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Abstract

Crops are often subject to intense attacks by pests and diseases. Among them, Maize Lethal
Necrosis (MLN) is a serious disease that impact maize crops in many Southern countries. It results
from the synergistic interaction of two plant viruses, transmitted by two vectors. In this paper, we
develop a general crop-vector-borne disease deterministic model for synergistic co-infection, with a
particular focus on MLN disease. A theoretical analysis shows that different thresholds exists that
drive the dynamics of the system: the well known basic reproduction numbers and also invasion
reproduction numbers. The latter are essential for the emergence or not of the MLN disease. After
a global sensitivity analysis, we illustrate our results through numerical simulations and discuss
potential control methods such as vector control and roguing.

Keywords: vector-borne plant disease, co-infection, synergistic interaction, invasion reproduction
number, sensitivity analysis, numerical simulations

1 Introduction

Plants, wild and domestic, are subject to diseases. Understanding and controlling of plant diseases is of
critical importance for reliable food production. There are wide ranging examples of devastating plant
diseases preceding the earliest writings (see [1] and references there in). For example, the Bible and
other early writings mention diseases such as rusts, mildews and blights. More recent disease outbreaks
with far-reaching consequences include the late blight of potato in Ireland (1845 -1860), powdery mildew
of grapes in France (1851), Southern corn leaf blight in Africa (1990 - present), and many others. In
addition to climate change and lack of investment in farming, plant diseases cause major food insecurity
throughout the world. The Food and Agriculture Organisation estimates that pests and diseases are
responsible for about 25% of crop loss. These loses may result in hunger and starvation, especially in
less-developed countries. However, disease control in crops is generally successful. Among other methods,
disease control can be achieved by using disease resistant or non-susceptible plants, crop rotation, use of
pathogen free seeds, control of moisture levels, pesticides, etc.

Plant diseases generally involve interaction between multiple pathogens and the complexities are not
captured in single host-single disease systems. In particular, co-infection is the infection of a multiple
pathogen species to a single host that may be the causative of distinct diseases or variants of the same
parasite [2]. In humans/animal hosts, mixed virus infections are relatively infrequent and are generally
associated with depression of the immune system. In plant hosts, interactions between viruses can result
in synergism, antagonism, coexistence, mutualism, cooperation or a neutral interaction, see for example
[3, 4]. In plant diseases, the level of damage on the plant will depend on the outcome of the interactions
and the host response. Advances in the study of host-pathogen dynamics suggests co-infection can lead
to several outcomes. These include, competitive exclusion where over time one pathogen outcompetes
the other, mutualistic coexistence where both pathogens benefit from the interaction, or emergence of
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new recombined, and more damaging epidemic. Several examples of synergistic interaction are given in
[3], but here we focus on the Maize Lethal Necrosis case.

Maize, rice and wheat are the three most widely grown crops around the world, in particular, in
developing countries. Maize alone contributes to at least 30% of the food calories to more than 4.5 billion
people in 94 developing countries and it plays a crucial role in the livelihoods of millions of small scale
farmers [5]. For instance, in 2017, the area harvested in Africa was around 40 million hectare (ha) and
produced around 8.04 million tons. In Southern Africa alone, the area harvested was around 2.9 million ha
and produced around 1.07 million tons [6]. Although maize is the basis for food security in the majority of
countries in Africa, the yield has drastically decreased over the years due to several factors, including high
incidence of diseases, pests and weeds. Diseases that have threatened corn production in Sub-Saharan
Africa include Maize Streak Virus (MSV), and Parasitic Weed Striga [5]. In 2011, a devastating disease of
maize, the Maize Lethal Necrosis Disease (MLND), also called Corn Lethal Necrosis Disease (CLND), see
for instance, [7, 8], was first reported on the African continent in Kenya. The disease affected almost all
commercial varieties causing a loss ranging between 30-100% depending on the severity of the disease and
the time of infection [9]. In 2012, just in Kenya alone, the MLND affected around 77 000 ha, translating
into an estimated loss of US$52 million [10, 7].

MLND is caused by a synergistic interaction between Maize Chlorotic Mottle Virus (MCMYV) and
one of several viruses from the Potyviridae family [11]. MLND was first reported in Kansas (USA), as a
synergism interaction of MCMYV and either Maize Dwarf Mosaic Virus (MDMV) or Wheat Streak Mosaic
Virus (WSMV), and later in Nebraska [12, 13]. In 2011, MLND was reported in China as a synergism
interaction between MCMV and Sugarcane Mozaic Virus (SCMV) [14]. In Africa, the first outbreak of
MLND was reported in Kenya [10], and was associated with potyvirus SCMV and later in Rwanda [15],
Uganda, Tanzania [9] and Ethiopia [9]. There are other viruses in the family Potyviridae that cause
MLND in co-infection with MCMYV, including, MDMV and Johnsongrass Mosaic Virus (JGMV) [16].
Among these Potyvirus, SCMV is the most predominant [9]. MCMYV is the primary virus that drives
MLND, [7]. The natural host of MCMV is maize, however there is a broad range of plants serving as
reservoir of MCMYV including sugarcane and finger millet [9]. The above clearly shows the complex nature
of MLND.

MCMYV outbreak was reported from the Southern Rift Valley of Kenya in 2011 [10]. Maize infected
with MCMYV show an array of symptoms ranging from mild chlorosis mottling to severe mosaic and
stunting, yellowing necrosis and premature plant death [7]. However, as reported in [11], it is not clear
whether this symptoms are due to MCMYV infection alone, or in co-infection with another virus, or stress.
MCMV co-infection with potyvirus is a synergism, that is, the disease progression and symptoms are
greater in maize infected with MCMV and potyvirus. For instance, in [17] it was reported that the
concentration of MCMYV were 1.9 — 11 fold higher in maize infected with MCMV and potyvirus than in
singly infected maize. Maize infected with SCMV shows symptoms similar to those by MCMV: mosaic,
chlorosis and stunting in maize. Symptoms can be bright or muted depending on environment and time
of infection [11, 7]. There are a number of vectors transmitting MCMV. For instance, beetles [18], flower
thrips [19], and maize thrips [19, 7]. In this work, for the sake of simplicity, we focus on maize thrips
(Franklinielle Williamsi) that transmit MCMV in a semi-persistent manner [19]. In Eastern Africa,
thrips have been observed in high densities in fields affected by MLND and MCMYV, even several years
prior to the first report of MLN, [7, 10]. Although the range of vectors transmitting MCMYV in Africa is
not known, thrips have been observed in all fields where maize has been grown, including in MLND- and
SCMV-affected regions [9], which suggest that they play a major role on MCMV transmission in Africa.
MCMYV can also be transmitted via seed from MCMV-infected maize [20] or soil from MCMV-affected
fields [7]. In this work, we will not consider these transmission routes. However, seed transmission can be
considered implicitly through the initial conditions, thus assuming that maize crop is initially infected by
MCMYV. Taking into account soil transmission would require additional compartments, see for example
the work [21]

Aphids species are the vectors for maize-infecting members of the genus potyvirus. For instance,
MDMYV and SCMV are transmitted by a number of hosts including Rhopalosiphum maidis, Rhopalosi-
phum padi, Myzus persicae, Schizaphis graminum, in a non persistent manner, which means that the
vectors acquires the virus within seconds of feeding on maize and not retained for more than a few hours
with no report of latent period [22]. Aphids are widely distributed and seem to be abundant in regions
where maize is grown, including East Africa. Apart from other potyvirus, WSMYV is transmitted by the



virus Wheat Curl Mite in a semi persistent manner [23]. However, WSMV has not been reported in East
Africa. SCMV can also be transmitted via seed [24] and soil [7].

Mathematical models of plant-virus and plant-vectors-virus have played an important role on guiding
research direction and improving understanding across the characteristic spatio-temporal scales of plants
virus epidemic and, in some cases, led to the direct application in disease control [25, 26, 1]. There are
several mathematical models formulated to study co-infection in humans/animals, particularly, HIV/TB
[27, 28], HIV/Malaria [29], and many others [30]. However, very few models have been proposed to
study co-infection in plants/crops. For co-infection in plants/crops, we highlight the work [2], where the
authors proposed a deterministic model to investigate some of the general principles of epidemiological
plant diseases caused by helper dependent virus complex. In [3], the authors proposed a model in which
transmission loss rates are due to the different viruses - including possibilities of co-infection. Also, in a
very recent work, the authors in [31] studied a crop co-infection model with one vector.

The only MLND co-infection mathematical models we are familiar with were proposed in [32], where
the spread of MLND within and between growing seasons of maize was modeled. The authors considered
the local transmission through vectors, seed and infested sources of inoculum in the soil. However, in
their model, the vectors dynamics is implicitly modeled, such that the vector borne transmissions within
a field depends on the densities of infected and uninfected plants. In their work, control strategies such
as clean seeds, insecticides, crop rotation and roguing were proposed. More recently, the authors in [33]
proposed a general epidemiological model for one vector specie and one plant specie with co-infection in
the host. Contrary to the models proposed in [32, 33], in this work we formulate a two vector species
(aphids transmitting SCMV and thrips transmitting MCMYV) and one host plant specie (maize) model
that allows co-infection of the host.

The rest of the paper is organized as follows. In the following section we will formulate a generic
synergistic co-infection vector-borne model, applied to the MLN system. The mathematical analysis of
the model is given in Section 3. The Type/Invasion Reproduction numbers are derived in this section
and we show permanence of the model. Parameter estimation, global sensitivity analysis and numerical
simulations that support the theory are given in Section 4, where also we discuss the usefulness of different
control strategies. The last section gives some concluding remarks.

2 Model formulation

Our model is intended to be as generic as possible so that it can be applied to different co-infection
systems, like co-infections with MCMV and any other potyvirus [3]. However, for sake of clarity and
taking into account the predominance of potyvirus, e.g., SCMV implicated in MLND in Africa, we
consider the SCMV as one example of potyvirus. Therefore, motivated by the work [32], we model the
dynamics of MCMV and SCMV within a single growing season and we focus only on the transmission
through vectors. Potyvirus, and so is SCMV, are transmitted by aphids in a non-persistent manner
and there are approximately 25 aphids species that vector SCMV [34, 9, 35]. There are several insects
that vector MCMV and these include several species of beetles [18] and thrips [9] in a semi-persistent
manner. However, according to [9], thrips have been observed in all fields where maize has grown
including MCMV-affected field. A thrip (aphid) is infected by the MCMV (SCMV) virus after feeding on
an infected maize plant. Therefore, we assume, for simplicity that the thrips are the vectors transmitting
MCMV. For convenience, we refer to MCMV as virus a and SCMV as virus b. To make the model more
comprehensible, the following assumptions are made:

1. All viruses are not vertically transmitted in both the vector and in plants. However, as alluded
above, this assumption can be relaxed through initial conditions by assuming an initially infected
maize crop.

