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Abstract Current research on wildlife security games has minimal focus
on performance evaluation. The performance of the rangers is evaluated
by assessing their game utility, sometimes in comparison with their
maximin utility, and other times in comparison with their real-world
utility when the game is implemented in a wildlife park. Currently no
evaluation framework exists, and this paper proposes an evaluation suite
to address this. The movements of the wildlife, the rangers, and the
poachers are simulated over a grid of cells corresponding to the wildlife
park, where cells containing geographical obstacles are excluded. Poaching
and arrest frequency are the primary evaluation measures used. Firstly,
we develop a null game to act as a baseline. Typically, one would expect
random behaviour of all agents in the null game. However, we simulate
random movement for the rangers but more intelligent movement for the
poachers. The motivation for this design is to assess whether executing
the Stackelberg game yields significantly better ranger performance than
random movement, while keeping the poachers’ behaviour consistent. The
intelligent poachers move by taking their geographical preferences into
account and learn from poaching and arrest events. Secondly, we propose
that the rangers act as the Stackelberg follower instead of the leader.
We formulate a simple pure-strategy Stackelberg game and implement
four variations of the game within the framework. The results of the
simulations show that the rangers perform better than random when
using the Stackelberg game and perform best when acting as the follower.

Keywords: Evaluation - Wildlife security - Game theory - Stackelberg.

1 Introduction

Rhino poaching continues to be a major problem in South Africa. Although rhino
deaths started decreasing in 2015, the number of poaching activities inside and
adjacent to the Kruger National Park (KNP) has only decreased from 2 466 in
2015 to 2 014 in 2019 [3,4]. Anti-poaching units offer an attempt to combat rhino
poaching [15] and to facilitate such efforts, this paper focuses on wildlife security
games [23]. These games make use of the Stackelberg Security Game (SSG) [5],
the current game-theoretic approach in security domains. In the domain of wildlife
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security, the attackers are poachers, the defenders are rangers and the targets to
protect are moving animals. SSGs are used to optimally allocate limited ranger
resources in a wildlife park where attacks on the animals occur frequently. To our
knowledge, there is currently no evaluation framework for wildlife security games
and there are inconsistencies in the evaluation. Evaluating the games based on
expected utility is difficult because it is based on the location of the wildlife
animals, who are constantly moving. This paper introduces a framework which
simulates the movements of the poachers, rangers, and wildlife to address this.
The simulation studies are intended to provide the rangers with an estimate of
the average behaviour in one month. We propose clear evaluation metrics for
the rangers to assess their performance, which allows them to decide on the best
strategy for real-world implementation to combat the poachers. Furthermore, we
propose acting as the Stackelberg follower instead of the leader in this domain.
A simple pure-strategy Stackelberg game is designed and implemented within
the framework to test this idea.

The SSG is an extensive form game wherein the defenders act first and the
attackers follow. The game can be represented by a game tree where the branches
are the actions of the agents and their payoffs for each combination of actions are
given at the terminal nodes. The SSG assumes that attackers conduct surveillance
on the defenders to obtain complete knowledge of their mixed-strategy and then
respond with a pure-strategy by attacking a single target [21]. A pure-strategy
for each agent consists of the cross product of the set of actions available to
them at each of their information states. A pure-strategy equilibrium provides
the optimal action to take at each of their nodes in the tree. A mixed-strategy
is a probability distribution over the set of pure-strategies. A Green Security
Game (GSG), which includes protection of wildlife, fisheries, and forests, has
frequent attacks on targets. Attackers can therefore not afford much time to
conduct extensive surveillance to learn the mixed-strategy of the defenders [10].
Furthermore, there could be many attackers present at any given time [17] so
assuming a pure-strategy response for the attackers is not viable. Attackers in this
domain often return to sites of past success [13] and since attacks occur frequently,
the defenders can gather enough observational data to learn the mixed-strategy
of the attackers. Thus, we propose that the defenders could perform better when
acting as the Stackelberg follower. There is not always an advantage in terms of
payoffs to being the Stackelberg leader [16], so it is reasonable to reverse the roles
of the defender and the attacker in the domain of GSGs. Although the follower
in SSGs acts with a pure-strategy, this is only necessary to ease the computation
of the leader’s optimisation problem [18]. However, we do not need to find an
optimal strategy for the attackers since we learn this from the data. We only
need to solve the follower’s problem, which is computationally much simpler, to
find the defenders’ best response to the mixed-strategy of the attacker.

