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Best Proximity Point Results for Almost Contraction and

Application to Nonlinear Differential Equation

Azhar Hussain1∗, Mujahid Abbas 2, Muhammad Adeel3 and Tanzeela Kanwal4

Abstract. Berinde [V. Berinde, Approximating fixed points of
weak contractions using the Picard iteration, Nonlinear Anal. Fo-
rum 9 (2004), 43-53] introduced almost contraction mappings and
proved Banach contraction principle for such mappings. The aim
of this paper is to introduce the notion of multivalued almost Θ-
contraction mappings and to prove some best proximity point re-
sults for this new class of mappings. As applications, best proximity
point and fixed point results for weak single valued Θ-contraction
mappings are obtained. Moreover, we give an example to support
the results presented herein. An application to a nonlinear differ-
ential equation is also provided.

1. Introduction and Preliminaries

The following concept was introduced by Berinde as ‘weak contrac-
tion’ in [9]. But in [10], Berinde renamed ‘weak contraction’ as ‘almost
contraction’ which is appropriate.

Definition 1.1. Let (X, d) be a metric space. A mapping F : X → X
is called almost contraction or (δ, L)-contraction if there exist a constant
δ ∈ (0, 1) and some L ≥ 0 such that for any x, y ∈ X, we have

(1.1) d(Fx, Fy) ≤ δd(x, y) + Ld(y, Fx).

Von Neumann [32] considered fixed points of multivalued mappings in
the study of game theory. Indeed, the fixed point results for multivalued
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mappings play a significant role in the study of control theory and in
solving many problems of economics and game theory.

Nadler [27] used the concept of the Hausdorff metric to obtain fixed
points of multivalued contraction mappings and obtained the Banach
contraction principle as a special case.
Here, we recall that a Hausdorff metric H induced by a metric d on a
set X is given by

(1.2) H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,

for every A,B ∈ CB(X), where CB(X) is the collection of the closed
and bounded subsets of X.

M. Berinde and V. Berinde [11] introduced the notion of multivalued
almost contraction as follows:

Let (X, d) be a metric space. A mapping F : X → CB(X) is called
multivalued almost contraction if there exist two constants δ ∈ (0, 1)
and L ≥ 0 such that for any x, y ∈ X, we have

(1.3) H(Fx, Fy) ≤ δd(x, y) + LD(y, Fx).

Berinde [11] proved Nadler’s fixed point theorem in ([27]):

Theorem 1.2. Let (X, d) be a complete metric space and F : X →
CB(X) be multivalued almost contraction. Then F has a fixed point.

Jleli et al. [23] defined Θ-contraction mapping as follows:
A mapping F : X → X is called Θ-contraction if for any x, y ∈ X

(1.4) Θ(d(Fx, Fy)) ≤ [Θ(d(x, y))]k

where, k ∈ (0, 1) and Θ : (0,∞) → (1,∞) is a mapping which satisfies
the following conditions.

(Θ1) Θ is nondecreasing;
(Θ2) for each sequence {αn} ⊆ R+, lim

n→∞
Θ(αn) = 1 if and only if

lim
n→∞

(αn) = 0;

(Θ3) there exist 0 < k < 1 and l ∈ (0,∞) such that lim
α→0+

Θ(α)−1
αk = l.

Denote

(1.5) Ω = {Θ : (0,∞) → (1,∞) : Θ satisfies Θ1 −Θ3}.

Theorem 1.3 ([23]). Let (X, d) be a complete metric space and F :
X → X be a Θ-contraction, then F has a unique fixed point.

Hancer et al. [21] introduced the notion of multi-valued Θ-contraction
mapping as follows:
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Let (X, d) be a metric space and F : X → CB(X) be a multivalued
mapping. Suppose that there exist Θ ∈ Ω and 0 < k < 1 such that

(1.6) Θ(H(Fx, Fy)) ≤ [Θ(d(x, y))]k,

for any x, y ∈ X provided that H(Fx, Fy) > 0, where CB(X) is a
collection of all nonempty closed and bounded subsets of X.

Theorem 1.4. Let (X, d) be a complete metric space and F : X →
K(X) be a multi-valued Θ-contraction. Then F has a fixed point.

Let A and B be two nonempty subsets of a metric space (X, d) and
F : A → CB(B). A point x∗ ∈ A is called a best proximity point of F
if

D(x∗, Fx∗) = inf{d(x∗, y) : y ∈ Fx∗}
= dist(A,B),

where
dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

If A∩B ̸= ϕ, then x∗ is a fixed point of F. If A∩B = ϕ, thenD(x, Fx) > 0
for all x ∈ A and F has no fixed point.