2. Maize is planted and grows almost in the same way.
3. Each vector specie can only be inoculated by only a single virus.
4. The vector population (both thrips and aphids) is not impacted by the presents of the virus.

The maize plants are divided into four epidemiological states: the number of healthy plants H,, the
number of plants infected by MCMV I,,,, the number plants infected by SCMV I, and the number



of plants infected by both viruses Ip,,. The total population of maize in the field is given by N =
Hy+ 1y + Ipy + Iy For vector population, we consider two epidemiological states for each vector specie:
the susceptible S, and Sp, and the infective, I, and I, such that the total population of thrips (aphids)
is given by V, = I, + S, (V, = Sy + I,). Since our study takes place in East and Central Africa with
appropriate environmental conditions, such that maize is produced along the year, we also assume vital
dynamics for both the maize crops and the pests.

We assume a net planting rate, A,, in the healthy host compartment only, and, for sake of genericity,
we consider a recovery rate, wp; of plants infected by virus ¢ = a,b. Since the synergistic interaction
leads to high MCMV concentrations in mix-infected plants compared with single-infected plants [36], and
because MLND can cause total yield loss, we assume that MLN-infected maize cannot recover. Healthy
crops are assumed to have a mortality rate p,, and plants infected with virus ¢ = a, b, m have mortality
tpi- Unlike the work of [32], where the co-infection does not induce mortality, here these rates includes
the natural mortality and the virus induced mortality. Thus, according to our literature review, we
consider, in the rest of the paper, that pipm > fipi > fiph, © = a,b. The net vector birth rate is given by
A;, ¢ is the recovery rate of thrips from the MCMYV virus, « is the recovery rate of aphids affected by the
SCMV virus, u, is the death rate of the thrips and pu; is the death rate of aphids.

The infection between the vectors and the plants is modelled by the mass action principle and we
assume frequency dependent transmission. The vectors are assumed to have little to no damage on the
plants. We consider the contact rate S, (Bps) as the number of contacts per unit time (day) between
thrips (aphids) and plants which would result in infection if the thrip (aphid) is infectious. Also, the
contact rate Sqp (Bpp) represents the number of contacts per unit of time (day) that effectively transmit
the infection to thrips (aphids) from an infectious plant. Furthermore, we consider additional contact
rates, Bam, Bmas Bom and Bp, related to the MLN disease transmission. However, so far, there is no
specific knowledge (estimates) about these parameters. Details on the selection of parameters will be
given in Section 4.
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Figure 1: MLND co-infection model flow chart

All the model parameters are non-negative and we summarise them in Table 1, page 6. According to



the compartmental diagram provided in Figure 1, page 4, the MLND mathematical model is as follows:

dH
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where N = Hp+ Lo+ Ipp + Ipm, Vo = 5. —l—Ia and V, = Sy + I,. The total populations take the following
form

dN

a Ap — unHyp — ppalpa — pppIpp — tpmIpm = Ap — pn N

dv,

- = Aa - aVa ) 4

o I (4)
dVy
— =Ny — Vi

ar b~ HbVb

with N(0) = N° >0, V,(0)=V?>0,V, = Vb0 > 0, where we have assumed f,, = max { ftph, fpas fpb, lpm } >
0.

a A ¥ Aa
From (4) and (4)s, we deduce V, - —, V, — —b, respectively, when t — co. We set V, = ,
a Mo Ha
- A A
V, = — and N, = —2. Note also that since V,(0), V,(0), N(0) > 0, then, from (4), V,(t) > 0, V3(t) > 0
Ho

and N(¢t) > 0, for all t > 0. Thus, the solution of (4), for any initial condition in Qu v, v,, remains in
QN,VG,VE,; where

ANy, v, = [O,Np} X [O,Va[ X }O,Vb} .

3 The mathematical analysis

First, through the next result, we show that the model (1)-(2)-(3) is mathematically and biologically well
posed in

0= {(H Toas Iy, Toms Say Iay Sy, I) € [0, N,J* x [0, V)2 x [o,f/b}?}.

Theorem 3.1 Assuming that all initial conditions lie in Q, then system (1)-(2)-(3) has a unique solution
that remains in Q for all positive time t.

Proof :  The right hand sides of (1)-(2)-(3) are continuously differentiable map (C'). Then, by the
Cauchy-Lipschitz theorem [47], system (1)-(2)-(3) has a unique maximal solution. Rewriting the system
(1)-(2)-(3) in the form

dz

i A(z)x + b,



Parameters| Description Unit Range Baseline Reference
for
simulations
Bpa Rate of transmission of MCMV | day~! [0.04;0.25] 0.073 [19, 37]
from Infected thrips to Suscepti-
ble plant
Bpb Rate of transmission of SCMV | day~! [0.04; 0.25] 0.07 [38, 39,
from Infected aphids to Suscep- 40, 41)
tible plant
Bam Rate of transmission of MLND | day~! [0.08;0.90] 0.1
from SCMV Infected thrips to
MCMYV Infected plant
Bbm Rate of transmission of MLND | day~! [0.08;0.90] 0.2
from MCMYV Infected aphids to
SCMV Infected plant
Bap day—! [0.04;0.25] 0.073
Brp day~1 [0.02;0.72] 0.07
Bma day~1 [0.08;0.90] 0.1
B day~! 0.08;0.90] | 0.2
I Natural death rate for thrips. day~! [0.07;0.14] 0.092 [37, 42]
hp Natural death rate for aphids. day~! [0.07;0.1] 0.079 [40, 41,
43]
Hph Death/harvest rate for suscepti- | day~! [1/100,1/40] | 1/60
ble plant
tpa Death/harvest rate for plant in- | day~! [1/100,1/40] | 1/60
fected with MCMV.
Hpb Death/harvest rate for plant in- | day~! [1/100,1/40] | 1/60
fected with SCMV.
Epm Death/harvest rate for MLND | day~! [1/100,1/20] | 1/30
infected plant.
Wpa Recovery rate for plant infected | day~! [0,1/30] 0
with MCMV.
Wb Recovery rate for plant infected | day~! [0,1/20] 0
with SCMV.
A, Recruitment rate for plant. Ind x | [378,890] 600 [44]
day!
A, Recruitment rate for thrips. Ind x| [32338;88749]| 50535 [45]
day !
Ay Recruitment rate for aphids Ind x | [20132;33238]| 25638 [45, 41]
day!
0 Recovery rate for thrips infected | day~! [0.13;0.17] 0.15 [19]
by MCMV
0% Recovery rate for aphids infected | day~! [2,12] 3 [46]
by SCMV

Table 1: The parameters for the MLND model (1), (2) and (3). The parameters estimates are explained

in section 4.
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that A(x) is a Metzler Matrix, i.e., all off diagonal terms are non-negative, for € Q. Therefore, since
x(0) > 0, then z(t) > 0, for all time t > 0. In addition since (N,V,,V3) € Qnv, v,, we deduce that
x(t) € Q, for all £ > 0.

and Agg = v + up.  We notice

O

3.1 About the Disease Free Equilibrium

Without the disease, it is easy to see that Py = {NP,O, 0,0, Va, 0, ‘7},70} is the disease-free equilibrium
(DFE) of system (1)-(2)-(3). Just like in models for animal /human diseases, we derive the basic reproduc-
tion number, Ry, using the Next Generation Matriz (NGM) approach, see [48]. The basic reproduction
number is defined as the average number of new cases of an infection caused by one typical infected
individual, in a population consisting of susceptible individuals only, [49]. The next generation matrix is
a matrix that relates the numbers of newly infected individuals in the various categories in consecutive
generations.

To apply the next generation approach, we notice that the variables associated with strain a and
strain b are ILq, Ipp, Iym, Io and I,. Thus, we define yr = (Ipq, Lpb, Ipm, Lo, Ip), to denote the disease
compartments, and yg = (H,, S,, Sp) to denote the susceptible compartments. Rewriting the system as
the difference of a new-infection terms (inflow) and outflow terms, we have

dy
GTtI = Flys,yr) - V(ysvyf) 5)
a I
/Bp I (Bam% + (wpa + Npa)) Lo
B b*bl7 Ia
Py, P <6bm + (wp + /’(‘pb)) Ipp
B ’ - v (6)
(Bap =+ B?na Sa _ﬁam ﬁbm pb + /f"mepm
N
(5 + ua) a
(ﬂbp + ﬂm > Sb (’)/ 4 Nb)Ib
Then, computing the Jacobians of 7 and V at DFE, i.e., F' and V respectively, we derive
NGM = FV—!
1
Ny — 0 0 0 0
0 0 0 Bpat 0 Ora T five )
N 00 By 0 0 0 0
0 0 0 0 0 Wpb T Hpb 1
= Va ‘7 O O - 0 O
Bapf 0 Bmai 0 0 Hpm
Np - ZYP O O O O
0 B Vi 5 10 0 0 §+ 1o 1
bp "’p mbN 0 0 . ;
Y+
N,
0 0 Bpa P 0
Va (5 + //fa) -
N,
0 0 0 0 B = P
Vo (v + )
= O R O i 0 O
M 0 ﬂma*«i O 0
Ny (Wpa + Hpa) ~ prpm
Vi Vi
0 L B =" 0 0
N (wpb + /I“Pb) Npﬂpm



Then, according to Van den Driessche & Watmough, [48], the basic reproduction number, Ry, is defined
as the spectral radius of NGM at DFE. After some computations, we derive that the characteristics
polynomial is defined as follows

- _ 2 _ BpabBap 2 BpbBryp
Py ==X <)\ (Wpa + fpa) (6 + ,Ua)) (A (wpb + pp) (v + Mb))

such that
Ro = max{Ro,q, Rops},
where Rg = Bpalap and Rop = By o are the basic reproduction num-
(wWpa + Hpa) (0 + Ha) (wpb + ppb) (7 + )

bers for the MCMV and SCMV diseases, respectively. According to Van den Driessche & Watmough
[48], we deduce

Theorem 3.2 The DFE point, Py, is locally asymptotically stable when Ry < 1, and unstable when
Ro > 1.