A sensible question is whether we should use the Stackelberg model at all.
The Stackelberg duopoly game originates from economics where two firms share
the market for a certain product [20]. The price of the product depends on the
quantities produced by both firms and each firm’s profit depends on this price
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and the cost per unit of production. The problem is to determine what quantity
of the product each firm must produce to maximise their profit. The Cournot
duopoly game solves this problem when both firms make their decision at the
same time and the Nash equilibrium (NE) is for them to produce the same
quantity [7]. In the Stackelberg duopoly, the leader has an advantage and can
choose to produce more than the Cournot quantity which will increase their
profits. The follower’s best response is to produce less than the Cournot quantity
which decreases their profit. However, in security games the payoffs are structured
differently: defenders do not wish to share the targets with the attackers but
instead want to prevent the attackers from making any attacks on the targets. It
has been shown that the Stackelberg equilibrium and the NE for the defenders are
interchangeable [24]. The SSG model therefore yields the NE mixed-strategy for
the defenders and a pure-strategy for the attackers, which results in a defender
payoff that may be higher than the NE payoff. However, the attackers’ best
response to this mixed-strategy has the same maximal value (their NE payoff)
for any pure-strategy in the support of their optimal mixed-strategy [18] so they
have no reason not to deviate and choose a pure-strategy which may result in
a defender payoff that is lower than the NE payoff. When computing optimal
strategies to commit to, it is often assumed that the follower will break ties in the
leader’s favour (to maximise the leader’s payoff) [6] but this is not a reasonable
assumption in security domains. The Stackelberg model thus seems to have a
follower’s advantage in GSGs. By acting as the follower, the defenders can learn
the mixed-strategy of the attackers from past observations. They can then choose
a mixed-strategy best response that secures their own NE payoff but yields an
attacker payoff that is lower than the NE payoff.

In Section 2 we provide a brief overview of current research about wildlife
security and how the performance of games is evaluated. Section 3 describes the
null game, which serves as a baseline model. The formulation of a simple wildlife
security game, where both the rangers and the poachers execute a pure-strategy,
is described in Section 4. Variations of the simple game are implemented within
the framework in Section 5 and compared with the null game and each other. We
conclude the paper in Section 6 with some remarks and suggestions for future
research, and thereafter provide a summary of input parameters in an Appendix.

2 Related Work

The Bayesian SSG has become the standard approach for security games and
handles uncertainty around the attackers’ payoffs by assuming different types of
attackers with a Bayesian a priori distribution assumption [18]. Uncertainties
due to the attackers’ bounded rationality and limited observations are addressed
by using robust algorithms [19]. The algorithms are evaluated by assessing the
defenders’ reward against two baselines: the uniform strategy, which assigns equal
probability of taking each strategy; and the maximin strategy, which maximises
the minimum reward of the defenders irrespective of the attackers’ actions.
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The first application of the Bayesian SSG for wildlife security is the PAWS
algorithm [23]. Since the targets to protect are moving animals whose location is
not always known, the wildlife park is divided into a grid of cells which become
the new targets. Available poaching data is utilised to learn a behavioural model
for the poachers to account for their bounded rationality. Evaluation of the
SSG algorithm is achieved by comparing the cumulative expected utility of the
rangers over 30 simulated rounds of the game against the maximin strategy on a
grid of 64 cells. Different behavioural models are compared in Yadav et al. [22]
where the models are learned using data from a wildlife park in Indonesia and
their predictive performance is tested using ROC curves. The SSG algorithm is
evaluated on 25 randomly selected grid cells, where the rangers’ maximum regret
of the optimal strategy is compared to that of the real world.

The work in Kar et al. [13] follows a similar approach to that of Yadav et al. [22]
by comparing different behavioural models. However, they develop a computer
game with a 5x5 grid over a Google Maps view of the wildlife park. A probability
heat map of the rangers’ mixed-strategy is overlayed onto the grid and the wildlife
is arranged in four different payoff structures. On average 38 human subjects
played as the attackers in 5 rounds of each game to learn the behavioural models
and the defenders’ utility against these subjects is compared for evaluation.
Although there is some similarity to this work, no movements of the wildlife, the
rangers or the poachers are considered.

