In addition, the external archive is cleared; or previously non-dominated

solutions, that are now dominated are replaced with either the new non-dominated

solutions or dominated solutions which became non-dominated solutions through hill

climbing. Algorithm 5 presents the various steps of the DVEPSO algorithm.

2.11 Decision making models in MOO

Since the MOO process outputs the POF and POS, and not a single solution or decision

vector, decision makers need to select one solution out of a set of solutions to make a

decision. There are a number of tools and techniques that can be used to select one
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Pareto-Optimal solution from the POS [34, 52, 45]. Unless stated otherwise, the goal

of this study is to maximize the objectives. This section discusses some of the most

commonly used DMs:

2.11.1 Technique for Order of Preference by Similarity to Ideal

Solution

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was devel-

oped by Hwang and Yoon in 1981 [34], and is one of the most widely used tools for

selecting a Pareto-optimal solution. The aim of TOPSIS is to select a point whose Eu-

clidean distance is closer to the ideal solution and far from the worst solution. TOPSIS

follows five steps. The pair of weights used in this dissertation’s study is [0.5,0.5]. The

solution with the highest closeness value, Ci, is used to make a decision. Refer to [34]

for more information and formulas. The five steps of TOPSIS are:

Step 1

A m*n normalised objectives matrix, Fij, is created from all objective functions (f 1 and

f 2) and solutions, where m is the number of solutions and n is the number of objective

functions. The normalised objectives matrix, Fij, is given by:

Fij =
f 1
ij∑m

i=1 f
2
ij

(2.11)

where f 1 and f 2 are function one and two respectively. Note: net profit is f 1, while total

transaction cost is f 2.

Step 2

A weighted normalised matrix, wFij, is created from the normalised objective matrix,

Fij. Each objective is assigned a weight, wj, which determines the value placed on

each objective function. The associated weight is assigned based on how the investor

or decision maker prioritizes each objective. The associated weights must fall within
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[0,1] and sum up to 1. The pair of weights used in this study is [0.5,0.5]. The weighted

normalised matrix is defined as:

wFij = Fij ∗ wj (2.12)

Step 3

The ideal, A+, and worst, A−, solutions are determined by selecting the best value for

each objective from wFij (in step 2). Since profit and cost are maximized, the maximum

value is the best value and the minimum value will be the worst.

Step 4

The Euclidean distance between each solution wFij in step 2 and the ideal, A+, and

worst, A−, solution in step 3 is calculated as follows:

Si+ =

√√√√ n∑
j=1

(wFij − A+
j )2 (2.13)

Si− =

√√√√ n∑
j=1

(wFij − A−j )2 (2.14)

where i = 1, 2, 3, ...,m. Si+ and Si− are the Euclidean distance to the ideal, A+, and

worst, A−, solutions respectively.

Step 5

Calculate the closeness of each solution using Si+ and Si− from step 4 as follows:

Ci =
Si−

Si− + Si+

(2.15)

where Ci is the closeness value.
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2.11.2 Simple Additive Weighting

Simple additive weighting (SAW) [6] is the sum of the product of the normalised ob-

jectives and their weights. The solution with the highest score is selected. The pair of

weights, wj, used in this study is [0.5,0.5]. The SAW value, As, is defined as:

Asi =
ns∑
i=1

nFij . wj (2.16)

where ns is the number of solutions in the POS and, wj is the weights associated with

each criteria i (objective function). Then, the normalised objective matrix, Fij, is defined

as:

Fij =
fij
fmax
j

(2.17)

where fmax
j are the maximum objective function values / vector for the objective func-

tions, j.

The maximum objective values, fmax
j , should not be zero.

2.11.3 Gray Relational Analysis

Gray relational analysis (GRA) describes the gray or similarity between each solution

and the best values of each objective. GRA follows three steps: data normalization,

ideal sequence and calculating the gray relational coefficient (GRC). The solution with

the highest GRC value (when maximizing) is selected as the best solution. GRC is

defined as:

GRCi =
1

ns

ns∑
i=1

Imin
j + Imax

j

Iij + Imax
j

, i = 1, ..., ns, j = 1, ...,m (2.18)

where Imax
j and Imin

j are the maximum and minimum value of the point difference, j

respectively. Point difference, Iij, is defined as:

Iij = |Fmax
j − Fij|,with i = 1, ..., ns, j = 1, ...,m (2.19)

where the normalization objective matrix, Fij, is defined as:

Fij =
fij − fmin

j

fmax
j − fmin

j

,with i = 1, ..., ns, j = 1, ...,m (2.20)
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where fmin
j and fmax

j are the minimum and maximum objective values for objective, j,

respectively. ns and m are the number of solutions in POS and the number of objective

functions respectively.

2.11.4 Objective SUM

Objective sum (SUM) is the sum of all objective values, and the highest (when maximiz-

ing) value is selected as the best solution. If there is a tie between two or more solutions,

one is randomly selected to make the decision. The objective sum is calculated as:

Sj =
ns∑
i=1

fij, i = 1, ..., ns, j = 1, ...,m (2.21)

2.11.5 Highest Profit

Highest profit (HPF) is one of the simplest decisions to use. Since the aim of every

investor is to make a profit, decision makers will simply pick the solution with the

highest net profit.

2.12 Summary

This chapter discussed the concept of optimization and optimization problems for both

single-objective and multi-objective optimization. Section 2.1 gave an overview of single-

objective optimization and concepts such as the objective function, decision variables,

type of optimization solutions and constraints. Multi-objective optimization problems

were defined in Section 2.2, as well as the concept of domination.

Moreover, this chapter discussed the various dynamic optimization problems and the

types of dynamic environments. Most real world problems are dynamic in nature and

optimization algorithms should be able to keep track of changes and adapt accordingly.

This chapter introduced both dynamic SOO and SOO concepts in Section 2.3 and 2.4

respectively. Dynamic optimization problems differ in many aspect based on the type

of environment. Sections 2.3.1 to 2.3.3 discussed the types of dynamic environments

for dynamic SOO and how they affect optimization. Section 2.4.2 addressed DMOO

environment types.
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This chapter also discussed how PSO operates, since PSO is the foundation of the

proposed algorithm DMS-MOPSO. Section 2.5 discussed the standard PSO algorithms.

PSOs are affected by the way information is shared amongst particles. Section 2.6

provided an overview of various topological structures. Section 2.7 discussed different

variants of dynamic PSO algorithms, proposed for dynamic environments.

Finally, the state-of-the-art DMOAs were also discussed in this chapter. Section 2.8

discussed the components of MOPSO-CD and how SOO PSO was adapted for MOPs.

Sections 2.9 and 2.10 discussed the details of DNSGA-II and DVEPSO respectively. The

commonly used decision models to select a solution from the PSO for decision making

were presented in Section 2.11.
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Optimization Problems and

Simulation for Financial Markets

Financial Markets

This Section provides background of the financial markets, especially the Forex market,

which is a real world dynamic problem that optimization algorithms introduced in the

study will solve. Section 3.1 discusses how the financial market is forecasted. Section 3.2

provides background information of TIs which is used to analyze the trends of the Forex

market. Moreover, the trade rules (TRs) regarding TIs are discussed in Section 3.3.

The financial market is a market that investors or people trade in (buy and sell)

financial securities, such as stock, bonds, cryptocurrency, commodity markets, Forex,

etc. As mentioned in Chapter 1, this dissertation focuses on the Forex market which

form part of the financial market. The Forex market is for trading in currencies, which

has over 5 trillion USD turnover per day. In addition, the Forex market is one of the

most volatile, dynamic and by far the largest market in the world [3]. The most traded

currency pairs in the Forex market are EURUSD, USDJPY, and GBPUSD. The next

section discusses the traditional tools used in forecasting Forex.

35
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3.1 Financial market forecasting

In order to forecast the financial market, the two most commonly used techniques are

fundamental and technical analysis. Fundamental analysis uses factors, which directly

and indirectly influence the behavior of market trends. These factors include: interest

rate, economic and political news, government and company policies, inflation rates, etc

[16, 44]. Technical analysis, on the other hand, uses historical data of the financial market

to try and predict the movement of the market [15, 46]. In other words, technical analysis

explicitly does not take into account the internal and external influencers of a currency

pair or company stock. Fundamental analysis works well for long term investment, while

technical analysis works well for short term investment [15].

The EMH states that stock and Forex prices follow a random walk and that any profit

due to the study of patterns is obtained by chance. Therefore, using only historical

data might not produce much profit and cannot assist with decision making [28]. It

further states that the current price of a stock or Forex market takes into account factors

that have already influenced the current price. In contrast, investors have made profit

with just technical analysis, which is based on past information [15]. Technical analysis

analyzes historical price data to find patterns, believing that the price movement pattern

repeats itself [15].

Technical analysts believe that fundamental factors that have affected the financial

markets have already been incorporated into technical analysis calculations [42]. Most

literature (including this dissertation) only concentrate on maximizing profit with TIs

(such as moving average (MA) and moving average convergence divergence (MACD)) by

finding near optimal parameter values.

3.2 Technical Indicators

TIs are mathematical formulas which uses past data (Forex prices) to generate another

time series data. TIs can be grouped into 3 types, namely trends, momentum and

volatility indicators. Trend indicators, also known as lagging indicators, follow the

price action. While momentum indicators, which is also known as leading indicator

depict, the rate of change in price. And finally, volatility indicators display the rapid
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change in volatility in price [19]. The study in this dissertation uses four commonly used

TIs that are explained below.

3.2.1 Moving Average

MA, which is a lagging indicator, shows the average price within a specific time frame

by smoothing the price data which makes the current trend very clear [5]. There are

different types of MA. In this study, only two types of MA will be used: exponential

moving average (EMA) and simple moving average (SMA). The MAs are defined as:

SMA =

n∑
i=1

cPi

n
(3.1)

EMA = (cP ∗ per) + EMA(prev) ∗ 1− per (3.2)

with:

per =
2

n+ 1
(3.3)

where n is the number of time frames or period, while cP is the closing price. per is the

percentage which determines the weight of recent cP and EMA(prev) is the exponential

moving average of the previous day.

3.2.2 Moving average convergence/divergence

MACD is another trends-following momentum indicator and was developed by Gerald

Appel [7]. MACD turns two moving average trends into a momentum oscillator by

subtracting the long MA from the shorter MA to create the MACD line. The third MA

(MACD line) is used to obtain a signal line. The choice of the type of MA depends on

the investor or analyst. EMA is used for this study. MACD fluctuates above and below

the zero line as the moving averages converge, cross and diverge [5]. MACD is given by:

macdL = EMA(cP, n1)− EMA(cP, n2) (3.4)

sigLine = EMA(macdL, n3) (3.5)

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3. Optimization Problems and Simulation for Financial Markets 38

where macdL and sigLine are the MACD and signal lines respectively. EMA(cP, n1),

EMA(cP, n2), EMA(cP, n3) are exponential moving averages of the closing price, cP ,

in n1, n2, and n3 time frames.

3.2.3 Relative strength index

Relative strength index (RSI) is a momentum indicator developed by Welles Wilder [59].

It measures the speed and changes in price movement. RSI relative strength, RS, is

calculated by finding the ratio of the average gain divided by average loss. RSI oscillates

(or swings) between 0 and 100. By default, RSI is considered overbought when it is

greater than 70 and oversold when it is less than 30 [5]. RSI is defined by:

RS =
avG

avL
(3.6)

RSIv = 100− 100

1 +RS
(3.7)

with:

avG = avG(prev) ∗ (rsin− 1) + cG/rsin (3.8)

avL = avL(prev) ∗ (rsin− 1) + cL/rsin (3.9)

where rsin is the look back parameter or time frame used for the calculation. avG and

avL are the average gain and loss in the rsin time frame respectively. avL(prev) and

avG(prev) are the previous average loss and gain respectively. RS and RSIv denote the

relative strength and relative strength indicator values respectively.

TIs, however, do not operate alone and use rules to generate a signal whether to buy

or sell. The following subsection discusses the TRs or strategies.