ﬂap
0+ Ha
thrips to susceptible Maize as the product between the rate of transmission B, and the thrips life span

. The remaining term in the square root Ry, = & gives Roq from Maize to thrips, which
0+ Ha Wpa + Kpa

Remark 3.1 The term Rqp = in the square root represents the disease Ro from MCMYV infected

1
is the product between the rate of transmission Bp, and the maize viremic period —. Likewise, the term
a
Rbp _ 517;0
Y+ M
the product between the rate of transmission By, and the aphid life span

ﬂpb

Wpb + pb

in the square root represents the disease Rop from aphid infected with SCMYV to Maize as

. The remaining term in

the square oot Rpp = gives Ro from Maize to aphid, which is the product between the rate of

transmission By, and the maize viremic period ————.
Wpp + Lpb

Remark 3.2 It might be surprising for the reader that parameters related to the MLN disease do not
appear in Ro. In fact, this is not, as Ry is only related to new infectious individuals. To become infected
by MLN, a maize plant needs first to be infected by the MCMYV or the SCMV virus. To get a better
insight into the control and transmission of MLN, in the Section 3.3, page 9 we consider the invasion
reproduction numbers.

3.2 Existence of boundary and endemic equilibria

Other than the DFE, in this subsection we investigate the existence and local stability of other remaining
boundary equilibria.

Proposition 3.1 System (1)-(2)-(3) has the following boundary equilibria.
1. When Ro,q > 1, an MCMYV equilibrium, E} oy, exists where

Elony = (H I5,,0,0, S, I* f/b,o)

pa’ *pa’ a’ta
with )
I* _ (Roya — 1) N
pa — B P
_LPar 4y e rz )
(6 + pa) Pph ©
-
Bap pj
priupa Fph Iz,
* M h )
Ia = ﬂ I;a - +6+ Va’
ap — Ha
NP_M%
Hph



Hpa
ph
2. When Rop > 1, an SCMV equilibrium, E§q v, exists where

E:‘;’CMV: (Hpb707 pb70 Va70 Sb7Ib)

and Hy + “221% = N, and S} + I} = V4.

with
pb L—Fl—‘r’upb (Rgb_1> Py
(v + pw) fph N
I
Bpr _Mpb — Hph I
P
I(;k _ Hph pb %
= T
ﬂbp]\? 7/pr_/1'ph . + 7+ L
! Hph pb

and HY, + Z”b Iy =N, and S; + I; = Vi
ph
Proof :  See Appendix A, page 28.

O

Remark 3.3 It is impossible to find an analytical expression of the MLN equilibrium. However, we will
provide some insight into the existence of the MLN equilibrium. See Section 3.5, page 12.

Each virus, taken one by one, leads to a standard vector-borne disease model for which standard tools
can be used to study their asymptotic behavior. Here, we need to go further and consider the interaction
of both viruses and in particular, to find conditions such that both viruses can co-exist and thus induce
the MLN disease.

3.3 About the invasion of the SCMV (MCMYV) virus

The MLN disease only occurs when MCMV and SCMV viruses are both circulating. In the field, in
general, one virus first invades the crops followed by others. In that case, the basic reproduction ratios
computed previously are not really useful as they are supposed to indicate if one virus can invade a fully
susceptible population. That is why it is necessary to consider specifically the case when SCMV and
MCMYV viruses co-exist and lead to MLND.

Assume that the system is at the MCMYV equilibrium, Ef;qny. We would like to know if it can be
invaded by the SCMYV virus. To answer this question, we can estimate the invasion reproduction number,
REGMV We consider the subsystem with the variables y = (Ipb, Iym, Ip), with Hy, I, I, at equilibrium,

0,inv

such that

= Finv yaEMCMV) Vino (Y, Exiomv)

ﬂpb I*
6bm = pb + (pr + /’L;Db) I
PR B e
bm ~ 1pb am]vb ,Ufpmlpm
Sb+5mb—sb 4 m) &

We compute the Jacobian F' and V of Finy and Vip, respectively, at (Ipy, Lpm, Ip) = (0,0,0). The Invasion

reproduction number is defined as RSCMYV = p(FV~1). Thus, we compute

H*
0 0 ﬂpb I*
i Ifa fom = @ty 00
F = m ~ am -~ and V == a . 7
' Va . Vb 0 Hpm 0 (7)
Vi Vi 0 0 v+ up
— b= 0
617;0 Np ﬁ pr



from which we deduce

H* 1
0 0 B2 T 0 0
Vgg Bbm — + Wpb + Hpb
INVwen = V=" = | Bymdie 0 Lpa Ve 1
NGM = = bm ~‘~/a i am % 0 m 0
Vi pm
B Bmv O 0 0
Np Ny v+
That is,
0 0 B o
p—P
. "y JFIlib) Vi
I* b a - O 5a7nﬁ
INVS%‘%]V\I/ = (Bbm ‘7 + wpb + pr) Va 7T Hb) Vo
ﬁbp E ﬁmb E 0
I; N, m N,
Bom =2 4 Wpp + fipp P Hp P
Va
Direct and straightforward computations lead to the following characteristic polynomial:
I* H
psomv(A) = =X\ Bam b o pa) & + T B ( %b )T;m
Hpm T He) S Bom =— + pr + tpb YT H p
Bpb Bomdy ﬁmb

(’V + Mb) (5 bm ‘7 + wpb + NPb) Va Mpm Np

or, equivalently,
pscmv(N) = A2 — (Ro1 + Ro2) A — Ros,

with
Rot = Bam Bmb @’
T ppm (Y ) Ny
RO 9 1= _ ﬁb:ﬂ pr H;a
’ 5bm = + Wpb + fpb (v+m) N,
and

- Bpb Bom; Bmb Hpa
O3 (y + ) I tipm N,
(pr + ppb + ﬂbm f/ > V P

a

The roots of the reduced third order equation pscary can be obtained using Cardano’s formula [5
Let A be a cubic root of

Rb3+\/ RE 3 R01+R02)

and B the unique cubic root of

*szz \/ RE 3 Ro1+R02)

1
satisfying M - N = §R03 Then, the three roots of pscary are given by

M=A+B, M=EA+EB and A3 =£%2A+¢€B,
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SCMV
0,inv

3
where £ = —3 + gz Hence, the SCMV invasion reproduction number, R is defined as the largest

root in modulus, i.e.
RGGm Y = max {|A1], [Aa], | A} (9)

0,inv

Remark 3.4 However, the previous formula, while being the right threshold number, does not necessarily
provide a useful analytical expression of the SCMV Invasion Reproduction number. It would be more
convenient to find an invasion threshold that would be easier to manipulate. In fact, setting 7@5%\;{‘/ =
Ro,1 +Roz2 + Ro,s, that is

RSCMV __ PambBmy Ipa _ Bop By Hpa

Bbmvia + Wpb + Hpb

B Hpm (’Y + /f"b) Np

(v + 1e) N,

. @ * 10
pr ﬁbmja 5mb Hpa ( )
) I\ - N,’
(7 : ) <w10b + Kpb + Bbmﬂ> Va Hpm Np
Va
it s interesting to notice that pscpv (1) = 1—7@,&%1\1{‘/, such pscmv (A) = 0 is equivalent to kgfn]\gv =1.

Thus, we have R§SMYV =1 if and only if R§SMY = 1. Thus R§SMY is equivalent to RSSMV to know

if SCMV can invade or not. Formula (10) is much simpler to use and provides an analytical formula
related to the model’s parameters that will be useful later to discuss control methods.
We need to have in mind that Rg%% Voor ﬁg%‘f V' represents the number of new cases of I, Iy, or
I, after the introduction of one infected plant (infected by SCMV or MLN) or one infected vector by the
SCMYV virus. To this end, we now have to give a “biological interpretation” of Rg 1, Ro,2, and Rg,3.
pr H;:a
e The term R 3 can be decomposed as follows: Tt R represents the number of secondary
YT He Ny
SCMYV plant infections caused by one infectious aphid when SCMV-healthy plants are at MCMV

e b
equilibrium; ==

represents the number of secondary SCMV aphid infections caused by one MLN-
Bbm 1;

—— = represents the number of secondary MLN infections by
wpb + Mpb + Bbmvia e
one SCMV-infected plant when MCMV-infected thrips are at equilibrium. Thus Rg 3 is the MLN

basic reproduction number from healthy plants to MLN-infected plant through SCMV-infected
plants and MCMV-vectors.

Hpm

infectious plant;

e Similarly for Rg ;: the term Ba—m represents the number of secondary MCMV thrip infections

Hpm,
I*
caused by one MLN-infectious plant; &ﬂ represents the number of secondary MLN plant
(v + 1) Np

infections caused by one SCMV infectious aphid on MCMYV plants. Thus altogether, R 1 represents
the MLN-R( from M LN-infected plants by SCMV infectious aphids on MCMYV infectious plants.

e Ro.2 represents the SCMV basic reproduction number at M CMV equilibrium. When Sy, = 0 (no
infection by MLN), we recover Rg’b.

To summarize: a successful invasion of the SCMV virus occurs when Rgfnj\g V>1or Rg?n]‘f V>11In

contrary, when Rglcnj\f V<lor 7%0‘9?7% V' <1, SCMV cannot invade the system. It is also important to
emphasize that even if Ry, and Ro are both greater than 1, this does not necessarily imply the MLN
disease can exist. This is directly linked to the fact that Rg%g V> 1 (RYEMY > 1) or not. This will
be illustrated with numerical simulations. The same reasoning holds for an MCMYV invasion. We derive

11



the following Invasion Matrix

H*
0 0 Bra P
(6 + IMG) Va
amI* )
5 b I* 0 ﬁbmﬁ
INVJ\]}]gll\\;Vf (Wpa+ﬂpa+ﬂam‘7 )% ( +,U/a) @ )
b/ -
Bap Vb Bma Va 0
I N, ppm N,
Wpa + Mpa + 6am~7b P pm =P
Vi
from which we deduce the following characteristic polynomial
ma m I* a a H*
premyv(A) = =A%+ A 5Mﬂb ((H_pb) (6%/1) By I*Niﬂ’
pm fia “ Wpa + tpa + Bam=- "'P
Vi
n Bpa Bam1y Bima Hpp
0+ tq I; m
( M)(wpa+ﬂpa+ﬁam~)vup N
Vi
and REESMV is the positive root of pysaary. However, like before, we will consider the following threshold:
R(])WC]\/[V Bmaﬂbm I;b + 5})0, Bap Hf;b
muv I* =
ppm (6 + Ma) (0 4 pta) Wpa + fhpa + 5ami Ny
Yy (1)
5pa ﬁamjb Bma
0+ ta I m
( +M)(wpa+upa+ﬁam‘~/>vup N
b

Thus, clearly, if one of the previous sub-thresholds is greater than one, then MCMYV invasion can occur
and thus MLN can appear.

