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The current approach for person identification consists of handing over a paper ID 

document which consists only of a picture of the person’s face, usually at a much younger 

age. Human intuition provides the means to make a comparison between the person in the 

picture and the person handing over the document. With the rise in personal electronic 

devices such as smartphones and tablets, alternative solutions such as mobile biometrics 

have become feasible especially since these security mechanisms are also being studied as 

solutions to securing the mobile devices themselves from unauthorised login. Instead of 

presenting a paper ID document, a person may present a contactless smartcard or even an 

NFC-enabled smartphone on which biometric data is securely stored. The data may be read 

from the card or the phone using another phone with NFC capability. The sensors of the 

receiving smartphone can then be used to take biometric measurements of the person to 

verify the biometric template that the person presented. In this way, the sensors and 

processor of a phone perform the recognition instead of a human, and extra layers of 

security can be added over paper ID documents by allowing traits such as voice, teeth, or 

hand geometry to be identifiable, instead of only the person’s face. Additionally, the 

biometric data can easily be updated on an electronic device as a person ages, whereas the 

same photo on ID documents are currently used for many years to avoid the time-

consuming reprinting and issuing processes. 
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A study was performed to determine the feasibility of a novel identification solution using 

NFC and biometrics on a smartphone. The solution allows the user to use a smartphone or 

an RFID tag as a replacement for a paper ID document without adding overhead to the 

identification process. NFC is a close-proximity communication technology and is utilised 

as the enabling technology for this solution by allowing users to touch phones together or 

to touch an RFID tag with a phone to read the required biometric data. NFC does not 

require any connection setup or device pairing, which means the “handing over” of an ID 

document is not substituted with a laborious electronic process, but rather by the simple 

touch of a phone. For the biometric system, the main focus was on speaker recognition 

using the built-in microphone of a smartphone, although a basic face recognition system 

was also developed using the built-in camera. The Google Nexus S was used as the 

platform for the smartphone implementation. The Nexus S runs the Android operating 

system which was used to develop biometric algorithms in both Java and native C/C++. 

Various open-source libraries were ported to Android mainly to provide pattern 

recognition algorithms. 

 

For the first experiment a Java-based speaker recognition system was developed. The 

system was trained with a database of 27 speakers under various environmental conditions. 

In terms of performance, the smartphone could perform biometric enrolment and classifier 

training in about 400 milliseconds when distance-based classification algorithms were 

used. This excludes the time of the recording, which depends on the length of the sentence 

that is spoken. Verification of the biometric template can be performed in about 3 seconds. 

The processing time was compared with a standard PC and it was found that the phone was 

about 30 times slower, which is to be expected, but the processing time of most algorithms 

was still found to be very reasonable for the implementation of a user-friendly system. The 

identification accuracy of the system reached 82.76% for the top performing algorithm. 

Similarly, in the second experiment, it was found that the phone could perform training and 

verification in about 150 milliseconds for a face recognition application in C++. This was 

found to be about 21 times slower than a PC. In both experiments, no reduction in 

identification accuracy was observed when comparing the phone to the PC. A database 

with 40 subjects was used to train the system and identification accuracy reached 89.17%. 

 

A third experiment was conducted to study a complete end-to-end proof-of-concept 

implementation of a smartphone-based peer-to-peer biometric system. A second speaker 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



recognition application was developed and different variables were studied under varying 

conditions in the biometric system. These included the effect of audio sample rate, text-

independence, and feature vector size on system accuracy, processing time and NFC 

transmission time. The system was trained with only a single user and 4 intruders 

attempted to verify themselves as the legitimate user. Upon changing the audio sample rate 

from 8 kHz to 44.1 kHz, no noticeable improvement could be observed in accuracy since 

the human voice does not generally extend to frequencies above 4 kHz. Feature vector size 

and text independence generally had a significant effect on the accuracy of the system. 

Text independence in this context refers to the user of the system being verified when 

speaking a sentence that was not used for enrolment. NFC transmission time was shown to 

vary from approximately 700 to 4000 milliseconds for different feature vector sizes stored 

on various RFID tags as well as peer-to-peer transmission between phones. A comparison 

was also made between two different programming languages, Java and C++, which are 

available for Android development. It was found that the processing time could be 

decreased by a factor of 9 when developing a native C++ application instead of Java, 

which requires applications to run on the Dalvik virtual machine in Android. Both the Java 

and C++ libraries of Android are quite limited (to suit the ARM architecture) and many 

modifications are required to port open-source desktop software to Android, even though 

Android is Linux-based. It was found, however, that the porting of C++ software to 

Android generally requires many more code modifications than Java which was expected 

since Java is generally considered very portable. 

 

In South Africa, as in many other countries, paper ID documents are systematically being 

replaced by contactless smartcards with a stored biometric template on the card. NFC 

phones could theoretically read the biometric template from these cards and compare with 

a measured trait provided that the phone supports the applicable sensor. In the future, ID 

information could be stored in a secure element embedded in a smartphone or based in the 

cloud. The results of the experiments in this dissertation show that smartphones and tablets 

have become powerful enough to allow for user-friendly implementations of the 

identification solution proposed. The accuracy of voice and face biometrics are generally 

lower when compared to established technologies such as fingerprint biometrics. 

Fingerprint scanners are currently entering the mobile space and when combined with 

other modalities such as voice and face, very secure verification will be possible. The 

combination of biometric modalities, allows a higher level of certainty when identifying 
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people. Multimodal biometrics does however increase the processing requirements, which 

is why performance analyses are important for mobile devices. 
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Die huidige benadering vir persoonsidentifisering behels die oorhandiging van ŉ papier ID 

dokument wat slegs uit ŉ foto van die persoon se gesig bestaan, gewoonlik by ŉ baie 

jonger ouderdom. Menslike intuïsie verskaf die metode om ŉ vergelyking te tref tussen die 

persoon in die foto en die persoon wat die dokument oorhandig. Met die styging in 

persoonlike elektroniese toestelle soos slimfone en tablette het alternatiewe oplossings soos 

mobiele biometrie haalbaar geraak, veral sienend dat hierdie sekuriteitsmeganismes ook 

bestudeer word as ŉ oplossing om die mobiele toestelle self te beskerm teen ongemagtigde 

toegang. In plaas daarvan om ŉ papier ID dokument te vertoon kan ŉ persoon ŉ kontaklose 

slimkaart vertoon of selfs ŉ NFC-gemagtigde slimfoon waarop biometriese data veilig 

gestoor is. Die data kan vanaf die kaart of foon gelees word deur middel van ŉ ander foon 

met NFC vermoë. Die sensors van die ontvangende slimfoon kan dan gebruik word om 

biometriese metings van die persoon te neem om die biometriese templaat te verifieer wat 

deur die persoon vertoon was. In dié manier voer die sensors en verwerker van die foon die 

herkenning uit in plaas van ŉ mens en ekstra vlakke van sekuriteit kan bygevoeg word oor 

papier ID dokumente deur toe te laat dat eienskappe soos stem, tande, of handafmetings 

identifiseerbaar is, in plaas van slegs die persoon se gesig. Daarbenewens kan die 

biometriese data maklik opgedateer word op elektroniese toestelle terwyl ŉ persoon 
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verouder, terwyl dieselfde foto op ID dokumente tans vir baie jare gebruik word om 

tydsame herdrukking en uitreikingsprosesse te vermy. 

 

ŉ Studie was uitgevoer om vas te stel of ŉ nuwe identifiseringsoplossing wat gebruik maak 

van NFC en biometrie haalbaar is op ŉ slimfoon. Die oplossing laat die gebruiker toe om ŉ 

slimfoon of RFID merker te gebruik as ŉ plaasvervanger vir papier ID dokumente sonder 

om bo-koste by te voeg tot die identifiseringsproses. NFC is ŉ kortafstand 

kommunikasietegnologie en word gebruik as die bemagtigende tegnologie vir hierdie 

oplossing deur die gebruiker toe te laat om fone in kontak te bring of ŉ RFID merker te 

raak met ŉ foon om die benodigde biometriese data te lees. NFC vereis nie konneksie 

opstelling of toestel afparing nie, wat beteken dat die oorhandiging van ŉ ID dokument nie 

vervang word met ŉ moeisame elektroniese proses nie, maar eerder deur die eenvoudige 

aanraking van ŉ foon. Die hooffokus van die biometriese stelsel was op sprekerherkenning 

deur middel van die ingeboude mikrofoon van die slimfoon, alhoewel ŉ basiese 

gesigsherkenningsisteem wat gebruik maak van die ingeboude kamera, ook ontwikkel was. 

Die Google Nexus S was gebruik as die platform vir die slimfoon implementering. Die 

Nexus S hardloop die Android beheerstelsel wat gebruik was om die biometriese 

algoritmes te ontwikkel in beide Java en inheemse C/C++. Verskeie oopbron sagteware 

was gepoort na Android hoofsaaklik vir patroonherkenningsalgoritmes. 

 

Vir die eerste eksperiment was ŉ Java-gebaseerde sprekerherkenningstelsel ontwikkel. Die 

stelsel was opgelei met ŉ databasis van 27 sprekers onder verskeie omgewingstoestande. 

In terme van werkverrigting kon die slimfoon biometriese inskrywing en 

klassifiseerderopleiding uitvoer in omtrent 400 millisekondes toe afstandsgebaseerde 

klassifiseringsalgoritmes gebruik was. Dit sluit nie die tyd in vir opname nie, wat afhang 

van die lengte van die sin wat uitgespreek word. Verifiëring van die biometriese templaat 

kan uitgevoer word in ongeveer 3 sekondes. Die uitvoeringstyd was vergelyk met ŉ 

standaard persoonlike rekenaar en dit was gevind dat die foon omtrent 30 keer stadiger 

was, wat te verwagte is, maar die uitvoeringstyd van meeste algoritmes was steeds bevind 

om baie redelik te wees vir die implementering van ŉ gebruikersvriendelike stelsel. Die 

identifiseringsakkuraatheid van die stelsel het 82.76% bereik vir die top presterende 

algoritme. Eweneens was dit in die tweede eksperiment gevind dat die foon opleiding en 

verifiëring kon uitvoer in omtrent 150 millisekondes vir ŉ gesigsherkenningstoepassing in 

C++. Dit was bevind dat hierdie toepassing 21 keer stadiger was as op ŉ persoonlike 

rekenaar. In beide eksperimente was geen afname in identifiseringsakkuraatheid 
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waargeneem toe die foon met die persoonlike rekenaar vergelyk is nie. ŉ Databasis met 40 

onderwerpe was gebruik om die stelsel op te lei en die identifiseringsakkuraatheid het 

89.17% bereik. 

 

ŉ Derde eksperiment was uitgevoer om ŉ punt-tot-punt bewys-van-konsep implementering 

van ŉ slimfoon-gebaseerde eweknie-tot-eweknie biometriese stelsel in geheel te bestudeer. 

ŉ Tweede sprekerherkenningstelsel was ontwikkel en verskeie veranderlikes was bestudeer 

onder variërende omstandighede in die biometriese stelsel. Dit het ingesluit die invloed van 

monsteringstempo, teks-onafhanklikheid, en kenmerkvektor lengte op stelsel akkuraatheid, 

verwerkingstyd en NFC oordragtyd. Die stelsel was opgelei met slegs ŉ enkele gebruiker 

en 4 indringers het gepoog om hulself te verifieer as die regmatige gebruiker. Na afloop 

van ŉ verandering in die oudiomonsteringstempo vanaf 8 kHz na 44.1 kHz, was geen 

opmerkbare verbetering waargeneem in akkuraatheid nie, aangesien die menslike stem 

gewoonlik nie frekwensies hoër as 4 kHz bereik nie. Kenmerkvektor grootte en teks-

onafhanklikheid het oor die algemeen ŉ aansienlike invloed op die akkuraatheid van die 

stelsel gehad. Teks-onafhanklikheid in hierdie konteks verwys na die gebruiker van die 

stelsel wat geverifieer word wanneer ŉ sin uitgespreek word wat nie gebruik was tydens 

inskrywing nie. NFC oordragtyd was bewys om te varieer vanaf ongeveer 700 tot 4000 

millisekondes vir verskillende kenmerkvektor groottes, gestoor op verskillende RFID 

merkers, en ook eweknie-tot-eweknie oordrag tussen fone. ŉ Vergelyking was ook getref 

tussen twee verskillende programmeringstale, Java en C++, wat beskikbaar is vir Android 

ontwikkeling. Dit was bevind dat die verwerkingstyd met ŉ faktor van 9 verminder kon 

word wanneer C++ toepassings ontwikkel word in plaas van Java, wat benodig dat 

toepassings op die Dalvik virtuele masjien hardloop in Android. Beide die Java en C++ 

sagtewarebiblioteke in Android is taamlik beperk (om by die ARM argitektuur aan te pas) 

en baie aanpassings is nodig om oopbron sagteware na Android te poort al is Android op 

Linux gebaseer. Dit was egter gevind dat om C++ sagteware na Android te poort baie meer 

kode aanpassings benodig oor die algemeen as Java, wat te verwagte was aangesien Java 

oor die algemeen as baie poortbaar beskou word.  

 

In Suid-Afrika, soos in baie ander lande, word papier ID dokumente stelselmatig vervang 

met kontaklose slimkaarte met ŉ gestoorde biometriese templaat op die kaart. NFC fone 

kan teoreties die biometriese templaat vanaf hierdie kaarte lees en vergelyk met ŉ gemete 

eienskap solank die foon die toepaslike sensor ondersteun. In die toekoms kan ID 

informasie gestoor word in ŉ sekuriteitselement wat in ŉ slimfoon ingebed is of in die 
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wolk gebaseer is. Die resultate van die eksperimente in hierdie verhandeling wys dat 

slimfone en tablette kragtig genoeg geword het om gebruikersvriendelike implementerings 

van die voorgestelde identifiseringsoplossing toe te laat. Die akkuraatheid van stem- en 

gesigsbiometrie is in die algemeen laer wanneer dit vergelyk word met gevestigde 

tegnologieë soos vingerafdrukbiometrie. Vingerafdrukskandeerders is tans besig om die 

mobiele spasie in te tree en wanneer dit gekombineer word met ander modaliteite soos 

stem en gesig, sal baie veilige verifiëring moontlik wees. Die kombinasie van verskeie 

biometriese modaliteite laat ŉ hoër vlak van sekerheid toe wanneer mense geïdentifiseer 

word. Multimodale biometrie verhoog egter die verwerkingsvereistes, wat die rede is 

waarom werkverrigtingsanalises belangrik is vir mobiele toestelle. 
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CHAPTER 1   INTRODUCTION 

1.1 PROBLEM STATEMENT 

1.1.1 Context of the problem 

After the invention of radio frequency identification (RFID) technology, sensing 

applications utilising RFID soon followed. Sensors were provided with the ability to 

communicate wirelessly at a close distance, with no effect on power consumption [1]. 

