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Abstract

Forest pathogens are a major cause of forest disturbances and they have a significant

economic impact on commercial forestry. Genomics is an important technology now

available for studies concerning tree health, enabling researchers to better understand

pathosystems and potentially to prevent future epidemics from occurring. Comparative

genomics at the species level makes possible the identification of unique genomic regions

and/or genes that influence the development of pathogens and their ability to cause disease.

In addition, population genomics can reveal processes involved in the evolution of pathogens

potentially showing how selection and/or environmental adaptation could have driven their

emergence. Using these tools, important mechanisms involved in the evolution of pathogens

and their hosts can be determined. Practical applications of such knowledge include the

formulation of strategies for pathogen detection and surveillance, as well as breeding disease-

resistant trees. These new and evolving technologies are set to ensure the long-term

sustainability of plantation forestry in the Southern Hemisphere.
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Introduction

The field of genomics has significantly improved our understanding of fungal pathogens of

trees, particularly non-native trees established in Southern Hemisphere plantations. Many of

these advances have arisen from the relative reduction in the costs associated with genome

sequencing and access to whole genome sequencing platforms and facilities (Chiu and Miller

2016). Previously, the genomes of model fungi, which included a small number of plant

pathogens, received the bulk of attention as researchers sought to understand the

characteristics and evolution of these organisms. However, with the wide accessibility to

whole genome sequence information, researchers are increasingly applying the knowledge

and lessons learnt from model organisms to non-model species (Ellegren 2014). This has led

to the sequencing of the genomes of numerous non-model fungi, including pathogens of

trees, and some of these are emerging as model systems in their own right.

The genomes of an increasing number of fungal pathogens of woody plants in natural

ecosystems and in plantations are being studied globally (Table 1).  In many cases, these

genomic resources have been complemented with genome sequence information for the

woody hosts (e.g., Eucalyptus and Pinus species) of these fungi (Hirakawa et al. 2011;

Myburg et al. 2014; Neale et al. 2014; Stevens et al. 2016; Wang et al. 2020).  Sequencing

the genome of Fusarium circinatum (Wingfield et al. 2012) marked the genesis of genome

research on fungal pathogens of non-native plantation-grown trees in the Southern

Hemisphere.  Subsequently, the genomes of several fungal pathogens of plantation-grown

trees occurring in various Southern Hemisphere countries have been sequenced (Table 1).

Access to these genome resources has provided a multiplicity of opportunities to study the

evolution of pathogens and their genes and genomes, as well as their genome architecture and

population biology.
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A number of reviews have considered various aspects of fungal and plant pathogen genomics

(e.g. Skamnioti et al. 2008; Stukenbrock and Bataillon 2012; Ma et al. 2013; Gladieux et al.

2014; Plissonneau et al. 2017; Stajich 2017; Keriö et al. 2020). Those most relevant to forest

pathology have dealt with the contribution of genomics to the field (Hamelin 2012) and the

impact that the availability of these genomes has had on the field of plant pathology

(Aylward et al. 2017). In the current paper, we specifically considered the impact of genomic

studies of fungal pathogens of non-native Pinus, Eucalyptus and Acacia species, which are

utilized for commercial plantation forestry in the Southern Hemisphere (Table 1).

The pathogens considered in this study are Austropuccinia psidii, Dothistroma septosporum,

Fusarium circinatum, Teratosphaeria destructans, Chrysoporthe and Ceratocystis species, as

well as species in the family Botryosphaeriaceae (Figure 1). Austropuccinia psidii is the

causal agent of myrtle rust on non-native Eucalyptus grown in commercial plantations in

South America (Pérez et al. 2011; Rodas et al. 2015; Granados et al. 2017). Fusarium

circinatum causes pitch canker on susceptible Pinus species and the fungus is considered one

of the most important pathogens of pines (reviewed in Wingfield et al. 2008).

Teratosphaeria destructans is a leaf and shoot pathogen of Eucalyptus species (Wingfield et

al. 1996; Burgess et al. 2016; reviewed in Andjic et al. 2019) that was only relatively recently

identified in the Southern Hemisphere, in South Africa (Greyling et al. 2016). Dothistroma

septosporum causes Dothistroma needle blight on non-native Pinus in the Southern

Hemisphere (Gibson 1972; Alzamora et al. 2004; Barnes et al. 2004; Rodas et al. 2016). The

Chrysoporthe species included are pathogens of non-native Eucalyptus in Africa and South

America (Hodges 1980; Conradie et al. 1990; van der Merwe et al. 2001; Nakabonge et al.

2006), while those of Ceratocystis are pathogens of non-native Eucalyptus and Acacia

species in the Southern Hemisphere (Wingfield et al. 1996; Roux et al. 1999; Barnes et al.



4

2003; Roux and Wingfield 2009).  The Family Botryosphaeriaceae includes various genera

with species that occur as latent pathogens of Eucalyptus and Pinus in various regions of the

Southern Hemisphere (Slippers and Wingfield 2007; Slippers et al. 2017).  For instance,

disease caused by the latent pathogens Neofusicoccum parvum and Diplodia sapinea,

respectively, manifest as branch die-back when trees are under stress (Slippers and Wingfield

2007; Slippers et al. 2017).

The primary goal of this review was to examine how genomics research has advanced

foundational knowledge about various aspects of the biology of the fungi mentioned above.

A brief overview of the genomics workflow is followed with a discussion of how this field of

research has contributed to the taxonomy and diagnostics of these organisms. The impact of

genomic data on our understanding of their population and reproductive biology were then

investigated. We also examined how genomics provided answers to questions on the ecology

and evolution of these fungi. Finally, we explored how fungal genomics and comparative

genomics have already and will in future facilitate improvement of our ability to manage the

diseases of tree species that sustain forestry in the Southern Hemisphere.

From DNA to genome sequence

Appreciating the impact of genomics on the study of forest tree pathogens requires general

understanding of how genomes are sequenced, assembled and annotated, as well as how

information is obtained from genomes. Here, we do not attempt to provide an in-depth

discussion of the intricacies of genomics methodologies, and rather refer readers to the Field

Guide to Whole-genome Sequencing, Assembly and Annotation by Ekblom and Wolf (2014).
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A broad overview of the workflow used in whole-genome sequencing projects is presented in

Figure 2. The first step when designing a genome sequencing project is to decide on the

fungal strain(s) that will be sequenced. For taxonomic purposes and inter species genomic

comparisons, researchers typically select the type strain of the species under consideration.

This is because its genome will serve as the reference for all other strains in the species.

Strains for inter species comparisons might also be selected based on their unique features

and where researchers wish to conduct comparative genomics studies (see below). For intra-

species comparative studies, individuals are typically selected to span the broader biological,

ecological and / or geographical variation within the species. This is done with the aim of

capturing genomic differences that can be used for genetic studies or that might explain

unique characteristics of the individuals at the genomic level.