3.4 About the Stability of the boundary equilibria, Ef;cyv and E§enyv

After long and tedious computations, it is possible to show that the boundary equilibria, E};q\y and
E&cyy are locally asymptotically stable. This is summarized in the following result.

Proposition 3.2 o When Roq > 1 and Ry g%fv < 1 or Rg%‘fv < 1, then Ey;opy 8 locally
asymptotically stable.
o When Rop > 1 and Ré”zgi‘/f‘/ <1or 7@(])\%5\4\/ < 1, then Egcpy ts locally asymptotically stable.

Proof : See Appendix B.
O

Remark 3.5 Certainly, the boundary equilibria Ey;cpry and Eéqyy are GAS under the same previous
conditions.

3.5 Uniform persistence of system (1)-(2)-(3)

Thanks to the high non-linearities in the model, a direct study of the existence of an endemic (positive)
MLN equilibrium is not really possible. We circumvent this by studying the uniform persistence. We will
now study the cases when it occurs.

Consider the subset of 2

Qo = {(Hpa, Ipas Ipb, Ipm, Sa, Lo, Sp, In) € Q2 (I, > 0 or Iy, > 0) and (I, > 0 or I, > 0) or Ip, > 0},

12



such that

0Q0 = N\Qo = {(Hpa, Lpas Ipb, Lpm, S, Loy Sp, In) € Q: (Ip, =0 and I, =0) or (I, =0 and I, =0), I, = 0}.

Both Q¢ and 99y are positively invariant, and 9 is relatively closed in 2. All solutions are bounded
and system (1)-(2)-(3) is a point dissipative system.

We denote ¢¢(z0) the flow corresponding to system (), such that the solution of the system starting
at xg. Let My = {x € 0Q/d:(x) € 0 for t > 0}. Then, we have My = 9. The boundary equilibria
DFE, E,, Ey, are in Mp. Let WS(DFE), W3 (E;cuv), and WS (E%q,,,) be the stable manifold of
DFE, Ey;ony and Eqypy respectively.

We have to show that WS (DFE)N Qo =0, W5 (E%;ouv) N Q0 =0 and WS (E%q) N Qo = 0 hold
when the previous conditions hold.

Let us first show that WS (DFE) N € = (. Since R}, > 1, and R3 , > 1, there is an €, > 0, such
that for all € € [0, 4] , we have l

ﬂapﬂpa

e (R )

€+ Wpa, + Hpa

a

and

BopBpb Kye Ke
B (“m)(“m)“'
( )(wm

b

For all zg € Qp, we claim that limsup;_, , . ||¢¢(z0) — DFE|| > 9. Suppose that this is not true. Thus,
there exists T' > 0 such that for ¢ > T, we have

szNp_KGa Sazva_Kaey sz%_Kbea IQSG, Ib§€

which implies

dI am
> ﬂpa (N Ke) — <ﬂV € + Wpq + ,upa) I,
dl, .
dt = 6ap (V K 6) (5 + Ma) 1,
deb 1 Bbm
(ﬁZpr(/I;(Np_KG)_(Vb Iy

dl, -
a2 ﬁbp (Vb KbE) — (v + ) I,

leading to the following linear systems

(u) (5;me+wpa+upa) B (N, — Ke) (ua>A(ua>

Vq ap [ Y7 Va Vq
ev—p (Va — Kae) — (0 4+ ta)
and 5
. _ bm ,(i’p
(Z”)= (%N > 2 (N, - Ke) (Zb>:B(Zb>'
' S (V5 - Koe) —(r + m) ’ ’

computing det(A4) and det(B), we derive

am Ka K
det (A) = <ﬂV € + Wpa + ﬂpa) (0 + fta) — BapBpa (1 - ‘76> (1 - NE> <0,
a a P

and

det (B) = <ﬂ‘bfm€ + wpp + upb> (v + 1v) — BupBpb < Kb€> <1 - I]\{[e) <0
P

b
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which implies that the characteristic equations of both linear systems have a positive real root, which
means the positive solutions of () are unbounded, which implies the unboundedness of I,q, Ia., Ips, Ip -
A contradiction. Thus W3 (DFE) N Qo = 0.

Assume Ro, > 1 and REGAY > 1. Now we show that W9 (E};c) N Qo = 0. For all 2o € Qo, we
claim that limsup,_,, . [|¢¢(z0) — Enromv|| > €. Suppose that this is not true. Thus, there exists 7' > 0
such that for ¢ > T, we have

H;a—enggH;a—i—e, Iy —e<Ip<Iy,+e I;—e<I,<I;+e¢,

Sy >Vy— Kpe, Ip<e, I<e

such that at the limit, we derive

dly, N I+ €

T: > pr% (Hp - 5) _ﬁbmaTIpb - (wpb + Upb) Ipb

d-[pm I:—e Ib * ‘

d;it > ﬁmeIpb'f'ﬁamvb (Ipa ; 6) _Npm-[pmv

7; > ﬁmb% (‘717 - Kbé) +5prLb (Vb - KbG) = (v + ) I,

P

from which we derive the following linear system

u u
v =C, v ,
w w
with /
ate .
- (ﬂbm % + Wpb + ,Ufpb> 0 ,8717: (Hpa — 6)
Ce = ’ 15—« Bam *
ﬁbm V. ~Hpm Vi (Ipa - 6)
S (¥ Koe) S (G- Kie) = (v+m)
B . BP
veo 0 W
Co=F-V—e| S= 0 Ze= | =F-V-eM,
KBy  KubBop 0
Np Np

where F' and V are defined in 7, page 9. Since o(F — V) > 0 iff R{"$cp > 1, there exists e, > 0,
such that o(C.) =0 (F =V —eM) > 0 for € € [0,¢,]. This implies that C. has a real positive eigenvalue
with a positive eigenvector, meaning that the solutions are unbounded and so are I, Ip, and Ip,. A
contradiction.
Using a similar reasoning, we show that when Rqp > 1 and Rgf[i(;zyv > 1, then WS (E%oun) N = 0.
Altogether, we have W¥(DFE) = {DFE}, W3 (Ex;onv) = {(Hpas Ipas Lovs Lymy Sas Lay Sby In) € Q2 I, >0,
Tpa > 0,1, = 0,1, =0 and Iy, =0}, W3 (Eicarn) = {(Hpar Lpas Ipbs Lpms Sas Loy S, Ip) € Q2 I, > 0,
Iy > 0,1, = 0,1, = 0 and I, = 0} such that My = W(DFE) U W*(E;) U W95 (FE,). In addition
each equilibrium is isolated and acyclic in My. We can now apply Theorem 4.6 in [51] and deduce that
system (1)-(2)-(3) is uniformly persistent with respect to (£2g,9€0), under suitable conditions on the
reproduction numbers. Last, using the invariance of €, the dissipativity of system (1)-(2)-(3), and its
uniform persistence, Theorem 2.6 in [52] or Theorem D.3 in [53], we can deduce the existence of a MLN
equilibrium.

We summarize as follows:

Theorem 3.3 Under appropriate initial conditions, assuming that one of the following conditions hold
true

® Roa>1, Rop>1, RYSMYV > 1, and REGAY > 1,

0,inv

® Roa>1, and Rop < 1, and RG5Y > 1,

e Rop > 1, and Ro,o <1, and R(I)‘ﬂgyv > 1,

then system (1)-(2)-(3) is uniformly persistent. Moreover, a MLN equilibrium exists.
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3.6 Global stability of the disease-free equilibrium
First, we consider the following theorem that is helpful to reduce the stability analysis to a smaller system:
Theorem 3.4 ([54], Theorem 3.1) . Consider the following C' system :
&= f(x)
. Vo € R™ Vy € R" 12
{ g =g(z,y) Y (12

with an equilibrium point, (z*,y*), i.e.,f(x*) =0 and g(z*,y*) = 0. If x* is globally asymptotically stable
(GAS) in R™ for the system & = f(x), and if y* is GAS in R"™, for the system y = g(z*,y), then (z*,y*)
is (locally) asymptotically stable for (12). Moreover, if all the trajectories of (12) are forward bounded,
then (z*,y*) is GAS for (12).