Consider the following optimization problem:

(1.7) min{D(x, Fx) : x ∈ A}.
It is then important to study necessary conditions so that the above
minimization problem has at least one solution.

Since

(1.8) dist(A,B) ≤ D(x, Fx)

for all x ∈ A, hence the optimal solution to the problem

(1.9) min{D(x, Fx) : x ∈ A}
for which the value dist(A,B) is attained is indeed a best proximity
point of multivalued mapping F.

For more results in this direction, we refer to [1, 2, 4, 5, 7, 8, 14, 15,
18, 19, 22, 26, 33, 34] and references mentioned therein.

Let A and B be two nonempty subsets of X. Denote

A0 = {a ∈ A : d(a, b) = dist(A,B) for some b ∈ B},
B0 = {b ∈ B : d(a, b) = dist(A,B) for some a ∈ A}.

Definition 1.5. [31] Let (X, d) be a metric space and A0 ̸= ϕ, we say
that the pair (A,B) has the P -property if

(1.10)
d(x1, y1) = dist(A,B)
d(x2, y2) = dist(A,B)

}
implies that d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A and y1, y2 ∈ B.
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Definition 1.6 ([35]). Let (X, d) be a metric space and A0 ̸= ϕ, we say
that the pair (A,B) has the weak P -property if

(1.11)
d(x1, y1) = dist(A,B)
d(x2, y2) = dist(A,B)

}
implies that d(x1, x2) ≤ d(y1, y2),

where x1, x2 ∈ A and y1, y2 ∈ B.

Definition 1.7 ([13]). Let (X, d) be a metric space, A,B be two subsets
of X and α : A × A → [0,∞). A mapping F : A → 2B\{ϕ} is called
α-proximal admissible if

(1.12)
α(x1, x2) ≥ 1,

d(u1, y1) = dist(A,B),
d(u2, y2) = dist(A,B)

 implies that α(u1, u2) ≥ 1

for all x1, x2, u1, u2 ∈ A, y1 ∈ Fx1 and y2 ∈ Fx2.

Definition 1.8 ([13]). Let F : X → CB(Y ) be a multi-valued mapping,
where (X, d1), (Y, d2) are two metric spaces. A mapping F is said to
be continuous at x ∈ X if H(Fx, Fxn) → 0 whenever d1(x, xn) → 0 as
n → ∞.

The aim of this paper is to obtain some best proximity point results
for multivalued almost Θ-contraction mappings. We also present some
best proximity point and fixed point results for single valued mappings.
Moreover, an example to prove the validity and application to nonlinear
differential equation for the usability of our results is presented. Our
results extend, unify and generalize the comparable results in the liter-
ature.

2. Best Proximity Points of Multivalued Almost
Θ-contraction

We begin with the following definition:

Definition 2.1. Let A,B be two nonempty subsets of a metric space
(X, d) and α : A× A → [0,∞). Let Θ ∈ Ω be a continuous function. A
multivalued mapping F : A → 2B\{∅} is called almost Θ-contraction if
for any x, y ∈ A, H(Fx, Fy) > 0, we have

(2.1) α(x, y)Θ[H(Fx, Fy)] ≤ [Θ(d(x, y) + λ(D(y, Fx)− dist(A,B)))]k

where k ∈ (0, 1) and λ ≥ 0.

Theorem 2.2. Let (X, d) be a complete metric space and A, B nonempty
closed subsets of X such that A0 ̸= ∅. Suppose that F : A → K(B) is a
continuous mapping such that

(i) Fx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the weak P -
property;
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(ii) F is α-proximal admissible mapping;
(iii) there exist x0, x1 ∈ A0 and y0 ∈ Fx0 ⊆ B0 such that

d(x1, y0) = dist(A,B) and α(x0, x1) ≥ 1;
(iv) F is multivalued almost Θ-contraction.

Then F has a best proximity point in A.

Proof. Let x0, x1 be two given points in A0 and y0 ∈ Fx0 ⊆ B0 such that
d(x1, y0) = dist(A,B) and α(x0, x1) ≥ 1. If y0 ∈ Fx1, then dist(A,B) ≤
D(x1, Fx1) ≤ d(x1, y0) = dist(A,B) implies thatD(x1, Fx1) = dist(A,B)
and x1 is a best proximity point of F . If y0 /∈ Fx1 then,

0 < D(y0, Fx1) ≤ H(Fx0, Fx1).

Since Fx1 ∈ K(B), we can choose y1 ∈ Fx1 such that

1 < Θ[d(y0, y1)] ≤ Θ[H(Fx0, Fx1)].