An important step in genome sequencing is to obtain genomic DNA of adequate quality and

in a sufficient quantity required for the specific sequencing platform being used. This is often

challenging as many fungi produce polysaccharides and other compounds that hamper the

DNA extraction and sequencing processes.  Once genomic DNA has been obtained, it is

fragmented (mechanically, chemically or enzymatically) in order to construct genomic

libraries that are sequenced using high throughput sequencers. Often, more than one type of

sequencing platform is used as these platforms differ in the length of sequences that they can

read, output per run and error rate (Bleidorn 2016; Chiu and Miller 2016).

The main output of high throughput sequencers are sequence reads (fragments of DNA

sequences). The quality of the raw reads is assessed using software such as FastQC (Andrews

2010), and those of low quality are removed from the dataset.  Following this step, the reads

are assembled into contigs based on their overlapping sequences, and the contigs can
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subsequently be joined into scaffolds.  A combination of long and short read DNA

sequencing technologies provides the most complete genome assemblies (Amarasinghe et al.

2020). Various software packages are available for de novo assembly of sequences (Khan et

al. 2018). The completeness, and hence the quality, of the assembled genome can be

measured based on the percentage of universal single copy genes present in the assembled

genome.  This is done using software such as Benchmarking Universal Single-Copy Ortholog

(BUSCO) (Waterhouse et al. 2017). If the completeness of the genome sequence is sufficient,

genes are identified using software packages that apply gene models to recognise genes based

on the molecular characteristics of open reading frames (Yandell and Ence 2012). Software

applications used for this purpose include AUGUSTUS (Stanke and Morgenstern 2005).

Finally, the function of the genes are identified based on sequence similarity with genes that

have previously been functionally annotated (see Yandell and Ence 2012).

In some cases it is not feasible to sequence the complete genome of a fungus. This can

preclude researchers from pinpointing the exact locations of genes or contigs on

chromosomes. However, the relative location of genes can be determined if genetic linkage

maps are available. For example, a genetic linkage map was generated prior to sequencing

the genome of the pitch canker pathogen (F. circinatum) by making use of the hybrid

progeny of a cross between this fungus and the maize pathogen F. temperatum (De Vos et al.

2007). The 12 linkage groups of F. circinatum were then integrated with genome data to

allow ordering of the genomic contigs into linkage groups or chromosomes (De Vos et al.

2014). The genome of F. circinatum is now assembled into 12 pseudomolecules that will in

future serve as a physical map in which the exact locations of genes are known (Wingfield et

al. 2018b). In a similar way, linkage maps generated for other fungal tree pathogens (e.g.,

Amylostereum areolatum, Ceratocystis fimbriata and Ce. manginecans) (van der Nest et al.
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2009; Fourie et al. 2019) will greatly facilitate the chromosomal positioning of contigs and

provide further insights into the locations of genes relative to one another.

Whole genome sequencing projects have shown that genome size variation is prevalent

among fungal species. The genome size of most fungi falls within the 30-40 million bases

(Mb) size range. However, genome sizes range from two to 1 200 Mb (Aylward et al. 2017;

McTaggart et al. 2018), with the largest to date being that of the myrtle rust pathogen

Austropuccinia psidii (McTaggart et al. 2018). The average genome size of plant pathogenic

Basidiomycota (53.7 Mb) is much larger than that of plant pathogenic Ascomycota (39.4 Mb)

(Aylward et al. 2017). The majority of tree pathogens listed in Table 1 have genome sizes

within the 30-69 Mb size range, with the highest number (26) of genome sizes being within

the 40-49 size range (Figure 3). Similar to the study of Aylward et al. (2017), the average

genome size of fungi in the Ascomycota (37.93 Mb; Median: 34.60 Mb; Table 2) is much

smaller than those of the Basidiomycota (120.48 Mb, Median: 61.42; Table 2). However, a

more than two-fold size difference in the average genome size was observed from the

analyses of the Basidiomycota genome sizes for this review when compared with those in

Aylward et al. (2017) for the same phylum. This difference can be ascribed to the inclusion in

this review of a greater number of rust fungi, which have very large genomes (Table 1).

Identification of fungal pathogens

Accurate identification of fungal tree pathogens is an essential first step towards developing

disease management strategies and for informing appropriate biosecurity and quarantine

processes (McTaggart et al. 2016).  Incorrect identification of pathogenic fungi typically

impedes our understanding of their biology, epidemiology and impact. For example, the

myrtle rust pathogen A. psidii (formerly Puccinia psidii) that is a destructive invasive
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pathogen in various parts of the world, particularly Australia, was initially identified in 2010

as Uredo rangelii when it was encountered in that country (Carnegie et al. 2010). Because U.

rangelii is considered to be a less serious pathogen, quarantine procedures were discontinued

in Australia shortly after it was first detected.  Later, however, teliospores with the

morphological characteristics resembling those of P. psidii were observed (Carnegie and

Cooper 2011), and the fungus was then referred to as P. psidii sensu lato (Carnegie and

Lidbetter 2012) after which it was formally transferred to the new genus Austropuccinia

(Beenken 2017).  The unfortunate misidentification of this important quarantine pathogen

delayed strategies to potentially contain its spread in Australia where it now threatens highly

susceptible native Myrtaceae species with extinction (Carnegie et al. 2016). Moreover, this

fungus is now a serious threat to non-native Eucalyptus species in other countries of the

Southern Hemisphere.

Fungal genomes provide useful information to develop diagnostic tools that ensure rapid and

reliable identification of pathogens. Accurate identification of fungal species generally

requires DNA sequence data for particular genomic regions. The sequence data of these

regions, requires PCR amplification, which in turn relies on the availability of PCR primers

to amplify the regions of interest.  However, primers are not always available or, when they

are available, might not hybridize with sufficient specificity to their target regions during

PCR. Additionally, PCR primers should not be so specific to a particular isolate that false

negatives might occur, or insufficiently specific that false positives occur. However, these

complexities are easily resolved with the use of genome sequences, which allows primers to

be designed by comparing existing primer sequences with those in the genome of the

organisms under consideration.  This approach is well illustrated in the study of Fourie et al.

(2014) in which the genome sequence of the aggressive tree and root-crop pathogen Ce.
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fimbriata was used to generate species-specific primers to amplify genes, which were then

used to delineate cryptic species in Ceratocystis sensu stricto. More recently, Feau et al.

(2018) published a genomics pipeline that utilises genome sequences to identify taxon-

specific genome regions that can be used to design highly accurate PCR assays for the

identification of plant pathogens.

Comparative genomics studies can allow for the identification of single nucleotide

polymorphisms (SNPs) to aid species delineation. This approach relies on the genomes of a

collection of isolates representing each of the species under investigation to ensure that the

identified SNPs vary between, but not within, species. An example of the application of this

technique relevant to a plantation tree pathogen can be found in a study by Fourie et al.

