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Southern Africa is characterised as a region of moderate seismicity with several instances of 

both natural seismicity and mining-related seismicity occurring within the last century. 

Evaluating the performance of a structure due to increasing seismic intensity is traditionally 

calculated post-earthquake using statistical means. However, the limited network of 

accelerometers in South Africa has prevented a detailed statistical analysis to be undertaken to 

determine the resultant structural damage to South African designed structures with increasing 

earthquake intensity. Therefore, this research investigates a method to relate damage to a 

structure with earthquake intensity by performing numerical analysis in combination with 

physical experimentation. 

The pseudo-dynamic experimentation technique was utilised to evaluate the damage occurring 

in a reinforced concrete footing due to the overall response of a linear elastic two-storey, two-

bay moment resisting steel frame structure that is subjected to earthquake excitation. The 

implicit Newmark’s method with static condensation was utilized in the present study to solve 

the governing equation of motion of the multi-degree of freedom system. Five pseudo-dynamic 
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experiments were performed by scaling the El Centro ground motion record, which occurred in 

California on May 18, 1940, to produce peak ground accelerations that ranged between 

0.34 g and 2 g. To supplement the pseudo-dynamic tests, two cyclic load tests were also 

undertaken. All the laboratory experiments were undertaken under a constant axial load for the 

duration of the applied earthquake excitation and utilised Rayleigh damping to model the 

energy loss with the overall linear elastic frame structure. Utilising the results produced during 

the experiments, an analytical hysteretic model and a damage index was formulated for the 

analysed reinforced concrete footing with the aim of interpolating damage at peak ground 

accelerations and overall structural fundamental period of vibration that were not evaluated 

during the laboratory test. The Park and Ang damage index was used in combination with the 

results to formulate damage curves and fragility curves for the reinforced concrete footing.  

The pseudo-dynamic method provides a reliable method to relate damage suffered by the 

footing due to the overall structure’s response to the applied earthquake excitation. The method 

enables the structural capacity and failure mechanisms of the reinforced concrete footing to be 

observed in relation to the seismic demand. The hysteretic response of the footings and energy 

dissipation characteristics were determined and was shown that the yield strength of the 

longitudinal reinforcement within the footing has a significant impact on the maximum shear 

capacity and damage incurred by the footing. The reinforced concrete footing could only sustain 

a maximum PGA before failure, which is related to the structure’s natural frequency and overall 

energy loss within the structure. Five damage states can be determined for the reinforced 

concrete and are related to the design of the footing and material properties that comprise the 

footing. The damage is more pronounced with an increase in the number of cycles of vibration, 

particularly at displacements that exceed the yield strength of the reinforcement. An increase in 

the hysteretic energy dissipated by the reinforced concrete footing results in a concomitant 

increase in the observed damage to the footing in the form of concrete cracking, reinforcement 

yielding and spalling of the concrete. The investigation shows that the resultant damage to an 

individual structural component is complex and is dependent on several characteristics that 

define the structure. 
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1.1 BACKGROUND 

The performance of structures during an earthquake of given intensity dictates the extent of 

damage and loss of life that becomes associated with the earthquake event. Quantifying the 

level of damage within a structure that has occurred during an earthquake is traditionally 

undertaken post-earthquake using statistical methods. However, this method is not suitable in 

areas with moderate seismicity as insufficient data are available to calibrate structural damage 

to an earthquake intensity parameter.  

Southern Africa is characterised as a region of moderate seismicity, and due to the limited 

network of accelerometers within South Africa, a detailed statistical analysis of the level of 

damage that could occur within structures during future earthquakes has been prevented 

(Brandt, 2011). The previous century has been characterised by several earthquakes in South 

Africa, with the most widely documented being the Ceres-Tulbagh earthquake in 1969 of 

Richter magnitude 6.7. The Ceres-Tulbagh earthquake had an insured loss of US$ 7.4 million 

and a total uninsured loss amounting to approximately 3.5 times that of the insured loss. 

Extensive mining in South Africa, particularly in the gold mining districts of the Witwatersrand 

Basin, has resulted in at least four events in recent years that have caused significant structural 

damage (Kijko and Davies, 2003). Therefore, as noted in Kijko and Davies (2003), seismic risk 

faced by South African structures cannot be met with complacency and structures need to be 

evaluated against a range of earthquake intensities to quantify their seismic capacity and 

performance during an earthquake. 

The typical engineering design process does not adequately quantify the level of performance 

that a structure can sustain during an earthquake. The procedure entails the analysis and design 

of structural components to satisfy the requirements of the South African structural design 

codes of practice, which tend to be prescriptive (Kijko and Davies, 2003). Therefore, the 

resultant performance of the structure and the components making up the structure are not 

thoroughly investigated at various earthquake intensities. 

Quantifying the level of damage incurred by a structure due to increasing earthquake intensity 

is a complex task. Typically, structural components are evaluated using quasi-static methods to 

determine the response due to increasing load. However, the slow rate of the load applied onto 

the structure results in the inertia of the structure not being considered resulting in the response 
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of the structure being independent of the applied earthquake loading. To relate earthquake 

intensity to damage, shake table testing or pseudo-dynamic testing provide a more accurate 

damage correlation with earthquake intensity. Shake table tests provide the most realistic means 

to evaluate damage at various intensities as it accounts for the inertial effects, and the time and 

frequency content of the ground motion. However, shake tables are very expensive, and it is 

difficult to evaluate large scale multi-story structures. 

During pseudo-dynamic experimentation, part of the structure under investigation is physically 

tested in the laboratory in parallel with the dynamic time-stepping structural analysis of the 

overall structure that is mathematically modelled on the computer. The mathematical model of 

the overall structure incorporates both the mass and damping properties of the structure during 

the analysis with the physical model only accounting for the static force-displacement response 

of the test specimen. Pseudo-dynamic experimentation uses well established time integration 

numerical methods to determine the resultant displacement at the degree of freedom that 

couples the numerical model with the physical model. The displacement determined at the 

coupled degree of freedom is physically applied to the test specimen using a servo-controlled 

linear actuator. The resultant force on the structure is measured using a load cell and is 

subsequently fed back into the computational model and used in successive iterations and 

computations to calculate the new displacements.  

The disadvantages associated with pseudo-dynamic tests is that they exclude time-dependent 

effects and can result in cumulative errors in the computational process. However, the 

advantages associated with the method include using the same equipment that is used to perform 

quasi-static tests and because of the time-independent nature of the experiment, the structural 

damage can be observed at each time step due to the slow application of the load. Advancements 

in computer software, the increase in the resolution of the control systems and data acquisition 

systems and the ability of pseudo-dynamic tests to incorporate the dynamic characteristics of a 

structure has made the method a feasible alternative to shake table tests to evaluate the 

performance of a structure at various earthquake intensities.  

1.2 OBJECTIVE OF THE STUDY 

The primary objective of the study was to use the pseudo-dynamic experimental method to 

relate structural damage incurred by a single axially loaded reinforced concrete footing, which 

forms part of a two-bay two-story moment resisting frame structure, to increasing earthquake 

intensity. Therefore, the purpose of the study was separated into the following objectives:  
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• To evaluate the feasibility and viability of using the pseudo-dynamic method with 

implicit time-stepping numerical methods to accurately relate the level of damage 

encountered by a reinforced concrete footing structural subcomponent, which forms 

part of an overall structural system subjected to an earthquake excitation, to increasing 

earthquake intensity; 

• To utilise the pseudo-dynamic method to determine the structural capacity and failure 

mechanisms of the reinforced concrete footing structural component to be observed in 

relation to the seismic demand at various earthquake intensities. To determine the 

relationship between earthquake intensity and structural damage for the reinforced 

concrete footing by analysing the hysteretic cyclic response and energy dissipation 

characteristics at various earthquake intensities. To use the results obtained from 

experiments to formulate a damage index that can be used to quantify the expected 

level of damage at various earthquake intensities; 

• To evaluate the response of the reinforced concrete structure at high peak ground 

accelerations (PGA) and to determine the maximum peak ground acceleration that the 

concrete section can endure for the analysed structural design and configuration; and 

• To investigate the feasibility of using the pseudo-dynamic testing method to formulate 

damage curves and fragility curves for a structural subcomponent that forms part of an 

overall structural system. To determine the influence of the overall structure’s 

fundamental period of vibration has on the level of damage experienced by the footing 

for the analysed structural design and configuration. 

1.3 SCOPE OF THE STUDY 

The susceptibility of damage to a reinforced concrete footing during an earthquake is dependent 

on several factors that relate to the type of structure placed on the footing and the type of 

earthquake ground motion that is imparted to the structure. The study focused on evaluating the 

pseudo-dynamic testing method using only the Newmark’s implicit numerical time integration 

method to correlate damage incurred by the reinforced concrete footing to different earthquake 

intensities. Only a single ground motion record was used in the analysis with changes in the 

peak ground acceleration being the only variable. The El Centro earthquake record was selected 

as the input ground motion for the pseudo-dynamic analysis and the change in the peak ground 

acceleration was achieved by amplifying the record to obtain the required peak ground 

acceleration (PGA). 
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The reinforced concrete footing was subjected to a constant axial load for the duration of the 

earthquake record, and therefore the response of the footing due to a varying axial load was not 

investigated. Only a reinforced concrete footing of a single design that satisfied the minimum 

reinforcement requirements contained in SANS 10100-1:2000 was considered in this research. 

Therefore, the reinforced concrete footing dimensions, reinforcement and concrete mix design 

were all kept constant for each of the tests. All the footings were constructed using the same 

batch of concrete and reinforcement. Additional quasi-static cyclic load tests were conducted 

on the footings to determine the cyclic response to increasing deformation and to determine the 

maximum stiffness of the footing.  

The frame structure, which was placed on the footing, remained linear elastic for the duration 

of the earthquake record. Only Rayleigh damping was incorporated into the analysis to account 

for damage and energy loss in the overall frame structure. The capacity of structural members 

and their connections within the overall frame structure is not considered during the analysis, 

and therefore, the formation of plastic hinges and the resulted loss of stiffness within the overall 

structure is not accounted for in the response of the reinforced concrete footing. Future studies 

can incorporate plastic hinges and determine the influence it has on the damage and fragility of 

the footings and the overall structure.  

An analytical material model was developed by only using the results produced from the 

pseudo-dynamic experiments and the cyclic load tests to interpolate damage at peak ground 

accelerations and fundamental periods of vibration that were not undertaken during the 

laboratory experiments. The typical range of the fundamental periods of vibration were 

determined using building period formulas obtained from SANS 10160-4:2017. The 

fundamental period of vibration of the overall frame structure was varied by multiplying the 

stiffness of the each of the members by the same constant value, therefore ensuring that there 

is the same proportional variation in stiffness between each of the structural members. The 

fundamental period of vibration was not varied by altering the structural configuration or type 

of structure placed on the footing. A damage index was formulated using on the results 

produced in this research. 

Damage curves and fragility curves were only produced for the designed reinforced concrete 

footing and moment resisting frame structure that was subjected to a single ground motion 

record. The fragility curves only consider a uniform distribution of fundamental periods of 

vibration of frame structures that could reasonably be placed on the reinforced concrete footing 

as the actual distribution of structures in an area is not known. The procedure following in this 
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research could be used in future research to analyse the response of structures and structural 

components with varying configurations and designs to develop damage and fragility curves. 

1.4 METHODOLOGY 

The influence of earthquake intensity on the level of damage to the reinforced concrete footing 

was evaluated by using seven test specimens that were constructed from the same batch of 

reinforcing steel and 30 MPa concrete. Two cyclic load tests and five pseudo-dynamic tests 

were undertaken at PGAs of 0.34 g, 0.68 g, 0.78 g, 1 g and 2 g, which were obtained by 

amplifying the El Centro ground motion record. The reinforcement and concrete were obtained 

from commercial suppliers, which ensured that consistency was maintained between the 

materials used to construct the footings and the materials typically used in industry.  

The pseudo-dynamic experimental method was used to establish a correlation between the level 

of damage encountered by the reinforced concrete footing, which forms part of a two-bay, two-

story moment resisting steel frame structure, with earthquake intensity. Two stages were 

required to perform the pseudo-dynamic experiments with the first stage requiring the 

establishment of a physical test setup that would allow for a constant axial load to be applied to 

the test specimen for the duration of the earthquake record while allowing for a varying 

horizontal load, which was servo-controlled. Both the horizontal load and axial load needed to 

be applied simultaneously without any disruptions during the applied earthquake excitation.  

The second stage required to undertake pseudo-dynamic experiments required the development 

and programming of an algorithm that would be used to control the actuators. The computer 

algorithm had to model the overall frame structure’s mass, stiffness and applied static loading 

and was formulated using the equation of motion and Newmark’s implicit time integration 

numerical method. The algorithm required two steps, with the first step requiring the 

formulation of the frame structure and the calculation of the initial state of the structure under 

static loading conditions. The second step entailed subjecting the structure to the earthquake 

excitation, and due to the implicit nature of the numerical method, the analysis required iteration 

until convergence at each time step. The horizontal displacement of the footing that was 

calculated from the numerical model was applied directly to the test specimen in the laboratory 

at each time increment, and the restoring force was measured using a load cell that was 

subsequently fed back into the algorithm to be used in further calculations. 

Strain gauges were attached to the reinforcing bars to determine the strain at each time step, 

and four external displacement transducers were distributed along the height of the column to 
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obtain additional displacement information at each time increment. Due to the implicit nature 

of the time-stepping algorithm used to perform the pseudo-dynamic tests, cyclic load tests were 

undertaken to determine the maximum stiffness of the footing, which was then used as an input 

into the pseudo-dynamic tests.  

Due to the limited number of pseudo-dynamic tests undertaken, an analytical hysteretic model 

was developed from the results obtained from the cyclic load tests and pseudo-dynamic tests to 

complement and enable the interpolation of damage at peak ground accelerations and overall 

structural fundamental periods of vibration that were not undertaken during the pseudo-

dynamic experiments. The result obtained from the cyclic load tests and pseudo-dynamic tests 

were subsequently used to formulate a damage index for the reinforced concrete footing. Ten-

thousand numerical analysis were undertaken using the formulated analytical hysteretic model 

and damage index to determine the level of damage incurred by the footing over a range of peak 

ground accelerations and fundamental periods of vibration. The numerical analysis undertaken 

using the analytical hysteretic model utilised the same algorithm used to perform the pseudo-

dynamic experiments, which entailed substituting the physical test setup with the analytical 

hysteretic model.  

The results obtained by using the analytical hysteretic model were used to develop damage 

curves and contour damage plots, in terms of the overall structural fundamental period of 

vibration, for the reinforced concrete footing. The contour damage plots and curves were 

subsequently used to develop fragility curves assuming a uniform distribution and 

representative range of fundamental periods of vibration that could typically be obtained for 

structures placed on the footing. The results produced from the damage curves and fragility 

curves are related to predicted earthquake intensities and historical earthquake intensities in 

South Africa to infer predicted damage that a structure may sustain.  

1.5 ORGANISATION OF THE REPORT 

This report consists of the following chapters: 

• Chapter 1 serves as an introduction to the report; 

• Chapter 2 provides a literature study of the different concepts covered during the study; 

• Chapter 3 provides the experimental test setup including the analysis and design of the 

overall frame structure and the reinforced concrete footing. The pseudo-dynamic 

experimental method is presented showing the physical test setup and the formulation of 

the algorithm used to perform the experiments; 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

 

7 
 

• Chapter 4 discusses the analysis and detailed description of the results obtained from the 

cyclic load tests and pseudo-dynamic experiments;  

• Chapter 5 provides the formulation of the analytical hysteretic model and damage results. 

The formulated damage index, the resultant damage and fragility curves are also presented 

and discussed; 

• Chapter 6 contains the final conclusions and recommendations of the study; and 

• Chapter 7 provides a list of references. 
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This chapter explores the current understanding of pseudo-dynamic experimentation techniques 

used to analyse engineering structures and includes information on the non-linear time-stepping 

numerical models for solving the equation of motion. In the literature, numerous studies have 

been conducted on the pseudo-dynamic method; however, only the important contributions 

relevant to the current study are discussed. This literature review commences with a discussion 

on seismic risk in South Africa, followed by a discussion on the pseudo-dynamic 

experimentation concerning previous studies and the cyclic response of reinforced concrete. 

The final section of the literature study briefly discusses damage models and the formulation of 

damage and fragility curves from experimental data. 

2.1 EARTHQUAKES 

An earthquake is a naturally occurring phenomenon that typically does not pose a threat to 

humans; however, earthquakes become a hazard when considered in relation to structures and 

infrastructure due to the structure being subjected to the seismic excitation 

(Penelis & Kappos, 2010). Earthquakes have a severe impact on economic, social, 

psychological and political effects due to deaths and damage to infrastructure.  

Earthquakes are ground vibrations that predominantly occur along plate boundary zones where 

one tectonic plate slides relative to another or subducts beneath the other or due to the fracturing 

of the crust (Penelis & Kappos, 2010). A schematic representation of the origin of earthquakes 

is shown in Figure 2-1.   

 

Figure 2-1 Origins of earthquakes (Penelis & Kappos, 2010) 

2 LITERATURE STUDY 
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In areas where plates move relative to one another, large amounts of energy build up over a 

relatively small area. As a result, these regions are responsible for more frequent and severe 

earthquakes. However, regions located within the boundaries of tectonic plates are generally 

rigid, which requires a much longer time to deform and build up energy (Kijko et al., 2015). 

South Africa is located within the boundaries of the African plate and is characterised as an 

area with moderate seismicity. Further information on the seismic hazard in South Africa and 

the tectonic makeup can be found in Brandt (2011). 

Continents consist of vast geological histories that can comprise of up to 4 billion years. 

Earthquakes that occur in plate interiors are infrequent due to the slow speed of internal 

deformation, which can be associated with asperities in the mantle or faults in geological 

formations. However, Davies and Kijko (2003) indicate that the seismic risk faced by South 

Africa is non-negligible and therefore the risk of seismic activity needs to be considered when 

designing a structure. More alarming is that Kijko et al. (2015) conclude that structures designed 

to SANS Standard 10160 (SANS 10160-4, 2017) for a seismic load of 0.1 g are at significant 

seismic risk. Therefore, seismic hazard is an issue in South Africa that needs to be considered 

by the insurance industry and disaster management agencies as a probable threat to 

infrastructure and life (Kijko et al., 2015).  

2.1.1 EARTHQUAKE MAGNITUDE AND INTENSITY 

The magnitude of an earthquake is a measure of the amount of energy released at its point of 

origin in the form of seismic waves and is measured on the Richter scale. The largest earthquake 

to have been recorded had a magnitude of 8.9 on the Richter scale (Colombia-Ecuador, 1906; 

Japan, 1933) and is taken to be the largest earthquake to have ever occurred 

(Penelis & Kappos, 2010).  

The damage caused by an earthquake is partly related to magnitude but is also related to several 

other factors such as the focal depth of the earthquake, the distance to the epicentre, and the 

geology and mechanical properties that make up the structures. The intensity provides a 

measure of quantifying the consequences that the earthquake will have on people and the 

structures in which they reside. Due to the complexity of the problem, empirical intensity scales 

have been formulated to quantify damage qualitatively. One of the most common intensity 

scales is the modified Mercalli (IMM) scale, which has 12 intensity grades and can be related to 

peak ground acceleration and is shown in Table 2-1. Strong ground motions that are of interest 
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to structural engineers are recorded using accelerograms and record the acceleration of the 

ground as a function of time. An example of a strong motion record shown in Figure 2-2. 

 

Table 2-1 Modified Mercalli scale (Penelis & Kappos, 2010) 
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Figure 2-2 Example of a strong ground motion accelerogram of the El Centro earthquake on 18 May 1940 

(N-S component) with the calculated velocity and displacement diagrams (Penelis & Kappos, 2010) 

 

Intensity provides a single means of describing the effect that an earthquake has on human-

made structures. The reason for using intensity (𝐼𝑀𝑀) to describe an earthquake as opposed to 

just using peak ground acceleration is that it considers the local condition inherent to a site, 

which is not possible when expressing an earthquake in terms of peak ground acceleration 

(Kijko et al., 2015). Many empirical relationships have been developed to correlate intensity 

with peak ground acceleration. Figure 2-4 shows various conversions that have been developed 

by various authors to relate intensity with maximum earthquake accelerations. 

Discussions with Prof. A Kijko at the University of Pretoria’s Natural Hazard Centre indicated 

that the correlation between peak ground acceleration and intensity developed by 

Ambraseys (1974) provided the best correlation for South African conditions. Figure 2-3 shows 

the maximum horizontal acceleration and maximum vertical acceleration against reported 

intensity between 1967 and 1974 during the study by Ambraseys (1974). 

The solid dots shown in Figure 2-3 indicate the maximum horizontal acceleration and the open 

dots represents the maximum vertical acceleration. The stars indicate points obtained on hard 

ground, and the dots represent points on soft ground. Utilising the results from Figure 2-3 

Ambraseys (1974) developed a first-order approximation for relating maximum horizontal 

acceleration and intensity, which is shown by Equation 2.1. The conclusions drawn by 

Ambraseys (1974) indicate that: 

• There is a weak correlation between intensity and maximum ground accelerations due to 

the considerable variability in geologic conditions, foundation conditions, earthquake 

mechanisms and the type of accelerograms that are used;  
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• The maximum horizontal accelerations are in the order of 1.5 to 2.5 times greater than the 

vertical accelerations; and 

• Accelerations on hard ground are more significant than those on soft ground. 

 

 

Figure 2-3 Plot of the maximum recorded acceleration versus reported intensity (Ambraseys, 1974) 

 

 

Figure 2-4 Peak ground accelerations conversions to intensity (IMM) relationships from different studies 

(Kijko, 2008)                     
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log(𝑎ℎ) = −0.16 + 0.36(𝐼𝑀𝑀) (2.1) 

2.1.2 SEISMIC RISK IN SOUTH AFRICA 

Two significant groups of seismicity occur in South Africa, namely natural seismicity and 

mining-related seismicity. The first recorded earthquake in South Africa occurred on Robben 

Island in 1620 and was recorded by the early Dutch settlers (Kijko et al., 2015). The 20th century 

predominately comprised of tectonic induced seismicity, with an example being the magnitude 

6.0 to 6.5 seismic event that occurred on 31 December 1932 off the coast of Cape St Lucia 

(Kijko et al., 2015). Another example of a large magnitude earthquake occurring in South 

Africa is the Tulbagh-Ceres earthquake of magnitude 6.3 that occurred in 1969. The Tulbagh-

Ceres earthquake resulted in extensive damage with examples of damage shown in Figure 2-5. 

The Tulbagh-Ceres earthquake was felt across the Western Cape and several buildings suffered 

severe damage, which ranged from large cracks to complete destruction. Twelve people lost 

their lives due to the earthquake, and the event produced an insured loss of US $ 7.4 million. 

However, the uninsured loss was estimated to be approximately 3.5 times higher than the 

insured damage (Kijko et al., 2015).  

 

 

Figure 2-5 Resultant damage at Tulbagh after the Ceres earthquake of 29 September 1969 (Kijko et al., 

2015) 
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Other examples of seismic events in South Africa include the Welkom earthquake in 1976 that 

resulted in the collapse of a six-story-high block of flats and incurred a total insured cost of 

R4.5 million. Figure 2-6 shows the collapse of the six-story building during the Welkom 

earthquake event. A seismic event that occurred in Anglovaal in 1998 resulted in an issued loss 

of R23 million (Kijko et al., 2015). 

 

 

Figure 2-6 Collapse of a six-storey high block of flats due to the 1976 Welkom seismic event (Kijko et.al, 

2015) 

 

Figure 2-7 shows historical epicentral locations of seismicity in Southern Africa. Belt-like 

zones of seismicity characterise Southern Africa, which is surrounded by regions of low 

seismicity. The belt-like zones of seismicity extend from the African Rift Valley down into 

South Africa along the South African and Mozambique north-south border, which extends 

southwards into Kwa-Zulu Natal. Another belt of seismic activity occurs from east to west 

through southern KwaZulu Natal, Lesotho and the southern parts of the Free State 

(Brandt, 2011).  

Due to limited information of historical earthquakes in South Africa, a probabilistic seismic 

hazard analysis is undertaken to produce a map showing the expected peak ground accelerations 

as a factor of gravitational acceleration (g = 9.81 m/s2) with a 10% probability of being exceeded 

within the next 50 years, which is shown in Figure 2-8. As noted in Kijko et al. (2015), due to 

the slow rate of deformation of the tectonic plates within South Africa, the repeat times of 

earthquakes range from thousands to tens of thousands of years. Due to this, instrumental and 

historical records cannot provide a comprehensive overview of the potential risk 

(Kijko et al., 2015). 
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Figure 2-7 Seismic map of Southern Africa during the period of 1620 to 2010 (Brandt, 2011) 

 

 

Figure 2-8 Expected peak ground acceleration (PGA) with a 10% probability of being exceeded at least once 

in a 50-year period (Kijko et. al. 2015) 

Magnitude: 
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2.1.3 SEISMICITY DUE TO MINING ACTIVITY 

Many earthquakes that occur in Gauteng are due to mining activity within the region (Linzer et 

al., 2007). The largest seismic event that occurred in South Africa due to mining-related activity 

occurred in Stilfontein and happened on 9 March 2005. The seismic event recorded a 5.3 on the 

local Richter magnitude scale. Figure 2-9 shows some of the damage to buildings due to the 

seismic tremor in Stilfontein. Closure of the mine due to the earthquake resulted in large-scale 

socio-economic consequences for the people and the community that relied on the mine for 

their livelihood. Seismic events in mining regions will continue to happen if mining operations 

continue with the risk of seismic events continuing even after the mines have been 

decommissioned (Linzer et al. 2007). With increased development in regions of previous 

mining activity, the risk of damage to structures and infrastructure due to seismic activity is 

increasing. Also, due to the ever-increasing frequency of large-scale seismic activity within 

mining districts, the demand for more accurate identification and recording of epicentral 

locations in mining regions is required (Linzer et al., 2007). An earthquake of magnitude 5.5 

occurred on 5 August 2014 in Orkney, South Africa, which is located at around 150 km 

southwest of Johannesburg. The Orkney earthquake is the largest recorded event to have 

occurred near a mining town and resulted in one death and damage to private houses 

(Manzunzu et al., 2017). 

 

 

Figure 2-9 Structural damage due to the Stilfontein tremor of ML = 5.3 on 9 March 2005 (Linzer et al., 

2007) 
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2.2 PSEUDO-DYNAMIC EXPERIMENTATION 

In this section, a brief discussion is presented on the pseudo-dynamic testing technique and its 

background. Numerous studies have been conducted using the pseudo-dynamic testing method; 

however, this section only presents essential contributions and provides the relevant workflows 

and numerical time-stepping algorithms used during the research. 

2.2.1 PSEUDO-DYNAMIC METHOD 

The pseudo-dynamic testing technique is a computer controlled experimental method whereby 

the dynamic behaviour of the structure is mathematically calculated on a computer with the 

resultant displacement being statically imposed on a test specimen of the structure using servo-

controlled actuators in an on-line procedure (Mosalam et al., 1997; Xing et al., 2007). Pseudo-

dynamic testing emerged as an alternative to shake table testing in the 1960s and 1970s from 

the research done by Takanashi et al. (1975) as it produced a more controlled testing 

environment for large and heavy test specimens. 

The pseudo-dynamic testing technique uses the same equipment as conventional quasi-static 

tests; however, the analysis is controlled by a closed loop system comprising of computer 

software that is integrated and runs in tandem with the quasi-static experiment (Kurt, 2010). 

Due to the inertia forces being modelled numerically, the test procedure does not need to be 

undertaken in real time (Takanashi et al., 1987; Pinto et al., 2004; Mosalam et al., 1997). The 

pseudo-dynamic method utilises well-established step-by-step time integration methods, 

whereby the calculated deformation is applied to the test specimen at any given time step at a 

common degree of freedom between the numerical model and the test specimen and the 

restoring force is measured using a load cell. The force obtained from the load cell is fed back 

into the computational model, which is used in successive iterations to determine the new 

deformation. The method utilises the same numerical approach generally undertaken in 

nonlinear structural dynamics; however, the structural restoring force is based on experimental 

feedback from load cells as opposed to an idealised hysteretic model (Shing & Mahin, 1984). 

Typical computational time domain analysis requires the idealisation of the non-linear response 

of the structure; however, pseudo-dynamic testing enables the true material response of the 

structure to be directly obtained from a physical model for the duration of the analysis 

(Mosalam et al., 1997). 

The benefit of pseudo-dynamic testing is that it provides a better understanding of the seismic 

performance of a structure as it incorporates the overall response of the structure, the non-linear 
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behaviour of the structural component, and the seismic excitation. Thereby, structural damage 

can be related to earthquake intensity, which is not possible during traditional quasi-static 

testing. The measured quantities from the actuators, calibrated displacement transducers and 

load cells are utilised in subsequent calculations, which enables both dynamic effects and 

progressive damage of the specimen to be observed for the duration of the experiment 

(Mosalam et al., 1997).  

The pseudo-dynamic method comprises of two cycles as shown in Figure 2-10. The first cycle 

comprises of the calculation cycle, which requires the relevant software and hardware for 

solving the equation of motion using time-integration numerical methods. The second cycle of 

the pseudo-dynamic experiment comprises of the loading cycle, which requires the control 

system consisting of a servo-controlled hydraulic actuator for applying the calculated 

displacement to the test specimen and a load cell for reading the resultant restoring force 

(Takanashi et al., 1987).  

 

 

Figure 2-10 Pseudo-dynamic test loop adapted from Mosalam et al. (1997) 

 

The advantages of pseudo-dynamic testing are indicated by Takanashi et al. (1975) as follows: 

• The true non-linear restoring force characteristics of the structure with displacement can be 

considered without the need to assume a non-linear hysteretic model for the member; 

• Testing can be performed on large structures including one to one scale structures or 

substructures with the use of electro-hydraulic actuators and load cells; 
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• The experiment can be analysed at each time-step, and the failure mechanism can be 

identified during the analysis. The test can be stopped at any point to inspect the structure 

and collect data; and 

• Gravity loads can be incorporated into the analysis by utilising an actuator that applies the 

load before the commencement of the test to simulate the true stresses in the member such 

as axial stress in a column or bending stresses in a beam. 

2.2.2 BACKGROUND TO THE PSEUDO-DYNAMIC METHOD 

Pseudo-dynamic testing originated approximately forty years ago as an alternative to shake 

table testing with Takanashi et al. (1975) seen as one of the pioneers of the testing method 

(Kurt, 2010). Pseudo-dynamic testing is especially efficient when having to test structures that 

are too heavy or too large to be practically tested on available shake tables (Thewalt & Mahin, 

1987). Pioneering work in pseudo-dynamic testing was done by Hakuno in 1969 (as cited by 

Takanashi et al., 1975) where he tested cantilever beams using an on-line system that comprised 

of an analogue computer and an electromagnetic actuator. However, the results produced by 

the test were rather poor due to the limitations of the available hardware. Following from the 

work that was done on cantilever beams, Takanashi et al. (1975) did substantial work in 

establishing the pseudo-dynamic technique by replacing the analogue computer with a more 

accurate digital computer. Modifications done by Takanashi et al. (1975) enabled the procedure 

to not have to operate in real time, thus producing a procedure that could be subjected to slow 

loading and pausing. The first pseudo-dynamic tests were restricted to planar test specimens 

that were subjected to a single horizontal component of base excitation (Takanashi et al., 1975; 

Shing & Mahin, 1984; Takanashi & Nakashima, 1987). However, the method can be easily 

adapted to be used to analyse three-dimensional response of structures with several components 

of base excitation (Thewalt & Mahin, 1987). Multi-degree of freedom testing was done by 

Chang (2009) whereby he subjected a one-storey frame to bidirectional loading. 

The first pseudo-dynamic tests showed that the results were susceptible to measurement and 

control errors and subsequently resulted in research into error analysis (Takanashi et al., 1975). 

Numerous pseudo-dynamic experiments were done in Japan with 27 on-line tests being 

summarised in the journal paper by Takanashi & Nakashima (1987). 

Pseudo-dynamic excitation enables the investigation of geometric nonlinearities, three 

dimensional and multi-support excitations and soils structure interaction all while subjecting 

the structure to an input earthquake excitation (Mahin et al., 1989). The practicability of pseudo-
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dynamic testing was shown in a report published by Mahin and Shing in 1985. Mahin and Shing 

(1985) demonstrated the pseudo-dynamic test by analysing a cantilever column as a single 

degree of freedom system with further tests being conducted on a strengthened steel structure. 

The tests undertaken by Mahin and Shing (1985) comprised of both shake table tests and 

pseudo-dynamic tests and confirmed that pseudo-dynamic is viable if conducted using well 

established analytical techniques combined with calibrated and precise loading and recording 

instruments (Kurt 2010).  

Mahin et al. (1989) indicated that a series of investigations were undertaken through 

coordinated cooperation between the United States and Japan as part of the U.S.-Japan 

Cooperative Earthquake Research Program to investigate the limitations of the pseudo-dynamic 

testing method. Udagawa and Mimura (1991) investigated the seismic behaviour of frames with 

composite beams by using the pseudo-dynamic testing method and using the El Centro 1940 

earthquake ground motion. The tests involved performing both cyclic load testing on the frames 

under constant displacement amplitudes to examine the safety of the frames. They indicated 

that it is not feasible to perform large-scale true time dynamic analysis using a large-scale servo-

controlled hydraulic actuator, although Udagawa et al. (1984), and Takanashi and Udagawa 

(1989) said that displacement rate could not be neglected. 

Mosalam et al. (1998) investigated the response of masonry infill frames using the pseudo-

dynamic method and indicated that the pseudo-dynamic method provides an acceptable 

approximation of the dynamic response of a structure that is subjected to earthquake excitation.  

Wang et al. (2006) investigated the response of a base isolated eight-storey building to a large 

earthquake using an on-line hybrid procedure. The analysis involved using ABAQUS (2003) 

finite element analysis software to analyse the overall response of an eight-storey superstructure 

and a physical model comprising of the base isolation layer and surrounding retaining walls. 

The resultant restoring force obtained from the physical test was input back into ABAQUS 

(2003) software at each cycle to solve for the resultant displacement.  

The explicit Newmark’s method was used by Wang et al. (2006) to solve for the unknown 

displacements at each time-step and was chosen due to its simplicity. The test used sub-

structuring whereby part of the structure was modelled numerically with the remaining part of 

the structure tested in parallel within the laboratory. The test comprised of two models, the 

numerical model used to simulate the structural dynamics and the other model to obtain the 

restoring force from the physical model. The on-line hybrid system used by Wang et al. (2006) 

is shown in Figure 2-11 with their experimental test setup shown in Figure 2-12. 
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Figure 2-11 On-line hybrid system (Wang et al., 2006) 

 

 

Figure 2-12 Loading system (Wang et al., 2006) 

 

A multi-site hybrid simulation framework was developed at the University of Illinois at Urbana 

Champaign (Spencer et al., 2007) for piers of a bridge structure and is shown in Figure 2-13. 

The Ui-SimCor Hybrid Simulation Framework developed by Spencer et al. (2007) showed that 

the method provides a flexible and powerful method for using the pseudo-dynamic method to 

evaluate several components of an overall single structure utilising laboratories at three 
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universities distributed across the Unites States of America.  Spencer et. al (2007) indicated that 

hybrid-simulation can be gruelling task as it requires detailed knowledge of both numerical 

modelling and physical modelling tools, and the programming requirements to integrate the two 

methods. They indicate that it is necessary to use both numerical modelling and physical 

modelling to investigate the complex behaviour of reinforced concrete and the influence it has 

on the overall response of the structure. 

 

 

Figure 2-13 Three site hybrid simulation of piers of a bridge (Spencer et al., 2007) 

 

Xing et al. (2017) performed pseudo-dynamic tests on concrete columns under earthquake 

loading. The column formed part of a four-bay, four storey prototype reinforced concrete planar 

frame structure and had a fundamental period of vibration of 0.8 s. Rayleigh damping was used 

to model the energy loss within the frame structure and a damping ratio of 5% was used with 

the first two modes of vibration. They concluded that the damage encountered by the reinforced 
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concrete column is dependent on the displacement history of the structure, repeated load cycles, 

and the maximum displacement experienced by the structural member.  

Li et al. (2019) used pseudo-dynamic tests on a two-story, two-bay reinforced concrete frame 

structures to investigate and compare the damage sustained by the moment resisting frame 

structure with and without the presence of an Energy-Dissipative Rocking Column (EDRC). 

The pseudo-dynamic tests were undertaken by solving the governing equation of motion using 

the central difference time integration method and used a damping ratio of 5%. There 

experiments showed that cracks occurred with minor concrete spalling at the column base due 

to the application of Shifang ground motion record produced during the 2008 Wenchuan 

Earthquake in China with a PGA of 0.55 g. The research undertaken by Li et al. (2019) shows 

that the pseudo-dynamic method provides an accurate method to relate the damage sustained 

by a structure with earthquake intensity.  

2.2.3 FORMULATION OF PSEUDO-DYNAMIC METHOD 

The pseudo-dynamic method was formulated from the time-discretised equation of motion for 

each time step, 𝑖, as shown by Equation 2.2. During pseudo-dynamic experimentation, 

Equation 2.2 is solved using numerical methods in a stepwise procedure with the restoring 

force, {𝑅𝑖}, measured directly from the test specimen using a load cell (Kurt, 2010). The 

solution of the second order differential equation can either be solved using implicit or explicit 

numerical methods to solve for the displacements at each time step. 

 [𝑀]{𝑢̈𝑖} + [𝐶]{𝑢̇𝑖} + [𝐾]{𝑢𝑖} + {𝑅𝑖} = −[𝑀]{𝐼}𝑢̈𝑔𝑖 (2.2) 

 

Where: [𝑀]:    Mass matrix [𝐶]:    Viscous damping matrix [𝐾]:    Overall structural stiffness matrix {𝑅𝑖}:  Measured restoring force vector from the test specimen {𝑢̈𝑖}, {𝑢̇𝑖}, {𝑢𝑖}:   Nodal acceleration, velocities and displacements at time step i 𝑢̈𝑔𝑖:    Ground acceleration at time i {𝐼}:  Influence vector  
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The initial stiffness of the physical structure is generally chosen to be close to the maximum 

achievable stiffness of the test structure, which is generally the elastic stiffness of the structure. 

However, to ensure stability, the selection of the initial stiffness needs to be greater or equal to 

the maximum achievable tangent stiffness of the physical test structure (Pegan & Pinto, 2000). 

Takanashi et al. (1975) indicated that the assessment of 𝑅𝑖 is the most critical aspect in the 

analysis to achieve a satisfactory accuracy during the pseudo-dynamic testing. An appropriate 

numerical analysis time stepping method of enough accuracy is required to predict the 

incremental restoring force at the current time step utilising the data obtained from the 

preceding time step. Several numerical schemes are available to formulate a time-stepping 

approximation to the governing equation of motion as previously shown in Equation 2.2. The 

numerical schemes can be separated into purely explicit numerical methods such as the central 

difference method, which relies entirely on the results of the previous time-step, or purely 

implicit methods such as the Newmark’s method, which relies on information of the previous 

time-step as well as information in the present time-step. Solving the equation of motion using 

explicit numerical integration methods can result in stability issues but was traditionally 

preferred over implicit methods as it eliminated the need for iteration (Mosalam et al., 1997). 

A mixture of implicit and explicit methods is also available, with an example being the operator 

splitting method (Mosalam et al., 1997). Thewalt and Mahin (1987) proposed a hybrid approach 

that uses the available experimental data, which includes both a digital computer and analogue 

voltage signals and summing amplifiers to solve the equation of motion. 

In early applications of the pseudo-dynamic method, the difference equation was solved using 

the linear acceleration method. However, the method only produced reasonable results for 

flexible and straightforward structural systems (Takanashi & Nakashima, 1987). The linear 

acceleration method had issues in producing accurate results for stiff systems and systems with 

rapid changes in stiffness when estimating the instantaneous stiffness due to the accuracy limits 

of the measurement instruments. Takanashi et al. (1975) solved these issues by employing the 

central difference method, which mitigated the need for measuring the tangent stiffness at each 

increment and having to not solve the equation of motion in incremental form.  

The central difference method enabled the direct input of the force reading produced by the 

load cell to be used in the equation of motion. Figure 2-14 shows the basic routine followed by 

Takanashi and Nakashima (1987) during the pseudo-dynamic method whereby the computed 

displacement is converted from a digital signal to an analogue signal using a digital to analogue 

converter (D/A). The analogue signal is then used to apply the displacement onto the structure 

and a force reading is taken using the load cell. The reading from the load cell is taken in the 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

 

25 
 

form of an analogue signal and is converted to a digital signal using an analogue to digital 

converter (A/D), which is subsequently fed back into the computer and used in subsequent 

calculations. 

 

 

Figure 2-14 On-line algorithm adopted by Takanashi and Nakashima (1987) 

 

Bursi and Shing (1996) discuss various implicit time stepping methods for non-linear problems, 

which includes the modified Newton iteration method. The modified Newton’s method requires 

that the predictor stiffness [𝐾] used in the analysis to be greater than the actual stiffness of the 

structure. Mosalam et al. (1997) implemented the predictor-corrector algorithm, which 

produced an adequate control of experimental error propagation. The method enabled careful 

inspection and documentation of the complex cracking of infill masonry walls. 

2.2.4 INHERENT LIMITATIONS AND ERRORS 

Every test method involves a series of inherent limitations, and therefore several assumptions 

need to be made when performing pseudo-dynamic tests (Kurt, 2010). The first assumption that 

needs to be made is whether the structure can be accurately and precisely solved using the 

equation of motion and the resultant displacements can be applied to the structure with enough 

accuracy (Mahin et al., 1989). Mahin et al. (1989) described several limitations inherent to 

pseudo-dynamic testing that relates to the way the structure is idealised, damping effects within 

the structure and strain rate effects.  
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Assumptions need to be made on how the structure is discretised into a finite number of degrees 

of freedom and how the mass is subsequently lumped at the degrees of freedom. Damping 

effects are incorporated into the structure by assuming viscous damping, however, how energy 

is dissipated within the structure is complex (Mahin et al., 1989). 

The rate of the load applied to the structure during a pseudo-dynamic test is much slower than 

real time dynamic tests and excludes time-dependent material effects, such as strain rate effects 

in the reinforcing steel. The time it takes for each time step can average at around 1 second 

resulting in tests being 100 times longer than the actual earthquake record, which can influence 

the response of structures subjected to impulse loading and short period structures (Mahin et 

al., 1989). Shing and Mahin (1988) investigated the rate of loading effects during pseudo-

dynamic tests by comparing the response of an elastic/viscoplastic system with rate dependent 

characteristics with that of previous studies on the dynamic yield strength of mild steel. They 

showed that the dynamic response of mild steel had a 30% higher yield strength in comparison 

to that obtained during the pseudo-dynamic test.  

Shing and Mahin (1990) investigated the experimental error effect in pseudo-dynamic testing 

by evaluating the error propagation characteristics of several algorithms. They found that the 

extent of error propagation depends on the numerical properties of the algorithm and the 

frequency characteristics of the test specimen. Response errors during the pseudo-dynamic 

testing are due to inherent errors in the displacement control system and the measurement 

system (Udagawa & Mimura, 1991).  

The results obtained from the pseudo-dynamic experimentation are susceptible to the accuracy 

of the recording instruments and the numerical method used to solve the equation of motion 

(Mosalam et al., 1997). Several researchers investigated the reliability of the pseudo-dynamic 

method due to the potential of cumulative errors developing for the duration of the earthquake 

record. Calibration of the instruments needs to be ensured due to the sensitivity of the analysis 

to experimental error (Mosalam et al., 1997). The procedure employed during the pseudo-

dynamic method can produce three significant sources of error, as shown by Shing & Mahin 

(1984): 

• The reliability of the analytical techniques employed. The analogy of a discrete system does 

not necessarily account for the actual dynamic response of the continuous system. The 

prescribed damping may be an overly idealised energy dissipating mechanism; 
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• The numerical method employed can only produce an approximate solution to the equation 

of motion. The introduced numerical errors may result in the distortion of the actual 

dynamic response of the system; and 

• Feedback errors from the experimental equipment. The errors introduced into the analysis 

through displacement control and restoring force feedback are inherently cumulative. 

Despite the prospect of errors being introduced into the analysis, experiments done at the 

University of California Berkeley indicated that the pseudo-dynamic test method could be as 

reliable and realistic as shake table testing (Shing & Mahin, 1984). Mosalam et al. (1997) 

indicate that the recent trend in pseudo-dynamic testing is to use implicit numerical methods, 

such as Newmark’s method, because of its superior stability properties. 

2.3 IMPLICIT NEWMARK TIME INTEGRATION METHOD 

The preference in the past has traditionally been towards explicit numerical methods because 

of the disinclination to numerical iteration at each time step. However, advancements in 

computational power and the increase in the resolution of computers have made using implicit 

numerical methods more favourable due to the superior stability properties it provides 

(Mosalam et al., 1997). Newmark’s implicit method has been widely adopted in finite element 

analysis software to solve non-linear problems as it can be unconditionally stable for any time 

increment (Chopra, 2012). Therefore, the selection of the time increment only influences the 

accuracy of the solution and not the stability. 

Newmark’s method was developed in 1959 by N.M. Newmark and formulated from 

Equation 2.3 and Equation 2.4 (Chopra, 2012). The selection of the parameters 𝛾 and 𝛽 

determine the accuracy and stability of the solution. The average acceleration method has 

factors 𝛾 = 1 2⁄  and 𝛽 = 1 4⁄  and results in an implicit and unconditionally stable solution 

(Chopra, 2012). A constant acceleration within the time interval 𝑡 ∈ [𝑡𝑖 𝑡𝑖+1] is presumed and 

is graphically shown in Figure 2-15. 