Using (4)2 and (4)3, applying Theorem 3.4, we see that the stability analysis of system (1)-(2)-(3) is
equivalent to the stability analysis of the following system:

dH. I, U
ditp =A, - 5paf7Hp - ﬂpbéHp + Wpalpa + wpblpb = ppn Hp
dl . L, . L
2t = O Hp = Bam 2 Toa = (0 + Hpa) T
dI Iy I,
d—:b = ﬂpbvfpr - 5bm‘~71—pb = (wpb + p1pp) Iyt
dlpm T T -

b
di = Bbm?lpb + ﬁamf/ilpa - Mpmlpmv

I, Lo Lo\ [
E - (ﬁmaN + BQPNB (Va - Ia) - (6 - ,U/a> [aa

I, Tom I\ [+
T (5mbN + Bbp]\—]> (Vb - Ib) — (v — ) I

_ A -
Last, but not least, from (4);, asymptotically, we have N > — = @Np, where fi, = max {fph, fpa, tpb, Lpm } -

Hm Hm
This will be useful in the sequel. Of course, it is clear that all solutions of (13) are forward bounded.
To show GAS, we consider the following Lyapunov functional

L(Iptm Ipb7 Ipmu Ia7 Ib) = ClaIpa + clprb + KIpm + cZaIa + CSbIbu
where L£(0,0,0,0,0) = 0 and L > 0 otherwise. We compute
dL I I, I, I
E = Cla </Bpa‘~/aHp - /Bu’mviblpa - (Wpa + ,Upa) Ipa) + c1p (prf/pr - ﬂbm‘?ﬁalpb - (wpb + ,Upb) Ipb) +

Ly /~ L Lym (= I
+c2q (5ma]pv (Va - Ia) + BapLNSa - (5 + Na) Ia) +c3p <me;—[ (W) - Ib) + 5bp%b5‘b - (’Y + ,ub) Ib) +
Ia Ib
+K <ﬂbm‘/a-[pb + Bamvb-[pa - /ffpm-[pm>

I I, H
< (K - Cia) /Bam?z;lpa + (K - Clb)ﬁbm‘}i[pb + (Claﬂpa{/p - (5 + Ma)) Ia""

Sa S
(C2aﬁapN — Cla (wpa + Mpa)) Ipa + (CQbﬁbp]\l; — C1p (wpb + ,upb>> Ipb+

Va Vi
+ <02a5maN + chmeﬁ - KMpm) Im

T 1, N,
é (K - Cia) ﬁameIpa + (K - Clb)ﬁmeIpb + (Claﬁpaﬁ — C2q (5 + ﬂa)) Ia+
Vi \% \%

a a

N,
+ (C1bﬂpb~h —c3p (v + Mb)) Iy
Vi
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Va Vi
(CQ(LﬂapN — Cla (wpa + ﬂpa)) Ipa + (CBbﬁbp]\—? —C1p (wpb + Hpb)) Ipb+
Va Vi
+ (CZaﬁmaN chmeN Kﬂpm) Ipm~
. 1
choosing K = ¢1, = ¢c1p = N— leads to

dL 1 1
— < = a 6 a Ia b ~— T 1
S <ﬂ 7 Coq (0 + 1 )> + (Cuﬂ;bvb C3p (’Y+,ub)> b+

Vo 1 Vi 1
(CQaﬁapN Fh (Wpa + Mpa)) Ipa + (CSbBbPAI; - F} (wpb + :U’Pb>> Ipb+

Va Vi, 1
+ <02aﬂma— CSbﬂmb ° T > Ipm

N N N,
Then ¢y, = % and c3p = ﬂ lead to
(0 + tta) Va Vo (7 + )
dL _ 1 N, N,
di Ni (Wpa + Hpa) (A]\/I-)R%,a - 1) Ipa + Ni (wpb + fipb) <J\ng,b - 1) Ipp

+

1 ma a m m
+~7/'me /8 IBp _ 4+ 5pbﬁ b L _1 Ipm7
Np Popm (0 4 pia) Vo Hpm (v + 1) ) tpn

or equivalently

dL 1 Hm 59 ) 1 (Nm 2 >
< (o + fipa) [ ERE 1) Ly + = (wpp + A2, —1)1
at N, ( j2 Hp ) ('uph 0, P N, ( 'pb Mpb) Lioh 0,b pb
_|_
1
+~7ﬂpm /Bma/Bpa _ 4+ prﬁmb Hm _1 Ipm
Np Hpm (5 + ,LLa) Va Hpm (’Y + N’b) Hph
Thus assuming
Impe <1, HEmpz o<
Hph Hph
and
( ﬁmaﬁpa ﬁpbﬂmb ) Hm <1
fpm (0 + pa) — frpm (Y + o) ) fph
dL -
leads to e < 0., for all (Zup, Iop, Ipm, Loy Ip) € %[0, N,]? x [0,V,] x [0,V3]. The largest invariant set
dL
Q is § (Ipa, Ip b,Ipm’Ia,Ib)/% =0, is reduced to (0,0,0,0,0). Thus according to Krasovskii-LaSalle

Theorem and Theorem 3.4, the DFE is GAS.
Of course, when no additional mortality exists, i.e. iy, = pipn, then the previous conditions relax and
we recover R2 < 1 with

6ma6 a B b/me
R2 = D + P < 1. 14
O = o O+ t1a) g (7 + 1) (14

Thus, we can conclude

Theorem 3.5 When —RZ <1 and Hom R m < 1 then DFE is globally asymptotically stable in ).
Hph Hph
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Remark 3.6 Condition (14) is not a surprise since MLN-infectious plants can infect healthy plants
through infectious thrips and aphids, such that we have additional basic reproduction numbers related to

MLN-infectious plants. Indeed, “™= represents the number of secondary MCMYV thrip infections caused

pm
by one infectious MLN crop host; 5 ’ipa represents the number of secondary MCMYV crop infectious cause
Ha
by one infectious thrip. Thus, altogether, Bma 3 ipa represents the MCMV-Rgy from an MLN infectious
Hpm Ha
plant to a Healthy plant. Similarly @% represents the SCMV-Rq from a MLN infectious plant to
Hpm Y T Hb

an Healthy plant.

Remark 3.7 In terms of control strategy, Theorem 3.5 shows that, at anytime, whatever the epidemio-
logical state, it is possible to reduce the epidemiological risk of MCMV and SCMV diseases (and thus MLN
disease) if, by suitable control strategies, we are able to reduce M—mR% and 'u—mRam below 1. However,

Hph Hph
as showed earlier other control strategies can be used to reduce the risk of MLN disease by decaying one

(or both) invasion reproduction number(s) below 1.

Thanks to all previous results, we now summarize all possible dynamics in Table 2, page 17.

Table 2: Dynamics of the equilibrium

Case H RO RSC]MV/ RM{C]VIV

0 inw 0im Long term Dynamics

1

© 00 O Uk W

”—ng <1, “—mRSm <1
Hph Hph ’
RO,(L > 1, RO,b <1

Roe <1, Rop>1
Ro,a > 1, ’R«O,b >1
Roa>1, Rop >1
RO,b > 1, R()’a >1
RO,a > 1, ’Ro’b <1
Roe <1, Rop>1
Roa>1, Rop >1

SCMV
RO inv <1

MCMV
RO,inv <1
RMCMV 1, RSCMV S

0,inv 0,inv

MCMV SCMV
RO,inv > 1’ 730 inv < 1

MCMV SCcMmv
RO,inv < 1’ RO,inv <1

RUCMV | RECMV - 4

MCMV ngLI\I/)IV
RO,inv >1 RO inv <1

MCMV SCMV
RO,inv > 1’ ,R’O,inv >1

Efpg is a global attractor

EYiemy 1s a global attractor
E3cny 1s a global attractor
Eéoyy s a global attractor
Efiemy 1s a global attractor
either Eficary OF ESomy
E3/ v is a global attractor
E3;pn is a global attractor
E3rpn is a global attractor

More than the basic reproduction numbers, the previous table shows the importance of the invasion
reproduction numbers, in particular for MLN control. Indeed, when Ry > 1, we have to deal with
different subcases related to the invasion reproduction numbers: from case 4 to case 9. Indeed four long
term dynamics can occur: either the system converges to one of the boundary equilibria, EY;cyy OF
Egcavy, or to the full equilibrium, Ey;y. However, when both invasion reproduction numbers are less
than 1, then the system converges either to F{;oyy OF to Edcyy, depending on the initial conditions.
We will illustrate some of these cases in the section devoted to numerical simulations. However, we first
derive a global sensitivity analysis in order to discuss the usefulness of some feasible control strategies.

4 Parameter estimate and sensitivity analysis

Before starting the global sensitivity analysis, we detail the parameters values given in Table 1, page 6.
Most often, parameters estimation is always a critical issue: despite a deep review of the literature, some
important parameters were difficult to find or to estimate.

4.1 SCMV-Aphids

For the estimates for parameters of aphids we mainly focus on Rhopalosiphum maids as the main vectors
for SCMV. The authors in [40], studied the life history of Rhopalosiphum Maids under different tem-
perature condition on corn leaves, Zea mays; they obtained longevity of adults Rhopalosiphum Maids
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under 25°c of 12.0 & 0.9days. In [41], Rhopalosiphum Maids were reared on six grown maize hybrids
(K3640/3 x MO17, Simon, SC704, EXP1, VRE26xK18 and VRE27xK18) carried under 25 4+ 1°C con-
dition; they estimated a longevity of adult Rhopalosiphum maids of 11.85 + 2.35 days depending on the
maize hybrids. Therefore, we consider the maximum interval [9.5, 14.2], meaning that the interval for the
death rate is [0.07,0.1] under 24+ 1°C (mean temperature of Kenya from 1901 to 2016 [43]). The highest
titre from Rhopalosiphum maids in maize at 38%; was reported by [39]. Here we assume the range from
14% to 38%. It is known that aphids have alternative host [9], such that, they may feed on alternative
plants along its life. It is also well know that they can bite several times on the same plant. Therefore,
we assume from 1 to 4 visits along its life, and also between 1 and 3 bites per visit, so that we obtain

1
the range values of 143 x 0.14, % x 0.38| = [0.01,0.72] for . We also assume that the presence

of MCMYV in maize does not interfere in the transmission of SCMV, therefore, we take the same range
of values from infectious aphids to plant already infected with MCMV. The authors in [25], reported the
mean infectious period of 6 hours in nonpersistently transmitted mode. Here, we assume an infectious
period with range, [2, 8] hours such that we obtain the recovery rate in the range [2,]. The recommended
spacing and planting maize population vary depending on the weather conditions and the moisture status
of the soil, for instance, in the highland and medium areas where the soils are well-drained sandy-loam
soils, the densities of maize per hectare recommended vary between 37.850 to 53.333 which corresponds
to spacing of 90x30cm and 75x25cm, respectively; while in dry and coastal low land areas where the soil
is dry and/or sandy the density of maize plant recommended per hectare is 44.444, [44]. We assume the
range of the density of maize per hectare of [37.850, 53.333].