(2014) who identified unique SNP markers for 13 Ceratocystis species using high throughput

sequencing of restriction enzyme digested DNA. They also showed that SNPs were more

taxonomically informative than the DNA sequences of protein coding genes.  For instance,

they could conclusively delineate a range of species of Ceratocystis and, based on the

absence of SNPs, reduced Ce. acaciivora to synonymy with Ce. manginecans.

Another way of exploiting genome data to combat tree diseases is for developing methods to

rapidly and accurately identify pathogens in situ in plantations or nurseries. One such a

method is Loop Mediated Isothermal Amplification (LAMP) of targeted DNA (Notomi et al.

2000). In addition to species diagnostics, this technique can be used to identify genetic traits

such as the mating type of fungi (King et al. 2019).  LAMP relies on auto cycling strand

displacement DNA synthesis by DNA polymerases under isothermal conditions with a set of

four or more primers that hybridize to different parts of the genome (Notomi et al. 2000, and

see Niessen 2015 for an explanation of the reaction).  The amplified DNA fragments can be
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observed using various methods, such as production of a white precipitate if DNA

amplification has been successful (reviewed in Zhang et al. 2014).  Alternatively, the

amplification process can be visually monitored in real time by adding colorimetric indicators

that produce a fluorescence signal if the LAMP reaction is positive (Niessen 2015 and

references therein).  Once a protocol has been developed, LAMP is cheaper and requires less

effort than conventional PCR (Niessen 2015). Furthermore, the reaction is highly sensitive,

thus enabling the amplification of genomic regions in the presence of low concentration DNA

(Notomi et al. 2000).

Although LAMP has become an important diagnostic tool for fungal identification,

particularly for in-the-field situations, LAMP protocols for plantation tree pathogens in the

Southern Hemisphere are still in development or are yet to be developed. However, with the

availability of genome data, it would be relatively straightforward to identify species-specific

genomic regions and genes for designing the LAMP primers. From a Southern Hemisphere

perspective, significant progress has been made for F. circinatum. Comparative genomics

data were used to identify various candidate genes that are unique to the fungus (Maphosa et

al. 2016). Also, data from a study by van Wyk et al. (2018), showed that a genomic region of

12 000 base pairs, which underpins a growth QTL, is present only in F. circinatum and not in

its close relatives These candidate genes and the long stretch of DNA unique to F. circinatum

is currently being used to develop a LAMP-based diagnostic protocol for this important tree

pathogen.

Genomics lies at the forefront of recent developments in biosecurity and quarantine measures

(see Hamelin and Roe 2020 for detailed discussion). Earlier, McTaggart et al. (2016) have

argued that a paradigm shift is needed from a name-based to a gene-based approach when
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assessing the risks of pathogens. This is because genome information can be used to predict

pathogen lifestyle based on the presence of genes associated with pathogenicity, or the

reduction/expansion in certain gene families (Soanes et al. 2008; Ohm et al. 2012; Lo Presti

et al. 2015; Haridas et al. 2020). Genomics studies have shed significant light on the

evolutionary processes and mechanisms involved in fungal speciation and the evolution of

new and emerging pathogens (e.g., Stukenbrock 2013; Steenkamp et al. 2018). Genomics

studies have also shown that fungal genomes are dynamic and that the signature of such

plasticity may predict the “adaptability” of a species or individual (Ohm et al. 2012; Zhang et

al. 2018). Genome-based information is thus invaluable to infer risks associated with

particular organisms, but the adoption of such gene and genome-based approaches to

biosecurity would be dependent on the availability of detailed genome information for

pathogens that can be used in risk assessment. Therefore, development of rapid and cost-

effective genome sequencing technology and the regular release of newly sequenced

pathogen genomes will greatly facilitate future implementation of this biosecurity paradigm.

Population biology

Population genetic studies provide information regarding the genetic diversity of populations.

Because genetic diversity in a population changes over time, this information can be used to

determine pathways of introduction and to track the movement and establishment of

pathogens.  Understanding the genetic variation in populations also provides insights into the

potential of pathogens to adapt to new hosts and the probable durability of resistant genetic

tree planting stock (McDonald and Linde 2002; Graça et al. 2011).

Most contemporary population genetic studies of fungal pathogens utilise microsatellite

markers. These markers are short tandem sequence repeats distributed throughout the genome
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of organisms (Levinson and Gutman 1987), they are highly polymorphic and inherited in a

Mendelian manner (Levinson and Gutman 1987; Tautz 1989).  Although their identification

traditionally has been time-consuming and expensive, high throughput genome sequencing

has facilitated rapid development of large sets of microsatellite markers for diverse

organisms. For those affecting Southern Hemisphere forestry, this was initially done using

high throughput sequencing of microsatellite enriched DNA libraries (Santana et al. 2009).

More recently, however, the easy access to genome data has provided opportunities for the

in-silico identification of microsatellites using genome comparisons (Hoffman and Nichols

2011).  This approach has been used to identify microsatellite markers for a wide range of

fungi, including pathogens of trees important to plantation forestry in the tropics and

Southern Hemisphere (Cai et al. 2013; Simpson et al. 2013; Jia et al. 2015; Mercière et al.

2015; Mlonyeni et al. 2018; Varady et al. 2019). In fact, using comparative genomics, makes

it possible to design these markers such that they function across several species or even

across genera (Leyva-Madrigal et al. 2014; Bhat et al. 2018). For example, Nagel et al.

(2020) recently developed microsatellite markers that can be amplified across species in the

genera Lasiodiplodia and Neofusicoccum, numerous of which are important latent pathogens

of plantation-grown trees (Slippers and Wingfield 2007; Slippers et al. 2017).

Genomics can advance population genetic studies through the application of a large number

of genetic markers. Population genomics is a relatively new field that owes its emergence to

the development of techniques for affordable genome sequencing (for reviews see

Stukenbrock and Bataillon 2012; Grünwald et al. 2016).  In contrast to traditional population

genetics, which relies on a small number of neutral markers such as microsatellites,

population genomics uses a large number of markers spread throughout the genome

(Stinchcombe and Hoekstra 2008).  In addition to providing insights into ecological,
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evolutionary and demographic processes acting upon populations, population genomics has

the added benefit of informing how these processes, together with speciation and adaptation,

affect genomes (see Grünwald et al. 2016 for details).

Most population genomic studies on tree pathogens have focussed on pathogens important in

the Northern Hemisphere.  These studies show that population genomics approaches have the

potential to become indispensable tools in epidemiological research (Quinn et al. 2013).