 𝑢̇𝑖+1 = 𝑢̇𝑖 + [(1 − 𝛾)Δ𝑡]𝑢̈𝑖 + (𝛾Δ𝑡)𝑢̈𝑖+1 

 

(2.3) 

𝑢𝑖+1 = 𝑢𝑖 + (Δ𝑡)𝑢̇𝑖 + [(0.5 − 𝛽)(Δ𝑡)2]𝑢̈𝑖 + [𝛽(Δ𝑡)2]𝑢̈𝑖+1 (2.4) 
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Figure 2-15 Newmark's constant average acceleration method (Chopra, 2012) 

 

Newmark’s method is an implicit numerical method, as it determines the solution at time 𝑖 + 1 

from the equilibrium condition at the same time 𝑖 + 1 and therefore produces an equation 

whereby the resisting force (𝑓𝑠)𝑖+1 is an unknown function of the unknown displacement 𝑢𝑖+1. 

As a result, Newton-Raphson iteration method is used to solve for the unknown force (𝑓𝑠)𝑖+1 

at time 𝑖 + 1. The derivation of the Newton-Raphson method is obtained by expanding the 

resisting force (𝑓𝑠)𝑗+1 in Taylor series about the known estimate 𝑢(𝑗), with the full derivation 

shown in Chopra (2012).  

The objective of the Newton-Raphson method is to solve for Equation 2.5 by reducing the force 𝑅(𝑗) to zero, which is shown in Equation 2.6. The tangent stiffness at 𝑢(𝑗) is given by 𝑘𝑇(𝑗) =𝜕𝑓𝑠𝜕𝑢 |𝑢(𝑗) and by solving Equation 2.6 provides the ∆𝑢(𝑗), which produces a better estimate of the 

resultant displacement in Equation 2.7. The process continues by incrementally increasing 𝑗 
within the time step 𝑖 until the residual 𝑅 is less than a specified tolerance at which point the 

next time step 𝑖 + 1 is initialised (Chopra, 2012). Figure 2-16 shows graphically the Newton-

Raphson iteration procedure that iterates within each time step 𝑖 until convergence to a solution.  

 𝑓𝑠(𝑢) = 𝑃 (2.5) 𝑘𝑇(𝑗)∆𝑢(𝑗) = 𝑃 − 𝑓𝑠(𝑗) = 𝑅(𝑗) (2.6) 𝑢(𝑗+1) = 𝑢(𝑗) + ∆𝑢(𝑗) (2.7) 
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(a) (b) 

Figure 2-16 Newton-Raphson iteration procedure for time step i showing (a) convergence to the resultant 

force and (b) the residual force converging to zero (Chopra, 2012) 

 

Newmark’s method extends the Newton-Raphson method from a static problem to a dynamic 

problem by setting the resulting force, as previously shown in Equation 2.2, equal to the 

summation of the forces due to inertia, damping and stiffness within the structure and results in 

the formation of Equation 2.8 and Equation 2.9. The tangent stiffness 𝑘𝑇(𝑗) for the nonlinear 

equilibrium of the dynamic problem is given by Equation 2.10 with the full derivation of the 

dynamic tangent stiffness provided in Chopra (2012). The resultant Newton-Raphson iteration 

method for a dynamic system is given by Equation 2.11 with the residual force vector being 

calculated using Equation 2.12. 

 (𝑓𝑠)𝑖+1 = 𝑝𝑖+1 (2.8) 

(𝑓𝑠)𝑖+1 = 𝑚𝑢̈𝑖+1 + 𝑐𝑢̇𝑖+1 + (𝑓𝑠)𝑖+1 (2.9) 

(𝑘̂𝑇)𝑖+1(𝑗) ≡ 𝜕𝑓𝑠𝜕𝑢𝑖+1 = (𝑘𝑇)𝑖+1(𝑗) + 𝛾𝛽Δ𝑡 𝑐 + 1𝛽(Δ𝑡)2𝑚 
(2.10) 

(𝑘̂𝑇)𝑖+1(𝑗) ∆𝑢(𝑗) = 𝑝𝑖+1 − (𝑓𝑠)𝑖+1(𝑗) = 𝑅̂(𝑗)𝑖+1  (2.11) 

 𝑅̂(𝑗)𝑖+1 = 𝑝𝑖+1 − (𝑓𝑠)(𝑗)𝑖+1 − [ 1𝛽(∆𝑡)2𝑚 + 𝛾𝛽(∆𝑡) 𝑐] ((𝑓𝑠)(𝑗)𝑖+1 − 𝑢𝑖) +[ 1𝛽(∆𝑡)𝑚 + [𝛾𝛽 − 1] 𝑐] 𝑢̇𝑖 + [( 12𝛽 − 1)𝑚 + ∆𝑡 ( 𝛾2𝛽 + 1) 𝑐] 𝑢̈𝑖  
(2.12) 
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The adapted iteration technique using the Newton-Raphson method is similar in form to the 

static solution except the damping and inertia terms are included in both the residual force, 𝑅̂, 

and the tangent stiffness 𝑘𝑇 . Table 2-2, adopted from Chopra (2012), summarises the 

Newmark’s method for the solution of the non-linear system. Step 3.6 in Table 2-2 requires the 

input of a hysteretic model that relates the calculated displacement 𝑢𝑖+1(𝑗+1) to resultant force (𝑓𝑠)𝑖+1(𝑗+1)
, however, as previously discussed in Section 2.2, the calculated displacement 𝑢𝑖+1(𝑗+1) 

in Step 3.5 is applied directly to the structure using a servo-controlled hydraulic actuator with 

the resultant force read from a calibrated load cell and fed back into the numerical model in 

Step 3.6. This circumvents the need to assume a hysteretic model and structural stiffness 

(Takanashi & Nakashima, 1987). 

 

Table 2-2 Newmark’s method for the solution of nonlinear systems (Chopra, 2012) 

Special cases 

(1) Average acceleration method (𝛾 = 12 , 𝛽 = 14) 
1.0  Initial conditions 

 1.1 State determination (𝑓𝑠)0 and (𝑘𝑇)0 
 1.2 𝑢̈0 = 𝑝0 − 𝑐𝑢̇0 − (𝑓𝑠)0𝑚  

 1.3 Select Δ𝑡 
 1.4 𝑎1 = 1𝛽(Δ𝑡)2𝑚+ 𝛾𝛽Δ𝑡 𝑐;         𝑎2 = 1𝛽Δ𝑡𝑚+ (𝛾𝛽 − 1) ;              𝑎3 = ( 12𝛽 − 1)𝑚 + Δ𝑡 ( 𝛾2𝛽− 1) 𝑐 
2.0 Calculations for each time instant 𝑖 = 0, 1, 2, … 

 2.1 Initialise 𝑗 = 1, 𝑢𝑖+1(𝑗) = 𝑢𝑖 , (𝑓𝑠)𝑖+1(𝑗) = (𝑓𝑠)𝑖 , and (𝑘𝑇)𝑖+1(𝑗) = (𝑘𝑇)𝑖  
 2.2 𝑝̂𝑖+1 = 𝑝𝑖+1 + 𝑎1𝑢𝑖 + 𝑎2𝑢̇𝑖 + 𝑎2𝑢̈𝑖 
3.0 For each iteration, 𝑗 = 1, 2, 3… 

 3.1 3.1 𝑅̂𝑖+1(𝑗) = 𝑝𝑖+1 − (𝑓𝑠)𝑖+1(𝑗) − 𝑎1𝑢𝑖+1(𝑗)  

 3.2 3.2 Check convergence: If the acceptance criteria are not met, implement steps 3.3 to 3.7, otherwise, 

skip these steps and go to step 4.0 

 3.3 (𝑘̂𝑇)𝑖+1(𝑗) = (𝑘𝑇)𝑖+1(𝑗) + 𝑎1 
 3.4  Δ𝑢(𝑗) = 𝑅̂𝑖+1(𝑗) ÷ (𝑘̂𝑇)𝑖+1(𝑗)

 

 3.5  𝑢𝑖+1(𝑗+1) = 𝑢𝑖+1(𝑗) + ∆𝑢(𝑗) 
 3.6 State determination: (𝑓𝑠)𝑖+1(𝑗+1) and (𝑘𝑇)𝑖+1(𝑗+1) (Pseudo-dynamic loading cycle onto the test specimen) 

 Replace 𝑗 by 𝑗 + 1 and repeat steps 3.1 to 3.6; denote final value as 𝑢𝑖+1  
4.0 Calculations for velocity and acceleration  

 4.1 𝑢̇𝑖+1 = 𝛾𝛽∆𝑡 (𝑢𝑖+1 − 𝑢𝑖) + (1 − 𝛾𝛽) 𝑢̇𝑖 + Δ𝑡 (1 − 𝛾2𝛽) 𝑢̈𝑖 
 4.2 𝑢̈𝑖+1 = 1𝛽(∆𝑡)2 (𝑢𝑖+1 − 𝑢𝑖) − 1𝛽Δ𝑡 𝑢̇𝑖 − ( 12𝛽 − 1) 𝑢̈𝑖 
5.0 Repetition for the next time step. Replace 𝑖 by 𝑖 + 1 and implement steps 2.0 to 4.0 for the next time step. 
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2.4 FUNDAMENTAL PERIOD OF VIBRATION OF A STRUCTURE 

The response of a structure to a given ground motion excitation is dependent on several 

characteristics inherent to the structure. The performance of the structure during an earthquake 

depends on the ability of the structure to absorb and dissipate energy including the frequency 

characteristics of the earthquake that correspond with the frequency characteristics of the 

structure (Chopra, 2012).  

By solving Equation 2.13, with the stiffness matrix and mass matrix known, the scalar values 𝜔𝑛2 and vector Φ𝑛 can be obtained. This produces 𝑛 homogeneous algebraic equations for 𝑛 

modes of vibration. The natural period of vibration is determined by solving the eigenvalues 

for the non-trivial solution in Equation 2.13 by setting the determinate equal to zero as shown 

in Equation 2.14. The 𝑛 roots, 𝜔𝑛2, are the natural frequencies of vibration of the structure and 

when ordered from smallest to largest, the smallest value is known as the fundamental 

frequency of vibration. The fundamental period of vibration is the typical vibration mode that 

is excited during a seismic event (Chopra, 2012). 

 [[K] − ωn2[M]]Φn = {0}  
 det[[K] − ωn2[M]] = 0  

(2.13) 

 

(2.14) 

2.4.1 BUILDING PERIOD FORMULAS 

The fundamental period of vibration of structures appears in design codes for the calculation of 

the design base shear and lateral forces. Before completing the design of the structure, the 

fundamental period of vibration is unknown and therefore to circumvent this predicament, 

building codes provide empirical formulas that enable the estimation of the fundamental period 

of vibration for various building types and structural materials. Figure 2-17 provides historical 

fundamental periods of vibration from a database of 2622 Chilean buildings and shows that 

most fundamental periods for buildings show a linear relationship with increasing structural 

height (Lagos & Kupfer, 2012). Regression analysis of the database of the recorded 

fundamental period was used to develop empirical formulas for reinforced concrete moment 

resisting frame structures and steel moment resisting frame structures. 
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Figure 2-17 Comparison between fundamental periods and height of structures H for 2622 Chilean 

Buildings (Lagos & Kupfer, 2012) 

 

SANS 10160-4:2017 provides building period formulas that can be used to estimate the 

fundamental period of vibration of a steel frame building, reinforced concrete moment resisting 

frame structures and other building types. Equation 2.15 enables the estimation of fundamental 

period of vibration of a steel frame moment resisting structures and Equation 2.16 provides the 

estimation of the fundamental period of vibration of reinforced concrete moment resisting frame 

structures as a function of the height of the structure. However, Goel and Chopra (1996) 

concluded that code formulas for concrete and moment resisting frame structures typically 

produce lower period values in comparison to measured periods. 

𝑇 = 0.085 × ℎ𝑡3 4⁄  
(2.15) 

𝑇 = 0.075 × ℎ𝑡3 4⁄  
(2.16) 

2.5 RAYLEIGH DAMPING 

Rayleigh damping provides a method of dissipating energy during a linear elastic structural 

analysis that is subjected to seismic loads (Hall, 2006) and can be used to account for energy 

loss in the linear computational portion of the pseudo-dynamic analysis. Numerical models 

used to solve vibrating structures consider three sources of energy dissipation, which includes 

energy dissipated through hysteretic non-linear material behaviour, energy radiation and 

damping in the structure (Hall, 2006). Incorporating damping into a linear elastic analysis is 
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necessary as it accounts for complex non-linear behaviour of the structure that would otherwise 

be neglected. The mechanism by which the energy of a vibrating structure can be dissipated in 

a linear system is accounted for by equivalent viscous damping (Chopra, 2012). The viscous 

damping matrix is dependent on the distribution of stiffness within the structure, the mass of 

the structure and the natural modes of vibration of the structure (Park & Hashash, 2004).  

Rayleigh damping is used to account for energy dissipation in a multi-degree of freedom system 

during a linear analysis and was proposed by Rayleigh and Lindsay (as cited in Park & Hashash, 

2004). The damping matrix is assumed to be proportional to the mass matrix [𝑀] and the 

stiffness matrix [𝐾], using constants 𝑎0 and 𝑎1 as shown in Equation 2.17.  

 [𝐶] = 𝑎0[𝑀] + 𝑎1[𝐾]  (2.17) 

 

The constants 𝑎0 and 𝑎1 are calculated using Equation 2.18 and have units 𝑠−1 and 𝑠, 
respectively. Two significant modes are selected to solve for the constants and are assigned a 

damping coefficient. The damping coefficient assigned to each mode of vibration is equal as 

the damping coefficient is known to be frequency independent (Park and Hashash, 2004). The 

damping ratio is given by 𝜁 at mode 𝑖 with the damping ratio being the ratio of the mode’s 

damping to critical damping (Hall, 2006). The natural frequency at a mode is given by 𝜔𝑖. As 

can be seen from Figure 2-18, the damping ratio is only true at the two selected frequencies, 

with the damping typically being greater at frequencies less than 𝜔𝑖 and greater than 𝜔𝑗. 
Frequencies between 𝜔𝑖 and 𝜔𝑗 tend to result in damping ratios less than the selected damping 

ratio 𝜁. 

 

Figure 2-18 Rayleigh damping (Chopra, 2012) 
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[𝜁𝜁] = 12 [ 1𝜔𝑖 𝜔𝑖1𝜔𝑗 𝜔𝑗] {𝑎0𝑎1}  (2.18) 

2.6 HYSTERETIC BEHAVIOUR OF REINFORCED CONCRETE COLUMNS 

With the increase in world population and the subsequent increase urbanisation, more people 

and properties are at risk of impending natural hazards. As a result, the performance of 

reinforced concrete structures to natural hazard has gained research popularity amongst 

engineers to mitigate the devastating economic results and loss of life due to natural hazards 

such as earthquakes. Therefore, the prediction of the hysteresis behaviour of reinforced concrete 

is critical to understanding the performance of it during a seismic event (Sengupta & Li, 2017). 

Over the last 50 years, hundreds of laboratory tests have been undertaken to determine the 

hysteretic behaviour of structural components for earthquake conditions (Chopra, 2012). 

Figure 2-19 shows the cyclic response of reinforced concrete and shows that the initial loading 

provides three stages of stiffness degradation for reinforced concrete. The figure also shows 

pinching effect upon unloading, which is evident by the reduction in stiffness as the load 

approaches zero. The monotonic loading response of reinforced concrete column forms the 

upper bound during a strong seismic excitation (Penelis & Kappos, 2010).  

 

 

Figure 2-19 Force-deformation relationship for reinforced concrete (Chopra, 2012) 
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Low and Moehle (1987) did experimental studies on reinforced concrete columns subjected to 

multi-axial cyclic loading. Their study involved testing cantilever columns projecting from stiff 

foundation blocks and subjecting them to uniaxial cyclic lateral load histories with a constant 

axial load on the columns. The load-deflection curve for the constant axial load using imperial 

units is shown in Figure 2-20. From Figure 2-20, three regions of varying stiffness can be 

observed with the first corresponding to loading before flexural cracking, the second region 

being before reinforcement yielding but post the onset of cracking, and the final region is the 

yielding of the reinforcing bars. The hysteretic response as shown in Figure 2-20 is typical for 

reinforced concrete columns that are subjected to axial loads and do not encounter significant 

shear or anchorage weakening (Low & Moehle, 1987). 

 

 

Figure 2-20 Lateral load versus lateral displacement for a column subjected to constant axial load (Low & 

Moehle, 1987) 

 

The degradation response of reinforced concrete columns subjected to reversed cyclic loading 

is influenced by the applied axial loading on the column, which may or may not be favourable 

(Penelis & Kappos, 2010). Axial loading has the benefit of closing flexural and shear cracks in 

the concrete column. Penelis & Kappos (2010) indicated that the increase in axial load results 

in an increase in column stiffness and hysteresis loops with larger widths as shown in 

Figure 2-21. The flexural strength of a column varies substantially with the magnitude of the 

axial load and is related to the M-N interaction diagram for the section under consideration. 
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(a) (b) (c) 

Figure 2-21 Hysteretic behaviour of elements with different levels of axial load (Penelis & Kappos, 2010) 

 

2.6.1 CONFINEMENT AND DUCTILITY OF REINFORCED CONCRETE 

The ability of reinforced concrete to undergo extensive plastic deformation enables the 

structural member to absorb more energy without a sudden and catastrophic collapse. Seismic 

design of reinforced concrete structures typically relies on the yielding of the steel 

reinforcement to provide for energy dissipation due to large deformations of the structure. 

Energy absorption and dissipation are fundamental for a structure to survive an earthquake and 

therefore ductility is critical in ensuring that a structure can sustain large plastic deformations 

before failure (Robberts & Marshall, 2010; Elmenshawi & Brown, 2009; Penelis & Kappos, 

2010). However, uncertainty exists between the amount of ductility prescribed in design codes 

and actual ductility experienced during seismic events (Xing et al., 2017).  

Figure 2-22 shows the stress-strain behaviour of reinforced concrete with different levels of 

confinement. Figure 2-23 shows the influence that rectangular hoops have on the concrete 

confinement response and the resultant stress concentrations that develop at the corners of the 

rectangular hoops (Penelis & Kappos, 2010). Parts of the concrete section produce zero 

confinement due to the outward deflection at the centre between bends of the rectangular hoop 

legs, as can be seen in Figure 2-23. Reinforced concrete columns with adequate longitudinal 

and lateral reinforcement can develop large amounts of ductility with a subsequent increase in 

strength (Cusson & Paultre, 1994; Penelis & Kappos, 2010). Confinement is initiated by the 

formation of internal bond cracks between the aggregates and the mortar, which increases the 

volume of the element (Kent and Park, 1971). Confinement has two critical advantages as it 

increases the strength of the concrete and increases the ductility of the concrete to strain values 

exceeding 0.35%, which is accepted as the maximum strain before failure in most codes 

(Penelis & Kappos, 2010). 
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Figure 2-22 Stress-strain diagrams for concrete with different types of confinement (Penelis & Kappos, 

2010) 

 

 

Figure 2-23 Influence of rectangular hoops on concrete confinement (Penelis & Kappos, 2010) 

 

Kent and Park (1971) developed one of the first models for confined reinforced concrete models 

that only considered the increase in ductility due to rectangular confining steel without 

considering the increase in concrete strength. Figure 2-24 shows the results produced by Kent 

and Park (1971) for confined reinforced concrete with rectangular hoops. Passive confinement 

is provided to concrete in the form of closely spaced spirals or hoops and results in the concrete 

becoming confined once the stresses in the concrete approaches the uniaxial strength (Kent and 

Park, 1971). The Kent and Park (1971) model was modified by Scott et al. (1982) and Park et 

al. (1982) to account for concrete strength and ductility by considering confinement and the 

effect of strain rate. Mander et al. (1988) developed a model for confined concrete subjected to 

uniaxial compressive loading and confined by stirrups. The Mander et al. (1988) model 

considers various means of confining concrete and allows for cyclic loading and strain rate 
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effect. The main parameters that influence the response of confinement in concrete are (Penelis 

& Kappos, 2010):  

• The ratio of transverse reinforcement or volumetric ratio, 𝜌𝑤, defined as the ratio 

between the volume of hoops to the volume of the confined core; 

• The yield strength of the transverse reinforcement, which results in an increase in 

confinement with an increase in strength; 

• The compressive strength of concrete, with higher strength concrete being less ductile 

then lower strength concrete; 

• The spacing of the hoops, with an increase in confinement resulting due to a reduction 

hoop spacing; 

• The hoop pattern; and 

• The longitudinal reinforcement. 

 

 

Figure 2-24 Proposed stress stain relationship for confined and unconfined concrete (Kent and Park, 1971) 

 

Stress-strain models for confined concrete have been developed by Saatcioglu and Razvi (1992) 

and were based on a series of experimental tests on reinforced concrete columns. The proposed 

stress-strain relationship is given in Figure 2-25 with one of the experimental results shown in 

Figure 2-26. Concrete without any reinforcement that is subjected to uniaxial compressive load 

shows a brittle failure mechanism, however, confined concrete shows a substantial 

improvement in deformability (Cusson & Paultre, 1994). From Figure 2-26 the column can 

undergo a significant increase in deformation before failure with failure occurring at a strain of 

4%, however, the decrease in strength with increase in strain is an indication that the concrete 
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has spalled. The 4% failure strain, as shown in Figure 2-26, is significantly more than the 0.35% 

ultimate compressive strain as indicated in the South African standard for the design of 

structural concrete (SANS 10100-1, 2000), which indicates that a structure with adequate 

confining reinforcement can sustain much larger deformations before collapse. During inelastic 

load reversals, the ductility capacity of a structural element generally reduces due to an increase 

in shear deformation and bond deterioration (Park et al., 1984). 

 

Figure 2-25 Proposed stress-strain relationship as given by Saatcioglu and Razvi (1992) 

 

 

Figure 2-26 Normalised stress-strain diagram of a square column as tested by Razvi & Saatcioglu (1989) 
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2.6.2 PINCHING EFFECT IN REINFORCED CONCRETE 

The pinching effect is commonly observed in the hysteretic response of reinforced concrete 

structures during the application of repeated cyclic loading, which is common during an 

earthquake (Yu et al., 2016). The pinching effect shown in the hysteretic loops is related to 

crack closure, shear crack sliding, shear lock, delayed closure of two cracked surfaces, slippage 

of reinforcement embedded in the concrete and concrete crushing to name a few. The pinching 

effect has been shown in experimental studies to result due to previous loadings and is revealed 

by a reduction in stiffness during reloading (Yu et al., 2016). Figure 2-27 shows the pinching 

effect in reinforced concrete and is characterised by the large reduction in stiffness with 

unloading and the subsequent increase in stiffness upon reloading once the cracks have closed 

in the direction of reloading. 

 

Figure 2-27 Pinching in reinforced concrete under cyclic loading (Yu et al., 2016) 

 

Yu et al. (2016) undertook a combination of experimental tests and finite element modelling to 

investigate the mechanism of pinching in reinforced concrete columns. The contribution of the 

rebar and concrete to the pinching effect was analysed and found that the concrete results in a 

larger contribution to pinching than the reinforcement. Yu et al. (2016) attributes the delay in 

crack closure as one of the main contributions to pinching. The counteraction between material 

behaviour between concrete and reinforcement also plays a role in the formation of the pinching 

effect. During the unloading stage during cyclic loading, the forces in the steel may vary rapidly 

from tensile yielding to compressive yielding, which often occurs whilst the crack is still open. 

Reinforcing steel consists of a high elastic modulus and shows the Bauschinger effect after 
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yielding, which is the property whereby the steel’s yield strength reduces in the reverse 

direction to the initial loading (Yu et al., 2016). 

2.6.3 BUCKLING OF LONGITUDINAL BARS 

Figure 2-28 shows a flexural failure of a reinforced concrete member due to crushing and 

spalling of the concrete cover and subsequent buckling of the longitudinal bars. This failure 

mechanism typically occurs in members with high ductility that results in the member absorbing 

a significant amount of hysteretic energy. When the member reloads in the opposite direction 

to the initial loading and the reinforcing bar has been permanently deformed, the reloading 

occurs at a slope less than that of the unloading branch and decreases with increasing 

deformation, which contributes to the pinching effect.  

Longitudinal bars that have undergone permanent elongation in the initial direction of loading 

prevents the cracks from closing during load reversal and reloading in the opposite direction. 

Provided the elongated bars do not yield in compression during load reversal, a force couple 

occurs between the longitudinal bars on either face. Buckling can occur in the longitudinal bars 

subjected to compression loading in areas where concrete spalling has occurred (Penelis & 

Kappos, 2010). In the book by Penelis & Kappos (2010) various analytical methods to 

determine the required stirrup spacing to prevent premature buckling have been formulated, but 

the methods are rather onerous. 

 

Figure 2-28 Reinforced concrete hysteresis loops subjected to cyclic loading (Penelis & Kappos, 2010) 
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Figure 2-29 shows various modes of longitudinal reinforcement buckling that can occur in 

reinforced concrete members subjected to cyclic loading. Determining the buckling length of a 

longitudinal bar is complicated as it depends on several factors such as the stirrup spacing, the 

stiffness of the stirrups and the extent of permanent elongation of the reinforcement when 

subjected to a compression load (Penelis & Kappos, 2010). 

 

   

(a) (b) (c) 

Figure 2-29 Different modes of longitudinal reinforcement buckling (Penelis & Kappos, 2010) 

 

2.6.4 REINFORCED CONCRETE HYSTERETIC MODELS 

Non-linear hysteretic models, such as bi-linear and tri-linear models, have typically been used 

to model the earthquake response of structures (Takanashi et al., 1975). However, the need to 

develop more realistic models that can account for stiffness and strength degradation of 

structural components is necessary to accurately determine the performance and resultant 

damage to structures at various earthquake intensities. The need for more accurate models stems 

from the inability of simplified analytical models to accurately account for non-linear behaviour 

of the structure due to uncertainty related to the material behaviour, local failure mechanisms, 

loss of stability and pinching effects in reinforced concrete members. Several analytical models 

have been proposed for reinforced concrete to mitigate the uncertainty of simplified models 

with some of the earliest models provided in Takanashi et al. (1975). Sengupta and Li (2017) 

undertook an extensive literature study on hysteresis models for reinforced concrete that were 

developed by various researchers. They performed comparative studies of the various hysteretic 

models by performing quasi static-cyclic load tests. Sengupta and Li (2017) concluded that 

elasto-plastic and degrading bilinear models do not capture the realistic hysteretic behaviour of 

reinforced concrete and does not incorporate the pinching effect experienced in reinforced 

concrete.   

Ozcebe & Saatcioglu (1989) developed a hysteretic shear model for reinforced concrete 

members subjected to constant axial loads. Their purpose of the model is to predict the strength, 
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stiffness and ductility response of reinforced concrete under cyclic loading. The model 

comprises of series of rules that describe the path of loading and unloading branches for the 

duration of the cyclic load or seismic loading. The model comprises of a primary curve (or 

backbone curve) that is considered as the force-displacement response under monotonic loading 

and is used as the envelope of the unloading and loading branches within the hysteretic model. 

The material model was derived from experimental data and statistical analysis with the 

comparison between the experimental and analytical model results presented in Ozcebe & 

Saatcioglu (1989). Comparing the hysteretic behaviour as shown in Figure 2-19 and the 

hysteretic model produced by Ozcebe & Saatcioglu (1989), the model closely approximates the 

hysteretic response of reinforced concrete. However, the unloading and reloading branches in 

the Ozcebe & Saatcioglu (1989) model follow a straight line to defined points of stiffness 

transition as shown in Figure 2-30. A full explanation of the hysteretic material model rules is 

provided in Ozcebe & Saatcioglu (1989). The material model is shown to predict the observed 

response of reinforced concrete under constant axial loads. From Figure 2-30 the model utilises 

the same cloverleaf hysteretic pattern as previously observed in Figure 2-19 and Figure 2-20. 

 

Figure 2-30 Hysteretic shear model developed by Ozecebe and Saatcioglu (1989) 

 

Ibarra et al., (2005) used the data from Sezen (2000) to calibrate the hysteretic reinforced 

concrete model. Sezen (2000) undertook tests on columns with underprovided transverse 

reinforcement, and the column was connected to a rigid bottom beam and top beam to ensure 

double curvature bending. The tests were undertaken by subjecting the columns to a stepwise 
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increasing cycle load with the experimental results from Sezen (2000) and analytical results 

from Ibarra et al. (2005) shown in Figure 2-31 

 

 

Figure 2-31 Hysteretic reinforced concrete model (Sezen, 2000; Ibarra et. al, 2005) 

 

2.7 ENERGY AND HYSTERETIC ENERGY LOSS 

Under serviceability limit states, structures are designed to absorb the energy within the 

structure without incurring damage upon loading and unloading. Upon unloading the structure 

should return to its initial position, which is achieved by ensuring that the structure remains in 

the elastic region. However, when a structure is subjected to large ground motions that result in 

substantial amounts of energy being imparted to the structure, a portion of the energy is 

temporarily stored as either kinetic or strain energy (Zahrah & Hall, 1984). The remainder of 

the energy is dissipated due to damping within the structure and the plastic deformation of 

structural components that make up the structure (Mosalam et al., 1997). Structures that are 

correctly designed should be able to sustain the imparted energy to the structure with minimal 

damage (Zahrah & Hall, 1984).  

When the structure undergoes large deformations resulting in the structure being plastically 

deformed, energy is dissipated through hysteresis. Energy can be absorbed in the system by 

either recoverable energy or dissipated energy (Elmenshawi & Brown, 2009). The recoverable 

energy results in the structure returning to its original state under elastic deformation or 

recovering a portion of the plastic deformation upon unloading as shown in Figure 2-32. The 

ability to mitigate the earthquake effect due to the inelastic response of the structure is shown 

by the area enclosed by the hysteretic loop in Figure 2-32.  
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Figure 2-32 Recoverable and dissipated energy in a structural element (Elmenshawi & Brown, 2009) 

 

The dissipated energy is due to the inelastic behaviour of the reinforcing steel, which results in 

excessive cracking of the concrete and permanent deformation of the structure. The energy 

dissipation capacity of a structural element is a critical factor during seismic design as the 

performance of the structure is significantly improved with an increase in the energy dissipation 

capacity of the structure before collapse (Elmenshawi & Brown, 2009). 

The various energy terms can be deduced by integrating the equation of motion of an inelastic 

system as given in Equation 2.19 with respect to the change in displacement (Chopra, 2012). 

Energy being a scalar quantity allows the total energy input into the system to be quantified, 

thus enabling the overall response of the system to be assessed. The energy assessment in this 

section provides the response of the structure whereby the mass is acted on by a force calculated 

according to Equation 2.20. The kinetic energy in the system represents the energy imparted to 

the structure relative to the base of the structure and not due to the overall ground motion. It is 

the relative displacement and velocity that results in forces in the structure and subsequent 

damage. Therefore, it is more meaningful to quantify an energy expression in relative motion 

in respect of the base as opposed to the overall motion of the structure (Chopra, 2012). 

 

∫ [𝑀]{𝑢̈(𝑡)}𝑢
0 {𝑑𝑢} + ∫ [𝐶]{𝑢̇(𝑡)}𝑢

0 {𝑑𝑢} + ∫ {𝑓𝑠(𝑢)}𝑢
0 {𝑑𝑢} = −∫ [𝑀]{𝐼}𝑢̈𝑔(𝑡)𝑢

0 {𝑑𝑢} (2.19) 
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{𝑃𝑒𝑓𝑓} = −[𝑀]{𝐼}𝑢̈𝑔(𝑡) (2.20) 

 

The total energy (𝐸𝑇) input into the system is determined by integrating {𝑃𝑒𝑓𝑓} with respect to 

the change in displacement. The total energy, as given by Equation 2.21, must equal the 

summation of kinetic, damping and stiffness energy. The distribution of the energy between the 

terms is a function of the structure’s stiffness and mass characteristics (Chopra, 2012).  

 

𝐸𝑇(𝑡) = −∫ [𝑀]{𝐼}𝑢̈𝑔(𝑡)𝑢
0 {𝑑𝑢} (2.21) 

 

The kinetic energy (𝐸𝑀), within the structures depends on the mass of the structure and its 

relative motion with respect to the ground. Equation 2.22 gives the kinetic energy as follows. 

 

𝐸𝑀(𝑡) = ∫ [𝑀]{𝑢̈(𝑡)}𝑢
0 {𝑑𝑢} = ∫ [𝑀]{𝑢̇(𝑡)}𝑢̇

0 {𝑑𝑢̇} = 𝑚𝑢̇22  
(2.22) 

 

The viscous damping energy (𝐸𝐶) within the structure, which is determined as a function of the 

mass and stiffness matrices when considering Rayleigh damping, is given in Equation 2.23 

(Chopra, 2012). 

 

𝐸𝐶(𝑡) = ∫ [𝐶]{𝑢̇(𝑡)}𝑢
0 {𝑑𝑢} (2.23) 

 

The third term in Equation 2.19 is the strain energy in the structure due to the overall structural 

stiffness. The strain energy (𝐸𝑆) can be separated into two terms, namely linear and non-

linear/hysteretic strain energy as given by Equation 2.24. When analysing the structure, the 

structure can consist of regions of linear behaviour and regions of non-linear behaviour. Energy 

lost in the non-linear regions of the structure are determined by integrating the force-

displacement relationship of the material at each time step. 
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𝐸𝑆 = 𝐸𝐾 + 𝐸𝐻 (2.24) 

 

The hysteretic energy absorbed within the structure is determined by integrating the force-

displacement curve of the material between zero and the resultant displacement. Depending on 

the complexity of the material model, numerical methods need to be used, whereby the resultant 

change in energy is determined due to the change in displacement and force, which is then 

added to the overall energy. The energy absorbed due to the overall structural stiffness is given 

by the first term in Equation 2.25 and the hysteretic energy absorbed by a single non-linear 

element in the structure is given by the second term in the Equation 2.25. 

 

𝐸𝑆 = ∫ [𝐾]{𝑢(𝑡)}𝑢
0 {𝑑𝑢} +∫ 𝐹𝐻(𝑢)𝑢

0 𝑑𝑢 
(2.25) 

 

By studying the time history response of structural systems during seismic loading, valuable 

information can be obtained about the number of yield reversals, the displacement ductility of 

the structure and the duration of the earthquake record that is undergoing plastic deformation. 

Figure 2-33 shows the energy versus time response for a high-frequency, low-period structure 

subjected to the El Centro earthquake record. Figure 2-33 shows that energy stored incorporates 

a small proportion of the overall energy imparted to the structure with most of the imparted 

energy being dissipated almost immediately through damping and non-linear hysteretic 

behaviour.  

 

Figure 2-33 Energy versus Time for a structure subjected to the El Centro Earthquake Ground Motion 

(Zahrah & Hall, 1984) 
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Zahrah and Hall (1984) studied the earthquake energy absorption in a single degree of freedom 

structures. Their study focused on the amount of energy imparted to a structure and the amount 

of energy absorbed by each of the terms including inelastic deformations and damping. The 

research showed that peak ground acceleration is not a great measure of energy imparted to a 

structure and found that large amplitude and high-frequency components of acceleration do not 

correlate well with peak ground acceleration. Zahrah and Hall (1984) used the Newmark’s 

method with linear acceleration in their experiments.  

2.8 DAMAGE ASSESSMENT OF BUILDINGS 

Seismic risk describes the probability of damage that an area can expect following a seismic 

event (Nielson, 2005). Most injuries and loss of life occur because of partial collapse or 

complete collapse of structures during a seismic event (FEMA P-58-1, 2012). Historically, 

moderate to severe seismic events have resulted in the collapse of reinforced concrete structures 

that were only designed for gravity loads with inadequate transverse reinforcement in columns 

(Jeon et al., 2014). It is necessary to determine the probability of collapse of a structure as a 

function of a ground motion intensity parameter and the type of failure that is being investigated 

to quantify the potential of structural collapse during an earthquake (FEMA P-58-1, 2012). 

Freeman (as cited by Davies & Kijko, 2003) undertook the first comprehensive study in 1932 

to evaluate structural damage due to the applied forces caused by an earthquake. The study 

incorporated the impact that an earthquake would have on direct economic losses on essential 

facilities and infrastructure. 

A study was undertaken after the 1971 San Fernando earthquake to investigate methods of 

correlating ground motion parameters to damage and losses with the result being the formation 

of damage probability matrices (Davies & Kijko, 2003). The extent of damage due to an 

earthquake, which ranges from none to collapse, was placed into various damage states. The 

damage states describe the extent of physical damage in words (Davies & Kijko, 2003). 

2.8.1 PARK AND ANG DAMAGE INDEX 

Performance based earthquake engineering evaluates the response of a structural component at 

various seismic hazard levels and therefore to undertake a comprehensive performance 

assessment the true response leading to the collapse of the structure needs to be considered 

(Ibarra et al., 2005). Performance based seismic design aims to accurately account for seismic 

structural damage and the associated risk (Ghosh et al., 2011). To approximate damage caused 
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by a seismic event, a relationship between a ground motion parameter and damage to a structure 

is required (Rajabi et al., 2012). The amount of damage sustained by a structure can be 

represented by the maximum deformation of the structure, the number of yield cycles, and the 

amount of energy absorbed by the structure or structural component in the form hysteretic 

energy. A reinforced concrete member subjected to cyclic loading during a seismic event results 

in a reduction in the reinforced concrete columns ductility and ability to dissipate energy 

(Penelis & Kappos, 2010). 

Seismic design philosophy and performance based seismic design involve the dissipation of 

energy by controlling the damage to the structure at moderate to strong earthquakes with the 

objective of preventing structural collapse (Ghosh et al., 2011). A damage index allows for the 

quantification of seismic damage to a structure and produces a dimensionless parameter that 

ranges between 0 for undamaged structures and 1 for structures that have collapsed. 

Intermediate values of damage indicate the extent of damage that the structure has incurred. 

The most common approach to performance based seismic design entails designing a structure 

for a specified inelastic displacement and ductility demand. Assessment of the structure’s 

performance often entails the use of the same parameters to determine the structure’s various 

performance levels and limit states. Displacement of the structure in both the elastic and 

inelastic range can be used to quantify the extent of damage to the structure.  

During an earthquake, reinforced concrete structures are generally damaged due to repeated 

stress reversals and large deformations. A damage index is a parameter that specifies the ratio 

between the demand placed on the member and the capacity of the member before failure 

(Rajabi et al., 2012). The relationship between damage and the structure’s vulnerability is 

complex and depends on structural strength, ductility, seismic intensity and vibration 

characteristics of the earthquake. Damage indices are typically classified as either being 

cumulative or non-cumulative.  

Non-cumulative damage indices only account for the maximum deformation of the structure, 

whereas cumulative damage accounts for both the maximum deformation and the cumulative 

hysteretic energy that is absorbed by the structure (Rajabi et al., 2012). The first damage indices 

were established in the early 1970s when non-linear analysis models were used to study the 

response of structures. Whitman (as referenced in Rajabi et al., 2012) produced one of the first 

models that related ground motion intensity with earthquake magnitude. The damage index 

formulated by Whitman was expressed using the modified Mercalli intensity criteria that 

concerned the cost to repair the structure in comparison to the reconstruction cost. The history 

of various damage indices is discussed in Rajabi et al. (2012). 
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The Park and Ang damage index is used to quantify the damage sustained by the structure and 

is considered as one of the most realistic measures of structural damage for reinforced concrete 

structures (Ghosh et al., 2011). The Park and Ang damage index is shown by Equation 2.26 

(Park & Ang, 1985) and combines the cumulative energy demand with the ductility demand 

and has been supported by several researchers (Ghosh et al., 2011). The advantage of the Park 

and Ang damage index is its simplicity. Park and Ang (1985) proposed that a limiting damage 

index of 0.4 be used to separate the feasibility between repairing the structure and having to 

reconstruct the structure (the total loss of asset).  

 

𝐷𝐼 =  𝑑𝑚𝑑𝑢 + 𝛽𝑉𝑦𝑑𝑢∫𝑑𝐸ℎ ≤ 1 
(2.26) 

 

Where: 𝑑𝑚:  The absolute value of the maximum deformation applied to the member under dynamic 

loading 𝑑𝑢: The ultimate deformation that the structure can sustain before failure under monotonic 

loading 𝑑𝐸ℎ: Cumulative value of hysteretic energy 𝑉𝑦:  The yield strength of the member 𝛽:  A non-dimensional, non-negative parameter 

 

The selection of the non-dimensional non-negative constant 𝛽 could have a considerable 

influence on the damage index. The Park and Ang damage index incorporates 𝛽 into the 

definition to account for the response of the structure under cyclic load reversals. Empirical 

formulas have been proposed to calculate 𝛽 by various authors, including Park and Ang (1985), 

which is given by Equation 2.27. Using a low value of 𝛽 reduces the influence of low cycle 

fatigue and results in the damage being governed by the maximum displacement. A high value 

of 𝛽 typically represents a structure that was poorly designed and detailed. Since the advent of 

the Park and Ang model in 1985, researchers have proposed various values for 𝛽 for reinforced 

concrete columns that ranges from 0.05 to 0.24 (Ghosh et al., 2011). 

Park et al., (1984) showed a negative correlation between 𝛽 and the confining ratio 𝜌𝑤 and a 

positive correlation between 𝛽 and the shear span ratio 
𝑙𝑑, longitudinal steel ratio 𝑝𝑡 and axial 
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stress 𝑛0 through the numerous experiments that were conducted on reinforced concrete 

members. Park and Ang compared the experimentally determined 𝛽 values with the results 

produced using Equation 2.27. Figure 2-34 shows the Park and Ang comparison between the 

analytical model and the experimental results and shows substantial dispersion of the results 

(Rajabi et al., 2012). 

𝛽 = (−0.447 + 0.073 𝑙𝑑 + 0.24𝑛0 + 0.314𝑝𝑡) × 0.7𝜌𝑤 
(2.27) 

 

With: 

𝑙𝑑:  Shear span ratio (with 
𝑙𝑑 = 1.7 if 

𝑙𝑑 ≤ 1.7) 𝑛0:  Normalised axial stress (with 𝑛0 = 0.2 if 𝑛0 < 0.2) 𝑝𝑡:  Longitudinal steel ratio as a percentage (with 𝑝𝑡 = 0.75% if 𝑝𝑡 < 0.75%) 𝜌𝑤:  Confinement ratio 

 

 

Figure 2-34 Park-Ang analytical and experimental comparison of β (Rajabi et al., 2012) 

 

The ductility of the structure is given by 𝜇, which is the ratio between the ultimate deformation (𝑑𝑢) and the deformation at which the member yields (𝑑𝑦), as shown in Equation 2.28. 

 

𝜇 =  𝑑𝑢𝑑𝑦 
(2.28) 
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Park et al. (1984) described three damage states for a structure in the following ranges: the 

structure is reparable when the damage index is less than 0.4, the structure is beyond repair 

when the damage index is greater than 0.4, but less than 1; and structure has collapsed when 

damage index is greater than 1. Ghosh et al. (2011) used the Park and Ang damage index in 

their work as it provides one of the most realistic measures of structural damage. Kunnath and 

Jenne (as cited by Ghosh et al., 2011) compared various damage indices with experimental 

observations and concluded that the Park and Ang damage index correlated the best with 

experimental observations and laboratory results. Therefore, due to its effectiveness at 

representing damage to reinforced concrete structures and its ability to incorporate hysteretic 

behaviour makes the Park and Ang (1985) damage model the most preferable when assessing 

the damage to a reinforced concrete structure. 

2.8.2 FRAGILITY CURVES 

Fragility functions are statistical distributions that quantify the probability of reaching 

prescribed damage states as a function of an earthquake intensity parameter (Jeon et al., 2014; 

FEMA P-58-1, 2012). Fragility functions provide a means for the quick assessment of the level 

of risk to a structure and can be generated using numerical models of structures by varying the 

loading intensity. There are several ways of determining fragility functions that include expert-

based fragility functions, empirical fragility functions and analytical fragility functions with 

further details of each method given in Nielson (2005). Fragility functions are in the form of 

lognormal cumulative distribution functions with a median value of θ and a logarithmic 

standard deviation or dispersion β. Equation 2.29 provides a means to calculate fragility curves, 

and Figure 2-35 shows a typical lognormal fragility function. 

 

Figure 2-35 Typical lognormal fragility function (FEMA P-58-1, 2012) 
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𝐹𝑖(𝐷) = Φ(𝑙𝑛(𝐷 𝜃𝑖⁄ )𝛽𝑖 ) 
(2.29) 

 

Where:  𝐹𝑖(𝐷):  Conditional probability that a structure will incur damage at damage state i  Φ:  Standard normal (Gaussian) cumulative distribution function 𝐷:  Demand parameter 𝜃𝑖:  Median value 𝛽𝑖:  Logarithmic standard deviation 

 

FEMA P-58-1 (2012) prescribes a method for determining the fragility functions from actual 

demand data and provides Equation 2.30 to calculate the median 𝜃 and Equation 2.31 being 

used to calculate the random dispersion 𝛽𝑟. The total dispersion, 𝛽, is calculated using 

Equation 2.32. 