When the data generated by these sensors required processing, a computer was utilised, 

which meant that a link was necessary between a computer and the sensor. Traditionally, a 

specialised RFID reader would be used to gather data from the sensor, after which the 

reader would be physically or wirelessly connected to a computer in reasonably close 

proximity [2]. Another approach would be to fit the sensor with a microprocessor or 

microcontroller, to enable local processing of data, but this meant that the sensor would 

consume much more power. Mobile devices can offer a quicker and more portable 

approach. 

 

High-end smartphones have recently started to feature near field communication (NFC) 

capabilities. NFC, a successor to RFID, is a close-range communication technology that is 

compatible with RFID, but also features a peer-to-peer communication mode between 

active devices. This means that NFC phones can read and write data on RFID tags (or 

RFID sensors) and also transmit data to other NFC phones by simply touching devices 

together. It therefore eliminates the need for the time-consuming connection setup that is 

required by other similar peer-to-peer communication technologies. 

 

As the processing power and memory capacity of smartphones gradually increase, they 

become more suitable for processing-intensive applications that were previously limited to 

specialised hardware, desktop computers and laptops [3]. Mobile phones have undergone a 

metamorphosis to a general-purpose, mobile computer with a plethora of sensors, input-

output devices and wireless connection capabilities. A wide scope of applications have 

emerged involving mobile devices, as is evident from the numbers of mobile “apps” that 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 1 Introduction 

 

Department of Electrical, Electronic and Computer Engineering 2 
University of Pretoria 

are available for each platform on their respective “app markets”. One area that benefits 

from the rise of mobile devices is in measurement and processing applications, such as 

biometric recognition. This project studies the feasibility of using smartphones as 

biometric devices. 

1.1.2 Research gap 

In applications where the security requirements are very strict, a forgeable paper or plastic 

identity card may not be adequate. Electronic identification documents are already being 

introduced in many countries, including South Africa. Many of these documents contain an 

RFID chip with stored biometric data (in South Africa a thumb print biometric template is 

stored on the card). The biometric template can be read from the card and compared to the 

template generated from measuring the applicable trait of the person to determine if the 

card is legitimate. Authenticity and integrity of the biometric template on the RFID tag can 

be ensured using a digital signature of the issuing authority. 

 

RFID tags can be made very small and it is possible to insert these tags physically into the 

human body. Although many argue that there would be numerous benefits to such an 

approach, such as increased national and personal security and reduced medical risks, 

others argue that this approach is an extreme invasion of privacy and allows people to be 

tracked everywhere they go. Nevertheless it has been found that the overall acceptance of 

implanted RFID chips have been steadily increasing due to three issues: terrorism, identity 

theft, and the convenience of not having to physically carry around documents and not 

having to memorise personal identification number (PIN) codes. 

 

Previous works have studied the implementation of biometrics on smartphones for the 

purpose of authenticating users of the devices. In these approaches, biometric recognition 

would be used to replace a PIN. It is however also possible to use biometrics on 

smartphones for the purpose of identifying peers. In this approach, smartphones can be 

used to replace paper-based identification documents. RFID-based identification 

documents are already in use and the use of NFC phones would ensure compatibility with 

these documents. Since NFC is currently enabling smartphones to replace wallets, keys and 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 1 Introduction 

 

Department of Electrical, Electronic and Computer Engineering 3 
University of Pretoria 

tickets, this project proposes that NFC-smartphones could also be used to replace 

identification documents. 

 

The study of a peer-to-peer biometrics application on smartphones has various 

ramifications, such as enabling user-friendly data transfer for the casual user, keeping the 

recognition time low while providing adequate accuracy, mitigating the possibility of 

fraud, etc. 

1.2 RESEARCH OBJECTIVE AND QUESTIONS 

The main objective of this project was to quantitatively study the feasibility of a security 

approach based on smartphones and biometric recognition, and to analyse various 

ramifications and practical issues of such a system. The viability of mobile biometrics in 

conjunction with NFC was researched with specific focus on usability, speed, accuracy and 

security to determine if such an approach could be adopted instead of paper-based 

identification documents. A peer-to-peer biometrics system was developed and tested. The 

objective of the system is to enable any user in possession of an NFC-enabled smartphone, 

to be able to identify another individual by touching phones together (or touching the RFID 

tag of an individual with the phone) and then taking measurements of biometric traits of 

the individual using the sensors of the phone (such as a camera, microphone, 

accelerometer). 

 

The following research questions were posed. 

• Can smartphones be utilised as a platform for biometric recognition with 

reasonable performance in terms of recognition accuracy and processing time? Do 

general purpose mobile devices consequently provide a viable alternative to 

specialised biometric equipment? 

• How will a high-end smartphone perform in comparison with a standard personal 

computer (PC) running a desktop Linux distribution? 
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• Will open-source software libraries for feature extraction and pattern classification 

algorithms be portable to a smartphone platform, and specifically to the Android 

platform? If so, will these libraries provide adequate verification accuracy? 

• How will system factors such as feature vector size affect NFC transmission time, 

identification accuracy, and processing time? 

• How will the performance differ between non-native Java and native C++ 

implementations of similar biometric applications on a mobile platform? 

Considering other factors, such as code availability and portability, will Java or 

C++ provide a more feasible solution for the implementation of biometric 

algorithms? 

1.3 HYPOTHESIS AND APPROACH 

It was hypothesised that a current high-end smartphone would possess adequate memory 

and processing capabilities, as well as the necessary sensor availability and acuity, to be 

utilised as an off-the-shelf biometric verification device. A uni-modal or multi-modal 

biometric application can be executed on such a phone by utilising pattern recognition 

algorithms provided by open-source software libraries, which should be portable to mobile 

platforms when edited and recompiled. Short range data transmission may be facilitated by 

the built-in NFC capability of a smartphone, which can act as an enabling communication 

technology for the implementation of an interactive biometric application that ultimately 

aims to replace identification documents with mobile devices. NFC also provides the 

means to read and store data on RFID tags, which is a technology that is already used in 

identification documents. 

 

The research approach was to develop biometric software and to benchmark the 

performance thereof for both a PC and an Android smartphone, in C++ and Java. Open-

source libraries were ported to Android and compared to the identical implementations on 

the PC. The main focus was on speaker recognition, although an initial face recognition 

application was also implemented to study the possibility of multi-modal biometrics. Two 

applications, one in Java and one in C++, were implemented on both a standard PC and a 

Google Nexus S smartphone to analyse the relative processing power of each and a third 
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application was developed only on the phone, but in both Java and C++ to compare native 

and non-native code on Android, as well as to explore the effect of various system 

configurations on system performance.  

1.4 RESEARCH GOALS 

At the onset of this research project, the following goals were set. 

• To develop a security system in which users in possession of a smartphone should 

be able to identify one another dynamically by touching smartphones and then 

taking one or more biometric measurements using for example the phone’s camera 

or microphone. Algorithms running on the phone can then compare the measured 

trait with the stored trait. 

• To determine whether current smartphones possess enough processing power for 

the execution of a complex sensing and processing task, such as biometric 

recognition. Consequently, a conclusion could be reached on whether general 

purpose mobile devices provide a viable alternative to specialised equipment in the 

biometrics space. 

• To determine which biometric system configurations provide the best performance 

on a smartphone and which trade-offs should be taken into consideration when 

developing such as system. 

• To analyse the portability of open-source desktop software to the Android platform 

in both C++ and Java, and to compare the porting process between the two 

languages. 

• To analyse the difference in processing time that native C/C++ code provides on an 

Android phone when compared to standard Java code. 

• To determine, using the processing time, accuracy and NFC transmission time, 

whether a peer-to-peer biometric system on a smartphone is practically feasible. 

• To study the feasibility of biometric data storage and retrieval on RFID tags. 
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1.5 RESEARCH CONTRIBUTION 

Although the use of biometric authentication on smartphones has been explored in 

literature, the work has mostly been directed at user log-in authentication and not at peer-

to-peer identification. This project explored the use of smartphones for peer-to-peer 

biometric authentication and considered smartphones as a portable and ubiquitous 

alternative to specialised biometric equipment, as well as an electronic alternative to paper 

identification documents.  

 

In this project, the RFID based identification method is extended with its successor 

technology NFC. Instead of still having to carry around the electronic RFID version of 

identification documents, a mobile phone may be used by itself, providing all the required 

processing, communication and security requirements. This approach negates the need for 

any other equipment. A mobile biometrics application can benefit from using NFC for the 

passing of data in the form of biometric templates or identification information, such as 

business, cards between phones at close physical proximity. NFC is very quick when 

passing only a small amount of data because there is no set-up required to initiate 

communication as with other short range wireless technologies. The compatibility between 

NFC and RFID also enables the use of RFID tags as small storage devices for biometric 

template data and other applicable identification data. 

 

The main quantitative research contributions of this research project were to measure the 

processing capabilities of mobile devices in the context of biometric pattern recognition 

under various system configurations and to study code portability from desktop devices to 

mobile devices. Processing time and application simplicity from the user’s perspective 

were used to analyse the usability of the proposed system.  

1.6 OVERVIEW OF STUDY 

This dissertation discusses the implementation of biometric recognition applications on a 

high-end Android smartphone. Existing open-source software was ported to the Android 

platform in both C++ and Java and then interfaced with the built-in sensors of the phone 
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using the Android application programming interface (API). These applications serve both 

as processing benchmarks as well as a proof-of-concept implementation. 

 

Three experiments were carried out for this research project, in addition to a literature 

study on NFC, RFID sensing, biometric recognition in general, and various specific 

biometric modalities such as face and speaker recognition. For the first experiment, a 

speaker recognition application was developed in Java, using the MARF (modular audio 

recognition framework) open-source library. This application was used to compare the 

processing power between a PC and a high-end smartphone when running Java 

applications, as well as to set an initial standard for the biometric verification accuracy on a 

smartphone. For the second experiment, OpenCV (open-source computer vision) was used 

for the implementation of a simple face recognition application in C++. The application 

was used for a performance comparison of C++ code between a PC and a smartphone. In 

the third experiment, a second speaker recognition application was implemented to study a 

complete end-to-end biometric system with NFC communication. System performance was 

studied under various configurations and a comparison was also made between a Java and 

a C++ implementation on an Android smartphone. In Java the library jAudio was used and 

in C++ the SPro library was used for the implementation of linear predictive coding (LPC) 

feature extraction. For classification, a simple distance-based algorithm was implemented 

to measure the distance between feature vectors. 
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CHAPTER 2   LITERATURE STUDY 

2.1 CHAPTER OBJECTIVES 

This chapter will present a summary of the literature study that was carried out for this 

research project. An overview of NFC communication technology will firstly be given in 

Section 2.2, followed by a summary of application scenarios using NFC phones in Sections 

2.3 and 2.4. A high-level discussion of biometric recognition will then be given in Section 

2.5, and the chapter will conclude with previous similar work and the novelty of this 

research in Section 2.6. 

2.2 NEAR FIELD COMMUNICATION 

Near field communication or NFC, a successor to RFID, was standardised by the NFC 

Forum, which was founded in 2004 [4]. The NFC standard is defined in ISO 18092 [5] and 

the equivalent ECMA-340 [6] standard and is compatible with RFID tags that comply with 

the ISO 14443 standard. NFC devices are also specifically compatible with the well-known 

RFID tag brands MIFARE and FeliCa, by Philips and Sony, respectively [7]. 

 

NFC provides the following advantages over legacy RFID: 

• NFC provides a new peer-to-peer transmission function in addition to the standard 

RFID tag reading and writing functions. This means that NFC “reader/writer” 

devices can also communicate with each other [8]. 

• NFC can be used to initialise faster connections such as Bluetooth and Wi-Fi 

seamlessly. This is known as “Connection Handover” [9]. 

• NFC is incorporated into mobile phones, which are ubiquitous. This means simple, 

low-power RFID sensors can connect to mobile phones to gain internet access 

indirectly via general packet radio service (GPRS) or high speed packet access 

(HSPA). These low-power sensors can also take advantage of the processing power 

of NFC-enabled smartphones [10]. 

• NFC reader/writer devices can also emulate RFID tags. This function is used for 

electronic keys and ticketing, as well as mobile payments. Data is stored on a 

secure element on the phone [8], [11]. 
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NFC operates across a very short range and is unique for its user-friendly “touch” or “tap” 

interaction, even though it is a wireless technology. Low power consumption means that 

NFC is very applicable in mobile devices. 

2.2.1 Technical details of NFC 

An active NFC device (such as an NFC phone) features 3 modes of operation; active 

communication mode, passive communication mode and card emulation mode [8]. 

2.2.1.1 Active communication mode 

In active mode both the NFC initiator and target devices are self-powered devices and both 

devices generate and modulate their own oscillating (13.56 MHz centre frequency) 

magnetic fields to transmit data, successively. This is shown in Figure 2.1. 

 
Figure 2.1. Peer devices successively generate oscillating magnetic fields to send data in NFC 

active communication mode [12] 

Devices can communicate at data rates of 106, 212 and 424 kbps. To initiate 

communication between two devices they simply need to be brought into close proximity 

of one another. A simple handshake is performed between two active devices at 

initialisation to determine each other’s IDs, data rate capabilities and other connection-

specific information before commencing data transfer. The data exchange protocol (DEP) 
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defined in ECMA-340 is then activated to exchange data between devices [5], [6]. Data 

may be exchanged in the NFC data exchange format (NDEF), which allows the transfer of 

images, URLs, text, and other high level data [13]. Raw data may also be transferred, in 

which case custom commands may be defined. 

2.2.1.2 Passive communication mode 

In passive mode, the NFC initiator communicates with an RFID tag or with another active 

NFC device operating in card emulation mode. The initiator generates a 13.56 MHz 

oscillating magnetic field which is induced in the circuitry of the target device to power the 

device and to transmit data to the device as illustrated in Figure 2.2. The target device 

responds by load-modulating the magnetic field generated by the initiator. This is 

performed by varying the impedance of the target in accordance with the data sequence 

intended for transmission [8]. Changes in the impedance of the target cause slight 

variations in the magnitude of the magnetic field, which can be detected by the initiator. 

 

NFC supports RFID tags that operate in accordance with the standards ISO 14443 

(proximity cards) [14] and ISO 15693 (vicinity cards) [15]. 

 
Figure 2.2. An NFC reader communicates to an ISO 14443 compliant RFID tag in passive 

communication mode [12] 

2.2.1.3 Card emulation mode 

Card emulation mode is essentially an active NFC device “pretending” to be a passive 

RFID tag as shown in Figure 2.3. Even though the device is self-powered, it does not 

generate a magnetic field but instead utilises load modulation to communicate data to an 
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NFC/RFID reader. The term “card emulation” is mostly used for NFC devices which are 

also able to support reader emulation and peer-to-peer modes, while the term “semi-

passive RFID device” is used for RFID devices that are self-powered but always 

communicate passively [16]. Semi-passive RFID tags are useful for cases in which the 

device needs to be active when a reader is not present to provide energy. 