Population genomics also represents a powerful tool to better understand how pathogens

emerge and to discover the mechanisms involved in their adaptation to new niches or

lifestyles (Branco et al. 2015, Jensen et al. 2016, Plissonneau et al. 2017). An example of a

population genomic study on a tree pathogen relevant to plantation forestry in the Southern

Hemisphere is that of Bradshaw et al. (2019) on the important needle blight pathogen D.

septosporum.  By analysing the genomes of 18 strains from 15 countries, they showed that

there is significant genetic variation among strains. Importantly, this also extended to gene

copy number variations that underpinned the observed among-individual differences in the

production of the toxin dothistromin that is important to pathogenicity. Genome comparisons

such as these have clearly increased our understanding of environmental and host adaptation

and they provide valuable insights into the biology and potentially, the management of tree

pathogens.

Genomics provides insight into the reproductive strategy of fungi

Knowledge regarding the reproductive biology of tree pathogens is fundamental to

understanding their epidemiology.  As is true for all fungi, tree pathogens can reproduce

asexually (clonal) or sexually. One of the advantages of clonal reproduction is that co-

adapted alleles are maintained in the population, allowing for the rapid spread of new
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genotypes (McDonald and Linde 2002; Möller and Stukenbrock 2017). Sexual reproduction,

in contrast, enables adaptive evolution by increasing the effectiveness of combining

beneficial mutations in response to environmental changes (Billiard et al. 2012).

The availability of genome sequences permits the rapid identification of the genes necessary

for sexual reproduction. This is particularly valuable in the case of genes involved in mating

as these evolve rapidly and are thus not that easy to identify. In fungi, mating type is

determined by the genes encoded at the MAT loci (Heitman et al. 2013).  The Ascomycota

have one of these loci (MAT1) and its structure and gene content determines the mode of

sexual reproduction (i.e., homothallism or heterothallism) in a particular fungus (Wilson et al.

2015; Wilken et al. 2017). For an individual to reproduce homothallically or to “self”, the

locus must contain both the MAT1-1 and MAT1-2 genes. Heterothallic species or “obligate

outcrossers” require the interaction of individuals with either the MAT1-1 or MAT1-2 genes at

their MAT1 locus (Wilken et al. 2017). By contrast, Basidiomycota generally have tetrapolar

mating systems that need to be heterozygotic at two unlinked MAT loci for sexual

reproduction to occur (Heitman et al. 2013).

The structure and composition of the genes at the MAT loci of tree pathogens provide useful

signatures to elucidate their mating system and thus to understand their reproductive biology.

This is important, because many pathogens do not engage in sexual reproduction in the

laboratory setting, and sometimes not even in the field. An example of such a fungus is the

opportunist pine canker pathogen Diplodia sapinea (= Sphaeropsis sapinea, Figure 1), and it

was used in one of the first studies to employ genome data specifically to elucidate the

mating system of a pine pathogen in the Southern Hemisphere (Bihon et al. 2014). This

ground-breaking study in the Botryosphaeriaceae showed that D. sapinea has a heterothallic
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mating system, and later work showed that the related fungus, Botryosphaeria dothidea, is

homothallic (Marsberg et al., 2016). Based on comparative genomics studies, it is now

known that the members of this important fungal family includes both homothallic and

heterothallic species in sexual reproduction (Nagel et al. 2018). In a similar way, the mating

strategy of various other Southern Hemisphere pathogens of plantation tree species have been

determined. For example, members of the Ceratocystidaceae and species of Chrysoporthe

also have homothallic and heterothallic mating strategies (Simpson et al. 2018; Kanzi et al.

2019), while T. destructans is heterothallic (Havenga et al. 2020).

Genomes provide an important resource for the in-silico search for mating type regions in

fungi. Primers flanking the regions or the mating type genes can then be developed and used

to rapidly screen the mating types of a population. The presence or absence of mating type

genes in the population provides valuable information about the outcrossing potential of the

population.  This in turn is important for developing disease management strategies because a

high outcrossing potential allows for rapid genetic changes in the population resulting in a

possible increase in the virulence of the pathogens, or potential loss of host resistance in

currently planted tree clones due to the emergence of novel genotypes. This approach for

screening a population has been used successfully to identify mating types in populations of

Teratosphaeria leaf and shoot pathogen populations from different countries (Aylward et al.

2020; Havenga et al. 2020), as well as in Lasiodiplodia spp. and Diplodia spp. (Nagel et al.

2018).

Detailed genome comparisons can also provide insights into processes implicated in the

evolution of fungal reproductive strategies. Comparative genomics of pathogenic fungi

relevant to Southern Hemisphere plantation tree species have revealed unusual MAT locus
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organisation, and have elucidated the mechanisms involved in the evolution of the locus. In a

recent study, Kanzi et al. (2019) showed that the Eucalyptus stem canker pathogens Ch.

cubensis and Ch. deuterocubensis are homothallic while their closely related sister species,

Ch. austroafricana, is heterothallic. However, the MAT1-2 idiomorph (or allelic version) of

Ch. austroafricana, unlike typical MAT1-2 idiomorphs, contained the MAT1-1-2 gene and a

truncated MAT1-1-1 gene.  The authors also found long terminal repeat (LTR)

retrotransposons in the MAT1 locus of Ch. cubensis and Ch. deuterocubensis, but not in Ch.

austroafricana. In terms of phylogeny, Ch. deuterocubensis is basal to Ch. cubensis and Ch.

austroafricana and harbours MAT1-1-1, MAT1-1-2, MAT1-1-3 and MAT1-2-1 genes at its

MAT1 locus.  In contrast, Ch. austroafricana has only MAT1-1-1 and MAT1-2-1 genes in the

respective MAT1-1 and MAT1-2 strains. Taken collectively, these data suggested that Ch.

austroafricana became heterothallic through LTR-mediated loss of the MAT1-1-3 and MAT1-

2-1 genes, from the homothallic ancestral locus, to form the MAT1-1 and MAT1-2

idiomorphs, respectively. The process likely also involved degradation of the MAT1-1-1

gene, leaving the truncated version in MAT1-2 idiomorph. Although not conclusive, the

results of the study by Kanzi et al. (2019) and various other authors (Olive 1958; Geiser et al.

1998; Amselem et al. 2011; Duong et al. 2013), support the view that certain heterothallic

fungi might have evolved from homothallic ancestors.

Genomics reveal mechanisms influencing pathogen biology

Comparative genomics involves the identification of similarities and differences between the

genomes of organisms. This makes it possible to identify the genetic factors responsible for

biological differences. Several studies on fungal pathogens of Southern Hemisphere

plantation trees have made use of comparative genomics to shed light on carbon utilization
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and fungal lifestyles, on fungal genome plasticity, and on the mechanisms involved in

genome evolution and integrity.