 

𝜃 = 𝑒(1𝑀∑ 𝑙𝑛(𝑑𝑖)𝑀𝑖=1 )
 

(2.30) 

 

𝛽𝑟 = √ 1𝑀−1∑ (𝑙𝑛 (𝑑𝑖 𝜃⁄ ))2𝑀𝑖=1   

(2.31) 

 

Where: 𝑀:  Total number of tested specimens  𝑑𝑖:  Demand in test “i” at which the damage state first occurred 

 𝛽 = √𝛽𝑟2 + 𝛽𝑢2 (2.32) 

 

Where: 𝛽𝑟:  Random variability observed in the test data 𝛽𝑢:  Represents uncertainty in test data from real life conditions 
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Nielson (2005) used analytical methods during his doctoral studies to generate fragility curves 

for bridges from 3-D analytical models. The bridges were subjected to a range of ground 

motions, and probabilistic seismic demand models (PDSM) were generated for the analysis. 

Nielson (2005) indicates that one of the critical links during seismic hazard assessment is to 

determine the damage to critical structural components. 

Jeon et al. (2014) developed fragility curves for non-ductile concrete frames using numerical 

models to investigate the failure of rigid beam-column joints by evaluating the nonlinear joint 

shear response, bond slip response, and column failure due to shear. Jeon et al. (2014) indicate 

that fragility functions should be developed using appropriate simulation techniques and a good 

understanding of how the material responds during an earthquake. The process for developing 

fragility function entails the following (Jeon et. al, 2014):  

1. Choose response mechanisms to be considered; 

2. Select a suite of N ground motions; 

3. Perform nonlinear dynamic analysis for each of the N assigned ground motion pairs; 

4. Record demand parameters in relation to the ground motion intensity at which the 

demand parameter was exceeded; and 

5. Develop fragility curves from the results. 

 

2.9 CONCLUSION OF THE LITERATURE STUDY 

In this chapter, literature was presented on the prevalence of seismic activity within South 

Africa, the pseudo-dynamic experimentation technique and the determination of damage and 

fragility curves. Firstly, a brief overview of seismic activity in South Africa was presented with 

South Africa being considered a region of moderate seismicity, and it was shown that seismic 

risk in South Africa is non-negligible and should be considered when designing a structure.  

The experimental technique known as pseudo-dynamic experimentation was discussed and it 

was shown how it enables the correlation between damage and peak ground acceleration to be 

determined all while accounting for the actual hysteretic response of the test specimen. When 

evaluating the damage to structures during an earthquake, several parameters need to be 

assessed to accurately quantify damage with increasing peak ground acceleration.  

The pseudo-dynamic testing method is a two-stage procedure that contains a numerical model, 

which considers the response due to mass and damping of the overall structure, and the physical 

model under investigation. The calculated displacement at a shared degree of freedom between 
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the numerical model and the physical test specimen is applied to the test specimen using a 

servo-controlled hydraulic actuator. The resultant force measured using a load cell is then fed 

back into the numerical model and used in subsequent calculations. The inherent limitations 

and errors associated with the method were investigated and shown that the method can be 

prone to cumulative errors, which can be mitigated by accurately calibrating the instruments 

and using high-resolution servo-controllers and data acquisition systems. Various numerical 

models can be used to perform the pseudo-dynamic experimentation, including both implicit 

and explicit numerical models. The implicit Newmark’s method was discussed in further detail 

as it forms the basis of the pseudo-dynamic experimentation undertaken during this research. 

The literature study goes on to discuss the hysteretic response of reinforced concrete, showing 

that the response of reinforced concrete is highly non-linear and subject to the pinching effect. 

The behaviour of reinforced concrete is dependent on whether the concrete has cracked, the 

reinforcement has yielded and concrete spalling. The response of reinforced concrete under 

monotonic loading results in a trilinear behaviour and forms the envelope to the unloading and 

reloading cycles.  

A discussion on the Park and Ang damage model was presented and shows that the damage 

index incorporates both instantaneous damages due to the maximum deformation of the 

structure as well as cumulative damage due to hysteretic energy loss. The Park and Ang damage 

index is regarded as the most suitable model for analysing damage to a reinforced concrete 

structure. The literature study concludes by discussing the formulation of fragility curves using 

the results obtained from the experimental tests. 
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3 EXPERIMENTAL TEST SETUP AND ANALYSIS METHODS 

3.1 GENERAL 

This chapter describes the experimental program developed to study the resultant damage to an 

axially loaded reinforced concrete footing due to increased peak ground acceleration. The 

pseudo-dynamic experimentation, as discussed in Chapter 2, was used to correlate the resultant 

damage incurred by reinforced concrete footing, which forms part of a two-bay, two-storey 

unbraced frame structure with masonry infill walls, to increasing earthquake intensity. The 

focus of this research is the reinforced concrete footing as shown in Figure 3-1 that forms part 

of a hypothetical frame structure. A constant axial load from the structure occurs on the 

reinforced concrete footing for the duration of the earthquake record due to the symmetry of 

the structure. The procedure followed to design and analyse both the reinforced concrete footing 

and the conceptual frame structure is discussed in this chapter. The design of the frame structure 

and reinforced concrete footing only considered the gravity loads and the wind loads. 

Earthquake loading was not considered during the design of the frame structure and the 

reinforced concrete footing. The construction of the reinforced concrete footings and 

experimental procedure are also discussed in this chapter. 

            

Figure 3-1 Conceptual model of the overall structure 

 

EARTHQUAKE LOADING 
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The pseudo-dynamic analysis procedure will comprise of two parts, with the first part being the 

experimental test setup of the reinforced concrete footing in the laboratory, which contains the 

physical component of the pseudo-dynamic tests. The second part of the pseudo-dynamic test 

is the formulation of the numerical model using the Newmark’s implicit time-stepping method 

with static condensation to eliminate the zero mass degrees of freedom and accounts for the 

overall structure that is placed on the reinforced concrete footing.  

3.2 CHARACTERISTICS OF THE TESTED STRUCTURE 

The structural element investigated during this research is a reinforced concrete footing under 

constant axial load that forms part of a hypothetical two-bay, two-storey linear elastic moment 

resisting frame structure founded on the footing. Figure 3-2 and Figure 3-3 illustrate the 

geometry of the frame structure used during the pseudo-dynamic tests. Due to limitations 

imposed on the project, the external columns were pin supported in the numerical model and 

therefore their contribution to the overall response of the structure was not considered. Only the 

non-linear lateral response of an internally located footing under constant axial load was 

considered in this research. 

The axial load applied to the reinforced concrete footing had to be limited due to the capacity 

of the press frame that was available in the laboratory, which also limited the size of tests 

specimens that could be tested successfully in the laboratory. The mass distribution within the 

frame structure was selected to result in a 300 kN axial load being placed on the reinforced 

concrete footing. Most structures in South Africa are small to moderate size structures 

consisting of one to three stories and are generally the most critical structures. This is because 

they tend to be stiffer, thus producing lower periods of vibration and more substantial shear 

stresses at the base of the structure. The larger shear forces placed on the foundations result in 

more damage to the foundations. 

The steel frame structure was divided into three segments, namely the internal columns, 

external columns and beams. The three segments enable a series of combinations of three steel 

sections that could be used to construct the steel frame structure. The width of each bay was 

selected to be 6 m with the storey heights selected to be 4 m as shown in Figure 3-3. The details 

of the structure used in the research are as follows: 

• Consists of a steel moment resisting frame structure; 

• The steel structure was founded on pad foundations that only allowed for the transfer of 

shear and axial load (i.e. pin connection); 
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• A 250 mm reinforced concrete slab spans in the transverse direction between the steel 

frames for each of the floors, which was selected to produce a 300 kN axial load on the 

central footing; 

• The occupation of the structure is commercial/residential; 

• Masonry infill panels with a thickness of 230 mm are used for the external walls; and 

• The transverse span length between the frames was taken as 2.6 m, which is less than the 

typical span length used in buildings. A limitation had to be placed on the maximum axial 

load and the shear load placed on the foundations due to the available capacity of the 

actuators in the laboratory. 

 

 

Figure 3-2 Characteristic 3D model of the frame structure 
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Figure 3-3 Characteristic section of the frame structure 

 

3.3 LOADING ON THE TESTED STRUCTURE 

This section describes the loading applied to the structure during the static analysis and pseudo-

dynamic experiments. The design of the structure only considers gravity loading and wind 

loading with a description of the earthquake loading that is only applied to the structure during 

the pseudo-dynamic tests. The applied loads on the structure were determined using the 

following codes of practice: 

• SANS 10160-1: 2011 Basis of structural design and actions for buildings and 

industrial structures – Part 1: Basis of structural design; 

• SANS 10160-2: 2011  Basis of structural design and actions for buildings and 

industrial structures – Part 2: Self-weight and imposed loads; and 

• SANS 10160-3:2011 Basis of structural design and actions for buildings and 

industrial structures – Part 3: Wind actions. 
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3.3.1 GRAVITY LOADS ON THE STRUCTURE 

The static loads on the structure, which consists of the dead and live loads, were obtained from 

SANS 10160-2:2011 and remained constant for each of the pseudo-dynamic experiments. The 

dead loads (DL) on the structure comprised of the self-weight of the frame structure (WDL and 

PDL), the superimposed dead load consisted of the reinforced concrete slabs (WSDL) and the 

masonry walls (Pm), and finally the live load that accounts for people that use the structure 

(WLL). Distributed loads are indicated with a (W), and point loads are represented with a (P). 

Figure 3-4 shows static loading on the frame structure with the weight of the beams, concrete 

slab and live load being applied to the structure as a distributed load and the masonry walls and 

columns being applied to the structure as point loads. Table 3-1 shows the material properties 

used for the steel frame structure, concrete slab and masonry walls.  

 

𝑊𝐿𝐿  = 6.24 𝑘𝑁/𝑚 𝑊𝑆𝐷𝐿 =  15.3 𝑘𝑁 𝑚⁄  𝑃𝑚  =  42.2 𝑘𝑁 

 

Figure 3-4 Static loading applied to the structure 

 

Table 3-1 Material densities and applied loading used in design 

Load Type Value Reference 

Live loading LL = 2.5 kN/m2 Category B1 Table 1  

SANS 10160-2:2011 

Dead load - Self weight   

 Concrete  ρc = 2400 kg/m3  

 Steel ρst = 7850 kg/m3  

Superimposed dead load   

 Masonry ρm = 1850 kg/m3  
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3.3.2 WIND LOADS ON THE STRUCTURE 

The design wind loading on the structure was calculated using SANS 10160-3:2011 with the 

resultant unfactored design wind pressures on the structure shown in Figure 3-5. The wind loads 

were obtained by selecting Johannesburg, South Africa as the location of the structure with a 

regular cover of buildings surrounding the structure. 

 

 

Figure 3-5 Wind pressure loading calculated from SANS 10160:3 2011 

 

3.3.3 EARTHQUAKE LOADING ON THE STRUCTURE 

The El Centro earthquake record was selected as the input ground motion for the pseudo-

dynamic analysis. Figure 3-6 shows the El Centro, S00E of the event at Imperial Valley, 

California on May 18, 1940, and represents a strong ground shaking. Mosalam et al. (1997) 

indicate that the El Centro earthquake record is typical of the North American west coast 

earthquakes. The maximum acceleration during the ground motion record occurred at a time of 

2.14 seconds. For each of the pseudo-dynamic tests, the peak ground acceleration was increased 

by scaling the amplitude of the El Centro earthquake. 
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Figure 3-6 Acceleration record of the El Centro Earthquake 

 

The elastic response spectrum of the El Centro earthquake is plotted in Figure 3-7 using a 

damping ratio of 5%. SANS 10160-4:2017 specifies four ground types for South Africa when 

determining the design elastic response spectrum. The ground type ranges from rock to sand 

and gravel, to clayey material. The objective during the analysis was to select a representative 

earthquake that closely follows the design response spectrum as provided in SANS 10160-

4:2017. Figure 3-7 shows the elastic response spectrum of the El Centro ground motion record 

superimposed on the design elastic response spectra as specified in SANS 10160-4:2017. From 

Figure 3-7, it can be observed that the El Centro elastic response spectrum closely follows the 

design response spectra. Because of this, the El Centro earthquake was selected as the base 

earthquake for this research. 

 

Figure 3-7 Elastic response spectrum of the El Centro earthquake with the design response spectra for the 

four ground types as specified in SANS 10160-4:2017 
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3.3.4 DESIGN LOAD COMBINATIONS 

The critical load combinations acting on the structure are shown in Table 3-2 and were 

determined from SANS 10160-1:2011 for live load, dead load and wind load. For serviceability 

limit state, two load combinations, as shown in Table 3-2, are found to be critical. The first load 

combination governs the deflection of the beams and the second load combination determines 

the maximum horizontal deflection of the frame structure.  

 

Table 3-2 Design load combinations 

Serviceability Limit States STR1s = 1.1DL + 1.0LL STR2si = 0.9DL + 0LL + 0.6WLi 
 

Ultimate limit state STR1 = 1.2DL + 1.6LL STR2i = 1.2DL + 1.6LL + 1.3WLi STR3i = 0.9DL + 0LL + 1.3WLi STRP1 = 1.35DL + 1LL STRP2i = 1.35DL + 1LL + 1WLi 
 

3.4 ANALYSIS AND DESIGN OF THE FRAME STRUCTURE 

This section describes the results of the analysis and design of the planar steel frame structure 

with reinforced concrete floor slabs and masonry infill panels on the external columns. The 

structure was analysed using all prescribed sections available in the Southern African Steel and 

Construction Handbook (SAISC, 2010), with the most practical sections selected for the 

analysis. The frame structure was divided into three segments, as previously shown in 

Figure 3-3, with separate steel sections used for the beams, external structural columns and the 

internal structural columns. 

During the analysis of the frame structure, only I-Sections are used for the beams, with H-

Sections being used for the columns. The reinforced concrete floor slabs are assumed not to 

contribute to the stiffness and strength of the beams. The analysis and design of the sections are 
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carried out using a script written in MATLAB (2017), which analyses the structure to determine 

the forces within each of the members with the actual stiffness properties of the design 

members. Once the analysis was completed, SANS 10162-1:2011 was used to design the 

members. The MATLAB (2017) program analysed the structure for each member combination 

of beam, internal column and external columns using the steel members obtained from Southern 

African Steel and Construction Handbook (SAISC, 2010). The analysis and design comprised 

of two steps: ultimate limit state (ULS) design, to ensure enough strength capacity and stability 

of the members, and serviceability limit state (SLS) design, to prevent excessive deflections 

during the day to day operations of the structure. 

3.4.1 ULTIMATE LIMIT STATE DESIGN 

The structure was analysed for each of the member combinations as previously shown in 

Figure 3-3 and the load combinations as specified in Table 3-2. The design of the structure 

considered the following during the design:  

• All beams and columns are designed by incorporating both axial and uniaxial bending 

loads; 

• The class of the section was selected to ensure local stability of the members; 

• The columns are braced for out of plane buckling at storey heights; 

• The beams are continuously braced for lateral torsional buckling due to the presence of the 

concrete slab along the top flange of the beam; and 

• The beams and columns are analysed against the following interactions equations obtained 

from SANS 10162-1 (2011): 

o Cross-sectional strength; 

o Overall member strength; and 

o Lateral torsional buckling strength 

 

From the analysis, regarding Table 3-2, it was found that load combination two governed the 

design of columns, whereas the load combination one dictated the design of the beams. 

Considering all the sections that satisfied the interaction equations as specified in 

SANS 10162-1 (2011), there were a total of 4095 steel member combinations for the external 

columns, interior columns and beam members that satisfy the ultimate limit state. 
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3.4.2 SERVICEABILITY LIMIT STATE 

The second step in the design of the frame structure consisted of analysing the structure using 

the load combinations specified for the serviceability limit state loads, which are shown 

previously in Table 3-2. The analysis took all the members that satisfied the ultimate limit state 

design requirements and calculated the beam deflections and horizontal deflections for each of 

the storeys. The maximum allowed inter-storey deflection and overall structural deflection was 

obtained from SANS 10160-1:2011 and Figure 3-8 shows the points where the deflections were 

calculated and the design criteria that was used to limit the deflection. The maximum inter-

storey deflections (𝑢1𝑖 & 𝑢2𝑖), the overall structural deflection (𝑢𝑔) and the deflection of the 

beams (𝑢𝑏𝑖) were determined for each of the load combinations. 

 

Figure 3-8 Deflection points on the frame structure for serviceability limit state design 

 

The calculated deflections for each member combinations were compared to the maximum 

allowable deflection and disregarded if the member combination failed the design criteria. The 

total mass of the steel frame structure for each of the member combinations was calculated and 

sorted from the lowest mass to the largest mass, which is shown in Figure 3-9. Of the 4095 

sections that satisfied the ultimate limit state criteria, 2272 combinations satisfied the 

serviceability limit state criteria.  

As part of the serviceability limit state analysis, the fundamental period of vibration was 

calculated for each of the member combinations that satisfied the SLS and ULS designed 

requirements. The fundamental period of vibration for each frame member combination is 

𝑈1𝑖 < 0.002 𝐻𝑠 𝑈2𝑖 < 0.002 𝐻𝑠 𝑈𝑔𝑖 < 0.003 𝐻 𝑈𝑏𝑖 < 0.002 𝐵 𝐻𝑠: Storey height 𝐻: Total height of structure 𝐵: Span width 
 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

 

66 
 

plotted from lowest mass to the largest mass in Figure 3-10 and on average the natural period 

of vibration reduced with an increase in the mass of the steel frame. The variation in the natural 

period of vibration with an increase in mass was due to the variation in section properties, as 

the mass of the section does not increase as quickly as the stiffness of the section. Considering 

all possible steel section combinations that satisfy ultimate limit state and serviceability limit 

state conditions, the natural period of vibration of the frame structure under the given design 

conditions varied between 0.72 s and 1.28 s, with the average period of vibration equalling 

1.05 s. However, considering the practical design and economic considerations, a frame 

structure producing the lowest mass that satisfies both the SLS and ULS design requirements 

would typically be used for the design of the steel frame structure.  

 

 

Figure 3-9 Mass distribution for all the member combinations satisfying SLS and ULS design ordered from 

lowest mass to largest mass 

 

 

Figure 3-10 Fundamental period of vibration for each of the member combinations satisfying ULS and SLS 
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The final design selected for the steel moment resisting frame structure to be used during the 

pseudo-dynamic experiments is shown in Figure 3-11 and corresponds to an overall natural 

period of vibration of 0.86 s. To optimise the design a separate steel section member was used 

for the internal column and external columns with the ratio of the moment of inertia between 

the internal column to the external column equalling 0.2.  

 

 

Figure 3-11 Member design for the steel moment resisting frame structure 

 

3.5 TEST SPECIMENS – REINFORCED CONCRETE FOOTINGS 

The reinforced concrete footings used in this research were designed using SANS 10100-1:2000 

to satisfy the ultimate limit state, serviceability limit state and practical design considerations. 

The footings are considered representative of those that would typically be used in low to 

moderately tall structures of one to three stories that only carry axial load.  

3.5.1 DESIGN OF THE FOOTINGS 

Eight reinforced concrete footings were constructed at the University of Pretoria’s experimental 

farm with a base size of 1100 x 700 x 300 mm and column size of 300 x 300 x 1000 mm. Four 

M16 L-Shape Class 8.8 holding down bolts were fixed within the reinforcement cage before 

the concrete was cast to allow for a shear connection between the base plate of the steel column 

and the top of the reinforced concrete footing. 
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The characteristic design yield stress of 450 MPa and a Young’s Modulus of 200 GPa was used 

for the design of the reinforcement. The characteristic compressive strength of concrete 

specified and used during the design was 30 MPa. Using the concrete and reinforcing steel 

design parameters resulted in the reinforced concrete column only required minimum 

reinforcement to resist gravity and wind loads and comprised of 4 x Y12 reinforcing bars, with 

one bar placed at each of the column corners. The reinforced concrete footings all had the same 

design and configuration as shown in Figure 3-12. 

 

 

Figure 3-12 Three-dimensional visualisation of the reinforced concrete footing (Units in mm) 

 

Shear reinforcement consisted of seven Y10 reinforcing stirrups placed at 150 mm centres 

within the column. The reinforced concrete base slab comprised of five Y12 bars spaced at 150 

mm centre to centre in both the long and short spans. Both top and bottom reinforcement are 

provided, and a concrete cover of 30 mm was used for all the reinforcement. 

The footings were designed to sustain the reactions for each of the ultimate limit state load cases 

determined at node number 2, as shown previously in Figure 3-8, during the analysis and design 

of the frame. The internal reinforced concrete footing is only considered during this study and 

will not be subjected to a varying axial load for the duration of the applied earthquake excitation 

due to the symmetry of the frame structure. The structural supports during the frame analysis 

were modelled as pin supports and therefore only axial and shear loads are applied to the 
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footing, with the moment being equal to zero. The internal footing will have zero shear load 

applied to it under only gravity loading due to the symmetry of the frame structure.  

The design of the reinforced concrete footing also needed to consider the practical design 

considerations by ensuring that there was sufficient space for the connection of the base plate 

of the steel column to the reinforced concrete stub column. The resultant axial load and bending 

moment at the critical section for design is shown in Figure 3-13 and occurs at the interface 

between the column and the concrete base slab. The maximum moment was calculated by 

multiplying the shear force applied to the HD-bolts by the height of the column. The concrete 

stub column was considered stocky according to SANS 10100-1:2000, and therefore the 

required tensile reinforcement for the column could be obtained by only using the MN-

interaction diagram shown in Figure 3-14. 

 

 

Figure 3-13 Analysis of the reinforced concrete footing 

 

Only minimum reinforcement, with a reinforcement ratio of 0.4% according to SANS 10100-

1:2000, was required for the given loading and column dimensions. The MN-interaction 

diagram and reinforcement layout for the reinforced concrete section with a 300 x 300 mm 

column and 4Y12 reinforcing bars is shown in Figure 3-15. As can be seen from Figure 3-15, 

the applied static loads on the footing due to gravity loads and wind loads are much lower than 

the available capacity of the footing. Therefore, the footing has additional capacity to carry 

larger shear loads.  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

 

70 
 

 

Figure 3-14 Design of reinforced concrete column for the ULS load cases (SANS 10100.1:2000) 

 

 

 

                                      (a)                          (b) 

Figure 3-15 Design of the reinforced concrete column showing (a) the MN-Interaction diagram for the 

column of the footing at ULS and (b) a section through the reinforced concrete column of the footing 

 

3.5.2 MATERIALS AND CONSTRUCTION OF THE FOOTINGS 

The reinforced concrete footings were constructed at the University of Pretoria’s experimental 

farm and were cast monolithically in an upright position. The footings were cast monolithically 

to prevent a cold joint from forming between the base slab and the stub column. A lid on the 

base slab shuttering was provided to allow for a single concrete pour of the base slab and 

column. Figure 3-16 shows the shuttering for the reinforced concrete footings and the base slab 
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lid. Figure 3-17 shows the reinforcing cages for the footings with four Y12 tensile 

reinforcement bars and seven Y10 stirrups. Threaded rods were placed at each of base slab 

corners to enable the lid to be bolted down to prevent uplift during the casting of the concrete. 

The threaded rods were also used to lift and transport the footings from the experimental farm 

to the laboratory to ensure that the integrity of the concrete stub column was not compromised 

before testing. Figure 3-18 shows the holding down bolts and the templates that were used to 

position the bolts within the concrete column. The holding down bolts consisted of four M16 

Class 8.8 L-Shape bolts placed on a 180 mm x 180 mm grid. 

 

 

Figure 3-16 Reinforced concrete footing shuttering with base slab lid 

 

 

Figure 3-17 Reinforcement cages for the concrete footings 
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(a) (b) 

Figure 3-18 Holding down bolts and template 

 

Concrete was obtained from a commercial company to ensure that the concrete used in each of 

the footings remained consisted and was representative of concrete that would typically be used 

in industry. A concrete cube strength at 28 days of 30 MPa was specified and used to cast the 

footings, and Figure 3-19 shows the casting of the reinforced concrete footings. The footings 

were left to cure for 28 days before removing the shuttering. Concrete cube tests were done to 

determine the strength of the concrete after 28 days with the results shown in Table 3-3. The 

concrete cube tests show that an average cube strength of 32 MPa was obtained and therefore 

the specified cube strength of 30 MPa was reached at 28 days. 

 

Table 3-3 Concrete cube tests at 28 days 

Cube Weight in air 

(grams) 

Weight in water 

(grams) 

Applied load 

(kN) 

Concrete cube 

strength (Fcu) 

(MPa) 

1 1486 2476 332 33.2 

2 1502 2496 298 29.8 

3 1486 2478 328 32.8 

Average: 32.0 

 

Tension coupon tests were undertaken on the reinforcing bars to determine the strength of the 

bars used to construct the reinforcement cages. Figure 3-20 shows the stress-strain curve for a 

Y12 reinforcement bar taken from the same batch of steel used to construct the reinforcement 
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cages for the footings. The reinforcement yielded at a stress of 545 MPa, which corresponds to 

a strain of 0.3%.  

 

 

Figure 3-19 Concrete casting of the reinforced concrete footings 

 

 

Figure 3-20 Stress-Strain curves for reinforcement 
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3.6 PSEUDO-DYNAMIC EXPERIMENTAL METHOD  

The formulation of the numerical model used to perform the pseudo-dynamic experiment is 

presented in this section using the implicit Newmark’s method with static condensation to 

remove the zero rotational mass degrees of freedom. The procedure followed in this study 

comprised of replacing the internal pin support of the frame structure at the location of the 

reinforced concrete footing with a mass-spring system as shown in Figure 3-21. The dynamic 

response of a linear multi-degree of freedom system with a single non-linear translational 

degree of freedom was solved using Equation 3.1.  

 [𝑀]{𝑢̈(𝑡)} + [𝐶]{𝑢̇(𝑡)} + [𝐾]{𝑢(𝑡)}⏟                      𝐿𝑖𝑛𝑒𝑎𝑟𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  + [𝐾𝑠(𝑡)]{𝑢(𝑡)}⏟        𝑁𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = {𝑃}⏟𝑆𝑡𝑎𝑡𝑖𝑐 𝑙𝑜𝑎𝑑 − [𝑀]{𝐼}𝑢̈𝑔(𝑡)⏟        𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒𝑙𝑜𝑎𝑑𝑖𝑛𝑔
 (3.1) 

Where: [𝑀]: The lumped mass matrix of the frame structure including the mass of 

the reinforced concrete footing [𝐶]:     Rayleigh damping matrix for the elastic part of the frame structure  [𝐾]:     Linear elastic stiffness matrix of the frame structure {𝑢̈(𝑡)}, {𝑢̇(𝑡)}, {𝑢(𝑡)}:   Acceleration, velocity and displacement vector respectively [𝐾𝑠(𝑡)]: Lateral non-linear spring stiffness matrix of the reinforced concrete 

footing {𝐼}: Influence vector that accounts for the horizontal direction of the 

earthquake loading 𝑢̈𝑔(𝑡):    Ground acceleration 

 

Figure 3-21(a) shows the discretised numerical model used in the pseudo-dynamic analysis with 

the equivalent mass-spring system. The boundary conditions comprised of two pin supports at 

the external columns with the internal reinforced concrete footing idealised as a single degree 

of freedom consisting of a constant lumped mass that was supported laterally by a massless 

non-linear spring of stiffness 𝑘𝑠(𝑡). The horizontal displacement was taken at the top of the 

column where the steel column of the frame structure connects to the footing using a base plate 

and holding down bolts. The degree of freedom {𝑢𝑠 = 𝑢1} shown in Figure 3-21 couples the 

calculation cycle with the physical test specimen. The total mass of the reinforced concrete 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

 

75 
 

footing was lumped together into a single mass with dynamic effect considered in the numerical 

model.  

 

 

Figure 3-21 Pseudo-dynamic numerical model and physical model 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

 

76 
 

3.6.1 PSEUDO-DYNAMIC ANALYSIS ASSUMPTIONS 

To limit the scope of the project several assumptions had to be made regarding the distribution 

of stiffness and mass within the structure. The assumptions made during the derivation and 

formulation of the numerical model are as follows: 

• The pseudo-dynamic analysis was run considering only a single design for the steel frame 

structure and the reinforced concrete footing. Therefore, the analysis only considers a 

single natural period of vibration, which would otherwise vary depending on the selection 

of the members used to construct the frame; 

• The steel frame was modelled using beam elements with 6 degrees of freedom, with two 

translational and one rotational degree of freedom per node. Because the frame structure 

will remain linear elastic for the duration of the earthquake record, energy loss due to the 

non-linear behaviour that would otherwise occur during an earthquake was simulated using 

Rayleigh damping. Only the first two natural modes of vibration are used to determine the 

Rayleigh damping coefficients. Failure to incorporate energy loss within the rest of the 

structure by assuming zero damping will give an unrealistic view of the damage sustained 

by the footing, and therefore damping needs to be incorporated into the overall structural 

model that may otherwise experience non-linear behaviour. The downside to not 

incorporating nonlinearity into the rest of the structure means that the influence that the 

degradation of stiffness and subsequent increase in the natural period of vibration is not 

considered when studying the response of the reinforced concrete footing; 

• The single lumped mass was used for the reinforced concrete footing, and therefore 

discrete material responses within the foundation are not considered; 

• The only nonlinearity incorporated into the analysis was the lateral deformation of the 

footing, and therefore any reduction in stiffness of the overall structure will only be due to 

the stiffness degradation of the footing; and 

• During the pseudo-dynamic tests, a constant axial load was applied to the footing with only 

the horizontal load varying. The constant loads comprised of the static loads on the 

structure under serviceability limit state loading, which only includes the gravity loads due 

to the dead weight of the structure and a nominal live load.  
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3.6.2 LOADING CYCLE PHYSICAL TEST SETUP  

A conceptual model of the experimental test setup is shown in Figure 3-22 and the setup within 

the laboratory is shown in Figure 3-23. The schematic layout showing the front and back view 

of the experimental test setup with the test setup dimensions and each of the components is 

shown in Figure 3-24 and Figure 3-25. The test setup comprised of two actuators and two load 

cells with the vertical actuator being used to simulate the 300 kN constant axial load applied by 

the overall structure on the footing, which corresponds to the degree of freedom 𝑣25 in 

Figure 3-21. The horizontal actuator was used to simulate the horizontal shear load on the 

footing during the earthquake loading due to the overall dynamic response of the frame 

structure. The displacement 𝑢𝑠 calculated in the computer model was applied directly to the 

footing using the horizontal actuator with the corresponding force 𝐹𝑠 measured using the 

horizontal load cell [LC1]. The horizontal force was subsequently fed back into the numerical 

model at which time the numerical model computation continued. 

 

 

Figure 3-22 Conceptual experimental test setup 
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Figure 3-23 Experimental test setup in the University of Pretoria's Sasol Laboratory 

 

 

Figure 3-24 Back elevation of the pseudo-dynamic experimental test setup 
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Figure 3-25 Side elevation of the pseudo-dynamic experimental test setup 

 

Figure 3-26 shows the hardware and software that was used to integrate the calculation cycle 

with the loading cycle. Two control loops were used in the experimental tests with the first 

control loop being used under force control to maintain the vertical axial load on the reinforced 

concrete footing. The second control loop was used under displacement control to apply the 

horizontal displacement calculated in the numerical model onto the reinforced concrete footing 

at each iteration within each time step. A linear ramp function was used to apply the load 

incrementally and delay the rate of lateral load applied onto the footing. The objective of the 

ramp function was to mitigate dynamic effects during the analysis due to large changes in 

calculated displacements between iterations. 

Figure 3-26 also shows a third path that comprised of additional instruments attached to the 

experimental test setup. Strain gauges were attached to two of the four longitudinal reinforcing 

bars, with a reinforcing bar with strain gauge being placed on each column face in the direction 

of loading. The strain gauges were applied at the base of the column where the maximum 

moment was expected. Four additional linear displacement transducers were placed at equal 

increments over the length of the column with the aim to compare the results with the internal 

displacement transducer in the horizontal actuator. 
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Figure 3-26 Schematic illustration of external components of the pseudo-dynamic experiment 
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3.6.3 CALCULATION CYCLE NUMERICAL MODEL  

The non-linear Newmark’s implicit method using the average acceleration method was used to 

perform the pseudo-dynamic experiments, and Figure 3-27 shows the pseudo-dynamic 

algorithm used to run the analysis. The script that was developed to run the pseudo-dynamic 

analysis is given in Appendix A. The algorithm was adapted to incorporate static condensation 

to eliminate the rotational free degrees of freedom with zero mass within the overall frame 

structure. The unknown displacements and forces within the structure using the initial state of 

the structure are solved at each time-step: 𝑖 = 1,2,3…𝑛          𝑤𝑖𝑡ℎ   𝑡 = 𝑖∆𝑡 
With 𝑛 being the total number of time steps in the earthquake record and 𝑡 being the time in 

seconds at any point within the analysis. The average acceleration method produces an 

unconditionally stable solution and therefore the selection of the time step only influenced the 

accuracy of the solution and not the stability of the solution. For each time step "𝑖" within the 

earthquake record, iteration, "𝑗", was required due to the implicit relationship between the 

restoring force matrix (𝑓𝑠∗)𝑖 and the unknown displacement of the structure at (𝑢)𝑖 as shown in 

Step 15 in Figure 3-27. Therefore, the stiffness of the footing must be assumed before the 

calculation at each time step can be initialised. The initial stiffness of the footing had to be 

determined before the pseudo-dynamic analysis could commence. The selection of the initial 

lateral stiffness of the footing had to be considered carefully because assuming a stiffness that 

was lower than the maximum true elastic stiffness of the footing would produce premature 

damage to the footing at the start of each time step. Selecting a stiffness lower than the elastic 

stiffness of the footing can also produce instability problems in the convergence of the solution.  

Reinforced concrete is a highly non-linear material, and with the application of the applied 

loading at the beginning of each time step, an initial out of balance residual force vector was 

produced. As a result, the structure was no longer in force or energy equilibrium. In general, 

the displacement applied to the structure results in a restoring force that differs from that of the 

restoring force that was calculated using the initially maximum stiffness of the structure. 

Because of this, the stiffness of the footing (𝑘𝑠) between the previous time step and the current 

time step was updated at each iteration until there was convergence to a solution. Once the 

solution converged, and equilibrium within the structure was achieved, the next time step "𝑖" 
can commence. Force and energy equilibrium had to be ensured within a certain level of 

accuracy by specifying a convergence criterion at the start of the pseudo-dynamic analysis, 

which was less than the resolution of the data acquisition system. 
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Figure 3-27 Pseudo-dynamic numerical model algorithm 
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The initial calculations consisted of analysing the structure under static loading to determine 

the initial state of the structure before the application of the earthquake excitation. Equation 3.2 

needs to be solved for the unknown displacements, using the applied gravity loads, to determine 

the static distribution of load in the structure. Equation 3.3 is the initial stiffness matrix of a 

spring element that was used for the lateral displacement of the footing and includes the position 

within the overall global stiffness matrix. 

[𝐾]{𝑢}0 + [𝐾𝑠]0{𝑢}0 = [𝐾∗]0{𝑢}0 = {𝑃} (3.2) 

[𝐾𝑠]0 =   𝑢1  …  𝑢28  [ 𝑘𝑠0 … −𝑘𝑠0⋮ ⋱ ⋮−𝑘𝑠0 … 𝑘𝑠0 ] 𝑢1⋮𝑢28         with    𝑢𝑠 = 𝑢1 

(3.3) 

  

Where {𝑃} is the statically applied point loads on the structure and [𝐾] represents the overall 

global elastic stiffness matrix of the frame structure that was formulated using beam elements. 

The matrix [𝐾𝑠]0 is the initial stiffness matrix of the reinforced concrete footing with 𝑘𝑠0 the 

initial stiffness of the spring element at time equal to zero. The vector given by {𝑢}0 was the 

initial displacements of the structure before the earthquake loading was applied to the structure.  

Beam elements were used to model the frame structure with three degrees of freedom associated 

with each node to reduce computation demand. Regarding Figure 3-21(a), the structure was 

discretised into ten beam elements with ten nodes. Nodes one through nine of the frame 

structure comprised of three degrees of freedom (two translational and one rotational degree of 

freedom) whereas node ten only consisted of a single translational degree of freedom. Node ten 

only provides a horizontal translational boundary condition for the non-linear idealised spring 

element used to model the lateral displacement of the footing. This results in 28 degrees of 

freedom. 

The degrees of freedom of the frame structure was numbered such that the translational free 

degrees of freedom were numbered first followed by the rotational free degrees of freedom and 

finally the support degrees of freedom, which have zero displacement. Figure 3-28 shows the 

degrees of freedom for the frame structure and the order in which they were numbered. During 

the static analysis, the numbering of the free degrees of freedom is not critical. However, during 

the dynamic analysis, only the translational free degrees of freedom are considered to contain 

mass with the inertia effects due to rotational degrees of freedom being neglected. Therefore, 

the static condensation method was used to eliminate the rotational free degrees of freedom 
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from the dynamic analysis. The order that the degrees of freedom were numbered was done to 

ameliorate the formulation of the statically condensed mass and stiffness matrices.  

 

 

Figure 3-28 Degrees of freedom numbering 

 

Before the structure was subjected to the earthquake loading, the structure would have initial 

displacements and forces in the members due to gravity loading from the dead load of the 

structure and live load under serviceability limit states. The same loadings as presented in 

Section 3.3.1 were used with the applied loading on the numerical model shown in Figure 3-29 

to ensure an axial load of 300 kN was produced on the central footing. As the calculations are 

only done at the nodes, the point loads and moments at the nodes due to the distributed loading 

was determined using the fixed end reactions as shown in Figure 3-30. 

 

 

Figure 3-29 Static loading applied to the numerical model 
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Figure 3-30 Fixed-end reactions due to a uniformly distributed load 

 

The primary objective of the static analysis was to obtain the initial condition or state of the 

structure before applying the earthquake loading. The overall stiffness matrix [𝐾∗] consists of 

both the stiffness components from the frame structure and spring element as shown in 

Equation 3.4. In Equation 3.4 the subscript "𝑏" indicates components of the stiffness matrix 

relating to the supports and subscript "𝑎" relating to components associated with the free 

degrees of freedom as previously alluded to in Figure 3-28. The first subscript in the stiffness 

matrix in Equation 3.5 relates to the force component of a degree of freedom and the second 

subscript relates to the displacement component.  

 

[𝐾∗] = [𝐾]⏟𝐹𝑟𝑎𝑚𝑒𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝑀𝑎𝑡𝑟𝑖𝑥(𝐿𝑖𝑛𝑒𝑎𝑟)
+ [𝐾𝑠]⏟𝑆𝑝𝑟𝑖𝑛𝑔𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝑀𝑎𝑡𝑟𝑖𝑥(𝑁𝑜𝑛−𝐿𝑖𝑛𝑒𝑎𝑟)

= [𝐾𝑎𝑎∗ 𝐾𝑎𝑏∗𝐾𝑏𝑎∗ 𝐾𝑏𝑏∗ ] (3.4) 

 

{𝑃𝑎𝑃𝑏} = [𝐾𝑎𝑎∗ 𝐾𝑎𝑏∗𝐾𝑏𝑎∗ 𝐾𝑏𝑏∗ ] {𝑢𝑎𝑢𝑏}  Where {𝑢𝑏} = {0} (3.5) 

 

Using Equation 3.5, the unknown displacements {𝑢𝑎} was obtained by solving Equation 3.6 

with the reactions determined using Equation 3.8. The initial forces at each of the degrees of 

freedom {𝑓𝑠∗} under static conditions were obtained from the applied loads on the structure in 

global coordinates as shown in Equation 3.9.  
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{𝑢𝑎} = [𝐾𝑎𝑎∗ ]−1{𝑃𝑎} (3.6) 

{𝑢𝑠0} = {𝑢𝑎} (3.7) 

{𝑃𝑏} = [𝐾𝑏𝑎∗ ]{𝑢𝑎} (3.8) 

{𝑓𝑠∗} = [𝐾𝑎𝑎∗ ]{𝑢𝑎} = {𝑃𝑎} (3.9) 

 

The mass matrix [𝑀] was formulated by lumping the mass of the beams, columns and floor 

slab equally amongst the corresponding nodes as shown in Figure 3-31. All the mass associated 

with the masonry walls was lumped at the base node as it was assumed that the mass would not 

be attached to the top beam. Inertial effects due to the mass rotation have not been considered 

in this analysis. Therefore, the masses associated with rotational free degrees of freedom are 

equal to zero. The mass matrix is formulated from the following masses within the structure: 

• Self-weight of the columns and beams; 

• Dead load from the concrete floor slabs; 

• Nominal live load from occupants and other non-structural items; and 

• Mass of the masonry infill panels. 

 

 

Figure 3-31 Distribution of mass within the structure to the nodes 

 

The rotational degrees of freedom that contain zero mass were eliminated from the dynamic 

analysis using static condensation. It is therefore assumed that energy dissipation only occurs 

in the mass degrees of freedom. Therefore, the diagonal elements in the mass matrix [𝑀] that 
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contain zero entry values need to be eliminated from the dynamic analysis during the time 

stepping analysis. The process entails ordering the mass matrix in such a manner that the first 

diagonal entries within the mass matrix correspond to the degrees of freedom that contain mass 

and the subsequent diagonal entries containing zero mass. The ordering of the degrees of 

freedom was shown previously in Figure 3-21(a) when the degrees of freedom were numbered. 

Numbering the translational free degrees of freedom followed by the rotational degrees of 

freedom results in the formulation of Equation 3.10 without having to reorder the matrix [𝐾𝑎𝑎∗ ]. 
The degrees of freedom {𝑢𝑡} corresponds to free degrees of freedom that contain mass (free 

translational degrees of freedom) and {𝑢0 } corresponds to free degrees of freedom that contain 

zero mass (rotational degrees of freedom). The statically condensed equation of motion, which 

includes damping, containing all the degrees of freedom is written in partitioned form is shown 

in Equation 3.10. Equation 3.11 shows the statically condensed form that excludes the support 

degrees of freedom. 

 

[𝑴𝒕𝒕 𝟎 0𝟎 𝟎 00 0 0] {𝑢̈𝑡𝑢̈00 } + [𝑪𝒕𝒕 𝟎 0𝟎 𝟎 00 0 0] {𝑢̇𝑡𝑢̇00 } + [𝑲𝒕𝒕 𝑲𝒕𝟎𝑲𝟎𝒕 𝑲𝟎𝟎 𝐾𝑎𝑏𝐾𝑏𝑎 𝐾𝑏𝑏] {𝒖𝒕𝒖𝟎𝑢𝑏} = {𝑷𝒕𝑷𝟎𝑃𝑏 } (3.10) 

 

[𝑀𝑡𝑡 00 0] {𝑢̈𝑡𝑢̈0} + [𝐶𝑡𝑡 00 0] {𝑢̇𝑡𝑢̇0} + [𝐾𝑡𝑡 𝐾𝑡0𝐾0𝑡 𝐾00] {𝑢𝑡𝑢0} = {𝑃𝑡𝑃0} (3.11) 

 

Where: 

   [𝐾𝑡𝑡 𝐾𝑡0𝐾0𝑡 𝐾00] = [𝐾𝑎𝑎∗ ],   [𝑢𝑎] = {𝑢𝑡𝑢0},   𝑃𝑎 = {𝑃𝑡𝑃0} 
And: [𝑀𝑡𝑡]:  Mass matrix that corresponds to the free translational degrees of freedom  [𝐶𝑡𝑡]:  Rayleigh damping matrix that is determined from [𝑀𝑡𝑡] and [𝐾𝑡𝑡] [𝐾𝑡𝑡]:  Stiffness matrix consisting of free translational degrees of freedom with assigned mass {𝑢̈𝑡}:  Accelerations of the translational degrees of freedom with mass {𝑢̈0}:  Accelerations of the free rotational degrees of freedom {𝑢̇𝑡}:  Velocities of the free translational degrees of freedom {𝑢̇0}:  Velocities of the free rotational degrees of freedom {𝑢𝑡}:  Displacements of the free translational degrees of freedom {𝑢0}:  Displacements of the free rotational degrees of freedom 
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Multiplying through with Equation 3.11 produces Equation 3.12 and Equation 3.13. 

Equation 3.13 allows for the static relationship between {𝑢0} and {𝑢𝑡} to exist due to the lack 

of presence of inertia and damping terms and is reordered in Equation 3.14. Any static loads 

applied to degrees of freedom with zero mass is also incorporated into Equation 3.13. 

[𝑀𝑡𝑡]{𝑢̈𝑡} + [𝐶𝑡𝑡]{𝑢̇𝑡} + [𝐾𝑡𝑡]{𝑢𝑡} + [𝐾𝑡0]{𝑢0} = {𝑃𝑡} (3.12) 

[𝐾0𝑡]{𝑢𝑡} + [𝐾00]{𝑢0} = {𝑃0} (3.13) 

{𝑢0} = [𝐾00]−1{𝑃0} − [𝐾00]−1[𝐾0𝑡]{𝑢𝑡} (3.14) 

 

Equation 3.14 is substituted into Equation 3.12 with the resultant expression shown in 

Equation 3.15. 