3.3 Trading Rules or Strategies

TRs or strategies are an important aspect of a trading system. The TR generates a buy

or sell signal, determining whether the system should enter the market or not. In the

trading system “1” represents a buy signal, “-1” represents a sell signal and “0” signals
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to do nothing or hold. Any time the system opens a trade with a buy, it has to exit or

close the trade with a sell and vice versa. This approach is motivated by the “always in

the market” strategy [46]. This means that an exit signal does not only exit the market,

but opens a new trade with a sell, of which it also must exit with a buy signal. TRs with

respect to the TIs used in this study are implemented as discussed below in Sections

3.3.1 to 3.3.3.

3.3.1 Moving average double crossover

Both SMA and EMA use the double crossover rule. Two MAs are used to generate

the moving average double crossover rule, whereby one’s time period, n, used for cal-

culation will be short or longer than the other moving average, eg. SMA(cP, 20) and

SMA(cP, 50) where 20 and 50 are the specific time periods, n. The following strategy

is used to generate a buy/sell signal:

signal =


buy, if sSMA > lSMA (3.10a)

sell, if sSMA < lSMA (3.10b)

hold, otherwise (3.10c)

where sSMA and lSMA are short and long simple moving averages. The same strategy

applies to EMA.

3.3.2 Signal Line Crossover

This is the most popular strategy for MACD, as most traders think it provides better

timing [5]. A sell signal is generated when a MACD line, macdL, crosses below a signal

line, sigLine, and vice versa:

signal =


buy, if sigLine < macdL (3.11a)

sell, if sigLine > macdL (3.11b)

hold, otherwise (3.11c)
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3.3.3 RSI Crossover

RSI crossover is a RSI indicator TR. It is similar to other crossover rules, with the only

difference being that the buy signal is generated when the RSI value, RSIv, is below or

cross below the buy limit, limb. A sell signal is generated when the RSI value, RSIv,

crosses over the sell limit, lims [5]. The strategy is defined as follows:

signal =


buy, if RSIv < limb (3.12a)

sell, if RSIv > lims (3.12b)

hold, otherwise (3.12c)

Related Work

Considerable work has been done to forecast the financial market (especially Forex and

stock markets) to maximize profit either with fundamental or technical analysis. Great

strives have been made with algorithms, such as Artificial Neural Networks (ANNs),

which are widely used to forecast the Forex and stock markets [15, 43]. However, few

studies have used computational intelligence techniques, such as PSO and genetic algo-

rithms (GAs) to optimize TIs to maximize profit. Moreover, little research have explored

the performance of various dynamic PSO techniques on real world dynamic problems,

such as the Forex market. When applying the sPSO algorithm to dynamic environments,

it might not be able to detect changes and adapt to these changes over time.

Section 3.4 provides a literature review on SOAs applied to the financial market,

while Section 3.5 provides a literature review on the work done applying MOAs to the

financial market. Section 3.6 discusses some of the work done on how to make a decision

from the POS to make a trade in the financial market.

3.4 Single-objective Optimization for Financial Mar-

kets

Little research has explored the performance of various dynamic PSO techniques on real

world dynamic problems, such as the Forex market. When applying sPSO to dynamic

environments it might struggle to detect and adapt to changes over time.
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In [57], the authors developed a stock trading strategy based on the tPSO algorithms

by combining MA and trading range break-out (TRB) TIs. 140 TRs were created from

both MA and TRB TIs, of which each TR was assigned a starting weight. A single signal

was generated by summing the weights and signals. The tPSO was used to optimize

buy and sell thresholds. The system outperformed both TRB and MA best strategies.

However, parameters for all 140 TRs were set manually. This approach will lose valuable

information from other parameter values which were not included for MA or TRB TI.

Additionally, the system was trained once on training data and the best optimal values

after training were used for the rest of trading. Such a technique in a Forex market

might lose performance when using previously optimal parameters. This is because the

environment may change over time, hence the nature of a dynamic environment. The

tPSO does not really detect or adapt to changes in the search space, since the algorithm

does not make use of information from the search space or particles to detect changes

[56].

Butler and Kazakov [14] used sPSO to find parameters for the bollinger bands (BB)

TI for the stock market. They solved the problem of manually setting parameters values

for TIs [57]. However, sPSO was not adapted for a dynamic environment. Since the stock

market is a dynamic market, sPSO will struggle to track optima or trends. Furthermore,

using a single indicator does not give a clear picture on how PSO can optimize TIs with

respect to the changing nature of the market.

Some authors have also used GAs to optimize several TIs [46]. In the study of [46] 24

TIs were used to generate 38 TRs and a GA was used to find the best parameters, which

is an extension of the work of Butler and Kazakov [14]. The model was trained with

a constant set of data and then tested with another set of data. The disadvantage of

this approach is that when the search space of the test data completely changes during

testing, the model will underperform.

Chen and Huang [16] tried to address the problems [39, 46, 57, 58] that this approach

faced, by using a modified PSO to forecast the Forex market by implementing a sliding

window to track changes in the training and test data. Fitness inheritance was also

implemented to make use of previous or historic data of particles or solutions. 13 currency

pairs and 10 economic indicators were used as input (independent variables) to predict
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the exchange rate of the NTDUSD currency pair (dependent variable) by experimenting

with different sizes of sliding windows and number of particles. A prediction accuracy of

approximately 70 percent was achieved with a window size of 25 days. Since the model

was not used to predict different currency pairs, it is difficult to know how it will perform

when predicting different currency pairs. Although the focus of the study was not to

optimize or use TIs as [39, 46, 57, 58] did, the model might yield good results when

applied to the problem of optimizing TIs.

The main objective of solving a dynamic environment problem is to be able to keep

track of the changing optima and to adapt to the changing environment [27]. Most

literature did not explore the possibility of tracking and identifying changes and making

the algorithm respond to the changes. Some authors used a sliding window to adapt to

changes in data, but the algorithm did not detect and adapt to changes [16, 43]. Fine

tuning the sPSO parameters to track and adapt to changes assumes that the swarm did

not converge. When the particles converge, the contribution of the cognitive and social

components is negligible [27]. Therefore, fine tuning the sPSO parameters for the Forex

market, which is very dynamic, might result in reduced performance over time.

3.5 Multi-objective Optimization for Financial Mar-

kets

Some authors have used SOAs to successfully select parameters for TRs to maximize

profit [16, 14, 46]. This approach helps to solve the problem of having to manually set

each parameter [57]. However, the algorithms used to select parameters for the TRs or

strategies were designed for static environments. Atiah and Helbig [8] applied quantum

particle swarm optimization, which is a dynamic algorithm, to the Forex market, and it

showed good performance in comparison to static optimization algorithms. However, like

many real-world problems, the Forex and stock markets have more than one objective

to be minimized or maximized.

Lohpetch and Corne [41] adapted the genetic programming (GP) algorithm for a

MOP, applied it to the stock market and compared it against a single-objective GP. The

downside was that TI parameters were manually configured. Diago et al [11] also used
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a multi objective evolutionary algorithm with super individual (MOEASI) for the stock

market and compared it against single-objective evolutionary algorithm (EA). However,

the a single-objective EA performed better than MOEASI.

Ricardo, et al [20] used a variant of a differential evaluation (DE) MOA, called spher-

ical pruning multi-objective differential evolution (spMODE), to optimize four TIs to

maximize profit, minimize the number of trades (which has an impact on transaction

cost) and minimize risk. The performance of spMODE was compared against some

default values of the respective TIs used and the buy and hold strategy. spMODE’s

optimized TIs outperformed all default valued TIs and the buy and hold strategy. How-

ever, transaction cost was not considered or optimized directly. The authors assumed

minimizing the number of trades will lead to low transactional cost.

Antonio and Prospero [39] generated TRs by combining five optimized TIs’ signals

with the MOPSO-CD) with two objectives: percent profit and Sharpe ratio. The results

were compared against the NSGA-II, which is one of the most widely used MOAs.

MOPSO-CD outperformed NSGA-II in both the testing and training data. Moreover,

MOPSO-CD also outperformed the buy and hold strategy in two out of three testing

and training periods.

3.6 Decision Models’ Effects on MOO for Financial

Markets

Many studies have addressed financial time series forecasting with computational intelli-

gence techniques, like ANNs and optimization [15]. However, one of the main challenges

with MOO for automated trading is to make a good decision to place an order or trade

from the POS. Making a decision for SOO is easy since the algorithm only outputs a

single solution.

Ricardo et al [20] used a variant of a DE MOA, called spherical pruning multi-

objective differential evolution (spMODE), to optimize four TIs to maximize profit,

minimize the number of trades (which has an impact on transaction cost) and mini-

mize risk. The performance of spMODE was compared against some default values of

the respective TIs used and the buy and hold strategy. spMODE’s optimized TIs out-
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performed all default valued TIs and the buy and hold strategy. However, no DM was

used. The authors analyzed all solutions on test data and selected the best solution for

comparison.

Lohpetch and Corne [41] adapted a GP algorithm for a MOP, applied it to the

stock market and compared it against a single-objective GP. The authors addressed

the decision problem by employing the majority-voting approach (MJV) amongst points

(solutions) [20]. The multi-objective GP showed very good performance against the

single-objective GP. The problem with the authors’ decision making approach is that,

if under performing solutions form the majority, the system will make losses and vice

versa.

Antonio and Prospero [39] used the bagplot [51] to analyze the POF and the depth

mean to select a solution. This approach may not guarantee the best solution, since

other regions of the Pareto front were not analyzed.

The financial market is a dynamic market, especially Forex, which is the focus of this

study. However, CI techniques applied to the Forex and stock markets, including the

above reviewed literature, normally are static algorithms. The Forex market is traded

24 hours per day from Monday to Friday. The advent of new data or information may

change the behavior of the market [17, 30]. In order to make profitable trades, the

investor or any automated trading system should be able to keep track of the trends

(price movements) at all times. Directly applying static algorithms to the Forex market

might lead to a degrading performance of the algorithm over time.

Some literature have used a sliding window in the single-objective space to keep track

of changes in the data [16]. However, the algorithms were not used to detect changes

and adapt to changes. Moreover, in the context of MOPs, the system (or algorithm)

should not only track a single optimum as for SOPs, but has to track a set of optima

(solutions) for an investor or an automated trading system to make a decision [27].

Experimental Setup

The Section provides details about the experimental setup for this study. The main aim

of this study is to explore the performance of SOAs, MOAs and the proposed DMS-
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(a) Trading System Overview for SOA (b) Trading System Overview for MOA

Figure 3.1: Trading System Overview

MOPSO algorithm on a dynamic financial market, namely the Forex market.

The rest of the Section is organized as follows: Section 3.7 discusses the simulated

trading system for the experiment. The general experimental setup for this study is then

discussed in Section 3.8.

3.7 Financial Simulations

This section provides information about the trading system, including the data used for

this experiment. Moreover, the sliding window mechanism and evaluation model used

are discussed.

3.7.1 Trading System

This section discusses the various components of the trading system, used to optimize

TIs. Figure 3.1 gives an overview of the whole system for both SOO and MOO algo-

rithms.

The main aim of the study has to find or select a good combination of parameter

values for various TIs. The performance of a TR is largely based on its parameter

combination. Discretized versions of the optimization algorithms are used to select near

optimal parameter values.
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Table 3.1: Currency pairs with volatility rates on both training and testing data sets

Currency Pair Training Testing

EURGBP Hourly 0.1225 0.1308

Annual 1.9443 2.0757

USDZAR Hourly 0.2266 0.1808

Annual 3.5971 2.8696

EURUSD Hourly 0.1184 0.1271

Annual 1.8802 2.0175

USDJPY Hourly 0.1190 0.1338

Annually 1.8885 2.1238

3.7.2 Data

The data used for the experiment is the Forex hourly closing price data from January

2014 to December 2017 for all currency pairs used. The selection of currency pairs are

categorized into three types, namely major, exotic and crosses currency pairs [1].

Major currency pairs are the most traded pairs and are paired with the United States

Dollar (USD). The major currency pairs used for this experiment is the EURUSD and

USDJPY. The currencies of countries that depend heavily on commodity export, like

gold and silver, are referred to as commodity currencies. Examples are Australia and

New Zealand. However, real commodities, such as silver and gold, are also paired with

the USD and traded. XAGUSD and XAUUSD are examples of such commodities.

Crosses currency pairs are currency pairs that are not paired with the USD. The one

used for this study is the EURGBP currency pair. Lastly, exotic currency pairs are

the pairing of the currencies of developing countries with developed countries. The

USDZAR is the exotic currency pair selected for this study. Data was exported from

MetaTrader 5. Table 3.1 lists all the currency pairs with their respective hourly and

annual volatility rates [4]. The selected currency pairs with different rates of volatility

provided different data dynamics to test the algorithms.