Various groups of enzymes allow fungi access to plant-derived carbohydrates for survival in

particular niches. One of these are the invertases (carbohydrate active enzymes of the

glycoside hydrolase family 32: GH32) that are responsible for hydrolysing glycoside in

saccharides. These enzymes enable fungi to gain access to and utilise sucrose produced by

their hosts, and thereby enhance their growth (Parrent et al. 2009). Invertases may also play a

role in fungal virulence (Schirawski 2015).  Plant pathogens, in contrast to non-pathogens,

have a higher copy number of invertase genes and consequently, there is an association

between the number of invertase genes and the ability of fungi to cause disease (Parrent et al.

2009). Comparison of the genomes of Ce. albifundus, Ce. manginecans, Ce. fimbriata and

other tree-infecting fungi in the Ceratocystidaceae which can be either pathogenic or

saprobic, revealed that the gene copy number of GH32 has expanded in Ce. albifundus and

other pathogenic species, while a loss of GH32 genes occurred in non-pathogenic members

of this family (van der Nest et al. 2015). These findings showed how differences in the

arsenal of carbohydrate active enzymes encoded by Ceratocystidaceae species are reflected in

their different ecologies.

Comparative studies have revealed that the genomes of many pathogens are highly dynamic,

often representing sub-genomic compartments that evolve at different rates (Dong et al.

2015). The slow-evolving compartment contains the core genes that are necessary for cellular

and housekeeping functions, while the faster evolving compartments are typically rich in

transposable elements (TEs) and genes that are involved in niche-specific or adaptive

processes (reviewed in Stukenbrock 2013; Dong et al. 2015; Stajich 2017, Bertazzoni et al.
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2018). As a result, these rapidly evolving compartments harbour  genes that are not present in

all members of a species (referred to as accessory genes), cause genome plasticity and

promote adaptation to new hosts and environments (Stukenbrock 2013; Dong et al. 2015;

Bertazzoni et al. 2018). These accessory genes or compartments may be interspersed with

core genes where they are distributed across various chromosomes of a fungus. An

appropriate example of this was recently reported for Ce. albifundus (van der Nest et al.

2019), which causes a wilt disease on plantation-grown Acacia mearnsii in several African

countries (Wingfield et al. 1996; Roux et al. 2009). This study showed that the core sub-

genomic compartment and or accessory compartment harbour genes that encode for products

required for access to plant-derived nutrients, host-pathogen interactions, as well as signal

transduction in sensing and responding to environmental conditions. These processes likely

contributed to pathogenicity and host specialization of the fungus, and the genes encoding

them represent relevant targets for the development of disease management strategies through

genetic modification of the pathogens.

The accessory sub-genomic compartment may also be localized to specific genomic regions,

such as sections of particular chromosomes and even entire chromosomes. The latter are

usually dispensable for growth under certain conditions and are not necessarily present in all

members of the species (Vlaardingerbroek et al. 2016; Bertazzoni et al. 2018). These types of

chromosomes are particularly prevalent in the genus Fusarium, where they often encode

genes and molecules needed for infection, disease development and virulence (Ma et al.

2010; Vlaardingerbroek et al. 2016; Waalwijk et al. 2018). The pitch canker pathogen, F.

circinatum, also harbours at least one dispensable chromosome (van der Nest et al. 2014a;

Waalwijk et al. 2018), which may explain why strains lacking it cause smaller lesions on

Pinus species in virulence assays (Slinski et al. 2016).



19

Various recent studies have shown that horizontal gene transfer (HGT) plays a key role in the

plasticity of fungal genomes. HGT involves the transfer of genetic material between species

(Syvanen 1985, Doolittle 1999) and for many years was thought to occur only in prokaryotic

organisms. However, comparative genomics has revealed that HGT can occur between

prokaryotes and eukaryotes as well as among eukaryotes (Soanes and Richards 2014). In

fungal pathogens, HGT has been shown to alter the genomic landscape and give rise to

functional novelty, which facilitates adaption to new ecological niches (Soanes and Richards

2014; Dhillon et al. 2015). For example, a recent study of F. circinatum genomes showed that

a 12 kilo bases genetic insert, likely acquired via multiple HGT events (van Wyk et al. 2018),

encodes functions that allow the fungus faster growth at higher temperatures relative to

closely related species (De Vos et al. 2011; van Wyk et al. 2018).

Other mechanisms that enhance genome plasticity involves mobile genetic elements (MGEs)

such as TEs and repeated sequences. MGEs mediate genetic variation by facilitating

inversions, duplication, deletions, ectotopic recombination and double stranded breaks in

genomes (Gray 2000). In fungal pathogens, they are a source of genetic variation required for

adaptation in the evolutionary “arms race” between pathogen and host (Rouxel et al. 2011;

Möller and Stukenbrock 2017; Mat Razali et al. 2019). Comparative genomics has also

revealed that these elements are major drivers of genome evolution and they impact on

pathogenicity, host range and changes in the biology of fungal pathogens (see reviews by

Daboussi and Capy 2003; Mat Razali et al. 2019). In the Ceratocystidaceae, for example,

MGEs shaped the evolution of the GH32 gene family (van der Nest et al. 2015). Compared to

other genera in this family of fungi, Ceratocystis species have many more MGEs in their

genomes (Fourie et al 2019) and they have most likely played an important role in the

evolution of the MAT1 locus and the chromosome that harbours the locus in these fungi
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(Simpson et al. 2018). Another interesting example is found in the myrtle rust pathogen A.

psidii, which has been shown to be unusually large for a fungal genome (Tan et al. 2014;

McTaggart et al. 2018).  Some of the increase in genome size has been attributed to an

enrichment of TEs (Tan et al. 2014).  The results of the above studies suggest that TEs have

played a significant role in adaptation to environment and hosts in these fungi.

Many fungal genomes limit the spread and distribution of MGEs by employing “genome

defence mechanisms”, but these mechanisms themselves may also drive divergence and

allow adaptation to particular niches. One such mechanism that has been more widely studied

in fungi is the repeat induced point (RIP) mutation pathway that occurs only in fungi where it

plays an important role in genome evolution and integrity (Clutterbuck 2011). RIP

counteracts the deleterious effect of MGEs by targeting duplicated sequences and inducing

C:G to T:A transitional mutations in the repeat regions, thereby disrupting MGEs and in the

cases of TEs potentially deactivating them (for detailed description see Hane et al. 2015 and

references therein). For example, in-silico analysis of Ceratocystis genome sequences with

software such as the RIPCAL suite (Hane and Oliver 2008; Hane and Oliver 2010) showed

that Fot5 TEs were likely rendered inactive (van der Nest et al. 2015). However, RIP may

also facilitate modification of genes because the process is somewhat leaky in that it also acts

on regions that neighbour MGEs, and RIP may act on any repeated sequences, whether they

are coding or not (Rouxel et al. 2011; Daverdin et al. 2012; Hane et al. 2015; Gladyshev

2017; Lelwala et al. 2019). Accordingly, RIP is now known to be capable of driving

diversification and development of genes related to pathogenicity (e.g. Rouxel et al. 2011;