 
Figure 2.3. An NFC device in card emulation mode being read by an ISO 14443 compliant RFID 

reader [12] 

2.2.2 Comparison of NFC with other short-range wireless technologies 

There are two main points which differentiate NFC from other short range wireless 

technologies. The first is the extremely short range over which NFC acts and the second is 

the fact that NFC devices can communicate to both active and passive devices, which 

opens up a myriad of applications that are not accessible to other short range wireless 

technologies. Some advantages of the short range include the inherent security that such a 

short range provides against eavesdropping and the natural user friendly touch interaction, 

which is easily understood by non-technical users. Table 2.1 gives a simplistic comparison 

of several aspects between NFC, Infra-red, Bluetooth technologies. 
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Table 2.1. A comparison of short range communication technologies 

 NFC Infrared Bluetooth 

Operating 

distance 

Very small Small Small 

Implementation 

cost 

Low Relatively 

low 

Relatively high 

Power 

consumption 

Passive or very low Relatively 

high 

Relatively high 

Usability Simple. Only a touch or 

tap is required 

Simple Relatively complex. 

Requires device pairing 

 

2.2.3 Applications of NFC 

NFC is an attractive technology because of its inherent user-friendly touch-based 

interaction. It is intuitive to use and does not require any form of protocol set-up. The 

integration of NFC in mobile phones means that an NFC device will be available to users 

any time to serve as an electronic interaction proxy for services that are expected to 

become NFC-enabled in the future. Some of the main applications in which NFC is 

currently applied are as follows. 

• Mobile payments or m-payments [17], [18]. This is discussed in detail in Section 

2.3. 

• Electronic ticketing [8]. RFID tags are often used as tickets for events and public 

transportation. However, NFC phones provide the card-emulation function with 

which a phone may be used as a virtual ticket-holder. 

• Location-based services [19]. Objects may be touched with a phone to gain useful 

information based on the location of the touched objects. 

• Smart posters and large displays. Posters with embedded RFID tags can be touched 

with phones to get additional information on certain subjects [20]. Large displays 

can also be touched with the phone if a large screen is required temporarily to 

display content that cannot be viewed on the phone itself [21]. 
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• Sensing and digital control applications [10], [22]. 

• Shopping applications (RFID tags may be used as a replacement for barcodes, for 

example) [8]. 

• Health and medical applications [23]. 

• General data transfer between phones and reading and writing of RFID tags. The 

slower data rate of NFC can be overcome by using NFC for connection handover to 

faster technologies such as Bluetooth and Wi-Fi. In this way the simple tap-action 

of NFC can be used to initiate Wi-Fi or Bluetooth communication, instead of the 

usual device-pairing that is required. 

• Identification of animals, objects and people [8], [24]. Electronic passports or e-

passports and electronic ID documents or eIDs are already being issued in many 

countries [25], [26]. In South Africa, a pilot project will commence in late 2012 to 

systematically replace ordinary ID documents with smart-IDs [27]. 

2.3 MOBILE PAYMENTS 

Google Wallet was the first major deployment of m-payments using NFC based payment 

systems with wide retail functionality [28]. A secure element (SE) in the phone is used to 

store payment cards electronically and this allows contactless payments to be made by 

tapping a phone against contactless acquiring devices with support for technologies such as 

Mastercard PayPass and Visa payWave. The advantage that is gained over plastic 

contactless payment cards is that over-the-air (OTA) services can be provided such as 

reloading prepaid cards, downloading payment cards, and other value added services such 

as coupons can be managed remotely. This is done by a trusted service manager (TSM) 

that facilitates the connection between the phone and the financial institution, whilst 

managing the secure element remotely. 

 

Widespread adoption of mobile payments has been stifled by a general dispute regarding 

the form factor of the secure element that is used to store payment cards. Three form 

factors are available, an embedded SE in the phone can be sold as part of the phone and 

access to the element will be owned by the original equipment manufacturer (OEM), SIM 

card based SE can be used where the mobile network operator (MNO) has ownership of 
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the SE, and lastly financial institutions that prefer ownership of the SE can issue SD cards 

with an embedded SE. Ownership of the SE has been a hot topic and consensus has not yet 

been reached on which form factor to pursue. In fact, across the globe different MNOs, 

financial institutions, TSMs, and other institutions have piloted and rolled out all the 

different form factors. In South Africa, Absa bank is currently piloting SD card based NFC 

payments on BlackBerry and Samsung phones. A global shift may have been made 

towards embedded SEs since the very popular Samsung Galaxy S4 was recently released 

with an embedded SE and the Visa payWave payment applet preloaded. 

2.4 SENSING WITH NFC-ENABLED SMARTPHONES 

There are two main sensing scenarios in which NFC phones are utilised. The first scenario 

involves the use of external sensors, in which an NFC phone is simply used to read stored 

data from the sensor or possibly power a passive sensor to take measurements [22]. In the 

second scenario, smartphones are utilised as the sensing devices and NFC is simply used 

for the passing of data between phones and possibly for the storage of data on RFID tags 

[29]. 

 

Connecting to external sensors by utilising NFC provides various advantages over other 

communication technologies. The following are some of these advantages. 

• Passive sensing is possible. NFC and RFID allow the energising of passive targets 

wirelessly. The passive target can perform sensing, processing and communication 

tasks when an NFC phone comes into close proximity thereof. 

• For low power sensors, a passive, low cost NFC interface can be built and fitted to 

existing sensors [22]. In this way low power sensors are given access to the 

processing capabilities of a smartphone as well as the broadband network access 

without adding any significant cost or power consumption to the sensors. 

• Smartphones are already ubiquitous, which means special hardware and extra costs 

are unnecessary. 

• NFC allows easy data storage on RFID tags, if required in the specific sensing 

application. 
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Three types of NFC sensor implementations are described in [16]. They are passive 

sensors, user controlled semi-passive sensors and stand-alone semi-passive sensors for 

long-term monitoring. Passive sensors only activate when an active NFC device, such as 

an NFC phone, is brought into close proximity of the sensor. An example is the use of a 

moisture sensor which could be built into walls to detect pipe leaks. Because there is no 

need for a battery, the device can be permanently embedded into a wall or floor. User 

controlled semi-passive sensors take measurements when a predetermined user action 

occurs like the push of a button or bringing an active NFC device into close proximity of 

the device. The sensor is powered externally but uses less power than a stand-alone sensor 

because it can enter a low power state in between user interactions. A stand-alone semi-

passive sensor should be able to take measurements when activated by user interaction but 

also when external events occur or when internal timer intervals elapse. An example 

application is the use of an NFC enabled vibration sensor fitted onto fragile deliveries. 

When the delivery reaches its destination a mobile reader can be used to check if any 

harmful vibrations occurred during transportation. A general NFC interface was designed 

in [22] to interface with existing sensors. Figure 2.4 shows the prototype NFC-enabled 

heart rate monitor that was developed as a proof-of-concept. It is shown that this interface 

can connect to a wide range of existing sensors using the analogue and digital interfaces of 

a microcontroller unit (MCU). 

 

Figure 2.4. A proof-of-concept NFC-enabled heart rate monitor showing how external sensors may 

be fitted with NFC interfaces to enable communication with mobile devices 
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Smartphones with 3rd generation HSPA, and soon 4th generation LTE (long term 

evolution), allow the transmission of large amounts of data to remote locations for storage 

or processing. However, current smartphones are very adequate processing devices 

themselves and transmission is not necessary in many cases. Smartphones themselves are 

fitted with a wide range of sensors, which means the phone can be used for sensing 

applications with NFC used as an enabling communication technology. Figure 2.5 gives a 

graphical representation of a person’s voice being recorded on a smartphone for 

subsequent processing (biometric verification in this project). Location-based smartphone 

technologies such as GPS and also NFC can help to give context to the sensing application 

by providing information regarding the current location of the phone. An example of such 

a context function for NFC is in electronic ticketing, where the phone will expect certain 

types of noise in voice recordings on a train or bus, for example. Location-based contextual 

information can help in interpreting sensing data more accurately. 

 

 

Figure 2.5. Voice recording on a smartphone for subsequent processing 
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The specific application scenario will always determine whether or not standalone sensors 

will be required or whether a smartphone alone is sufficient for taking measurements. 

Despite the processing capabilities of smartphones, some applications may still require a 

back-end computer if a large display is required for data visualisation, for example 

(however NFC-enabled tablet computers are also available or the large display function of 

NFC could be employed, as explained in Section 2.2.3). 

2.5 BIOMETRIC RECOGNITION 

Biometric recognition refers to any process that automatically identifies a person based on 

physiological or behavioural traits [30]. This definition may refer to the computerised 

processes that have started to gain popularity in recent years, but it also refers to the 

seemingly simple act of human beings recognising one another by the shape and colour of 

their faces, eyes and hair (physiological biometrics) and by the way they walk, sit and 

stand (behavioural biometrics) [31]. 

2.5.1 Biometrics in general 

Biometric recognition or biometrics can either consist of methods that are used to verify 

the claimed identity of a person; or to determine the identity of a person by matching 

characteristics with a set of possible candidate identities. The former is also known as 

biometric verification and the latter is known as biometric identification. Identification and 

verification are different processes and should be dealt with separately when designing or 

studying a biometric system [32]. 

 

Physiological and behavioural traits of a person need to satisfy four conditions to qualify as 

a candidate biometric identifier. Firstly, the trait needs to be sufficiently complex or 

involve sufficient detail to be unique to each person (distinctiveness). Secondly, the trait 

should be something that every person possesses (universality). Thirdly, the trait should 

not change much over time (permanence). Lastly, it should be possible to measure the trait 

quantitatively (collectability). In practice, there are however several other factors to take 

into consideration when designing a computerised biometrics system. These include 
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performance of the system, including accuracy and speed; acceptability by users, in other 

words the system shouldn’t undermine the privacy of users; and the system should also be 

secure against circumvention [32]. 

 

A general biometric system consists of a sensor, a feature extractor, a matcher, and a 

database with templates of legitimate users [31], as shown in Figure 2.6. The sensor is used 

to convert a biometric trait of a person to an electronic form. From the electronic data, the 

feature extractor can extract distinctive information to create a biometric template. The 

template or feature vector can be compared to legitimate feature vectors using the matcher 

module. The matcher gives an output that quantifies the similarity between templates, 

usually in the form of a single number. When the number determined by the matcher 

exceeds a certain threshold t, the system positively identifies or verifies the user. When 

biometric verification is performed, as is done in Figure 2.6, the user will use their claimed 

identity as an index to select the corresponding template stored in the database. A one-to-

one comparison is then performed between the selected template and the generated 

template to determine if the person is who he or she claims to be. On the other hand, when 

biometric identification is performed, the user does not claim any identity, but only allows 

the measurement of a trait to create a template which is compared with all the templates in 

the database to determine if any matches occur. In other words, the direct link between the 

user and the database disappears in the case of identification, and matching with templates 

in the database occurs until a match is found (when the matching score exceeds the 

threshold value t). In both cases of verification and identification, there may also be a link 

between the feature extraction module and the database, which represents the database 

templates being updated every time a successful match occurs. By updating the database 

regularly, future errors can be reduced by accounting for the gradual ageing of people, for 

example. 
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Figure 2.6. A general biometric verification system 

 

The implementation of a biometrics system differs depending on whether the emphasis for 

a specific application is on usability or on security. A trade-off is made between the 

frequency of errors that identify intruders as legitimate users, also known as false match 

rate (FMR) or false accept rate (FAR), and the frequency of errors that identify legitimate 

users as intruders, also known as false non-match rate (FNMR) or false reject rate (FRR) 

[31]. Figure 2.7 shows how the threshold value t can be varied to perform this trade-off. 

The threshold value is the number that is chosen to be compared to the output of the 

matching module of the biometric system. If the output of the matcher is higher than t, the 

person is positively recognised and if it is lower than t, the person is classified as an 

impostor. For very secure applications the threshold is chosen very high while it is chosen 

much lower for civilian applications and also for forensic applications, for different 

reasons. In forensics it is acceptable to deal with many false matches while searching for 

the true match. If the threshold value were chosen very large to avoid false matches, the 

probability of a false non-match would increase and the guilty criminal may not be found 

which would be unacceptable. In civilian applications however, biometric authentication is 

usually required at regular intervals. Convenience is therefore given priority and the 

threshold value is also lowered, as in forensics, to avoid false non-matches, which would 

mean legitimate users are often identified as intruders. The price of this convenience is that 
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false matches would increase and intruders could therefore enter the system more easily. In 

very secure circumstances this would not be acceptable and security is given priority over 

convenience by increasing the threshold value to avoid false matches. 

 
Figure 2.7. The overlapping of the FNMR and FMR rates. A trade-off can be made by varying the 

threshold t [33] (© IEEE 2004) 

 

It should be noted that biometric identification has a higher FMR than verification because 

the input feature vector is compared to many templates whereas it is only compared to one 

template in the case of verification. The more users there are in the database, the higher the 

probability of a false match error becomes [34] and this presents a problem for large 

identification systems. In this research project the focus was on biometric verification 

because the system operates in a peer-to-peer fashion, which means that peers claim their 

identities to each other before being verified. Therefore, the identification problem in a 

system with a large database of users was not specifically addressed. 
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2.5.2 Commonly employed biometric methods 

There are many different biometric methods that have been explored and new ones are 

discovered routinely as different hardware and software capabilities arise in computers and 

sensors. Table 2.2 summarises some of the best and worst biometric traits in terms of the 

four attributes of good biometrics [32]. 

 

Table 2.2. Some of the best biometric traits regarding the 4 attributes of a good biometric trait 

Attribute of a good 

biometric trait 

Best examples of biometric 

traits 

Worst examples of biometric 

traits 

Universality Face, iris, retina, DNA, odour Keystroke, signature 

Distinctiveness Odour, fingerprint, DNA, palm-

print, retina, iris 

Gait, keystroke, face, voice 

Permanence Hand gesture, odour, ear, 

fingerprint, DNA, palm-print 

Gait, keystroke, voice, signature 

Collectability Face, teeth, voice, signature, 

hand geometry, gait, gesture 

Odour, retina, DNA 

 

From the table it is clear that many of the most popular biometric methods score high in 

terms of collectability. Collectability of biometric traits depends on the kind of sensors that 

are available to measure these traits, and how expensive and mobile these sensors are. 

Because of the widespread availability of cameras and microphones, face recognition and 

voice recognition are two of the most popular biometric methods in non-critical 

applications, even though these methods do not score particularly high in terms of 

distinctiveness and permanence. Currently, the most applicable biometric techniques for 

mobile devices are image based methods using the built-in camera, such as face 

recognition and hand geometry recognition, as well as speaker recognition using the built-

in microphone. Gait and hand gesture recognition can also be implemented accurately 

using the accelerometer and gyroscopic sensors of a smartphone. Some smartphones also 

include a fingerprint reader for logging into the phone. 
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2.5.3 Multi-modal biometrics 

Using mobile devices for biometrics requires measurements to be made under varying 

environmental conditions. This can cause significant performance degradations because of 

the difficulty of pattern recognition with varying measurement conditions and background 

noise. Multi-modal biometrics can be implemented to alleviate this problem by combining 

uncorrelated biometric procedures to increase the accuracy of the results. This is easily 

achievable given the wide array of sensors that are available in current smartphones. A 

disadvantage of such an approach is that the speed of the system is adversely affected 

because of the multitude of measurements that need to be carried out. There are however 

ways to combine biometric methods in such a way that all measurements can be performed 

simultaneously. An example of such an approach is to perform face recognition while a 

person’s voice is being recorded for speaker recognition and his or her teeth photographed 

when opening their mouth while speaking [35]. 