Figures 3.2 to 3.5 depict the actual price movement for both the training and testing

datasets.
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3.7.3 Sliding window

A sliding window was employed to assist the algorithm to adapt to the dynamic nature

of the data-set [16]. As the window slided, the furthest data (training data set) was

removed and the recently used test data added to the window. The window was made

up of a training and testing data-set, of which 70 percent was training data and n hours

were testing data, as depicted in Figure 3.6.

The model was trained with training data and the attained POS was passed through

the decision model to select a solution. The selected solution was then applied to the

next 200 hours of trading data (testing). The sliding window then moved forward to

include the next n hours’ records of testing data and excluded the last n hours’ records

of training data. This process continued until the end of the testing data was reached.

In the case of MOO, as depicted in Figure 3.1(b), the model was trained with training

data and the attained POS was passed through the decision model to select a solution.

The selected solution was applied to the next n hours of trading data (testing). As

a result, the model was re-trained after every n hours of trade to accommodate any

dynamic changes.

A window size of 200 was chosen based on experimental analysis of the performance

of various optimization algorithms for other window sizes (50, 100, 200, 250, 300, 350

(a) EURGBP training (b) EURGBP testing

Figure 3.2: Actual price movement of EURGBP dataset
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(a) USDZAR training (b) USDZAR testing

Figure 3.3: Actual price movement of USDZAR dataset

(a) EURUSD training (b) EURUSD testing

Figure 3.4: Actual price movement of EURUSD dataset

and 400), since a window size of 200 generally performed better for all algorithms.

3.7.4 Evaluation model

Due to “always in the market” as discussed in Section 3.3, the system entered and

exited at the same time. Algorithm 6 simulates the net profit and transaction cost. If

the previous signal was “buy”, it could either be opening or closing a market. But more

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3. Optimization Problems and Simulation for Financial Markets 49

(a) USDJPY training (b) USDJPY testing

Figure 3.5: Actual price movement of USDJPY dataset

Figure 3.6: Sliding window

importantly, buying is to go long, i.e. to buy at a low price and sell when the price is

high, by subtracting the previous price from the current price. On the other hand, when

a signal was sell, the current price was subtracted from the previous price. On the other

hand, when a signal was sell, it signified going short or by borrowing at the current price

(50 USD) with the hope that the price would drop to enable buying at a lower price

(45 USD) and paying back the loan by keeping the difference in price value. That is, by

subtracting the current low price (45 USD) from the previous high price (50 USD) and

keeping a profit of 5 USD.
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Algorithm 6 Pseudo code for returns (gain and loss), net profit and transaction cost.

1: Procedure Returns(sigArray, cP, tCost) {Signal and Price Array}
2: prevPrice← 0 {Entering the trade Price}
3: prevSignal← 0 {Previous signal}
4: pF [size(cP )] {Array of returns}
5: tCost[size(cP )] {Array of transaction cost}
6: Tn ← 0 {Total Number of transactions}
7: While i ≤ size(sigArray)

8: if sigArra[i] = “1”&preSignal = “− 1” then

9: prof ← prePrice− cP [i]

10: if prof > 0 then

11: tCost[i]← tCost ∗ prof
12: pF [i]← prof − tCost[i]

13: Else

14: tCost[i]← tCost ∗ (−pF [i])

15: end if

16: preSignal← “1”

17: prePrice← cP [i]

18: Tn ← Tn + 1

19: ElsIf sigArra[i]“− 1”&preSignal = “1”

20: pF [i]← cP [i]− prePrice

21: if prof > 0 then

22: tCost[i]← tCost ∗ prof
23: pF [i]← prof − tCost[i]

24: Else

25: tCost[i]← tCost ∗ (−prof)

26: pF [i]← prof − tCost[i]

27: end if

28: preSignal← “− 1”

29: prePrice← cP [i]

30: Tn ← Tn + 1

31: end if

32: i = i + 1

33: EndWhile

34: netPF ← sum(pF ) {net profit}
35: TCost ← sum(tCost) {Total transaction cost}
36: if Tn > 0 then

37: avgPF ← netPF/Tn {average profit}
38: Else

39: avgPF ← 0 {average profit}
40: end if

41: tGains← sum(pF (pF > 0))

42: tLoss← sum(pF (pF < 0))

43: return netPF, avgPF, tLoss, tGains, Tn, pF, TCost

44: EndProcedure
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Table 3.2: Solution representation

SMA EMA RSI MACD

n n n n limb lims n n2 n3 n1

20 100 20 100 25 71 20 50 250 20

3.8 Optimization Setup

This section discusses how the optimization algorithms used in this study were adapted

to optimize the Forex market and how the problem was represented. The algorithms

were implemented in MATLAB. All experiments were run 30 times per algorithm, and

an average of the algorithms’ performance values was calculated.

3.8.1 Solution representation

The trading system used the algorithms to select good parameters for each TI. Each

solution vector was encoded as depicted in Table 3.2. There were 10 dimensions, each

representing a parameter of all 4 TIs to be optimized. The short and long time frames of

SMA and EMA make up four dimensions, two dimensions each for both SMA and EMA

TIs. RSI on the other hand occupies three dimensions; representing the buy limit, sell

limit and time frame respectively. Additionally, MACD occupies the remaining three

dimensions, each representing all the three time frames used for MACD and signal lines

in signal line crossover strategy. In terms of the DNSGA-II, chromosomes were made up

of four blocks of genes, each representing parameters of a specific TI.

3.8.2 Velocity and Boundary Handling

The velocity (for PSO algorithms) and position for particles for all algorithms were

clamped to prevent them from overshooting optima and moving out of the search space

boundary. Velocity was set to the maximum velocity, vmax, or minimum velocity, vmin,

when the particle’s velocity was greater or less than the set velocity limits [27]. A

particle’s velocity was modified before any position update [27]:
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vi(t) =


v́i(t), if vmin ≤ v́i(t) ≤ vmax (3.13a)

vmin, if v́i(t) < vmin (3.13b)

vmax, if v́i(t) > vmax (3.13c)

where v́i(t) is the newly calculated velocity. The minimum and maximum velocities of

particles were determined by:

vmax = δ(Dmax −Dmin) (3.14)

vmin = −(vmax) (3.15)

where Dmin and Dmax denotes the minimum and maximum values of the domain for

each TI’s parameter, and δ ∈ (0, 1] [27].

Furthermore, the position of a particle was modified when the position was outside

the domain, as follows:

xi(t) =


x́i(t), if Dmin ≤ x́i(t) ≤ Dmax (3.16a)

Dmin, if x́i(t) < Dmin (3.16b)

Dmax, if x́i(t) > Dmax (3.16c)

where x́i(t) is the newly calculated position.

Offspring of DNSGA-II were also restricted according to Equation 3.16.

3.8.3 Discrete Solutions

Computational algorithms are typically used to solve continuous optimization problems.

However, the algorithms employed in this study were adapted for discrete problems. To

optimize TIs or to find better combinations of parameters for TRs which work on discrete

time series of prices, all algorithms used in this study were adapted for the discrete search

space. The algorithms were adapted as follows:

PSO particles were randomly initialized with a discrete uniform distribution, unlike

the sPSO where particles are randomly initialized with a continuous uniform distribution.

The velocity for PSO algorithms was still calculated with Equation 2.8. However, the
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result was passed through a hyperbolic tangent function and rounded up to the nearest

integer to attain a new discrete velocity value, vi,d(t). A particle’s position at time step,

t, was therefore given by [48]:

x́i(t) = xi(t) + round(tanh(vi(t))) (3.17)

where x́i(t) is the newly calculated position, i.e. the position at time t.

The mutant vector and offspring of DNSGA-II were rounded up to the nearest integer.

3.8.4 Objective Function

The fitness of a SOO PSO’s particle was defined as the net profit, netPF , over a trading

period, which is the sum of returns (losses and gains). The net profit determined which

particle was used in testing or for trading as depicted in Figure 3.1.

For MOO, total transaction cost, TCost, was employed to have conflicting objectives

functions. Therefore, the following objectives were used:

• Net profit (netPF ): It is the sum of returns (losses and gains) after deduction

of the cost of transaction. The objective is to maximize the netPF , given by:

netPF =
T∑
t=2

pFt (3.18)

• Total transaction cost (TCost): The second objective is to minimize the TCost.

An investor or trader is charged a percentage per returns. Since we are always

in the market as discussed in Section 3.7.1, the charges are applied to all returns

(either gains or losses). The system needs to make profitable trades in order to

cover TCost and make profit. A percentage of 2.5 was charged as tCost per return

in this study. TCost is given by:

TCost =
T∑
t=2

tCostt (3.19)

where TCost and netPF are the net profit and total transaction cost respectively. pFt

and tCostt are the traders’ returns per trade (on gain or loss) and transaction cost at

time t, respectively, which are calculated based on Algorithm 6.

Note: TCost is negated to turn it into a maximization objective function.
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3.9 Summary

This chapter provided background information on the financial market. Section 3.1

emphasized the fundamental and technical analysis and how they are used to forecast

the financial market. Section 3.2 further explained the most commonly used technical

indicators, which are used to forecast the financial market. Moreover, the respective

trading rules associated with technical indicators to make trades were highlighted in

Section 3.3.

A review of work done on the application of computational intelligence algorithms

to the financial market was also presented in this Chapter. Section 3.4 reviewed SOAs

applied to the financial market, of which most literature assumed the financial market

as a static environment. Since the financial market is not a SOP, Section 3.5 discussed

work that applied MOAs to the financial market. Moreover, Section 3.6 highlighted how

some studies made decisions from the POS to make a trade in the financial market.

Moreover, this chapter provided details on the experimental setup for this study.

Section 3.7 discussed the simulated trading system for the experiment. Section 3.7

also provided details of the sliding window mechanism used and the evaluation model

employed for this experiment. Section 3.8 discussed the general experimental setup for

this study.
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Chapter 4

Dynamic Particle Swarm

Optimization for Financial Markets

Most PSO applications for the stock or Forex market assume that the search space or

the environment is static. However, the financial market is one of the most complex and

dynamic environments in the world. This chapter focusses on exploring the performance

of various dynamic PSOs when maximizing profit in a complex dynamic environment,

such as the Forex market. Algorithms, such as the qPSO and cPSO, are employed and

compared with the performance of the sPSO algorithm and the tPSO algorithm, which

are usually used when optimizing TIs for the stock and Forex markets [58, 16].

The rest of the chapter is organized as follows: The description of the conducted

experiment is detailed in Section 4.1. Section 4.2 then discusses the results obtained

from the experiments.

4.1 Experimental Setup

This section describes the experimental setup of the experiments discussed in this chap-

ter. The data used for this experiment were USDJPY and USDZAR currency pairs

discussed in Section 3.7.2. Moreover a sliding window mechanism was used as depicted

in Figure 3.6 and as discussed in Section 3.7.3. The rest of this section’s layout is:

Section 4.1.1 presents the representation used for the particles. The objective function

55
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is discussed in Section 4.1.2 and parameter configuration is discussed in Section 4.1.3.

Finally, performance measures are highlighted in Section 4.1.4.

4.1.1 Particle representation

The trading system used a PSO to select good parameters for each TI. Particles were

encoded as depicted in Table 3.2. There are 10 dimensions, each representing a parameter

for all 4 TIs to be optimized.

4.1.2 Objective Function

The fitness of a particle was defined as the net profit, netPF , over a trading period, which

is the sum of returns (losses and gains). The net profit determined which particle should

be used in testing or for trading as depicted Figure 3.1(a). Therefore, the objective

function used was the net profit, netPF , defined in Equation 3.18.

4.1.3 Parameter Configuration

The parameters’ values in Table 4.1 were selected according to [10, 9, 50]. The per-

formance of a PSO is largely influenced by a good balance between exploration and

exploitation. To be able to get a good trade off, the inertia weight, ωmin, was linearly

reduced as suggested by Shi and Eberhart [25], to enable exploration at the initial stage

and exploitation at the later stage. Furthermore, the acceleration coefficient, c1, de-

creased linearly overtime, while the acceleration coefficient, c2, increased linearly [50].