Daverdin et al. 2012; Lelwala et al. 2019), thereby altering the pathogen-host interaction.
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Implementation of the recently developed software “The RIPper” (van Wyk et al. 2019a) will

significantly improve our capacity to study the impact of RIP on fungal genomes and the

biological consequences that this might have on fungal pathogens. “The RIPper,” is a user-

friendly set of web-based tools for genome-wide analysis of RIP in the Ascomycota. Making

use of this tool, together with other data has shown that F. circinatum and closely related

Fusarium species harbour molecular hallmarks of RIP, and that their genomes are impacted

by this process (van Wyk et al. 2019b). In these fungi, regions affected by RIP were gene-

sparse and flanked by numerous pseudogenes flanking the regions. Here, RIP appears to

drive the independent divergence of chromosomes and alters chromosome architecture,

suggesting that it has played a key role in the evolution and biology of F. circinatum and

closely related Fusarium species. Integration of RIP information with population genomic

studies and studies designed to compare the functions encoded across genomes will

undoubtedly reveal the significant role that this genome defence mechanism has played

during the evolution of fungal pathogens and their genomes.

Future prospects and conclusions

Genomics is a rapidly expanding and evolving field of study adding to the arsenal of tools

available to forest pathologists seeking to understand and manage tree disease problems.

Population genomics is one of the areas in this field that provides the most exciting short-

term future prospects. Rather than sequencing one or a few isolates of a species, multiple

isolates across populations of a species can be sequenced and compared for SNPs, gene

sequence and content differences, as well as variation in genome architecture. This enables

researchers working on fungal tree pathogens to develop considerably more robust

descriptions of pathogens. Also, to better understand the adaption of these pathogens to their

environment than has hitherto been possible.
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The advances made in recent genomics research are strongly dependent on the development

of new sequencing technologies. These have enabled researchers to produce genome

sequences, which are more complete and of higher quality than was possible in the past.

These technological advances make it possible to improve the outcomes of earlier genome

sequencing efforts, which often yielded highly fragmented sequences. Third generation or

single molecule sequencing can now be used to sequence full chromosomes as these

technologies can generate longer (more than 100 kilobase pair) sequences (Bleidorn 2016,

Wolters et al. 2018). Furthermore, these next-generation technologies can be used to

sequence the genomes of unculturable pathogens (Ahrendt et al. 2018, McTaggart et al.

2018), they are useful in metagenomics studies aimed at describing the community of

beneficial and non-beneficial organisms that inhabit a tree host (Kemler et al. 2013; Nilsson

et al. 2019), studying the ecology of fungi in forest soils (Lance et al. 2020) and screening for

exotic invasive pathogens (Tremblay et al. 2018).

Association mapping, such as quantitative trait locus mapping (QTL) and genome-wide

association studies (GWAS), provide important opportunities to identify loci influencing

complex heritable traits (Pritchard et al. 2000; Purcell et al. 2003). These techniques are

emerging in the field of tree pathology, as genetic variation can be measured across the

genome (Genissel et al. 2017; Plissonneau et al. 2017). For example, seven genomic loci

have been identified in the important conifer root pathogens Heterbasidium annosum that are

involved in virulence (Dalman et al. 2013). These loci encode genes known for virulence in

other fungal pathogens, as well as novel candidate virulence genes.

Functional characterization of genes is necessary to confirm the role of genetic features

identified in-silico. Strategies employed in functional characterization include targeted gene
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knockout technologies and in planta expression assays (Weld et al. 2006). A more recent

technology is the CRISPR-Cas9 system where sequences in the genome can be altered with

high precision (Ran et al. 2013). This is a rapidly emerging technology that is certain to be

applied in studies seeking to manage the negative impact of tree pathogens including those

affecting plantation forestry based on non-native species in the Southern Hemisphere.

Genomics as a technology provides a crucial component of systems biology studies. In such

studies, the focus is not on single genes or processes, but on the behaviour and relationships

of all elements in the biological system (Ideker et al. 2001; Kitano 2002a; Kitano 2002b).

Systems biology integrates data generated from genome sequencing, RNA expression

studies, gene regulatory networks, gene interaction studies and metabolomics into a model

and can be graphically displayed (Ideker et al. 2001). Such research will enable tree

pathologists to achieve an integrated view of how pathogens respond to their environments

and hosts. When incorporated with the systems biology of the host, such studies would lead

to important insights into pathosystems, which in turn could fortify disease management

strategies.

The many technologies linked to our ability to sequence fungal genomes have already made

possible considerable progress in understanding plant pathogens including those of trees.

While genomics studies on tree pathogens has understandably lagged behind those on

pathogens of food crops, this situation is changing rapidly and considerable work has already

been conducted on tree crops grown intensively in plantations of the Southern Hemisphere.

Plantation forestry based on non-native tree species in the tropics and Southern Hemisphere

has been very severely affected by diseases caused by fungi (Wingfield et al. 2001; Wingfield

et al. 2015c). This will continue in the future as new pathogens are increasingly moved
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globally through trade in forest products (Burgess and Wingfield 2016; Santini et al. 2018;

Sikes et al. 2018).  The sustainability of these plantation industries will increasingly rely on

the application of new technologies (Wingfield et al. 2013; Wingfield et al. 2015c) to deal

with these threats.
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Figure 1: Signs and symptoms associated with infections by selected pathogens of Pinus and

Eucalyptus grown in plantations of the Southern Hemisphere. (a) Pitch canker caused by F.

circinatum on P. patula (arrow indicates pitch exudation in response to infection). (b)

Chryphonectria canker on base of Eucalyptus sp. stem caused by Chrysoporthe cubensis. (c)

Eucalyptus leaves infected by Austropuccinia psidii (arrow shows uredosori and yellow spore

masses produced by the fungus). (d) Shoot infection on P. patula caused by Diplodia

sapinea.

(a) (b)

(c) (d)
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Figure 2: Overview of the steps taken during a whole genome sequencing project.

Extract genomic DNA

Fragement genomic DNA
and sequence fragments

Assemble overlapping
reads into contigs and
contigs into scaffolds

Gene prediction

Gene annotation

Read 001  ATTGTTGTACTT
Read 200         TACTTGGACGGT
Read 050                ACGGTTCGGTTACCTA
CONTIG    ATTGTTGTACTTGGACGGTTCGGTTACCTA

Gene 1 Gene 2 Gene 3 Gene 4

nad2 cox3 atp8 nad4



53

Figure 3: Number of genomes within different genome size ranges for Ascomycota and

Basidiomycota.
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Table 1: List of fungal forest pathogens for which genome sequences are publicly available (Species names in bold are fungal tree pathogens

relevant to Southern Hemisphere forestry).