 

In a multi-modal system, biometric methods may be integrated in various stages of the 

recognition process. This gives rise to following three fusion levels in multi-modal 

biometrics [36]. 

• Feature extraction level. Feature vectors of different biometric modalities are 

combined to form a new feature vector that will be classified as an intruder or 

legitimate user. Biometric fusion at the feature extraction level retains most of the 

information in each modality and should therefore deliver the best results. It is 

however difficult to normalise and integrate the feature vectors of different 

biometric methods. 

• Matching level. At the matching level, a possible fusion approach would be to add 

the matcher output values of each biometric method using a weighted sum, where 

larger weights are given to more accurate methods. Fusion at the matcher level is 

used most often in the industry due to the limitation of access to the feature vectors 

imposed by the designers of biometric equipment [36]. 

• Decision level – Fusion at the decision level retains least information of each 

biometric method, but is the easiest to implement. A majority voting rule is usually 
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used at this level by counting the number of biometric modalities that determine a 

legitimate user versus the number of modalities that determine the user is an 

imposter and choosing the highest number of “votes”. 

2.6 SIMILAR WORK 

In a similar research paper [25], NFC was utilised together with identification information 

stored electronically in a secure element on a mobile phone, to replace paper-based ID 

documents. This method enhances the privacy of persons by allowing only certain 

identification information to be requested and transmitted electronically, instead of having 

to present a full ID document with exhaustive information about a person that may be 

irrelevant in certain circumstances. Biometric procedures were included in the research, 

but the actual recognition was not performed using the built-in sensors of a mobile phone.  

 

Various research projects have studied the feasibility of advanced sensing, and specifically 

biometric recognition applications, using mobile devices. However, as sensor acuity and 

processing capabilities continuously increase in these devices, so does the accuracy and 

processing speed increase in algorithms implemented on them. For the implementation of 

biometrics on mobile devices, many authors recommend the use of multi-modal biometrics 

for the mobile environment [35], [37], [38]. Intuitively, multi-modal biometrics introduces 

additional resource usage over uni-modal biometrics, which is not a trivial matter when it 

comes to mobile devices. This additional depletion of resources for multi-modal systems is 

however important in many scenarios, because mobile biometrics systems are less accurate 

than static systems in general, due to continuous changes in the surrounding environment 

and this causes a lower average signal-to-noise ratio (SNR). To increase the SNR, various 

biometric methods are combined in a single system and this is known as multi-modal 

biometrics. Similarly, in other advanced sensing applications, additional resources may 

often be employed to mitigate loss of accuracy, but this puts a strain on the limited 

resources of mobile devices.  An example of a multi-modal system for the mobile 

environment may be to perform face recognition while a person’s voice is being recorded 

for speaker recognition and his or her teeth photographed when opening their mouth while 

speaking [35]. In such a case all biometric measurements may be performed 
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simultaneously and an adverse effect on the usability of the system is therefore avoidable, 

given that the processor can handle the additional data load swiftly. 

 

Smartphones are equipped with a range of sensors, including light sensors, proximity 

sensors, accelerometers, microphones, and cameras. Recent studies of applications for 

these sensors have led to novel biometrics approaches to gesture and gait recognition using 

built-in accelerometers and gyroscopic sensors in smartphones. A person exerts certain 

unique acceleration patterns on a phone when walking with it in their pocket. This unique 

walking pattern is known as the gait of a person, which can be detected and matched to the 

legitimate owner of the phone [39], [40]. Acceleration sensors in smartphones can also be 

utilized for a gesture recognition system, which detects a certain pattern in which a person 

waves or moves their arm when holding the phone [41]. The owner of a phone may then, 

for example, unlock the phone by drawing a certain unique pattern with their arm in the air. 

 

An evaluation of the security of uni-modal biometric methods of thumb-print recognition, 

face recognition and speaker recognition using mobile devices is performed in [42]. It is 

found that these methods are foiled quite easily using a fake thumb, a photo of a person, 

and a voice recording of a person, respectively. However, when using mobile phones for 

authentication between two individuals, the person performing the authentication of 

another person is physically present and is therefore in a position to detect and prevent 

such malicious activities. 

 

Other example applications of mobile measurement have been developed in several 

different areas of research. A prominent application is health monitoring using mobile 

phones [22], [43]. Area mapping is commonly performed using GPS, and novel 

approaches have even seen indoor mapping by magnetic field using the magnetometer 

(compass) of a smartphone [44]. Audio, image and video processing can be performed 

using the camera and microphone of a smartphone. Mobility monitoring of the physically 

disabled has been proposed using the accelerometer and GPS capabilities of a phone, with 

additional context information provided by the camera [45]. 
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A study in [46] compared the processing time of native C++ code and non-native Java 

code on Android by implementing real-time video processing software on the phone. It 

was found in that on average native code performed 2.4 times faster. In this dissertation, 

however, a much larger performance increase was measured for native code (see Chapter 

4). 
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CHAPTER 3   METHODS 

3.1 RESEARCH EQUIPMENT 

A Samsung Google Nexus S smartphone was utilized as the testing platform. The Nexus S 

runs the Android mobile operating system (OS) which, in addition to Java programming, 

provides a framework for developing native applications in C/C++ code and interfacing 

this code with a Java application using the Java native interface (JNI). Some of the relevant 

specifications of the Nexus S are compared with that of the PC in Table 3.1 [47]. 

Table 3.1. Comparison of the smartphone specifications with that of the PC 

Feature Google Nexus S smartphone Desktop PC 

Operating system Android v4.0.4 Ubuntu Linux v11.10 

Processor type ARM Cortex-A8 Intel Quad Core 

Processor 

frequency 

1 GHz 4 x 2.66 GHz 

Instruction set 32-bit 32-bit 

Memory 512 MB 3 GB 

 

In addition to providing NFC communication abilities, the Nexus S is a powerful mobile 

computing device in terms of processing capability and memory, and also very high-

resolution cameras and a range of other sensors. The Android OS is an open-source project 

created by Google. The project is well-documented for application developers and a 

thorough software development kit (SDK) is provided for rapid development. Both Java 

and C++ based pattern recognition algorithms were implemented and evaluated in this 

project. At the sensor level, native code is generally not as well-supported as non-native 

code and a combination of Java and C/C++ was therefore used, where sensing was always 

performed in Java but processing was performed in both languages, using JNI. Pattern 

recognition algorithms were not implemented from first principles, but open-source 

software libraries were rather ported to Android and linked to the developed applications. 

The porting of open-source libraries ensured that an accurate comparison could be made 
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between the processing capabilities of the phone and the PC. The following libraries were 

ported to Android, although not all of these were directly applied in the biometric 

applications. 

• MARF is a Java library for speech, sound and voice recognition, and natural 

language processing. The library was ported to Android and used for speaker 

recognition in a non-native application. 

• The OpenCV library supports many pattern recognition algorithms, including 

artificial neural networks (ANNs) and support vector machines (SVMs), as well as 

feature extraction functions for images. A port to the Android native C++ interface 

is available for the library. OpenCV is a large, well-documented project. 

• jAudio is an audio feature extraction library in Java. 

• Waikato environment for knowledge analysis (WEKA) is a large, well-documented 

open source Java library for general machine learning and data mining tasks. 

Distance based classification algorithms, as well as ANN, SVM and many others 

are implemented. 

• SPro is an audio feature extraction library in C. 

• Shogun is a large-scale machine learning toolkit with a large range of classification 

algorithms. 

 

WEKA and Shogun were ported for the future implementation of more complex 

classification algorithms than the distance-based algorithms that were implemented using 

MARF and OpenCV. These include among others ANN, SVM and hidden markov model 

(HMM) implementations. OpenCV also provides functions for these classifiers. The 

general nature of these libraries also provides the means to implement other biometric 

modalities such as palm-print and gesture recognition. 

3.2 FIRST EXPERIMENT: JAVA SPEAKER RECOGNITION BENCHMARK 

The MARF open-source library contains several algorithms for audio, speech, and natural 

language processing [48]. For this experiment, MARF was used to develop a speaker 

recognition system. The software was implemented identically on a PC and an Android 
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phone. The porting of MARF to Android required several modifications, which included 

the removal of code with a dependence on Java graphical user interface (GUI) libraries (the 

AWT and Swing libraries of Java are not available in Android). MARF also uses standard 

Java libraries to load WAV audio files, which are not available in Android and various 

modifications were therefore required. 

3.2.1 The MARF library 

MARF is a text-independent speaker identification library, which means firstly that the 

system can identify a speaker by name from a group of possible speakers, and secondly 

that a speaker can be identified when pronouncing any phrase. The library is written in 

Java for portability between platforms, and to facilitate automatic memory management 

and other tasks which may require undue effort on the part of application developers. 

MARF is structured to consist of 4 distinct stages of processing when performing speaker 

recognition. These 4 stages are audio data loading, preprocessing, feature extraction and 

classification. The library includes, among others, fast fourier transform (FFT) filters and 

normalization for preprocessing; FFT, LPC and Min/Max amplitudes algorithms for 

feature extraction; and neural networks and distance-based algorithms (for example 

Euclidean, Manhattan and Minkowski distance) for classification. 

3.2.1.1 Audio loading 

The library can load audio files in the WAV format as well as in a textual format. The 

library provides a database of WAV files for testing purposes, and the WAV loader was 

therefore used. The loader is required to convert the pulse code modulation (PCM) data in 

the WAV files, to actual amplitude values that can be processed. 

 

The WAV file loader of MARF utilises standard Java libraries in the “javax.sound” 

package to read audio files. This package is not present in Android, however, and had to be 

taken and modified from the OpenJDK open-source implementation of Java. Java also uses 

a method to obtain a concrete implementation of the WAV file reader class at runtime, and 

this was not possible using Android. A concrete implementation of the file could however 
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be obtained from the GNU Classpath project (WAVReader.java), and this ensured that a 

WAV loader class could be obtained at compile time, for use on Android. 

3.2.1.2 Preprocessing 

In the preprocessing stage, all algorithms normalise the input, except for the Raw 

algorithm, which directly passes the input data through without any modification. The 

Dummy algorithm, on the other hand, performs normalisation on the data but no other 

processing. Normalization of data is important in the mobile environment, because 

speakers do not speak at the same volume consistently, nor do they speak at the same 

distance from the microphone with each interaction. All other preprocessing algorithms in 

the library perform filtering or amplification functions on the data after normalisation. This 

enhances the quality of the speech signals embedded in the audio data, by isolating and 

amplifying the speech signals, while attenuating the non-speech frequencies. 

 

The library provides a set of FFT filters, and they are available as low-pass, high-pass, 

band-pass, high-boost, and high-pass-boost filters. The difference between a high-pass 

filter and a high-boost filter is that the high-boost filter does not attenuate low frequencies, 

but instead only amplifies higher frequencies while keeping lower frequencies intact. The 

high-pass-boost filter is a combination of a high-pass and a high-boost filter. The cut-off 

frequencies of all filters are chosen appropriately to be applied to human speech. The 

endpoint preprocessing module inspects the speech signal for local maxima and minima 

throughout the signal. These maxima and minima points are then stored and the rest are 

discarded. Figures 3.1 and 3.2 show a speech sample before and after FFT bandpass 

preprocessing (including normalisation), respectively. 
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Figure 3.1. Original audio sample fed into the MARF pipeline 

 
Figure 3.2. The audio sample of Figure 3.1 after normalisation and bandpass FFT preprocessing 

using MARF 
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3.2.1.3 Feature extraction 

After preprocessing has been performed, a normalised array of numbers is available for 

processing. The goal of the feature extraction stage is to reduce the number of points while 

retaining as much speech information as possible. The feature extraction module therefore 

searches the data for salient points. Each data-point in the feature vector is considered a 

single dimension in a multi-dimensional hyperspace and by decreasing the number of data 

points in the vector, the number of dimensions of the vector is effectively reduced. Feature 

extraction is therefore also known as dimensionality reduction [49]. 

 

There are only 3 useful feature extraction algorithms that have been implemented in 

MARF. They are FFT, which uses the fast fourier transform to extract features; LPC, 

which is an algorithm used to obtain the spectral envelope of the signal [50]; and Min/Max, 

which stores an array of minimum and maximum values extracted from the signal. 

 

The Random algorithm simply extracts random points from the feature vector and is 

therefore not a useful method for a real system. It does however provide a baseline 

implementation to compare other methods with. Another feature provided by MARF is that 

different feature extraction methods may be aggregated to further reduce the dimensions of 

the feature vector and thereby further discriminating between information-rich speech 

content and noise or unwanted data. In addition, the MARF library also provides a Raw 

feature extractor, but it is not recommended for general use due to the large dimensions of 

the resulting feature vector. Figure 3.3 shows the speech sample in Figure 3.1 after 

Bandpass-filter preprocessing (Figure 3.2) and FFT feature extraction. 
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Figure 3.3. The preprocessed signal of Figure 3.2 after FFT feature extraction using MARF 

3.2.1.4 Classification 

The classification stage offers the actual recognition of the person speaking. In previous 

stages, the data have been processed and shaped to be in a proper format to be classified 

into predetermined classes (speakers). Up to the classification stage, MARF performs 

exactly the same functions regardless of whether the system is in training or in testing 

mode. In the classification stage, however, MARF will either train the classifier with the 

incoming processed data or classify the incoming data using the previously trained 

classifier.  

 

MARF provides 6 useful classifiers in its latest stable version (version 0.3.0.5), and a 

random classifier which can be used as a baseline implementation for comparison. Of these 

6 classifiers, 5 are distance-based classifiers. Each distance-based classifier uses a simple 

formula to measure the distance (or some function thereof) between feature vectors in an n-

dimensional hyperspace (where n is the number of components or coordinates in the 

vectors) to determine their similarity. If the distance is larger than a pre-set threshold, the 
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user is classified as an intruder. Distance-based approaches are also known as template 

matching [51]. MARF also provides a customisable neural network implementation. 

3.2.2 Experimental set-up 

The MARF library can be used in two ways. The first way is to define all algorithms that 

will be used, and then to simply call a function telling the MARF library to start 

processing. In this mode MARF handles the loading and saving of files, as well as the 

passing of data between various stages of the recognition process. The other way that 

MARF may be used is to implement each stage separately and perform the storing and 

passing of data manually. The second approach requires much more overhead and the first 

method was therefore chosen. A Java program was written to take arguments specifying 

which algorithms to use. A Bash script was then written to train the system for all possible 

combinations of algorithms on the PC implementation. A script was also written to test all 

possible combinations on the PC in identification mode, and an Android application was 

developed to test all combinations on the phone, after porting the MARF library to 

Android. 

 

When running the program on the PC, it was split into four processes, one for each 

processor. On the phone, only one process (and one thread) was run at a time. Unnecessary 

processes were killed on the phone before running the program to free up resources. Both 

training and testing of the system was performed using a speaker database provided by the 

MARF library. 