The values of c1(t), c2(t) and ωt at time step t were calculated as:

c1(t) =
(
c1,min − c1,max

) t
nt

+ c1,max (4.1)

c2(t) =
(
c2,max − c2,min

) t
nt

+ c2,min (4.2)

ω(t) =
(
ωmin − ωmax

) t
nt

+ ωmax (4.3)

where nt is the maximum number of iterations. t, min and max denotes the current

iteration, minimum value and maximum values respectively. The parameters’ respective

values can be found in Table 4.1.
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Table 4.1: Parameter settings of PSO and the boundaries of technical indicators

PSO Values Technical Indicators Domain,D

ωmin 0.4 n [1,250]

ωmax 0.9 limb [1,50]

c1,min 0.5 lims [51,100]

c1,max 2.5 n3 [1,9]

c2,min 0.5 n1, n2 [10,50]

c2,max 2.5

Q, rcloud 0.15 ∗ (Dmax)

δ, Rc, Rp 0.1, 1,
√

3Dmax

Note that linearly increasing c2 and decreasing ω and c1 was only applied to the

tPSO, cPSO and qPSO. Parameters of sPSO remained unchanged after every iteration.

tPSO is the same as sPSO, except that tPSO linearly increased c2 and decreased ω and

c1 after every iteration.

Velocity and boundary constraints were handled as explained in Section 3.8.2

4.1.4 Evaluation measures

Since a sliding window was employed, returns were aggregated over all windows within a

run. An average of the net profit, AvgnetPF , over all 30 independent runs was calculated.

However, in order to measure the consistency of the algorithms’ performance, the coeffi-

cient of variation (CV) was used. CV is a statistical measure to compare the degree of

variation from one data series to another, no matter how different the averages are from

one another[2].

The results from the study are discussed in the following section.

4.2 Experimental Results

This section discusses the results obtained from the study. Sections 4.2.1 and 4.2.2

discuss the performance of all algorithms over the USDJPY and USDZAR currency pairs
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without transaction cost, respectively. Sections 4.2.3 and 4.2.4 discuss the performance

of all algorithms over the USDJPY and USDZAR currency pairs with transaction cost,

respectively. Moreover, Section 4.2.5 outlines the general observations made throughout

the experiment.

4.2.1 USDJPY Without Transaction Cost

Tables 4.2 and 4.3 summarize the outcomes of the study on training and testing data

for the USDJPY currency pair without transaction cost respectively. Tables 4.2 and

4.3 show the average net profit, AvgnetPF , and CV values for the various TIs and all

four algorithms. Moreover, Figure 4.1 presents the accumulated sum returns for various

TIs by all four algorithms over the USDJPY currency pair without transaction cost.

qPSO showed good performance over time, while all other algorithms depreciated in

performance over time.

From Table 4.2’s training results, it can be seen that qPSO yielded very good results

for both net profit and CV on all TIs, except for MACD, for which tPSO outperformed

all other algorithms. qPSO consistently was the second best performer on all TIs, except

for its worse performance for CV on RSI. Furthermore, sPSO yielded the least net profit

on MACD, EMA and RSI. However, it performed well on the SMA. All algorithms

generally performed well on the training data. However, the trends were different for the

testing data.

As shown in Table 4.2’s testing results, on SMA qPSO was the only algorithm that

yielded positive returns for both net profit and CV. qPSO continued to produce superior

profit on both EMA and RSI, and was followed by qPSO. However, tPSO and sPSO

made the least profit on EMA and RSI respectively. As depicted in Figures 4.1(a),

4.1(b) and 4.1(d), qPSO was more superior than other algorithms on both the training

and testing datasets. However, Table 4.3’s testing results and Figure 4.1(c) indicate that

all algorithms performed better on MACD, with qPSO producing the highest profit,

followed by qPSO.
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Table 4.2: Algorithms’ evaluation without cost on USDJPY training dataset

TIs Measures sPSO tPSO cPSO qPSO

AvgnetPF 36.697 35.838 37.391 46.991

SMA CV 0.141 0.116 0.135 0.114

AvgnetPF 34.161 33.956 34.054 37.114

EMA CV 0.049 0.057 0.046 0.018

AvgnetPF 30.462 30.249 31.605 37.567

RSI CV 0.221 0.213 0.224 0.181

AvgnetPF 33.866 34.115 34.019 33.877

MACD CV 0.022 0.011 0.014 0.021

Table 4.3: Algorithms’ evaluation without cost on USDJPY testing dataset

TIs Measures sPSO tPSO cPSO qPSO

AvgnetPF -1.022 -1.338 -0.672 10.038

SMA CV -6.589 -5.442 -11.001 0.428

AvgnetPF 2.783 1.951 4.091 13.133

EMA CV 2.317 3.715 1.607 0.337

AvgnetPF -2.203 0.741 1.071 2.880

RSI CV -4.471 10.507 9.259 2.794

AvgnetPF 17.712 17.624 19.378 18.924

MACD CV 0.090 0.080 0.052 0.083

4.2.2 USDZAR Without Transaction Cost

Tables 4.4 and 4.5 summarize the results for sPSO, tPSO, qPSO and qPSO for the

AvgnetPF and CV performance measures for the training and testing data respectively.

From Table 4.4’s training results, it can be seen that all algorithms recorded a positive

profit with SMA, with qPSO recording the highest profit, and sPSO recording the least

profit. However, sPSO was the most stable algorithm with the lowest CV value. The

profit trend continued for both EMA and RSI, with qPSO recording the highest profit.

qPSO on the other hand recorded the highest profit with MACD. The training results

in Table 4.4 confirm the good performance of qPSO, also in comparison to the static

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Dynamic Particle Swarm Optimization for Financial Markets 60

(a) SMA (b) RSI

(c) MACD (d) EMA

Figure 4.1: Accumulated returns for highest returns on USDJPY testing dataset

algorithms. However, the Forex market training results do not necessarily translate into

good results during testing.

Table 4.5, which also summarizes the test data results, shows that qPSO performed

better than the other algorithms with SMA and RSI, as also depicted in Figures 4.2(a)

and 4.2(b). tPSO recorded the best profit with EMA and MACD, which is also depicted

in Figures 4.2(c) and 4.2(d). However, all algorithms recorded negative profit with EMA,

with qPSO being the worst performer.

In terms of consistency and stability measured by CV, qPSO was more stable with the

SMA and MACD TIs, while qPSO was more stable with the EMA and RSI TIs. This
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Table 4.4: Algorithms’ evaluation without cost on USDZAR training dataset

TIs Measures sPSO tPSO cPSO qPSO

AvgnetPF 6.169 6.203 6.353 6.490

SMA CV 0.060 0.069 0.067 0.065

AvgnetPF 9.229 9.192 9.337 9.572

EMA CV 0.114 0.057 0.101 0.009

AvgnetPF 9.166 9.088 9.032 9.829

RSI CV 0.134 0.130 0.092 0.098

AvgnetPF 6.512 6.462 7.108 6.308

MACD CV 0.117 0.124 0.007 0.132

Table 4.5: Algorithms’ evaluation without cost on USDZAR testing dataset

TIs Measures sPSO tPSO cPSO qPSO

AvgnetPF 1.309 0.991 1.469 1.834

SMA CV 0.765 1.261 0.737 0.807

AvgnetPF -0.046 -0.018 -0.110 -0.628

EMA CV -20.280 -46.700 -7.422 -1.004

AvgnetPF 2.816 2.975 2.062 4.277

RSI CV 1.809 1.864 1.776 1.445

AvgnetPF 1.809 1.864 1.776 1.445

MACD CV 0.307 0.300 0.077 0.233

trend also shows that the dynamic PSO algorithms were more stable in performance

compared to traditional PSO algorithms.

The observed trends changed completely when algorithms had to maximize profit

while also considering the transaction cost, discussed next.

4.2.3 USDJPY With Transaction Cost

This section analyses the performance of all algorithms when introducing a transaction

cost of 2.5 percent per return (profit or loss) for both USDZAR and USDJPY.
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(a) SMA (b) RSI

(c) MACD (d) EMA

Figure 4.2: Accumulated returns for highest returns on USDZAR testing dataset

Tables 4.6 and 4.7 summarize the results of all algorithms on USDJPY and USDZAR

test data. The performance of all algorithms was measured according to the AvgnetPF

and tCost, while NOtrades was used to assist with analyzing tCost.

From Table 4.6 it can be observed that no algorithmed perform well when compared

to their performance depicted in Table 4.3, which did not include the transaction cost.

All algorithms recorded negative profit with SMA. However, qPSO still outperformed

the other algorithms by making more trades and paying more for transactions. qPSO

continued with its good performance with EMA, by trading more and paying more for

transactions. sPSO was able to make a profit with the least transaction cost and trades.
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Table 4.6: Algorithms’ evaluation with cost on USDJPY testing dataset

TIs Measures sPSO tPSO cPSO qPSO

AvgnetPF -8.877 -9.684 -8.733 -1.396

SMA NOtrades 162 169 180 581

tCost 2.214 2.273 2.343 3.785

AvgnetPF 0.254 -0.014 -0.127 1.623

EMA NOtrades 217 223 230 515

tCost 2.401 2.427 2.446 3.333

AvgnetPF 2.35 -1.064 -0.536 -4.419

RSI NOtrades 42 44 60 103

tCost 1.136 1.143 1.323 1.692

AvgnetPF 14.643 14.069 15.289 15.320

MACD NOtrades 629 630 631 624

tCost 4.780 4.788 4.797 4.765

A different trend was observed when algorithms used RSI. With less transactions

and cost, sPSO was able to outperform the other algorithms, which recorded negative

profit. These results are completely different from what is depicted in Table 4.3 with

RSI. Although qPSO traded more, more trades did not lead to more profit. An algorithm

has to make profit trades with good profit margins to make a profit. With MACD, all

algorithms made good profit, with qPSO making the most profit, followed by cPSO.

4.2.4 USDZAR With Transaction Cost

The performance of all algorithms on USDZAR with transaction cost did not differ

much from USDZAR without cost, except that profits reduced due to the deductions of

transaction cost.

From Table 4.7 it can be seen that qPSO still maintained its dominant performance

over the other algorithms with SMA, while sPSO performed better than tPSO and qPSO

by trading less and making more profit. Again, qPSO outperformed other algorithms

with RSI and MACD, followed by tPSO. However, tPSO and qPSO recorded less trans-
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Table 4.7: Algorithms’ evaluation with cost on USDZAR testing dataset

TIs Measures sPSO tPSO cPSO qPSO

AvgnetPF 0.619 0.523 0.540 1.204

SMA NOtrades 145 152 176 218

tCost 0.457 0.465 0.498 0.542

AvgnetPF -0.824 -0.996 -0.759 -1.016

EMA NOtrades 158 160 153 167

tCost 0.426 0.428 0.419 0.440

AvgnetPF 2.557 2.738 1.729 4.339

RSI NOtrades 16 16 14 19

tCost 0.134 0.145 0.131 0.889

AvgnetPF 1.141 1.176 1.169 0.178

MACD NOtrades 316 316 312 317

tCost 0.717 0.715 0.716 0.722

action cost with RSI and MACD.

All algorithms recorded negative profit with EMA. This followed the same trend as

the results obtained without transaction cost (refer to Table 4.5), with qPSO recording

the worst profit.

4.2.5 General Observations

• The performance of qPSO was worsened when transaction cost was introduced,

while sPSO’s performance was improved.

• qPSO traded more than all the other algorithms, while sPSO made less trades.

• All algorithms did not make use of EMA to record profit over the USDZAR cur-

rency pair.

• More trades did not necessarily translate into profit. However, more profit trades

with a good profit margin could translate into profit.

• All algorithms made good profit with MACD, irrespective of the currency pair.
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• The better performance of qPSO and cPSO can be attributed to the algorithms’

characteristics. Both qPSO and cPSO dynamically maintain the balance between

exploration and exploitation throughout the search process. The randomized re-

positioning of qPSO charged particles improve the chance to land on a good solution

and to influence the normal particles.

• tPSO, on the other hand, could only maintain diversity during the early stage of

the search when particles did not yet converge. When particles converged at a later

stage or got stuck in local optima, it was difficult to explore for new solutions. In a

dynamic environment, like the Forex market where both the search space and the

objective function keep changing, temporal exploration algorithms, like tPSO, do

not yield good results throughout the search.