Species Host Disease typea Year
sequenced

Genome
size

(Mb)
Type of articleb Reference

Phylum Ascomycota

Atropellis piniphila Pinus spp. Canker 2016 43.94 Unpublished JGI project
proposal ID: 1999

Botryosphaeria
dothidea

Broad host range Dieback of
woody hosts

2016 43.50 Research article Marsberg et al.
(2017)

Bretziella fagacearum Quercus spp. Oak wilt 2016 26.74 Genome
announcement

Wingfield et al.
(2016b)

Calonectria aciculata Eucalyptus spp. Leaf blight 2019 61.60 Genome
announcement

Liu et al. (2019)

Calonectria crousiana Eucalyptus spp. Leaf blight 2019 58.10 Genome
announcement

Liu et al. (2019)
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Table 1 (continued)

Species Host Disease typea Year
sequenced

Genome
size

(Mb)
Type of articleb Reference

Calonectria
fujianensis

Eucalyptus spp. Leaf blight 2019 61.5 Genome
announcement

Liu et al. (2019)

Calonectria
henricotiae

Buxus spp.,
Sarcococca spp.,
Pachysandra spp.

Leaf blight 2016 49.05 Research article Malapi-Wight et
al. (2016)

Calonectria
pseudonaviculata

Buxus spp.
Sarcococca spp.
Pachysandra spp.

Leaf blight 2016 54.97 Research article Malapi-Wight et
al. (2016)

Calonectria
pseudoreteaudii

Eucalyptus spp. Leaf blight 2018 63.70 Research article Ye et al. (2018)

Celoporthe dispersa Eucalyptus spp. Canker 2019 40.00 Genome
announcement

Liu et al. (2019)

Ceratocystis
albifundus

Acacia mearnsii Wilt 2014 27.15 Genome
announcement

van der Nest et al.
(2014b)

Ceratocystis
eucalypticola

Eucalyptus spp. Wilt 2015 31.26 Genome
announcement

Wingfield et al.
(2015b)

Ceratocystis fimbriata Eucalyptus spp. Wilt 2019 29.41 Research article Santos et al.
(2020)
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Table 1 (continued)

Species Host Disease typea Year
sequenced

Genome
size

(Mb)
Type of articleb Reference

Ceratocystis
harringtonii

Populus spp. Canker 2016 31.06 Genome
announcement

Wingfield et al.
(2016b)

Ceratocystis
manginecans

Acacia mangium Wilt 2014 31.70 Genome
announcement

van der Nest et al.
(2014b)

Ceratocystis smalleyi Carya spp. Canker 2018 27.31 Genome
announcement

Wingfield et al.
(2018a)

Chrysoporthe
austroafricana

Eucalyptus spp. Canker 2015 44.67 Genome
announcement

Wingfield et al.
(2015a)

Chrysoporthe
cubensis

Eucalyptus spp. Canker 2015 42.62 Genome
announcement

Wingfield et al.
(2015b)

Chrysoporthe
deuterocubensis

Eucalyptus spp. Chrysoporthe
canker

2015 43.97 Genome
announcement

Wingfield et al.
(2015b)

Corinectria fuckeliana Pinus spp., Fagus
spp.,
Betula spp., Abies
spp., Picea spp.,
Ulmus spp.

Canker 2019 39.00 Genome
announcement

Salgado-Salazar
and Crouch (2019)
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Table 1 (continued)

Species Host Disease typea Year
sequenced

Genome
size

(Mb)
Type of articleb Reference

Corynespora
cassiicola

Hevea brasiliensis Leaf necrosis 2018 44.85 Research article  Lopez et al. (2018)

Cryphonectria
parasitica

Castanea spp. Canker 2010 43.90 Unpublished JGI project
proposal ID: 2099

Cryptodiaporthe
populea

Populus spp. Canker 2016 56.94 Unpublished JGI project
proposal ID: 1999

Cytospora
chrysosperma

Populus spp. Canker 2016 36.55 Unpublished JGI project
proposal ID: 1999

Davidsoniella
virescens

Acer saccharum Dieback 2015 33.65 Genome
announcement

Wingfield et al.
(2015b)

Diplodia sapinea Pinus spp. Tip blight,
canker, dieback

2014 36.97 Research article van der Nest et al.
(2014b)

Diplodia scrobiculata Pinus spp. Shoot blight 2015 35.85 Genome
announcement

Wingfield et al.
(2015a)

Dothistroma
septosporum

Pinus spp. Needle blight 2012 30.21 Research article De Wit et al. 2012

Elytroderma
deformans

Pinus spp. Needle cast 2017 50.48 Unpublished JGI project
proposal ID: 1999



58

Table 1 (continued)

Species Host Disease typea Year
sequenced

Genome
size

(Mb)
Type of articleb Reference

Endoconidiophora
laricicola

Picea abies Dieback 2016 32.78 Genome
announcement

Wingfield et al.
(2016a)

Endoconidiophora
polonica

Larix decidua
Picea abies

Blue stain 2016 32.46 Genome
announcement

Wingfield et al.
(2016a)

Entoleuca mammata Populus spp. Canker 2016 47.20 Unpublished JGI project
proposal ID: 1999

Fusarium circinatum Pinus spp. Canker 2009 43.92 Research article Wingfield et al.
(2012)

Fusarium euwallaceae Broad host range Dieback 2017 48.27 Genome
announcement

Ibarra-Laclette et
al. (2017)

Fusarium
pininemorale

Pinus spp. Canker 2017 47.78 Genome
announcement

Wingfield et al.
(2017)

Geosmithia morbida Juglans spp. Canker 2016 26.50 Research article Schuelke et al.
(2016)

Gremmeniella
abietina

Pinus spp., Abies spp.,
Picea spp.

Canker 2016 38.81 Unpublished JGI project
proposal ID: 1999

Grosmannia clavigera Pinus spp. Blue stain 2009 30.00 Research article DiGuistini et al.
(2011)
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Species Host Disease typea Year
sequenced

Genome
size

(Mb)
Type of articleb Reference

Huntiella omanensis Mangifera indica Sudden decline 2014 31.50 Genome
announcement

van der Nest et al.
(2014a)

Hymenoscyphus
fraxineus

Fraxinus spp. Dieback 2017 62.28 Research article Stenlid et al.
(2017)

Lecanosticta acicola Pinus spp. Needle blight 2017 28.42 Unpublished NCBI accession
AWYC00000000

Leptographium
longiclavatum

Pinus spp. Blue stain 2014 28.90 Research article Ojeda et al. (2014)

Leptographium
procerum

Pinus spp. Root decline 2014 28.6 Genome
announcement

van der Nest et al.
(2014a)

Marssonina brunnea Populus spp. Leaf spot 2012 52.00 Research article Zhu et al. (2012)
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Table 1 (continued)

Species Host Disease typea Year
sequenced

Genome
size

(Mb)
Type of articleb Reference

Neonectria punicea Pinus spp., Fagus
spp.,
Betula spp., Abies
spp., Picea spp.,
Ulmus spp.