 [𝑀𝑡𝑡]{𝑢̈𝑡} + [𝐶𝑡𝑡]{𝑢̇𝑡} + [[𝐾𝑡𝑡] − [𝐾𝑡0][𝐾00]−1[𝐾0𝑡]]{𝑢𝑡} = {𝑃𝑡} − [𝐾𝑡0][𝐾00]−1[𝐾0𝑡]{𝑃0}  (3.15) 

 

Simplifying Equation 3.15 results in the following expressions: 

[𝑀𝑡𝑡]{𝑢̈𝑡} + [𝐶𝑡𝑡]{𝑢̇𝑡} + [𝐾̃]{𝑢𝑡} = {𝑃̃} (3.16) 

[𝐾̃] = [𝐾𝑡𝑡] − [𝐾𝑡0][𝐾00]−1[𝑘0𝑡] (3.17) 

{𝑃̃} = {𝑃𝑡} − [𝐾𝑡0][𝐾00]−1[𝐾0𝑡]{𝑃0} (3.18) 

{𝑃𝑡} = {𝑃𝑔} + {𝑃𝑓} = −[𝑀𝑡𝑡]{𝐼}𝑢̈𝑔 + {𝑃𝑓} (3.19) 

 

The static loads in the structure or state of the structure {𝑓𝑠∗} at each time increment was 

separated into two components as shown in Equation 3.20 with {𝑓𝑠𝑡} representing the 

translational degrees of freedom and {𝑓𝑠0} representing the rotational degrees of freedom. The 

state of the structure due to static condensation {𝑓𝑠} is defined in Equation 3.21 and derived by 

multiplying out Equation 3.20 and reordering the terms such that Equation 3.22 is produced. 
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{𝑓𝑠∗} = {𝑓𝑠𝑡𝑓𝑠0} = [𝐾𝑡𝑡 𝐾𝑡0𝐾0𝑡 𝐾00] {𝑢𝑡𝑢0} (3.20) 

 

The derivation of {𝑓𝑠} using Equation 3.20 is as follows: 

{𝑓𝑠𝑡} = [𝐾𝑡𝑡]{𝑢𝑡} + [𝐾𝑡0]{𝑢0}  

{𝑢0} = [𝐾00]−1{𝑓𝑠0} − [𝐾00]−1[𝐾0𝑡]{𝑢𝑡}  

([𝐾𝑡𝑡] − [𝐾𝑡0][𝐾00]−1[𝐾0𝑡]){𝑢𝑡} = {𝑓𝑠𝑡} − [𝐾𝑡0][𝐾00]−1{𝑓𝑠0}  

[𝐾̃]{𝑢𝑡} = {𝑓𝑠𝑡} − [𝐾𝑡0][𝐾00]−1{𝑓𝑠0}  

{𝑓𝑠} = [𝐾̃]{𝑢𝑡} (3.21) 

{𝑓𝑠} = {𝑓𝑠𝑡} − [𝐾𝑡0][𝐾00]−1{𝑓𝑠0} (3.22) 

 

To produce the damping matrix [𝐶𝑡𝑡] required the calculation of the first two natural periods of 

vibration of the structure by solving the determinant for Equation 3.23 for the non-trivial 

solution. Equation 3.24 was used to solve for the Rayleigh damping coefficients 𝑎0 and 𝑎1 using 

a 5% (𝜉 = 0.05) damping ratio and the natural periods of vibration of the structure calculated 

using Equation 3.23. The first two modes of vibration contribute significantly to the overall 

response of the structure, with both modes of vibration being assigned the same damping value. 

SANS 10160-4:2017 traditionally uses a damping value of 5%, as the design elastic response 

spectra within the code are derived using a 5% damping value. Upon solving for the statically 

condensed mass and stiffness matrices, the damping matrix [𝐶𝑡𝑡] can be calculated using 

Equation 3.25.  

[[𝐾̃] − 𝜔𝑛2[𝑀𝑡𝑡]] 𝜑𝑛 = {0} (3.23) 

 12 [1 𝜔1⁄ 𝜔11 𝜔2⁄ 𝜔2] {𝑎0𝑎1} = {𝜉𝜉} (3.24) 
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[𝐶𝑡𝑡] = 𝑎0[𝑀𝑡𝑡] + 𝑎1[𝐾𝑡𝑡] (3.25) 

 

The only non-linear component in the structure was due to the lateral stiffness (𝑘𝑠(𝑡)) of the 

reinforced concrete footing. Therefore, the stiffness matrix of the frame structure remains 

constant for the duration of the experiment. Within each iteration within a timestep, the spring 

stiffness 𝑘𝑠(𝑡) was updated in Equation 3.26, which was then incorporated back into the overall 

global stiffness matrix. 

[𝐾𝑠]𝑖(𝑗) =   𝑢1  …  𝑢28  [ 𝑘𝑠(𝑗) … −𝑘𝑠(𝑗)⋮ ⋱ ⋮−𝑘𝑠(𝑗) … 𝑘𝑠(𝑗) ]
𝑢1⋮𝑢28 with    𝑢𝑠 = 𝑢1 

(3.26) 

 

The earthquake loading on the frame structure was determined by using Equation 3.27 with the 

influence vector {𝐼} only including the horizontal translational free degrees of freedom. The 

effective loading {𝑃̃}𝑖 was calculated in Equation 3.28 and accounts for the static load 

components due to static condensation of the frame structure and the earthquake loading. 

Equation 3.28 is then substituted into the familiar Newmark equation, which is shown in 

Equation 3.29. 

{𝑃𝑒}𝑖 = −[𝑀𝑡𝑡]{𝐼}(𝑢̈𝑔)𝑖 (3.27) 

{𝑃̃}𝑖 = {𝑃𝑒}𝑖 + {𝑃𝑡}𝑖 − [𝐾𝑡𝑜][𝐾00]−1{𝑃0} (3.28) 

{𝑃̂}𝑖 = {𝑃̃}𝑖 + [𝑎1]{𝑢}𝑖−1 + [𝑎2]{𝑢̇}𝑖−1 + [𝑎3]{𝑢̈}𝑖−1 (3.29) 

 

The unbalanced load on the structure for each degree of freedom was determined using 

Equation 3.30. The infinity norm of a vector was used to determine whether the residual vector 

had converged to a solution within the specified convergence criteria. Once the convergence 

criterion has been achieved, the next time step was initialised. The infinity norm determines the 

maximum absolute value within the residual vector produced in Equation 3.30. The stop criteria 

in the research was selected to be 5 x 10-5 and was selected to be less than the resolution of the 

data acquisition system, which had a resolution of 0.003.  
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{𝑅̂}𝑖(𝑗) = {𝑃̂}𝑖 − {𝑓𝑠}𝑖(𝑗) − [𝑎1]{𝑢}𝑖(𝑗) 
 

(3.30) 

‖𝑅̂𝑖(𝑗)‖∞ = max {|𝑅̂𝑖(𝑗)|} (3.31) 

 

If the stop criterion was not met, the following calculations were performed to update the 

displacements and internal forces within the structure. The statically condensed stiffness matrix 

was determined using Equation 3.32 and was added to the Newmark’s coefficient matrix [𝑎1] 
to produce the Newmark’s stiffness matrix [𝐾̂𝑖(𝑗)] as shown in Equation 3.33.  

[𝐾̃](𝑗) = [𝐾𝑡𝑡] − [𝐾𝑡𝑜][𝐾𝑜𝑜]−1[𝐾𝑜𝑡] 
 

(3.32) 

[𝐾̂𝑖(𝑗)] = [𝐾̃](𝑗) + [𝑎1] (3.33) 

 

The change in displacement due to the unbalanced residual vector is calculated indicatively 

using Equation 3.34. The change in displacement was added to the current displacement of the 

structure at the degrees of freedom with mass from the previous iteration, which is indicated in 

Equation 3.35.  

{𝑑𝑢𝑡}𝑖(𝑗) = [𝐾̂𝑖(𝑗)]−1 {𝑅̂}𝑖(𝑗) (3.34) 

{𝑢𝑡}𝑖(𝑗) = {𝑢𝑡}𝑖(𝑗−1) + {𝑑𝑢𝑡}𝑖(𝑗) (3.35) 

 

Equation 3.36 is solved to determine the change in deflection of the zero-mass degrees of 

freedom. Equation 3.37 is used to determine the overall displacement of the zero-mass degrees 

of freedom, which requires the displacements for static rotational degrees of freedom. The 

overall displacement of the structure was subsequently combined into a single vector {𝑑𝑢}𝑖(𝑗) 
that was ordered according to the degrees of freedom as defined in Figure 3-21(a). 

 {𝑑𝑢𝑜} = −[𝐾𝑜𝑜]−1[𝐾𝑜𝑡]{𝑑𝑢𝑡}𝑖(𝑗) (3.36) 
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 {𝑢0}𝑖(𝑗) = [𝑘𝑜𝑜]−1{𝑃0} − [𝐾𝑜𝑜]−1[𝐾𝑜𝑡]{𝑢𝑡}𝑖(𝑗) (3.37) 

 

Equation 3.38 produces the total displacement of the structure that includes both the zero-mass 

and mass degrees of freedom while the change in displacement is given by Equation 3.39. For 

Equation 3.38 and Equation 3.39, the values within the vectors are ordered consecutively 

according to the numbering of the degrees of freedom shown previously in Figure 3-21(a). 

{𝑢𝑎}𝑖(𝑗) = [{𝑢𝑡}𝑖(𝑗), {𝑢0}𝑖(𝑗)]𝑇 
(3.38) 

{𝑑𝑢𝑎}𝑖(𝑗) = [{𝑑𝑢𝑡}𝑖(𝑗), {𝑑𝑢𝑜}(𝑗)]𝑇 
(3.39) 

 

The state of the structure {𝑓𝑠∗} and {𝑢𝑠} was subsequently updated within a given iteration "𝑗" 
in each timestep "𝑖". Because the only non-linearity in the system was the lateral displacement 

of the reinforced concrete footing, the force and displacements components due to the frame 

structure can be calculated using Equation 3.40 and Equation 3.41. 

{𝑓𝑠}𝑖(𝑗) = [𝐾𝑎𝑎]{𝑢𝑎}𝑖(𝑗) (3.40) 

{𝑢𝑠}𝑖(𝑗) = {𝑢𝑎}𝑖(𝑗) (3.41) 

 

 The force component 𝐹𝑠 from the lateral displacement of the reinforced concrete footing was 

read from the horizontal load cell from the physical test setup and added to the respective degree 

of freedom in {𝑓𝑠∗}. The updated {𝑓𝑠∗} is shown in Equation 3.42. The stiffness of the footing 

can be updated once the restoring force of the reinforced concrete footing was fed back into the 

numerical model from the horizontal load cell. The stiffness of the footing was determined by 

using the previous time steps displacement and force components and the calculated total 

displacement and measured restoring force in the current time step and iteration. The stiffness 

of the reinforced concrete footing was calculated using Equation 3.43.  

{𝑓𝑠∗}𝑖(𝑗) = {𝑓𝑠}𝑖(𝑗) + {𝐹𝑠}𝑖(𝑗) (3.42) 
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(𝑘𝑠)𝑖(𝑗+1) = | (𝐹𝑠)𝑖(𝑗) − (𝐹𝑠)𝑖−1(𝑢𝑠)𝑖(𝑗) − (𝑢𝑠)𝑖−1| (3.43) 

 

Figure 3-32 and Figure 3-33 shows a hypothetical example of a change in slope from positive 

to negative that was run for two cases whereby the absolute value of the calculated stiffness is 

used and when it is not used. Using the absolute value of the slope, as shown in Equation 3.43, 

results in the rate of convergence to the solution being slower than that produced by not taking 

the absolute value. In both cases, the solution converged to the same point on the negative slope 

and the only benefit with using the absolute value is that the load increments that are applied 

by the horizontal load actuator to the structure are much smaller. The smaller load increments 

in combination with the ramp function, as described in Figure 3-26, ensures a slow rate of 

loading onto the test specimen thus preventing dynamic effects being imparted on the footing.  

Figure 3-32 and Figure 3-33 show that the point (𝑢𝑠)𝑖−1 does not necessarily coincide with the 

inflection/yield point of the analytical model used to describe the reinforced concrete section. 

During the pseudo-dynamic experiment on the physical test specimen, the reinforced concrete 

cyclic behavior is not known, and the actual Fs values are obtained from the horizontal load cell 

[LC1] as shown previously in Figure 3-22. The error at the inflection points in the material 

response is remedied by reducing the time increments. 

 

 

Figure 3-32 Newton-Raphson iteration at an inflection point where the slope changes from positive to 

negative with the absolute value used for the computational slope ks 
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Figure 3-33 Newton-Raphson iteration at an inflection point where the model slope changes from positive to 

negative and the computation slope ks being either positive or negative 

 

 

Figure 3-34 and Figure 3-35 shows the Newton-Raphson iteration on a negative slope. 

Figure 3-34 shows the iteration in a time step whereby the absolute value of the stiffness is used 

for each iteration and therefore produces more iterations with smaller displacement increments. 

Figure 3-35 shows the iteration that produces fewer iteration steps as the stiffness can either be 

positive or negative. However, the displacement steps produced at each iteration are much 

larger. The stiffness 𝑘𝑠(1) is equal to the initial stiffness of the structure and corresponds to the 

maximum stiffness that the test specimen can achieve.  

 

 

Figure 3-34 Newton-Raphson iteration on a negative slope with the computational slope ks taken as only 

positive 
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Figure 3-35 Newton-Raphson iteration on a negative slope with the computation slope ks being either 

positive or negative 

 

3.6.4 ENERGY AND DAMAGE CALCULATIONS  

The expressions for the various energy terms in this study were determined numerically at each 

time increment and were determined by cumulatively summing the change in energy at each 

time increment for the duration of the experiment. The initial energy expressions at the start of 

the analysis are equal to the work done by the statically applied loads, which is equal to the 

energy absorbed by the structure as shown in Equation 3.44. At the start of the analysis the 

structure was stationary, and therefore the kinetic energy and damping energy were equal to 

zero. Because the structure is symmetrical, the lateral displacement of the internal footing was 

equal to zero under gravity loads, which results in the hysteretic energy being equal to zero 

before the analysis starts. 

(𝐸𝑘)0 = 12 {𝑃}𝑇{𝑢}0 = 12 [[𝐾∗]0{𝑢}0]𝑇{𝑢}0 
(3.44) 

 

Energy (𝐸𝑇) was imparted to the structure once the structure was subjected to the earthquake 

excitation. During the analysis, a portion of the energy was temporally stored as kinetic energy (𝐸𝑀) and strain energy (𝐸𝐾), with the rest being dissipated in the form of damping energy (𝐸𝐶), 
and hysteretic energy (𝐸𝐻). The total energy was calculated using Equation 3.45 and 

Equation 3.46. The expressions for each of the energy terms is given by Equation 3.47 to 

Equation 3.50. 
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{𝑃∗}𝑖 = {𝑃} − {𝑃𝑒}𝑖 (3.45) 

(𝐸𝑇)𝑖 = (𝐸𝑘)0 +∑12 [{𝑃∗}𝑖 + {𝑃∗}𝑖−1]𝑇[{𝑢}𝑖 + {𝑢}𝑖−1]𝑖
𝑖=1  

(3.46) 

(𝐸𝑀)𝑖 =∑12 [[𝑀𝑡𝑡]{𝑢̈𝑡}𝑖 + [𝑀𝑡𝑡]{𝑢̈𝑡}𝑖−1]𝑇[{𝑢𝑡}𝑖 − {𝑢𝑡}𝑖−1]𝑖
𝑖=1  

(3.47) 

(𝐸𝐶)𝑖 =∑12 [[𝐶𝑡𝑡]{𝑢̇𝑡}𝑖 + [𝐶𝑡𝑡]{𝑢̇𝑡}𝑖−1]𝑇[{𝑢𝑡}𝑖 − {𝑢𝑡}𝑖−1]𝑖
𝑖=1  

(3.48) 

(𝐸𝐾)𝑖 = 12 [[𝐾∗]0{𝑢}0]𝑇{𝑢}0 +∑12 [[𝐾]{𝑢}𝑖 + [𝐾]{𝑢}𝑖−1]𝑇[{𝑢}𝑖 − {𝑢}𝑖−1]𝑖
𝑖=1  

(3.49) 

(𝐸𝐻)𝑖 =∑12((𝐹𝑠)𝑖 + (𝐹𝑠)𝑖−1)((𝑑𝑠)𝑖 − (𝑑𝑠)𝑖−1)𝑖
𝑖=1  

(3.50) 

 

Summing the energy terms results in Equation 3.51 

(𝐸𝑀)𝑖 + (𝐸𝐶)𝑖 + (𝐸𝐾)𝑖 + (𝐸𝐻)𝑖 = (𝐸𝑇)𝑖 (3.51) 

 

The damage to the structure was determined by using the Park and Ang (1985) damage index 

that is shown in Equation 3.52 with the terms defined previously. During the pseudo-dynamic 

tests, the maximum displacement {𝑑𝑢} and shear force {𝑉𝑦} is not known, therefore needs to be 

assumed and compared to the result once the experiment is done. At which point the maximum 

displacement and shear force can be updated.  

𝐷𝐼 =  𝑑𝑚𝑑𝑢 + 𝛽𝑉𝑦𝑑𝑢 (𝐸𝐻)𝑖 ≤ 1          𝑤𝑖𝑡ℎ       𝑑𝑚 = max𝑖=0→𝑛(|𝑑𝑠|) (3.52) 
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3.6.5 TESTING INSTRUMENTATION  

The pseudo-dynamic analysis algorithm was written in CatmanAP (2016) software, which uses 

Visual Basic Programming Language. HBM CatmanAP (2016) software enabled the 

integration between the hardware and software, which allowed the script to calculate the 

displacement of the footing and transfer the calculated displacement value as a calibrated output 

voltage (±10V) to the servo-controller. Once the actuator had reached its final position and 

stabilised, the resultant restoring force was read from the load cell back into the script, and the 

script continued running. 

Figure 3-36 shows the interface that was created with CatmanAP (2016) to monitor the progress 

of the pseudo-dynamic experiment. The interface enabled the real-time visualisation and 

interpretation of the hysteretic response and energy characteristics of the structure to be 

compared with the resultant damage encountered by the footing as the earthquake progressed. 

The interface also enabled the monitoring of the convergence of the iterations and the number 

of iterations required before satisfying the stop criterion. 

 

 

Figure 3-36 Pseudo-dynamic analysis computer interface 

 

The calculated displacement determined from the numerical model was converted from a digital 

signal to an analogue output signal (DAC) that ranged between ±10 V. The HBM PMX data 

acquisition system shown in Figure 3-37 was used to integrate the computer software with the 

servo-controller by converting the digital signal produced by the computer to an analogue 

output voltage that is used to control the position of the horizontal actuator. The data acquisition 
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system has a 16-bit digital to analogue converter (DAC) and produced an output resolution of 

0.003 mm for the horizontal actuator with a stroke length of 200 mm.  

 

 

Figure 3-37 HBM Quantum X and PMX Data acquisition system with analogue output 

 

Two Zwick-Roell K7500 servo-controllers are shown in Figure 3-38 and were used during the 

pseudo-dynamic analysis to control the servo-valves and actuators. The first Zwick-Roell servo-

controller was used under displacement control with an input voltage from the HBM PMX 

system. The constant axial load of 300 kN applied to the footing was controlled by using the 

second Zwick-Roell Servo-controller under force control. 

 

 

Figure 3-38 Zwick-Roell K7500 Servo-controllers 

 

A 100 kN hydraulic servo-controlled actuator is shown in Figure 3-40 and was used to place 

the horizontal load on the reinforced concrete footing. Once the actuator had reached its final 

position at each iteration within each time step, and the load reading had stabilised, a reading 

was taken from the horizontal load cell and input back into the computer using a Quantum X 

Displacement out (𝑑𝑠)  
(±10𝑉 Output DAC) 

Restoring force (𝐹𝑠)  input from 

load cell  
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MX840B amplifier as was shown previously in Figure 3-37. The load reading was calibrated 

such that 1 V = 10 kN as is shown in Figure 3-39(b). 

The axial load that was placed on the footing from the frame structure was simulated using a 

vertical actuator and load cell as shown in Figure 3-41. The axial compression load that was 

placed on the footing was equilibrated using a custom press frame that only allowed for the 

transfer of tension forces and not bending moments due to the application of the lateral load. 

Free rotation of the vertical actuator was achieved by using a pin connection as shown in 

Figure 3-41 and Figure 3-42. 

 

  

                (a) Displacement transducer             (b) Load cell 

Figure 3-39 Relationship between voltage and (a) Displacement of the actuator and (b) Input force from the 

horizontal load cell 

 

 

Figure 3-40 Horizontal servo-controlled hydraulic actuator 
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The reinforced concrete footings were connected to the test floor using steel channel sections 

and threaded rods as shown in Figure 3-42. Sliding was prevented by placing a channel section 

on either side of the footing in the direction of the applied lateral load and bolted to the test 

floor. However, if the static friction coefficient of 0.57 as indicated Rabbat & Russell (1985) 

was used between concrete and steel with an applied axial load of 300 kN, the shear resistance 

at the base of the footing due to friction was approximately 170 kN, which is larger than the 

capacity of the horizontal actuator. Therefore, the channel sections provided additional safety 

against sliding. 

Overturning of the footing was prevented by placing two channel sections across the top of the 

footing base slab and securing them to the test floor using threaded rods, which is also shown 

in Figure 3-42. The overturning restraint beams were designed to sustain a maximum 

overturning moment of 150 kN.m. Figure 3-42 also shows the base connection of the press 

frame to the test floor with the pin connection from the Dywidag threaded rods. For each of the 

press frame base connections, 4 x M24 Class 10.9 bolts were used to fix the press frame base 

steel component to the test floor. Figure 3-43 shows the steel actuator connection to the 

reinforced concrete footing with the base plate connected to the top of the reinforced concrete 

footing using four M16 Class 8.8 holding down bolts. 

 

 

Figure 3-41 Vertical servo-controlled hydraulic actuator with press frame 
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Figure 3-42 Sliding and overturning restraint beams, and the vertical press frame connection to the test 

floor 

 

 

Figure 3-43 Steel actuator adaptor connection to the footing with the base plate and holding down bolts 

 

The strain gauges, which were attached to the reinforcing bars, were placed in a half bridge 

configuration with both strain gauges active and at 90 degrees to each other. The half bridge 

configuration ensured that temperature effects were negated. The characteristics of the strain 

gauges are shown in Table 3-4. Figure 3-44 shows the position of the strain gauges on the 

reinforcing bars, which were cast into the reinforced concrete footings. 
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Figure 3-44 Strain gauges placement position on tensile reinforcement 

 

The Y12 tensile bars had to be modified slightly to provide a clean surface for the strain gauges 

to be attached, with Figure 3-45 showing the strain gauges attached to the reinforcing bars. To 

ensure that a smooth surface was provided on the bars, the ribs on the Y12 bars had to be 

removed at the localised position where the strain gauges were going to be placed. The strain 

gauges on the reinforcement were waterproofed by first painting a sealant over them and their 

connecting wires and then using shrink tubing to ensure the strain gauges were watertight during 

the casting of the concrete. Figure 3-36 shows the sealed strain gauges on the reinforcement 

within the reinforcement cages. The strain gauges cables were loosely fastened to the bars to 

allow for movement during the casting of the concrete. 

 

Table 3-4 Characteristics of the strain gauges used in the footings 

Parameter Value 

Gauge type TML-YEFLA-5-3LJC 

Gauge length 5 mm 

Gauge factor 2.14 ± 1% 

Gauge resistance 119.5 ± 0.5 Ω 
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Figure 3-45 Strain gauge attachment to the reinforcing bars 

 

 

Figure 3-46 Strain gauges fixed to reinforcing bars 

 

3.6.6 TESTING PROCEDURE AND SEQUENCE 

Five pseudo-dynamic tests were conducted on the reinforced concrete footings to determine the 

extent of damage with increasing peak ground acceleration, with the final experimental setup 

shown in Figure 3-47. The initial horizontal stiffness of the reinforced concrete footing was 

required before the pseudo-dynamic analysis could commence and to enable the elastic natural 

period of vibration of the structure to be determined. The first two footings were subjected to 

cyclic loading to get an indication of the initial stiffness of the footings and to test the 

displacement transducer within the horizontal actuator.  

Once the initial stiffness had been determined, the pseudo-dynamic tests could commence. For 

each test, the frame structure and static loading were kept constant with the only variable being 

the peak ground acceleration, which was determined by scaling the El Centro ground motion 

record.  Each pseudo-dynamic experiment commenced by initialising the actuators and ensuring 

the load on the footing was equal to zero. The 300 kN axial load was then applied to the footing, 
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and once the axial load had reached 300 kN, the horizontal actuator was initialised on the servo-

controller, and the pseudo-dynamic test could commence. The initial calculation within the 

software ensured that all the instruments were zeroed, and the static analysis was performed 

before commencing the pseudo-dynamic analysis. Time stepping, and iteration commenced 

upon completion of the initial calculations. The peak ground accelerations used for the pseudo-

dynamic experiments, which were obtained by scaling the amplitude of the El Centro 

earthquake record, are as follows: 

• Specimen 1:  A maximum peak ground acceleration of 0.34 g; 

• Specimen 2:  A maximum peak ground acceleration of 0.68 g;  

• Specimen 3:  A maximum peak ground acceleration of 0.78 g; 

• Specimen 4:  A maximum peak ground acceleration of 1 g; and 

• Specimen 5:  A maximum peak ground acceleration of 2 g. 

 

 

Figure 3-47 Pseudo-dynamic analysis control system 
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4 EXPERIMENTAL RESULTS 

In this chapter, the results obtained from the cyclic load tests and pseudo-dynamic tests are 

presented, analysed and discussed. The evolution of damage to the reinforced concrete footing 

with increasing earthquake intensity and cycles of vibration are discussed, compared, and 

conclusions are drawn. The hysteretic response of the footings and the energy characteristics of 

the structure are presented due to the applied scaled El Centro ground motion record for each 

of the pseudo-dynamic experiments.  

4.1 CYCLIC LOAD TESTING  

Cyclic load tests were undertaken to determine the maximum horizontal elastic stiffness of the 

reinforced concrete footing under an applied axial load of 300 kN. The maximum horizontal 

stiffness produced from the cyclic load tests was required as an input into the pseudo-dynamic 

experiments. Figure 4-1 shows the two cyclic load tests that were undertaken under 

displacement control whereby the lateral displacement was incrementally increased by 1 mm 

with each cycle of vibration. Appendix B shows the algorithm used to perform the cyclic load 

test.  

 

Figure 4-1 Incrementally applied cyclic load independent of time 

 

The first cyclic load test was undertaken to evaluate the test setup and hardware and to provide 

an initial understanding of the lateral behaviour of the reinforced concrete footing. Figure 4-2 

shows the lateral hysteretic response of the reinforced concrete footing with an applied axial 

load of 300 kN. Cracking of the concrete was evident by the reduction in lateral stiffness at a 
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deformation of 1 mm and at a corresponding restoring force of 21 kN, which can be observed 

by the reduction in lateral stiffness that is shown in Figure 4-2. Therefore, a maximum elastic 

stiffness of 21000 N/mm is produced for the section. A single horizontal crack opened at the 

base of the column at the interface between the concrete slab and the column. With each cycle 

of vibration, the horizontal crack increased in size and became more apparent without the 

formation of additional cracks.  

However, during the cyclic load test, the experimental test rig experienced unexpected 

vibrations when the footing was displacement in the positive direction (extension of the 

hydraulic actuator piston) from its initial position, which can be seen in Figure 4-2. The test 

was stopped at a maximum lateral deflection of 13 mm due to the vibrations of the press frame. 

The vibrations were due to the single top pin connection between the vertical actuator and the 

top press beam not having a flush connection, which resulted in the top beam rotating relative 

to the vertical actuator causing an unbalanced load and the subsequent vibrations. To mitigate 

the vibrations in the test frame, 5 mm steel packing plates were placed in the gap between at 

the pin connection, which is shown in Figure 4-3. 

As the cyclic load test was stopped at a maximum displacement of 13 mm, a static load test was 

done on the same specimen by applying an incrementally increasing negative lateral 

deformation (retraction of the actuator) to the footing with an applied axial load of 300 kN, 

which is also shown in Figure 4-2. The static load test was terminated at a maximum 

deformation of 20 mm with the formation of a large horizontal crack at the base of the column 

and the spalling of the concrete at the top of the column at the holding down bolts. Figure 4-4 

shows the damage to the reinforced concrete column at the end of the cyclic load test and the 

static load test. 

 

Figure 4-2 Hysteretic response for cyclic load test one 
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Figure 4-3 Top beam connection stiffening of the press frame 

 

  

(a) (b) 

Figure 4-4 Cracking during the first cyclic load test 

 

Figure 4-5 shows the hysteretic response for the second cyclic load test. The cyclic load test 

was undertaken by incrementally increasing the lateral cyclic displacement by 1 mm after each 

vibration cycle up to a maximum lateral displacement of ±25 mm. The backbone curve is also 

shown in Figure 4-5 and forms the envelope to the unloading and reloading branches. The 

maximum stiffness of the footing (𝑘𝑠) was obtained from the backbone curve before the 

concrete started to crack and produced a lateral stiffness of 14536 N/mm. The resultant stiffness 

from the cyclic load tests is less than the calculated flexural stiffness from first principles for a 

cantilever member. The stiffness of the footing is not only governed by the flexural stiffness of 

the reinforced concrete but also influenced by the connection between the base plate and the 

concrete column and the connection of the footing with the test floor.  

5 mm steel 

plate packing 
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The hysteretic response shows a distinct change in stiffness in the backbone curve at 2 mm with 

a corresponding shear force of 29 kN, which indicates the onset of concrete cracking. A further 

increase in the lateral displacement of the footing resulted in the stiffness tending to zero, which 

occurs at an applied deformation of 8 mm and at a corresponding shear force of 66 kN. The 

flattening of the backbone curves indicates that the lateral capacity of the footing had been 

reached under the applied axial load and therefore the maximum horizontal force that can be 

transmitted from the ground into the structure had been reached. Visible pinching can be 

observed with each cycle of applied load and is likely due to the incompatibility between the 

material behaviour of reinforcing steel and concrete and the delayed closure of the crack upon 

load reversal. Upon load reversal the plastically elongated reinforcing steel is first mobilised in 

compression prior to the closure of the crack in the direction of unloading and reloading. The 

vertical axial load applied to the footing most likely also contributed to the pinching effect 

because as the horizontal load is removed, the vertical load overcomes the overturning moment 

produced by the horizontal force and attempts to stabilise the section by returning the footing 

back to its original vertical position as can be observed in Figure 4-5.   

 

 

Figure 4-5 Hysteresis curves for cyclic load test two  
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Figure 4-6 shows that cracking occurred at approximately 40 mm from the base of the column 

with a single horizontal flexural crack occurring on each face of the column in the direction of 

the applied shear load. The cracks on either side of the footing were less than 1 mm in width 

before the reinforcement yielded. However, upon yielding the size of the cracks increased 

substantially and with a further increase in the displacement amplitude and with each cycle of 

vibration, the extent of spalling of the concrete increased. The spalling of concrete was found 

to be exacerbated with repeated cyclic loading of the footing and became more severe post 

yielding of the reinforcement. Therefore, because of the spalling of the concrete, a slight 

decrease in the maximum shear capacity of the footing can be observed with an increase in 

lateral deformation. At the maximum applied displacement of ±25 mm the test was stopped at 

which point a 5 mm crack had opened at the base of the concrete column, which can be seen in 

Figure 4-6.  

 

  

(a) (b) 

Figure 4-6 Cracking at the base of the reinforced concrete column during the cyclic load testing 

 

Figure 4-7 shows the strain gauge readings for the cyclic load test up until yielding of the 

reinforcement. Once the tensile strain in the reinforcement exceeded the proportional limit, 

there is a reduction in the change in strain between corresponding cycles of vibration. This is 

contrary to what is expected as the strain should increase with a reduction in lateral stiffness of 

the reinforced concrete footing.  

The observed compression strains in Figure 4-7 differed between the two bars, indicating that 

the position of the actuator connection to the test specimen and the loading direction could have 

influenced the response of the footing. As the left reinforcing bar approaches the maximum 

tensile strain, the compressive strain tends to reduce in the right reinforcing bar, indicating that 

the neutral axis was closer to the compression reinforcement at the maximum strain in the left 
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reinforcing bar. This can also justify why the hysteretic curve is unsymmetrical in Figure 4-5. 

Figure 4-8 shows the lateral shear force applied at the top of the column with each load step. 

The shear capacity of the column is reached once the strain in the reinforcement exceeds the 

proportional limit and the yield stress of the longitudinal reinforcement. The results obtained 

from the cyclic load tests were considered when determining the initial lateral stiffness, 𝑘𝑠0, for 

the reinforced concrete footings during the pseudo-dynamic tests.  

 

 

Figure 4-7 Cyclic test 2 strain gauge readings 

 

 

Figure 4-8 Lateral shear force capacity of the reinforced concrete footing 
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4.2 NATURAL FREQUENCY AND DAMPING PROPERTIES  

Rayleigh damping was used to account for energy loss within the overall frame structure that 

remained linear elastic for the duration of the applied earthquake excitation. Ignoring damping 

in the frame structure would overpredict the amount of damage incurred by the reinforced 

concrete footing as the footing would provide the only mechanism of energy loss in the analysis. 

A damping ratio of 5% was used from SANS 10160-4:2017 for each of the pseudo-dynamic 

experiments. Figure 4-9 shows the variation of the damping ratio with increasing modal 

frequencies for the frame structure used during the pseudo-dynamic experiments. As can be 

seen from Figure 4-9, the damping ratio of 5% is only true at the first two modes and produces 

higher damping ratios at frequencies less than 𝜔1 and greater than 𝜔2. However, at intermittent 

frequencies between 𝜔1 and 𝜔2, the damping ratio is less than the specified 5%. 

 

 

Figure 4-9 Effect of frequency on the damping ratio 

 

Because of the change in the lateral stiffness of the reinforced concrete footing during the 

pseudo-dynamic experiments, a sensitivity analysis was undertaken to determine the impact 

that the lateral stiffness of the footing would have on the Rayleigh damping coefficients. The 

aim was to determine whether the Rayleigh damping coefficients would have to be updated at 

each time increment within the analysis or whether just calculating the Rayleigh damping 

coefficients at the start of the analysis would be enough. Having to calculate the damping 

coefficients at each time increment would result in a significant increase in the computational 

time that results from the time it takes solve numerically for the eigenvalues in the pseudo-

dynamic algorithm as shown in Appendix A.  
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Assuming an initial lateral stiffness of the footing that is less than the actual elastic stiffness of 

the footing would result in premature damage being incurred to the reinforced concrete footing 

as the analysis progresses and would thus produce an unrealistic response. To ensure that the 

correct response was obtained during the pseudo-dynamic tests, it was considered conservative 

to select an initial lateral stiffness value greater than that calculated from the cyclic load tests 

to account for potential variability between the test samples. Thus, the sensitivity analysis 

would also provide insight into the impact of selecting a larger lateral stiffness value would 

have on the Rayleigh damping coefficients. 

Figure 4-10 shows the results of varying the initial elastic stiffness of the footing on the damping 

coefficients 𝑎0 and 𝑎1 using 2%, 5% and 10% damping. The Rayleigh damping coefficients are 

used to calculate the damping matrix [𝐶] from the mass [𝑀] and the stiffness matrices [𝐾]. 
Selecting a larger initial stiffness of the footing to perform the pseudo-dynamic analysis has no 

significant influence on the damping within the structure. However, the selection of the 

damping ratio has a significant influence on the overall energy lost, which is expected. 

Reducing the damping ratio will result in more damage to the footing because more energy 

needs to be absorbed by the footing with a concomitant reduction in energy loss due to damping.  

Figure 4-10 shows that as the lateral stiffness of the footing approaches zero, the Rayleigh 

damping coefficient 𝑎0 reduces and the coefficient 𝑎1 increases. There is a reduction in the 

influence of the mass component on the Rayleigh damping matrix [𝐶] as the stiffness of the 

footing reduces with a subsequent increase in the influence in the stiffness component on the 

Rayleigh damping matrix [𝐶]. 
 

          (a)        (b) 

Figure 4-10 Variation of Rayleigh damping coefficients versus the initial elastic horizontal stiffness of the 

reinforced concrete footing 
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The selection of the initial stiffness of the footing that was used for the pseudo-dynamic 

experiments was not critical, particularly when selecting an initial stiffness that is greater than 

the predicted stiffness of the reinforced concrete footing. However, the selection of damping 

ration has a significant influence on the amount of energy absorbed by the frame structure and 

the subsequent damage suffered by the reinforced concrete footing. Using this information and 

the initial stiffness obtained from the cyclic load tests, the Rayleigh damping coefficients with 

5% damping was calculated as follows:  𝑎0 = 0.59 𝑠−1  and  𝑎1 = 0.0256 𝑠 
4.3 PSEUDO-DYNAMIC ANALYSIS HYSTERETIC TEST RESULTS 

The hysteretic curves for each of the pseudo-dynamic experiments are discussed in this section. 

Figure 4-11 shows the five linear elastic response spectra for each of the scaled El Centro 

ground motion records that were used to perform the pseudo-dynamic experiments. The 

fundamental period of vibration of the structure used during the pseudo-dynamic tests was equal 

to 0.86 s and calculated using the initial elastic stiffness of the footing. However, the building 

period formula given by Equation 2.15 produces an approximate fundamental period of 

vibration equal to 0.40 s for a two-storey steel structure, which is lower than the calculated 

value determined in Chapter 3. The disparity is likely due to the simple configuration of the 

frame structure as well as ignoring the stiffness contribution of the concrete slabs in the frame 

structure and the stiffness of the masonry infill panels when calculating the structural stiffness 

matrix. However, similar pseudo-accelerations (PSa) are produced by using either fundamental 

period of vibration from the response spectrum determined using the El Centro ground motion 

record. 

 

Figure 4-11 Elastic response spectra for each of the scaled El Centro earthquake records 
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Figure 4-11 also indicates that the fundamental period of vibration of the structure has a 

considerable influence on the overall response of the structure. A larger fundamental period of 

vibration of the structure will result in a lower shear force being applied to the top of the footing 

with a concomitant increase in the lateral deflection of the structure. Reducing the fundamental 

period of vibration indicates a stiffer structure that generally results in larger shear forces being 

placed on the footing and a subsequent increase in damage suffered by the footings. 

4.3.1 SPECIMEN 1 – 0.34 G PEAK GROUND ACCELERATION  

The first pseudo-dynamic test was undertaken at a maximum peak ground acceleration of 0.34 g 

and continued for the full duration of the El Centro earthquake record. The experiment took 

5 hours and 8 minutes to run the full 53.76 s of the amplified earthquake record. Figure 4-12 

shows the hysteretic response of the reinforced concrete column that was produced from the 

pseudo-dynamic experiment and shows that slippage occurred between the base plate and the 

top of the footing at the start of the applied load. The hysteretic curve of the footing showed a 

decrease in stiffness at a displacement of 2 mm, which indicates the onset of concrete cracking. 

Figure 4-13 shows the displacement versus time graph and Figure 4-14 shows the force versus 

time graph for the duration of the earthquake record. The profiles that are produced by both the 

displacement versus time graph and the force versus time graph each follow a similar profile of 

the El Centro ground motion record. 

 

 

Figure 4-12 Hysteretic response under the El Centro Earthquake scaled to 0.34 g 
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Figure 4-15 shows a 1 mm horizontal crack opened at the maximum applied lateral 

displacement on either face of the column in the direction of the applied shear load. Upon load 

reversal, the cracks closed with some spalling of concrete occurring at the corners of the 

columns. The response of the footing remains predominantly elastic-perfectly plastic as there 

was no significant permanent deformation upon unloading. Yielding of the reinforcement did 

not occur, and none of the reinforcement become exposed by the end of the experiment. 

 

 

Figure 4-13 Displacement vs time for the 0.34 g experiment 

 

 

 

Figure 4-14 Force vs time graph for the 0.34 g experiment 
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(a) (b) 

Figure 4-15 Crack patterns at the base of the column at the end of the experiment with (a) the left face of the 

column and (b) the right face of the column 

 

4.3.2 SPECIMEN 2 – 0.68 G PEAK GROUND ACCELERATION 

The second pseudo-dynamic experiment was conducted by amplifying the El Centro earthquake 

to produce a maximum peak ground acceleration of 0.68 g, with the hysteretic response shown 

in Figure 4-16. The experiment took 6 hours and 52 minutes to run the full 53.76 s of the 

amplified earthquake record. Figure 4-17 shows the displacement versus time graph and 

Figure 4-18 shows the force versus time graph and both follow the profile of the El Centro 

earthquake ground motion record. The footing did not collapse during the earthquake record, 

and therefore the full duration of the earthquake record was applied to the structure.  

From the hysteretic response, the footing underwent significant deformation resulting in the 

formation of large cracks on either face of the column in the direction of loading. The 

reinforcement yielded on either face of the footing, and therefore the maximum shear capacity 

of the footing was reached. Figure 4-19 shows a crack of 5 mm opening on the left face (the 

face to which the actuator was connected) of the column at a time of 3.8 s. Figure 4-20 shows 

visible crushing of the concrete that occurred after 4.8 s on the right face of the column. 

Although the concrete showed visible crushing and spalling, the footing was still able to 

maintain the applied axial load of 300 kN by the end of the earthquake record. 

The hysteretic response shows that a permanent degradation of lateral stiffness of the footing 

occurs with an increase in concrete cracking and yielding of the reinforcement. The pinching 
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effect of reinforced concrete was observed. The load path followed upon unloading from the 

backbone curve shows an initial increase in stiffness at the unloading point from the backbone 

curve, which approximates to the initial elastic stiffness of the footing. With further reduction 

in the lateral load, there is an associated reduction in the lateral stiffness of the footing. Upon 

unloading, the displacement at which the shear force is equal to zero occurs at approximately 

the same displacement at which the reinforcement first started yielding. Therefore, the 

displacement at which yielding first occurred can provide an indication of the maximum 

displacement the structure will suffer by the end of the earthquake provided the structure does 

not collapse.  

It appears that the maximum deformation encountered in either direction of the applied load 

dictates the extent of stiffness degradation upon unloading and reloading in the same direction. 

The reloading of the footing in either direction tends to form a parabolic curve with the stiffness 

decreasing with increasing displacement and the reloading branch tends to the maximum 

displacement and force that had occurred previously in the direction of loading.  

Figure 4-16 shows the cyclic loading that occurred within the bounds of the maximum 

displacement that had previously being reached and indicates that the same reloading path is 

followed up until the maximum displacement in the reloading direction is exceeded. Therefore, 

indicating that the reloading path is governed by the maximum displacement reached in the 

reloading direction.  

 

 

Figure 4-16 Hysteretic response under the El Centro Earthquake scaled to 0.68 g 
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Figure 4-17 Displacement vs time for the 0.68 g experiment 

 

 

Figure 4-18 Force vs time graph for the 0.68 g experiment 

 

 

Figure 4-19 Cracking of concrete after the maximum acceleration had been applied to the footing during the 

El Centro earthquake at 0.68 g 
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Figure 4-20 Crushing of the concrete after the maximum acceleration had been applied to the footing during 

the El Centro earthquake at 0.68 g 

 

4.3.3 SPECIMEN 3 – 0.78 G PEAK GROUND ACCELERATION 

The El Centro ground motion record was scaled to produce a maximum peak ground 

acceleration of 0.78 g. The experiment took 45 minutes to run the 5.88 s of the amplified 

earthquake record. Figure 4-21 shows the resultant hysteretic response of the footing obtained 

from the pseudo-dynamic experiment. Figure 4-22 shows the displacement versus time graph 

and Figure 4-23 shows the force versus time graph, which both show that the displacement and 

force follow a similar profile to the El Centro earthquake ground motion record. Upon reaching 

the maximum earthquake intensity, large deformations of the column had occurred resulting in 

the reinforcement yielding and the maximum shear capacity of the footing having been reached. 

Figure 4-24(a) shows the initial crack patterns on the left face (the side of the actuator) and 

Figure 4-24(b) shows the initial crack patterns and spalling of the concrete on the right face of 

the columns (opposite face to the actuator) before exceeding a lateral deflection of ±30 mm. A 

reduction in the shear capacity occurred primarily at a lateral displacement exceeding 

approximately 30 mm. Significant concrete spalling occurred on each face of the column due 

to the buckling of the tensile reinforcement during load reversal from tension to compression, 

which had previously undergone significant permanent plastic elongation. The pronounced 

pinching effect is likely due to the buckling of the reinforcement, which becomes more 

pronounced as the horizontal load is reduced and the axial load is distributed to the 

reinforcement prior to closing the crack in the concrete. The loss of compatibility between the 

permanent elongation of the ductile reinforcement and the cracking of the brittle concrete 
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resulted in the plastically elongated reinforcement carrying all the compression force upon load 

reversal. For the concrete to become mobilised in compression, the reinforcement would need 

to buckle, which results in significant spalling of the concrete and the reinforcement becoming 

exposed. Thus, producing significant observed damage. Most of the concrete spalling occurred 

on either face of the column due to the buckling of the reinforcement due to the cyclic behaviour 

and not at the maximum lateral deformation of the column. The points at which significant 

concrete spalling occurred are shown in the unloading branch in Figure 4-21 where the lateral 

force approximates -10 kN and shows a substantial reduction in lateral displacement with a 

relatively small reduction in lateral load. This indicates that the vertical axial load governs the 

reduction in displacement as the horizontal load is removed, contributing to the pinching effect. 

 

Figure 4-21 Hysteretic response under the El Centro Earthquake scaled to 0.78 g 

 

 

Figure 4-22 Displacement vs time for the 0.78 g experiment 

-100

-80

-60

-40

-20

0

20

40

60

80

100

-80 -60 -40 -20 0 20 40 60 80

Lo
a

d
 (

kN
)

Displacement (mm)

-80

-60

-40

-20

0

20

40

60

80

0 1 2 3 4 5 6 7

D
is

p
la

ce
m

e
n

t 
(m

m
)

Time (s)

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

 

121 
 

 

Figure 4-23 Force vs time graph for the 0.78 g experiment 

 

The spalling of the concrete resulted in a reduction in the gross cross-sectional area of the 

column and the concomitant reduction in the shear capacity of the footing. The lateral resistance 

of the footing degraded due to the footing being subjected to repeated cyclic loading at large 

deformations until collapse occurred due to the fracturing of the tensile reinforcement. The 

column continued to carry the axial load until the cross-sectional area had reduced substantially, 

resulting in the axial capacity of the footing being exceeded and the subsequent collapse of the 

structure. Figure 4-25 shows the buckled and fractured reinforcement and Figure 4-26 shows 

the formation of the plastic hinge at the point of collapse. 