In our earlier work [14], a null game is designed where the rangers and the
poachers both act randomly. Thus, the uniform strategy [19] is similar to this null
game. Yet none of the research on wildlife security use the uniform strategy for
comparison and the maximin strategy is the only baseline model considered. While
evaluating models by simulating repeated instances of the game or by applying
the game to real-world data is valid, the data used only provides a snapshot of
the situation. Since the wildlife are constantly foraging for food, the poachers
foraging for wildlife and the rangers foraging for poachers, it becomes important
to know more about their spatial and temporal movements [15]. Measuring the
expected utility is useful for comparison but since it is calculated based on the
locations of the wildlife, who are constantly moving, the actual number of wildlife
poached is more valuable. The evaluation framework presented in this paper
allows for including real-world data and is supposed to offer an alternative to
implementation in a wildlife park.

3 The Null Game

3.1 Geographical Features

Our previous null game [14] focuses on a grid of cells and follows the routes of a
herd of wildlife, one group of rangers and one group of poachers until the poachers
are arrested or leave the park. It is assumed that 10 games occur within a month,
and for each month we record the number of poaching events and the number
of times the poachers leave or are arrested. The monthly cycle is simulated for
1 000 Monte Carlo repetitions and the averages over the simulations provide
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the measures of performance. Some simulations on ways to move are compared
and movement towards a destination provides the smoothest and most realistic
movement for the rangers and the poachers. The start and destination cells for
the rangers and the poachers are chosen completely randomly. Although the
grid cells are supposed to correspond to a map of the wildlife park, the game
does not take any geographical features into account. We modify that game
to incorporate geographical information into the framework. Figure 1 shows a
map of the KNP and a subarea used to demonstrate how the algorithm works.
Currently we use the public shapefiles in the SANParks data repository [2] for
the KNP. The geopandas Python library [1] is utilised so that geographical data
can be used, and distances can be calculated within the actual wildlife park. Two
classes are created, a Park class and an Agent class. Within the Park class, all
the geographical information is collected. A grid is also calculated, based on how
large the cells should be, for either the whole park or a subarea of the park.

Two attributes are created for the Agent class to exclude cells in the grid,
corresponding to areas where the agent cannot go. The first restricts agents from
entering areas which contain geographical obstacles such as steep mountains,
dense vegetation, rivers, and dams. The second restricts an agent to stay within a
specific area. For example: you might want to restrict the wildlife to stay within
an area defined by a census or home range analysis; ranger patrols might need
to stay within a certain distance from their patrol huts; or poachers might need
to stay close enough to their homes. Figure 2 shows a grid of 566 cells that are
1.5x1.5 km in size, for the subarea in Figure 1, where the cells excluded are white.

dense trees
steep mountains
tarred roads
main rivers
dams

water holes, fountains
& drinking troughs

main camps
picnic spots
public gates

Figure 1. Map and subarea of the Kruger National Park. The map on the left illustrates
the geographical information used within the framework, while the subarea shown on
the right will be the focus of this study.
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3.2 Poacher Movement

The null game serves as a baseline model, so that when compared with other
games, the performance of the rangers’ success in protecting wildlife and arresting
poachers can be assessed. We would like to know whether executing the GSG
helps the rangers to perform better than when they execute random motion.
However, in our previous attempt to construct a realistic baseline model, both
the rangers and the poachers moved from a random starting cell towards a
random destination cell (uniform game). This makes it difficult to assess whether
the rangers’ performance improves when both the rangers and the poachers act
according to the GSG since the poachers’ strategy improves at the same time as
the rangers’ strategy. Thus, in the baseline model, the random rangers need to
compete with more intelligent poachers, those who learn, to truly evaluate any
performance increase of the rangers when they act according to the GSG.