As F is multivalued almost Θ-contraction mapping, we have

1 < Θ[d(y0, y1)] ≤ α(x0, x1)Θ[H(Fx0, Fx1)](2.2)

≤ [Θ(d(x0, x1) + λ(D(x1, Fx0)− dist(A,B)))]k

= [Θ(d(x0, x1))]
k.

Since y1 ∈ Fx1 ⊆ B0, there exists x2 ∈ A0 such that d(x2, y1) =
dist(A,B) and α(x1, x2) ≥ 1. By weak P -property of the pair (A,B)
we obtain that d(x2, x1) ≤ d(y0, y1). If y1 ∈ Fx2, then x2 is a best
proximity point of F . If y1 /∈ Fx2, then

D(y1, Fx2) ≤ H(Fx1, Fx2).

We now choose y2 ∈ Fx2 such that

1 < Θ[d(y1, y2)] ≤ Θ[H(Fx1, Fx2)](2.3)

≤ α(x1, x2)Θ[H(Fx1, Fx2)]

≤ [Θ(d(x1, x2) + λ(D(x2, Fx1)− dist(A,B)))]k

= [Θ(d(x1, x2))]
k.

Continuing this process, we can obtain two sequences {xn} and {yn} in
A0 ⊆ A and B0 ⊆ B, respectively, such that yn ∈ Fxn and it satisfies

d(xn+1, yn) = dist(A,B) with α(xn, xn+1) ≥ 1,

where n = 0, 1, 2, . . .. Also,

1 < Θ[d(yn, yn+1)] ≤ Θ[H(Fxn, Fxn+1)]

(2.4)

≤ α(xn, xn+1)Θ[H(Fxn, Fxn+1)]

≤ [Θ(d(xn, xn+1) + λ(D(xn, Fxn+1)− dist(A,B)))]k
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= [Θ(d(xn, xn+1))]
k

implies that

(2.5) 1 < Θ[d(yn, yn+1)] ≤ [Θ(d(xn, xn+1))]
k.

Since

(2.6) d(xn+1, yn) = dist(A,B)

and

(2.7) d(xn, yn−1) = dist(A,B)

for all n ≥ 1, it follows by the weak P -property of the pair (A,B) that

(2.8) d(xn, xn+1) ≤ d(yn−1, yn)

for all n ∈ N. Now by repeated application of (2.5), (2.8) and the
monotone property of Θ, we have

1 < Θ[d(xn, xn+1)] ≤ Θ(d(yn−1, yn)) ≤ Θ(H(Fxn−1, Fxn))

(2.9)

≤ α(xn−1, xn)Θ(H(Fxn−1, Fxn))

≤ [Θ(d(xn−1, xn) + λ(D(xn, Fxn−1)− dist(A,B)))]k

= (Θ(d(xn−1, xn)))
k ≤ (Θ(d(yn−2, yn−1)))

k

≤ (Θ(H(Fxn−2, Fxn−1)))
k

≤ (α(xn−2, xn−1)(Θ(H(Fxn−2, Fxn−1)))
k

≤ [Θ(d(xn−2, xn−1) + λ(D(xn−1, Fxn−2)− dist(A,B)))]k
2

= (Θ(d(xn−2, xn−1)))
k2

...

≤ (Θ(d(x0, x1)))
kn

for all n ∈ N∪ {0}. This shows that lim
n→∞

Θ(d(xn, xn+1)) = 1 and hence

lim
n→∞

d(xn, xn+1) = 0. From (Θ3), there exist 0 < r < 1 and 0 < l ≤ ∞
such that

(2.10) lim
n→∞

Θ(d(xn, xn+1))− 1

[d(xn, xn+1)]r
= l.

Assume that l < ∞ and β = l/2. From the definition of the limit there
exists n0 ∈ N such that∣∣∣∣Θ(d(xn, xn+1))− 1

[d(xn, xn+1)]r
− l

∣∣∣∣ ≤ B, for all n ≥ n0
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which implies that

Θ(d(xn, xn+1))− 1

[d(xn, xn+1)]r
≥ l − β = β for all n ≥ n0.

Hence

n[d(xn, xn+1)]
r ≤ nα[Θ(d(xn, xn+1))− 1] for all n ≥ n0,

where α = 1/β. Assume that l = ∞. Let β > 0 be a given real number.
From the definition of the limit, there exists n0 ∈ N such that

Θ(d(xn, xn+1))− 1

[d(xn, xn+1)]r
≥ β for all n ≥ n0

implies that

n[d(xn, xn+1)]
r ≤ nα[Θ(d(xn, xn+1))− 1] for all n ≥ n0,

where α = 1/β. Hence, in all cases there exist α > 0 and n0 ∈ N such
that

n[d(xn, xn+1)]
r ≤ nα[Θ(d(xn, xn+1))− 1] for all n ≥ n0.