 

(a) Left face (b) Right face 

Figure 4-24 Initial crack patterns and concrete spalling on (a) left face and (b) right face of the column 

during the 0.78 g test 
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(a) (b) 

Figure 4-25 Resultant damage to the reinforced concrete footing with (a) outward buckling of the 

reinforcement and (b) reinforcement fracturing during the 0.78 g test 

 

         

(a) (b) 

Figure 4-26 Plastic hinge formation at the base of the column at collapse during the 0.78 g test 
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4.3.4 SPECIMEN 4 – 1 G PEAK GROUND ACCELERATION 

The El Centro ground motion record was scaled to produce a maximum peak ground 

acceleration of 1 g, and Figure 4-27 shows the hysteretic response produced from the pseudo-

dynamic experiment. Figure 4-28 shows the displacement versus time graph and Figure 4-29 

shows the force versus time graph and both follow a similar profile to that produced by the El 

Centro ground motion record. The structure could only sustain a maximum of 2.8 s of the 

applied earthquake load before failure occurred, which took 37 minutes to run the pseudo-

dynamic experiment. However, the maximum peak ground acceleration of 1 g was reached 

before failure.  

The structural failure occurred due to the fracturing of the tensile reinforcement and crushing 

of the concrete at a horizontal displacement of 62 mm. Figure 4-30(a) shows the horizontal 

cracking that occurred on the left face at the base of the column and Figure 4-30(b) shows the 

horizontal cracking that occurred on the right face at the base of the column without any 

significant spalling of the concrete occurring at the failure displacement. There was no loss in 

shear capacity before the structure failed, which indicates that the degradation of shear capacity 

of the footing was dominated by the repeated cyclic loading that is placed on the footing, which 

results in an increase in concrete spalling. Figure 4-31 shows the crushing of the concrete at the 

end of the 1 g experiment. 

 

 

Figure 4-27 Hysteretic response under the El Centro Earthquake scaled to 1 g 
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Figure 4-28 Displacement vs time graph for the 1 g experiment 

 

 

Figure 4-29 Force vs time graph for the 1 g experiment 

 

 

(a) (b) 

Figure 4-30 Damage and cracking to the footing during the 1 g experiment 

-80

-60

-40

-20

0

20

40

60

80

0 0.5 1 1.5 2 2.5 3

D
is

p
la

ce
m

e
n

t 
(m

m
)

Time (s)

-80

-60

-40

-20

0

20

40

60

80

0 0.5 1 1.5 2 2.5 3

Fo
rc

e
 (

kN
)

Time (s)

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

 

125 
 

 

Figure 4-31 Crushing of the concrete during the 1 g experiment 

4.3.5 SPECIMEN 5 – 2 G PEAK GROUND ACCELERATION 

The final test was undertaken by scaling the El Centro earthquake record to produce a maximum 

peak ground acceleration of 2 g, and Figure 4-32 shows the hysteretic response produced during 

the pseudo-dynamic experiment. The experiment took 33 minutes to run the 2.06 s of the 

amplified earthquake record. Figure 4-33 shows the displacement versus time graph and 

Figure 4-34 shows the force versus time graph and both produce a similar profile to the El 

Centro ground motion record. The footing could only sustain the applied earthquake record for 

2.02 s and a maximum peak ground acceleration of 1.21 g before the reinforcement fractured 

and the footing failed. Therefore, the structure did not achieve a peak ground acceleration of 

2 g. The footing remained in the linear region before drifting to the right and achieving a 

maximum displacement of 62 mm before the reinforcement fractured.  

 

Figure 4-32 Hysteretic response under the El Centro Earthquake scaled to 2 g 
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Figure 4-35 shows the cracking that occurred on the left face of the reinforced concrete column, 

and unlike the previous tests, the cracks occurred at approximately 110 mm from the base of 

the concrete column. Figure 4-36 shows the crushing of the concrete at structural failure and 

similar to the test carried out at a PGA of 1 g, no significant degradation in shear capacity was 

observed at the failure displacement.   

 

 

Figure 4-33 Displacement vs time graph for the 2 g experiment 

 

 

Figure 4-34 Force vs time graph for the 2 g experiment 
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(a) (b) 

Figure 4-35 Cracking of the concrete during the 2 g experiment 

 

 

 

Figure 4-36 Concrete crushing during the 2 g experiment 
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4.3.6 PSEUDO-DYNAMIC ANALYSIS REINFORCEMENT STRAIN RESULTS 

The aim of using the strain gauges in the research was to determine the points at which the 

concrete cracks and the reinforcement yields, and to relate the data obtained from the strain 

gauges with the hysteretic curves produced during the pseudo-dynamic tests. The strain gauges 

performed well at the low peak ground accelerations (PGA) as the strain in the reinforcement 

remained in the elastic region. At high PGAs, the strain gauges failed soon after the strain 

exceeded the yield strength of the reinforcement, despite having used high post yield strain 

gauges with a maximum strain of 10 % to 15 %. Because the strain gauges failed soon after the 

yield capacity of the reinforcement was reached, the results produced by the strain gauges were 

not meaningful for the tests at a PGA of 0.68 g and greater. The failure of the strain gauges can 

be presumed to be caused by the failure of the connecting wires to the strain gauges. 

Figure 4-37 shows the strain gauge results for the El Centro earthquake scaled to a peak ground 

acceleration of 0.34 g. The recorded strain at the base of the column indicates that the yield 

strain was not reached and that the strain results followed a similar profile to the applied ground 

motion record. The maximum strain occurred in the right strain gauge, with the maximum strain 

point lagging the maximum PGA that occurs at 2.14 s during the El Centro ground motion 

record. 

 

 

Figure 4-37 Reinforcement strain measurement under the El Centro Earthquake record scaled to 0.34 g 
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4.3.7 ENERGY-RELATED RESULTS 

The amount of energy imparted to the structure due to the earthquake is distributed between the 

kinetic energy (𝐸𝑀), damping energy (𝐸𝐶), strain energy (𝐸𝐾) and hysteretic energy (𝐸𝐻). This 

section shows the distribution of energy within the structure for each of the pseudo-dynamic 

experiments. Figure 4-38 shows the time history of the total energy imparted to the structure 

for the duration of each of the scaled earthquake ground motion records during the pseudo-

dynamic experiments and is either shown for the entire duration of the earthquake record or 

until structural failure of the footing. The experiments conducted at 0.34 g and 0.68 g ran for 

the full duration of the earthquake, whereas the 0.78 g, 1 g and 2 g experiments all failed before 

completion of the earthquake record. The maximum energy imparted to the structure occurred 

during the experiment with a maximum peak ground acceleration of 0.68 g and the tests 

conducted at higher peak ground accelerations showed a reduction in the total energy imparted 

to the structure before failure of the reinforced concrete footing occurred.  

 

 

Figure 4-38 Total energy imparted to the structure at the scaled peak ground accelerations (PGAs) 

 

Figure 4-39 shows the total hysteretic energy absorbed as time progressed with the application 

of the scaled El Centro ground motion record for each of the pseudo-dynamic experiments. The 

footings that showed more substantial observed damage during the experiments absorbed the 
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largest quantity of energy. The 0.78 g ground motion record resulted in the most observed 

damage and absorbed the greatest quantity of energy, which can be seen in Figure 4-39. Even 

though the 1 g and 2 g ground motion records resulted in the failing of the structure, the amount 

of energy absorbed by the footing is lower than that absorbed by the 0.68 g and 0.78 g PGA 

earthquake tests.  

 

 

Figure 4-39 Hysteretic energy of the reinforced concrete footings during the pseudo-dynamic tests 

 

Table 4-1 shows the distribution of energy within the structure for each of the scaled amplitudes 

of the ground motion records, which is either recorded at the end of the earthquake motion 

record or at the point of failure of the footing during the applied earthquake. For each of the 

pseudo-dynamic experiments, the hysteretic energy absorbed by the footing was determined as 

a percentage of the total energy imparted to the structure. The 0.78 g earthquake absorbed the 

largest percentage of the total energy imparted to the structure by the earthquake during the 

pseudo-dynamic experiment, which correlates with the observed damage regarding cracking 

and spalling of the concrete. Although the observed damage to the footing subjected to a PGA 

of 0.68 g was greater when considering cracking and spalling of concrete than that observed by 

the 1 g and 2 g experiments, the 1 g and 2 g reinforced concrete footings still failed due to the 

fracturing of the reinforcement and crushing of the concrete. The hysteretic energy absorbed by 

the footing during the induced ground motion record is a good indicator of the damage incurred 
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by the reinforced concrete member; however, it does not necessarily indicate whether the 

structure has failed. 

 

Table 4-1 Distribution of energy at the end of the ground motion record or at failure 

PGA  
(g) 

Total 

energy 

imparted 

(kJ) 

Hysteretic  (𝑬𝑯)  
 (kJ) 

Inertia (𝑬𝑴)  
 (kJ) 

Damping (𝑬𝑪)  
 (kJ) 

Strain (𝑬𝑲)   
(kJ) 

Percentage 

energy 

absorbed  
(%) 

0.34 77.3 0.02 0.0 77.0 0.3 0.03 

0.68 298.8 9.1 0.0 289.4 0.3 3.1 

0.78 259.9 13.2 5.3 182.4 59.0 5.1 

1 169.6 4.2 1.1 56.3 108.0 2.5 

2 (1.21*) 158.6 3.1 0.2 33.0 122.3 2.0 

* The maximum acceleration achieved by the structure before failure 

 

Figure 4-40 and Figure 4-41 show the energy components for the frame structure for the entire 

duration of the ground motion record scaled to 0.34 g and 0.68 g peak ground acceleration. The 

structure subjected to the 0.34 g peak ground acceleration resulted in damping absorbing all the 

energy imparted to the structure. The 0.68 g peak ground acceleration resulted in the footing 

absorbing hysteretic energy and therefore indicates a correlation between the number of cycles 

of vibration and the resultant damage in terms of observed concrete spalling, yielding of the 

reinforcement and buckling of the reinforcement. The ductility provided by the reinforcement 

has a significant influence on the amount of energy that can be absorbed by the footing before 

the failure displacement is exceeded. The energy-time histories show that with an increase in 

the number of cycles of vibration the amount of energy absorbed by the footing is increased as 

expected. The test at 0.34 g did not absorb a large amount of energy as the footing did not 

undergo significant lateral deformation and the reinforcement did not yield.  

Figure 4-42 to Figure 4-44 show the energy components of the 0.78 g, 1 g and 2 g pseudo-

dynamic tests that all failed before the full duration of the amplified El Centro record could be 

applied to the structure. For the tests at peak ground accelerations of 0.68 g and 0.78 g, the 

footing underwent a larger number of cycles of vibration in the plastic region of the 

reinforcement, which consequently resulted in more damage to the footing due to the spalling 

of the concrete cover. The spalling of the concrete cover occurred predominately due to the 

buckling of the permanently elongated reinforcement upon load reversal from tension to 

compression and to a lesser extent due to compression capacity of the concrete being exceeded. 

The test carried out a 1 g and 2 g had fewer or no cycles of vibration, as shown in Figure 4-43 
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and Figure 4-44 respectively, before the reinforcement fractured and visually did not experience 

the same amount of damage in terms of concrete crushing and spalling than that observed from 

the tests conducted at the lower peak ground accelerations. 

It is evident that most of the energy absorbed in the structure is due to Rayleigh damping, with 

only a small percentage of the overall energy being absorbed by the reinforced concrete footing. 

The hysteretic energy correlates well with the cumulative damage to the reinforced concrete 

footing and the observed damage experienced by the specimens during the pseudo-dynamic 

experiments.  

 

Figure 4-40 Time histories for energy terms during the El Centro earthquake scaled to a PGA of 0.34 g 

 

 

Figure 4-41 Time histories for energy terms during the El Centro earthquake scaled to a PGA of 0.68 g 
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Figure 4-42 Time histories for energy terms during the El Centro earthquake scaled to a PGA of 0.78 g 

    

Figure 4-43 Time histories for energy terms during the El Centro earthquake scaled to a PGA of 1 g 

  

Figure 4-44 Time histories for energy terms during the El Centro earthquake scaled to a PGA of 2 g 
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4.4 PSEUDO-DYNAMIC ANALYSIS OVERALL STRUCTURE RESPONSE  

The response of the overall frame structure is discussed in this section with the results presented 

for the maximum structural deflections with its corresponding bending moment and shear force 

diagrams. The resultant axial loads applied to each of the supports are also presented. Table 4-2 

shows the moment capacities for the overall frame structure used during the pseudo-dynamic 

experiments and the strong axis moment of inertia for each of the members.  

 

Table 4-2 Members moment capacities for the steel frame moment resisting structure 

Member Moment capacity 

Mr (kN.m) 

Moment of inertia 

Ixx (mm4) 

305 x 305 118 H-Section (External columns) 586 276 x 106 

203 x 203 x 52 H-Section (Internal columns) 185 52.5 x 106 

533 x 210 x 101 I-Section (Beams) 476 616 x 106 

 

Figure 4-45 shows the initial deflection of the structure under static loads for all the pseudo-

dynamic tests. Under the initial conditions, the horizontal deflection at node 2 was equal to zero 

due to the symmetry of the loading. Figure 4-46 shows the initial shear force diagram and 

bending moment diagram of the structure before the earthquake load was applied. The bending 

moments in each of the members are less than the capacities of the members. 

 

 

Figure 4-45 Initial deflection of the structure under static loads 
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(a) Bending moment diagram                          (b) Shear force diagram 

 

Figure 4-46 The initial state of the structure before earthquake loading 

 

Figure 4-48 to Figure 4-56 shows the response of the structure at the maximum displacement 

reached during the 0.34 g to 2 g peak ground acceleration pseudo-dynamic experiments. As can 

be seen from Figure 4-48(b), the maximum bending moment reached in the external column 

and beam exceeds the capacity of the members, and therefore the beam would have failed before 

the external column due to the beam having a lower moment capacity than the external columns. 

The maximum bending moment that was reached by the internal column only marginally 

exceeded the steel member’s capacity, and therefore a plastic hinge would have formed 

resulting in the loss of structural stability with the combination of steel members used to 

perform the pseudo-dynamic tests.  

At a peak ground acceleration of 0.68 g and greater, the maximum bending moment reached in 

all the steel members exceeded the capacity of the steel members, and therefore the structure 

would have failed before the footing failed. However, a variation in the design of the frame and 

the selection of the structural members and connections all influence the behaviour of the 

overall structure. 

Figure 4-57 to Figure 4-61 shows the axial load in each of the supports for the duration of the 

applied earthquake record. The axial load is shown either for the entire duration of the 

earthquake loading or until failure of the reinforced concrete footing during the applied 

earthquake loading. For each of the experiments, the axial load in the centre support (Node 2) 

is constant, whereas the external footings are subjected to varying axial load for the duration of 

the earthquake record. The pseudo-dynamic experiment undertaken at a maximum peak ground 

acceleration of 0.34 g resulted in zero tensile forces in the external columns for the duration of 

the applied earthquake record. However, the footings subjected to a PGA of 0.68 g and greater 
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all resulted in tensile forces and uplift being experienced by the external footings. The variation 

in axial load for the duration of the earthquake in combination with the lateral load will result 

in the performance of the reinforced concrete footing varying substantially. Therefore, it is 

recommended that future studies focus on the response of the footing that is subjected to both 

a varying axial and shear load and to investigate the effect this would have on the performance 

of the foundation. Future studies can also focus on the influence that progressive failure within 

the superstructure would have on the fragility of the footing as this study only assumed a linear 

elastic frame structure with 5 % damping. 

 

 

Figure 4-47 Maximum deflection of the overall frame structure at the maximum lateral displacement of the 

footing at a PGA of 0.34 g 

 

  

(a.) Bending moment diagram (b.) Shear force diagram 

Figure 4-48 Bending moment diagram and shear force diagram at the maximum displacement during the 

0.34 g PGA experiment  
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Figure 4-49 Maximum deflection of the overall frame structure at the maximum lateral displacement of the 

footing at a PGA of 0.68 g 

 

 
 

(a.) Bending moment diagram (b.) Shear force diagram 

Figure 4-50 Bending moment diagram and shear force diagram at the maximum displacement during the 

0.68 g PGA experiment 

 

 

Figure 4-51 Maximum deflection of the overall frame structure at the maximum lateral displacement of the 

footing at a PGA of 0.78 g 
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(b.) Bending moment diagram (c.) Shear force diagram 

Figure 4-52 Bending moment diagram and shear force diagram at the maximum displacement during the 

0.78 g PGA experiment 

 

 

Figure 4-53 Maximum deflection of the overall frame structure at the maximum lateral displacement of the 

footing at a PGA of 1 g 

 

  

(b.) Bending moment diagram (c.) Shear force diagram 

Figure 4-54 Bending moment diagram and shear force diagram at the maximum displacement during the 

1 g PGA experiment 
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Figure 4-55 Maximum deflection of the overall frame structure at the maximum lateral displacement of the 

footing at a PGA of 2 g 

 

  

(b.) Bending moment diagram (c.) Shear force diagram 

Figure 4-56 Bending moment diagram and shear force diagram at the maximum displacement during the 

2 g PGA experiment 

 

 

Figure 4-57 Axial force reactions in each of the columns for the duration of the 0.34 g experiment 
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Figure 4-58 Axial force reactions in each of the columns for the duration of the 0.68 g experiment 

 

 

Figure 4-59 Axial force reactions in each of the columns for the duration of the 0.78 g experiment 

 

 

Figure 4-60 Axial force reactions in each of the columns for the duration of the 1 g experiment 
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Figure 4-61 Axial force reactions in each of the columns for the duration of the 2 g experiment 

 

4.5 CONCLUSION AND SUMMARY 

Pseudo-dynamic experiments were undertaken on five reinforced concrete footing at different 

peak ground accelerations, which were obtained by amplifying the El Centro earthquake ground 

motion record. The peak ground accelerations (PGA) ranged from 0.34 g to 2 g. Only minimal 

cracking resulted at a PGA of 0.34 g, with complete failure having occurred at a PGA of 2 g. 

Table 4-3 summarises the results obtained during the pseudo-dynamic experiments for the 

following critical points: the minimum cracking force (𝐹𝑐) and cracking deformation (𝑢𝑐), the 

minimum reinforcement yielding force (𝐹𝑦) and deformation (𝑢𝑦), and the maximum achieved 

force (𝐹𝑚) and deformation (𝑢𝑚). The following observations were made during the pseudo-

dynamic experiments:  

• Increasing the amplitude of the El Centro ground motion record showed that there is a 

maximum PGA that can be sustained by the footing before failure occurs. For example, 

the pseudo-dynamic test that was undertaken by amplifying the El Centro ground 

motion record to produce a PGA of 2 g, only managed to achieve a maximum PGA of 

1.21 g before failure occurred; 

• An increase in the applied lateral deformation to the reinforced concrete footing results 

in cracking and yielding of the reinforcement, which in turn results in a reduction in the 

lateral stiffness of the footing; 

• The lateral capacity of the reinforced concrete footing and subsequent damage is 

predominately controlled by the yield strength and ductility of the reinforcement; 
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• The ductility of the reinforced concrete footing is controlled by the tensile 

reinforcement and the shear reinforcement;  

• Cracks occurred near the base of the column where the maximum moment was 

expected, however, the cracks do not always open at the interface between the base of 

the column and the top of the footing;  

• The number of cycles of vibration increases the damage to the reinforced concrete 

footing, particularly when the load reverses after the reinforcement has yielded in 

tension; 

• Spalling of concrete occurs due to the buckling of reinforcement during load reversal 

from tensile loading to compression loading on either face of the concrete column in 

the direction of loading. This occurs due to the incompatibility between the brittle 

concrete material and the ductile reinforcement. Upon load reversal, the permanently 

elongated reinforcement is first mobilised in compression before the crack that has 

formed in the concrete can close and mobilise in compression. To overcome this 

incompatibility, the reinforcement buckles, resulting in the spalling of the concrete. The 

spalling of the concrete subsequently results in a reduction in the gross cross-sectional 

area of the column, which in turn results in a decrease in the axial and shear capacity 

of the footing; 

• The axial load applied to the footing contributes to pinching effect, which was observed 

in the pseudo-dynamic hysteretic curves. As the horizontal load is reduced the axial 

load stabilises the column by causing the column to pivot back to its original vertical 

position and closing the cracks in the concrete; 

• The unloading stiffness from the backbone curve of the footing is greater than the 

reloading stiffness into the backbone curve, which indicates that the structure is 

absorbing energy and incurring damage;  

• Before the reinforcement yields, the response under cyclic loading remains 

predominantly perfectly plastic without any significant permanent deformation; 

• The hysteretic energy absorbed by the footing gives a good indication of damage 

incurred by the footing under repeated cyclic loading but does not indicate structural 

failure at large deformations with few or no loading cycles. Therefore, the results 

correlate with the Park and Ang damage index, as discussed in Chapter 2, that 

incorporates both damage due to excessive deformation and repeated cyclic loading; 

and  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

 

143 
 

• The loss of moment capacity due to the formation of a plastic hinge is governed by the 

repeated cycling of the footing at a displacement less than the failure displacement of 

the footing and greater than the yielding displacement of the reinforcement. 

• Plastic hinges and progressive failure within the frame structure were not considered in 

the numerical model. However, depending on the capacity of the members used within 

the frame structure, plastic hinges would have formed, which could have resulted in the 

frame structure failing before the reinforced concrete footing. The progressive failure 

of the structure could have altered the response of the footing with increasing 

earthquake intensity. 

 

Table 4-3 Results from pseudo-dynamic analysis at 5% damping and a natural period of vibration of 0.86 s 

Intensity 

(MMI) 

PGA 

(g) 

Cracking (1) Yielding (1) Maximum Damage state 

Fc 

(kN) 

uc 

(mm) 

Fy 

(kN) 

uy 

(mm) 

Fm 

(kN) 

um 

(mm) 

7.45 0.34 22.1 1.68 - - 48 5.72 Onset of cracking, still 

serviceable 

8.29 0.68 40.5 2.48 67.4 6.85 70.3 36.3 Large cracks, extensive 

damage 

8.45 0.78 45.8 2.75 74.6 7.21 74.6 62.7 Collapse 

8.75 1 40.84 3.37 62.0 7.41 74 62.7 Collapse 

9.59 2 

(1.21(2)) 

35.8 2.47 71.5 7.81 71.6 62.2 Collapse 

(1) Minimum lateral force and displacement that results in cracking of the concrete and yielding of the reinforcement 

(2) The maximum acceleration achieved by the structure before failure 
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The aim of this chapter is to show the procedure that was followed to formulate the damage and 

fragility curves for the analysed reinforced concrete footing, which forms part of an overall 

linear elastic moment resisting frame structure, by utilising the results obtained from the 

laboratory experiments in the previous chapter. The results obtained from the cyclic load tests 

and pseudo-dynamic tests were used to formulate an analytical hysteretic model for the 

reinforced concrete footing under the constant axial load of 300 kN, which was then used to 

replace the laboratory test setup. The results produced during the cyclic load tests and pseudo-

dynamic experiments were utilised to formulate the hysteretic model to enable the requisite 

degradation of stiffness and pinching effect of reinforced concrete to be incorporated into the 

damage formulation at peak ground accelerations and fundamental period of vibration that were 

not undertaken during the pseudo-dynamic laboratory experiments. 

The force value produced from the analytical hysteretic model is used to circumvent the force 

reading from the load cell in the pseudo-dynamic experiment. The damage to the reinforced 

concrete footing could be interpolated at amplified peak ground accelerations and overall 

structural fundamental periods of vibration that were not undertaken during the laboratory 

experiments by using the pseudo-dynamic testing algorithm in combination with the developed 

analytical hysteretic model described in this chapter. 

5.1 ANALYTICAL HYSTERETIC MODEL 

Figure 5-1 shows the numerical hysteretic shear model that was formulated using the limited 

results produced during the cyclic load tests and the pseudo-dynamic tests to determine the 

damage states of the footing over a range of earthquake intensities, structural stiffnesses and 

damping ratios that were not undertaken during the laboratory work. The numerical model was 

predominately formulated from the results from the second cyclic load test and the trilinear 

model that is typically used to model reinforced concrete.  

The same numerical analysis model that was used to perform the pseudo-dynamic experiments, 

as previously shown in Figure 3-27, was used to perform the analysis using the formulated 

hysteretic model. The displacement calculated using pseudo-dynamic computational algorithm 

was input into the hysteretic model, instead of being applied directly to the test specimen, which 

then calculates the resultant force that is based on the historical response of the footing at 

previous time increments.   

5 DAMAGE FORMULATION WITH EARTHQUAKE INTENSITY 
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The hysteretic model for cyclic loading was purely based on the observed results from the 

experimental analysis that only considered an axial load of 300 kN and the minimally reinforced 

concrete footing. The accuracy of the model under different axial loads and different structural 

configurations has not been verified. Three curves can be deduced from the observations made 

during the cyclic load tests and are shown in Figure 5-1 and described below: 

• Primary Curves (PC): Is the backbone curve of the analytical model and produces the 

same response under monotonic loading. The backbone curve provides the envelope to 

which the unloading and reloading curves are confined. Two points are defined on the 

primary curve and represent the maximum displacement points reached in either 

direction of loading from the initial vertical position of the footing. The maximum 

deformation in either direction governs the shape of the unloading and reloading 

curves. The value umax_neg is the maximum negative lateral deformation achieved by 

the footing from the start of ground motion load application, and umax_pos is the 

maximum positive deformation achieved by the footing since the start of the 

earthquake.  

• Secondary Curves (SC): Is the response of the footing due to a change in direction from 

the initial direction of loading along the backbone curve and accounts for the softening 

of the reinforced concrete due to concrete cracking, yielding of the reinforcement and 

the pinching effect. The hysteretic analytical model is driven by the maximum positive 

and negative deformation points (umax_neg and umax_pos) along the backbone curve for 

each time increment as defined in Figure 5-1. The point 𝑢𝑈𝐿 indicates a point where the 

path changes from the primary curve to the secondary curve and the point 𝑢𝑅𝐿 indicates 

the point where there is a transition from the secondary curve into the primary curve. 

If the footing is unloading from the positive direction along the backbone curve, then 

the unloading point 𝑢𝑈𝐿 = umax_pos and the reloading point is 𝑢𝑅𝐿 = umax_neg, 

otherwise, if the footing is unloading from the backbone curve in the negative direction, 

then the unloading point 𝑢𝑈𝐿 = umax_neg and the reloading point is 𝑢𝑅𝐿 = umax_pos. 
The response of the footing travels down the path of unloading until it reaches the origin 

and starts reloading in the opposite direction.  

• Tertiary curves (TC): When reloading and unloading occur in the same quadrant 

without a load direction reversal. The tertiary curve is driven by the point where there 

is a change in direction from the secondary curve and the initial unloading point from 

the primary curve. 
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Figure 5-1 Numerical hysteretic shear model showing the primary, secondary, and tertiary curves 

 

Figure 5-2 shows the calculation model used to drive the hysteretic model, which depends on 

the change in sign of displacement from the final displacement from the previous time 

increment and the calculated displacement at the current time increment. Using Figure 5-2, a 

positive change in displacement will result in the path remaining in the same direction as the 

previous time increment. However, if the change in displacement is negative, it indicates a load 

reversal whereby the path changes from Path 1 to Path 2. Only the force (𝐹𝑠) produced from 

the calculated displacement 𝑢𝑖 in the current iteration and time step is used further in the 

analysis. However, the model also outputs the maximum positive and negative displacement of 

the footing and the current load path, which is then used in the next iteration or time increment. 

 

 

Figure 5-2 Basis of the analytical numerical analytical hysteretic model formulation 
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5.1.1 PRIMARY BRANCHES 

Figure 5-3 shows the primary curve of the hysteretic model, which is the same as the backbone 

curve produced during monotonic load testing. The primary curve is initialised at the start of 

the analysis and consists of three regions using a trilinear model: 

1. Before cracking, |𝑢𝑖| ≤ |±𝑢𝑐𝑟|, Region O – A or O – D: the model follows a linear elastic 

response model. 

2. Concrete cracking, |±𝑢𝑐𝑟| ≤ |𝑢𝑖| ≤ |±𝑢𝑦|, Region A – B or Region D – E: after cracking 

of the concrete in either direction there is a reduction in the stiffness of the cross section. 

With a continued increase in the load applied to the footing, the loading path follows Path 

A – B or D – E. However, upon unloading, the path follows region O - A’ or O – D’ and 

therefore there is a permanent reduction in the stiffness of the footing due to the cracking 

of the concrete. Point A’ and Point D’ then becomes the new reloading point into the 

backbone curve. If the displacement exceeds the new 𝑢𝑐𝑟 point, the path will continue along 

the backbone curve (Path 1). From the cyclic load tests and pseudo-dynamic tests, it was 

observed that upon unloading, and before the reinforcement yields, the displacement 

returns to the original position without any permanent deformation. Further 

experimentation will be needed to verify this, however, for this model the unloading curve 

follows a linear line from the unloading point on the backbone curve to the origin before 

the reinforcement yields. 

3. Yielding of the reinforcement, |𝑢𝑖| ≥ |±𝑢𝑦|, Region B – C or Region E – G: once the 

displacement of the footing exceeds the yield strength of the reinforcement, the stiffness of 

the backbone curve becomes equal to zero with a further increase in the displacement. The 

secondary path is calculated using the maximum displacement achieved on the primary 

curve and used to interpolate the unloading and reloading curves obtained from the second 

cyclic load test. If the change in displacement from the current time step and the previous 

time step is positive (|𝑢𝑖,𝑗| − |𝑢𝑖−1| ≥ 0), where 𝑖 indicates the time increment and 𝑗 the 

iteration step, then the path continues along the backbone curve. However, if the change in 

displacement is negative (|𝑢𝑖,𝑗| − |𝑢𝑖−1| < 0), then the unloading displacement follows 

the secondary curve. The point of unloading along the backbone curve then governs the 

point of reloading upon load reversal. 
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Figure 5-3 Primary curve 

 

5.1.2 SECONDARY BRANCHES: UNLOADING AND RELOADING CURVES 

Figure 5-4 shows the unloading and reloading branches of the secondary curves for the 

analytical hysteretic material, which are driven by the maximum deformations (𝑢max _𝑝𝑜𝑠 and 𝑢max _𝑛𝑒𝑔) that have been reached in both directions along the primary curve. The secondary 

curves account for the degradation in stiffness with each cycle of loading due to the cracking 

and yielding of the reinforcement.  

The unloading branch is defined as a path that is formed upon load reversal whereby the path 

changes from the primary curve to the secondary curve and tends to have a concave up shape. 

The maximum slope along the unloading curve occurs at the unloading point along the primary 

curve and decreases to the minimum slope at the point of zero shear force. The reloading branch 

is defined as the path that transitions from the secondary curve into the primary curve and tends 

to have a concave down shape with the maximum slope occurring at the point of zero shear 

force and the minimum slope occurring at the transition point (𝑢𝑅𝐿) back into the primary curve.  

The unloading curves are shown in Figure 5-6 and are tabulated in Table 5-1 and the reloading 

curves are shown in Figure 5-7 and tabulated in Table 5-2. The unloading and reloading curves 

were interpolated from the second cyclic load test, as previously shown in Figure 4-5, and 

compared to the results produced during the pseudo-dynamic experiments. The unloading point 

along the backbone curve, which occurs due to load reversal, is used to calculate the unloading 

curve by interpolating the values given in Table 5-1. The reloading point along the primary 

curve is used to calculate the reloading curve by interpolating the values in Table 5-2. 
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Figure 5-4 Unloading and reloading curves 

 

The problem that arises when separately interpolating the unloading and reloading curves is 

that the points of intersection produced by the unloading and reloading curves at the x-axis 

typically does not intercept the axis at the same point. To overcome the incompatibility at the 

x-axis intercept, the average between the two x-axis points is determined between the unloading 

curve and the reloading curve. The two curves are then scaled equally until the points of 

intersection along the x-axis occurs at the same point. Figure 5-5 shows the method followed 

to produce the final secondary curve that is used upon unloading from the primary curve and 

reloading back into the primary curve in the opposite direction from the unloading point. 

Further experimentation will be needed to verify this.  

 

Figure 5-5 Adjusted unloading and reloading curves from the interpolated data 
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Figure 5-6 Unloading curves as a function of the point of unload along the primary curve 

 

Table 5-1 Tabulated displacement points along the unloading curve as a function of the point of unloading 

along the primary curve 

 

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

0 0 0.00 0.00 0.00 - - - - - - - - - -

1 14523 0.11 0.53 0.78 1.09 1.38 1.68 - - - - - - -

2 27215 0.16 0.61 0.88 1.16 1.48 1.83 2.28 2.70 - - - - -

3 35497 0.21 0.67 0.95 1.24 1.58 1.98 2.45 2.95 3.41 - - - -

4 42976 0.30 0.73 1.02 1.34 1.67 2.09 2.63 3.20 3.71 4.13 4.61 - -

5 50278 0.37 0.81 1.09 1.40 1.76 2.20 2.76 3.38 4.01 4.49 4.99 5.41 -

6 56819 0.45 0.90 1.20 1.51 1.92 2.35 2.92 3.60 4.25 4.85 5.37 5.87 6.12

7 62439 0.57 1.01 1.32 1.64 2.05 2.52 3.16 3.82 4.53 5.16 5.77 6.32 6.82

8 65307 0.68 1.13 1.47 1.87 2.30 2.86 3.51 4.25 4.99 5.67 6.39 6.96 7.52

9 66677 0.81 1.31 1.70 2.18 2.73 3.38 4.10 4.86 5.66 6.40 7.11 7.78 8.34

10 66960 0.94 1.53 2.03 2.65 3.31 4.05 4.82 5.62 6.55 7.28 8.04 8.69 9.30

11 66921 1.12 1.79 2.51 3.28 4.02 4.79 5.61 6.49 7.38 8.21 8.98 9.66 10.30

12 67146 1.26 2.11 3.01 3.91 4.74 5.55 6.45 7.37 8.25 9.11 9.96 10.62 11.23

13 67199 1.40 2.45 3.60 4.60 5.49 6.34 7.27 8.21 9.13 10.00 10.86 11.58 12.19

14 67026 1.64 2.97 4.28 5.40 6.32 7.23 8.18 9.16 10.12 11.04 11.85 12.59 13.24

15 66774 1.92 3.50 4.97 6.17 7.14 8.08 9.06 10.07 11.04 11.96 12.81 13.57 14.21

16 66774 2.14 4.01 5.67 6.91 7.99 8.94 9.93 10.94 11.98 12.90 13.77 14.53 15.19

17 66774 2.42 4.60 6.37 7.74 8.81 9.82 10.86 11.89 12.91 13.89 14.78 15.53 16.20

18 66774 2.71 5.21 7.13 8.54 9.69 10.73 11.76 12.86 13.91 14.85 15.75 16.55 17.22

19 66774 2.96 5.84 8.14 9.37 10.57 11.62 12.68 13.80 14.86 15.84 16.74 17.53 18.22

20 66774 3.28 6.47 8.66 10.24 11.46 12.56 13.64 14.76 15.84 16.81 17.76 18.56 19.25

21 66774 3.78 7.12 9.47 11.11 12.36 13.49 14.60 15.72 16.83 17.84 18.79 19.57 20.28

22 66774 4.22 7.83 10.30 11.97 13.28 14.42 15.53 16.69 17.82 18.84 19.78 20.61 21.32

23 66774 4.61 8.50 11.09 12.88 14.20 15.35 16.52 17.69 18.81 19.86 20.79 21.65 22.33

24 66774 4.86 9.12 11.93 13.75 15.13 16.32 17.50 18.71 19.85 20.91 21.86 22.69 23.42

25 66774 5.32 9.76 12.78 14.68 16.09 17.29 18.51 19.78 20.91 21.98 22.95 23.76 24.49

30 66774 6.38 11.71 15.34 17.62 19.31 20.75 22.21 23.73 25.09 26.37 27.54 28.51 29.39

35 66774 7.45 13.66 17.89 20.55 22.53 24.20 25.92 27.69 29.28 30.77 32.13 33.26 34.28

40 66774 8.51 15.61 20.45 23.49 25.74 27.66 29.62 31.65 33.46 35.16 36.72 38.01 39.18

45 66774 9.57 17.56 23.00 26.42 28.96 31.12 33.32 35.60 37.64 39.56 41.31 42.76 44.08

50 66774 10.64 19.51 25.56 29.36 32.18 34.58 37.02 39.56 41.82 43.95 45.90 47.51 48.98

55 66774 11.70 21.46 28.12 32.30 35.40 38.04 40.73 43.51 46.01 48.35 50.49 52.27 53.87

60 66774 12.77 23.41 30.67 35.23 38.62 41.49 44.43 47.47 50.19 52.74 55.08 57.02 58.77

65 66774 13.83 25.37 33.23 38.17 41.83 44.95 48.13 51.43 54.37 57.14 59.67 61.77 63.67

70 66774 14.89 27.32 35.78 41.10 45.05 48.41 51.83 55.38 58.55 61.53 64.26 66.52 68.57
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Figure 5-7 Reloading curves as a function of the point of reload along the primary curve 

 

Table 5-2 Tabulated displacement points along the reloading curve as a function of the point of reloading 

along the primary curve 

 

 

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

0 0 0.00 0.00 0.00 - - - - - - - - - -

1 14523 0.02 0.45 0.73 1.02 1.35 1.73 - - - - - - -

2 27215 0.12 0.54 0.81 1.10 1.43 1.80 2.27 2.83 - - - - -

3 35497 0.14 0.60 0.88 1.17 1.50 1.87 2.37 2.94 3.47 - - - -

4 42976 0.20 0.68 0.96 1.25 1.57 1.97 2.47 3.04 3.62 4.14 4.80 - -

5 50278 0.26 0.75 1.03 1.33 1.66 2.05 2.57 3.15 3.77 4.33 4.95 5.57 -

6 56819 0.38 0.82 1.09 1.42 1.76 2.17 2.69 3.30 3.92 4.52 5.11 5.77 6.33

7 62439 0.38 0.86 1.18 1.49 1.83 2.26 2.78 3.43 4.06 4.66 5.32 5.97 6.62

8 65307 0.41 0.92 1.23 1.55 1.90 2.35 2.90 3.55 4.23 4.92 5.58 6.25 6.91

9 66677 0.42 0.96 1.28 1.64 2.01 2.50 3.10 3.79 4.52 5.24 6.01 6.70 7.42

10 66960 0.42 1.01 1.37 1.75 2.19 2.73 3.40 4.21 4.97 5.77 6.54 7.29 8.10

11 66921 0.45 1.07 1.47 1.91 2.41 3.05 3.79 4.65 5.46 6.27 7.13 7.96 8.84

12 67146 0.49 1.14 1.58 2.08 2.67 3.36 4.15 4.88 5.92 6.77 7.66 8.57 9.56

13 67199 0.49 1.19 1.66 2.22 2.86 3.59 4.42 5.36 6.29 7.18 8.14 9.17 10.27

14 67026 0.44 1.21 1.74 2.34 3.04 3.80 4.71 5.66 6.63 7.61 8.64 9.72 10.97

15 66774 0.42 1.23 1.78 2.42 3.15 3.99 4.93 5.95 6.91 7.97 9.07 10.26 11.71

16 66774 0.43 1.25 1.85 2.52 3.29 4.15 5.14 6.16 7.22 8.25 9.47 10.82 12.54

17 66774 0.39 1.25 1.88 2.58 3.38 4.26 5.31 6.38 7.41 8.62 9.84 11.31 13.22

18 66774 0.30 1.21 1.86 2.58 3.40 4.34 5.45 6.54 7.68 8.85 10.24 11.87 13.92

19 66774 0.21 1.14 1.86 2.61 3.47 4.42 5.57 6.75 7.89 9.20 10.60 12.39 14.89

20 66774 0.17 1.16 1.89 2.69 3.58 4.58 5.78 6.97 8.15 9.52 11.16 13.23 15.82

21 66774 -0.01 1.09 1.89 2.73 3.62 4.67 5.92 7.13 8.41 9.81 11.69 13.99 16.58

22 66774 -0.03 1.06 1.89 2.75 3.68 4.79 6.09 7.34 8.66 10.35 12.08 14.54 17.59

23 66774 -0.05 1.06 1.89 2.74 3.69 4.82 6.12 7.40 8.89 10.51 12.52 15.07 18.79

24 66774 -0.23 0.93 1.79 2.66 3.66 4.84 6.15 7.53 8.97 10.67 13.08 16.19 19.30

25 66774 -0.49 0.75 1.67 2.56 3.59 4.82 6.19 7.62 9.12 11.05 13.47 16.81 20.15

30 66774 -0.59 0.90 2.00 3.08 4.30 5.78 7.43 9.14 10.95 13.26 16.16 20.17 24.18

35 66774 -0.69 1.05 2.34 3.59 5.02 6.74 8.67 10.67 12.77 15.47 18.85 23.53 28.21

40 66774 -0.78 1.20 2.67 4.10 5.74 7.71 9.90 12.19 14.59 17.68 21.54 26.89 32.24

45 66774 -0.88 1.35 3.00 4.61 6.46 8.67 11.14 13.72 16.42 19.89 24.24 30.25 36.26

50 66774 -0.98 1.50 3.34 5.13 7.17 9.63 12.38 15.24 18.24 22.10 26.93 33.61 40.29

55 66774 -1.08 1.65 3.67 5.64 7.89 10.60 13.62 16.76 20.07 24.31 29.62 36.97 44.32

60 66774 -1.17 1.80 4.00 6.15 8.61 11.56 14.86 18.29 21.89 26.52 32.32 40.33 48.35

65 66774 -1.27 1.95 4.34 6.66 9.33 12.52 16.09 19.81 23.72 28.72 35.01 43.70 52.38

70 66774 -1.37 2.10 4.67 7.18 10.04 13.49 17.33 21.33 25.54 30.93 37.70 47.06 56.41
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Another path that needs to be considered during the analysis is a change in direction from a 

secondary path before it transitions back into the backbone curve. This typically occurs when 

the footing has previously been displaced to its maximum position in the direction of loading 

and load reversal occurs at a displacement that is less than the maximum displacement reached 

on the primary curve. Because of this, the cyclic behaviour of the footing and load reversals 

occurs within the maximum displacements achieved on the primary curve. Figure 5-8 shows a 

load reversal that has occurred along a secondary curve before reaching the maximum 

displacement umax_pos. Figure 5-9 shows diagrammatically the method used to determine the 

unloading path that occurs from a reloading path along the secondary curve. The unloading path 

is determined by adjusting and scaling the unloading curve that would otherwise have been 

calculated from the maximum point umax_pos along the primary curve. 

 

 

Figure 5-8 Adjusted unloading from a secondary reloading curve 

 

 

Figure 5-9 Scaling of the unloading curve to produce the adjusted unload curve 
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5.1.3 TERTIARY CURVES: INTERMEDIATE CURVES 

Tertiary curves account for unloading and reloading behaviour that occurs within the same 

quadrant without crossing the origin as shown in Figure 5-10. The tertiary curves are 

determined by mirroring the secondary curve about a straight line drawn from the unloading 

point (Point C in Figure 5-10) along the backbone curve and the point of load reversal (Point D 

in Figure 5-10) along the secondary curve. The new curve is then mirrored about a line 

perpendicular and equidistant along the line drawn between Point D and Point C, which is 

shown by Line D’-C’ in Figure 5-10, to produce the final tertiary curve. The same procedure is 

followed for each cycle of vibration within the quadrant. Double mirroring of the curve about 

two perpendicular lines ensures that the slope at point D and Point F is greater than the slope at 

point C and Point E as shown in Figure 5-10. 

 

 

Figure 5-10 Tertiary curves 

 

5.2 ANALYTICAL MODEL HYSTERETIC RESULTS  

The hysteretic curves produced using the analytical hysteretic model for cyclic loading are 

compared to the hysteretic curves that were generated during the pseudo-dynamic experiments. 

The comparisons for the five tests are shown in Figure 5-11 to Figure 5-15. The numerical 

model was run using the analytical hysteretic material with the El Centro earthquake and was 

scaled to a peak ground acceleration of 0.34 g and Figure 5-11 shows the comparison of the 

two hysteretic curves. The hysteretic response produced using the analytical model resulted in 
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more hysteresis during the unloading cycle than that observed during the pseudo-dynamic 

laboratory test. The slight disparity between the formulated hysteretic model analysis and the 

result produced during the laboratory test is due to the unloading rule specified in the hysteretic 

model before the reinforcement had yielded. However, the developed analytical hysteretic 

model provides a maximum shear force and backbone curve that is similar to the result produced 

during the pseudo-dynamic experiments. 

Figure 5-12 shows the comparison between the result produced using the analytical hysteretic 

model and pseudo-dynamic experiment at a PGA of 0.68 g. The analytical hysteretic model for 

cyclic loading provides a similar hysteretic response to the result produced during the pseudo-

dynamic experiments. The response is particularly evident by the maximum shear force and 

displacement being almost the same for both the hysteretic curves. Figure 5-13 shows the 

comparison between the analytical model and experimental tests at a PGA of 0.78 g. The 

hysteretic response produced from the analytical hysteretic model shows that the unloading and 

reloading branches differ from that generated from the experimental result. The difference in 

response was most likely due to the reduction in cross section due to spalling of the concrete 

not being incorporated into the model. The pinching effect is captured by the analytical 

hysteretic model as shown in Figure 5-12 and Figure 5-13. 