• Although qPSO performed well, its CV values were still high. This is due to optima

that are far away from the radius making it difficult for qPSO to track. This can be

addressed by incorperating a technique to dynamically adapt the radius of qPSO.

4.3 Summary

This chapter explored the performance of different variants of the dynamic particle

swarm optimization (PSO) algorithm, namely the quantum PSO (qPSO) and charge

PSO (cPSO), on optimizing technical indicators (TIs) in the foreign exchange (Forex)

market to maximize profit. The results obtained compared from both the standard parti-

cle swarm optimization (sPSO) algorithm and a time-series particle swarm optimization

(tPSO) algorithm on the USDJPY and USDZAR currency pairs were compared against

one another.

All algorithms showed good performance on profit returns for all TIs during training.

qPSO was the best performing algorithm on both the training and testing datasets, and

was followed by qPSO. However, the performance of all algorithms deteriorated when

transaction cost was introduced. It was difficult for the algorithms to find a trade-off

between profit and transaction cost.

Dynamic variants of PSO were able to find optimal parameters for TIs in the Forex
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market. Finer tuning of the parameters of the algorithms will result in improved perfor-

mance. Furthermore, the profit returns of TIs will also depend on the type of currency

pairs and trading rules.

Further areas for research include defining the problem as a multi-objective opti-

mization problem (MOP), because the financial market do not only aim to maximize

profit, but also to minimize risk and the cost of transaction. Furthermore, adapting a

co-operative PSO for TI parameter optimizing might yield good results. These areas of

research are investigated in the next two chapters.
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Chapter 5

Effects of Decision Models on

Dynamic Multi-Objective

Optimization Algorithms for

Financial markets

Maximizing profit in a financial time series, like foreign exchange, with computational

intelligence techniques is very challenging. It is even more challenging to make a de-

cision for a MOP, like automated Forex trading. This chapter investigates the effects

of five decision models on three state-of-the-art the dynamic multi-objective algorithms

(MOAs) namely, the dynamic vector-evaluated particle swarm optimization (DVEPSO)

algorithm, the multi-objective particle swarm optimization algorithm with crowded dis-

tance (MOPSO-CD) and dynamic non-dominated sorting genetic algorithm II (DNSGA-

II).

5.1 Experimental Setup

The data used for this study is the USDZAR currency pair discussed in Section 3.7.2.

Moreover a sliding window mechanism was used as depicted in Section 3.7.3. The next

sections discuss the particle representation, objective functions, decision models (DMs)

67
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for multi-objective optimization (MOO) and the parameter configuration.

5.1.1 Particle representation

The trading system used PSO to select good parameters for each TI. Particles were

encoded as depicted in Table 3.2, with 10 dimensions, where each dimension represented

a parameter of all 4 TIs to be optimized.

5.1.2 Objective Functions

Two conflicting objective functions were employed: the net profit, netPF (refer to Equa-

tion 3.18) over a trading period, and TCost (refer to Equation 3.19). An investor or trader

was charged a percentage per returns. The net profit and transaction cost objective

functions determine which solution should be part of the POS after training as depicted

Figure 3.1(b).

Note: TCost is negated to turn it into a maximization objective function.

5.1.3 Decision making models for MOO

The decision models used for this experiment were the Technique for Order of Prefer-

ence by Similarity to Ideal Solution (TOPSIS), simple additive weighting (SAW), gray

relational analysis (GRA), objective sum (SUM) and highest profit (HPF), as discussed

in Section 2.11.

5.1.4 Parameter Configuration

The parameters and configuration for the algorithms used in this study are as follows:

• The population size was set to 100 for all algorithms and the maximum number

of iterations was set to 100. The star topology was used for MOPSO-CD and

DVEPSO throughout the study. The values of the inertia weight ω, c2, and c1 used

for MOPSO-CD and DVEPSO, listed in Table 5.1, guarantee convergence [24].

• DVEPSO used the random knowledge sharing topology and a sub-swarm size of

50.
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Table 5.1: Parameter settings of DVEPSO and MOPSO-CD and the boundaries of technical

indicators

Parameters Values TIs Domain,D

ω 0.729844 n1, n2 [30,200]

c1 1.496180 lims, n [51,100],[1,200]

c2 1.496180 n3, limb [1,9], [1,50]

• The probability of crossover and mutation for DNSGA-II were set to 0.9 and 0.1667

respectively, which showed good returns [39].

5.1.5 Velocity and Boundary Handling for PSO Algorithms

The velocity and position of particles were clamped to prevent them from overshooting

optima and moving out of the search space boundary, as discussed in Section 3.8.2.

5.1.6 Evaluation measures

Three evaluation measures were used for this study, and each one was aggregated over

all windows (in sliding window) within a run. The averages of all evaluation measures,

namely the net profit, AvgnetPF , and winning trades, gTrade, over all 30 independent

runs were calculated and the coefficient of variation, CV [2] of net profit was also calcu-

lated over 30 runs. The evaluation measures were calculated as follows:

AvgnetPF =

∑R
i=1(

netPF

I
) ∗ 100

R
(5.1)

where I is the initial investment. In this experiment I is the first closing price from the

training and test data. R is the total number of runs, namely 30.

gTrade =

∑R
i=1(

Tw

Tn
) ∗ 100

R
(5.2)

where Tw, Tn are the total number of wins and total number of trades respectively.
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5.2 Experimental Results

This section discusses the results obtained from the study. Figure 3.3 depicts the actual

price movement for both the training and testing datasets.

Tables 5.2 to 5.4 summarize the outcomes of the study on testing data for DVEPSO,

MOPSO-CD and DNSGA-II respectively. The tables show the average net profit, AvgnetPF ,

percentage of profit trades, gTrade, and coefficient of variation (CV) values for the rel-

ative strength index (RSI) and moving average convergence divergence (MACD) TIs for

all DMs on each respective algorithm. Figures 5.1 to 5.3 show regions selected by DMs

from the POF on training data.

5.2.1 Results of DVEPSO

From Table 5.2, it is clear that GRA consistently made higher profit than all other DMs

on all TIs, except with EMA of which GRA recorded negative profit. HPF recorded

the highest profit with EMA from the Pareto-optimal set (POS) of DV EPSO, followed

by SAW across all measures. TOPSIS on the other hand, performed poorly on all

measures.

From Figure 5.1, HPF , SUM and SAW selected the same solution from RSI’s POS

with DV EPSO most of the time, which also can be seen in Table 5.2, i.e. how similar

their net profits were. Figure 5.1 shows DMs selecting solutions from different regions of

the POS, but HPF , SUM and SAW still followed the same trend. GRA was able to

select profitable solutions irrespective of the TI.

5.2.2 Results of MOPSO-CD

Table 5.3 shows that SUM made the best decision for RSI from the MOPSO − CD
POS, which resulted in good profit, more profit trades, and a lower CV respectively,

followed by HPF . Optimizing MACD TI by MOPSO-CD produced a different trend.

GRA outperformed other DMs with higher profit, but with lesser profit trades. SUM

and TOPSIS on the other hand, had the highest profit trades and the lowest CV

respectively. Moreover, SAW performed well with SMA and EMA TIs by recording the

highest and a positive profit.
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Table 5.2: Algorithms Evaluation DVEPSO on USDZAR Test dataset

TIs Measures TOPSIS SAW GRA SUM HPF

AvgnetPF -8.33 -3.26 2.14 -7.06 -7.56

SMA gTrade 47.74 40.75 40.84 42.66 40.55

CV -0.67 -3.590 5.51 -0.99 -1.02

AvgnetPF -0.44 2.72 -2.32 2.84 3.27

EMA gTrade 33.46 32.22 32.18 32.75 32.52

CV -17.658 2.671 -5.435 2.982 2.425

AvgnetPF 0.84 2.94 9.00 2.29 2.85

RSI gTrade 35.41 61.05 64.32 58.54 59.27

CV 1.166 0.560 0.213 0.545 0.473

AvgnetPF 6.35 8.78 13.37 7.34 7.40

MACD gTrade 31.38 30.70 32.83 30.93 30.91

CV 0.108 0.085 0.073 0.092 0.092

(a) RSI (b) MACD

Figure 5.1: DM points from DVEPSO POF on training dataset

What can be seen from optimizing MACD is that higher profit trades, though impor-

tant, did not guarantee higher profits. Higher profit trades with high profit margins could

guarantee higher profit. In general, MOPSO-CD better optimized MACD in comparison

to all other TIs.
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Table 5.3: Algorithms Evaluation MOPSO-CD on USDZAR Test dataset

TIs Measures TOPSIS SAW GRA SUM HPF

AvgnetPF -11.87 3.45 -1.17 -7.90 -6.37

SMA gTrade 51.05 42.17 42.20 42.70 42.21

CV -0.625 1.934 -7.959 -1.190 -1.698

AvgnetPF -6.96 5.18 -14.85 -2.05 -1.71

EMA gTrade 30.16 31.02 27.54 31.07 31.29

CV -1.2108 0.922 -0.463 -3.200 -4.148

AvgnetPF 2.03 3.95 8.29 8.88 8.83

RSI gTrade 49.50 61.25 63.85 69.30 68.05

CV 0.218 0.318 0.163 0.103 0.106

AvgnetPF 10.16 10.63 15.98 11.52 11.74

MACD gTrade 31.42 28.67 28.52 30.71 30.70

CV 0.044 0.063 0.056 0.045 0.047

(a) RSI (b) MACD

Figure 5.2: DM points from MOPSO-CD POF on training dataset

Figure 5.2 illustrates that the decision trend was different from the decision made

from DVEPSO’s POS. SUM and HPF followed almost the same trend in both the

POS of MOPSO − CD RSI and MACD.
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Table 5.4: Algorithms Evaluation DNSGA-II on USDZAR Test dataset

TIs Measures TOPSIS SAW GRA SUM HPF

AvgnetPF -12.84 -5.62 -2.47 -9.78 5.62

SMA gTrade 52.465 41.732 40.671 41.938 41.732

CV -0.366 -1.538 -3.752 -0.594 -1.538

AvgnetPF -3.20 -5.29 2.21 -5.58 -5.29

EMA gTrade 31.114 28.927 38.241 28.853 28.927

CV -1.507 -0.797 2.416 0.782 -0.797

AvgnetPF 0.00 10.86 7.11 11.28 10.86

RSI gTrade 0.00 71.15 66.05 74.36 71.15

CV 0 0.106 0.177 0.094 0.106

AvgnetPF 11.76 8.19 21.00 9.58 8.19

MACD gTrade 31.50 29.93 36.62 31.52 29.93

CV 0.037 0.063 0.037 0.054 0.063

5.2.3 Results of DNSGA-II

From Table 5.4 it can be seen that, TOPSIS did not make any trade with RSI from the

DNSGA-II POS. However, SUM outperformed all DMs for RSI across all measures,

followed by SAW and PF , while GRA outperformed other DMs for MACD and EMA

and was followed by TOPSIS. However, HPF did perform better than other DMs with

SMA.

Figure 5.3 and Table 5.4 depict that HPF and SAW selected the same solution and

produced the same net profit for both RSI and MACD.

5.2.4 General Observations

• GRA in general performed better than other DMs across all algorithms with

MACD.

• SUM also was a better performer across all algorithms with RSI.

• In terms of which algorithm had the most consistence performance, measured by
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(a) RSI (b) MACD

Figure 5.3: DM points from DNSGA-II POS for MACD on training dataset

CV , DNSGA− II was the best algorithm with DV EPSO being the worst.

• All algorithms were able to optimize MACD. Except for RSI, of which algorithms

struggled to produce profit.

• Moreover, Table 5.5 shows that more trades were recorded with MACD, irrespec-

tive of the DMs.

• From Figures 5.1 to 5.3, it can be seen that the higher the cost of the transaction

in RSI, the higher the returns in test data. However, lower net profit solutions

from the training data set generated higher profit in the testing data for MACD.

• Almost all DMs struggled to produce positive returns with SMA and EMA for all

algorithms’ POS.
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Table 5.5: Number of profit trades for all

TIs Measures TOPSIS SAW GRA SUM PF

DV EPSO 2 18 15 3 5

RSI MOPSO − CD 2 20 17 7 7

DNSGA− II 0 9 3 8 9

DV EPSO 35 41 37 37 38

MACD MOPSO − CD 41 51 42 44 45

DNSGA− II 40 46 31 44 45

5.3 Summary

The focus of this chapter was to explore the effect of decision models (DMs) on the

net profit of automated foreign exchange (Forex) trading with dynamic multi-objective

optimization algorithms (DMOAs).