4.2 MCMV-Thrips

Althought the thrips Frankliniella Occidentalis is not implicated in the MCMYV transmission in Kenya,
[9], it has been widely studied in the literature. Thus, like many other works, we assume that most of
the parameters fit for both species. The authors in [37] investigated the longevity of F. Occidentalis on
Cabbage, Cucumber, Bean and Tomato. They estimated the range of female longevity at 13.324+5.02 days
and the range of male longevity at 7.32 £ 1.05 days. Considering that we have male-female sex-ratio of
0.4 (see for instance [37]), we derive a mean life span of the population to be 10.72 + 3.43 days. Thus, we
estimate the death rate of [0.07,0.14]. In [19] the authors reported transmission of MCMYV by the thrips,
Frankliniella Williams, ranging from 30% to 45% with a mean of 37%. Similar to aphids, we assume from 1

4
to 4 visits along thrips life, so that we obtain the range values of x 0.3, 0—= X 0.45} = [0.02,0.25]

14.15 7.29
for B,,. We also assume that the presence of SCMV in maize does not interfere in the transmission of

MCMYV, therefore, we also take the same range values of [0.04, 0.12] from infectious thrips to plant already
infected with SCMV. In [19], it was reported that the thrips, Frankliniella williams, loose the ability to
transmit the virus 6 days post acquisition. We assume that the necessary period to recover from disease
range from 6 to 8 days. Thus, we estimate that the recovery rate, d, lies in the range [0.13,0.17].

4.3 MLN-parameters

Unfortunately, parameters values related to MLND are not really available in the literature. Since, it
is well known that plant viruses are able to manipulate their hosts or their vectors in order to enhance
the transmission of viruses, it seems obvious to consider that the transmission rates are larger than the
values estimated for MCMV- or SCMV-transmission rates. Thus for 8, and B.,, where * stands for a
or b, we will consider a range of values of [0.08,0.9]. Within this range, we will be able to illustrate all
cases given in Table 2, page 17.

4.4 Global Sensitivity Analysis

It is also important to check the impact of parameters changes on the dynamics of the system, and,
in particular, what are the most sensitive parameters, for which the system may drastically change its
behavior. That is why we derive a LHS-PRCC sensitivity analysis, where LHS stands for Latin Hypercube
Sampling and PRCC for Partial rank correlation coefficient. The LHS-PRCC method provides mainly
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information about how the outputs are impacted if we increase (or decrease) the inputs of a specific
parameter. The analysis is done on the time interval [100,500]. The results are ordered from the most
negative to the most positive ones.

In Figs. 2 and 3, we show the results for the crop’s variables. No surprises, for the healthy plant, the
dominant parameters are A, and p,,. For crops infected by the viruses, the most sensitive parameters
are those related either to the vectors or to the host transmission, and the mortality rates. The MLN
variable, I, is sensitive to -y that is the parameter related to the non permanent transmission process. In
Fig 4, v and 6, the vectors recovery rates, are sensitive parameters: this makes sense since they are related
to the duration vectors are infectious or not. The recovery rates wy, and wp, are sensitive parameters
too. Only the death rate u, seems to play a role in the dynamics as well as the transmission parameters.
Clearly, all of these parameters need to be estimated efficiently in order to capture the right dynamics of
the system.

LHS-PRCC Sensitivity Analysis — MLN Model — Healthy Maize
time—interval: [100,500]

0.5-

*+++++++++++ﬁﬁi--I

Ll Ll Ll 1 Ll Ll Ll Ll Ll ] Ll Ll Ll Ll U Ll Ll 1 Ll Ll
Hph Bpa Bap Y Ho Bra Bom Bam Bmo O pr ﬁbp Moo Ap Opp Hpm Az Ma Opa Mpa Ap

LHS-PRCC Sensitivity Analysis — MLN Model - MCMV Infected Maize
time—interval: [100,500]

1.0
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-0.5-
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Figure 2: LHS-PRCC Sensitivity analysis - Maize crop

Next, we derive the LHS-PRCC sensitivity analysis for both invasion reproduction numbers: see Fig.
5, page 22. It is interesting to notice that both numbers are not sensitive to the same parameters, except
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LHS-PRCC Sensitivity Analysis — MLN Model — SCMV Infected Maize
time—interval: [100,500]
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LHS-PRCC Sensitivity Analysis — MLN Model — MLN Infected Maize
time—interval: [100,500]
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-0.5-
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Figure 3: LHS-PRCC Sensitivity analysis - Maize crop

SCMV

by 1 sensitive to most of the contact

tpb, 7, and p,p but with different impact. It seems also that R,

rates. Last ﬁg%\f V' is sensitive to infectious plants death rates, such that increasing these death rates
using roguing seems to be a good control strategy to lower this invasion reproduction number. However,
and surprisingly, increasing f,, can also increase the 7%\412{]‘/1 V" and, thus, eventually, favor the invasion
of MCMYV disease.

In terms of control, based on Table 2, page 17, and the previous sensitivity analysis, several control
strategies seem feasible. Indeed, MLN control is possible through a combination of cultural practices,
pesticides, and host tolerance. However, there is a gap in terms of pest management between export-
oriented farmers and smallholders. The first ones can develop all these practices, while the second cannot
and thus rely on conventional control methods. Theoretically, combination of control methods from vector
control to host control are feasible: see for instance Fig. 3 in [7], showing the time evolution of MLN
incidence when roguing and a combination of pesticides are used. This example occured in a experimental
station. Practically, this is another story. In our model, some parameters, like the recovering parameters
¢ and ~ cannot be modified. Like for vector-borne diseases, vector-control could be interesting and they
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LHS-PRCC Sensitivity Analysis — MLN Model - Infected Thrips
time—interval: [100,500]
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LHS-PRCC Sensitivity Analysis — MLN Model - Infected Aphids
time—interval: [100,500]
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Figure 4: LHS-PRCC Sensitivity analysis - Vectors

are vector control methods in the field. However, standard vector control against aphids, i.e., increase
e With insecticide, is not efficient because they are infectious during a very short time. A possible
(biological) control would be to use this non-persistent transmission property to attract the infected
aphids to non-susceptible hosts. This require to mix maize crop with other non-susceptible crops. This
would be possible for smallholders, but only if these other crops are also cash-crops. For thrips, it seems
that insecticide is still the main control tool: see the recent study [55], which, according to our sensitivity
analysis (see Fig 2b, page 19), seems meaningful. However, our global sensitivity analysis shows that
the main effective controls should be on infected maize, either by reducing the contact rates and/or by
removing the infected plants. Practically, reducing the contact rates is not so easy: using nets, like it is
done in East-Africa to protect vegetable crops, seems feasible but not for maize. To the contrary, roguing,
which consists of removing infected plants and thus in increasing the infected plants mortality rates, jipq,
tpb, and fipm, seems to be the most effective control, impacting all infected compartments and also the
invasion reproduction numbers. Note also that roguing is a standard control practice against diseases
affecting crops in Africa, like cassava [1]. It is particularly useful for smallholders that cannot consider
other control strategies against MLND, like crop rotation.
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LHS-PRCC Sensitivity Analysis — MLN Model - Rg5 "
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Figure 5: LHS-PRCC Sensitivity analysis - Invasive Reproduction Numbers

5 Numerical Simulation

In this section, we start providing some numerical simulations to illustrate the previous theoretical results
and also discuss the results. We use the initial values for the parameters as listed in Table 3 and modify
them to derive the different cases highlighted above in Table 2, page 17. For each case, we estimate the
basic reproduction numbers and also the invasion reproduction numbers, R ;,,,, and ﬁa,mv (see formulae

(10), page 11, and (11), page 12).
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Table 3: Base parameters and numerical values

[ Bap | Bra | Bam | Bma [0 | Wpa [ #a Lpon | pa [ pop | pipm |
[0.073 [0.073 [ 0.075 [01 [015 [0 | 0 | 1/60 [1/60 [1/60 | 1/30 |
A T A | A [ Bep [ Bob [ Bom [ Bow [ ] 16 | wp |
[ 400004, | 50535 [ 25638 [ 0.25 [ 0.25 [ 0.07 [ 0.1 [3]0.079 [ 0 |

Case 2 Assuming y = 4.0, then R, > 1, R§, < 1, and REGMV < 1 or R§GMYV < 1. Thus, the

0,inv 0,inv
system converges to E&qy . Here, thls case shows that with vector control on thrips it might be

possible to avoid MLN disease using only the basic reproduction numbers. In fact this is due to the
fact that MCMYV is transmitted in a semi-permanent way by thrips. Since SCMV is transmitted in
a non-persistent manner, it might be more difficult to control SCMV by aphids control, using for
instance insecticide. See Fig. 6, page 23.

0.30

0.25

0.2
L

Y0.15 ¢

0.1

0.05F

0 005 01 015 02 025 03
A
7

Figure 6: Case 2: Rg > 1, Rop < 1, convergence to Efjony-

Table 4: Case 2 Reproduction numbers

| Riazmony | REEY [ REGHY | Rip—somv | REGH " [ RiGa"
[ 1321 [ 1188 | 1369 [ 09193 | 0.8015 | 0.801 |

Case 5 Considering the previous table, we derive the following values for the Reproduction numbers

Table 5: Case 5 Reproduction numbers

2 MCMV MCMV 2 SCMV SCMV
’ RO@:MCMV ‘ RO inv ‘ R 0,inv ‘ RO,b:SCMV ‘ RO,inv ‘ R 0,inv

[ 1321 [ 1105 | 1225 | 1218 [ 0919 | 0.842 |

In this case, we have 7'\’,0 . > 1 and R% , > 1, but RICMV < 1. Thus the system converges to

0,inv
Eye My, This case illustrates that controlhng aphids mlght be useful. Indeed, we don’t need to
lower Ro,b below 1. What is important is to lower R§CMV < 1. See Fig 7, page 24: we have

0,inv
chosen random initial points to show that whatever the initial conditions, the system converges to

*
EMCMV'
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Figure 7: Case 5: Rj , > 1, Ry MOMV > 1, RE, > 1, and REGMV < 1 - Convergence to Eronry

inv 0,inv

Case 6 We now consider the case: R, > 1 and R, > 1, with Rg%‘gv <1 and Rg{%‘é\/[v < 1. In that
case, the system converges to cither E% MMV or Esomy depending on the initial conditions. We
choose g, = 0.125, B = Bmp = 0.02 in Table 3. See Fig. 8, page 25. This case is very interesting as
it shows that even if both basic reproduction numbers are greater than one, if, through appropriate
control strategies, we are able to set the invasion reproduction numbers less than one, then MLN

Disease cannot occur.