In a game theory algorithm, we would use information about an agent’s
preferences to try and quantify their payoffs. Similarly, we can use this information
to determine how an intelligent agent might move through the wildlife park.
Another two attributes were created for this: one for features they dislike and how
far they would like to stay away from them; and one for features they like and how
near they would like to stay to them. For example: the poachers would probably
like to avoid any entrance gates to the park since rangers often conduct searches
there; they would likely stay away from main roads, camps and picnic spots to
avoid being identified by the public; they might prefer to stay near to the park
border to make escape easier; and they would possibly like to stay near to water
sources since it is likely that they might find wildlife there. These preferences
are implemented by increasing or decreasing selection weights for each cell. For
each feature, each cell starts with a weight of w = 0.5. If it is a feature that the
poachers would like to stay d km away from, then the weight starts decreasing for
cells that are within d km away and continues to decrease as the cells get nearer
to the feature: if a cell ¢; has minimum distance d; km from the feature, then its
weight will be w = w x [1 — (d —d;)/d]. Similarly, if it is a feature that the poacher
would like to stay d km near to, then the weight increases more for cells ¢; which
are nearer to that feature: w = w x [1 + (d — d;)/d]. The weights are increased
or decreased in this manner for each feature that the poacher has preferences
for. Figure 2 shows the cell selection weights for a poacher who dislikes being
2 km from camps, 3 km from roads and 5 km from gates, and who likes being
within 15 km of dams and water and within 30 km of the border. The weights
are depicted by a colour scale, where darker colours indicate higher values.

Along with moving towards their preferences, the poachers also learn from
events that occur. The poachers begin in a random cell, either on the border of
the park or at the edge of the grid and proceed towards a random destination
cell. If they reach the destination cell with no event, then they head off on a new
trajectory back towards the start cell and we record that they left before poaching.
If they leave safely without being arrested, then they continue to use that point
of entry because they assume there is low risk in being arrested there. The
poachers can either encounter wildlife for poaching on their trajectory towards
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Figure 2. Poacher allowed cells and cell selection weights. The cells excluded for the
poachers are shown in white and the selection weights are depicted by a colour scale
where darker colours represent higher values.

the destination cell or on their way back to the start. We assume that once the
wildlife has been poached, that they would like to exit promptly before being
arrested. Thus, after a poaching occurs while going towards the destination, they
change direction and head back towards the start cell. Furthermore, since they
know where the wildlife are likely to be, they want to return to that area, so the
poaching cell becomes their new destination cell. If the poachers encounter the
wildlife while going towards the start, then they continue on the same trajectory
towards the start after the poaching event. They would also adopt the poaching
cell as their new destination cell when re-entering the park in this event. We
do not allow for a second poaching event once on the trajectory towards the
start cell after a poaching, they can only poach again after re-entry to the park.
We record that the poachers left after poaching if they leave the park safely in
the past two events described. However, if they are arrested before reaching the
start cell then we record that they were arrested after poaching. Of course, the
poachers could also be arrested without having poached any wildlife and in this
case, we record that they were arrested before poaching. After being arrested, the
poachers must re-enter the park, but they will choose a new random entry point
since they did not have success going towards the current start cell. Figure 3
demonstrates the different scenarios that occur during one game.

The two attributes describing the poachers’ preferences can be helpful in
making the wildlife movement more realistic as well. Some examples include
wildlife wanting to stay near water; liking specific types of vegetation for grazing;
enjoying mud baths or shady areas; and wanting to avoid camp areas where there
are lots of people. The null game is thus simulated with better movement for the
wildlife as well, where the destination cell is chosen as a random cell near water
and movement is based on the preferences specified.
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Leave Before Poach Leave After Poach Arrest Before Poach Arrest After Poach
Start Destination =~ Start Poach Start Arrest Start Poach
trajs trajs L trajs L trajs L
New Destination New Start Destination Arrest New Destination
e traj. traj: traj;
traj: rajz rajz New Start rajz
o—> “«~———— 0o
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Figure 3. Scenarios that can occur and how the poachers learn from events. Trajectories
continue back and forth between the start and destination cell until the game ends
after a specified number of moves. An open circle represents the start of each trajectory
and an arrow represents the end of that trajectory. A solid circle represents a poach or
arrest event which can occur along any trajectory.

The game continues with the wildlife, rangers and poachers moving back
and forth between their start and destination cells and ends after a specified
number of moves. For example, considering a grid with 1 km? cells, a person
could walk 100 km in 20 hours at a speed of 5 km/h. Allowing short stops to
rest or eat, 100 moves would consume an entire day. Thirty such games could
be played per month and the games are simulated for a specified number of
months to determine their average monthly behaviour. The number of poaching
events and arrest events per month are recorded and are used to calculate the
poach frequency per day and arrest frequency per day, so that games of different
lengths can be compared. When these measures are similar, we consider two
secondary measures: the average number of moves for each arrest and the average
distance between the poachers and rangers for games with no arrests. For further
understanding and analysis, we also record how many times the agents reach their
start cell or destination cell to keep track of their trajectories. The movingpandas
Python library [12] is utilised to store trajectories which can be easily analysed
and plotted after the simulation.