From (2.9), we have

n[d(xn, xn+1)]
r ≤ nα[Θ(d(x0, x1))− 1] for all n ≥ n0.

On taking the limit as n → ∞ on both sides of the above inequality, we
have

(2.11) lim
n→∞

n[d(xn, xn+1)]
r = 0.

It follows from (2.11) that there exists n1 ∈ N such that

n[d(xn, xn+1)]
r ≤ 1 for all n > n1.

This implies that

d(xn, xn+1) ≤
1

n1/r
for all n > n1.

Now, for m > n > n1, we have

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1)

≤
m−1∑
i=n

1

i
1
r

.

Since 0 < r < 1,
∞∑
i=n

1

i
1
r

converges. Therefore, d(xn, xm) → 0 as

m,n → ∞.
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This shows that {xn} and {yn} are Cauchy sequences in A and B, re-
spectively. Next, we assume that there exist elements u ∈ A and v ∈ B
such that

xn → u and yn → v as n → ∞.

Taking limit as n → ∞ in (2.6), we obtain that

(2.12) d(u, v) = dist(A,B).

Now, we claim that v ∈ Fu. Since yn ∈ Fxn, we have

D(yn, Fu) ≤ H(Fxn, Fu).

Taking limit as n → ∞ on both sides of above inequality, we have

D(v, Fu) = lim
n→∞

D(yn, Fu)

≤ lim
n→∞

H(Fxn, Fu)

= 0.

As Fu ∈ K(B), D(v, Fu) = 0 implies that v ∈ Fu. By (2.12), we have

D(u, Fu) ≤ d(u, v)

= dist(A,B)

≤ D(u, Fu),

which implies that D(u, Fu) = dist(A,B) and hence u is a best prox-
imity point of F in A. □

Remark 2.3. In the next theorem, we replace the continuity assump-
tion on F with the following condition:

If {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n and
xn → x ∈ A as n → ∞, then there exists a subsequence {xn(k)} of {xn}
such that α(xn(k), x) ≥ 1 for all k. If the above condition is satisfied
then we say that the set A satisfies α-subsequential property.

Theorem 2.4. Let (X, d) be a complete metric space and (A,B) a pair
of nonempty closed subsets of X such that A0 ̸= ∅. Let F : A → K(B)
be a multivalued mapping such that conditions (i)-(iv) of Theorem 2.2
are satisfied. Then F has a best proximity point in A provided that A
satisfies α-subsequential property.

Proof. Following arguments similar to those in the proof of Theorem
2.2, we obtain two sequences {xn} and {yn} in A and B, respectively,
such that

(2.13) α(xn, xn+1) ≥ 1,

(2.14) xn → u ∈ A and yn → v ∈ B as n → ∞,
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and

(2.15) d(u, v) = dist(A,B).

By given assumption, there exists a subsequence {xn(k)} of {xn} such
that α(xn(k), u) ≥ 1 for all k. Since yn(k) ∈ Fxn(k) for all k ≥ 1, applying
condition (iv) of Theorem 2.2, we obtain that

1 < Θ(D(yn(k), Fu)) ≤ Θ(H(Fxn(k), Fu))

(2.16)

≤ α(xn(k), u)Θ(H(Fxn(k), Fu))

= (Θ(d(xn(k), u)) + λ(D(u, Fxnk
)− dist(A,B)))k.

On taking limit as k → ∞ in (2.16) and using the continuity of Θ, we
have Θ(D(v, Fu)) = 1. Therefore, by (Θ2) we obtain that D(v, Fu) = 0.
As shown in the proof of Theorem 2.2, we have D(u, Fu) = dist(A,B)
and hence u is a best proximity point of F in A. □
Remark 2.5. To obtain the uniqueness of the best proximity point of
multivalued almost Θ-contraction mappings, we propose the following
H condition:

H : for any best proximity points x1, x2 of mapping F, we have

α(x1, x2) ≥ 1.

Theorem 2.6. Let A and B be two nonempty closed subsets of a com-
plete metric space (X, d) such that A0 ̸= ∅ and F : A → K(B) be
a continuous multivalued mapping satisfying the conditions of Theorem
2.2 (respectively in Theorem 2.4). Then the mapping F has a unique
best proximity point provided that it satisfies the condition H.