Table 6: Case 6 - Reproduction numbers

’ ROa MCMV ‘ Rg{gff]v ‘ R(I)szgéwv ‘ Rg,b:SCJV[V ‘ Rg,zcnl\gv ‘ Rosg‘nl\gv
[ 1163 [ 0973 | 0946 [ 1218 | 0983 | 0.967 |

Case 7 We consider v = 4, By = 0.6, Bam = 0.5, Bmae = 0.5 in Table 3. The values obtained for the

reproduction numbers are summarized in Table 7, page 24. The system reaches the MLN equilibrium
Einn = (%, ;’;“ , fv—”, Il‘gf—m, f/— ‘I/— SV’; %) = (0.3178,0.2355,0.0715,0.1876, 0.6392, 0.3608, 0.9622,

0.0378): see Fig. 9a, page 25.

Table 7: Case 7 Reproduction numbers.

’ R%,a:l\/ICMV ‘ R(2) b=SCMV ‘ Rg?nl\z/zlv ‘ OS,IC';%IV
[ 13212 [ 009193 [ 1.0901 | 1.2023 |

Case 8 Compared to case 7, we consider v = 3, o, = 0.14 and § = 0.2 in Table 3. The values obtained for

the reproduction numbers are summarized in Table 8, page 25. The system reaches the MLN equi-
Hy Lo Ly Lm SL 1o Sy Ip) _
AR AR AR V’; V’,;) = (0.3136,0.1485,0.1226,0.2077,0.7014, 0.2986,

0.9413,0.0587): see Flg 9b page 25.

o N _
librium Ef; § =

Case 9 Compared to case 7, we just change the parameter v, i.e. 7 = 3.0. The values obtained for the

reproduction numbers are summarized in Table 9, page 26. The system reaches the MLN equilibrium
Eiyn = ﬁ jv fvb I;;m ol 57!; %) = (0.2581,0.1571,0.0950, 0.2449, 0.5771,0.4229, 0.9319, 0.0681):

: see Fig. 10b page 26
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Figure 8: Case 6: Rop > Ro,e > 1, and Ré‘ﬂg%v < 1, Rgfnl\fv < 1: bi-stable case. Convergence
towards one boundary equilibrium depends on the initial conditions: the red-dotted trajectories converge
to Escary while the blue ones converge to Enronry .

Table 8: Case 8 Reproduction numbers.

2 2 MCMV | PMCMV
’ R p=scmv ‘ Ri,a=momv ‘ Ro.inw ‘ Ro.i

[ 12179 | 09404 | 1.2929 [ 1.8459 |

Figure 9: Case 7 & 8: Convergence to the MLN equilibrium, Ef;; , when one basic reproduction number
is less than one while the related invasive reproduction number is greater than one.

Case 10 A last case, where we consider roguing which consists of removing infected plants. Here, since
the symptoms of MCMV, SCMV or MLN are easy to check it is straightforward to select the
infected plants. In Fig. 11, page 26, we show that depending on the roguing rate, the system can
recover, i.e., converges to DFE. In particular, it is obvious to emphasize that the roguing effort is
much more important when all Reproduction numbers are greater than 1 (case 9). Thus, clearly,
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Table 9: Case 9 Reproduction numbers.

2 MCMV MCMV 2 SCMV SCMV
’ RO@:MCMV ‘ RO,inv ‘ RO,inv ‘ RO,b:SCMV ‘ RO,inu ‘ RO,inv

[ 13212 [ 14951 | 25934 | 12179 [ 1.2445 | 1.5928 |

0.6

Figure 10: Case 9: RE, > 1, Rab > 1, Ré‘{igf}wv > 1 and Rggn]\fv > 1 - Convergence to a MLN
equilibrium, E},; n-

when the risk of MLN in the area is high, it is better to react immediately once the symptoms of
MCMYV or SCMV are found.

1 S
- = Case 2
0.9 —+—Case 5|
) Case 6
0.8 —%—Case 7 |
........ Case 8
" 0.7 Case 9|
N6t :
0.5 8
0.4 1
037" ]
0.2 | : : :
0 0.005 0.01 0.015 0.02

Roguing rate, day*

Figure 11: Impact of the roguing rate on the dynamics of the disease.
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The previous simulations highlight the different dynamics of the MLND system. Clearly, more than the

standard basic reproduction numbers Rg , and Rg;, the invasion reproduction numbers RYZEMY and
RECMV are important to estimate as they will drive the emergence of the MLN disease or not, even

when one basic reproduction number is less than one. However, even when both numbers are less than
1, case 6 shows that E{;yy and Edqyy can be simultaneously locally asymptotically stable, such that
the convergence of the system to one of the boundary equilibria may depend on the initial conditions.

In the field, MLN disease is difficult to control, especially because the SCMV virus is transmitted in
a non-permanent way such that aphids control can be difficult. However, thrips control seems feasible,
such that the MCMYV disease can be controlled. In addition, roguing, i.e., removal of infected plants, can
be an additional way to reduce the impact of the diseases and eventually to remove the disease (see Fig.
11, page 26). The figure shows the effect of roguing on the number of healthy plants. Here we assume
roguing is introduced in the host compartments affected by MCMV, SCMV and MLN diseases since the
infected plants are easy to identify.

6 Conclusion

For centuries, and with the expansion of mankind around the world, many crops have been transferred
from their original area to new areas. Maize is one of the best example: it was imported back into Europe
in 1493 by Christopher Colombus, and then spread throughout the world. Simultaneously, due to these
movements, diseases and pests traveled too and also new diseases appeared. Since then, these dynamics
have accelerated such that the impact of diseases has become even worse, thanks to local environmental
changes and also by improving communication channels between countries and continents. Crops are
simultaneously and strongly impacted by various diseases and also pests. While co-infection is relatively
common in crops, synergistic interactions are not so common: since all mechanisms that drive synergism
are not well known, it is very difficult to study in the field and also to consider control strategies. Modeling
can be a way to help field researchers to test hypothesis before field experiments or/and to focus on specific
experiments and in protocol building. Last, but not least, mathematical modeling and analysis can help
to design control strategies or combination of strategies. In this work, we highlight the importance of
estimating the basic and invasion reproduction numbers because they summarized the whole dynamics
of the system. We also highlight that even if a basic reproduction number is less than one, MLN disease
can occur. So far roguing, i.e., removal of infected plants, seem to be the best strategy but it needs to
be set-up immediately as soon as the MCMV- or SCMV-symptoms are detected.

Like the works done in [33, 32], we do hope that our theoretical work can provide new insights in
the MLND control, and also other (synergistic) co-infection issues. In particular, our study also reveals
a certain lack in the knowledge related to the interactions between the virus, the vectors, and the host,
and, thus, in the parameter estimates.

Further improvements in the models can be made, like taking into account plant growth in the different
epidemiological states. In general this is never studied as observed in [1] because this would require new
and difficult field observations. However, this would help to consider the impact of the MLN disease at
different stages of the growth process taking into account the role of managing factors (cultivar choice,
irrigation, etc). Last, since MLN-resistant Maize varieties exist, it would be interesting to estimate the
optimal ratio of resistant plant to mix with standard healthy plants within a crop, like in [56, 46], to
dilute the MLN-risk. Another option, more interesting for smallholder farmers, would be to consider
Maize intercropping with non-susceptible host plants.
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Appendix A The boundary equilibria: Eycyy and Esoyy

We detail the calculations for the MCMYV infection only. We have to solve the following system

Ia
6pa Hp +wpalp, — ppnH, =0
" .
Bpa H — (Wpa + Hipa) I, =0
(15)
A, ﬂap paS*—f—(H* =0
ﬂap paS*f(iI* el =0
Summing the first two equations, leads to the relationship
,uth; + UpaI;a = Ap
That is L
* N pPa rx
H; =Ny — ,uphlpw
with ppe > ppn. Then
* * * Y Hpa — Hph 7«
Hy+1I,,=N"=N,— pra.
Mph
From equation (15)2, we have
Bpa£ (Np — lpe I;:a) = (Wpa + tpa) I;a‘ (16)
Va Hph

Summing the last two equations leads to S + I} = V., and from the last equation we derive

PCL * I;U« () * *
BQP S _BGP - Loh (VU«_Ia) :(6+Ma)la’

_ Hpa —
p Lo
that is I
pa
BGJDN 7Mpa —_ Mphl*
I* ’ ph pe BapI;
Vi B Tpa B " Y Hpa — Hph 1, '
a ﬂap ~ fopa — Fiph + 1) + Ha ﬂ&plpa + (5 + ,ua) (Np _ Mlpa
NP_TI* Hph
ph

*
a

1,
Replacing T in (16) with the above expression, with I, # 0, we obtain

a

> 1% * * N7 Hpa — Hph 1«
BpaBap (Np - 'up: Ipa) = (Wpa + Mpa) (Baplpa + (8 + pa) (Np - HIpa))

P Hph

(BraBap — (Wpa + fipa) (6 + 1)) Ny = (@pa + f1pa) (”“ + Bap — (5 + 1) ““) r,

Wpa + tpa Hph Hph
(6 + ,ua) (R(Q),a - 1) NP = (Bap + (6 + ,ua) ( Zp: (R - ))) I;a
ph
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that is
I* _ (R%#l B 1)

T E Y
6+Ma Hph ’

Thus, when ppq > pipn, I, exists iff Ro, > 1. We also deduce that Ejjqyy exists iff Roq > 1.
We obtain the same result for the SCMV virus: E§q,,, exists iff Rgp > 1.