4 Simple Security Game

As a start, we would like to implement the simplest security game within the
framework to demonstrate whether there are any improvements in the perform-
ance of the rangers. We consider the traditional Stackelberg Game, where the
follower observes the leader’s pure-strategy and reacts with his best response
pure-strategy. As an example, to explain how the game works, we consider the
wildlife park being divided into only two grid cells. The idea can easily be extra-
polated to use all the cells provided in the grid. Before we continue to develop
the game, we first make the following assumptions:
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— there is only one group of rangers and one group of poachers, where each
group acts together and they cannot split up;

— the park is divided into two grid cells;

— the rangers act as the leader and commit to protecting a single grid cell;

— the poachers observe which cell the rangers protect and react by attacking a
single grid cell; and

— the rangers and the poachers act to maximise their own expected utility.

With these assumptions set clearly, we can identify the components of the
game. We know that the agents are the rangers and the poachers, and that the
actions are the coverage of the two grid cells by these agents. We do not yet know
what the payoffs are, but we know that the outcome will include the number
of rhino saved and/or poached and whether the poacher is arrested. For this
example, we have two rhinos in grid cell 1 which is 500 m from the border and
one rhino in grid cell 2 which is on the border. The four possible events are shown
in Figure 4. For the outcomes of each event, the solid rhinos represent the number
of rhinos saved and the dotted rhinos represent the number of rhinos poached.
If the rangers and the poachers are in the same grid cell, then the poachers are

arrested and no rhinos are poached.

Event

om

Outcome

Y b
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Figure 4. Game events and outcomes. For events, the policeman represents the rangers,
the gun represents the poachers and the solid (black) rhino depicts the animals in each
grid cell. For outcomes, the solid (green) rhino depicts the saved rhinos, the dotted
(red) rhino depicts the poached rhinos and an arrest is represented by handcuffs.
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In order to solve the game, we need to define the pure-strategies for each
agent and quantify the outcomes as payoffs. Since the rangers act first, they have
one information state and their pure-strategies are just their actions, cell 1 and
cell 2, given by the set S® = {1,2}. Because the poachers observe the rangers’
action, they have two information states: P.1 when the rangers go to cell 1 and
P.2 when the rangers go to cell 2. The pure-strategies of the poachers thus need
to specify what action to take at each information state, and are given by the
set S = {(i,j) : for i, = 1,2}, which means cell i at P.1 and cell j at P.2. To
calculate the payoffs, let the value of a rhino be 1 and the value of an arrest be 2.
A poached rhino will count as negative for the rangers and an arrest will count as
negative for the poachers. The payoffs can also include an agent’s preferences, so
let the penalty for the poachers be -1 for every cell that is 500 m away from the
border. Let v (SF, sz‘) be the payoff for the rangers and u®” (S¥, Sfi) be the
payoff for the poachers when the rangers are are in cell 4 and the poachers are
in cell j.i, where S is the ith element in S® and Sf» is the jth element of S¥

1
with the action at information state P.i. Then the payoffs are calculated as:

R R oP\ _ r, +a; +2 lf’L:jZ
u (Sl 7Sj‘i)_{’ri+ai_a’j.i lfl#_]l (1)

and

where a; is the number of animals in cell i, r; is the geographic utility of the
rangers in cell ¢ (0 in this example), p;; is the geographic utility of the poachers

in cell j.i, and 2 is for an arrest. With the payoffs known, we can define the game
mathematically as G = (A, S,U), where

o (st = { B2 DT 2)

— A ={R, P} is the set of agents with R denoting the rangers and P denoting
the poachers;

- S= {SR, SP}, where S® = {1,2} is the set of pure-strategies for the rangers
and ST = {(1,1),(1,2),(2,1),(2.2)} is the set of pure-strategies for the
poachers; and

- U= {uR,uP} is the set of utility functions, where u®, uf : S® x S¥ - R
are defined in equations 1 and 2.