Figure 5-14 and Figure 5-15 shows the comparison between the results generated using the 

analytical hysteretic model and the experimental tests at a PGA of 1 g and 2 g respectively. The 

analytical material model provided a similar response to the results produced during the pseudo-

dynamic experiments for both the 1 g and 2 g. For the 1 g experiment, the analytical hysteretic 

model produces a single loop in the negative direction before drifting off in the positive 

direction and failing. The test that was undertaken at a PGA of 2 g resulted in a similar hysteretic 

curve being formed between the analytical hysteretic model and the laboratory test, with only 

a linear-elastic displacement of the footing in the negative direction before drifting off to the 

right and failing. 

The comparison between the experimental test results and the results produced using the 

analytical hysteretic model indicate that the formulated analytical hysteretic model provides a 

relatively accurate means to predict damage at peak ground accelerations and structural 

fundamental periods of vibration that were not undertaken during the laboratory experiments. 

Cognisance should be taken that the analytical hysteretic model was produced using the limited 

set of results for the given reinforced concrete footing design. However, the model provides a 

better method to interpolate the damage sustained by the given reinforced concrete footing at 

various peak ground accelerations and overall structural fundamental periods of vibration. 
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Figure 5-11 Analytical hysteretic model comparison with experimental results at a PGA of 0.34 g 

 

Figure 5-12 Analytical hysteretic model comparison with experimental results at a PGA of 0.68 g 

 

Figure 5-13 Analytical hysteretic model comparison with experimental results at a PGA of 0.78 g 

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

-10 -8 -6 -4 -2 0 2 4 6 8 10

Fo
rc

e
 (

kN
)

Displacement (mm)

Experimental

test

Analytical

model

-80

-60

-40

-20

0

20

40

60

80

-40 -30 -20 -10 0 10 20 30 40

Fo
rc

e
 (

kN
)

Displacement (mm)

Experimental

results

Analytical model

-80

-60

-40

-20

0

20

40

60

80

-80 -60 -40 -20 0 20 40 60 80

Lo
a

d
 (

kN
)

Displacement (mm)

Analytical

model

Experimental

results

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

 

156 
 

 

Figure 5-14 Analytical hysteretic model comparison with experimental results at a PGA of 1 g 

 

 

Figure 5-15 Analytical hysteretic model comparison with experimental results at a PGA of 2 g 

 

5.3 DAMAGE AND FRAGILITY ANALYSIS 

The numerical model was run using the analytical hysteretic model that was developed in the 

previous section over a range of scaled peak ground accelerations using the El Centro ground 

motion record to evaluate the extent of damage sustained by the reinforced concrete footing. 

The same frame structure that was used during the pseudo-dynamic experiments, with a 

fundamental period of vibration of 0.86 s was used to run the computational model with the 

developed analytical hysteretic model for the reinforced concrete footing. The conversion 

between PGA and intensity was done using Equation 2.1 in Section 2.1.1, which was developed 

by Ambraseys (1974). 
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A damage index was formulated using the Park and Ang (1985) damage model by utilising the 

results produced during the pseudo-dynamic experiments and the results produced using the 

analytical hysteretic model. Equation 4.1 shows the Park and Ang (1985) damage index formula 

for brevity and the values used within the formula for each of the analytical hysteretic model 

analysis. The values used within the Park and Ang damage model were obtained from the cyclic 

load tests and the pseudo-dynamic tests, which were summarised in Table 4-3. The maximum 

shear capacity of the footing was determined by averaging the absolute values of the maximum 

shear values obtained from both the negative and positive displacements from each of the 

pseudo-dynamic tests and cyclic load tests. The damage index ranges from 0 to 1, with 0 

indicating an undamaged structure and 1 indicating a complete collapse of the structure. 

 

𝐷𝐼 =  𝑑𝑚𝑑𝑢 + 𝛽𝑉𝑦𝑑𝑢∫𝑑𝐸ℎ ≤ 1 
(4.1) 

 

With: 𝑑𝑢 =  0.062 m  (maximum displacement before collapse, Table 4-3) 𝑉𝑦 =  66775 N (shear capacity at yielding averaged from the experiments) 𝛽 =  0.1   (equation 2.27 in section 2.8.1 for the analysed footing) 𝐸ℎ =  Hysteretic energy absorbed by the reinforced concrete footing  

 

The value of 𝛽 represents the effect that cyclic loading has on the cumulative structural damage 

incurred by the reinforced concrete footing for the duration of the earthquake record. The value 

of 𝛽 was calculated using the recommended formula provided by Park and Ang (1985) using 

the characteristics of the reinforced concrete used during the research.  

 

Figure 5-16 and Figure 5-17 shows the five damage index values determined from the pseudo-

dynamic experiments superimposed on the damage index values produced using the analytical 

hysteretic model that was used to run the analysis over a range of peak ground accelerations. 

Figure 5-16 is given in terms of PGA and Figure 5-17 is given in terms of earthquake intensity. 

The damage index values calculated from the numerical hysteretic model for each of the five 

tested specimens compares well with the calculated values determined from the pseudo-

dynamic experiments. By running the analysis over a range of peak ground accelerations, two 

distinct points can be observed where there is a change in the rate of damage with increasing 

peak ground acceleration. The first point occurs at a damage index of 0.03, which indicates a 
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point of softening of the reinforced concrete footing and relates to the onset of concrete 

cracking. The second point occurs at a damage index of 0.13 and corresponds to the point at 

which the reinforcement starts to yield. The first two points are pronounced and consistent with 

the cracking and the yielding of the reinforcement.  

 

A third point can be characterised due to concrete spalling, which is directly related to the 

number of cycles of vibration and the resultant reduction in shear capacity. From the results and 

observations made during the pseudo-dynamic tests, the third point occurs at a damage index 

of approximately 0.4, which correlates with the value produced in literature. A loss of shear 

capacity with increased cycles of vibration was observed to occur at a damage index exceeding 

0.4 during the pseudo-dynamic experiments undertaken at peak ground accelerations of 0.68 g 

and 0.78 g.  

 

Comparing the damage index values with the Modified Mercalli intensity scale, as previously 

shown in Table 2-1, indicates that there is a correlation between the observed damage to the 

footings and the descriptions given by the Modified Mercalli Intensity scale. At an intensity of 

between VIII and IX, the damage to the reinforced concrete footing varies between being 

slightly damaged to considerably damaged in ordinary buildings. At an intensity of IX, the 

footings had failed, which corresponds with the description given in Table 2-1 that indicates 

buildings having shifted off of their foundations. 

 

 

 

Figure 5-16 PGA vs Damage Index of a reinforced concrete footing using the derived analytical hysteretic 

model and the laboratory results with 5% structural damping and a linear structural natural period of 

vibration of 0.86 s 
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Figure 5-17 Earthquake Intensity vs Damage Index of a reinforced concrete footing using the derived 

analytical hysteretic model and the laboratory results with 5% structural damping and a linear structural 

natural period of vibration of 0.86 s 

 

Figure 5-18 compares the influence that the structural damping ratio has on the damage incurred 

by the reinforced concrete footing. The same natural period of vibration of 0.86 s was used for 

each of the tests, and the damping ratio was varied for each of the series of tests. The series of 

tests comprised of analysing the structure over a range of peak ground accelerations and 

determining the extent of damage at each of the peak ground accelerations. Figure 5-18 shows 

that the damping ratio is independent of the damage index value due to concrete cracking and 

reinforcement yielding. However, the damping ratio has a significant influence on the amount 

of damage incurred by the reinforced concrete footing at any given peak ground acceleration. 

The damage sustained by the footing decreases with a concomitant increase in the damping 

ratio used in the overall frame structure. The large difference in damage incurred by the 

reinforced concrete footing at the different damping ratios is most likely due to the reinforced 

concrete footing only forming a small component within the overall frame structure and 

therefore does not consider the extent of damage sustained by the elements that comprise the 

overall superstructure. Therefore, the distribution of damage within the overall structure has a 

significant influence on the damage to the footing. 
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Figure 5-18 Earthquake Intensity vs Damage Index of a reinforced concrete footing at various damping 

ratios with linear structural natural period of vibration of 0.86 s 

 

5.3.1 DAMAGE STATES 

Five categories of damage were deduced from the results and observations made during the 

experimental tests and the numerical analysis run using the analytical hysteretic model. The 

first three damage states were obtained from plotting the damage index with increasing intensity 

and identifying the points at which the rate of damage increased with increasing earthquake 

intensity. The fourth damage state was obtained from visual observations made during the 

pseudo-dynamic tests and from literature. The damage states are as follows:  

1) Undamaged (Damage Index < 0.03): The maximum load applied to the footing does not 

exceed the tensile capacity of the concrete and therefore cracking of the concrete does not 

occur. 

2) Minor damage (0.03 < Damage Index ≤ 0.13): Formation of cracks in the concrete and 

opening of existing cracks. Occurs when the maximum deformation does not exceed the 

yield displacement of the footing. The maximum shear load capacity of the footing has not 

been reached. Basic visual inspection advised with limited and isolated remedial work. 

3) Moderate damage (0.13 < Damage Index ≤ 0.4): Occurs when the reinforcement yields, 

which results in a significant loss of stiffness within the footing and the subsequent increase 

in the overall displacement of the structure. The loss of concrete cover is not observed, and 

the reinforcement has not become exposed. The footing can still carry the axial load from 

the structure above and therefore allows occupants time to evacuate. Repair and retrofitting 
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of the foundations will be required post-earthquake to ensure that the structure conforms to 

relevant design codes of practice. 

4) Extensive damage (0.40 < Damage Index < 1): Large lateral displacement of the footing 

resulting in the visible crushing of the concrete and the loss of concrete cover to the 

reinforcement. Buckling of the exposed reinforcement and significant reduction in the load 

carrying capacity of the footing. The structure is still standing but is at risk of collapse and 

not safe for occupation. The structure is subsequently condemned, requiring demolition. 

5) Collapse (Damage Index = 1): The capacity of the footing has been reduced significantly 

resulting in the applied load exceeding the carrying capacity of the footing and the 

subsequent collapse of the structure. 

5.3.2 DAMAGE CURVES 

The analytical hysteretic model was used in conjunction with the pseudo-dynamic algorithm, 

as shown in Figure 3-27, to determine damage curves and fragility curves for the various 

damage states described in Section 5.3.1 for the minimally reinforced concrete footing. The 

response of the footing was analysed over a range of earthquake intensities and fundamental 

periods of vibration using the scaled El Centro ground motion record and the formulated 

hysteretic model. 

The majority of the building classes, specifically low to medium rise buildings, are placed on 

reinforced concrete footings, and one of the main structural characteristics that separate the 

response of different buildings is the fundamental period of vibration of the structure. Many 

seismic codes distinguish the extent of seismic loading on the structure by the structure’s 

resultant fundamental period of vibration in the form of response spectra, and therefore the 

damage curves were produced in terms of the overall structural fundamental period of vibration.   

Utilising the same frame structure that was used during the pseudo-dynamic experiments, the 

stiffness of the column and beam elements were increased by changing the moment inertia of 

each of the members by a constant value to ensure a similar stiffness distribution within the 

frame. Figure 5-19 shows the damage contour plot in terms of peak ground acceleration (PGA) 

and the fundamental period of vibration of the structure and shows that the fundamental period 

of vibration of the overall structure has a significant influence on the damage incurred by the 

reinforced concrete footing. The reinforced concrete footing that will incure the most damage 

at lower earthquake intensities are those that have an overall structural fundamental period of 

vibration in the order of 0.53 s. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

 

162 
 

Figure 5-20 shows the damage contour plot between earthquake intensity and overall structural 

fundamental period of vibration. The variation in damage defined at each of the Modified 

Mercalli intensity values is most likely due to structures with different fundamental periods of 

vibration experiencing different levels of damage for a given peak ground acceleration. At a 

Modified Mercalli intensity of VIII, the extent of damage to the structure varies between being 

slight to considerable. Structures with very low and very high fundamental periods of vibration 

will incur slight to moderate damage at an intensity of VIII when subjected to the scaled 

El Centro earthquake record. However, structures with a fundamental period in the order of 

0.53 s will suffer considerable damage and even collapse, which indicates that the Modified 

Mercalli intensity scale can be subjective and dependent on the type of structure, and the mass 

and stiffness distribution within the structure. 

 

 

Figure 5-19 Damage contour plot in terms of peak ground acceleration at 5% damping 
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Figure 5-20 Damage contour plot in terms of intensity at 5% damping  

 

 

Cognisance should be given to the fact that the analysis that was undertaken during this research 

only considered a single reinforced concrete foundation design and a single design for the 

moment resisting frame structure that was analysed using a single earthquake ground motion 

record. Therefore, the contour plot of damage could substantially differ in Figure 5-19 and 

Figure 5-20 if a different earthquake ground motion record was used or a different combination 

of structural steel members was used. Therefore, when predicting the extent of damage at 

different earthquake intensities, it would be conservative to assume a damage curve plotted for 

the worst-case fundamental period of vibration. In this case, under the analysed conditions, the 

fundamental period of vibration of 0.53 s produced the worst-case damage curve and is shown 

in Figure 5-21 in terms of PGA and Figure 5-22 in terms of intensity. Under the worse-case 

fundamental period of vibration for the reinforced concrete footing analysed using the El Centro 

ground motion record, moderate damage can be expected in reinforced concrete structures that 

are subjected to earthquake intensities greater than 0.31 g. Extensive damage can be expected 

in reinforced concrete structures subjected to earthquake intensities exceeding 0.41 g, thus 

indicating that some footings will require demolition and therefore a total loss of the asset. 

Earthquakes producing intensities exceeding 0.55 g will result in the total collapse of footings 

and therefore collapse of the overall structure.  
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Figure 5-21 Worst case damage curve for the analysed nominally reinforced concrete footing in terms of 

PGA 

 

 

Figure 5-22 Worst case damage curve for the analysed nominally reinforced concrete footing in terms of 

intensity 
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5.3.3 FRAGILITY CURVES 

A method of producing fragility curves is proposed using the formulated damage contour plots 

produced in the previous section. The fragility curves are calculated for each damage state over 

a range of fundamental periods of vibration that are deemed to be representative of low-rise 

structures from the building period formulas specified in SANS 10160-4:2017. The fragility 

curves were developed by considering the following assumptions and limitations: 

• The fragility curves were determined using the procedure given in FEMA P-58-1 

(2012) that results in a lognormal distribution from the demand data obtained from 

results produced by running the pseudo-dynamic algorithm using the formulated 

analytical hysteretic model;   

• The range of fundamental periods of vibration used to develop the fragility curves were 

determined by using the building period formulas given by Equations 2.15 and 

Equation 2.16 for steel and reinforced concrete moment resisting frame structures.  The 

lowest fundamental period of vibration and the maximum period of vibration for one 

storey to three storey high structures, which range between 4 m to 12 m in height, was 

used to develop the fragility curves; 

• A continuous uniform distribution of fundamental periods of vibration was determined 

as shown in Figure 5-23. Therefore. the probability of each period occurring with the 

range of fundamental period of vibrations is equal. The exact distribution of structures 

that could reasonably be placed on the footing is unknown, and therefore a uniform 

distribution is assumed when calculating the median value, θ, and logarithmic standard 

deviation, β.  

 

Table 5-3 shows the fundamental period of vibration of low-rise structures between one-storey 

and three stories and produces a minimum fundamental period of vibration of 0.21 s for a one-

storey reinforced concrete moment resisting frame structure with a 4 m height, and a maximum 

fundamental period of vibration of 0.55 s for a three-storey steel frame moment resisting 

structure. Selecting structures between one storey and three stories account for the variability 

in fundamental periods of vibrations and compare with the distribution of fundamental periods 

of vibration as previously shown in Figure 2-17, which shows the fundamental period of 

vibration for a range of 2622 Chilean buildings. The range of fundamental periods of vibration 

is deemed to satisfy all strength and deformation requirements as specified in the South African 

structural design codes of practice.  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

 

166 
 

Table 5-3 Fundamental period of vibration for 1 storey to 3 storey structures calculated using the building 

period formulas in SANS 10160:4-2017 

 

CT
(1) 

Fundamental period of vibration (1) (s) 

1 storey(2) ℎ𝑡 = 4𝑚 

2 storey(2) ℎ𝑡 = 8𝑚 

3 storey(2) ℎ𝑡 = 12𝑚 

Steel frame structures  

(Equation 2.15) 
0.085 0.24 0.40 0.55 

Reinforced concrete moment 

resisting frame structures  

(Equation 2.16) 

0.075 0.21 0.36 0.48 

(1) Building period formula 𝑇 = 𝐶𝑇 × ℎ𝑡3 4⁄
 from SANS 10160-4:2017 

(2) A storey is taken as 4 m 

 

Figure 5-23 shows the contour lines representing each of the damage states that are extracted 

from Figure 5-19 with the continuous uniform distribution used to determine the median value, 

θ, and logarithmic standard deviation, β. Using the equations given in Section 2.8.2 and the 

produced median value, θ, and standard deviation, β, for each damage state, the fragility curves 

were determined. Figure 5-24 shows the fragility curves for the minimally reinforced concrete 

footing subjected to the El Centro ground motion record for structures with periods that range 

between 0.21 s and 0.55 s. At a peak ground acceleration of 0.128 g or earthquake intensity of 

6.3, only minor damage is expected in approximately 30% of low-rise structure’s reinforced 

concrete footings with a period in the range of 0.21 s to 0.55 s when subjected to the El Centro 

ground motion record. 

 

 

Figure 5-23 Continuous range for each of the damage states to formulate the fragility curves 
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                                                                               (a) 

 

                                                                                 (b) 

Figure 5-24 Fragility curves for minimally reinforced concrete footing of fundamental period range of 0.21 s 

to 0.55 s 
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5.4 CONCLUSION 

This chapter described a method to approximate the damage curves and fragility curves for a 

structural component by utilising the results produced during the pseudo-dynamic tests and 

cyclic load tests. To interpolate damage at PGAs that were not undertaken during the laboratory 

tests, an analytical hysteretic model was developed to replace the physical test setup in the 

laboratory that was used to perform the pseudo-dynamic tests. Running the analysis over a 

range of peak ground accelerations and overall structural fundamental periods of vibration 

showed that the rate of damage increased at distinct points, which were independent of the 

damping ratio used for the frame structure. Damage states were formulated using the results 

produced during the analysis using the analytical hysteretic model and the results and 

observations made during the laboratory tests. 

The produced damage contour plots, which show the amount of damage as a function of the 

overall fundamental period of vibration and the PGA, indicated the extent of damage sustained 

by the reinforced concrete footing correlates with the descriptions given by the Modified 

Mercalli intensity scale. However, the variation in damage expected at any given intensity 

within the Modified Mercalli intensity scale is likely due to the influence that the fundamental 

period of vibration has on the extent of damage sustained by the reinforced concrete footing. 

The fundamental period of vibration is a characteristic that relies on the mass and stiffness 

distribution of the structure, the type of structure, and the composition of the structure that is 

placed on the footing. Therefore, knowing the fundamental period of vibration of the structure 

will better enable the risk of damage at various earthquake intensities to be quantified. This 

chapter shows that quantifying the expected damage to a structure and individual structural 

components is complex and dependant on several variables that define the structure.  
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6 CONCLUSIONS AND RECOMMENDATIONS 

In the following section conclusions are made regarding the viability of using the pseudo-

dynamic experimental method to relate structural damage with increasing earthquake intensity 

for an axially loaded reinforced concrete footing, which forms part of a two-bay, two-storey 

moment resisting frame structure. A total of five reinforced concrete footings were tested using 

the pseudo-dynamic experimentation method and two reinforced concrete footings were cyclic 

load tested. The results produced during the experiments were used to formulate an analytical 

hysteretic model to interpolate damage at peak ground accelerations and overall structural 

fundamental periods of vibration that were not undertaken during the pseudo-dynamic 

experiments. The results produced during the pseudo-dynamic tests and those produced using 

the analytical hysteretic model aided in the development of a damage index and the formulation 

of damage curves and fragility curves for the analysed reinforced concrete footing. 

Furthermore, this section provides recommendations for further work.  

6.1 CONCLUSIONS FROM THE STUDY 

The pseudo-dynamic experimentation method provides a viable approach to correlate the 

damage that has occurred to a physical model of a reinforced concrete footing, which forms 

part of an overall linear elastic structure, with increasing earthquake intensity. The use of the 

implicit Newmark’s method provides a stable and accurate algorithm to quantify the damaged 

incurred to the reinforced concrete footing due to the overall response of the structure that has 

been subjected to an applied seismic excitation. The initial stiffness that is used within in the 

implicit Newmark’s algorithm must be greater than the maximum achievable stiffness of the 

specimen being tested to ensure the stability of the analysis and to prevent premature damage. 

By using the pseudo-dynamic method, the hysteretic response of the footings could be related 

to earthquake intensity and observations could be made on the extent of damage incurred by 

the footing due to the applied earthquake loading. The time history of energy terms and 

hysteretic energy dissipation characteristics could be determined for each time increment during 

the application of the scaled El Centro earthquake record, which enabled the amount of energy 

dissipated by the footing to be calculated as a percentage of the total energy imparted to the 

structure. The reinforced concrete footing only dissipates a small percentage of the overall 

energy imparted to the structure in the form of hysteretic energy, with the remainder of the 

energy being dissipated due to damping within the frame structure. The pseudo-dynamic 

method enables the determination of the energy dissipation potential for individual structural 
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components during an applied earthquake record to the overall structure, which is comprised of 

many structural elements. 

With an increase in the hysteretic energy dissipated by the reinforced concrete footing there is 

an associated increase in the observed damage to the footing in the form of concrete cracking, 

reinforcement yielding and spalling of the concrete. The repeated cyclic loading at deformations 

exceeding the yield strength of the reinforcement but not exceeding the failure deformation 

results in the largest quantity of hysteretic energy being absorbed. At large PGAs, the hysteretic 

energy does not give an indication of whether the footing has failed, therefore demonstrating 

the applicability of the Park and Ang damage index that consists of two terms that depends on 

the maximum deformation of the structure and the cumulative hysteretic energy. At large PGAs 

the structure tends to fail due to excessive deformation before undergoing cyclic loading and at 

lower PGAs the absorbed hysteretic energy tends to govern the damage and failure of the 

footing due to the larger number of cycles of vibration.  

The research showed that by using the pseudo-dynamic method to analyse a single component 

of a much larger structure, which is assumed to be linear elastic for the duration of the analysis, 

does have its limitations. The capacity of structural members and connections within the overall 

frame structure is not accounted for during the analysis due to the linear elastic assumption, and 

therefore, the formation of plastic hinges and the resulted loss of stiffness within the overall 

structure is not considered in the response of the reinforced concrete footing. 

Five damage states can be deduced for the analysed reinforced concrete footing, with the 

damaged states being linked to the material characteristics of the concrete and reinforcement. 

The extent of damage to the reinforced concrete footing is governed predominately by the yield 

strength of the reinforcement, which results in the rate of damage increasing substantially once 

the reinforcement had yielded. The mechanisms that resulted in the failure of the reinforced 

concrete footing due to increasing earthquake intensity are as follows: 

• The shear capacity of the reinforced concrete footing was reached soon after the 

reinforcement yielded, and large cracks had formed at the interface between the base 

of the column and the top of the concrete base slab. Upon reaching the maximum shear 

strength, the stiffness of the footing approached zero with a subsequent increase in the 

horizontal displacement at the top of the reinforced concrete footing; 

• Spalling of the concrete is predominately governed due to the buckling of the yielded 

and elongated reinforcement upon load reversal from tension to compression; 
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• The pinching effect was observed in the pseudo-dynamic and cyclic load tests and is 

due to the presence of the axial load. With a reduction in the horizontal load, the vertical 

load overcomes the overturning moment produced by the horizontal shear force and 

attempts to stabilise the member by returning the footing back to its original vertical 

position. Upon load reversal the plastically elongated reinforcing steel is first mobilised 

in compression by the axial load prior to the closure of the crack resulting in a reduction 

in the lateral displacement that is independent of the applied horizontal load; 

• An increase in the number of cycles of vibration results in an increase in the degree of 

concrete spalling, which governs the failure of the footing at lower earthquake 

intensities; 

• Significant spalling of the concrete resulted in the reduction and loss of axial capacity 

and shear capacity of the footing, which ultimately resulted in the failure of the 

reinforced concrete footing’s column; and 

• A reduction in shear capacity was not observed at tests conducted at large earthquake 

intensities and at large deformations. The fracturing of the reinforcement and loss of 

stability of the structure governed the failure of the test specimen at large PGAs. 

 

Although pseudo-dynamic testing between computer modelling and laboratory testing provides 

an alternative and more cost-effective solution to full scale testing, the cost and time required 

to produce a single result under a single set of structural conditions limits the amount of data 

that can be produced to formulate complete set of damage curves and fragility curves. 

Therefore, to develop damage curves and fragility curves, an analytical hysteretic plastic hinge 

model had to be formulated for the analysed footing from the results produced during the 

pseudo-dynamic tests and cyclic load tests to interpolate damage at PGAs and overall structural 

fundamental periods of vibration that were not undertaken during the laboratory tests.  

By performing the pseudo-dynamic tests by scaling the El Centro ground motion record showed 

that the footing could only sustain a maximum PGA with further increase in the amplitude of 

the ground motion record. The pseudo-dynamic test that was undertaken by amplifying the El 

Centro ground motion record to a PGA of 2 g, only managed to achieve a maximum PGA of 

1.21 g before failure. This observation was further clarified by the damage contour plots and 

curves that were produced during the computational analysis using the analytical hysteretic 

model derived from the cyclic load tests and pseudo-dynamic tests. The analysis shows that 

with increasing amplitude of the ground motion record, the reinforced concrete footing is only 

able to endure a maximum peak ground acceleration before failure. The level of damage 
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incurred by the reinforced concrete footing at a given earthquake intensity is dependent on the 

fundamental period of vibration of the structure and the frequency characteristics of the 

earthquake record to which the structure is subjected. The damage contour plot, in terms of 

earthquake intensity and fundamental period of vibration tends to follow the profile of the linear 

response spectrum that is produced using the same earthquake record. 

The investigation shows that the resultant damage to the reinforced concrete footing is complex 

and it depends on several characteristics that relates to the overall super structure. The structural 

configuration, the distributed loading within the structure and the initial stress state of the 

structural component all plays a critical role in the resultant damage to the reinforced concrete 

footing. The results obtained from this research enabled a better understanding of the 

performance of a reinforced concrete footing that accounts for the overall response of a moment 

resisting frame structure subjected to an earthquake excitation. The research shows how the 

damage to the reinforced concrete footing manifests at different peak ground accelerations 

when subjected to the El Centro earthquake excitations and can be used to better understand the 

material response of reinforced concrete and improve the selection of PGAs for future pseudo-

dynamic tests. 

6.2 RECOMMENDATIONS FOR FURTHER WORK 

Cognisance should be given to the fact that the analysis undertaken during this research only 

considered a single reinforced concrete foundation design that was analysed using a single 

earthquake ground motion record and the overall superstructure remained linear elastic for the 

duration of the earthquake record. Therefore, recommendation for future work would include 

the following: 

• Analysing the structure by varying the longitudinal and shear reinforcement to 

determine the influence it has on the damage to the footing; 

• Perform pseudo-dynamic tests on reinforced concrete footings by incorporating non-

linear behaviour within the overall structure and determining the influence that the 

reduction in stiffness within the overall frame structure has on the performance of the 

footing;  

• Investigating reinforced concrete footings that are designed to the seismic structural 

design code of practice (SANS 10160-4:2017) and comparing their capacity with 

results produced in this research. Testing reinforced concrete footings with closed 

seismic stirrups and comparing the capacity with the results produced using traditional 

stirrups; 
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• Performing pseudo-dynamic experiments that account for both a varying shear and 

axial loading as could be experienced by foundations placed on the exterior of a 

building; 

• Soil structure interaction is one of the most important factors that influences the overall 

response of the foundation system. Pseudo-dynamic experiments can be performed by 

embedding footings within soil to determine the response and resultant damage to the 

reinforced concrete footing at various earthquake intensities; 

• Developing a hysteretic model from a series of cyclic load tests that can account for a 

variation in both horizontal and vertical load for the duration of the earthquake record 

for a range of reinforced concrete footing designs will be beneficial in evaluating the 

damage encountered to number of different structural types;  

• Account for several elements within the structure during a pseudo-dynamic experiment 

to investigate the progressive failure of the structure and determine the contribution of 

each element to the overall energy dissipation and fragility of the structure; 

• Investigation can be done to determine the distribution of fundamental periods of 

vibration of all structures that form part of the insured portfolio as this will improve the 

formulation of the fragility curves;  

• Investigation into improving the experimental test setup to reduce external noise 

experienced during the pseudo-dynamic experiments. Base isolation of the 

experimental test setup is recommended; 

• Performing pseudo-dynamic experiments that enables the analysis of the reinforced 

concrete footing under biaxial bending and shear; and 

• Use hybrid testing methods combined with machine learning algorithms to analyse a 

large sample of footings or reinforced concrete members by varying all significant 

parameters to develop a hysteretic model that can be used during earthquake loading 

and cyclic loading. The model can be developed to account for cyclic behaviour, 

degradation in strength due to reinforcement buckling and spalling, and varying axial 

loads on the section. The material can be further developed to account for variability in 

material properties and reinforcement configuration. Such a hysteretic model can be 

programmed into finite element analyse software packages to evaluate the progression 

of damage under different earthquake loadings for different structural configurations.
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PSEUDO-DYNAMIC EXPERIMENTATION SCRIPT 
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1   Sub Main

2   'EA_Job.Start(Job1)

3   

4   'Activating plots in the panel and setting them to zero

5   EA_Graph.RemovePlot(Panel1,"Graph1",1)

6   EA_Graph.Refresh(Panel1,"Graph1")

7   EA_Graph.RemovePlot(Panel1,"Graph2",1)

8   EA_Graph.Refresh(Panel1,"Graph2")

9   EA_Graph.RemovePlot(Panel1,"Energy_plot",1)

10   EA_Graph.Refresh(Panel1,"Energy_plot")

11   

12   EA_Graph.RemovePlot(Panel2,"Strain_out_disp",1)

13   EA_Graph.Refresh(Panel2,"Strain_out_disp")

14   EA_Graph.RemovePlot(Panel2,"Disp_read_LVDT",1)

15   EA_Graph.Refresh(Panel2,"Disp_read_LVDT")

16   

17   EA_Panel.SetValue(Panel1,"Increment_out",0)

18   EA_Panel.SetValue(Panel1,"Time_out",0)

19   EA_Panel.SetValue(Panel1,"PGA",0)

20   EA_Panel.SetValue(Panel1,"Iteration_out",0)

21   EA_Panel.SetValue(Panel1,"Convergence_out",0)

22   EA_Panel.SetValue(Panel,"Damage_out",0)

23   EA_Panel.SetValue(Panel1,"DispRead_out",0)

24   EA_Panel.SetValue(Panel1,"DispRead_in",0)

25   EA_Panel.SetValue(Panel1,"Interal_counter",0)

26   

27   'Sets analog output to zero volts

28   EA_IO.SetAnalogOut("PMX_1 CH 9",1,0,OperMode)

29   

30   'Zeros input data

31   

32   EA_IO.ZeroBalanceControl("MX840_SR",1) 'Zeros right strain gauge

33   EA_IO.ZeroBalanceControl("MX840_SL",1) 'Zeros left strain gauge

34   

35   EA_IO.ZeroBalanceControl("PMX_LVDT1",1) 'Zeros LVDT1

36   EA_IO.ZeroBalanceControl("PMX_LVDT2",1) 'Zeros LVDT2

37   EA_IO.ZeroBalanceControl("PMX_LVDT3",1) 'Zeros LVDT3

38   EA_IO.ZeroBalanceControl("PMX_LVDT4",1) 'Zeros LVDT4

39   

40   EA_IO.ZeroBalanceControl("Displacement_Hor",1) 'Zeros Horizontal displacement

41   EA_IO.ZeroBalanceControl("Force_Hor",1) 'Zeros Horizontal force

42   

43   End Sub

44   Sub Axial_load

45   'Runs data logging during axial load application

46   Dim Analysis As Variant 'Input to change for the number of analysis being performed

47   Analysis=1

48   

49   Dim objXls_a As Object

50   Set objXls_a = CreateObject("Excel.Application")

51   objXls_a.Workbooks.Add

52   objXls_a.Worksheets(1).Name = "Linear results"

53   objXls_a.Workbooks(1).SaveAs 

"C:\Octave\Dynamics\Pseudo\Pseudo_test_"+CStr(Analysis)+".xlsx"  ' 

"C:\Octave\Dynamics\Pseudo\OutputDispOutput4.xls"

54   

55   objXls_a.Worksheets(1).Cells(1,1).Value ="Counter"

56   objXls_a.Worksheets(1).Cells(1,2).Value ="Axial load (kN)"

57   objXls_a.Worksheets(1).Cells(1,3).Value ="Strain gauge left (micro)"

58   objXls_a.Worksheets(1).Cells(1,4).Value ="Strain gauge right (micro)"

59   

60   Dim Force_axial As Double

61   Dim Strain_Left As Double

62   Dim Strain_right As Double

63   

64   Dim Axial_load_applied() As Double

65   Dim Strain_Left_disp() As Double

66   Dim Strain_right_disp() As Double

67   Dim StepInc() As Double

68   

69   Dim Button2 As Variant

70   Button2=0

71   Dim counter As Variant
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72   counter=0

73   

74   EA_Panel.SetCell(Panel2,"Axial_stop_table",1,1,0)

75   

76   Do While Button2=0 'Convergence at each time step

77   

78   EA_Panel.GetCell(Panel2,"Axial_stop_table",1,1,Button2)

79   

80   ReDim Preserve StepInc(counter+1)

81   ReDim Preserve Axial_load_applied(counter+1)

82   ReDim Preserve Strain_Left_disp(counter+1)

83   ReDim Preserve Strain_right_disp(counter+1)

84   

85   StepInc(counter)=CDbl(counter) 'Counter to array

86   objXls_a.Worksheets(1).Cells(counter+2,1).Value =counter

87   

88   'Read out axial force from servo controller

89   EA_IO.Measure("Load cell",Force_axial,1) 'Axial force read out

90   objXls_a.Worksheets(1).Cells(counter+2,2).Value =Force_axial 'Saves axial 

force to excel spreadsheet

91   Axial_load_applied(counter)=CDbl(Force_axial) 'Saves axial force to a array

92   

93   'Read out Strain gauge Left from servo controller

94   EA_IO.Measure("MX840_SL",Strain_Left,1) 'Strain gauge left read out

95   objXls_a.Worksheets(1).Cells(counter+2,3).Value =Strain_Left 'Saves strain 

gauge left to excel spreadsheet

96   Strain_Left_disp(counter)=CDbl(Strain_Left) 'Saves Strain gauge left to array

97   

98   'Read out Strain gauge Right from servo controller

99   EA_IO.Measure("MX840_SR",Strain_right,1) 'Strain gauge right to read out

100   objXls_a.Worksheets(1).Cells(counter+2,4).Value =Strain_right 'Saves strain 

gauge right to excel spreadsheet

101   Strain_right_disp(counter)=CDbl(Strain_right) 'Strain gauge right to array

102   

103   'Axial load out (Plotting)

104   EA_Graph.PlotArrayXY(Panel3,"Axial_load_initial",1,counter+1, StepInc(), 

Axial_load_applied())

105   EA_Graph.SetPlotProperty(Panel3,"Axial_load_initial",1,2,vbRed)

106   EA_Graph.Refresh(Panel3,"Axial_load_initial")

107   

108   'Plots Strain values (Plotting)

109   EA_Graph.PlotArrayXY(Panel3,"Strain_gauge_axial",1,counter+1, StepInc(), 

Strain_right_disp())

110   EA_Graph.SetPlotProperty(Panel3,"SStrain_gauge_axial",1,2,vbBlue)

111   EA_Graph.SetPlotProperty(Panel3,"Strain_gauge_axial",1,5,0)

112   

113   counter=counter+1 'Step counter

114   objXls_a.Workbooks(1).Save

115   Loop

116   objXls_a.Workbooks(1).Save

117   objXls_a.Quit

118   

119   End Sub

120   

121   Sub Pseudo_analysis 'Pseudo analysis algorithm

122   'Performs a single degree of freedom pseudo dynamic analysis on multi degree of 

freedom system

123   

124   Dim Analysis As Variant 'Input to change for the number of analysis being performed

125   Analysis=1

126   

127   'In SI Units kg, N , m, otherwise indicated

128   

129   'Earthquake record time step

130   Dim dt As Variant

131   dt=0.02 'Seconds

132   

133   'Analog output

134   Dim analog_out As Variant

135   analog_out=0

136   EA_IO.SetAnalogOut("PMX_1 CH 9",1,analog_out,OperMode)

137   

138   'Convergence criteria
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139   Dim ConvergC As Variant

140   ConvergC=0.0005

141   

142   'If the analysis has to be restarted during the test

143   Dim Restart As Variant

144   Restart=0 'Restart = 0 (Start new analysis) 'Restart=1 (Continue existing analysis)

145   Dim time_restart As Variant

146   time_restart=0 'Last time recorded

147   Dim i_Lres As Variant

148   i_Lres=time_restart/dt

149   'Amplify record

150   Dim AeR As Variant

151   AeR=1 'Amplify the import earthqauke record

152   

153   Dim Load_axial As Variant

154   

155   Dim objXls_u As Object

156   Set objXls_u = CreateObject("Excel.Application")

157   

158   If Restart=0 Then

159   'Data files - Excel output of the data

160   objXls_u.Workbooks.Add

161   objXls_u.Worksheets.Add

162   objXls_u.Worksheets.Add

163   objXls_u.Worksheets.Add

164   objXls_u.Worksheets.Add

165   objXls_u.Worksheets.Add

166   objXls_u.Worksheets.Add

167   objXls_u.Worksheets.Add

168   objXls_u.Worksheets.Add

169   objXls_u.Worksheets.Add

170   objXls_u.Worksheets.Add

171   objXls_u.Worksheets.Add

172   objXls_u.Worksheets.Add

173   objXls_u.Worksheets.Add

174   objXls_u.Worksheets.Add

175   

176   objXls_u.Worksheets(1).Name = "Input_and_loading"

177   objXls_u.Worksheets(2).Name = "Earthquake"

178   objXls_u.Worksheets(3).Name = "Displacement"

179   objXls_u.Worksheets(4).Name = "Velocity"

180   objXls_u.Worksheets(5).Name = "Acceleration"

181   objXls_u.Worksheets(6).Name = "Energy"

182   objXls_u.Worksheets(7).Name = "Stiffness"

183   objXls_u.Worksheets(8).Name = "Mass"

184   objXls_u.Worksheets(9).Name = "Local_matrices"

185   objXls_u.Worksheets(10).Name = "Spring_DF"

186   objXls_u.Worksheets(11).Name = "Force_FDOF"

187   objXls_u.Worksheets(12).Name = "Force_M"

188   objXls_u.Worksheets(13).Name = "Force_C"

189   objXls_u.Worksheets(14).Name = "It_disp"

190   objXls_u.Worksheets(15).Name = "It_force"

191   

192   objXls_u.Workbooks(1).SaveAs 

"C:\Octave\Dynamics\Pseudo\Pseudo_Test_analysis1112_"+CStr(Analysis)+".xlsx"  ' 

"C:\Octave\Dynamics\Pseudo\OutputDispOutput4.xls"

193   

194   ElseIf Restart=1 Then

195   

196   objXls_u.Workbooks.Open 

"C:\Octave\Dynamics\Pseudo\Pseudo_Test_analysis1112_"+CStr(Analysis)+".xlsx"  ' 

"C:\Octave\Dynamics\Pseudo\OutputDispOutput4.xls"

197   

198   End If

199   

200   'Structural frame input

201   Dim Bays As Variant

202   Bays=2 'Number of bays

203   objXls_u.Worksheets(1).Cells(2,1).Value ="Number of bays ="

204   objXls_u.Worksheets(1).Cells(2,2).Value =Bays

205   Dim Stories As Variant

206   Stories = 2 'Number of stories

207   objXls_u.Worksheets(1).Cells(3,1).Value ="Number of stories ="
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208   objXls_u.Worksheets(1).Cells(3,2).Value =Stories

209   Dim h As Variant

210   h=4 'm (Height of the story)

211   objXls_u.Worksheets(1).Cells(4,1).Value ="Story height (h) ="

212   objXls_u.Worksheets(1).Cells(4,2).Value =h

213   objXls_u.Worksheets(1).Cells(4,3).Value ="m"

214   Dim b As Variant

215   b=6 'm (Width of a bay)

216   objXls_u.Worksheets(1).Cells(5,1).Value ="Bay width (b) ="

217   objXls_u.Worksheets(1).Cells(5,2).Value =b

218   objXls_u.Worksheets(1).Cells(5,3).Value ="m"

219   

220   'Steel sections

221   Dim nmat As Variant 'Number of material properties

222   nmat= 3 'Number

223   Dim fy As Variant 'Structural steel strength

224   fy=350 'MPa

225   

226   'Material 1 (Internal Columns)

227   objXls_u.Worksheets(1).Cells(7,1).Value ="Material properties"

228   objXls_u.Worksheets(1).Cells(8,1).Value ="Material 1 (Internal columns)"

229   

230   objXls_u.Worksheets(1).Cells(8,2).Value ="203.00 x 203.00 x 52.00"

231   Dim E1 As Variant 'E1 of material type 1

232   E1=200*10^9 'Pa

233   objXls_u.Worksheets(1).Cells(9,1).Value ="E1 ="

234   objXls_u.Worksheets(1).Cells(9,2).Value =E1

235   objXls_u.Worksheets(1).Cells(9,3).Value ="Pa"

236   

237   Dim I1 As Variant 'I1 of material type 1

238   I1=52500000/1000^4 'm^4

239   objXls_u.Worksheets(1).Cells(10,1).Value ="I1 ="

240   objXls_u.Worksheets(1).Cells(10,2).Value =I1

241   objXls_u.Worksheets(1).Cells(10,3).Value ="m^4"

242   

243   Dim A1 As Variant 'A1 of material type 1

244   A1=6640/1000^2 'm^2

245   objXls_u.Worksheets(1).Cells(11,1).Value ="A1 ="

246   objXls_u.Worksheets(1).Cells(11,2).Value =A1

247   objXls_u.Worksheets(1).Cells(11,3).Value ="m^2"

248   

249   Dim Den1 As Variant 'Den1 of material type 1

250   Den1=7850 'kg/m^3

251   objXls_u.Worksheets(1).Cells(12,1).Value ="Material density ="

252   objXls_u.Worksheets(1).Cells(12,2).Value =Den1

253   objXls_u.Worksheets(1).Cells(12,3).Value ="kg/m^3"

254   

255   'Material 2 (Beams)

256   objXls_u.Worksheets(1).Cells(8,5).Value ="Material 2 (Beams)"

257   objXls_u.Worksheets(1).Cells(8,6).Value ="533.00 x 210.00 x 101.00"

258   Dim E2 As Variant 'E2 of material type 2

259   E2=200*10^9 'Pa

260   objXls_u.Worksheets(1).Cells(9,5).Value ="E2 ="

261   objXls_u.Worksheets(1).Cells(9,6).Value =E2

262   objXls_u.Worksheets(1).Cells(9,7).Value ="Pa"

263   

264   Dim I2 As Variant 'I2 of material type 2

265   I2=616000000/1000^4 'm^4

266   objXls_u.Worksheets(1).Cells(10,5).Value ="I2 ="

267   objXls_u.Worksheets(1).Cells(10,6).Value =I2

268   objXls_u.Worksheets(1).Cells(10,7).Value ="m^4"

269   

270   Dim A2 As Variant 'A2 of material type 2

271   A2=12900/1000^2 'm^2

272   objXls_u.Worksheets(1).Cells(11,5).Value ="A2 ="

273   objXls_u.Worksheets(1).Cells(11,6).Value =A2

274   objXls_u.Worksheets(1).Cells(11,7).Value ="m^2"

275   

276   Dim Den2 As Variant 'Den2 of material type 2

277   Den2=7850 'kg/m^3

278   objXls_u.Worksheets(1).Cells(12,5).Value ="Material density ="

279   objXls_u.Worksheets(1).Cells(12,6).Value =Den2

280   objXls_u.Worksheets(1).Cells(12,7).Value ="kg/m^3"
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281   

282   'Material 3 (External Columns)

283   objXls_u.Worksheets(1).Cells(8,9).Value ="Material 3 (External columns)"

284   objXls_u.Worksheets(1).Cells(8,10).Value ="305.00 x 305.00 x 118.00"

285   Dim E3 As Variant

286   E3=200*10^9 'Pa

287   objXls_u.Worksheets(1).Cells(9,9).Value ="E3 ="

288   objXls_u.Worksheets(1).Cells(9,10).Value =E3

289   objXls_u.Worksheets(1).Cells(9,11).Value ="Pa"

290   

291   Dim I3 As Variant

292   I3=276000000/1000^4 'm^4

293   objXls_u.Worksheets(1).Cells(10,9).Value ="I3 ="

294   objXls_u.Worksheets(1).Cells(10,10).Value =I3

295   objXls_u.Worksheets(1).Cells(10,11).Value ="m^4"

296   

297   Dim a3 As Variant

298   a3=15000/1000^2 'm^2

299   objXls_u.Worksheets(1).Cells(11,9).Value ="A3 ="

300   objXls_u.Worksheets(1).Cells(11,10).Value =a3

301   objXls_u.Worksheets(1).Cells(11,11).Value ="m^2"

302   

303   Dim Den3 As Variant

304   Den3=7850 'kg/m^3

305   objXls_u.Worksheets(1).Cells(12,9).Value ="Material density ="