Canker 2019 43.20 Genome
announcement

Salgado-Salazar
and Crouch (2019)

Ophiognomonia
clavigignenti-
juglandacearum

Juglans cinerea Canker and
branch dieback

2019 52.60 Research article Wu et al. (2019)

Ophiostoma bicolor Picea spp. Blue stain 2017 25.30 Research article Lah et al. (2017)

Ophiostoma novo-
ulmi

Ulmus spp. Wilt 2013 31.78 Research article Cuomo et al.
(2007)

Ophiostoma ulmi Ulmus spp. Wilt 2013 31.50 Research article Khoshraftar et al.
(2013)

Raffaelea lauricola Persea spp. Wilt 2019 34.60 Research article Vanderpool et al.
(2018)

Raffaelea quercivora Quercus spp. Wilt 2017 26.41 Research article Vanderpool et al.
(2018)
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Table 1 (continued)

Species Host Disease typea Year
sequenced

Genome
size

(Mb)
Type of articleb Reference

Raffaelea quercus-
mongolicae

Quercus spp. Wilt 2017 27.00 Genome
announcement

Jeon et al. (2017)

Septoria musiva Populus spp. Leaf spot and
canker

2012 29.35 Research article Ohm et al. (2012)

Septoria populicola Populus spp. Leaf spot 2012 33.19 Research article Ohm et al. (2012)

Taphrina betulina Betula spp. Host tissue
deformities

2019 12.50 Genome
announcement

Heneghan et al.
(2019)

Taphrina populi-
salicis

Populus spp. Leaf blister 2017 13.21 Unpublished JGI project
proposal ID: 1999

Teratosphaeria
destructans

Eucalyptus spp. Leaf and shoot
blight

2018 32.32 Genome
announcement

Wingfield et al.
(2018b)

Teratosphaeria
gauchensis

Eucalyptus spp. Canker 2019 30.27 Genome
announcement

Wingfield et al.
(2019)

Teratosphaeria
zuluensis

Eucalyptus spp. Canker 2019 28.71 Genome
announcement

Wingfield et al.
(2019)
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Table 1 (continued)

Species Host Disease typea Year
sequenced

Genome
size

(Mb)
Type of articleb Reference

Phylum: Basidiomycota

Armillaria borealis Broad host range Root rot 2018 71.69 Unpublished JGI project
proposal ID: 1974

Armillaria ectypa Bryophytes Saprophyte 2019 40.60 Unpublished JGI project
proposal ID: 1974

Armillaria fuscipes Broad host range Root rot 2016 53.00 Genome
announcement

Wingfield et al.
(2016a)

Armillaria gallica Broad host range Root rot 2017 85.34 Research article Sipos et al. (2017)

Armillaria
luteobubalina

Eucalyptus spp. Root rot 2019 97.11 Unpublished JGI project
proposal ID: 1974

Armillaria mellea Broad host range Root rot 2013 58.35 Research article Collins et al.
(2013)

Armillaria nabsnona Broad host range Root rot 2018 62.72 Unpublished JGI project
proposal ID: 1974

Armillaria ostoyae Broad host range Root rot 2017 60.11 Research article Sipos et al. (2017)
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Table 1 (continued)

Species Host Disease typea Year
sequenced

Genome
size

(Mb)
Type of articleb Reference

Armillaria solidipes Broad host range Root rot 2017 58.01 Research article Sipos et al. (2017)

Armillaria tabescens Broad host range Root rot 2019 74.88 Unpublished JGI project
proposal ID: 1974

Austropuccinia psidii Species of Myrtaceae Foliar rust,
stem blight

2018 1 200.00 Research article McTaggart et al.
(2018)

Chondrostereum
purpureum

Species of Rosacea White rot 2019 41.20 Research article Reina et al. (2019)

Coniferiporia
sulphurascens

Species of Pinaceae Laminated root
rot

2017 39.34 Research article Chung et al.
(2017)

Cronartium
comandrae

Pinus spp. Canker 2013 68.60 Unpublished NCBI accession
AUZW00000000.
1

Cronartium quercuum
f.sp. fusiforme

Pinus spp., Quercus
spp.

Gall and canker 2014 76.57 Research article Pendleton et al.
(2014)

Cronartium ribicola Pinus spp. Canker 2013 94.33 Unpublished NCBI accession
AWVX00000000
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Table 1 (continued)

Species Host Disease typea Year
sequenced

Genome
size

(Mb)
Type of articleb Reference

Ganoderma spp. Broad host range Root rot 2013 39.52 Research article Binder et al.
(2013)

Heterobasidion
annosum

Broad host range Root rot 2017 33.10 Research article Choi et al. (2017)

Heterobasidion
irregulare

Broad host range Root rot 2012 33.65 Research article Olson et al. (2012)

Heterobasidion
parviporum

Broad host range Root rot 2018 37.76 Research article Zeng et al. (2018)

Melampsora allii-
populina

Populus spp. Foliar rust 2015 335.73 Unpublished JGI project
proposal ID: 662

Melampsora larici-
populina

Populus spp. Foliar rust 2011 101.10 Research article Duplessis et al.
(2011)

Melampsora medusae
f. sp. deltoidis

Populus spp. Foliar rust 2017 139.73 Unpublished JGI project
proposal ID: 1999

Melampsora medusae
f. sp. tremuloidae

Populus spp. Foliar rust 2017 145.19 Unpublished JGI project
proposal ID: 1999
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Table 1 (continued)

Species Host Disease typea Year
sequenced

Genome
size

(Mb)
Type of articleb Reference

Phellinus noxius Broad host range Root rot 2017 31.60 Research article Chung et al.
(2017)

Quambalaria
eucalypti

Eucalyptus spp. Shoot and leaf
dieback

2018 23.50 Genome
announcement

Wingfield et al.
(2018b)

a Disease type based on the descriptions of the major symptoms.

b Genome announcement is a short article describing the sequencing and assembly of the genome. A research article is more descriptive, and

usually more analysis has been performed to describe the genomic features. In the case of no publication, the genome sequence is available in

public databases, but no article or announcement has been published by March 2020. For the latter, relevant project or sequence accessions are

provided in the Reference column (JGI = Joint Genome Institute, US Department of Energy, Lawrence Berkeley National Laboratory,

California; NCBI = National Center for Biotechnology Information, US National Library of Medicine, Maryland).
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Table 2: Genome size characteristics of fungal forest tree pathogens.
Phylum Average (Mb) Median (Mb) Smallest size (Mb) Largest size (Mb)
Ascomycota 37.93 34.60 12.50 63.70
Basidiomycota 120.48 61.42 31.60 1200.00
All genomes 62.88 40.30 12.50 1200.00