We construct the game tree in Figure 5 to describe the game. The solution
to a pure-strategy Stackelberg Game is given by the Subgame Perfect Nash
equilibrium (SPNE) and is found using backward induction [16]. Figure 5 shows
the three subgames in this game. The SPNE requires that the solution has a Nash
equilibrium (NE) in each subgame, even if it is never reached. The backward
induction process for finding the SPNE is presented visually in Figure 5 with
thick lines representing the optimal strategies for each agent. Let SE denote the
optimal strategy for the rangers and SP the optimal strategy for the poachers.
The SPNE is $% = 1, SP = (2,1), thus the rangers go to cell 1 and the poachers
to cell 2, with payoffs of 1 for the rangers and 1 for the poachers.
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Figure 5. Stackelberg game tree and subgames. The rangers have one information state
and the poachers have two information states (P.1 and P.2). The payoffs are shown at
the terminal nodes with the rangers’ payoffs first. There are 3 subgames and the thick
lines indicate the backward induction process for finding the SPNE.

The game can also be written as the normal form representation in Table 1
and the SPNE is a subset of the NE for the normal form game. Finding all NE
for this normal form game includes the SPNE above, as well as an equilibrium
where at information state P.2 the poachers execute a mixed-strategy by choosing
each cell with probability 0.5. If the roles were reversed and the rangers were
to act as the follower then the SPNE is $% = (1,2), SP = 2 s0 the rangers and
the poachers both go to cell 2 and the payoffs are 3 for the rangers and -2 for
the poachers. This example thus shows a follower’s advantage since both agents
receive a higher payoff when they follow than when they lead. The use of the
SPNE is just for demonstration in this article. In practice, it would be preferred
to solve for an optimal mixed-strategy for the rangers, which is a probability
distribution over their set of pure-strategies. This mixed-strategy could then be
utilised, for example, over the duration of one month in which a random strategy
is selected from this distribution every day.

Table 1. Normal form of the Stackelberg game. The rangers are the row player and
have two pure-strategies. The poachers are the column player and have 4 pure-strategies,
where (7,7) means i at P.1 and j at P.2. The body of the table shows the payoffs at
each combination of their strategies, where the rangers’ payoffs are given first.

p
R (L) (L,2) (2,1) (22
1 4,3 4,-3 1,1 1,1
2 -1,1 3,-2 -1,1 3, -2




12 L. Kirkland et al.
5 Experiments

We perform simulations for the subarea in Figure 1, using the grid shown in
Figure 2. The poachers’ entry is at the border cells and their preferences are as
described in Section 3.2. The wildlife is set to dislike being 1 km near to camps
and prefer being within 10 km of dams and water. There are 566 allowed cells
for each agent, after excluding geographical obstacles. Simulations are run with
200 moves per game, 10 games per month, and for 500 months. GAMET1 is the
uniform game, with random movement for all agents. GAME2 is the null game,
with random movement for the rangers, intelligent movement for the poachers and
improved animal movement. The poach frequency per day and arrest frequency
per day are the primary measures for assessing the rangers’ performance. We
also consider the average number of moves to make an arrest and the average
distance between the rangers and the poachers when there are no arrests. Since
the distributions of these measures are skewed, we report on the median and
calculate the bootstrap standard error (SE) of the median using 1 000 bootstrap
samples. Furthermore, we do pairwise comparisons of the games for each measure
and test the general hypothesis of identical populations using Mood’s median
test [11]. Table 2 shows the median for each measure, with bootstrap SE of the
median in brackets, and the superscripts indicate where Mood’s median test is
non-significant. As can be expected, the random rangers have poorer performance
against the intelligent poachers than against the random poachers since the poach
frequency per day is significantly higher in GAME2 than in GAMEL. Figure 6
shows the trajectories for a single round of the null game.