Proof. Let x1, x2 be two best proximity points of F such that x1 ̸= x2,
then by the given hypothesisH, we have α(x1, x2) ≥ 1 andD(x1, Fx1) =
dist(A,B) = D(x2, Fx2). Since Fx1 and Fx2 are compact sets, there
exist elements y0 ∈ Fx1 and y1 ∈ Fx2 such that

d(x1, y0) = dist(A,B), d(x2, y1) = dist(A,B).

By the weak P -property of the pair (A,B), we have

d(x1, x2) ≤ d(y0, y1).

Since F is multivalued almost Θ-contraction mapping, we obtain that

Θ(d(x1, x2)) ≤ Θ(d(y0, y1)) ≤ Θ(H(Fx1, Fx2))

≤ α(x1, x2)Θ(H(Fx1, Fx2))

≤ [Θ(d(x1, x2) + λ(D(x2, Fx1)− dist(A,B)))]k

= (Θ(d(x1, x2)))
k
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< Θ(d(x1, x2)),

a contradiction. Hence d(x1, x2) = 0 and x1 = x2. □

If the pair (A,B) satisfies weak P -property, then it satisfies the P -
property, we have the following corollaries:

Corollary 2.7. Let (X, d) be a complete metric space and (A,B) be a
pair of nonempty closed subsets of X such that A0 ̸= ∅. Suppose that a
continuous mapping F : A → K(B) satisfies the following properties:

(i) Fx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the P -property;
(ii) F is multivalued α-proximal admissible mapping;
(iii) there exist x0, x1 ∈ A0 and y0 ∈ Fx0 ⊆ B0 such that d(x1, y0) =

dist(A,B) and α(x0, x1) ≥ 1;
(iv) F is multivalued almost Θ-contraction.

Then F has a best proximity point in A.

Corollary 2.8. Let (X, d) be a complete metric space and (A,B) be
a pair of nonempty closed subsets of X such that A0 ̸= ∅. Let F :
A → K(B) be a multi-valued mapping such that conditions (i)-(iv) of
Corollary 2.7 are satisfied. Then F has a best proximity point in A
provided that A has α−subsequential property.

Now we give an example to support Theorem 2.2.

Example 2.9. Let X = R2 be a usual metric space. Let

(2.17) A = {(−2, 2), (2, 2), (0, 4)}

and
(2.18)
B = {]− 8, γ[: γ ∈ [−8, 0]} ∪ {]8, γ[: γ ∈ [−8, 0]} ∪ {]β,−8[: β ∈]− 8, 8[}.

Then dist(A,B) = 8, A0 = {(−2, 2), (2, 2)} and B0 = {(−8, 0), (8, 0)}.
Define the mapping F : A → K(B) by

Fx =

 {(−8, 0)} if x = (−2, 2)
{(8, 0)} if x = (2, 2)
{]β,−8[: β ∈]− 8, 8[} if x = (0, 4).

and α : A×A → [0,∞) by

(2.19) α((x, y), (u, v)) =
11

10
.

Clearly, F (A0) ⊆ B0. For (−2, 2), (2, 2) ∈ A and (−8, 0), (8, 0) ∈ B, we
have {

d((−2, 2), (−8, 0)) = dist(A,B) = 8,
d((2, 2), (8, 0)) = dist(A,B) = 8.
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Note that

(2.20) d((−2, 2), (2, 2)) < d((−8, 0), (8, 0)).

that is, the pair (A,B) has weak P -property. Also, F is α-proximal
admissible mapping. Now we show that F is multivalued almost Θ-
contraction where Θ :]0,∞[→]1,∞[ is given by Θ(t) = 5t.

Note that

(2.21) α((−2, 2), (2, 2))Θ[H(F (−2, 2), F (2, 2))] =
11

10
(516),

and

(2.22) [Θ(d((−2, 2), (2, 2)) + λ(D((2, 2), (−8, 0))− 8))]k.

If we take k ∈]0.829, 1[ and λ = 4 in (2.22), we have

(2.23)
11

10
(516) <

(
520
)k

.

Similarly,

(2.24) α(x, y)Θ[H(Fx, Fy)] ≤ [Θ(d(x, y)+λ(D(y, Fx)−dist(A,B)))]k

holds for the remaining pairs. Hence all the conditions of Theorem 2.2
are satisfied. Moreover, (−2, 2), (2, 2) are best proximity points of F in
A.

Remark 2.10. Note that mapping F in the above example does not
hold for the case of Nadler [27] as well as for Hancer et al. [21]. For if,
take x = (−2, 2), y = (2, 2) ∈ A, we have

Θ(H(Fx, Fy)) = 516 > 54 > (54)k = [Θ(d(x, y))]k,

for k ∈ (0, 1). Also

H(Fx, Fy) = 16 > 4 = d(x, y) > αd(x, y)

for α ∈ (0, 1).