3.2.2.1 Speaker database 

The speaker database contains a total of 293 WAV files for training the system. These files 

correspond to 27 different speakers, which are specified in a text file that is readable by the 

MARF system. For the testing of the system, there are 29 WAV files. These files contain 

audio of the speakers pronouncing different phrases than in the training situation, including 

different environmental noise. The WAV files used in the database are encoded in a single 

channel (mono), signed 16-bit PCM format with a sample rate of 8000 Hz, and each 

sample ranges from about 7 to 20 seconds [48]. According to the Nyquist theorem, the 
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maximum recognisable frequency in the audio data is 4000 Hz, which is high enough for 

human speech under regular conditions. The database contains both male and female 

speakers and the samples are of relatively low quality to ensure that the system is properly 

tested for various environmental conditions. This is pivotal to ensuring that the system is 

tested with varying data, which would be the norm when using a mobile biometrics system. 

3.2.2.2 Training 

The system was trained using all possible combinations of algorithms in MARF, and each 

combination was trained on all 293 training samples (27 speakers) included in the library. 

Complete training of all algorithm combinations was performed on the PC only. On the 

smartphone, training was performed only in a few single runs. The processing time was 

found to be quite large and the phone implementation was therefore not trained using all 

combinations (The training sets generated on the PC was copied to the phone to be used for 

identification). 

 

In total, for training on the PC, the entire MARF pipeline was executed 82040 times, or in 

other words the system was trained 280 times on all 293 samples. There were however 

errors in some of the algorithm combinations, mainly due to an “out of memory” error in 

Java. These errors were especially prevalent in neural network implementations. The Java 

virtual machine (JVM) memory size was increased up to about 1GB, but this amount of 

memory was still not enough to facilitate the training of a neural network for some 

combinations of preprocessing and feature extraction techniques. 

 

In total 262 of the algorithm combinations were trained successfully, which is a 93.59% 

success rate. These 262 successfully trained algorithm combinations generated about 1.5 

GB of data that needed to be stored for the system to remain “trained”. Most of these data 

were generated by the neural network combinations, which use XML files as output in 

version 0.3.0.5 instead of the GZIP format that is used by other classifiers. The Nexus S 

provides 16 GB of storage, which was more than enough for the training sets to be stored. 
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3.2.2.3 Testing 

To test the system, the Java program written for the training of the system was modified to 

perform testing, again on all possible combinations of algorithms, on 29 testing samples. 

Testing was performed exhaustively on both the PC and the smartphone. The processing 

time for each algorithm was logged for each sample the system identified correctly and 

incorrectly. By counting the correct and incorrect matches, the FNMR could be estimated 

for these specific sets of training and testing samples.  

 

For the testing of the system (identification mode) on the PC, the entire MARF pipeline 

was run 8120 times or in other words 29 samples were classified using 280 different 

algorithm combinations. Again, as with training of the system, there were some errors in 

some combinations of the algorithms. Of the 280 combinations, 257 of them classified all 

29 samples without errors. That is a 91.79% success rate. Several of the combinations also 

performed worse than the random baseline implementation, suggesting that internal errors 

in the program may have caused faulty classifications. 

 

On the smartphone implementation there were some additional problems. Three algorithms 

would not process successfully at all: they were the High-Freq-Boost-FFT preprocessing 

module, the Aggregator feature extraction module, and the Neural Network classifier. On 

the smartphone, the MARF pipeline was therefore executed 4872 times in total, or 168 

algorithm combinations identified 29 samples. An additional single combination gave an 

error, which gave a processing success rate of 99.4% after the three aforementioned 

erroneous algorithms had been left out. 

3.3 SECOND EXPERIMENT: C++ FACE RECOGNITION BENCHMARK 

The OpenCV open-source computer vision library contains several hundred algorithms for 

computer vision, which include algorithms for image processing, video processing, feature 

detection, object detection and many more [52]. For this experiment, OpenCV was utilized 

for the development of a face recognition system on a PC and on Android. Manual porting 

of OpenCV to Android for native development was not required, because the developers of 
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OpenCV provide an up-to-date ported Android version. A comparison was made with the 

PC implementation to analyse the increase in processing time on a smartphone. As with the 

speaker recognition system, the exact similarity of the implementations on both the PC and 

the phone ensured that there were no differences in the identification accuracy of the 

implementations and the processing time could therefore be isolated and studied. 

 

A very simple and well-known face recognition algorithm, known as Eigenface or 

principal component analysis (PCA), was implemented. PCA was utilized for feature 

extraction and distance-based classification algorithms were then applied. The 

classification algorithms that were implemented were Euclidean Distance, Manhattan 

Distance, Minkowski Distance and Diff Distance. 

 

For data loading, OpenCV provides functions that are similar to those of Matlab. For 

example, “imread” is used to load an image of any supported format, “imshow” is used to 

display the image in a new window and “imwrite” is used to write an image to file. Images 

are contained in matrix (Mat) objects for processing in an OpenCV application. 

3.3.1 Eigenface/PCA 

OpenCV provides a complete implementation of the PCA algorithm for feature extraction. 

Figure 3.4 shows, from the left, the average face and the first 4 eigenfaces (eigenvectors) 

of a database of faces. 

 
Figure 3.4. From the left, the average face and the first 4 eigenfaces of a set of faces from the 

AT&T Faces database 
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Although PCA is not a feature extraction algorithm that delivers the most accurate results, 

it provides advantages such as storage capacity and speed. When implementing PCA, all 

images are approximated as a weighted sum of the calculated average face and the 

eigenface components. The more eigenface components calculated, the more accurate the 

approximation will be, but this increases the resource usage of the algorithm. For the 

Eigenface method, each face in a training set does not have to be stored, but instead only 

the weights of the weighted sum of the eigenfaces can be stored for all faces. This saves 

storage space for systems that work with large numbers of faces. Some disadvantages of 

PCA include reduced accuracy under different lighting conditions, poses, and image 

scaling. 

3.3.2 Euclidean distance 

After feature extraction using PCA, distance-based classifiers are applied to measure the 

distance between faces in the training database and the faces that need to be identified. The 

Euclidean distance classifier determines the distance between feature vectors using (1). 
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where d is the scalar distance between the feature vectors x and y, 

n is the number of dimensions in both x and y, and 

xk and yk represent the kth scalar elements in x and y respectively. 

 

 The equation computes the actual, straight-line distance between two points in a multi-

dimensional hyperspace. The distance is compared between the vector that will be 

identified (x) and all training vectors (y), and the y vector that corresponds to the shortest 

measured distance d, is chosen as the vector that belongs to the same subject as x. 

3.3.3 Manhattan distance 

Instead of taking the square root of the sum of squares, as in Euclidean distance 

computations, the Manhattan distance algorithm simply takes the absolute values of the 

difference between the vector elements, as in (2). 
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It is quite surprising to note the increase in accuracy of the Manhattan distance over the 

Euclidean distance algorithm. This increase in accuracy was notable in both the speaker 

recognition system and the face recognition system. 

3.3.4 Minkowski distance 

The Minkowski distance, given in (3), represents a general case of the two distance 

algorithms mentioned above. For r = 2, (3) becomes (1) and the equation is equivalent to 

the Euclidean distance; and for r = 1, (3) becomes (2) and the equation is equivalent to the 

Manhattan distance. In this experiment, the Minkowski distance algorithm gave the most 

accurate results when using r = 0.2. 
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3.3.5 Diff distance 

The Diff Distance was developed by one of the creators of the MARF library, Serguei 

Mokhov in 2005 [48]. The Diff distance algorithm “rewards” or “penalizes” the distance 

between vectors depending on the measured values. If the distance between two 

corresponding points in the feature vectors is large, it is penalized and becomes even more 

distant, and if two points are very close, they are rewarded with a smaller distance value 

(usually zero). In this way the algorithm can provide better inter-class variation. The values 

of the penalty and the bonus, and the criteria for when the penalty or bonus should be 

applied, should be chosen carefully to ensure that the intra-class variation is not increased 

to the point where near-random classification results are obtained. 

3.3.6 Experimental set-up 

The face recognition application executed much faster than the speaker recognition 

application (partly due to less algorithms being implemented), and it was therefore not 

necessary to automate the entire process with a bash script. The OpenCV version that was 
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used on both the PC and phone is version 2.3.1. Java wrappers for many of the classes in 

the library are available for the Android platform, but they were not implemented. Instead, 

C++ functions were used directly and these functions were called from the main Java class 

in Android, using the native interface (JNI). In this experiment, the program was not split 

into different processes or threads. Training and testing of the system was performed 

simultaneously and no training data is stored. The database with training and testing 

images can be obtained freely from the Olivetti Research Laboratory. 

3.3.6.1 Face database 

A face database was obtained from AT&T Laboratories Cambridge which contains a total 

of 400 greyscale image files for training and testing of the system. There are 40 subjects 

with 10 files for each subject. Better accuracy results are obtained if more files are used for 

training, but then less files are left for fair testing of the system (testing the system with the 

same files that were used for training will always produce good results and will therefore 

not produce accurate results). It was decided to use 4 files for training (per subject) and 6 

for testing. 

 

The image files in the face database are in the portable graymap (PGM) format and have a 

resolution of 92x112 pixels. The grey level of each pixel is represented by 8 bits (256 grey 

levels per pixel). The images are quite variable in terms of poses, hair, and facial 

accessories (mostly glasses). They are however not very variable in terms of background 

scenery and lighting. 

3.3.6.2 Training and testing 

Training and testing were performed simultaneously in a single program and the timing 

values measured are therefore given for the total number of images (400) for both training 

and testing. In this experiment, there were no processing errors such as with the MARF 

library, and the processing time can therefore be compared easily between the phone and 

the PC. The system was tested using only the PCA algorithm for feature extraction, and the 

4 distance-based classification methods that were discussed earlier. No preprocessing was 
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necessary, although images from the phone's camera in realistic mobile situations may 

require lighting normalisation, face detection and scaling for preprocessing. 

 

In total the Eigenface algorithm was performed for all 400 images, while classification was 

performed 240 times. Each of these 240 classifications involves a one-to-one match with 

each of the 160 training images. This is much less than for the MARF implementation and 

the processing time was much less in total. The processing time per image sample could 

however be compared to the processing time per audio sample for the speaker recognition 

system. However, the audio data contained about 100 kB of data, whereas each image only 

contains 10.3 kB of data. When comparing the average processing time per sample, this 

needs to be taken into account, as well as the fact that preprocessing was performed in 

most cases for the speaker recognition system. 

3.4 THIRD EXPERIMENT: END-TO-END NFC-ENABLED BIOMETRIC 

SYSTEM ANALYSIS 

For this experiment a proof-of-concept biometric system was implemented with the ability 

to verify the identity of people using NFC-enabled smartphones and RFID tags. A second 

speaker recognition application was developed for this experiment and the effects of 

various system configurations were analysed. The system consists of two applications, the 

first representing the application that an issuing authority would use to generate biometric 

templates on a smartphone, and the second for the consumer to pass his or her biometric 

template over NFC, write the template to a tag, or to verify other users. Figure 3.5 shows a 

block diagram of the system. 

 

In Figure 3.5 the issuing application is used to enrol a user by recording his or her voice 

several times and extracting LPC coefficients from the recording. Training then consists of 

simply computing the average LPC coefficients of all the recordings and this average 

feature vector is stored as the user’s biometric template. The biometric template can either 

be stored on a smartphone or an RFID tag if the user does not possess an NFC-enabled 

smartphone. The user application can read the biometric template from phone storage and 

pass it to another phone by tapping the phones together. The user application running on 
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the other phone will start running automatically upon connection and allow this user to 

record the voice of the first person for subsequent identification. Optionally, the first user 

may also write his or her template to an RFID tag, which may be presented to the second 

user equipped with an NFC-enabled phone. 

 
Figure 3.5. A block diagram of the NFC-enabled biometric system 

3.4.1 Issuing application 

The issuing application was tested under various configurations to study the effects of 

different variables on the processing time and accuracy of the speaker recognition 

implementation. Firstly, a comparison was made between the processing time of native 

code and non-native code. The application provides a GUI with an optional choice between 

Java and C++, as shown in the screenshots of the application in Figure 3.6. PCM audio 
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samples are directly obtained from the phone’s microphone and the sample rate was set as 

both 8000 and 44100 samples per second for comparison. It should be noted that the 

sample rate does not affect the number of LPC coefficients that is extracted from the audio 

for subsequent classification, but merely allows a larger range of frequencies to be present 

in the original recording (it also adversely affects the time it takes to extract the LPC 

coefficients from the audio sample). The number of extracted LPC coefficients represents 

the size of the feature vector, which is finally stored on the phone or on an RFID tag. The 

feature vector size was varied to fit the storage capacity of different RFID tags and the 

effect on accuracy, processing time, and also NFC transmission time was studied. Lastly, 

the effect of text-independence on accuracy was also studied for intruders and the 

legitimate user by performing verification of users when they record a different sentence 

than the sentence which was used for enrolment. The interface of the application instructs 

the user on the sentence to speak as can be seen in Figure 3.6. 

3.4.1.1 Functionality 

A flow diagram of the issuing application is given in Figure 3.7. The user selects either 

native or non-native mode and then initiates enrolment, training or verification for the 

given username. In enrolment mode the user’s voice is recorded and LPC features are 

extracted and stored on the SD card of the phone. Any number of feature vectors may be 

generated before performing system training, which averages the vectors and stores the 

result as the biometric template of the person. In verification mode the user’s voice is 

recorded once again and the LPC coefficients are extracted. The Euclidean distance is then 

computed between the extracted features and the stored template. If the distance exceeds a 

certain threshold the person is classified as an imposter. Verification in the issuing 

application is provided only for the purpose of testing the enrolment and training process. 

Actual identification of persons occurs by means of the user application. 
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Figure 3.6. Screenshots of the issuing application’s GUI 
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Figure 3.7. A flow diagram of the issuing application 
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LPC was used as the feature extraction algorithm because it provided a good trade-off 

between processing time and identification accuracy in the first experiment using MARF. 

LPC is a method for audio encoding that represents the current audio sample as a linear 

function of past values [53]. Figures 3.8 and 3.9 show the original speech sample and the 

extracted LPC coefficients, respectively, for the sentence “Rome wasn’t built in a day”. 

After feature extraction, the LPC data are stored to a comma-separated values (CSV) file 

on the SD card of the phone, for later classifier training. Training is performed by simply 

taking an average of all the LPC coefficients obtained from previous enrolments, on a per 

user basis. To classify a user, LPC coefficients are obtained for the spoken sentence, and 

then compared to the averaged LPC coefficients of the claimed identity, by determining the 

Euclidean distance between the vectors.  

3.4.1.2 Library porting 

Various open-source libraries were considered to be ported to Android for feature 

extraction and classification. Among them were LibXtract, Shogun [54], Marsyas, SPro in 

C++ and Weka [55], jAudio in Java. Although all libraries that were ported to Android 

were not implemented in the benchmarking applications, the porting process itself is of 

importance because it shows that state-of-the-art libraries for desktop operating systems 

can be successfully ported to mobile platforms for data processing. All of these libraries 

were not rigorously tested for bugs and further research into the consistency of the porting 

process is essential. 