= AR LT 1T

Figure 6. Trajectories for a single round of the null game. The lines represent the
movements of the wildlife (green, narrow line), the rangers (blue, medium line) and the
poachers (red, thick line). A black * represents a capture event, a black X represents a
poaching event and a black + represents a leaving event.
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Next, we implement the pure-strategy Stackelberg Game, as described in
Section 4. A Game class was created with methods to calculate the strategies,
payoffs, and game solution. The rangers are set to like being within 10 km of
dams and water since that is likely where the wildlife can be found. The poachers’
preferences are as described in Section 3.2. For each agent, based on the agent’s
geographical preferences, each allowed cell has a selection weight which aids in
determining the movement into the next cell and a utility which aids in selecting
the destination cell. The wildlife is set to dislike being 1 km near to camps and
like being within 10 km of dams and water. Figure 7 shows a colour scale of
the wildlife preferences as well as a simulated collection of wildlife sightings that
serves as an animal density estimate. The payoffs for the rangers and the poachers
are calculated using the animal densities (with a weight of 5), their utility based
on geographical preferences (with a weight of 2) and arrests when they are in
the same cell (with a weight of 40). We perform the following simulations of the
pure-strategy Stackelberg game:

— GAMES3 the rangers as the Stackelberg leader against the intelligent poachers;

— GAMEA4 the rangers as the Stackelberg leader against the poachers as the
Stackelberg follower;

— GAMES the rangers as the Stackelberg follower against the intelligent poach-
ers; and

— GAMESG the rangers as the Stackelberg follower against the poachers as the
Stackelberg leader.
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Figure 7. Wildlife density estimates and cell selection weights. The numbers indicate
how many wildlife have been sighted in each cell and the selection weights are depicted
by a colour scale where darker colours represent higher values.
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Table 2. Median and bootstrap SE in brackets for evaluation measures. A superscript ¢
means the null hypothesis for Mood’s median test that the medians are the same is not
rejected, at a significance level of a = 0.05, when compared pairwise with GAME;.

Poach Freq Arrest Freq Ave Moves Ave Distance (km)

per Day per Day for Arrests for Non-arrests
GAME1 0.067 (0.006)*® 0.067 (0.001) 23 78.0 (2.1) 10.4 (0.1)
GAME2 0.083 (0.016) *® 0.067 (0.001)* 67.6 (2.7)%*® 11.8 (0.1)*°
GAME3 0.067 (0.016) %% 0.067 (0.013)' 66.8 (2.4)>*° 11.4 (0.2)>*°
GAMEA4 0.033 (0.015) >® 0.167 (0.008)° 62.8 (2.3)%%° 11.1 (0.2)%°
GAME5 0.067 (0.005) %3 0.133 (0.016)* 67.4 (1.2)%** 9.5 (0.1)
GAMES6 0.067 (0.005)** 0.267 (0.016)  49.8 (1.5) 11.6 (0.2) >34

The results for the Stackelberg games are shown in Table 2. When comparing
GAME3 and GAMES5 with GAME2 (null game), we have a direct comparison
of the rangers’ performance since the only difference between the games is the
movement of the rangers. The poach frequency per day is lower in GAME3 and
GAMES than in GAME2, and the arrest frequency per day is significantly higher
in GAMES than in GAME2. Thus, the rangers perform better than random when
playing the Stackelberg game as the leader or the follower against the intelligent
poachers. When comparing GAME3 with GAME4, where the rangers act as the
Stackelberg leader, they perform better in GAMEA4 since the poach frequency
per day is significantly lower and the arrest frequency per day is significantly
higher. Thus, comparison of the rangers’ performance against the intelligent
poachers (GAME3) represents a worse case for the rangers than against the
poachers as the Stackelberg follower (GAMEA4). This is reasonable when trying to
select the better game since we would not want to have an optimistic estimate of
their performance. Similarly, when comparing GAME5 and GAMEG, where the
rangers acts as the Stackelberg follower, GAMES against the intelligent poacher
represents a worse case for the rangers than GAMEG against the poachers as
the Stackelberg leader since the arrest frequency per day is much higher and the
average moves for an arrest is much lower in GAME6. Comparing GAME4 and
GAMESG, there is no significant difference in poach frequency per day but GAMEG
has a much higher arrest frequency per day and a much lower average number
of moves for arrests. Thus, when both agents act according to the Stackelberg
game, the rangers perform better when acting as the follower than as the leader.

6 Conclusions

The null game presented in this paper provides a realistic baseline model for
assessing any improvement in the rangers’ performance. Improved ranger perform-
ance is defined as having fewer wildlife poached and more poachers arrested. The
primary performance measures of poach frequency per day and arrest frequency
per day thus directly address the objectives of the rangers. As expected, the
rangers have poorer performance against the intelligent poachers than against the
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random poachers in the null game. Implementing the simple Stackelberg security
game shows that even this simple game-theoretic algorithm results in a significant
improvement for the rangers. An Appendix is provided in Section 7 containing a
summary of the classes, attributes and simulation parameters required for the
null game and the pure-strategy Stackelberg games.