Remark 2.11. In the above example 2.9, the pair (A,B) does not
satisfy the P -property and hence the Corollary 2.7 is not applicable in
this case.

3. Application to Single Valued Mappings

In this section, we obtain some best proximity point results for sin-
glevalued mappings as applications of our obtained results in section
2.
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Definition 3.1. [23] Let (X, d) be a metric space and A,B two subsets
of X, a nonself mapping F : A → B is called α-proximal admissible if

(3.1)


α(x1, x2) ≥ 1,

d(u1, Fx1) = dist(A,B), implies α(u1, u2) ≥ 1

d(u2, Fx2) = dist(A,B),

for all x1, x2, u1, u2 ∈ A where α : A×A → [0,∞).

Definition 3.2. Let α : A× A → [0,∞) and Θ : (0,∞) → (1,∞) be a
nondecreasing and continuous function. A mapping F : A → B is called
almost Θ-contraction if for any x, y ∈ A, we have

(3.2) α(x, y)Θ(d(Fx, Fy)) ≤ [Θ(d(x, y) + λ(d(y, Fx)− dist(A,B)))]k,

where k ∈ (0, 1) and λ ≥ 0.

Theorem 3.3. Let (X, d) be a complete metric space and (A,B) be
a pair of nonempty closed subsets of X such that A0 is nonempty. If
F : A → B is a continuous mapping such that

(i) F (A0) ⊆ B0 and (A,B) satisfies the weak P -property;
(ii) F is α-proximal admissible mapping;
(iii) there exist x0, x1 ∈ A0 such that d(x1, Fx0) = dist(A,B) and

α(x0, x1) ≥ 1;
(iv) F is almost Θ-contraction,

then F has a best proximity point in A.

Proof. As for every x ∈ X, {x} is compact in X. Define a multi-
valued mapping T : A → K(B) by Tx = {Fx} for x ∈ A. The
continuity of F implies that T is continuous. Now F (A0) ⊆ B0 im-
plies that Tx = {Fx} ⊆ B0 for each x ∈ A0. If x1, x2, v1, v2 ∈ A,
y1 ∈ Tx1 = {Fx1} and y2 ∈ Tx2 = {Fx2} are such that

(3.3) α(x1, x2) ≥ 1, d(v1, y1) = dist(A,B), d(v2, y2) = dist(A,B).

That is,
(3.4)
α(x1, x2) ≥ 1, d(v1, Fx1) = dist(A,B), d(v2, Fx2) = dist(A,B).

Then we have α(v1, v2) ≥ 1 as F is α-proximal admissible mapping.
Hence T is α-proximal admissible mapping.

Suppose there exist x0, x1 ∈ A0 such that d(x1, Fx0) = dist(A,B)
and α(x0, x1) ≥ 1. Let y0 ∈ Tx0 = {Fx0} ⊆ B0. Then d(x1, Fx0) =
dist(A,B) gives that d(x1, y0) = dist(A,B). By condition (iii), there
exist x0, x1 ∈ A0 and y0 ∈ Tx0 ⊆ B0 such that d(x1, y0) = dist(A,B)
and α(x0, x1) ≥ 1.
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Since F is almost Θ-contraction, we have

α(x, y)Θ(H(Tx, Ty)) = α(x, y)Θ[d(Fx, Fy)]

(3.5)

≤ [Θ(d(x, y) + λ(D(y, Fx)− dist(A,B)))]k,

for any x, y ∈ A, which implies that T is multivalued almost Θ-contraction.
Thus, all the conditions of Theorem 2.2 are satisfied and hence T has
a best proximity point x∗ in A. Thus we have D(x∗, Tx∗) = dist(A,B)
and hence d(x∗, Fx∗) = dist(A,B), that is x∗ is a best proximity point
of F in A. □

Theorem 3.4. Let (X, d) be a complete metric space and (A,B) be
a pair of nonempty closed subsets of X such that A0 is nonempty. If
F : A → B is a mapping such that conditions (i)-(iv) of Theorem 3.3
are satisfied, then F has a best proximity point in A provided that A
satisfies α-subsequential property.

Proof. Let T : A → K(B) be as given in proof of Theorem 3.3. Following
arguments similar to those in the proof of Theorem 3.3, we obtain that

(i) Tx ⊆ B0 for each x0 ∈ A0;
(ii) T is multi-valued α-proximal admissible mapping;
(iii) there exist x0, x1 ∈ A0 and y0 ∈ Tx0 ⊆ B0 such that d(x1, y0) =

dist(A,B) and α(x0, x1) ≥ 1;
(iv) T is multivalued almost Θ-contraction.