 

Weka is a popular machine learning and data mining library in Java. Porting of Weka 

required the removal of several classes that depend on GUI and standard Java libraries 

similar to the process of porting the MARF library. Similar porting of Weka to Android 

has also been attempted by other developers. For audio feature extraction in Java the 

jAudio library was used. Porting of jAudio did not induce much overhead. 
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Figure 3.8. An audio sample of the sentence “Rome wasn’t built in a day” being spoken 

 
Figure 3.9. The first 500 LPC coefficients of the audio sample in Figure 3.8 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3 Methods 

 

Department of Electrical, Electronic and Computer Engineering 47 
University of Pretoria 

The porting of C and C++ libraries to the Android NDK is much more involved than the 

simple removal of non-functional code in Java. Libraries that are aimed at the Linux 

operating system were utilized (Android is based on Linux). These libraries often use build 

systems such as CMake or the GNU build system. To compile the source code of these 

libraries without the build system poses many problems, such as missing “include files” 

(the build systems add “include files” for configuration tasks during the build process). 

This means that in general the source files cannot be simply added directly to a native 

Android project. Instead a standalone GNU compiler collection (GCC) toolchain can be 

built for the Android NDK. When running the “configure” script of the GNU build system, 

this toolchain is manually linked to the build process and cross-compilation is performed to 

create ARM-compatible libraries, which can then be linked into the Android native project. 

 

In C++, a popular library for large-scale machine learning is Shogun. Shogun was ported 

to Android with various issues of incompatibility with standard C header files such as 

“stdlib.h”, as well as differences in the standard “pthread.h” library for multithreading. 

These issues were solved by removing and replacing code in Shogun. Shogun also has a 

dependence on the fast automatically tuned linear algebra software (ATLAS) math library 

for many of the shogun features to function properly. Unfortunately ATLAS could not be 

ported because the library “tunes” itself on the platform on which it is compiled and cross-

compilation is therefore not possible. The possibility might arise in the future to perform 

source code compilation on an Android phone itself, which could spawn new areas of 

research. Other dependencies of Shogun include LibSVM and SVMLight which are easily 

ported as part of the Shogun library. These libraries are used for support vector machines 

in Shogun. 

 

LibXtract, Marsyas and SPro are all C or C++ feature extraction libraries that were 

considered. Porting of these libraries required no more effort than the porting of Shogun. 

LibXtract did however require a dependency library, FFTW, to be ported as well. The 

FFTW library is used for the computation of the fast fourier transform. The jAudio and 

SPro libraries were finally implemented for audio feature extraction in Java and C, 
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respectively. For classification, the Euclidean distance algorithm was simply programmed 

using the standard math libraries in C and Java, which are available in Android. 

3.4.2 User application 

The user application allows the user to pass his or her biometric template to another phone 

for identification or write the template to an RFID tag, or to receive a template and then 

record a person’s voice to verify the person’s identity. Biometric templates are not 

generated by the user application. Figure 3.10 gives a screenshot of the application. As 

seen in the figure, there are very few interactive widgets on the screen due to the fact that 

mainly the touch interaction of NFC is required. Android’s tag dispatch system was used to 

allow the application to run automatically whenever an NDEF message is received with the 

appropriate application record. Having the application run automatically provides an extra 

sense of user-friendliness as well as increasing the overall promptness of the process.  

 
Figure 3.10. A screenshot of the user application’s GUI 
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RFID tags can also be formatted as NDEF tags with the appropriate application record, 

which is intercepted by Android applications’ intent filters to determine whether to run 

automatically. When non-NDEF formatted tags are detected by the application, they are 

automatically formatted and the user’s biometric template is written to the tag. 

3.4.2.1 Functionality 

A flow diagram of the user application is given in Figure 3.11. The application can be 

started either manually or automatically using Android’s tag dispatch feature. The dispatch 

system allows applications to be started when certain intents are raised on the phone. 

Examples include when a text editor application runs automatically when a text file is 

opened or a media player application opens when a video file is clicked by the user. These 

intents can be raised in different ways and Android allows the specification of intent-filters 

in the manifest of each application where certain criteria are specified to allow the 

application to launch automatically under specified conditions. Android specifies various 

intents for NFC events, such as when a certain NDEF record is present in a message or 

when certain types of RFID tags are touched with the phone. For this project, the 

application was allowed to run automatically when any tag is detected, in which case the 

tag would be formatted for NDEF messages and two MIME type records written to the tag. 

The first message specifies an application record to register the tag for dispatching the 

correct application and the second record contains the biometric data. When an NDEF tag 

is read or a peer-to-peer NDEF message is received containing these two records, the 

application starts automatically and reads the biometric data for verification. As seen in the 

flow diagram, when the application is launched by the tag dispatch system, the 

accompanying biometric data in the NDEF message is immediately fed into the application 

without any user interaction. Another option to allow automatic launch of the application is 

to use a custom NDEF record provided by Android called an Android application record 

(AAR). This allows normal intent filters to be overridden to ensure that the correct 

application is launched when an NDEF message is received with the AAR. 

 

When the application is user-activated, the application waits until a phone or RFID tag is 

touched. An RFID tag will either be written with the biometric data on the phone or data  
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Figure 3.11. A flow diagram of the user application 
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will be read from the tag and verification performed, depending on whether the checkbox 

on the user interface is checked. If another phone is touched, Android notifies that another 

device is in range and the user taps on the screen to send the NDEF message containing his 

or her biometric data and the application record that allows the other user’s app to run 

automatically. The other user then records the instigator’s voice to verify the biometric 

template that was received in the same manner as was done with the issuing application. 

 

Three popular RFID tags were studied in addition to normal peer-to-peer transmission. The 

MIFARE Ultralight (NFC Type 2 Tag), MIFARE Classic 1K and the MIFARE DESFire 

(NFC Type 4 Tag) were studied, with storage capacities of 48 bytes, 1 kilobyte, and 4 

kilobytes, respectively. NDEF formatting of tags reduce the overall storage sizes to 46 

bytes, 716 bytes, and 4094 bytes, respectively. In this space, two NDEF records have to be 

stored, firstly for the application record allowing tag dispatch and secondly for the custom 

payload record which contains the required biometric data. Due to the very limited storage 

capacity of the MIFARE Ultralight tag, it was not formatted for NDEF messages, but 

instead it was analysed as if biometric data were directly stored on it. The LPC samples 

that represent the biometric data were formatted as floating point numbers with 4 decimal 

digits and this was converted to a fixed-point data format using two bytes for each sample. 

Leaving a few bytes open on each tag for future improvements such as a digital signature, 

and subtracting the space used for the application record on the MIFARE Classic and the 

MIFARE DESFire only, the number of LPC samples that can be stored on each tag is 20, 

325, 2000, respectively. The same number of LPC samples was also transmitted using 

peer-to-peer mode to strike a comparison. By studying the effect of different numbers of 

LPC samples on accuracy and transmission time, a comparison is made between the 

feasibility of applying different RFID tags for mobile biometrics. 

 

To examine the accuracy of the biometric implementation, the voices of a legitimate user 

and several intruders were recorded under different conditions. The system was trained 

with the voice of the legitimate user recorded 5 times when saying the phrase “Rome 

wasn’t built in a day”. The voices of 4 intruders were then recorded to compare the relative 

Euclidean distances between the training set and the recorded template. The voice of the 
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male legitimate user was compared with one female intruder and three male intruders. 

More male intruders were involved in the study since the likelihood of a false match with a 

male voice was more likely. Recognition of each intruder was performed several times 

while changing variables such as feature vector length, recording sample rate, and the 

sentence spoken. The feature vector length was varied between 20, 325, and 2000 samples 

for compatibility with three different NFC tags. The NFC transmission time was observed 

in addition to the change in system accuracy. The effect of sample rate on system accuracy 

was studied by changing the sample rate from 8000 Hz to 44100 Hz. Lastly the effect of 

porting Java code to native code on processing time was studied. 
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CHAPTER 4   RESULTS 

4.1 FIRST EXPERIMENT RESULTS 

The program was run with the aim of logging the processing time and the accuracy of the 

system, for comparison between a PC and a smartphone and for later comparison with 

other biometric implementations. In training mode, the only variable to analyse was the 

processing time needed to train the system. In testing mode, the processing time was 

important, as well as the actual accuracy of the system. The accuracy is however highly 

dependent on the quality of the data classified by the system, and is therefore in reality a 

function of various quantities such as sample rate, SNR, distance from mouth to 

microphone, preprocessing algorithm, etc. However, when testing the system on a very 

large database, with varying conditions and quality, a good estimate can be obtained. 

4.1.1 Training results 

The training program was developed to log the processing time for each combination of 

algorithms in milliseconds. The program was executed on the PC and Table 4.1 gives a 

summary of the results measured. The training times given in Table 4.1 include the loading 

of audio samples, preprocessing, feature extraction, training data (and user templates) 

storage, and actual training of the classifiers (if required). For the most part, Table 4.1 

gives these time values for the entire training set (all 293 samples in total), unless 

otherwise specified. It should be noted that the distance-based classifiers do not require 

training as in the sense of neural network training, where specific weights are stored for 

branches between neurons. For distance-based classifiers, the training data is preprocessed 

and feature vectors are generated and stored for use when the classifiers are used in testing 

or identification mode. 

 

The average time values given in Table 4.1 for each preprocessing method, is the average 

time for the entire MARF pipeline, when different feature extraction and classification 

methods are combined with the specific preprocessing module. In this way a decision can 

be made on which methods train the longest and quickest on average. The same goes for 

the feature extraction and classification time values given in Table 4.1. It should be noted 
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however, that when the statement is made that a certain feature extraction module is 

“slow”, the real reason for the large time value might be that the module does not reduce 

the dimensionality of the vector enough, and this causes the classifier to train for a long 

time, so it may not be the feature extraction module itself that is slow, but it results in slow 

classifier training or something similar. 

 

Following this convention, the first conclusion that can be drawn is that Raw preprocessing 

(or no preprocessing) is the quickest preprocessing method, which is somewhat intuitive, 

since there is no preprocessing performed. The downside to Raw and Dummy 

preprocessing is that noisy feature vectors are passed to the feature extractors, which 

causes the classifiers to be trained with more random data. The slowest preprocessing 

method (or the method that results in the slowest training process) is the High-Pass-Boost 

FFT filter, which is a combination of two preprocessing techniques. The High-Boost filter 

by itself is quite slow compared to the High-Pass filter. For the feature extractors, the 

Random feature extractor causes a very slow average training time. From the actual data, it 

was clear that the Neural Network classifier trained very slowly when Random feature 

extraction was used, and this fact was mostly responsible for the large average training 

time of the Random feature extractor. The FFT feature extraction module resulted in very 

low training time values, but all attempts to train a neural network failed when using the 

FFT module and this has a considerable effect on the average training time. 

 

When looking at the classifiers, it can be seen that the training time for Random 

classification is very low, which is very intuitive. The processing time for some of the 

distance-based methods is very low as well, because they do not require any training. They 

do however require the storage of training data. The Neural Network training time is very 

high in relation to the other classifiers. The Neural Network also caused the most errors in 

training. The error that occurred most regularly when training the network was an “out of 

memory” error.  In an attempt to solve the problem, more memory was allocated to the 

JVM, but the problem remained. To avoid these errors the size of the network may be 

decreased by decreasing the number of neurons and possibly removing the single hidden 

layer which was used. 
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Table 4.1. Summary of the measured processing times for the training of various algorithms on the 

PC implementation. Time values are given per combination of algorithms unless specified as “per 

sample” and the values are for the processing of the entire MARF pipeline 

General processing time measurements Training time 

Total for all algorithm combinations and all training samples 16 hours and 7 minutes 

Average per sample 753 ms 

Average per algorithm combination 221.39 seconds 

Measurements based on preprocessing methods  

Average with no preprocessing (Raw) 62.72 seconds 

Average with only normalisation (Dummy) 186.79 seconds 

Average with endpoint preprocessing 97.43 seconds 

Average with High-Boost FFT filter 482.88 seconds 

Average with Band-Pass FFT filter 137.19 seconds 

Average with Low-Pass FFT filter 148.63 seconds 

Average with High-Pass FFT filter 143.96 seconds 

Average with High-Pass-Boost FFT filter 504.47 seconds 

Measurements based on Feature Extraction Methods  

Average with Random feature extraction 739.87 seconds 

Average with LPC algorithm 57.57 seconds 

Average with FFT algorithm 44.59 seconds 

Average with Min/Max algorithm 160.86 seconds 

Average with aggregation of LPC and FFT algorithms 62.51 seconds 

Measurements based on Classification Methods  

Average with Random classification 26.67 seconds 

Average with Neural Network 1994.88 seconds 

Average with Euclidean Distance Classifier 96.35 seconds 

Average with Manhattan Distance Classifier 96.37 seconds 
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Average with Minkowski Distance Classifier 28.84 seconds 

Average with Mahalanobis Distance Classifier 27.82 seconds 

Average with Diff-Distance Classifier 27.64 seconds 

 

The following list gives some additional observations made from the training time data. 

• The combination of algorithms that resulted in the quickest training was the 

Endpoint preprocessor, the Min/Max feature extractor and the Random classifier 

(about 2.31 seconds in total or 7.89 ms per audio sample). On the smartphone 

implementation, this combination resulted in a training time of 77.64 seconds in 

total or 265 ms per audio sample. That is about 33.6 times longer on the phone than 

on the PC. The Random classifier is however not useful in an actual system. 

• The second quickest combination and the quickest useful combination was the 

combination of the Endpoint preprocessor, the Min/Max feature extractor, and the 

Diff-Distance classifier at about 2.59 seconds in total or 8.83 ms per audio sample. 

On the smartphone implementation, this combination resulted in a training time of 

98.94 seconds in total or 337.7 ms per audio sample. That is about 38.2 times 

longer on the phone than on the PC. 

• The slowest combination was the High-Pass-Boost FFT preprocessor, with Random 

feature extraction and the Neural Network classifier. The total training time was 

about 227 minutes (3 hours and 47 minutes) in total or 46.48 seconds per audio 

sample. Based on an estimate that the phone trains about 36 times longer than the 

PC, it can be estimated that the phone would train on this combination for about 

8172 minutes or 136 hours and 12 minutes in total or 27.89 minutes per audio 

sample. 

 

The reason for comparing the training time of the PC implementation of the speaker 

recognition system with the implementation on a smartphone, is to determine whether the 

system will allow for the addition of new users to the system on a smartphone, and whether 

the training can be performed on the phone itself, or whether it would need to be delegated 

to a more powerful computer. It was found that the training time of some algorithms was 
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too slow to be feasible even on the PC, much less on the phone. Most combinations are 

however quite feasible on the phone. 