Utilising better geographic data is expected to alleviate the problem with
back and forth movement around cells that are excluded due to geographical
obstacles. The next step would be to incorporate time into the simulation. For
example, the poachers’ re-entry into the park after an arrest could be delayed;
the visibility of the agents could be increased during dry seasons or nights when
it is full moon; rivers might be easily crossed during dry seasons; and where there
is dense vegetation or steep mountains the speed of the agents could be decreased
within that region instead of excluding those cells.

Further improvements can be implemented to make the null game more
realistic. Including multiple groups of rangers, multiple groups of poachers, and
multiple herds of wildlife would be a valuable improvement. Utilising an animal
movement model for different types of wildlife instead of simulating the movements
of the wildlife could also improve the framework considerably. Alternatively, we
could design routes for each of the wildlife, the poachers, and the rangers using
imaging software to identify sand trails [15], using routes uncovered by poacher
tracking [8], or using road segments to define routes [9]. The routes can then be
used for their movement within the framework and as their set of strategies in
the GSG algorithm.

Since the framework is designed to compare and evaluate different wildlife
security games, another task would be to include game-theoretic algorithms
discussed in current research within the framework. We would like to test the idea
of the rangers acting as the Stackelberg follower against the current algorithms.
Observed data can be utilised in a Bayesian network to learn the poachers’
mixed-strategy and the rangers’ mixed-strategy best response can be calculated.

7 Appendix

The evaluation framework is developed in Python 3.8. It utilises the geopandas [1]
library to handle geographical information and the movingpandas [12] library
to store, plot and analyse the trajectories in each simulation. Table 3 provides
a summary of the classes, attributes and simulation parameters used in the
framework. For the uniform game, the move_type is set to "random" for all
agents but for the null game it is set to "intelligent" for the poachers. The
Park class has methods to calculate the grid, the cells on the edge of the grid,
and the cells on the park border. The Agent class has methods to find the agent’s
allowed cells and calculate their geographical selection weights and utilities.
Furthermore, it contains methods to find their start cell, destination cell and
calculate the next cell to move into. The Game class is more useful for the security
games as it contains methods to calculate strategies, payoffs, and the game
solution. For the null game, it just collects the agents and whether the poachers’
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entry point should be a cell on the edge of the grid or on the border of the park.
The Sim class has methods to simulate a single game and to simulate games for a
number of months. Additionally, to evaluate the simulations, there are methods
for calculating the median of the performance measures, bootstrap standard

errors of the median and p-values for Mood’s median test.

Table 3. Summary of classes, attributes and simulation parameters.

Class  Attribute Description
Park  boundary GeoDataFrame of park boundary (polygon)
trees GeoDataFrame of areas with dense vegetation (polygons)
mountains GeoDataFrame of areas with steep mountains (polygons)
roads GeoDataFrame of main roads (lines)
rivers GeoDataFrame of main rivers (lines)
dams GeoDataFrame of dams (points)
water GeoDataFrame of water holes, fountains and drinking
troughs (points)
camps GeoDataFrame of main rest camps (points)
picnic GeoDataFrame of picnic spots (points)
gates GeoDataFrame of public gates (points)
custom dictionary of the form {"name": GeoDataFrame}
subarea latitude and longitude bounds of park subarea
cell_x_length horizontal length of grid cells (meters)
cell_y_length vertical length of grid cells (meters)
Agent name name of the agent
park park object
grid_type "full" / "bounded"
move_type "random" / "intelligent" / "game"
area_out list of feature names for areas to stay out of
area_within list of feature names for areas to stay within
dislikes dictionary of feature names and distances (meters) to
stay away, eg. {"name": distance}
likes dictionary of feature names and distances (meters) to
stay near, eg. {"name": distance}
Game  name name of the game
wildlife agent object for wildlife herd
ranger agent object for rangers
poacher agent object for poachers
poacher_entry "edge" / "border"
game_type "null" / "stackel_lead" / "stackel_follow"
sightings GeoDataFrame of wildlife sightings (points)
Sim game game object to simulate
seed sets the random seed
end_moves number of moves until the game ends
games_pm number of games to simulate per month

months_total

number of months to simulate
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