Three state-of-the-art dynamic multi-objective algorithms (DMOAs) were used, namely

the dynamic vector-evaluated particle swarm optimization (DVEPSO) algorithm, the

multi-objective particle swarm optimization algorithm with crowded distance (MOPSO-

CD) and the dynamic non-dominated sorting genetic algorithm II (DNSGA-II). Addi-

tionally, five DMs were employed.

The results showed that each region of the Pareto front (POF) generated a different

net profit out of the sample data set. However, gray relational analysis (GRA) and

objective sum (SUM) were able to consistently find good points across all DMOAs and

technical indicators (TIs) used.

Since each region of the multi-objective algorithm (MOA)’s POF generated different

profit, it cannot be categorically stated that one DMOA performed better than the other

in the Forex market. However, DNSGA-II was the most stable algorithm with the lowest

coefficient of variation (CV) values.

More work needs to be done in the area of automated decision making for dynamic

multi-objective optimization (DMOO), especially for the Financial market. Moreover,

hybrid or combined decision models for DMOAs and the Financial market should be

explored.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 6

Dynamic Multi-Swarm

Multi-Objective PSO

This chapter discusses a new algorithm proposed in this dissertation, namely the dynamic

multi-swarm multi-objective particle swarm optimization (DMS-MOPSO) algorithm.

6.1 Dynamic multi-swarm multi-objective particle

swarm optimization

This section discusses the details of DMS-MOPSO. The DMS-MOPSO algorithm is pre-

sented in Algorithm 7. DMS-MOPSO is a dynamic multi-swarm multi-objective particle

swarm optimization (MOPSO) algorithm inspired by the work of Blackwell and Branke

[9]. Blackwell and Branke [9] proposed a multi-swarm particle swarm optimization (PSO)

algorithm for dynamic environments by incorporating exclusion, anti-convergence, quan-

tum and charged particles. Their approach is adapted for multi-objective optimization

problems (MOPs). DMS-MOPSO makes use of only the exclusion technique without

anti-convergence. The components of DMS-MOPSO are discussed in the following sec-

tions.

76
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6.1.1 Multi swarms

The whole population of particles are divided into n multiple sub-swarms, Sn. The

purpose of the multi swarm algorithm is to try and position groups (sub-swarms) on

different promising peaks (optima). Moreover, MOPs are multi-modal in nature and

have more than one optima. Therefore, the aim of a multi-objective optimizer is to find

as many optima (set of solutions or POS) as possible [27]. To make the multi-swarms

algorithm very effective and not just a division of swarms, there should be a mechanism

so that sub-swarms can share knowledge or information. Two forms of communication

approaches are employed, namely exclusion [9] and a knowledge transfer topology [33].

Exclusion

Since the aim of a multi-swarm is to position sub-swarms on different peaks in the

search space, exclusion prevents more than one sub-swarm from settling on a peak,

which is a very common problem in multi-swarm algorithms [9]. In order to prevent

this and encourage swarm-diversity, sub-swarms can repel each other. However, this

approach might also prevent sub-swarms from reaching the peak. In order to address the

aforementioned problems in multi-objective optimization (MOO), the exclusion approach

in [9] is modified as follows:

• A crowded-distance comparison is made between the selected gBest (leader) of all

sub-swarms. One sub-swarm is randomly marked for exclusion if the crowding

distance between the gBest of sub-swarm, Sa, and the gBest of the next sub-

swarm, Sa+1, is the same or falls within a predefined radius [9]. Since the Forex

market is a discrete problem, a radius is not used. Parameters of TIs can have

different values, but the same objective values.

• Any density measure can also be used to measure the closeness of the gBest of the

sub-swarms.

The reaction of DMS-MOPSO after a sub-swarm has been marked for exclusion is

outlined in Section 6.1.2.
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Selecting a Leader

Selecting a global guide for MOPSO is not as simple as for a single-objective optimization

(SOO) PSO where only the best solution is used. A set of solutions, namely the Pareto-

optimal set (POS), are all good solutions. For this reason there should be a mechanism to

select a gBest. Studies have proposed different approaches to select a gBest for MOPSO.

The approach adapted for DMS-MOPSO is as defined in [49]. Each sub-swarm maintains

its own local archive, lAn, with non-dominated solutions, which is then sorted by crowded

distance. A gBest is selected from the top 10 percent of the solutions in lAn for each

sub-swarm.

A leader, ld, which will serve as the global guide for each sub-swarm, is selected

according to a knowledge sharing topology as discussed in [33] and depicted in Figure

6.1. The two knowledge sharing topologies are:

• Ring topology: this is the traditional topology used in the vector-evaluated particle

swarm optimization (VEPSO) algorithm [53]. As depicted in Figure 6.1, the leader

for a sub-swarm, Sa, is the gBest of the next sub-swarm, Sa+1, which aids in

information sharing among sub-swarms.

• Random topology: with this approach, on the other hand, which was proposed by

Helbig and Engelbrecht [32], a sub-swarm’s gBest or the gBest of any sub-swarm

can be selected as the leader.

.

6.1.2 DMS-MOPSO procedure

Algorithm 7 presents the stages in DMS-MOPSO. The algorithm initializes the popula-

tion, pop, and each sub-swarm, Sa. During initialization, the pBest is set to the particle’s

current position. gBest is updated according to Section 6.1.2.

After initialization, the algorithm goes through the following stages:
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Figure 6.1: Knowledge transfer topologies [33]

Check for exclusion

The algorithm checks whether more than one sub-swarm have settled on a solution or

have converged to the same solution. This is done by following the procedure in section

6.1.1.

Check for change

Each sub-swarm checks for a change in the environment. A random number of particles

(called sentry particles) are selected and re-evaluated before every iteration. If the cur-

rent objective vector dominates the previously stored objective vector or vice visa, the

sub-swarm is marked for change (change = “True”).

React to change and exclusion

If a sub-swarm is marked “True” for both change and exclusion:

• “b” percent of the sub swarm or the whole subs swarm is re-initialized and re-

evaluated. “b” is a decreasing linear equation per iteration and is defined as follows:

b =

(
1− (cI − 1)

(mI − 1)

)(1/80)

(6.1)
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where cI and mI denote the current iteration and maximum number of iterations

respectively.

• Moreover, all non-dominated solutions are added to the local archive, lA (only as-

sociated with the sub-swarm). The local archive, lA, is sorted by crowded distance.

• The gBest for the sub-swarm is randomly selected from the n percent bottom of

the local archive, lA.

• Change and exclusion are then set to “False”.

However, if a sub-swarm is marked for only change detection:

• The gBest remains unchanged, but “b” percent of the sub swarm or the whole subs

swarm is re-initialized and re-evaluated.

• Change are set to “False”.

Moreover, if a sub swarm is marked “True” for only exclusion:

• All non-dominated solutions are added to the local archive, lA.

• The local archive, lA, is sorted by crowded distance.

• The gBest for the sub swarm is randomly selected from the n percent bottom of

the local archive, lA and exclusion is set to “False”.

The pBest values of re-initialized particles are reset to the current position to prevent

biased movement towards the particles’ previous pBest [33].

Archive Management

Non-dominated solutions from the population, pop, are added to the external archive

gA, and all solutions in the archive dominated by new solutions are removed from the

archive. If gA exceeds the limit, gA is truncated by sorting the solutions by crowded

distance in descending order to removing the bottom solutions (solutions with the least

crowded distance).

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 6. Dynamic Multi-Swarm Multi-Objective PSO 81

pBest Update

The pBest is set to the current position if the current position dominates the pBest. The

current pBest or current position is randomly selected as the pBest if none dominates

the other. Moreover, the pBest of reinitialized particles after change is set to the current

position to avoid bias towards old optima.

gBest Update

The gBest of the current sub-swarm is set to the pBest if the pBest dominates the

gBest.
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Algorithm 7 Pseudo code for DMS-MOPSO

1: DMS-MOPSO(parameters, problemdefinition)

2: pop← Initialization

3: For EACHsubSwarm, Sa

4: exclusion← ”False”

5: EndFor

6: t← 0

7: While(t ≤MAXevaluation)

8: Check for Exclusion

9: For(EACHsubSswarm, Sa)

10: Check for change

11: Respond to change and exclusion

12: exclusion, change← ”False”

13: For(EACHparticle, i, ofsubSwarm, a )

14: Select leader

15: Update velocity with equation 2.8

16: Apply velocity limit

17: Update position with equation 3.17 for discrete values

18: Apply position limit

19: Evaluate particle

20: Update pBest

21: Update gBest

22: EndFor

23: EndFor

24: A← Assign non-dominated solution (pop)

25: if A > Alimit then

26: Truncate

27: (Remove particles with

28: the least crowded distance)

29: end if

30: EndWhile

31: return A as POF , POS

32: EndProcedure
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6.2 Experimental Setup

This section discusses the experimental setup used for experiments conducted in this

Chapter. Section 6.2.1 discusses the evaluation measures used to evaluate the perfor-

mance of the algorithms. Sections 6.2.2 and 6.2.3 present the DMs and parameter con-

figurations used, respectively.

6.2.1 Evaluation Measures

Three evaluation measures were used for this study, and each one was aggregated over

all windows (in sliding window) within a run. The averages of all evaluation measures,

namely the net profit, AvgnetPF , and winning trades, gTrade, over all 30 independent

runs were calculated. The coefficient of variation, CV [2] of net profit was also calculated

over 30 runs. The evaluation measures were calculated as discussed in Section 5.1.6.

6.2.2 Decision making models in MOO

The decision models used for these experiment were Technique for Order of Preference

by Similarity to Ideal Solution (TOPSIS), simple additive weighting (SAW), GRA, SUM

and highest profit (HPF) as discussed in Section 2.11.

6.2.3 Parameter Configuration

The parameters and configuration of the algorithms used in this study are:

• The sub-swarm size was set to 50 for all algorithms and the maximum number of

iterations was set to 100. The star topology was used the study. The values listed

in Table 6.1 for ω, C1 and C2 guarantees convergence [24]. The buy, lima, and sell,

limc, limits for relative strength index (RSI) are listed in Table 6.1.

• DMSr2: the number of sub-swarms was set to two, and 30 percentage of the sub-

swarm was re-initialized during change and exclusion reaction was used.

• DMSr4: the number of sub-swarms was set to four, and 30 percentage of the

sub-swarm was re-initialized during a change and exclusion reaction.
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Table 6.1: Parameter settings of DVEPSO and MOPSO-CD and the boundaries of technical

indicators

Parameters Values TIs Domain,D

ω 0.729844 n1, n2 [30,200]

c1 1.496180 lima, n [51,100],[1,200]

c2 1.496180 n3, limc [1,9], [1,50]

Q, rcloud 0.15 ∗ (Dmax)

δ, Rc, Rp 0.1, 1,
√

3Dmax

• DMSq2: the number of sub-swarms was set to 2, and 30 percentage of the sub-

swarm was re-initialized during a change and exclusion reaction. 50 percent of the

swarm was quantum particles.

• DMSq4: the number of sub-swarms was set to 4, and 30 percentage of the sub-

swarm was re-initialized during a change and exclusion reaction. 50 percent of the

swarm was quantum particles.

• A random knowledge sharing topology was used for all algorithms.

Note: Velocity and boundary constraints were handled as explained in Section 3.8.2.