 

Holding to the convention that the phone trains about 36 times longer than the PC it can 

then be estimated from Table 4.1, that the total training time for the phone (all 

combinations on all samples) would be more than 580 hours (about 24 days), which is why 

the phone was not trained exhaustively using all algorithms. It can also be estimated (from 

Table 4.1) that the average training time per audio sample would be about 27.1 seconds, 

which is very reasonable, because a user would only train the system with his or her own 

audio samples in most cases. Many of the algorithms provide training times (per audio 

clip) of much less than 27.1 seconds in any case, and only one or a few of them, which 

perform accurately in identification mode would probably be considered for a final 

biometric implementation, in which case both training and identification would be possible 

(and comfortable) on the phone. 

4.1.2 Testing results 

The results that were measured and logged in identification mode were both timing values 

and accuracy values. Table 4.2 gives a summary of the processing time values measured 

for different combinations of algorithms on both the PC and the Android implementations. 

As was mentioned in Section 3.2, there were some algorithms that did not execute 

successfully on the smartphone (High-Freq-Boost-FFT preprocessor, Aggregator feature 

extractor and Neural Network classifier), and consequently they are not included in the 

results given in Table 4.2, even though they executed successfully (for the most part) on 

the PC. These values are not directly comparable to the timing results measured for 

training that were given in Table 4.1, because training was performed on more than 10 

times the number of samples that were used for testing. The results are however useful for 

comparing the time needed for identification by the various algorithms and also to compare 

these times between the PC implementation and the Android smartphone implementation. 

On average, the PC implementation performed about 30 times faster than the smartphone 

implementation. 
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 Under the preprocessing section in Table 4.2, the Dummy implementation was quite slow 

in training and is again very slow in testing, whereas the Lowpass FFT filter performs 

relatively quickly. Under the feature extraction section, the LPC and Min/Max algorithms 

are very quick whereas the FFT algorithm is now very slow. As for the classifiers, the 

Neural Network classifier increased heavily in speed in testing mode as opposed to training 

mode (although it is not shown in Table 4.2 because it did not execute successfully on the 

smartphone). It was however still not quite as quick as the distance-based classifiers, but 

this may be partly due to the fact that the Neural Network's structure is loaded from file 

storage upon identification. The Mahalanobis Distance classifier is very slow in 

identification mode and this is probably due to the specific distance formula used, which 

contains matrix manipulations. 

 

To measure the accuracy of each algorithm combination, the following approach was 

followed, the FRR could be determined from the identification rate (IR) as in (4). 

FRR
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 where nc is the number of correct classifications, 

   nic is the number of incorrect classifications, and 

   nt is the total number of classifications (29 in this case). 

 

In this case the FRR is taken as any incorrect classification, even if the resulting 

classification is still a legitimate user in the database. This approach was taken for the 

calculation of the FRR because the final implementation of such a system would be a 

verification system, in which the user “logging in” supplies a user ID and classification as 

another legitimate user would therefore not be possible. The resulting classification will 

either be positive (the user is who he or she claims to be) or negative (the user is not who 

he or she claims to be). 

 

The resulting FRR values for several of the best algorithm combinations are given in Table 

4.3, arranged from best to worst. The recognition accuracy of these combinations has also 

been tested by the developers of the MARF library. From the values given in the MARF 
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manual [48], the FRR values were determined and compared with the values determined in 

this experiment, as given in Table 4.3. They were found to be equivalent for the most part. 

Table 4.3 does not include the algorithms that failed to execute on the smartphone, even 

when they performed well on the PC. The fact that the Aggregator feature extraction 

module could not execute on the smartphone was quite unfortunate, because there were 

many combinations in the top performing algorithms that used an aggregation of the FFT 

and LPC feature extraction modules. 

 

Table 4.2. Summary of the measured processing times for the identification of 29 speech samples 

using all possible combinations of algorithms on both the PC and the smartphone implementations, 

excluding the algorithms which did not execute successfully on the smartphone 

General processing time measurements Testing Time (PC 

implementation) 

Testing Time 

(Smartphone 

implementation) 

Total for all algorithm combinations and all 

testing samples 

2 hours and 17 

minutes 

68 hours and 37 

minutes 

Average per sample 1.73 seconds 51.94 seconds 

Average per algorithm combination 50.24 seconds 1506.15 seconds 

Measurements based on preprocessing 

methods 

  

Average with no preprocessing (Raw) 95.15 seconds 1862.92 seconds 

Average with only normalisation (Dummy) 59.41seconds 1633.19 seconds 

Average with endpoint preprocessing 43.25 seconds 1617.98 seconds 

Average with Band-Pass FFT filter 48.86 seconds 1687.40 seconds 

Average with Low-Pass FFT filter 39.64 seconds 1451.48 seconds 

Average with High-Pass FFT filter 48.76 seconds 1684.69 seconds 

Average with High-Pass-Boost FFT filter 48.00 seconds 1739.53 seconds 

Measurements based on Feature Extraction   
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Methods 

Average with Random feature extraction 17.49 seconds 772.69 seconds 

Average with LPC algorithm 10.96 seconds 233.39 seconds 

Average with FFT algorithm 142.68 seconds 5044.47 seconds 

Average with Min/Max algorithm 33.04 seconds 91.38 seconds 

Measurements based on Classification 

Methods 

  

Average with Random classification 10.06 seconds 100.42 seconds 

Average with Euclidean Distance Classifier 10.08 seconds 103.47 seconds 

Average with Manhattan Distance Classifier 9.97 seconds 102.89 seconds 

Average with Minkowski Distance Classifier 10.78 seconds 113.14 seconds 

Average with Mahalanobis Distance Classifier 253.26 seconds 8618.66 seconds 

Average with Diff-Distance Classifier 10.31 seconds 103.06 seconds 

 

As a baseline for these values, the FRR was also measured for the implementation of the 

Dummy preprocessing module, the Random feature extractor, and the Random classifier. 

The result was an FRR of 89.66%. According to the MARF manual, the FRR of this 

baseline combination of algorithms is about 96.55%, but differences in these values are 

expected because the feature extraction and classification modules are both random. 

It is quite interesting to note that the Dummy and the Raw preprocessing methods are quite 

prevalent in the top performing algorithms in Table 4.3. According to the authors of the 

MARF manual, the reason for the good performance of the Raw preprocessing module is 

that the module has an “unfair advantage” over the other preprocessing modules because it 

does not perform normalisation [48].  

 

Another statement of interest in the MARF manual was that in the current version of 

MARF, the Mahalanobis Distance classifier is equivalent to the Euclidean Distance 

classifier, because the covariance matrix used by the Mahalanobis Distance classifier has  
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Table 4.3. FRR values of some of the most accurate algorithm combinations 

Combination of algorithms FRR (%) 

Endpoint, LPC, Manhattan-Distance 17.24 

Dummy, FFT, Diff-Distance 24.14 

Raw, FFT, Euclidean-Distance 24.14 

Dummy, FFT, Euclidean-Distance 27.59 

Dummy, FFT, Manhattan-Distance 27.59 

Endpoint, LPC, Euclidean-Distance 27.59 

Raw, FFT, Manhattan-Distance 31.03 

Dummy, FFT, Minkowski-Distance 34.48 

Dummy, LPC, Euclidean-Distance 34.48 

Dummy, LPC, Manhattan-Distance 34.48 

Dummy, LPC, Minkowski-Distance 34.48 

Dummy, LPC, Diff-Distance 34.48 

Low-Pass-FFT, FFT, Euclidean-Distance 34.48 

Low-Pass-FFT, FFT, Manhattan-Distance 34.48 

Low-Pass-FFT, FFT, Diff-Distance 34.48 

Raw, LPC, Euclidean-Distance 34.48 

Raw, LPC, Manhattan-Distance 34.48 

Raw, LPC, Minkowski-Distance 34.48 

Raw, LPC, Diff-Distance 34.48 

Endpoint, LPC, Minkowski-Distance 37.93 

Raw, FFT, Diff-Distance 37.93 

Low-Pass-FFT, FFT, Minkowski-Distance 41.38 

High-Pass-FFT, FFT, Euclidean-Distance 44.83 

High-Pass-FFT, FFT, Manhattan-Distance 44.83 

High-Pass-FFT, FFT, Minkowski-Distance 44.83 
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Low-Pass-FFT, LPC, Manhattan-Distance 44.83 

Low-Pass-FFT, LPC, Euclidean-Distance 48.28 

High-Pass-FFT, LPC, Manhattan-Distance 51.72 

Low-Pass-FFT, LPC, Minkowski-Distance 51.72 

Low-Pass-FFT, LPC, Diff-Distance 51.72 

 

been set to an identity matrix until further improvements have been made to the module 

[48]. It is quite clear from the testing results that these two distance-based classifiers are 

equivalent, except for the fact that the Mahalanobis Distance classifier executes much 

slower than the Euclidean Distance classifier in both training and testing. The Mahalanobis 

Distance classifier was therefore omitted from Table 4.3, and the “Euclidean-Distance” 

entry in the table represents both these classifiers. 

4.2 SECOND EXPERIMENT RESULTS 

Table 4.4 gives a summary of the processing time measured on the Nexus S phone as 

compared with the PC implementation. The values given in Table 4.4 include the loading 

of images, PCA feature extraction for all samples, and classification for 240 samples. For 

simplicity, the total processing time is simply divided by 1600 (4 classification algorithms 

times 400 images) to determine the processing time “per sample”. Training data were not 

stored at this stage and this will further increase the processing time when storage of these 

data is performed. The “absolute value” of the Manhattan distance classifier performs a bit 

quicker than the “square root of the sum of squares” that is used by the Euclidean distance 

classifier. The Minkowski distance classifier is the slowest but the difference is quite small 

between all of them. 

 

It can be seen from Table 4.4 that the processing time on the phone was about 21 times as 

much as on the PC for this experiment. This is quite reasonable and it is clear from these 

values that a user-friendly, comfortable face recognition system should be viable on 

smartphones. 
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To measure the accuracy of each classification algorithm (combined with the Eigenface 

algorithm), (4) was again used to determine the FRR. Table 4.5 gives the resulting FRR 

values that were measured for each classification algorithm. These results are equivalent 

for the PC and phone implementation because the software was identical. The FRR is 

again taken as any incorrect classification, even if the incorrect classification still results in 

a legitimate user in the database being identified, as was discussed for the speaker 

recognition system. 

 

On average these FRR values are much lower than those that were obtained with the 

MARF program, but considering that the MARF library was used for a text-independent 

system, with noisier data, it seems that the speaker recognition would probably be more 

promising in terms of accuracy. The Minkowski distance algorithm performed very well 

for r = 0.2, as seen in Table 4.5. 

 

Table 4.4. Summary of the measured processing times for the training of 160 images and 

classification of 240 images. For simplicity, there is no discrimination between training and testing 

times, and the average time per sample is therefore the average time for both training and testing 

General processing time measurements Processing time (PC 

implementation) 

Processing time 

(smartphone 

implementation) 

Total for all algorithms and all samples 11.174 seconds 3 minutes 54.48 

seconds 

Average per sample 6.98 ms 146.55 ms 

Average per algorithm 2.79 seconds 58.62 seconds 

Measurements based on classification 

methods 

  

Average with Euclidean Distance Classifier 2.784 seconds 57.605 seconds 

Average with Manhattan Distance Classifier 2.745 seconds 57.404 seconds 

Average with Minkowski Distance Classifier 2.892 seconds 61.843 seconds 

Average with Diff-Distance Classifier 2.753 seconds 57.633 seconds 
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Table 4.5. FRR values for each classification method (combined with the Eigenface algorithm) 

Classification Algorithm FRR (%) 

Euclidean Distance 19.67 

Manhattan Distance 18.75 

Minkowski Distance 10.83 

Diff Distance 18.33 

 

4.3 THIRD EXPERIMENT RESULTS 

Although a small user database was used in the third experiment, rough visual inspections 

could still be made to observe the effects of various factors on identification accuracy and 

thereby judge the feasibility of the biometric application. In addition to determining 

whether the experiment delivered reasonable results in terms of accuracy, the NFC 

transmission time for each number of LPC samples to different tags and over peer-to-peer 

mode was also studied as well as the processing time required by the smartphone in each 

case. Table 4.6 gives the results of the measured transmission times for various feature 

vector lengths. 

 

Figure 4.1 gives a visual representation of the distance values that were measured when 

verifying the legitimate user and various intruders for each feature vector length. The 

average legitimate and intruder scores also indicated on the figure and a wider distance 

between these two averages indicates a more accurate system since the legitimate and 

intruder scores are then further separated and overlap is less likely. As expected the larger 

feature vector size delivers more separation and therefore better accuracy. A trade-off 

needs to be made however since the larger feature vectors result in longer transmission 

times as seen in Table 4.6, especially since the feature vector length of 2000 results in a 

much longer transmission time than for a length of 325 but not in a much more accurate 

system. The results in figure 4.1 were measured with an audio sample rate of 8 kHz. 
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Table 4.6. NFC transmission for various feature vector sizes over peer-to-peer mode and to 

different RFID tags 

NFC Mode Number of LPC samples Transmission Time (ms) 

Peer-to-peer (Android 

Beam) 

2000 3736 

 500 2035 

 325 1595 

 20 1146 

Mifare DESFire 2000 2277 

Mifare Classic 1k 325 742 

Mifare Ultralight Not feasible. Foreground dispatch alone requires 43 bytes. Total 

NDEF size after format is 46 bytes. About 20 samples can be 

stored when no foreground dispatch is used however. 

 

4.3.1 Effect of sample rate 

To study the effect of sample rate on system accuracy, the sample rate was changed from 8 

kHz to 44.1 kHz and the results are displayed in figures 4.2, 4.3 and 4.4 for feature vector 

lengths of 325, 2000 and 20, respectively. It is clear from the figures that the sample rate 

did not have much of an effect on the system accuracy since the human voice does not 

generally extend to frequencies higher than 4 kHz. Higher sample rate does however result 

in longer processing time at the feature extraction stage since more audio samples are 

processed. 
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Figure 4.1. Comparison of the legitimate vs. intruder scatter plots for Mifare Classic 1K, Mifare 

DESFire, and Mifare Ultralight RFID tags when using an audio sample rate of 8 kHz 
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Figure 4.2. Comparison of the legitimate vs. intruder scatter plots for Mifare Classic 1K tags when 

using an audio sample rate of 8 kHz vs. a sample rate of 44.1 kHz 
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Figure 4.3. Comparison of the legitimate vs. intruder scatter plots for Mifare DESFire tags when 

using an audio sample rate of 8 kHz vs. a sample rate of 44.1 kHz 
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Figure 4.4. Comparison of the legitimate vs. intruder scatter plots for Mifare Ultralight tags when 

using an audio sample rate of 8 kHz vs. a sample rate of 44.1 kHz 

4.3.2 Effect of text-independence 

To study the effect of text independence on system accuracy, the legitimate user and the 

intruders were instructed to speak a different sentence to the one that was used by the 

legitimate user to enrol. The results are displayed in figures 4.5, 4.6 and 4.7 for feature 

vector sizes of 325, 2000 and 20, respectively. Each figure shows the original text-

dependent results next to the measured text-independent results. It is clear that text 

dependence has a large influence on the results since more measurements for intruders and 

legitimate user start to overlap and the average distances become closer together. Text-

independent systems are therefore not recommended for highly secure applications.  
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Figure 4.5. Comparison of the legitimate vs. intruder scatter plots for Mifare Classic 1k tags when 

using a text-dependent vs. text-independent system 
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Figure 4.6. Comparison of the legitimate vs. intruder scatter plots for Mifare DESFire tags when 

using a text-dependent vs. text-independent system 
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Figure 4.7. Comparison of the legitimate vs. intruder scatter plots for Mifare Ultralight tags when 

using a text-dependent vs. text-independent system 

4.3.3 Effect of native code on performance 

It was found that on average native code performed about 9 times faster than non-native 

Java code. Figure 4.8 shows the relative processing times for the enrolment, training and 

classification stages of the application, respectively. In the enrolment stage, a sentence is 

recorded, 500 LPC features are extracted, and the feature vector is stored to a CSV file on 

the phone’s SD card. The time given in Figure 4.8 for enrolment does not include the 

recording time, which is constant in both implementations. Training may be performed on 

any number of enrolled samples, but the results in Figure 4.8 are given for the training of 3 

enrolled samples. In the training stage the enrolled feature vectors are loaded from file 

storage and the average feature vector is computed and stored to a separate CSV file. For 
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the comparison of the classification stage, a single sample was classified. The application 

interface instructs the user on a sentence to pronounce. The sentence is recorded and the 

LPC features are extracted. The Euclidean distance is then computed between the current 

feature vector and the average feature vector computed in the training stage. The timing 

results in Figure 4.8 for classification does not include the recording time. 