306   objXls_u.Worksheets(1).Cells(12,10).Value =Den3

307   objXls_u.Worksheets(1).Cells(12,11).Value ="kg/m^3"

308   

309   'Get earthquake record

310   Dim nt As Variant

311   nt=2689 'Number of rows (Data points) of earthquake record

312   Dim uppe() As Variant

313   ReDim Preserve uppe(nt-1,1)

314   uppe=Import_data(nt)

315   

316   objXls_u.Worksheets(2).Cells(1,1).Value ="Time (s)"

317   objXls_u.Worksheets(2).Cells(1,2).Value ="Accleration (m/s^2)"

318   For i=0 To nt-1

319   objXls_u.Worksheets(2).Cells(i+2,1).Value =uppe(i,0)

320   objXls_u.Worksheets(2).Cells(i+2,2).Value =uppe(i,1)

321   Next

322   

323   'Dead load Is imposed On the model by a concrete slab that Is one way

324   'spaning between the frames

325   objXls_u.Worksheets(1).Cells(13,1).Value ="Loading on structure"

326   objXls_u.Worksheets(1).Cells(14,1).Value ="Dead loading"

327   Dim Span As Variant

328   Span=2.5 'm (Transverse span distance between the frames

329   objXls_u.Worksheets(1).Cells(15,1).Value ="Transverse span ="

330   objXls_u.Worksheets(1).Cells(15,2).Value =Span

331   objXls_u.Worksheets(1).Cells(15,3).Value ="m"

332   

333   'Concrete slab

334   Dim tc As Variant

335   tc=0.25 'm (Thickness of the slab

336   objXls_u.Worksheets(1).Cells(16,1).Value ="Slab thickness ="

337   objXls_u.Worksheets(1).Cells(16,2).Value =tc

338   objXls_u.Worksheets(1).Cells(16,3).Value ="m"

339   

340   Dim Den_conc As Variant

341   Den_conc=2400 'kg/m^3 (Density of the concrete)

342   objXls_u.Worksheets(1).Cells(17,1).Value ="Concrete density ="

343   objXls_u.Worksheets(1).Cells(17,2).Value =Den_conc

344   objXls_u.Worksheets(1).Cells(17,3).Value ="kg/m^3"

345   

346   'Live load

347   objXls_u.Worksheets(1).Cells(19,1).Value ="Live loading"

348   Dim LL As Variant

349   LL=2400 'N/m^2 (Live load imposed On the frame structure)

350   objXls_u.Worksheets(1).Cells(19,1).Value ="Live load ="

351   objXls_u.Worksheets(1).Cells(19,2).Value =LL

352   objXls_u.Worksheets(1).Cells(19,3).Value ="N/m^2"

353   
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354   'Masonary walls

355   Dim Den_mas As Variant

356   Den_mas=1800  'kg/m3

357   Dim t_wall As Variant

358   t_wall=0.23  'm

359   Dim M_mas As Variant

360   M_mas=Den_mas*t_wall*h*Span 'kg

361   Dim W_mas As Variant

362   W_mas=M_mas*9.81 'N

363   

364   'Dynamic properties

365   objXls_u.Worksheets(1).Cells(21,1).Value ="Dynamic properties"

366   Dim Dp As Variant

367   Dp=0.05 '(Damping ratio)

368   objXls_u.Worksheets(1).Cells(22,1).Value ="Damping ratio ="

369   objXls_u.Worksheets(1).Cells(22,2).Value =Dp

370   

371   'Footing placement And initial stiffness

372   objXls_u.Worksheets(1).Cells(23,1).Value ="Footing initial stiffness"

373   Dim Column_hinge As Variant

374   Column_hinge=2

375   '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

376   Dim kinitial As Variant

377   kinitial=30000000 'N/m

378   

379   objXls_u.Worksheets(1).Cells(24,1).Value ="ki ="

380   objXls_u.Worksheets(1).Cells(24,2).Value =kinitial

381   objXls_u.Worksheets(1).Cells(24,3).Value ="N/m"

382   

383   '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

384   

385   Dim Prop(3,2) As Variant 'Table of material properties

386   

387   Prop(0,0)=E1

388   Prop(2,0)=I1

389   Prop(1,0)=A1

390   Prop(3,0)=Den1

391   

392   Prop(0,1)=E2

393   Prop(2,1)=I2

394   Prop(1,1)=A2

395   Prop(3,1)=Den2

396   

397   Prop(0,2)=E3

398   Prop(2,2)=I3

399   Prop(1,2)=a3

400   Prop(3,2)=Den3

401   

402   'Preprocessor

403   Dim nnode As Variant

404   nnode=(Bays+1)*(Stories+1)

405   

406   'Coordinates of the nodes

407   Dim NodeNumber() As Variant

408   ReDim Preserve NodeNumber(Stories,Bays)

409   Dim Node_x() As Variant

410   ReDim Preserve Node_x(Stories,Bays)

411   Dim Node_y() As Variant

412   ReDim Preserve Node_y(Stories,Bays)

413   Dim coord() As Variant 'Dim coord(nnode,2)

414   ReDim Preserve coord(1,nnode-1)

415   Dim N_mas As Variant

416   N_mas=(Stories-1)*2

417   Dim Nodes_mas() As Variant

418   ReDim Preserve Nodes_mas(N_mas-1,0)

419   

420   'Node Numbers

421   Dim counter As Variant

422   counter=0

423   Dim count_mas As Variant

424   count_mas=-1

425   

426   For i=0 To Stories
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427   Dim width As Variant

428   width = 0

429   For j=0 To Bays

430   counter=counter+1

431   NodeNumber(-i+2,j)=counter

432   If j=0 Then

433   width =0

434   Node_x(i,j)=width

435   Else

436   width=width+b

437   Node_x(i,j)=width

438   End If

439   Node_y(i,j)=(-i+2)*h

440           If j=0 Or j=Bays Then

441               If i>0 And i<Stories Then

442               count_mas=count_mas+1

443               Nodes_mas(count_mas,0)=counter

444               End If

445           End If

446   Next

447   Next

448   

449   For i=0 To Stories

450       For j=0 To Bays

451       coord(0,NodeNumber(i,j)-1)=Node_x(i,j)

452       coord(1,NodeNumber(i,j)-1)=Node_y(i,j)

453       Next

454   Next

455   

456   Dim N_columns As Variant

457   N_columns=Stories*(Bays+1)

458   Dim N_beams As Variant

459   N_beams=Stories*Bays

460   Dim nbc As Variant

461   nbc=N_columns+N_beams 'Number of beam elements

462   

463   'Assign the columns first To the idbc matrix

464   Dim idbc() As Variant 'Dim idbc(nbc-1,2)

465   ReDim Preserve idbc(nbc-1,2)

466   

467   counter=-1

468   For i=0 To Bays

469   If i=0 Or i=Bays Then

470   For j=0 To Stories-1

471   counter=counter+1

472   idbc(counter,0)=NodeNumber(-j+2,i)

473   idbc(counter,1)=NodeNumber(-j+1,i)

474   idbc(counter,2)=3

475   Next

476   Else

477   For j=0 To Stories-1

478   counter=counter+1

479   idbc(counter,0)=NodeNumber(-j+2,i)

480   idbc(counter,1)=NodeNumber(-j+1,i)

481   idbc(counter,2)=1

482   Next

483   End If

484   Next

485   

486   'Assign the beams Second To the idbc matrix

487   For i=1 To 2

488       For j=0 To 1

489           counter=counter+1

490           idbc(counter,0)=NodeNumber(-i+2,j)

491           idbc(counter,1)=NodeNumber(-i+2,j+1)

492           idbc(counter,2)=2

493       Next

494   Next

495   

496   'Supports of the frame structure

497   Dim support() As Variant

498   ReDim Preserve support(3,Bays)

499   
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500   For i=0 To Bays

501       If i=Column_hinge-1 Then 'Nonlinear support

502       support(0,i)=NodeNumber(Stories,i)

503       support(1,i)=0

504       support(2,i)=1

505       support(3,i)=0

506       Else 'Rest of the supports In the model

507       support(0,i)=NodeNumber(Stories,i)

508       support(1,i)=1

509       support(2,i)=1

510       support(3,i)=0

511       End If

512   

513   Next

514   

515   'Loading On the structure that includes

516   'Point loads And beam distributed loads On the structure

517   'Wind loading Not included

518   

519   Dim loading() As Variant 'loading=zeros(4,nnode);

520   ReDim Preserve loading(3,nnode-1)

521   

522   For i=0 To nnode-1

523       loading(0,i)=i+1

524   Next

525   

526   For i=0 To nbc-1

527   If idbc(i,2)=1 Then

528   loading(2,idbc(i,0)-1)=loading(2,idbc(i,0)-1)-Prop(3,0)*Prop(1,0)*9.81*h/2

529   loading(2,idbc(i,1)-1)=loading(2,idbc(i,1)-1)-Prop(3,0)*Prop(1,0)*9.81*h/2

530   ElseIf idbc(i,2)=3 Then

531   loading(2,idbc(i,0)-1)=loading(2,idbc(i,0)-1)-Prop(3,2)*Prop(1,2)*9.81*h/2

532   loading(2,idbc(i,1)-1)=loading(2,idbc(i,1)-1)-Prop(3,2)*Prop(1,2)*9.81*h/2

533   End If

534   Next

535   

536   'Add masonary loading

537   For i=0 To N_mas-1

538   loading(2,Nodes_mas(i,0)-1)=loading(2,Nodes_mas(i,0)-1)-W_mas

539   Next

540   

541   'Distributed loading columns And beams

542   Dim Distributed_loads(2,1) As Variant 'Distributed_loads=zeros(3,2);

543   

544   Distributed_loads(0,0)=LL*Span                     'Beams live loads

545   Distributed_loads(0,1)=0                           'Columns live loads

546   Distributed_loads(1,0)=Den_conc*Span*tc*9.81       'Beams dead load

547   Distributed_loads(1,1)=0                          'Columns dead load

548   Distributed_loads(2,0)=Prop(3,1)* Prop(1,1)*9.81   'Beams dead load

549   Distributed_loads(2,1)=0                           'Columns dead load

550   

551   Dim loading_beam() 'loading_beam=zeros(nbc,2);

552   ReDim Preserve loading_beam(nbc-1,1)

553   

554   For i=0 To nbc-1

555       If idbc(i,2)=2 Then

556   

loading_beam(i,1)=Distributed_loads(0,0)+Distributed_loads(1,0)+Distributed_loads(

2,0)

557       loading_beam(i,0)=i+1

558       Else

559   

loading_beam(i,1)=Distributed_loads(0,1)+Distributed_loads(1,1)+Distributed_loads(

2,1)

560       loading_beam(i,0)=i+1

561       End If

562   Next

563   

564   'Static calculations

565   '_____________________________________________________________________________________

___

566   

567   Dim supp() As Variant
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568   ReDim Preserve supp(2,nnode-1)

569   

570   For i=0 To 2

571   For j=0 To 8

572   supp(i,j)=0

573   Next

574   Next

575   

576   For i=1 To 3 'Dim support(3,2) As Double

577   For j=0 To 2

578   supp(i-1,support(0,j)-1)=support(i,j)

579   Next

580   Next

581   

582   'Determines the dof of freedom

583   Dim dof() As Variant

584   ReDim Preserve dof(2,nnode-1)

585   counter=0

586   

587   'First assigns the free dof numbers

588   

589   For i=0 To 8 'Number of nodes-1

590   For j=0 To 2

591   If supp(j,i)=0 Then

592   counter=counter+1

593   dof(j,i)=counter

594   End If

595   Next

596   Next

597   Dim nfdof As Variant

598   nfdof=counter

599   

600   'Assigns the fixed dof numbers

601   

602   For i=0 To 8 'Number of nodes-1

603   For j=0 To 2

604   If supp(j,i)=1 Then

605   counter=counter+1

606   dof(j,i)=counter

607   End If

608   Next

609   Next

610   Dim tdof As Double

611   tdof=counter+1 'Total degrees of freedom + DOF of the footing hinge

612   

613   'Calculates the point loads on the nodes

614   Dim ptfof() As Variant

615   ReDim Preserve ptfof(tdof-1,0) 'ptfof=zeros(tdof,1);

616   Dim aL As Variant

617   

618   For i=0 To nnode-1

619   For j=0 To 2

620   If dof(j,loading(0,i)-1)<=tdof Then

621   ptfof(dof(j,loading(0,i)-1)-1,0)=loading(j+1,i)

622   End If

623   Next

624   Next

625   

626   Dim P() As Variant

627   ReDim Preserve P(nfdof-1,0)

628   

629   For i=0 To nfdof-1

630   P(i,0)=ptfof(i,0)

631   Next

632   

633   'Calculates the member information

634   Dim mem_info() As Variant

635   ReDim Preserve mem_info(1,nbc-1) 'mem_info=zeros(2,nbc);

636   

637   'Calculates the length of Each of the members And places it In mem_info(1,i)

638   For i=0 To nbc-1

639   mem_info(0,i)=((coord(0,idbc(i,1)-1)-coord(0,idbc(i,0)-1))^2+(coord(1,idbc(i,1)-1)-coo

rd(1,idbc(i,0)-1))^2)^(1/2)
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640   Next

641   

642   'Calculates the rotation of the member where anticlockwise Is positive

643   Dim x1 As Variant

644   Dim y1 As Variant

645   Dim x2 As Variant

646   Dim y2 As Variant

647   Dim pi As Variant

648   pi=4*Atn(1)

649   

650   For i=0 To nbc-1

651   'Obtain the nodal coordinates from the coord Array

652   x1 = coord (0,idbc(i,0)-1)

653   y1 = coord (1,idbc(i,0)-1)

654   x2 = coord (0,idbc(i,1)-1)

655   y2 = coord (1,idbc(i,1)-1)

656   'Calculate the rotation angle

657   If (x2-x1)=0 Then

658   mem_info(1,i)=pi/2

659   Else

660   mem_info(1,i)=Atn((y2-y1)/(x2-x1))

661   End If

662   Next

663   

664   'Calculates the member degrees of freedom

665   Dim mdof() As Variant

666   ReDim Preserve mdof(5,nbc-1) 'mdof=zeros(6,nbc)

667   

668   For i=0 To nbc-1

669   counter=-1

670   For K=0 To 1

671   For j=0 To 2

672   counter=counter+1

673   mdof(counter,i)=dof(j,idbc(i,K)-1)

674   Next

675   Next

676   Next

677   

678   Dim estiff_local() As Variant

679   ReDim Preserve estiff_local(5,5,nbc-1) 'estiff_local{1,nbc}=[]

680   Dim etran_local() As Variant

681   ReDim Preserve etran_local(5,5,nbc-1) 'estiff_local{1,nbc}=[]

682   Dim etranT_local() As Variant

683   ReDim Preserve etranT_local(5,5,nbc-1) 'estiff_local{1,nbc}=[]

684   Dim K_beam_local() As Variant

685   ReDim Preserve K_beam_local(5,5,nbc-1) 'estiff_local{1,nbc}=[]

686   

687   Dim global_stiffness() As Variant

688   ReDim Preserve global_stiffness(tdof-1,tdof-1)

689   Dim KSpring() As Variant

690   ReDim Preserve KSpring(1,1)

691   Dim Smdof() As Variant

692   ReDim Preserve Smdof(1,0)

693   

694   'Zeros the global stiffness matrix

695   For i=0 To tdof-1

696   For j=0 To tdof-1

697   global_stiffness(i,j)=0

698   Next

699   Next

700   

701   assemble_local_stiffness_beam(estiff_local,etran_local,K_beam_local,etranT_local,nbc,P

rop,idbc,mem_info)

702   assemble_beam_stiffness(global_stiffness,tdof,K_beam_local,nbc,mdof)

703   KSpring=Spring_stiff(global_stiffness,Column_hinge,dof,tdof,kinitial,Smdof)

704   

705   Dim Pw_local() As Variant

706   ReDim Preserve Pw_local(5,nbc-1)

707   Dim DOF_c() As Variant

708   ReDim Preserve DOF_c(5,nbc-1)

709   Dim Pwout() As Variant

710   ReDim Preserve Pw(nfdof-1,0)

711   Dim Pwtdof() As Variant
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712   ReDim Preserve Pwtdof(tdof-1,0)

713   

714   For i=0 To tdof-1

715   Pwtdof(i,0)=0

716   Next

717   

718   Pw=beam_loads(loading_beam,nbc,etranT_local,dof,mem_info,idbc,tdof,nfdof,Pw_local,DOF_

c,Pwtdof)

719   

720   R=Matrix_addition(P,Pw,nfdof,1)

721   

722   Disp=solve(global_stiffness,R,nfdof)

723   

724   Dim Rs() As Variant

725   Rs=reactions(global_stiffness,Disp,nfdof,tdof)

726   

727   If Restart=0 Then

728   objXls_u.Worksheets(3).Cells(1,1).Value =0

729   objXls_u.Worksheets(11).Cells(1,1).Value =0

730   For i = 0 To nfdof-1

731   objXls_u.Worksheets(3).Cells(i+2,1).Value =Disp(i,0)

732   objXls_u.Worksheets(11).Cells(i+2,1).Value =R(i,0)

733   Next

734   objXls_u.Workbooks(1).Save

735   End If

736   

737   Dim IMF_L() As Variant

738   ReDim Preserve IMF_L(5,nbc-1)

739   Dim IMD_L() As Variant

740   ReDim Preserve IMD_L(5,nbc-1)

741   Dim IMD_G() As Variant

742   ReDim Preserve IMD_G(5,nbc-1)

743   Dim IMF_G() As Variant

744   ReDim Preserve IMF_G(5,nbc-1)

745   Dim fso() As Variant

746   ReDim Preserve fso(5,nbc-1)

747   

748   memf(IMF_L,IMD_L,IMD_G,IMF_G,fso,supp,nnode,Disp,nbc,idbc,etran_local,etranT_local,est

iff_local,Pw_local)

749   

750   Dim ds() As Variant

751   ReDim Preserve ds(1,0)

752   Dim IMFs() As Variant

753   ReDim Preserve IMFs(1,0)

754   memf_spring(KSpring,Disp,Smdof,ds,IMFs)

755   

756   'Dynamic calculations

757   '_____________________________________________________________________________________

___

758   

759   Dim fyspring As Variant

760   Dim k2 As Variant

761   Dim Mf As Variant

762   

763   fyspring=37830.3235480421 'N

764   k2=0.146706193729911*kinitial 'N/m

765   Mf=770.3 'kg

766   

767   'Damage index

768   Dim Dpa As Variant

769   Dpa=0

770   Dim di As Variant

771   di=0

772   Dim dumax As Variant

773   dumax=0.00504481947024698

774   Dim bPa As Variant

775   bPa=0.05

776   

777   'Initial calculations

778   Dim Fsi1 As Variant

779   ReDim Preserve Fsi1(tdof-1,0)

780   

781   Dim Uil As Variant
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782   ReDim Preserve Uil(tdof-1,0)

783   For i=0 To tdof-1

784   Uil(i,0)=0

785   Next

786   

787   If Restart=1 Then

788   For i=0 To 5

789   For j=0 To nbc-1

790   IMD_G(i,j)=objXls_u.Worksheets(9).Cells(6*i_Lres+2+i,j+2).Value

791   fso(i,j)=objXls_u.Worksheets(9).Cells(6*i_Lres+2+i,j+nbc+4).Value

792   Next

793   Next

794   

795   For i=0 To 1

796   IMFs(i,0)=objXls_u.Worksheets(10).Cells(i+2,i_Lres+1).Value

797   ds(i,0)=objXls_u.Worksheets(10).Cells(i+4,i_Lres+1).Value

798   Next

799   Dpa=objXls_u.Worksheets(2).Cells(i_Lres+2,5).Value

800   

801   End If

802   

803   initial_conditions_static(Fsi1,Uil,fso,IMD_G,mdof,tdof,IMFs,Smdof,nbc)

804   

805   Dim global_mass() As Variant

806   ReDim global_mass(tdof-1,tdof-1)

807   

808   'Zeros the global mass matrix

809   For i=0 To tdof-1

810   For j=0 To tdof-1

811   global_mass(i,j)=0

812   Next

813   Next

814   

815   global_mass_self=assemble_mass_self(global_mass,nbc,Prop,idbc,mem_info,mdof,tdof) 

'Self weight

816   global_mass_DL=assemble_mass_DL(global_mass,nbc,idbc,mem_info,mdof,tdof,tc,Span,Den_co

nc) 'Dead load (Concrete slab)

817   global_mass_LL=assemble_mass_LL(global_mass,nbc,idbc,mem_info,mdof,tdof,Span,LL) 

'Live load

818   global_mass_Point=assemble_mass_Point(global_mass,dof,tdof,N_mas,Nodes_mas,M_mas,mdof)

 'Mass due to masonary walls load

819   

820   'Foundation mass

821   global_mass(Smdof(1,0)-1,Smdof(1,0)-1)=global_mass(Smdof(1,0)-1,Smdof(1,0)-1)+Mf

822   

823   Dim tmdof As Variant

824   Dim kttv() As Variant

825   Dim Mttf() As Variant

826   Dim Uto() As Variant

827   ReDim Preserve Uto(nfdof-1,0)

828   Dim eig() As Variant

829   ReDim Preserve eig(1,0)

830   Dim Lm() As Variant

831   ReDim Preserve Lm(nfdof-1,0)

832   

833   static_condensation_initial(Lm,kttv,Uto,tmdof,Mttf,global_stiffness,global_mass,mdof,n

fdof,Fsi1,Uil,nbc)

834   eig=eigenvalues(Mttf,kttv,tmdof)

835   

836   For i=0 To tmdof-1

837   For j=0 To tmdof-1

838   objXls_u.Worksheets(7).Cells(i+1,j+1).Value =kttv(i,j)

839   objXls_u.Worksheets(8).Cells(i+1,j+1).Value =Mttf(i,j)

840   Next

841   Next

842   

843   If Restart=0 Then

844   objXls_u.Worksheets(1).Cells(26,1).Value ="Eigenvalues"

845   objXls_u.Worksheets(1).Cells(27,1).Value ="Eig1 = "

846   objXls_u.Worksheets(1).Cells(28,1).Value ="Eig2 = "

847   objXls_u.Worksheets(1).Cells(27,2).Value =eig(0,0)

848   objXls_u.Worksheets(1).Cells(28,2).Value =eig(1,0)

849   End If
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850   

851   Dim Cff() As Variant

852   'ReDim Preserve Damp(1,0)

853   

854   Cff=Rayleigh_damping_nonlinear(eig,Mttf,kttv,Dp,tmdof)

855   

856   Dim ui() As Variant

857   ReDim Preserve ui(tmdof-1,1)

858   Dim upi() As Variant

859   ReDim Preserve upi(tmdof-1,1)

860   Dim uppi() As Variant

861   ReDim Preserve uppi(tmdof-1,1)

862   Dim fsi() As Variant

863   ReDim Preserve fsi(tmdof-1,0)

864   

865   If Restart=0 Then

866   For I=0 To tmdof-1

867   ui(i,1)=Uto(i,0)

868   upi(i,1)=0

869   uppi(i,1)=0

870   Next

871   

872   ElseIf Restart=1 Then

873   

874   For I=0 To tmdof-1

875   ui(i,1)=Uto(i,0)

876   upi(i,1)=objXls_u.Worksheets(4).Cells(i+2,i_Lres+2).Value

877   uppi(i,1)=objXls_u.Worksheets(5).Cells(i+2,i_Lres+2).Value

878   Next

879   End If

880   

881   fsi=Matrix_multiplication(kttv,ui,tmdof,tmdof,tmdof,1)

882   

883   Dim IMF_Li() As Variant

884   ReDim Preserve IMF_Li(5,nbc-1,1)

885   Dim IMD_Li() As Variant

886   ReDim Preserve IMD_Li(5,nbc-1,1)

887   Dim IMD_Gi() As Variant

888   ReDim Preserve IMD_Gi(5,nbc-1,1)

889   Dim IMF_Gi() As Variant

890   ReDim Preserve IMF_Gi(5,nbc-1,1)

891   Dim fsiE() As Variant

892   ReDim Preserve fsiE(5,nbc-1,1)

893   

894   For i=0 To 5

895   For j=0 To nbc-1

896   IMD_Gi(i,j,0)=0

897   IMD_Gi(i,j,1)=1

898   fsiE(i,j,0)=0

899   fsiE(i,j,1)=1

900   Next

901   Next

902   

903   Sort_matrix(IMF_Li,IMF_L,6,nbc)

904   Sort_matrix(IMD_Li,IMD_L,6,nbc)

905   Sort_matrix(IMD_Gi,IMD_G,6,nbc)

906   Sort_matrix(IMF_Gi,IMF_G,6,nbc)

907   Sort_matrix(fsiE,fso,6,nbc)

908   

909   If Retart=0 Then

910   'Saves local matrices to output file

911   objXls_u.Worksheets(9).Cells(1,2).Value ="IMD_Gi"

912   objXls_u.Worksheets(9).Cells(1,nbc+4).Value ="fsiE"

913   objXls_u.Worksheets(9).Cells(1,1).Value ="Time (s)"

914   objXls_u.Worksheets(9).Cells(1,nbc+3).Value ="Time (s)"

915   objXls_u.Worksheets(9).Cells(2,1).Value =0

916   objXls_u.Worksheets(9).Cells(2,nbc+3).Value =0

917   

918   For i=0 To 5

919   For j=0 To nbc-1

920   objXls_u.Worksheets(9).Cells(i+2,j+2).Value =IMD_G(i,j)

921   objXls_u.Worksheets(9).Cells(i+2,j+nbc+4).Value =fso(i,j)

922   Next
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923   Next

924   End If

925   

926   Dim IMDsi() As Variant

927   ReDim Preserve IMDsi(1,nt-1)

928   Dim IMFsi() As Variant

929   ReDim Preserve IMFsi(1,nt-1)

930   

931   If Restart=0 Then

932   vector_sort(IMFsi,IMFs,2,0)

933   vector_sort(IMDsi,ds,2,0)

934   'Saves force matrix

935   objXls_u.Worksheets(10).Cells(1,1).Value =0

936   For i=0 To 1

937   objXls_u.Worksheets(10).Cells(i+2,1).Value =IMFs(i,0)

938   objXls_u.Worksheets(10).Cells(i+4,1).Value =ds(i,0)

939   Next

940   ElseIf Restart=1 Then

941   For i=0 To i_Lres

942   For j=0 To 1

943   IMFsi(j,i)=objXls_u.Worksheets(10).Cells(j+2,i+1).Value

944   IMDsi(j,i)=objXls_u.Worksheets(10).Cells(j+4,i+1).Value

945   Next

946   Next

947   End If

948   

949   'Energy calculations

950   Dim Energy_Ps As Variant

951   Dim Energy_Ms() As Variant

952   ReDim Preserve Energy_Ms(nt-1,0)

953   Dim Energy_Cs() As Variant

954   ReDim Preserve Energy_Cs(nt-1,0)

955   Dim Energy_Ks() As Variant

956   ReDim Preserve Energy_Ks(nt-1,0)

957   Dim Energy_Hs() As Variant

958   ReDim Preserve Energy_Hs(nt-1,0)

959   

960   Dim Energy_K As Variant

961   Dim Energy_H As Variant

962   Dim Energy_M As Variant

963   Dim Energy_C As Variant

964   

965   'Internal energy

966   Dim Energy_Total() As Double

967   ReDim Preserve Energy_Total(nt-1)

968   Dim Energy_Stiffness() As Double

969   ReDim Preserve Energy_Stiffness(nt-1)

970   Dim Energy_Damping() As Double

971   ReDim Preserve Energy_Damping(nt-1)

972   Dim Energy_Hys() As Double

973   ReDim Preserve Energy_Hys(nt-1)

974   

975   'Load cell, strain gauges and LVDT readings

976   

977   Dim Strain_Left As Double

978   Dim Strain_right As Double

979   

980   Dim Strain_Left_disp() As Double

981   ReDim Preserve Strain_Left_disp(nt-1)

982   Dim Strain_right_disp() As Double

983   ReDim Preserve Strain_right_disp(nt-1)

984   

985   Dim LVDT1 As Double

986   Dim LVDT2 As Double

987   Dim LVDT3 As Double

988   Dim LVDT4 As Double

989   

990   Dim LVDT1_disp() As Double

991   ReDim Preserve LVDT1_disp(nt-1)

992   Dim LVDT2_disp() As Double

993   ReDim Preserve LVDT2_disp(nt-1)

994   Dim LVDT3_disp() As Double

995   ReDim Preserve LVDT3_disp(nt-1)
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996   Dim LVDT4_disp() As Double

997   ReDim Preserve LVDT4_disp(nt-1)

998   

999   'External energy

1000   Dim Disp_P() As Variant

1001   ReDim Preserve Disp_P(nfdof-1,1)

1002   Dim Force_P() As Variant

1003   ReDim Preserve Force_P(nfdof-1,1)

1004   

1005   If Restart= 0 Then

1006   Energy_K=0

1007   Energy_H=0

1008   Energy_M=0

1009   Energy_C=0

1010   

1011   For i=0 To 5

1012   For j=0 To nbc-1

1013   Energy_K=Energy_K+0.5*IMD_G(i,j)*fso(i,j)

1014   Next

1015   Next

1016   Energy_H=0.5*IMDsi(1,0)*IMFsi(1,0)

1017   

1018   Energy_Ms(0,0)=0

1019   Energy_Cs(0,0)=0

1020   Energy_Ks(0,0)=Energy_K

1021   Energy_Hs(0,0)=Energy_H

1022   

1023   Energy_Ps=0

1024   For i=0 To nfdof-1

1025   Energy_Ps=Energy_Ps+0.5*R(i,0)*Disp(i,0)

1026   Next

1027   

1028   'External energy

1029   

1030   For i=0 To nfdof-1

1031   Disp_P(i,1)=Disp(i,0)

1032   Force_P(i,1)=R(i,0)

1033   Next

1034   

1035   Energy_Total(0)=Energy_Ms(0,0)+Energy_Cs(0,0)+Energy_Ks(0,0)+Energy_Hs(0,0)

1036   Energy_Stiffness(0)=Energy_Ks(0,0)+Energy_Hs(0,0)+Energy_Cs(0,0)

1037   Energy_Damping(0)=Energy_Hs(0,0)+Energy_Cs(0,0)

1038   Energy_Hys(0)=Energy_Hs(0,0)

1039   

1040   'Readings from LVDTS, load cells and strain gauges

1041   EA_IO.Measure("MX840_SL",Strain_Left,1)

1042   EA_IO.Measure("MX840_SR",Strain_right,1)

1043   EA_IO.Measure("Load cell",Load_axial,1)

1044   

1045   objXls_u.Worksheets(2).Cells(2,8).Value =Load_axial

1046   

1047   objXls_u.Worksheets(2).Cells(2,10).Value =Strain_Left

1048   objXls_u.Worksheets(2).Cells(2,11).Value =Strain_right

1049   

1050   Strain_Left_disp(0)=Strain_Left

1051   Strain_right_disp(0)=Strain_right

1052   

1053   EA_IO.Measure("PMX_LVDT1",LVDT1,1)

1054   EA_IO.Measure("PMX_LVDT2",LVDT2,1)

1055   EA_IO.Measure("PMX_LVDT3",LVDT3,1)

1056   EA_IO.Measure("PMX_LVDT4",LVDT4,1)

1057   

1058   objXls_u.Worksheets(2).Cells(2,13).Value =LVDT1

1059   objXls_u.Worksheets(2).Cells(2,14).Value =LVDT2

1060   objXls_u.Worksheets(2).Cells(2,15).Value =LVDT3

1061   objXls_u.Worksheets(2).Cells(2,16).Value =LVDT4

1062   

1063   LVDT1_disp(0)=LVDT1

1064   LVDT2_disp(0)=LVDT2

1065   LVDT3_disp(0)=LVDT3

1066   LVDT4_disp(0)=LVDT4

1067   

1068   ElseIf Restart=1 Then

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



1069   Energy_K=objXls_u.Worksheets(6).Cells(i_Lres+2,4).Value

1070   Energy_H=objXls_u.Worksheets(6).Cells(i_Lres+2,5).Value

1071   Energy_M=objXls_u.Worksheets(6).Cells(i_Lres+2,2).Value

1072   Energy_C=objXls_u.Worksheets(6).Cells(i_Lres+2,3).Value

1073   Energy_Ps=objXls_u.Worksheets(6).Cells(i_Lres+2,6).Value

1074   

1075   For i=0 To i_Lres

1076   Energy_Ms(i,0)=objXls_u.Worksheets(6).Cells(i+2,2).Value

1077   Energy_Cs(i,0)=objXls_u.Worksheets(6).Cells(i+2,3).Value

1078   Energy_Ks(i,0)=objXls_u.Worksheets(6).Cells(i+2,4).Value

1079   Energy_Hs(i,0)=objXls_u.Worksheets(6).Cells(i+2,5).Value

1080   

Energy_Total(i)=CDbl(Energy_Ms(i,0)+Energy_Cs(i,0)+Energy_Ks(i,0)+Energy_Hs(i,

0))

1081   Energy_Stiffness(i)=CDbl(Energy_Ks(i,0)+Energy_Hs(i,0)+Energy_Cs(i,0))

1082   Energy_Damping(i)=CDbl(Energy_Hs(i,0)+Energy_Cs(i,0))

1083   Energy_Hys(i)=CDbl(Energy_Hs(i,0))

1084   Strain_Left_disp(i)=objXls_u.Worksheets(2).Cells(i+2,10).Value

1085   Strain_right_disp(i)=objXls_u.Worksheets(2).Cells(i+2,11).Value

1086   LVDT1_disp(i)=objXls_u.Worksheets(2).Cells(i+2,13).Value

1087   LVDT2_disp(i)=objXls_u.Worksheets(2).Cells(i+2,14).Value

1088   LVDT3_disp(i)=objXls_u.Worksheets(2).Cells(i+2,15).Value

1089   LVDT4_disp(i)=objXls_u.Worksheets(2).Cells(i+2,16).Value

1090   

1091   Next

1092   

1093   For i=0 To nfdof-1

1094   Disp_P(i,1)=objXls_u.Worksheets(3).Cells(i+2,i_Lres+1).Value

1095   Force_P(i,1)=objXls_u.Worksheets(11).Cells(i+2,i_Lres+1).Value

1096   Next

1097   

1098   End If

1099   

1100   

1101   Dim Force_M() As Variant

1102   ReDim Preserve Force_M(tmdof-1,1)

1103   Dim Force_C() As Variant

1104   ReDim Preserve Force_C(tmdof-1,1)

1105   

1106   If Restart=0 Then

1107   For i=0 To tmdof-1

1108   For j=0 To 1

1109   Force_M(i,j)=0

1110   Force_C(i,j)=0

1111   Next

1112   objXls_u.Worksheets(12).Cells(i+2,1).Value =0

1113   objXls_u.Worksheets(13).Cells(i+2,1).Value =0

1114   Next

1115   

1116   ElseIf Restart=1 Then

1117   For i=0 To tmdof-1

1118   Force_M(i,0)=objXls_u.Worksheets(12).Cells(i+2,i_Lres+1).Value

1119   Force_C(i,0)=objXls_u.Worksheets(13).Cells(i+2,i_Lres+1).Value

1120   Next

1121   End If

1122   

1123   '----------------------------------------------------------

1124   'Output data initial

1125   If Restart=0 Then

1126   objXls_u.Worksheets(4).Cells(1,1).Value ="DOF \ t(s)"

1127   objXls_u.Worksheets(5).Cells(1,1).Value ="DOF \ t(s)"

1128   For i = 0 To tmdof-1

1129   objXls_u.Worksheets(4).Cells(i+2,1).Value =Lm(i,0)+1

1130   objXls_u.Worksheets(5).Cells(i+2,1).Value =Lm(i,0)+1

1131   Next

1132   

1133   objXls_u.Worksheets(4).Cells(1,2).Value =0

1134   objXls_u.Worksheets(5).Cells(1,2).Value =0

1135   For i = 0 To tmdof-1

1136   objXls_u.Worksheets(4).Cells(i+2,2).Value =0

1137   objXls_u.Worksheets(5).Cells(i+2,2).Value =0

1138   Next

1139   
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1140   'Energy data

1141   objXls_u.Worksheets(6).Cells(1,1).Value ="Time (s)"

1142   objXls_u.Worksheets(6).Cells(1,2).Value ="Mass energy (J)"

1143   objXls_u.Worksheets(6).Cells(1,3).Value ="Damping (J)"

1144   objXls_u.Worksheets(6).Cells(1,4).Value ="Stiffness (J)"

1145   objXls_u.Worksheets(6).Cells(1,5).Value ="Hysteretic (J)"

1146   objXls_u.Worksheets(6).Cells(1,6).Value ="Input Energy (J)"

1147   

1148   objXls_u.Worksheets(6).Cells(1,8).Value ="H"

1149   objXls_u.Worksheets(6).Cells(1,9).Value ="H+D"

1150   objXls_u.Worksheets(6).Cells(1,10).Value ="H+D+S"

1151   objXls_u.Worksheets(6).Cells(1,11).Value ="H+D+S+M"

1152   

1153   objXls_u.Worksheets(6).Cells(2,1).Value =0

1154   objXls_u.Worksheets(6).Cells(2,2).Value =0 'Mass or inertia energy / 

kinetic energy

1155   objXls_u.Worksheets(6).Cells(2,3).Value =0  'Damping energy

1156   objXls_u.Worksheets(6).Cells(2,4).Value =Energy_K  'Stiffness energy/potential energy

1157   objXls_u.Worksheets(6).Cells(2,5).Value =Energy_H  'Hysteretic energy of the footing

1158   objXls_u.Worksheets(6).Cells(2,6).Value =Energy_Ps 'Input energy

1159   objXls_u.Worksheets(6).Cells(2,8).Value =Energy_H

1160   objXls_u.Worksheets(6).Cells(2,9).Value =Energy_H+0

1161   objXls_u.Worksheets(6).Cells(2,10).Value =Energy_H+0+Energy_K

1162   objXls_u.Worksheets(6).Cells(2,11).Value =Energy_H+0+Energy_K+0

1163   

1164   'Earthquake and numerical results output

1165   objXls_u.Worksheets(2).Cells(1,3).Value ="Displacement (mm)"

1166   objXls_u.Worksheets(2).Cells(1,4).Value ="Force (kN)"

1167   objXls_u.Worksheets(2).Cells(1,5).Value ="Damage Index"

1168   objXls_u.Worksheets(2).Cells(1,6).Value ="Convergence"

1169   objXls_u.Worksheets(2).Cells(1,7).Value ="Iterations"

1170   objXls_u.Worksheets(2).Cells(1,8).Value ="Axial Load (kN)"

1171   objXls_u.Worksheets(2).Cells(2,3).Value =ds(1,0)

1172   objXls_u.Worksheets(2).Cells(2,4).Value =IMFs(1,0)

1173   objXls_u.Worksheets(2).Cells(2,5).Value =0

1174   

1175   'Strain gauges output data

1176   objXls_u.Worksheets(2).Cells(1,10).Value ="Strain gauge left (micro)"

1177   objXls_u.Worksheets(2).Cells(1,11).Value ="Strain gauge right (micro)"

1178   

1179   'LVDTs output data

1180   objXls_u.Worksheets(2).Cells(1,13).Value ="LVDT1 (mm)"

1181   objXls_u.Worksheets(2).Cells(1,14).Value ="LVDT2 (mm)"

1182   objXls_u.Worksheets(2).Cells(1,15).Value ="LVDT3 (mm)"

1183   objXls_u.Worksheets(2).Cells(1,16).Value ="LVDT4 (mm)"

1184   

1185   End If

1186   

1187   Dim count As Variant

1188   Dim num As Variant

1189   Dim ks As Variant

1190   

1191   EA_Graph.ClearPlots(Panel1,"Graph1")

1192   EA_Graph.Refresh(Panel1,"Graph1")

1193   Dim xSpring() As Double

1194   ReDim Preserve xSpring(nt)

1195   Dim ySpring() As Double

1196   ReDim Preserve ySpring(nt)

1197   xSpring(0)=0

1198   ySpring(0)=0

1199   

1200   EA_Graph.PlotArrayXY(Panel1,"Graph1",1,nt+1, xSpring(), ySpring())

1201   EA_Graph.SetPlotProperty(Panel1,"Graph1",1,2,vbRed)

1202   EA_Graph.Refresh(Panel1,"Graph1")

1203   

1204   EA_Graph.ClearPlots(Panel1,"Graph2")

1205   EA_Graph.Refresh(Panel1,"Graph2")

1206   Dim xEarth() As Double

1207   ReDim Preserve xEarth(nt)

1208   Dim yEarth() As Double

1209   ReDim Preserve yEarth(nt)

1210   xEarth(0)=0

1211   yEarth(0)=0
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1212   

1213   EA_Graph.PlotArrayXY(Panel1,"Graph2",1,nt+1, xEarth(), yEarth())

1214   EA_Graph.SetPlotProperty(Panel1,"Graph2",1,2,vbBlue)

1215   EA_Graph.Refresh(Panel1,"Graph2")

1216   Dim LVDT_counter As Variant

1217   LVDT_counter=0

1218   Dim PGAmax As Variant

1219   PGAmax=0

1220   Dim Disp_read_servo As Double

1221   Dim Force_read_servo As Double

1222   

1223   EA_IO.ZeroBalanceControl("Displacement_Hor",1) 'Zeros Horizontal displacement

1224   EA_IO.ZeroBalanceControl("Force_Hor",1) 'Zeros Horizontal force

1225   

1226   Dim ncpts As Variant

1227   ncpts=50

1228   Dim Fsavg As Variant

1229   Dim Disp_i_1 As Variant

1230   Disp_i_1=0

1231   Dim axial_read As Double

1232   'Start of time stepping

1233   '-------------------------------------------------------

1234   For i_Load=i_Lres+1 To nt-1 'Starts the earthquake record

1235   EA_Panel.SetValue(Panel1,"Increment_out",i_Load)

1236   EA_Panel.SetValue(Panel1,"Time_out",uppe(i_Load,0))

1237   objXls_u.Worksheets(14).Cells(1,i_Load).Value =uppe(i_Load,0)

1238   objXls_u.Worksheets(15).Cells(1,i_Load).Value =uppe(i_Load,0)

1239   

1240   EA_IO.Measure("Load cell",axial_read,1)

1241   EA_Panel.SetValue(Panel1,"Axial_load",CVar(axial_read))

1242   objXls_u.Worksheets(2).Cells(i_Load+2,8).Value =CVar(axial_read)

1243   

1244   If Abs(uppe(i_Load,1))>PGAmax Then

1245   PGAmax=Abs(uppe(i_Load,1))

1246   End If

1247   EA_Panel.SetValue(Panel1,"PGA",PGAmax)

1248   

1249   Initial_sort_vec(ui,tmdof,1,0)

1250   Initial_sort_vec(upi,tmdof,1,0)

1251   Initial_sort_vec(uppi,tmdof,1,0)

1252   

1253   Initial_sort_vec(Disp_P,nfdof,1,0)

1254   Initial_sort_vec(Force_P,nfdof,1,0)

1255   

1256   'Initial_sort_mat(IMF_Li,6,nbc,1,0)

1257   'Initial_sort_mat(IMD_Li,6,nbc,1,0)

1258   Initial_sort_mat(IMD_Gi,6,nbc,1,0)

1259   'Initial_sort_mat(IMF_Gi,6,nbc,1,0)

1260   Initial_sort_mat(fsiE,6,nbc,1,0)

1261   

1262   For i=0 To tdof-1

1263   For j=0 To 0

1264   EA_Panel.SetCell(Panel2,"PropTable",j+1,i+1,Fsi1(i,j))

1265   Next

1266   Next

1267   

1268   Initial_sort_vec(IMFsi,2,i_Load-1,i_Load)

1269   Initial_sort_vec(IMDsi,2,i_Load-1,i_Load)

1270   count=count+1

1271   num=0

1272   Fsavg=0

1273   EA_Panel.SetCell(Panel1,"Converge_table",2,1,0)

1274   

1275   ks=kinitial

1276   

1277   xEarth(i_Load)=CDbl(uppe(i_Load,0))

1278   yEarth(i_Load)=CDbl(AeR*uppe(i_Load,1))

1279   EA_Graph.PlotArrayXY(Panel1,"Graph2",1,nt+1, xEarth(), yEarth())

1280   EA_Graph.SetPlotProperty(Panel1,"Graph2",1,2,vbBlue)

1281   EA_Graph.Refresh(Panel1,"Graph2")

1282   

1283   Dim converge_time_step As Variant

1284   converge_time_step=0
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1285   EA_Panel.SetCell(Panel1,"Converge_time_table",1,1,0)

1286   

1287   Do While num<5000 'Convergence at each time step

1288   EA_Panel.GetCell(Panel1,"Converge_time_table",1,1,converge_time_step)

1289   

1290   'Zeros the global stiffness matrix

1291   For i=0 To tdof-1

1292   For j=0 To tdof-1

1293   global_stiffness(i,j)=0

1294   Next

1295   Next

1296   assemble_beam_stiffness(global_stiffness,tdof,K_beam_local,nbc,mdof)

1297   KSpring=Spring_stiff(global_stiffness,Column_hinge,dof,tdof,ks,Smdof)

1298   

1299   Dim Mfft() As Variant

1300   Dim lh() As Variant

1301   Dim Ps() As Variant

1302   Dim koof() As Variant

1303   Dim ktof() As Variant

1304   Dim kotf() As Variant

1305   

1306   

static_condensation(Lm,kotf,kttv,fsi,ktof,koof,Ps,lh,Mttf,global_stiffness,mdo

f,nfdof,Fsi1,Uil,global_mass,Pwtdof,ptfof,i_Load,nbc,tdof)