6.3 Results of the performance of different variants

of DMS-MOPSO on EURGBP dataset

This section discusses the results obtain from comparing the different varaints of DMS-

MOPSO. Section 6.3.1 discusses the results obtained with TOPSIS DM for all algo-

rithms over EURGBP currency pair. Section 6.3.2 discusses the results obtained with

SAW DM for all algorithms over EURGBP currency pair.
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Table 6.2: Algorithms Evaluation with TOPSIS on EURGBP Test dataset

TIs Measures DMSr2 DMSr4 DMSq2 DMSq4

AvgnetPF 1.32 -0.08 1.17 0.39

SMA gTrade 33.45 32.01 33.69 32.63

CV 1.41 -28.90 1.92 5.60

AvgnetPF -1.85 -2.38 -1.56 -1.62

EMA gTrade 25.52 25.26 26.20 25.61

CV -1.29 -0.60 -1.25 -1.30

AvgnetPF -0.17 -2.14 0.09 -1.57

RSI gTrade 44.44 28.06 52.67 39.44

CV -20.47 -1.65 50.48 -2.49

AvgnetPF -12.75 -13.04 -12.32 -12.74

MACD gTrade 29.66 29.64 30.72 30.94

CV -0.11 -0.10 -0.12 -0.13

6.3.1 TOPSIS on EURGBP

From Table 6.2, DMSr2 recorded the highest profit and a lower CV value, followed

by DMSq2 with SMA. However, DMSr4 recorded a negative profit. All algorithms

recorded negative a profit with EMA DMSq2, however, recorded the least negative

profit.

The observed trends were slightly different with RSI, where only DMSq2 recorded

a positive profit. All algorithms were very unstable as indicated by their respective CV

values. All algorithms failed to maximize profit with MACD by using TOPSIS DM.

The worse negative profit was recorded with MACD.

6.3.2 SAW on EURGBP

From Table 6.3, it can be seen that in general, algorithms making a decision with the

SAW DM performed better than when using the TOPSIS DM.

DMSq2 was the best performer with a higher profit and a lower CV , followed by

DMSr2. DMSq4 recorded a negative profit. All algorithms again recorded negative
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Table 6.3: Algorithms Evaluation with SAW on EURGBP Test dataset

TIs Measures DMSr2 DMSr4 DMSq2 DMSq4

AvgnetPF 2.27 0.38 2.93 -0.29

SMA gTrade 42.89 43.04 42.84 42.85

CV 1.96 9.74 1.01 -14.81

AvgnetPF -7.08 -10.04 -8.60 -9.41

EMA gTrade 18.73 18.21 18.16 17.93

CV -0.52 -0.45 -0.43 -0.57

AvgnetPF 6.44 4.35 5.19 5.92

RSI gTrade 66.78 63.39 66.32 65.04

CV 0.96 1.31 1.12 1.03

AvgnetPF -11.50 -10.19 -12.07 -10.58

MACD gTrade 28.42 28.81 29.22 29.14

CV -0.14 -0.20 -0.18 -0.17

profits with EMA. Moreover, the performance of the algorithms was worse with EMA

by using the SAW DM rather than the TOPSIS DM.

All algorithms performed much better with RSI, with DMSr2 recording the highest

profit and gTrade, and the lowest CV , followed by DMSq4. Maximizing profit with RSI

is where the SAW DM gave algorithms a boost. All algorithms performed poorly well

with MACD. Both SAW and TOPSIS did not make a good decision from the POS of

algorithms with MACD. However, SAW performed slightly better than TOPSIS.

6.4 Performance of DMS-MOPSO against other al-

gorithms

This section compares the performance of DMS-MOPSO against the performance of

some of the state-of-the-art MOAs, namely the DNSGA-II, the DVEPSO and MOPSO-

CD. The parameter configuration for the algorithms are discussed in Section 5.1.4. The

USDZAR currency pairs dataset was used for both training and testing. DMSr2 was
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used for the comparison.

6.4.1 Results

This section discusses the results obtained from the experiment. The performance mea-

sures used for the study were the average net profit, AvgnetPF , profit trades, gTrade,

and CV for average profit. Tables 6.4 to 6.6 summarise the obtained results.

6.4.2 Performance of algorithms on USDZAR with GRA

From Table 6.4 it can be seen that DV EPSO made a profit, followed by DMSr2 with

SMA. However, the other algorithms recorded a negative profit. The CV values for all

algorithms were very volatile, as depicted in Figure 6.2(a). This means the probability

of achieving consistent positive profit is very low. DNSGA − II outperformed the

other algorithms in all performance measures with EMA. DEV PSO and MOPSO −
CD, however, recorded negative profits. All algorithms still recorded higher CV values,

making all algorithms very unpredictable in terms of performance with EMA.

Performance with RSI and MACD did follow a different trend. DV EPSO recorded

higher profit and was followed by MOPSO − CD. Although DNSGA − II recorded

the highest profit trades, gTrade, it recorded the lowest profit, which means the profit

margins were small. All algorithms recorded lower CV values as compared to SMA and

EMA, with MOPSO − CD recording the least profit. As depicted in Figure 6.2(c),

the algorithms are much stable with RSI. DNSGA − II recorded the highest profit

and lowest CV with MACD, followed by DMSr2. As depicted in Figure 6.2(d), the

algorithms with MACD were the most stable, with the lowest CV .

6.4.3 Performance of algorithms on USDZAR with SUM

Table 6.5 indicates that DMSr2 was the only algorithm which recorded a positive profit

with SMA. Moreover, DV EPSO was the only algorithm which recorded a positive

profit with EMA, while DNSGA − II recorded the lowest CV . Figures 6.3(a) and

6.3(b) depict how unstable and how high the volatility of the algorithms with SMA and

EMA were, respectively.
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Table 6.4: Algorithms Evaluation with GRA on USDZAR Test dataset

TIs Measures DNSGA− II DV EPSO MOPSO − CD DMSr2

AvgnetPF -2.46 2.14 -1.17 0.04

SMA gTrade 40.67 40.84 42.20 40.02

CV -3.75 5.51 -7.96 32.47

AvgnetPF 2.21 -2.32 -14.85 0.34

EMA gTrade 38.24 32.18 27.54 35.60

CV 2.42 -5.45 -0.46 -33.22

AvgnetPF 7.11 9.00 8.29 7.94

RSI gTrade 66.04 64.32 63.85 64.55

CV 1.23 1.49 1.14 1.40

AvgnetPF 20.99 13.37 15.98 18.49

MACD gTrade 36.62 32.83 28.52 37.68

CV 0.26 0.518 0.39 0.34

Table 6.4 also depicted that all algorithms recorded a positive profit with RSI and

MACD. DMSr2 outperformed all algorithms with a higher profit and a lower CV

value, and was followed by DNSGA − II with a higher gTrade with RSI. Figure

6.3(c) depicts a smoother performance of all algorithms as compared to Figures 6.3(a)

and 6.3(b). MOPSO − CD performed the best with MACD by obtaining a higher

profit, followed by DMSr2 with the lowest CV value. As depicted in Figure 6.3(d), all

algorithms gained momentum after 2000 hours of trade.

6.4.4 Performance of algorithms on USDZAR with HPF

DMSr2 outperformed all algorithms with SMA, RSI and MACD with the highest and

the lowest profit and CV values respectively. All algorithms recorded negative profits

with SMA. DV EPSO was the best performer with EMA, with a higher profit and

gTrade, and a lower CV . From Figure 6.4, it can be seen that all algorithms took longer

to make profit. The exception is visible in Figure 6.4(c), where the algorithms made

profit at the early stage of trading.
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(a) SMA (b) EMA

(c) RSI (d) MACD

Figure 6.2: Accumulated average profit with GRA

6.4.5 General observations

• All algorithms were more stable with lower CV values with MACD.

• As depicted in Figures 6.2 to 6.4, it takes longer for an algorithm to adapt to the

dynamics of the dataset or environment.

• All algorithms performed better with RSI and MACD, across all DMs.

• DMSr2 was more stable and performed better with the SUM and HPF DMs, but
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Table 6.5: Algorithms Evaluation with SUM on USDZAR Test dataset

TIs Measures DNSGA− II DV EPSO MOPSO − CD DMSr2

AvgnetPF -9.78 -7.06 -7.90 0.93

SMA gTrade 41.94 42.66 42.70 42.21

CV -0.60 -0.99 -1.19 6.41

AvgnetPF -5.58 2.84 -2.05 -4.73

EMA gTrade 28.85 32.75 31.07 29.54

CV 0.78 2.98 -3.20 -1.03

AvgnetPF 11.28 2.29 8.88 13.27

RSI gTrade 74.36 58.54 69.30 69.74

CV 0.66 3.805 0.72 0.55

AvgnetPF 9.58 7.34 11.52 11.26

MACD gTrade 31.52 30.93 30.71 31.43

CV 0.37 0.64 0.31 0.30

Table 6.6: Algorithms Evaluation with HPF on USDZAR Test dataset

TIs Measures DNSGA− II DV EPSO MOPSO − CD DMSr2

AvgnetPF -5.62 -7.56 -6.37 2.93

SMA gTrade 41.73 40.55 42.21 41.16

CV -1.54 -1.02 -1.70 2.44

AvgnetPF -5.29 3.27 -1.71 -7.13

EMA gTrade 28.93 32.52 31.29 29.46

CV -0.80 2.43 -4.15 -0.66

AvgnetPF 10.86 2.85 8.83 12.64

RSI gTrade 71.15 59.27 68.05 68.37

CV 0.74 3.30 0.74 0.71

AvgnetPF 8.19 7.40 11.74 12.10

MACD gTrade 29.93 30.91 30.79 31.00

CV 0.44 0.64 0.33 0.30
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(a) SMA (b) EMA

(c) RSI (d) MACD

Figure 6.3: Accumulated average profit with SUM

performed worse with GRA.

• The performance of each algorithm differed with respect to the DM and the TI.

6.5 Summary

This chapter discussed the proposed algorithm for dynamic multi-objective optimization

(MOO), namely the dynamic multi-swarm multi-objective particle swarm optimization
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(a) SMA (b) EMA

(c) RSI (d) MACD

Figure 6.4: Accumulated average profit with HPF

(DMS-MOPSO). Section 6.1 discussed all the stages and procedures of DMS-MOPSO,

including how the archive was managed. An experiment was conducted and the results

were discussed in Sections 6.3 and 6.4. Section 6.3 compared the performance of different

variants of DMS-MOPSO. The results showed that DMSr2 and DMSq2 performed better

in general. Moreover the performances differed slightly with respect to the decision model

(DM) used. However, DMSq2 is quantum particles showed a better performance and

stability.

Moreover, the results obtained from Section 6.4 shows the performance of DMSr2
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against other state-of-the-art multi-objective algorithms (MOAs) when using three DMs.

DMSq2 performed better than the other algorithms with objective sum (SUM) and

highest profit (HPF). On the other hand, DNSGA− II perform well with GRA.
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Chapter 7

Conclusions

This chapter summarises the conclusions of the studies conducted in this dissertation.

Section 7.1 summarises the various conclusions and observations made from the studies.

Section 7.2 discusses possible future work eminating from this study.

7.1 Summary of Conclusions

In this dissertation a new dynamic multi-swarm multi-objective particle swarm opti-

mization (DMS-MOPSO) was proposed. The purpose of a muti-swarm is to enable the

algorithm to track different promising solutions (or trends). DMS-MOPSO was used to

optimize four technical indicators (TIs). To make the application of metaheuristics to

real world problems (foreign exchange (Forex)) more justifiable, two conflicting objec-

tives were optimized: the net profit and transaction cost were maximized and minimized

simultaneously. DMS-MOPSO was compared against other nature inspired state-of-the-

art dynamic multi-objective algorithms (DMOAs).

The main objective of this dissertation was to develop a particle swarm optimiza-

tion (PSO) based multi-objective algorithm (MOA) to solve dynamic multi-objective

optimization problems (MOPs), namely DMS-MOPSO. Moreover, this study aimed to

explore the effects on decision models (DMs) for the Financial market. Four experimental

studies were conducted.

Chapter 4 explored the performance of various dynamic PSOs when maximizing profit

94
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in a complex dynamic environment, such as the Forex market. Quantum PSO (qPSO)

and charge PSO (cPSO) algorithms were employed and compared against the standard

particle swarm optimization (sPSO) algorithm and the time-series particle swarm opti-

mization (tPSO) algorithm, which are usually used when optimizing TIs for the stock

and Forex markets [16, 58]. The results showed that no algorithm was able to perform

well when cost of transaction was applied. All algorithms recorded negative profit with

the simple moving average (SMA). However, qPSO still outperformed the other algo-

rithms by making more trades and paying more for transactions. qPSO continued with

its good performance with exponential moving average (EMA), by trading more and

paying more for transactions. sPSO was able to make a profit with the least transaction

cost and trades.