 
Figure 4.8. Comparison of the processing time in Java and C++ on Android for each of the 

biometric stages 

As was seen in Figure 3.6 the recording time of the sentence “Rome wasn’t built in a day” 

takes about 2.5 seconds to record, regardless of whether Java or C++ mode is being used. 

This time is always added to the total system time in the enrolment and verification modes, 

which means the total enrolment time is about 30 seconds per sample in Java and about 6 

seconds in C++, and a slightly larger timeframe is required for verification.  
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CHAPTER 5   DISCUSSION 

5.1 GENERAL DISCUSSION OF RESULTS 

In the first experiment the MARF audio library was used to exhaustively test all available 

algorithms in terms of training time, identification time, and identification accuracy on a 

PC and on a Google Nexus S smartphone. It was found that the smartphones performs 

about 30 times slower than the PC on average when running a Java application. A 

comparison of the identification accuracy results was made with the results that were 

obtained by the developers of the MARF library to confirm correct operation. Several 

candidate algorithms performed reasonably well in terms of FRR, and training and testing 

time on the phone. The combination of Endpoint preprocessing, LPC feature extraction, 

and Manhattan-Distance classification scored the best results in terms of accuracy. For this 

combination, the training time on the smartphone was measured as 4.66 seconds per audio 

sample and the testing time as 5.03 seconds per audio sample. These times were deemed to 

be reasonable, and LPC feature extraction was therefore used for the third experiment.  

 

Although the testing times given in Table 4.2 cannot be directly compared with the training 

times in Table 4.1, it is worth noting that the time taken to identify a single sample takes 

more than double the time taken to train a system on one sample. In fact, when the average 

time per sample is measured for all algorithm combinations, including those that do not 

execute on the phone, the time to identify a single sample is more than three times the time 

it takes to train the system on one sample. This is not true for the neural network 

implementation, which trains much longer than it classifies, but it is quite intuitive that the 

distance-based implementations would take longer to identify a sample than to “train” 

itself on a sample, because it is only in identification mode that the distance-based 

classifiers execute the actual distance algorithms. Figure 4.8 also shows that the 

identification time was about 30 times larger than the training time for the third experiment 

in Java and about 100 times slower in C++. 

 

For the second experiment OpenCV was used to determine the relative processing time of 

the PC and the smartphone when running C++. For this experiment it was found that the 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5 Discussion 

 

Department of Electrical, Electronic and Computer Engineering 75 
University of Pretoria 

phone was about 21 slower than the PC. In terms of speed, the Manhattan distance 

implementation was the quickest, but not by much. Both the Euclidean distance and Diff 

distance classifiers were almost as fast as the Manhattan distance classifier, but the 

Minkowski was relatively slow, probably because of the “pow” mathematical function that 

was used with powers smaller than 1. In terms of accuracy, the Minkowski distance was 

however by far the most accurate. Diff distance was a bit more accurate than Manhattan 

distance, and the Euclidean distance classifier was the least accurate. Considering the small 

difference in processing time between Minkowski distance and the other classifier, the 

increase in accuracy would justify the use of the Minkowski distance rather than the other 

distance-based methods.  

 

In the third experiment SPro and jAudio libraries were used for the implementation of the 

LPC feature extraction algorithm and this was combined with a simple Euclidean distance 

classifier to analyse a complete end-to-end biometric prototype under various 

configurations and to determine the relative processing time between C++ and Java. It was 

found that audio sample rate did not have much effect on the system as long as the sample 

rate is at least 8 kHz to cover human voice frequencies. Feature vector length and text-

independence showed significant influence on the results. Longer feature vector length is 

generally better although it results in much longer transmission time. Text-independence 

allows a level of usability when the user is able to speak any words to be verified, but it 

results in a significant decrease in system accuracy. Consequently, trade-offs need to be 

made to “tune” such a biometric system for each application. After porting the application 

to C++, it was found that C++ application runs about 9 times faster than Java applications, 

and this project therefore recommends the use of C++ for processing intensive applications 

on smartphones. Although the Java results are significantly slower than the native code, the 

use of Java can also provide advantages over a native implementation in many cases. Table 

5.1 compares the use of non-native Java code and native C++ code on a mobile platform. 

In addition to the consideration in Table 5.1, Java is also the recommended programming 

language for Android, due to a higher level of support by the Android API, especially for 

specialised tasks such as interfacing with sensors of the phone. In certain applications, Java 

is therefore still the preferred language. 
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Table 5.1. Comparison of the overall usage benefits of Java and C++ for mobile measurement and 

processing applications 

Property Java C/C++ 

Ease of porting Relatively simple Complex 

Ease of application 

implementation 

Very simple More involved 

Availability of open-

source software 

More limited than C++ Very wide availability 

Processing speed Slower Faster 

Compatibility with 

standard desktop 

libraries 

Mostly compatible (GUI 

libraries and some system 

libraries are unavailable) 

Mostly compatible, but libraries 

depend on each other and 

require the porting of 

dependencies 

 

When considering some of the results given in Tables 4.1, 4.2, 4.4 and Figure 4.8, it 

appears at first that the training or identification time may be too large for some 

algorithms, to implement a comfortable, user-friendly biometric system on a phone. 

However, for the final system, only a single combination or a few combinations is chosen 

and implemented, and when considering a single combination of algorithms being used to 

train and classify a single audio sample, the processing time is usually very small for C++ 

but not always as small for Java.  

 

The accuracy results that were obtained were always equivalent on the phone and the PC 

and are library- and algorithm- specific. For this reason, the accuracy of the implemented 

algorithms was not an important focus of this project. Some of the accuracy results given 

in Tables 4.3 and 4.5 also suggest that many of the implemented algorithms do not provide 

for a feasible implementation due to high error rates. However, the accuracy of many of 

the algorithms was found to be quite high, and these results can be further improved when 

considering the following. 
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• For the second experiment, greyscale images were used with a 92x112 resolution, 

whereas the Nexus S provides a colour camera with a 2560x1920 resolution. This 

means that the phone can provide up to 11 times more digital samples per audio 

clip than the clips used in the first experiment, and 1431 times more samples from 

the images in the second experiment. Using more samples will increase the 

processing time, but will provide better discrimination between samples from 

different users (higher inter-class variation). 

• When using the phone to record speech, the microphone can be held close to the 

speaker's mouth, providing a high SNR in an environment with reasonable ambient 

noise. 

• By requiring speakers to always say the same phrase, the speaker recognition 

system is converted to a text-dependent speaker recognition system. This increases 

the accuracy of the system, because there is much less intra-class variation 

(variation within the samples from one speaker). 

• The speaker recognition and the face recognition systems in the first two 

experiments both operated in identification mode instead of verification mode. In 

other words, the user being recognised does not supply any identification 

information with the biometric measurement. As was stated in Section 2.6, 

identification mode increases the FAR, because the current sample is compared 

with all users in the biometric database. In contrast, peer-to-peer biometric 

verification on the smartphone can effectively be interpreted as an identification 

system with only one biometric entry in the database. The effect on the FRR is 

however negligible when converting an identification system to a verification 

system [31], but the FRR can be decreased by varying the threshold under which a 

user is classified as an intruder (there is more room for varying the threshold when 

the FAR is decreased). 

• The accuracy may be increased with the implementation of multimodal biometrics.  

Speaker and face recognition can be combined to increase the accuracy. This may 

cause an increase in processing time, but when using C++, the larger processing 

time would still be reasonable. Fusion of data from the voice and face modalities 
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can be performed at various levels of the biometric pipeline. The fusion level 

directly influences the resulting accuracy and is therefore a topic that requires 

further research. 

• Other biometric modalities can be applied as the appropriate sensors become 

available on smartphones. A good example is fingerprint scanners which are 

currently entering the mobile space. 

5.2 SIGNIFANCE OF EXPERIMENTAL OUTPUTS 

At present, two biometric modalities have been studied, speaker recognition and face 

recognition. Both were found to be viable both in terms of processing time and accuracy. 

There is however much room for improving the accuracy, which may be accomplished by 

combining the face, voice and possibly other modalities, as well as implementing better 

classification algorithms. 

 

In the past, mobile phones could mainly be applied as communications devices in 

measurement applications to transfer data from dedicated sensors to remote computers for 

processing [10]. A short-range technology such as NFC or Bluetooth would commonly be 

implemented between the phone and the sensor, and a long-range telecommunications 

technology could then be used for data transmission to a remote computer. Such an 

elaborate system is often not required, and smartphones can now replace either the sensor 

side, the computer side, or both sides of the system in many applications. Smartphones can 

provide the sensors, the processing resources and a high level of portability. 

 

The motivation for benchmarking the performance of a current smartphone was to 

establish whether or not mobile measurement and processing applications are realistically 

feasible. Smartphones are widely adopted and the latest smartphones are bought off-the-

shelf with a wide range of sensors and powerful processing resources. They run powerful 

operating systems and SDKs are available for rapid application development. This project 

proposed that general-purpose mobile devices offer a distinct advantage over specialized 

hardware and software in many applications. One of the main advantages is cost, because a 

smartphone can be reused for a variety of applications, whereas specialised devices cannot. 
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Smartphones are very adaptable. Open-source software can be ported to a smartphone 

platform or software can be designed from scratch, and even the operating system of a 

phone can be modified if an open-source platform, such as Android, is used. When 

considering these advantages, smartphones may be a better choice for many sensing and 

processing application over specialised single-purpose hardware devices. 
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CHAPTER 6   CONCLUSION 

6.1 RESEARCH CONCLUSIONS 

The use of biometrics provides many benefits over other security mechanisms such as 

having to remember one or multiple PIN codes or having to carry around an identification 

document or a key. Easy- to-remember PIN codes are easily guessed, while hard-to-guess 

PIN codes are easily forgotten by the legitimate user. PIN code security relies on what a 

person knows or remembers and key-based security relies on what a person possesses, 

while biometric security relies on who a person is [31], [32]. 

 

The use of biometrics is becoming a very important security consideration as the use of 

smartphones for banking, credit card payments, electronic ticketing, access control and 

other confidential activities increase. Many people also store sensitive information on their 

smartphones which could lead to damage if compromised [35]. Biometrics provides a 

possible alternative for securing important mobile data. At the moment there are however 

disadvantages to using biometrics, which include the need for complex hardware and in 

many cases the tediousness of performing biometric recognition on a regular basis in busy 

environments. For the mitigation of the need for complex hardware, this dissertation 

proposed the use of smartphones as biometric devices for general use and specifically for 

use as a replacement to paper ID documents.  

 

To study the viability of smartphones as biometric devices, the sensing and processing 

capabilities were studied as well as the effect of various system variables on performance 

and accuracy. The processing power of a smartphone was compared with that of a PC, and 

the speed of Java code was also compared with that of native C/C++ code on a mobile 

platform. The ratio of processing time between a PC and a phone was found to be about 30 

in Java and about 21 in C++. It was also found that, on average, a nearly identical 

implementation of C++ code performs about 9 times faster than in Java on a smartphone. 

The goal of this native versus non-native performance comparisons was to determine 

which kind of implementation will provide a better solution, when also taking into 

consideration the availability and portability of software in both languages, as well as the 
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fact that Java code is better supported in Android, especially when working with peripheral 

devices. Native support for Android applications is however increasing constantly. 

 

Speaker recognition and face recognition applications were implemented in three different 

experiments. The first experiment involved the use of the MARF Java library for speaker 

recognition using the built-in microphone of the smartphone. An initial face recognition 

application was then implemented in C++ using OpenCV. The first two experiments were 

performed on both a PC and a smartphone to compare the performance. The third 

experiment was then conducted to determine the effect of changes in various system 

parameters on system accuracy and performance, as well as the performance increase when 

using native code on the smartphone as compared to non-native Java code. For this 

experiment the jAudio and SPro libraries were used for the Java and C++ implementations 

respectively. Various feature extraction and classification algorithms were implemented 

and compared for each experiment as discussed in Chapter 3.  

 

No loss in identification accuracy was observed on the phone when compared to a PC. 

Considering the measured results of these proof-of-concept biometric applications, this 

dissertation suggests that a variety of processing and sensing intensive applications should 

be feasible on current mobile platforms using readily available open-source software, and 

such implementations provide many benefits over the use of specialized hardware and 

software. 

6.2 POSSIBLE FUTURE WORK 

Suggested future research includes the porting of similar benchmarking software to other 

smartphone platforms for a processing speed comparison between different handset models 

and operating systems to find which platforms provide the best performance and usability 

in different circumstances. Such a study may also include tablet computers. Future research 

may also be conducted into other useful software packages that may be ported to mobile 

platforms for specific applications, or for sensing and data processing in general. 
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Other future work on biometric recognition on smartphones may include the combination 

of biometric modalities for an increase in accuracy, especially considering the variable 

environment that smartphones are used in. More complex classification algorithms may 

also be used to serve the same purpose such as support vector machines (SVMs), hidden 

markov models (HMMs) and neural networks. Biometric modalities other than face and 

voice may also be studied in further detail. Examples include teeth, hand geometry, gait 

and hand movement. Since fingerprint scanners are currently being integrated in 

smartphones, fingerprint biometrics will soon become viable and will provide more 

accurate biometric recognition on smartphones. Since the introduction of contactless ID 

smartcards in South Africa a new area of research has also opened to study the possible 

future evolution from these plastic cards to NFC phones, possibly utilising an embedded 

secure element or cloud-based secure element to store sensitive ID information and having 

an app that could display and update information as requested. These smartcards will 

contain fingerprint features of South African citizens and will have a contactless interface 

which will in theory allow NFC phones to read the cards and perform fingerprint 

verification. 
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