Thus, all the conditions of Theorem 2.4 are satisfied and hence T has
a best proximity point x∗ in A, that is,

D(x∗, Tx∗) = dist(A,B).

Consequently, d(x∗, Fx∗) = dist(A,B) and x∗ is a best proximity point
of F in A. □

Corollary 3.5. Let (X, d) be a complete metric space and (A,B) be
a pair of nonempty closed subsets of X such that A0 is nonempty. If
F : A → B is a continuous mapping such that

(i) F (A0) ⊆ B0 and (A,B) satisfies the P -property;
(ii) F is α-proximal admissible mapping;
(iii) there exists x0, x1 ∈ A0 such that d(x1, Tx0) = dist(A,B) and

α(x0, x1) ≥ 1;
(iv) F is almost Θ-contraction,

then F has a best proximity point in A.

Proof. Replace the condition of weak P-property with P-property in
Theorem 3.3. □
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Corollary 3.6. Let (X, d) be a complete metric space and (A,B) be
a pair of nonempty closed subsets of X such that A0 is nonempty. If
F : A → B is a mapping such that conditions (i)-(iv) of Corollary 3.5
are satisfied. Then F has a best proximity point in A provided that A
satisfies α− subsequential property.

Proof. Replace the condition of weak P-property with P-property in
Theorem 3.4. □

4. Fixed point results for single and multi-valued mappings

In this section, fixed points of singlevalued and multivalued almost
Θ-contraction mappings are obtained.

Taking A = B = X in Theorem 2.2 (Theorem 2.4), we obtain corre-
sponding fixed point results for multivalued almost Θ-contraction map-
pings.

Theorem 4.1. Let (X, d) be a complete metric space. If F : X → K(X)
is a continuous mapping satisfying

(i) F is α-proximal admissible mapping;
(ii) there exists x0 ∈ X such that α(x0, Fx0) ≥ 1;
(iii) F is multivalued almost Θ-contraction,

then F has a fixed point in X.

Theorem 4.2. Let (X, d) be a complete metric space. Let F : X →
K(X) be a multi-valued mapping such that conditions (i)-(iii) of The-
orem 4.1 are satisfied. Then F has a fixed point in X provided that X
satisfies α−subsequential property.

Taking A = B = X in Theorem 3.3 (in Theorem 3.4), we obtain the
corresponding fixed point results of almost Θ-contraction mappings.

Theorem 4.3. Let (X, d) be a complete metric space. Let F : X → X
be a continuous mapping satisfying

(i) F is α-proximal admissible mapping;
(ii) there exists x0 ∈ X such that α(x0, Fx0) ≥ 1;
(iii) F is almost Θ-contraction.

Then F has a fixed point in X.

Theorem 4.4. Let (X, d) be a complete metric space. Let F : X → X
be a multi-valued mapping such that conditions (i)-(iii) of Theorem 4.1
are satisfied. Then F has a fixed point in X provided that X has a
α−subsequential property.

Remark 4.5. In Theorem 4.1 (respectively in 4.3)
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(i) If we take α(x, y) = 1, we obtain the main results of Durmaz
[17] and Altun [3].

(ii) Taking λ = 0 and α(x, y) = 1, we obtain the main result of
Hancer et al. [21] and Jelli [23], respectively.

(iii) Taking α(x, y) = 1 and Θ(t) = et, we obtain the main result of
Berinde [11] and [9].

(iv) Taking α(x, y) = 1, λ = 0 and Θ(t) = et, we obtain the main
result of Nadler [27] and Banach [6].

5. Application to Nonlinear Differential Equations

Let C([0, 1]) be the set of all continuous functions defined on [0, 1]
and d : C([0, 1])× C([0, 1]) → R be the metric defined by

d(x, y) = ||x− y||∞(5.1)

= max
t∈[0,1]

|x(t)− y(t)|.

It is known that (C([0, 1]), d) is a complete metric space.
Let us consider the two-point boundary value problem of the second-

order differential equation:

(5.2)

{
−d2x

dt2
= f(t, x(t)) t ∈ [0, 1];

x(0) = x(1) = 0

where f : [0, 1]× R → R is a continuous mapping.
The Green function associated with (5.2) is defined by

(5.3) G(t, s) =

{
t(1− s) if 0 ≤ t ≤ s ≤ 1,
s(1− t) if 0 ≤ s ≤ t ≤ 1.