Appendix B Local Asymptotic Stability of the boundary equi-
libria

Let us ﬁrst assume that ppn = fipa = fipy = tpm. Then H, = N — Ipa — Ipp — Ipm, Sa = Vo — I,, and
Sy = Vi — I. Thus, system (1)-(2)-(3) becomes

I aIb
ﬂpa ~ ( I I Ipm) - 6amp‘77 - (wpa + Mpa)lpa
a b
1 Lo ~
5 2+ ma e ) (Va - Ia) - (5 + ,Ufa)Ia
( "N, N,
dy
dt = pr ( I I pm) - /Bbm (wpb + ,Upb) Ipb
I I
5am b Ipa + ﬂbm ,Ufpmlpm
pb pm
g em (V - I) (v )]
(ﬂprp Bmb Np> b—Ip) — (v + )l
with y = (Ipa, Lo, Ipps Ipm, Ip). Then, we compute the Jacobian J(X) is given by
1, 1, I
Jl,l J1,2 _/Bpavia _ﬁpa7 _ﬁam%
(Vo—1.) V. —
/Bap~7 J2,2 0 ﬁma = 0
N, Np -
I N, —I,g — 1 Iym
Bt Bt~ By T3 ~Brb R Rl
a b
L Iy L . .
Bam Vi ﬁbm Vi ~/Bbm V. Hpm /Bam Vi
Vb I,
- — Pmb—=— mb = mb = J:
5prp B pr B bN -8B pr 5,5
with
Ia Ib
Jl,l - <ﬂpa‘~/ + 5am‘~/7b + (wpa, + Npa)) )
(N = pa = Ip = Lpm )
J1,2 = Bpa Va )

J2,2 = - (5&1) Np Np > - (5 + Ma)

I,
J3,3 = Bbmv + (wpb + Mpb);

I, I
Js5 = — L2t B ) — (v + )
5,5 (ﬁbp N, Brmb N, (v + 1)
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We deduce J(E¥cppy) as follows

I* Np _ I;a I*
Wpa + a + a =, a =~ - a ~
( D NPS* Bp Va> BPI* 0 Bp 7
ap = - a im 5+ a 0
B 3 (Bor ) = @t )
0 0 - </6bm7a (wpb + /J“Pb))

I*

0 0 m=

Bb V

0 0 ﬂbpﬁ

P

The Jacobian J(Ef;cyy) can be written as a triangular upper-block matrix

it suffices to study Mj;, for i = 1,2. We easily check that tr(Mj;) < 0 and

I I
det(Mll) = <ﬂpa + Wpa + ,Upa) <Bap P45+ ,Ufa> - ﬂap <1 - )

I;)
_ Za 1—
Al

I,
ﬁapﬁpa + /Bpa ~ ((6 + ,Ua) + ﬁap) + Bap N ((wpa + Mpa) + Bpa)

*

ap~
p

det(Miy) = (ﬁé T +upa>) ( <6+ua>>  Burbre (1

*

= (w;va + ,u;va) (6 + pa) —
P

I*
0 am pa
B Vi
Brna 20 0
Ny
H*
0 Bpp—=—
v
Iy,
—MUpm ﬁam L
7 b
b
mb T~ - +
B pr (v + )
Miy Mo
h th
0 Moy , such that

I* /8 a *a ﬂa
= (Wpa + Hpa) (6 + 11a) (1 —RE, <p+7€2a> P (” R2a>
( D Hp. )( H )< Va Wpa+,ulpa 0, P 5+Ha 0
Since )
R: . —1 .
I;a = é pO,a )2 P>
—P 4+ RZ,
O+pa)
we deduce
I* ﬁ a (R% a 1) Ba
det(Mi1) = (wpa + Hpa) (6 + pa) | 1 = RE . + = ”+R2a)+ : L+ RS,
(Mi1) = ( p Hp ) ( Ha) 0 v, <wpa+ﬂpa 0, Bap ) FE 0
— +R§,
(6 + pta) ’
Bpa ) I;
= (Wpa + Hpa) (0 + pa +RE )= >0
) (0 10) (25 2
Thus M is a stable Matrix. Then, we consider
I Hp
- 5bm7 + (wpb + Kpb) 0
M By 2 ]i
22 = bm = f/a ,upin am Vb
Vi
Bpr Bmb—=— —(v+ o)
Np Np
In fact matrix My, is a Metzler matrix with the following regular splitting
H*
0 0 pr I+
Lo, 51 (5mnvf+(wpb+uﬂg) 0 0
M+ N = ﬁbmﬁ ) am ~b + 0 iy 0 s
Ve Ve 0 0 —(v+ )
—  Bmb—=— 0
ﬁbp Np B pr
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where M is a non negative matrix, and N is a stable Metzler matrix. It is well known that M + N
is stable if and only if p(—N~1M) < 1. However, we have M = F and N = —V where F and V are

the matrices defined in subsection 3.3. We infer that the stability of Mss is thus related to the invasion

reproduction number, RZCMYV . Thus it is easy to conclude that if RECMY < 1 and R2 o > 1, then

Eicmy 18 asymptotically stable.
If we assume that ppm, fipb, pa = Hph, then the proof is a bit more tricky because we have to consider
the system with (Hp, Ipa, e, Ipb, In, Iym ), such that the Jacobian matrix at Efj~\y is @ 6-order upper-

Jll J12

block triangular matrice J(Eficpv) = 0 M >, where My, is the same invasion matrix than in
22

the previous proof, and

*

I3
—Hph — ﬂp ;a Wpa _5paH‘7:
Ir :
Ji1 = Bpa=- — (Wpa + ipa) 511@‘77:

a

—Baplpa <V(;LN;)12;> Bap (V(;;V;)Ij) Hy  —Bap gi — (0 + 1a)

To show that Ji; is a stable matrix, we will use the well known-result [57]: let A be a 3 x 3 real matrix.
If tr(A), det(A) and det(A?!) are all negative, then all of the eigenvalues of A have negative real part.

Of course tr(Ji1) < 0. Then, we compute

1, H
—Hp fpaf/a Wpa —Bpa I}/:
—a -p
det(]ll) _ Bpa Va (Wpa + Npa) Bpa Va _
(Va - Ia) (Va - Ia)
~Bat) 3t B2y = (B ) = (0 )
(Np) ( p) Hp
(Wpa + Mpa) Bpafp
I, B Va
= | tph + ﬂpaf/* (Va — Ia) [;;
“ /Ba o _</Ba i)_(5+ﬂa)
O N
(‘7(1 -1 [;a
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+5pa‘~/,7a <wpa ((Bap ]\I;;) + (5 + ﬂa)) /Bpa/Bap N* N* < )> + ,Upaﬁpaﬂap J\I;* N* (1 - ‘7&> =

H H 1, I* 1>,
= Hph (/Bpaﬁap N* N* (1 - ~> - (wpa + Upa) (ﬁap 5 + fa >) ﬁpa Wpa + ,upa) (/Bap]\z;*
I

(64 pa) | +
= 4 m)

I, I, H, I,
+Bpa‘~/7 (Wpa <(6ap]\1;*> + ((5 + Ma))) + MpaﬁpaﬁapN* N* ( — ‘N/) =
a p a
H I, I; I, Tpa
= Mph (BP‘IBQPNZ <1 - ‘7) - (wpa + //fpa) ((ﬂap ) + ((5 + Ma)))_ﬁpav,upa ((Bap]\z;*> + (6 + ,ua))
p a P

a 10

H - I* I, Hpa I;:a
= Hph (ﬂpaﬁap N* (1 ‘/a> <wpa + Hpa + ﬂpa V sz) (Bap N; + (5 + Na)
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Using the fact that

(RE.-1) _
Tpa = Bap ’ Hp 2 N
P14+ (RE, -1
(6+Ma) ,uhp( 0, )
Ii _ B(ILUI;LL
Ve Baplya + (6 + fta) <Np — Hpa — Fph I;;a)
Hph
N Hpa — Hph 14
0+ po) | Ny — ————1I*, .
1 {a:( M)( b ,Ufph~ p)_ (5+,ua)Np _
Va 5“10[;0, + (5 + :ua) Np ﬁap-[;a + (5 + ,Ua) Np
Bap
+1
H _N _:upaI _N _Mpa (R%,a_l) o (5+,U'a) N
p— *Vp Lin pa — iV¥p Lhp ﬁap +14+ Hpa (R2 1) N Bap +14 Hpa (R2 1) D>
(6 + /’La) Hhp 0.a (6 + ,U/a> Hhp 0,a
we deduce
Bap
* +1
H I 8+ Ha 8+ fa :
ﬁpaﬂapNiz (1 - ‘7) = Bpaﬁap 5 ( M,LB B I (+ (5’u+) )N Np =
p a ¢+1+ﬂ(7€ga—1) apdpa Ha P
(6—’_:”0«) Hhp ’
ap T o+ a o+ a ~
= BpaBap Bap + ( Nﬂ) 5 I*( 5#) NNP'
Bap + (8 + Ha) (H”"(R%a—l)) rlia + (0 pa) Ny
Khp ’
However -
(6 + pa) Np (0 + pa)
Bapl*, + (6 + pa) N, RZ, —1
Ptp ( M) p ﬂap /Bp ( 0, /Jp) +(5+,Lla)
P 142 (R2 1
Gp) Ty o=
B RZ 1
Bap (R =) +1
Bap + (6 + fta) (1 + B (R3, - 1))
Hhp
Bap + (6 + 1a) (1 + Ere (2 - 1))
Hhp ’
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H Ix o + (0 + o 5+ ua) N,
i (12 = B op £ (011 ) il
v e BupR3 o + (64 ) <1+Z”a (R%,a—1)> Porlya + 0+ pa) Ny
hp
Bpaﬁap

= R%,a = (Wpa + tpa) (6 + f1a)

Thus, immediately, we deduce
det(J) < 0.
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Let’s consider the second compound matrice of Ji1 (see [58]) J[z]

“Hph — ﬂpa(/i; - (“"Pa + P‘pa) Bpa I‘_I./f ﬁpa%
pap (T2 12) s i~ pa 1t By P2}~ 5 4 e w
ap (N;)z P Hph pa ‘./a ap N; Ha pa
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—Wpa | Hph + ﬁpaf/* + Wpa + Hpa Hph + ﬁapﬁ +O0+pa ) + ﬂapﬂpam 1= =) Bpaz-
p

a p
We showed above that

H, I3
BpaBap 7 ) s (Wpa + Hpa) (0 + pa) ,

a

such that we have
det (J[2]) < ((Wpa + ,upa) (6 + ,“a)
1 Tpa Tpa
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a p p
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Finally, we deduce

Ir I,
det (J[2]) < - <(/J/ph+ﬁpa‘~/a) (Mph‘f’ﬁap]\l; +(5+Ua

a p

*a I*a
+ (Wpa + Npa) <Nph + 5a1)p> )> (Wpa + pa + ﬂapr +d+ Na)
Np Np

Ix b Ia
—Wpa (Mph + 5pa‘~/7 + Wpa + Npa) (Mph + BapNL +0+ Na) + (wpa + /ipa) (5 + Ma) Bpaf/*

a p a

< 0.

Altogether, when Rg , > 1 and R5GMV < 1, then E};cppy exists and is LAS.

0,inv

Of course, using the same reasoning, we deduce that if R, > 1 and Ré‘ffigf[ V' <1, then E}q,y exists
and is LAS.
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