A different trend was observed when algorithms used the relative strength index

(RSI). With less transactions and cost, sPSO was able to perform better than the other

algorithms, which recorded negative profit. These results were are completely different

from what was depicted in Table 4.3 with RSI. Although qPSO traded more, it did not

lead to more profit, because an algorithm has to make profit trades with good profit

margins to make a profit. With the moving average convergence divergence (MACD),

all algorithms produced good profit, with qPSO making the most profit, followed by

qPSO.

Chapter 5 explored the effect of DMs on the net profit of automated Forex trading

with dynamic MOAs. Three state-of-the-art DMOAs were used, namely the dynamic

vector-evaluated particle swarm optimization (DVEPSO) algorithm, the multi-objective

particle swarm optimization algorithm with crowded distance (MOPSO-CD) and the

dynamic non-dominated sorting genetic algorithm II (DNSGA-II). Additionally, five DMs

were employed. The results showed that each region of the Pareto front (POF) generated

a different net profit out of the sample data set. However, gray relational analysis (GRA)

and objective sum (SUM) were able to consistently find good points across all DMOAs

and TIs used. Since each region of the MOA’s POF generated different profit, it cannot

be categorically stated that one DMOA performed better than the other in the Forex

market. However, DNSGA-II was the most stable algorithm with the lowest coefficient

of variation (CV) values.
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In Chapter 6, two experiments were conducted and the obtained results analyzed.

Different variants of DMS-MOPSO were evaluated. DMSr2 (without quantum particles)

and DMSq2 (with quantum particles) variants of DMS-MOPSO showed to be the better

performers. However, DMs really influenced the performance of the algorithms. When

DMSr2 was compared against four state-of-the-art algorithms, the results showed that

DMSr2 in general performed better and was more stable as the other algorithms.

The obtained results showed that a multi-swarm approach for multi-objective opti-

mization (MOO) can solve dynamic MOPs.

7.2 Future Work

• More work needs to be done in the area of automated decision making for dynamic

multi-objective optimization (DMOO), especially for the Financial market. More-

over, a hybrid or combined decision model for DMOAs and the Financial market

should be explored.

• Incremental Learning - one of the most challenging aspects of financial markets is to

trade in real time. The financial market is a complex and a dynamic environment.

An algorithm must be able to track any change and make good trades within

a specific time frame. However, when the dynamics of the dataset change, any

previously trained model might perform poorly. In order for an algorithm to keep

performing well, it should be re-trained. More research should go into how to

quickly re-train a model to make good trades.

• DMS-MOPSO should be explored more by fine tuning parameters, and with dif-

ferent variants for different datasets.

• Incorporation of deep-learning techniques with MOAs to have a more general and

robust model, and to use more fundamental data.

• A more realistic financial simulated environment should be used. Most trading

simulations used for financial experiments make many assumptions, like latency.

More research must go into how to get a near normal trading environment.
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[31] Mardé Greeff and Andries P. Engelbrecht. Dynamic Multi-objective Optimisation

Using PSO, pages 105–123. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
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Appendix A

Acronyms

This appendix provides an alphabetical listing of all acronyms used in this dissertation.

Each acronym is typeset in bold and its meaning is provided alongside

ANN

Artificial Neural Network 43, 46

BB

bollinger bands 44

CI

computational intelligence 1, 2, 12, 47

cPSO

charge PSO 2, 21, 24, 59, 61, 69, 99

CV

coefficient of variation 61, 62, 64, 65, 69, 74, 80, 90, 99
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DE

differential evaluation 46, 47

DM

decision model 2–4, 25, 33, 72, 74, 77, 79, 86, 88, 93, 95, 98–100

DMOA

dynamic multi-objective algorithm 2–4, 12, 25, 36, 79, 80, 98–100

DMOO

dynamic multi-objective optimization 12, 16, 17, 25, 80, 100

DMOP

dynamic MOP 2, 16

DMS-MOPSO

dynamic multi-swarm multi-objective particle swarm optimization 2–5, 17, 18, 24,

49, 81, 83, 88, 90, 94, 98, 100

DNSGA-II

dynamic non-dominated sorting genetic algorithm II 2, 5, 25, 29, 30, 56, 57, 71,

73, 74, 77, 79, 80, 90, 99

DVEPSO

dynamic vector-evaluated particle swarm optimization 2, 5, 25, 31, 32, 71–74, 79,

90, 99

EMA

exponential moving average 39, 41, 62, 64, 65, 67, 68, 99

EMH

efficient-market hypothesis 2, 38

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



106

Forex

foreign exchange 1–5, 9, 12, 13, 21, 37, 38, 43–47, 49, 50, 54, 59, 64, 69–71, 79, 80,

98, 99

GA

genetic algorithm 43, 44

GP

genetic programming 46, 47

GRA

gray relational analysis 35, 72, 79, 86, 99

GRC

gray relational coefficient 35

HPF

highest profit 36, 72, 77, 86, 95

MA

moving average 38, 39, 41, 44

MACD

moving average convergence divergence 38, 39, 41, 62–65, 67–69, 74, 99

MOA

multi-objective algorithm 3–5, 25, 26, 43, 46–49, 71, 79, 90, 95, 98–100

MOO

multi-objective optimization 6, 9, 10, 26, 27, 33, 47, 49, 53, 57, 72, 82, 94, 100
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MOP

multi-objective optimization problem 2, 4, 6, 9–11, 15, 16, 25, 31, 36, 46–48, 70,

71, 81–83, 98, 100

MOPSO

multi-objective particle swarm optimization 26–28, 30, 81, 83

MOPSO-CD

multi-objective particle swarm optimization algorithm with crowded distance 2, 5,

25–28, 36, 46, 71, 72, 74, 76, 79, 90, 99

NSGA-II

non-dominated sorting genetic algorithm II 29, 46

POF

Pareto front 10, 11, 16, 25, 26, 28, 30, 47, 79, 99, 110, 113, 115

POS

Pareto-optimal set 10, 11, 25, 33, 35, 36, 47, 48, 53, 74, 77, 83, 88, 110, 113, 115

PSO

particle swarm optimization 2–5, 12, 18–21, 24–29, 36, 43–45, 56, 57, 59, 60, 65,

69, 70, 72, 81, 83, 98

qPSO

quantum PSO 2, 5, 21, 24, 59, 61–70, 99

RSI

relative strength index 40, 41, 62, 64, 65, 67, 68, 74, 99

SAW

simple additive weighting 35, 72, 86
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SMA

simple moving average 39, 41, 62–66, 68, 99

SOA

single-objective optimization algorithm 2–4, 12, 15, 26, 43, 45, 48, 49

SOO

single-objective optimization 4, 17, 18, 25, 27, 36, 47, 49, 57, 83

SOP

single-objective optimization problem 6, 7, 9–12, 16, 25, 48

sPSO

standard particle swarm optimization 5, 43–45, 57, 59, 61–64, 67–69, 99

SUM

objective sum 36, 72, 79, 86, 95, 99

TI

technical indicator 1, 2, 5, 12, 37, 38, 40, 43–47, 49, 50, 56, 57, 59, 60, 62, 65, 69,

70, 72, 74, 76, 79, 93, 98, 99

TOPSIS

Technique for Order of Preference by Similarity to Ideal Solution 33, 72, 86

tPSO

time-series particle swarm optimization 5, 44, 59, 61–64, 68, 69, 99

TR

trade rule 37, 40, 41, 44–46, 50, 57

TRB

trading range break-out 44
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VEPSO

vector-evaluated particle swarm optimization 31, 83
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Appendix B

Symbols

This appendix lists the mathematical symbols used throughout this dissertation, and

their definitions. The symbols used within each chapter are listed under separate sections.

Each section lists only newly introduced symbols.

Chapter 2: Background

A External Achieve

A+ Ideal solution

A− Euclidean distance to the worst solution, A−

A− Worst solution

As The Simple additive weihting value

Ci The highest closeness value

f 1, f 2 Objective functions

Fij Normalised objectives matrix
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fmax
j The maximum objective function values

fmin
j The minimum objective function values

Iij The point difference between two solutions

Imax
j The maximum point difference, j

Imin
j The minimum point difference, j

m Number of objective function

n Number of bjective functions

ns Number of particles/solutions

nP New population created from R

P Population or generation

Pi+1 Next Population or generation after each iteration

R Combined parents and offsprings

Si+ Euclidean distance to the ideal solution, A+

wj Weight for an objective function

wFij A weighted normalised matrix

x
′
i Individual in population nP

(POF ∗, t) POF found at time step, t

(POS∗, t) The optimum POS found at time step, t

R One-dimensional real space

Rnx nx dimensional real space

ω Initia weight
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x*(t) Optimum at time step, t

ζ Severity of change

ai Acceleration term of the charged PSO velocity update equation

c1 Cognitive coefficient

c2 Social coefficient

F Feasible solution from the seach space

f Objective function

fk The k-th objective function

gi Inequality constraints

hi Equality constraints

i Index

i Position of the particle in its population

nx Number of decision variable

nx Number of decision variables

POF Pareto front

POS Pareto-optimal set

Qi Charged magnitude of particle i

r1, r2 Random number

rcloud Radius of the quantum cloud

Rc Core radius

Rp Perception limit
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S Seach space

t Time step

vi(t) Velocity of particle at time step t

x∗ Global optimum

xi(t− 1) Prevoius position of particle at time step t

xgBest,i(t) Global best position of the particle at time step t

xi(t) Position of particle at time step t

xpBest,i(t) Personal best position of the particle at time step t

gBest Global best

pBest Personal best

Chapter 3:Optimization Problems and Simulation for Financial Markets

v́i(t) The newly calculated velocity

x́i(t) Newly calculated position

δ Random number between 0 and 1

ωmax Maximum initia weight

ωmin Minimum initia weight

avG The average gain

avG(prev) The previous average gain

AvgnetPF Average net profit

avgPF Average Net Profit

avL The average loss
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avL(prev) The previous average loss

c1,max Minimum cognitive coefficient

c1,min Maximum cognitive coefficient

c2,max Maximum social coefficient

c2,min Minimum social coefficient

cG Current gain

cL Current loss

cP Current Price

D Domain of TIs

lima RSI buy limit

limb RSI buy limit

limc RSI sell limit

lims RSI sell limit

n1, n2, n3 Time frame 1,2 and 3

nt The maximum number of iterations

netPF Net Profit

NOtrades Number of Trades

pF Profit after a trade

prevPrice Previous closing price

prevSignal Previously generated signal (Buy or Sell)

RS Relative strength
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rsin The look back parameter or time frame

RSIv Relative strength indicator value

TCost Total transaction cost

tcost Transaction cost

Tn Total number of trades

tCost Transaction cost after a trade

tGains Total Gains

tLoss Total loss

vi Velocity of particle, i

vmax Maximum velocity

vmin Minimum velocity

xi Position of particle, i

Dmin,Dmax The minimum and maximum values of the domain

cP The closing price

EMA(prev) The exponential moving average of the previous day

macdL MACD line

n Number of time frames or period

per The percentage which determines the weight of recent cP

sigLine Signal lines

Chapter 5: Effects of Decision Models on Dynamic Multi-Objective OptimizationAlgorithms for Financial markets
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CV CV

gTrade Winning trades

I Initial investment

nt The maximum number of iterations

R Total runs which is 30

Tcost Total transaction cost

tGains Total gains

T l Total number of losses

tLoss Total losses

Tn Total number of trades

Tw Total number of wins

Chapter 6: Dynamic Multi-Swarm Multi-Objective PSO

cI, mI Current iteration and maximum iteration

gA External or Global archive

lA Local archive

ld Sub-swarm leader

n Index of sub-swarm

Sa+1 Next sub-swarm

Sa Sub-swarm n or current sub-swarm
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Derived Publications

This appendix lists the publications derived from the work presented in this thesis.

• Frederick Ditliac Atiah and Mardé Helbig. Dynamic particle swarm optimization

for Fnancial markets. In 2018 IEEE Symposium Series on Computational Intelli-

gence (SSCI), pages 2337 - 2344. IEEE, 2018.

• Frederick Ditliac Atiah and Mardé Helbig. Effects of Decision Models on Dynamic

Multi-objective Optimization Algorithms for Financial Markets. In IEEE Congress

on Evolutionary Computation (CEC). IEEE, 2019.

• Frederick Ditliac Atiah and Mardé Helbig (in press). Dynamic particle swarm opti-

mization for a fnancial time series. In Journal of Banking and Financial Technology

(JBFT), 2019.
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