Let ϕ : R× R → R be a given function.
Assume that the following conditions hold:

(i) |f(t, a)−f(t, b)| ≤ max
a,b∈R

|a− b| for all t ∈ [0, 1] and a, b ∈ R with

ϕ(a, b) ≥ 0;
(ii) there exists x0 ∈ C[0, 1] such that ϕ(x0(t), Fx0(t)) ≥ 0 for all

t ∈ [0, 1] where F : C[0, 1] → C[0, 1];
(iii) for each t ∈ [0, 1] and x, y ∈ C[0, 1], ϕ(x(t), y(t)) ≥ 0 implies

ϕ(Fx(t), Fy(t)) ≥ 0;
(iv) for each t ∈ [0, 1], if {xn} is a sequence in C[0, 1] such that

xn → x in C[0, 1] and ϕ(xn(t), xn+1(t)) ≥ 0 for all n ∈ N, then
ϕ(xn(t), x(t)) ≥ 0 for all n ∈ N.

We now prove the existence of a solution of the second order differ-
ential equation (5.2).

Theorem 5.1. Under the assumptions (i)-(iv), (5.2) has a solution in
C2([0, 1]).
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Proof. It is well known that x ∈ C2([0, 1]) is a solution of (5.2) is equiv-
alent to x ∈ C([0, 1]) is a solution of the integral equation

(5.4) x(t) =

∫ 1

0
G(t, s)f(s, x(s))ds, t ∈ [0, 1].

Let F : C[0, 1] → C[0, 1] be a mapping defined by

(5.5) Fx(t) =

∫ 1

0
G(t, s)f(s, x(s))ds.

Suppose that x, y ∈ C([0, 1]) such that ϕ(x(t), y(t)) ≥ 0 for all t ∈ [0, 1].
By applying (i), we obtain that

|Fu(x)− Fv(x)| =
∫ 1

0
G(t, s)f(s, x(s))ds−

∫ 1

0
G(t, s)f(s, y(s))ds

≤
∫ 1

0
G(t, s)[f(s, x(s))− f(s, y(s))]ds

≤
∫ 1

0
G(t, s)|f(s, x(s))− f(s, y(s))|ds

≤
∫ 1

0
G(t, s) · (max |x(s)− y(s)|)ds

≤ ||x− y||∞ · sup
t∈[0,1]

(∫ 1

0
G(t, s)ds

)
.

Since
1∫
0

G(t, s)ds = −(t2/2) + (t/2), for all t ∈ [0, 1], we have

sup
t∈[0,1]

(∫ 1

0
G(t, s)ds

)
=

1

8
.

It follows that

(5.6) ||Fx− Fy||∞ ≤ 1

8
(||x− y||∞.

Taking exponential on the both sides, we have

e||Fx−Fy||∞ ≤ e
1
8
(||x−y||∞)(5.7)

= [e(||x−y||∞)]
1
8 ,

for all x, y ∈ C[0, 1]. Now consider a function Θ : (0,∞) → (1,∞) by
Θ(t) = et. Define

α(x, y) =

{
1 if ϕ(x(t), y(t)) ≥ 0, t ∈ [0, 1],
0 otherwise.
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Then from (5.7) with k = 1
8 , we obtain that

α(x, y)Θ(||Fx− Fy||∞) ≤ [Θ(d(x, y))]k ≤ [Θ(d(x, y) + λd(y, Fx))]k.

Therefore, the mapping F is almost Θ-contraction.
From (ii) there exists x0 ∈ C[0, 1] such that α(x0, Fx0) ≥ 1. Next,

for any x, y ∈ C[0, 1] with α(x, y) ≥ 1, we have

ϕ(x(t), y(t)) ≥ 0 for all t ∈ [0, 1]

⇒ ϕ(Fx(t), Fy(t)) ≥ 0 for all t ∈ [0, 1]

⇒ α(Fx, Fy) ≥ 1,

and hence F is α-proximal admissible. It follows from Theorem 4.3
that F has a fixed point x in C([0, 1]) which in turns is the solution of
(5.2). □

6. Conclusion

This paper is concerned with the existence and uniqueness of the best
proximity point results for Berinde type contractive conditions via aux-
iliary function Θ ∈ Ω in the framework of complete metric spaces. Also,
some fixed point results as a special cases of our best proximity point
results in the relevant contractive conditions are studied. Moreover, the
corresponding fixed point results are obtained. An example is discussed
to show the significance of the investigation of this paper. An appli-
cation to a nonlinear differential equation is presented to illustrate the
usability of the new theory.
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