1307   

1308   Dim a_1() As Variant

1309   Dim a_2() As Variant

1310   Dim a_3() As Variant

1311   

1312   Dynamic_analysis_coefficients(a_1,a_2,a_3,dt,Mttf,Cff,tmdof)

1313   'P=-Mttf*lh*uppe(i_Load,2);

1314   Dim PEarth() As Variant

1315   ReDim Preserve PEarth(tmdof-1,0)

1316   

PEarth=Matrix_multiplcation_constant(-AeR*uppe(i_Load,1),Matrix_multiplication

(Mttf,lh,tmdof,tmdof,tmdof,1),tmdof,1)

1317   'Pa=P+Ps(1:tmdof,1)-ktof*(koof\Ps(tmdof+1:nfdof,1))

1318   Pa_calc(tmdof,nfdof,Ps,PEarth,ktof,koof)

1319   Dim Pa() As Variant

1320   ReDim Preserve Pa(tmdof-1,0)

1321   Pa=Pa_calc(tmdof,nfdof,Ps,PEarth,ktof,koof)

1322   'Pp=Pa+a1*ui(:,i_Load-1)+a2*upi(:,i_Load-1)+a3*uppi(:,i_Load-1)

1323   Dim Pp() As Variant

1324   ReDim Preserve Pp(tmdof-1,0)

1325   Pp=Pp_calcs(Pa,tmdof,ui,upi,uppi,a_1,a_2,a_3)

1326   'R=Pp-fsi(:,i_Load)-a1*ui(:,i_Load)

1327   Dim Residual() As Variant

1328   ReDim Preserve Residual(tmdof-1,0)

1329   Residual=R_calc(Pp,fsi,a_1,ui,tmdof)

1330   'Norm_max=max(abs(R))

1331   Dim Norm_max As Variant

1332   Norm_max=Norm_Residual(Residual,tmdof)

1333   num=num+1

1334   

1335   EA_Panel.SetValue(Panel1,"Iteration_out",num)

1336   EA_Panel.SetValue(Panel1,"Convergence_out",Norm_max)

1337   

1338   If Norm_max<ConvergC Then Exit Do

1339   

1340   If converge_time_step=1 Then Exit Do

1341   

1342   'Calculates the Newmarks pseudo stiffness

1343   'ktp=kttv+A1

1344   Dim ktp() As Variant

1345   ReDim Preserve ktp(tmdof-1,tmdof-1)

1346   ktp=Matrix_addition(kttv,a_1,tmdof,tmdof)

1347   Dim du() As Variant

1348   ReDim Preserve du(tmdof-1,0)

1349   du=Matrix_solver(ktp,Residual,tmdof)

1350   'ui(:,i_Load)=ui(:,i_Load)+du

1351   For i= 0 To tmdof-1

1352   ui(i,1)=ui(i,1)+du(i,0)

1353   Next
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1354   

1355   Dim uig() As Variant

1356   Dim uigdu() As Variant

1357   Dim Puig() As Variant

1358   

static_condensation_out(uig(),uigdu(),Puig(),ui,kotf,koof,Ps,Lm,i_Load,tmdof,nfdof

,tdof,du,PEarth)

1359   Dim Fsi2() As Variant

1360   

internal_dynamic_loads(IMD_G,IMD_L,IMF_L,IMF_G,Fsi2,nbc,uig,mdof,etran_local,etran

T_local,estiff_local,Pw_local)

1361   Dim Fs As Variant

1362   memf_spring_dynamic(Fs,IMFsi,IMDsi,KSpring,uig,Smdof,uigdu,i_Load)

1363   

1364   '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1365   'Sends displacement reading to actuator

1366   'Reads from load cell and LVDTS

1367   

1368   'EA_IO.SetAnalogOut(ByVal Channel As Variant, ByVal Connector As Integer, ByVal 

Voltage As Double, ByVal OperMode As Long, Optional ByVal OutputNumber As Integer) 

As Long

1369   'Dim LVDT_read As Double

1370   'EA_IO.Measure("MX410_1_CH 1",LVDT_read,1)

1371   

1372   If num<=ncpts  Then

1373   

1374   'Analog output

1375   Dim anolog_step As Variant

1376   Dim time_step_analog As Variant

1377   Dim change_disp As Variant

1378   

1379   change_disp=Abs(uig(Smdof(1,0)-1,0)*1000-Disp_i_1)

1380   anolog_step=Int(2*change_disp)+1

1381   time_step_analog=(uig(Smdof(1,0)-1,0)*1000-Disp_i_1)/anolog_step

1382   

1383   For i_as=1 To anolog_step

1384   analog_out=(1/-6.5025)*(Disp_i_1+i_as*time_step_analog) 'volts from mm

1385   EA_Panel.SetValue(Panel1,"DispRead_out",(Disp_i_1+i_as*time_step_analog)) 'mm

1386   EA_IO.SetAnalogOut("PMX_1 CH 9",1,analog_out,1)

1387   Wait 0.05

1388   Next

1389   

1390   End If

1391   Disp_i_1=uig(Smdof(1,0)-1,0)*1000

1392   

1393   analog_out=(1/-6.5025)*uig(Smdof(1,0)-1,0)*1000 'volts from mm

1394   EA_IO.SetAnalogOut("PMX_1 CH 9",1,analog_out,1)

1395   EA_Panel.SetValue(Panel1,"DispRead_out",uig(Smdof(1,0)-1,0)*1000) 'mm

1396   

1397   objXls_u.Worksheets(2).Cells(i_Load+2,18).Value =analog_out 'Volts

1398   objXls_u.Worksheets(14).Cells(num+1,i_Load).Value =uig(Smdof(1,0)-1,0) 'm

1399   

1400   Dim diff_servo As Variant

1401   Dim Disp_check_in As Variant

1402   

1403   EA_IO.Measure("Displacement_Hor",Disp_read_servo,1) 'mm from servo controller

1404   Disp_check_in=CVar(Disp_read_servo)

1405   EA_Panel.SetValue(Panel1,"DispRead_in",Disp_check_in)

1406   

1407   diff_servo=Abs(Disp_check_in-uig(Smdof(1,0)-1,0)*1000)

1408   EA_Panel.SetValue(Panel1,"Analog_diff",diff_servo)

1409   

1410   Dim Internal_loop As Variant

1411   Internal_loop=0

1412   EA_Panel.SetValue(Panel1,"Interal_counter",0)

1413   EA_Panel.SetCell(Panel1,"Converge_table",1,1,0)

1414   Dim Internal_count1 As Variant

1415   Internal_count1=0

1416   

1417   Do While diff_servo>20 'Determines the difference between output and input 

voltage

1418   Internal_count1=Internal_count1+1

1419   
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1420   EA_Panel.SetValue(Panel1,"Interal_counter",Internal_count1)

1421   

1422   EA_Panel.GetCell(Panel1,"Converge_table",1,1,Internal_loop)

1423   If Internal_loop=1 Then Exit Do

1424   EA_IO.Measure("Displacement_Hor",Disp_read_servo,1)

1425   EA_Panel.SetValue(Panel1,"DispRead_in",Disp_read_servo)

1426   Disp_check_in=CVar(Disp_read_servo)

1427   diff_servo=Abs(Disp_check_in-uig(Smdof(1,0)-1,0)*1000)

1428   EA_Panel.SetValue(Panel1,"Analog_diff",diff_servo)

1429   If diff_servo<20 Then Exit Do

1430   Loop

1431   

1432   EA_IO.Measure("Force_Hor",Force_read_servo,1)

1433   

1434   If num<=ncpts  Then

1435   Wait 0.1 'Waits for displacement to be applied and to settle

1436   Fs=CVar(Force_read_servo) 'N

1437   Fsavg=Fs

1438   ElseIf num>ncpts Then

1439   Fs=Fsavg

1440   EA_Panel.SetCell(Panel1,"Converge_table",2,1,1)

1441   EA_Panel.SetCell(Panel1,"Converge_table",2,2,Fs)

1442   End If

1443   

1444   EA_Panel.SetValue(Panel1,"Force_servo_in",Fs)

1445   

1446   

1447   

1448   objXls_u.Worksheets(2).Cells(i_Load+2,19).Value =Fs

1449   objXls_u.Worksheets(15).Cells(num+1,i_Load).Value =Fs

1450   

1451   

1452   '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1453   

1454   '[Fsi1,ks,IMFsi]=Post_calcs_nonlinear_dynamic(Fsi2,Fs,mdof,Smdof,tdof,IMFsi,IMDsi,i_Lo

ad);

1455   

Post_calcs_nonlinear_dynamic(Fsi1,ks,IMFsi,Fsi2,Fs,mdof,Smdof,tdof,IMDsi,i_Load,nb

c)

1456   'objXls_u.Workbooks(1).Save

1457   Loop

1458   

1459   '[upi,uppi]=velocity_acceleration(ui,upi,uppi,i_Load,dt);

1460   velocity_acceleration(ui,upi,uppi,dt,tmdof)

1461   'Calculates the reactions

1462   Rs=reactions(global_stiffness,Disp,nfdof,tdof)

1463   

1464   'Reads strain gauge data

1465   EA_IO.Measure("MX840_SL",Strain_Left,1)

1466   EA_IO.Measure("MX840_SR",Strain_right,1)

1467   

1468   objXls_u.Worksheets(2).Cells(i_Load+2,10).Value =Strain_Left

1469   objXls_u.Worksheets(2).Cells(i_Load+2,11).Value =Strain_right

1470   

1471   Strain_Left_disp(i_Load)=Strain_Left

1472   Strain_right_disp(i_Load)=Strain_right

1473   

1474   EA_IO.Measure("PMX_LVDT1",LVDT1,1)

1475   EA_IO.Measure("PMX_LVDT2",LVDT2,1)

1476   EA_IO.Measure("PMX_LVDT3",LVDT3,1)

1477   EA_IO.Measure("PMX_LVDT4",LVDT4,1)

1478   

1479   objXls_u.Worksheets(2).Cells(i_Load+2,13).Value =LVDT1

1480   objXls_u.Worksheets(2).Cells(i_Load+2,14).Value =LVDT2

1481   objXls_u.Worksheets(2).Cells(i_Load+2,15).Value =LVDT3

1482   objXls_u.Worksheets(2).Cells(i_Load+2,16).Value =LVDT4

1483   

1484   LVDT1_disp(i_Load)=LVDT1

1485   LVDT2_disp(i_Load)=LVDT2

1486   LVDT3_disp(i_Load)=LVDT3

1487   LVDT4_disp(i_Load)=LVDT4

1488   

1489   'Saves local stiffness matrices
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1490   

1491   objXls_u.Worksheets(9).Cells(6*i_Load+2,1).Value =uppe(i_Load,0)

1492   objXls_u.Worksheets(9).Cells(6*i_Load+2,nbc+3).Value =uppe(i_Load,0)

1493   For i=0 To 5

1494   For j=0 To nbc-1

1495   objXls_u.Worksheets(9).Cells(6*i_Load+2+i,j+2).Value =IMD_G(i,j)

1496   objXls_u.Worksheets(9).Cells(6*i_Load+2+i,j+nbc+4).Value =Fsi2(i,j)

1497   Next

1498   Next

1499   

1500   'Saves force matrix

1501   objXls_u.Worksheets(10).Cells(1,i_Load+1).Value =uppe(i_Load,0)

1502   For i=0 To 1

1503   objXls_u.Worksheets(10).Cells(i+2,i_Load+1).Value =IMFsi(i,i_Load)

1504   objXls_u.Worksheets(10).Cells(i+4,i_Load+1).Value =IMDsi(i,i_Load)

1505   Next

1506   

1507   'LVDT_counter=LVDT_counter+1

1508   'EA_Panel.SetValue(Panel2,"DIGIT_1",LVDT_read)

1509   

1510   'Energy calculations

1511   'Force_M(:,2)=Mttf*uppi(:,i_Load);

1512   

1513   Dim upiE() As Variant

1514   ReDim Preserve upiE(tmdof-1,0)

1515   

1516   Dim uppiE() As Variant

1517   ReDim Preserve uppiE(tmdof-1,0)

1518   

1519   For i=0 To 5

1520   For j=0 To nbc-1

1521   fsiE(i,j,1)=Fsi2(i,j)

1522   IMD_Gi(i,j,1)=IMD_G(i,j)

1523   Next

1524   Next

1525   

1526   For i=0 To tmdof-1

1527   upiE(i,0)=upi(i,1)

1528   uppiE(i,0)=uppi(i,1)

1529   Next

1530   

1531   Dim FeM() As Variant

1532   ReDim Preserve FeM(tmdof-1,0)

1533   FeM=Matrix_multiplication(Mttf,uppiE,tmdof,tmdof,tmdof,1)

1534   

1535   Dim FeC() As Variant

1536   ReDim Preserve FeC(tmdof-1,0)

1537   FeC=Matrix_multiplication(Cff,upiE,tmdof,tmdof,tmdof,1)

1538   

1539   For i=0 To tmdof-1

1540   Force_M(i,1)=FeM(i,0)

1541   Force_C(i,1)=FeC(i,0)

1542   objXls_u.Worksheets(12).Cells(i+2,i_Load+1).Value =FeM(i,0)

1543   objXls_u.Worksheets(13).Cells(i+2,i_Load+1).Value =FeC(i,0)

1544   Next

1545   

1546   For i=0 To nfdof-1

1547   Disp_P(i,1)=uig(i,0)

1548   Force_P(i,1)=Puig(i,0)

1549   Next

1550   

1551   For i=0 To nfdof-1

1552       Energy_Ps=Energy_Ps+0.5*(Disp_P(i,1)-Disp_P(i,0))*(Force_P(i,1)+Force_P(i,0))

1553   Next

1554   

1555   For i=0 To tmdof-1

1556   Energy_M=Energy_M+0.5*(ui(i,1)-ui(i,0))*(Force_M(i,1)+Force_M(i,0))

1557   Energy_C=Energy_C+0.5*(ui(i,1)-ui(i,0))*(Force_C(i,1)+Force_C(i,0))

1558   Next

1559   

1560   For i=0 To 5

1561   For j=0 To nbc-1

1562   Energy_K=Energy_K+0.5*(IMD_Gi(i,j,1)-IMD_Gi(i,j,0))*(fsiE(i,j,1)+fsiE(i,j,0))
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1563   Next

1564   Next

1565   

1566   Energy_H=Energy_H+0.5*(IMDsi(1,i_Load)-IMDsi(1,i_Load-1))*(IMFsi(1,i_Load)+IMFsi(1,i_L

oad-1))

1567   

1568   Energy_Ms(i_Load,0)=Energy_M

1569   Energy_Cs(i_Load,0)=Energy_C

1570   Energy_Ks(i_Load,0)=Energy_K

1571   Energy_Hs(i_Load,0)=Energy_H

1572   

1573   For i=0 To tmdof-1

1574   Force_M(i,0)=Force_M(i,1)

1575   Force_C(i,0)=Force_C(i,1)

1576   Next

1577   

1578   Energy_Total(i_Load)=CDbl(Energy_Ms(i_Load,0)+Energy_Cs(i_Load,0)+Energy_Ks(i_Load,0)+

Energy_Hs(i_Load,0))

1579   Energy_Stiffness(i_Load)=CDbl(Energy_Ks(i_Load,0)+Energy_Hs(i_Load,0)+Energy_Cs(i_Load

,0))

1580   Energy_Damping(i_Load)=CDbl(Energy_Hs(i_Load,0)+Energy_Cs(i_Load,0))

1581   Energy_Hys(i_Load)=CDbl(Energy_Hs(i_Load,0))

1582   

1583   'Plots Total Energy

1584   EA_Graph.PlotArrayXY(Panel1,"Energy_plot",1,nt+1, xEarth(), Energy_Total())

1585   EA_Graph.SetPlotProperty(Panel1,"Energy_plot",1,2,vbBlack)

1586   EA_Graph.SetPlotProperty(Panel1,"Energy_plot",1,5,0)

1587   

1588   EA_Graph.PlotArrayXY(Panel1,"Energy_plot",2,nt+1, xEarth(), Energy_Stiffness())

1589   EA_Graph.SetPlotProperty(Panel1,"Energy_plot",2,2,vbMagenta)

1590   EA_Graph.SetPlotProperty(Panel1,"Energy_plot",2,5,0)

1591   

1592   EA_Graph.PlotArrayXY(Panel1,"Energy_plot",3,nt+1, xEarth(), Energy_Damping())

1593   EA_Graph.SetPlotProperty(Panel1,"Energy_plot",3,2,vbBlue)

1594   EA_Graph.SetPlotProperty(Panel1,"Energy_plot",3,5,0)

1595   

1596   EA_Graph.PlotArrayXY(Panel1,"Energy_plot",4,nt+1, xEarth(), Energy_Hys())

1597   EA_Graph.SetPlotProperty(Panel1,"Energy_plot",4,2,vbRed)

1598   EA_Graph.SetPlotProperty(Panel1,"Energy_plot",4,5,0)

1599   

1600   EA_Graph.Refresh(Panel1,"Energy_plot")

1601   

1602   'Plots Strain values

1603   EA_Graph.PlotArrayXY(Panel2,"Strain_out_disp",1,nt+1, xEarth(), Strain_Left_disp())

1604   EA_Graph.SetPlotProperty(Panel2,"Strain_out_disp",1,2,vbBlue)

1605   EA_Graph.SetPlotProperty(Panel2,"Strain_out_disp",1,5,0)

1606   

1607   EA_Graph.PlotArrayXY(Panel2,"Strain_out_disp",2,nt+1, xEarth(), Strain_right_disp())

1608   EA_Graph.SetPlotProperty(Panel2,"Strain_out_disp",2,2,vbRed)

1609   EA_Graph.SetPlotProperty(Panel2,"Strain_out_disp",2,5,0)

1610   

1611   EA_Graph.Refresh(Panel2,"Strain_out_disp")

1612   

1613   'Plots LVDT values out

1614   EA_Graph.PlotArrayXY(Panel2,"Disp_read_LVDT",1,nt+1, xEarth(), LVDT1_disp())

1615   EA_Graph.SetPlotProperty(Panel2,"Disp_read_LVDT",1,2,vbBlack)

1616   EA_Graph.SetPlotProperty(Panel2,"Disp_read_LVDT",1,5,0)

1617   

1618   EA_Graph.PlotArrayXY(Panel2,"Disp_read_LVDT",2,nt+1, xEarth(), LVDT2_disp())

1619   EA_Graph.SetPlotProperty(Panel2,"Disp_read_LVDT",2,2,vbRed)

1620   EA_Graph.SetPlotProperty(Panel2,"Disp_read_LVDT",2,5,0)

1621   

1622   EA_Graph.PlotArrayXY(Panel2,"Disp_read_LVDT",3,nt+1, xEarth(), LVDT3_disp())

1623   EA_Graph.SetPlotProperty(Panel2,"Disp_read_LVDT",3,2,vbBlue)

1624   EA_Graph.SetPlotProperty(Panel2,"Disp_read_LVDT",3,5,0)

1625   

1626   EA_Graph.PlotArrayXY(Panel2,"Disp_read_LVDT",4,nt+1, xEarth(), LVDT4_disp())

1627   EA_Graph.SetPlotProperty(Panel2,"Disp_read_LVDT",4,2,vbMagenta)

1628   EA_Graph.SetPlotProperty(Panel2,"Disp_read_LVDT",4,5,0)

1629   

1630   EA_Graph.Refresh(Panel2,"Disp_read_LVDT")

1631   

1632   'Calculates the Park and Ang damage intensity
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1633   If Abs(IMDsi(1,i_Load))>di Then

1634   di=Abs(IMDsi(1,i_Load))

1635   End If

1636   

1637   If (di/dumax)+(bPa/(fyspring*dumax))*Energy_H>Dpa Then

1638   Dpa=(di/dumax)+(bPa/(fyspring*dumax))*Energy_H

1639   End If

1640   EA_Panel.SetValue(Panel,"Damage_out",Dpa)

1641   

1642   'Saves data to output file

1643   objXls_u.Worksheets(3).Cells(1,i_Load+1).Value =uppe(i_Load,0)

1644   objXls_u.Worksheets(11).Cells(1,i_Load+1).Value =uppe(i_Load,0)

1645   For i = 0 To nfdof-1

1646   objXls_u.Worksheets(3).Cells(i+2,i_Load+1).Value =uig(i,0)

1647   objXls_u.Worksheets(11).Cells(i+2,i_Load+1).Value =Puig(i,0)

1648   Next

1649   

1650   'Saves the velocity and acceleration data

1651   objXls_u.Worksheets(4).Cells(1,i_Load+2).Value =uppe(i_Load,0)

1652   objXls_u.Worksheets(5).Cells(1,i_Load+2).Value =uppe(i_Load,0)

1653   For i = 0 To tmdof-1

1654   objXls_u.Worksheets(4).Cells(i+2,i_Load+2).Value =upi(i,1)

1655   objXls_u.Worksheets(5).Cells(i+2,i_Load+2).Value =uppi(i,1)

1656   Next

1657   

1658   'Saves the energy data

1659   objXls_u.Worksheets(6).Cells(i_Load+2,1).Value =uppe(i_Load,0)

1660   objXls_u.Worksheets(6).Cells(i_Load+2,2).Value =Energy_M  'Mass or inertia energy / 

kinetic energy

1661   objXls_u.Worksheets(6).Cells(i_Load+2,3).Value =Energy_C  'Damping energy

1662   objXls_u.Worksheets(6).Cells(i_Load+2,4).Value =Energy_K  'Stiffness 

energy/potential energy

1663   objXls_u.Worksheets(6).Cells(i_Load+2,5).Value =Energy_H  'Hysteretic energy of the 

footing

1664   objXls_u.Worksheets(6).Cells(i_Load+2,6).Value =Energy_Ps  'External energy input

1665   

1666   objXls_u.Worksheets(6).Cells(i_Load+2,8).Value =Energy_H

1667   objXls_u.Worksheets(6).Cells(i_Load+2,9).Value =Energy_H+Energy_C

1668   objXls_u.Worksheets(6).Cells(i_Load+2,10).Value =Energy_H+Energy_C+Energy_K

1669   objXls_u.Worksheets(6).Cells(i_Load+2,11).Value =Energy_H+Energy_C+Energy_K+Energy_M

1670   

1671   xSpring(i_Load)=CDbl(IMDsi(1,i_Load)*1000)

1672   ySpring(i_Load)=CDbl(IMFsi(1,i_Load)/1000)

1673   EA_Graph.PlotArrayXY(Panel1,"Graph1",1,nt+1, xSpring(), ySpring())

1674   EA_Graph.SetPlotProperty(Panel1,"Graph1",1,2,vbRed)

1675   EA_Graph.Refresh(Panel1,"Graph1")

1676   

1677   'Output for foundation and numerical procedure

1678   

1679   objXls_u.Worksheets(2).Cells(i_Load+2,3).Value =IMDsi(1,i_Load)*1000

1680   objXls_u.Worksheets(2).Cells(i_Load+2,4).Value =IMFsi(1,i_Load)/1000

1681   

1682   objXls_u.Worksheets(2).Cells(i_Load+2,5).Value =Dpa

1683   objXls_u.Worksheets(2).Cells(i_Load+2,6).Value =Norm_max

1684   objXls_u.Worksheets(2).Cells(i_Load+2,7).Value =num

1685   'objXls_u.Worksheets(2).Cells(i_Load+2,8).Value =Load_axial

1686   

1687   

1688   objXls_u.Workbooks(1).Save

1689   Next

1690   

1691   objXls_u.Quit

1692   

1693   End Sub

1694   

1695   Sub static_condensation(ByRef Lm() As Variant,ByRef kotf() As Variant,ByRef kttv() 

As Variant,ByRef fsi() As Variant,ByRef ktof() As Variant,ByRef koof() As 

Variant,ByRef Ps() As Variant,ByRef lh() As Variant,ByRef Mttf() As Variant,ByVal K 

As Variant,ByVal mdof As Variant,ByVal nfdof As Variant,ByVal fso As Variant,ByVal 

Uio As Variant,ByVal global_mass As Variant,ByVal Pwtdof As Variant,ByVal ptfof As 

Variant,ByVal i_Load As Variant,ByVal nbc As Variant,ByVal tdof As Variant)

1696   

1697   Dim Lmi() As Variant
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1698   ReDim Preserve Lmi(nfdof-1,0)

1699   Dim Lhi() As Variant

1700   ReDim Preserve Lhi(nfdof-1,0)

1701   Dim Lvi() As Variant

1702   ReDim Preserve Lvi(nfdof-1,0)

1703   

1704   For i=0 To nfdof-1

1705   Lmi(i,0)=0

1706   Lhi(i,0)=0

1707   Lvi(i,0)=0

1708   Next

1709   

1710   For i=0 To 5

1711       For j=0 To nbc-1

1712           If i<>2 And i<>5 Then

1713               If mdof(i,j)<=nfdof Then

1714                   Lmi(mdof(i,j)-1,0)=1

1715               End If

1716           End If

1717           If i=0 Or i=3 Then

1718               If mdof(i,j)<=nfdof Then

1719               Lhi(mdof(i,j)-1,0)=1

1720               End If

1721           End If

1722           If i=1 Or i=4 Then

1723               If mdof(i,j)<=nfdof Then

1724               Lvi(mdof(i,j)-1,0)=1

1725               End If

1726           End If

1727       Next

1728   Next

1729   

1730   Dim Lms As Variant

1731   Lms=Matrix_sum(Lmi,nfdof,1)

1732   

1733   ReDim Preserve Lm(nfdof-1,0)

1734   

1735   Dim counter As Variant

1736   counter=-1

1737   For i=0 To nfdof-1

1738       If Lmi(i,0)<>0 Then

1739           counter=counter+1

1740           Lm(counter,0)=i

1741       End If

1742   Next

1743   tmdof=counter+1

1744   

1745   For i=0 To nfdof-1

1746       If Lmi(i,0)=0 Then

1747           counter=counter+1

1748           Lm(counter,0)=i

1749       End If

1750   Next

1751   

1752   Dim psi() As Variant

1753   ReDim Preserve psi(tdof-1,0)

1754   psi=Matrix_addition(Pwtdof,ptfof,tdof,1)

1755   

1756   Dim Kff() As Variant

1757   ReDim Preserve Kff(nfdof-1,nfdof-1)

1758   

1759   Dim Mff() As Variant

1760   ReDim Preserve Mff(nfdof-1,nfdof-1)

1761   

1762   For i=0 To nfdof-1

1763   For j=0 To nfdof-1

1764   Kff(i,j)=K(i,j)

1765   Mff(i,j)=global_mass(i,j)

1766   Next

1767   Next

1768   

1769   Dim Kfft() As Variant

1770   ReDim Preserve Kfft(nfdof-1,nfdof-1)
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1771   ReDim Preserve Mfft(nfdof-1,nfdof-1)

1772   

1773   For i=0 To nfdof-1

1774   For j=0 To nfdof-1

1775   Kfft(i,j)=0

1776   Mfft(i,j)=0

1777   Next

1778   Next

1779   

1780   Dim Fsto() As Variant

1781   ReDim Preserve Fsto(nfdof-1,0)

1782   

1783   ReDim Preserve Ps(nfdof-1,0)

1784   

1785   For i=0 To nfdof-1

1786   Fsto(i,0)=0

1787   Ps(i,0)=0

1788   Next

1789   

1790   Dim lv() As Variant

1791   ReDim Preserve lv(tmdof-1,0)

1792   

1793   ReDim Preserve lh(tmdof-1,0)

1794   

1795   For i=0 To tmdof-1

1796   lv(i,0)=0

1797   lh(i,0)=0

1798   Next

1799   

1800   For i=0 To nfdof-1

1801   Fsto(i,0)=fso(Lm(i,0),0)

1802   Ps(i,0)=psi(Lm(i,0),0)

1803       For j=0 To nfdof-1

1804           Kfft(i,j)=Kff(Lm(i,0),Lm(j,0))

1805           Mfft(i,j)=Mff(Lm(i,0),Lm(j,0))

1806       Next

1807   Next

1808   

1809   Dim kttf() As Variant

1810   ReDim Preserve kttf(tmdof-1,tmdof-1)

1811   

1812   For i=0 To tmdof-1

1813   For j=0 To tmdof-1

1814   kttf(i,j)=Kfft(i,j)

1815   Next

1816   Next

1817   

1818   ReDim Preserve ktof(tmdof-1,nfdof-tmdof-1)

1819   

1820   For i=0 To tmdof-1

1821   For j=0 To nfdof-tmdof-1

1822   ktof(i,j)=Kfft(i,j+tmdof)

1823   Next

1824   Next

1825   

1826   ReDim Preserve kotf(nfdof-tmdof-1,tmdof-1)

1827   

1828   For i=0 To nfdof-tmdof-1

1829   For j=0 To tmdof-1

1830   kotf(i,j)=Kfft(i+tmdof,j)

1831   Next

1832   Next

1833   

1834   ReDim Preserve koof(nfdof-tmdof-1,nfdof-tmdof-1)

1835   

1836   For i=0 To nfdof-tmdof-1

1837   For j=0 To nfdof-tmdof-1

1838   koof(i,j)=Kfft(i+tmdof,j+tmdof)

1839   Next

1840   Next

1841   

1842   Dim koofinv() As Variant

1843   ReDim Preserve koofinv(nfdof-tmdof-1,nfdof-tmdof-1)
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1844   koofinv=Matrix_inverse(koof,nfdof-tmdof,nfdof-tmdof)

1845   

1846   Dim kttvi() As Variant

1847   

1848   'kttv=kttf-ktof*inv(koof)*kotf;

1849   kttvi=Matrix_multiplication(ktof,koofinv,tmdof,nfdof-tmdof,nfdof-tmdof,nfdof-tmdof)

1850   kttvi=Matrix_multiplication(kttvi,kotf,tmdof,nfdof-tmdof,nfdof-tmdof,tmdof)

1851   ReDim kttv(tmdof,tmdof)

1852   kttv=Matrix_subtraction(kttf,kttvi,tmdof,tmdof)

1853   

1854   'Mttf=Mfft(1:tmdof,1:tmdof)

1855   ReDim Mttf(tmdof-1,tmdof-1)

1856   For i=0 To tmdof-1

1857   For j=0 To tmdof-1

1858   Mttf(i,j)=Mfft(i,j)

1859   Next

1860   Next

1861   

1862   'fsi(:,i_Load)=Fsto(1:tmdof,1)-ktof*inv(koof)*Fsto(tmdof+1:nfdof,1);

1863   ReDim Preserve fsi(tmdof-1,0)

1864   

1865   Dim fsiinv() As Variant

1866   

1867   Dim Fsto1() As Variant

1868   ReDim Preserve Fsto1(tmdof-1,0)

1869   For i=0 To tmdof-1

1870   Fsto1(i,0)=Fsto(i,0)

1871   Next

1872   

1873   Dim Fsto2() As Variant

1874   ReDim Preserve Fsto2(nfdof-tmdof-1,0)

1875   

1876   For i=0 To nfdof-tmdof-1

1877   Fsto2(i,0)=Fsto(i+tmdof,0)

1878   Next

1879   

1880   fsiinv=Matrix_multiplication(ktof,koofinv,tmdof,nfdof-tmdof,nfdof-tmdof,nfdof-tmdof)

1881   fsiinv=Matrix_multiplication(fsiinv,Fsto2,tmdof,nfdof-tmdof,nfdof-tmdof,1)

1882   fsi=Matrix_subtraction(Fsto1,fsiinv,tmdof,1)

1883   

1884   For i=0 To tmdof-1

1885       lv(i,0)=Lvi(Lm(i,0),0)

1886       lh(i,0)=Lhi(Lm(i,0),0)

1887   Next

1888   

1889   End Sub

1890   

1891   Private Sub PrintMatrix(ByRef Prop As Variant) ' Keeps giving a ) error, I need to 

pass a multidimensional array into a sub

1892   'The code works when I run it In visual studio

1893   For i = 0 To 3

1894           For j = 0 To 2

1895            EA_Panel.SetCell(Panel1,"PropTable",i+1,j+1,Prop(i,j))

1896          Next

1897       Next

1898   End Sub

1899   

1900   Function assemble_beam_stiffness(ByRef global_stiffness As Variant,ByVal tdof As 

Variant,ByVal K_beam_local As Variant,ByVal nbc As Variant,ByVal mdof As Variant) As 

Variant

1901   For i = 0 To tdof-1

1902           For j = 0 To tdof-1

1903   global_stiffness(i,j)=0

1904   Next

1905       Next

1906   

1907   'Assembles the Global stiffness matrix

1908   

1909   For i=0 To nbc-1

1910   For j=0 To 5

1911   For K=0 To 5

1912   

global_stiffness(mdof(j,i)-1,mdof(K,i)-1)=global_stiffness(mdof(j,i)-1,mdof(K,
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i)-1)+K_beam_local(j,K,i)

1913   Next

1914   Next

1915   Next

1916   

1917   End Function

1918   

1919   Sub assemble_local_stiffness_beam(ByRef estiff_local As Variant,ByRef etran_local As 

Variant,ByRef K_beam_local As Variant,ByRef etranT_local As Variant,ByVal nbc As 

Variant,ByVal Prop As Variant,ByVal idbc As Variant,ByVal mem_info As Variant)

1920   

1921   For j=0 To nbc-1

1922   

1923   Dim local_stiff() As Variant

1924   Dim local_etran() As Variant

1925   Dim local_etranTrans() As Variant

1926   Dim local_Kbeam() As Variant

1927   

1928   phi=mem_info(1,j)

1929   local_stiff=estiff_BEAM(Prop(1,idbc(j,2)-1),Prop(0,idbc(j,2)-1),Prop(2,idbc(j,2)-1),me

m_info(0,j))

1930   local_etran=etrans(phi)

1931   local_etranTrans=eTransT(phi)

1932   

1933   'M_beam_local{1,j}=transpose(gamma)*mass*gamma

1934   local_Kbeam=Matrix_multiplication(local_etranTrans,local_stiff,6,6,6,6)

1935   local_Kbeam=Matrix_multiplication(local_Kbeam,local_etran,6,6,6,6)

1936   

1937   For i=0 To 5

1938   For K= 0 To 5

1939   estiff_local(i,K,j)=local_stiff(i,K)

1940   etran_local(i,K,j)=local_etran(i,K)

1941   etranT_local(i,K,j)=local_etranTrans(i,K)

1942   K_beam_local(i,K,j)=local_Kbeam(i,K)

1943   Next

1944   Next

1945   Next

1946   

1947   End Sub

1948   

1949   Function estiff_BEAM(ByVal a As Variant,ByVal e As Variant,ByVal i As Variant,ByVal 

l As Variant ) As Variant

1950   

1951   Dim elk() As Variant

1952   ReDim Preserve elk(5,5)

1953   

1954   elk(0,0)=(a*e)/l

1955   elk(0,1)=0

1956   elk(0,2)=0

1957   elk(0,3)=(-a*e)/l

1958   elk(0,4)=0

1959   elk(0,5)=0

1960   

1961   elk(1,0)=0

1962   elk(1,1)=(12*e*i)/l^3

1963   elk(1,2)=(6*e*i)/l^2

1964   elk(1,3)=0

1965   elk(1,4)=(-12*e*i)/l^3

1966   elk(1,5)=(6*e*i)/l^2

1967   

1968   elk(2,0)=0

1969   elk(2,1)=(6*e*i)/l^2

1970   elk(2,2)=(4*e*i)/l

1971   elk(2,3)=0

1972   elk(2,4)=(-6*e*i)/l^2

1973   elk(2,5)=(2*e*i)/l

1974   

1975   

1976   elk(3,0)=(-a*e)/l

1977   elk(3,1)=0

1978   elk(3,2)=0

1979   elk(3,3)=(a*e)/l

1980   elk(3,4)=0
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1981   elk(3,5)=0

1982   

1983   elk(4,0)=0

1984   elk(4,1)=(-12*e*i)/l^3

1985   elk(4,2)=(-6*e*i)/l^2

1986   elk(4,3)=0

1987   elk(4,4)=(12*e*i)/l^3

1988   elk(4,5)=(-6*e*i)/l^2

1989   

1990   elk(5,0)=0

1991   elk(5,1)=(6*e*i)/l^2

1992   elk(5,2)=(2*e*i)/l

1993   elk(5,3)=0

1994   elk(5,4)=(-6*e*i)/l^2

1995   elk(5,5)=(4*e*i)/l

1996   

1997   estiff_BEAM=elk

1998   

1999   End Function

2000   

2001   Function etrans(ByVal phi As Variant) As Variant

2002   

2003   Dim Gamma() As Variant

2004   ReDim Preserve Gamma(5,5)

2005   

2006   For i=0 To 5

2007   For j=0 To 5

2008   Gamma(i,j)=0

2009   Next

2010   Next

2011   

2012   Gamma(0,0)=Cos(phi)

2013   Gamma(0,1)=Sin(phi)

2014   Gamma(1,0)=-Sin(phi)

2015   Gamma(1,1)=Cos(phi)

2016   Gamma(2,2)=1

2017   Gamma(3,3)=Cos(phi)

2018   Gamma(3,4)=Sin(phi)

2019   Gamma(4,3)=-Sin(phi)

2020   Gamma(4,4)=Cos(phi)

2021   Gamma(5,5)=1

2022   

2023   etrans=Gamma

2024   

2025   End Function

2026   

2027   Function eTransT(ByVal phi As Variant) As Variant

2028   Dim Gamma() As Variant

2029   ReDim Preserve Gamma(5,5)

2030   

2031   For i=0 To 5

2032   For j=0 To 5

2033   Gamma(i,j)=0

2034   Next

2035   Next

2036   

2037   Gamma(0,0)=Cos(phi)

2038   Gamma(0,1)=-Sin(phi)

2039   Gamma(1,0)=Sin(phi)

2040   Gamma(1,1)=Cos(phi)

2041   Gamma(2,2)=1

2042   Gamma(3,3)=Cos(phi)

2043   Gamma(3,4)=-Sin(phi)

2044   Gamma(4,3)=Sin(phi)

2045   Gamma(4,4)=Cos(phi)

2046   Gamma(5,5)=1

2047   

2048   eTransT=Gamma

2049   

2050   End Function

2051   

2052   Function Matrix_multiplication(ByVal matrix1 As Variant, ByVal Matrix2 As 

Variant,ByVal m1 As Variant,ByVal n1 As Variant, ByVal m2 As Variant, ByVal n2 As 
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Variant) As Variant

2053   

2054   Dim result() As Variant

2055   ReDim Preserve result(m1-1,n2-1)

2056   'EA_Panel.SetCell(Panel1,"PropTable",1,1,m1)

2057   'EA_Panel.SetCell(Panel1,"PropTable",1,2,n2)

2058   

2059   For i =0 To m1-1

2060   For j = 0 To n2-1

2061   For K=0 To n1-1

2062   result(i,j)=result(i,j)+matrix1(i,K)*Matrix2(K,j)

2063   Next

2064   Next

2065   Next

2066   Matrix_multiplication=result

2067   

2068   End Function

2069   

2070   Function Matrix_solver(ByVal a As Variant,ByVal b As Variant,ByVal n As Variant) As 

Variant

2071   

2072   'To reduce the coefficient matrix To the upper triangular form And Then solve With 

backward substitution

2073   'Reduce the coefficient matrix To upper triangular form

2074   Dim m As Variant

2075   Dim pt() As Variant

2076   Dim pivot As Variant

2077   Dim counter As Variant

2078   

2079   For K=0 To n-2

2080   For i=K+1 To n-1

2081   If a(K,K)<>0 Then

2082   m=a(i,K)/a(K,K)

2083   ElseIf a(K,K)=0 Then

2084   pt=eye(n)

2085   pivot=a(K,K)

2086   counter=K

2087   While pivot =0 And counter<n-1

2088   counter=counter+1

2089   pivot=a(counter,K)

2090   Wend

2091   pt(K,K)=0

2092   pt(K,counter)=1

2093   pt(counter,K)=1

2094   pt(counter,counter)=0

2095   a=Matrix_multiplication(pt,a,n,n,n,n)

2096   b=Matrix_multiplication(pt,b,n,n,n,1)

2097   m=a(i,K)/a(K,K)

2098   End If

2099   For j=K+1 To n-1

2100   a(i,K)=0

2101   a(i,j)=a(i,j)-m*a(K,j)

2102   Next

2103   b(i,0)=b(i,0)-m*b(K,0)

2104   Next

2105   Next

2106   

2107   'Solve With backward substitution

2108   Dim x() As Variant 'x=zeros(n,1);

2109   ReDim Preserve x(n-1,0)

2110   For i=0 To n-1

2111   x(i,0)=0

2112   Next

2113   Dim s As Variant

2114   

2115   For K=n-1 To 0 Step -1

2116   s=0

2117   For j=K To n-1

2118   If K<>j Then

2119   s=s+a(K,j)*x(j,0)

2120   End If

2121   Next

2122   x(K,0)=(b(K,0)-s)/a(K,K)
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2123   Next

2124   Matrix_solver=x

2125   

2126   

2127   End Function

2128   

2129   Function eye(ByVal n As Variant) As Variant

2130   

2131   Dim a() As Variant

2132   ReDim Preserve a(n-1,n-1)

2133   

2134   For i=0 To n-1

2135   For j=0 To n-1

2136   If i=j Then

2137   a(i,j)=1

2138   Else

2139   a(i,j)=0

2140   End If

2141   Next

2142   Next

2143   eye=a

2144   

2145   End Function

2146   

2147   

2148   Function Spring_stiff(ByRef global_stiffness As Variant ,ByVal Column_hinge As 

Variant,ByVal dof As Variant,ByVal tdof As Variant,ByVal ks As Variant,ByRef Smdof 

As Variant)

2149   

2150   'Adds the spring stiffness In the Global matrix

2151   

2152   Smdof(0,0)= tdof

2153   Smdof(1,0)= dof(0,Column_hinge-1)

2154   

2155   Dim KSpring() As Variant

2156   ReDim Preserve KSpring(1,1)

2157   

2158   KSpring(0,0)=ks

2159   KSpring(0,1)=-ks

2160   KSpring(1,0)=-ks

2161   KSpring(1,1)=ks

2162   

2163   'Assembles the Global stiffness matrix

2164   For j=0 To 1

2165   For K=0 To 1

2166   

global_stiffness(Smdof(j,0)-1,Smdof(K,0)-1)=global_stiffness(Smdof(j,0)-1,Smdof(K,

0)-1)+KSpring(j,K)

2167   Next

2168   Next

2169   

2170   Spring_stiff=KSpring

2171   

2172   End Function

2173   

2174   Function beam_loads(ByVal loading_beam As Variant,ByVal nbc As Variant,ByVal 

etranT_local As Variant,ByVal dof As Variant,ByVal mem_info As Variant,ByVal idbc As 

Variant,ByVal tdof As Variant,ByVal nfdof As Variant,ByRef Pw_local As Variant,ByRef 

DOF_c As Variant,ByRef Pwtdof() As Variant) As Variant

2175   

2176   For i=0 To nbc-1

2177   For j=0 To 5

2178   Pw_local(j,i)=0

2179   DOF_c(j,i)=0

2180   Next

2181   Next

2182   

2183   Dim Wbeam() As Variant

2184   ReDim Preserve Wbeam(nbc-1,0)

2185   

2186   For i=0 To nbc-1

2187   Pw_local(0,loading_beam(i,0)-1)=0

2188   
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Pw_local(1,loading_beam(i,0)-1)=-(loading_beam(i,1)*mem_info(0,loading_beam(i,0)-1

))/2

2189   

Pw_local(2,loading_beam(i,0)-1)=-(loading_beam(i,1)*mem_info(0,loading_beam(i,0)-1

)^2)/12

2190   Pw_local(3,loading_beam(i,0)-1)=0

2191   

Pw_local(4,loading_beam(i,0)-1)=-(loading_beam(i,1)*mem_info(0,loading_beam(i,0)-1

))/2

2192   

Pw_local(5,loading_beam(i,0)-1)=(loading_beam(i,1)*mem_info(0,loading_beam(i,0)-1)

^2)/12

2193   Wbeam(loading_beam(i,0)-1,0)=loading_beam(i,1)

2194   Next

2195   

2196   Dim Pw_global() As Variant

2197   ReDim Preserve Pw_global(5,nbc-1)

2198   

2199   For i=0 To nbc-1

2200   Dim trans() As Variant

2201   ReDim Preserve trans(5,5) As Variant

2202   Dim LocalPW() As Variant

2203   ReDim Preserve LocalPW(5,5) As Variant

2204   

2205   For j=0 To 5

2206   For K=0 To 5

2207   trans(j,K)=etranT_local(j,K,i)

2208   Next

2209   LocalPW(j,0)=Pw_local(j,i)

2210   Next

2211   

2212   local_Kbeam=Matrix_multiplication(trans,LocalPW,6,6,6,1)

2213   

2214   For K=0 To 5

2215   Pw_global(K,i)=local_Kbeam(K,0)

2216   Next

2217   

2218   For K=0 To 2

2219       DOF_c(K,i)=dof(K,idbc(i,0)-1)

2220       DOF_c(K+3,i)=dof(K,idbc(i,1)-1)

2221   Next

2222   Next

2223   

2224   Dim Pw() As Variant

2225   ReDim Preserve Pw(nfdof-1,0)

2226   

2227   For i=0 To nfdof-1

2228   Pw(i,0)=0

2229   Next

2230   

2231   For i=0 To nbc-1

2232       For j=0 To 5

2233       Pwtdof(DOF_c(j,i)-1,0)=Pwtdof(DOF_c(j,i)-1,0)+Pw_global(j,i)

2234       Next

2235   Next

2236   

2237   For i=0 To nfdof-1

2238   Pw(i,0)=Pwtdof(i,0)

2239   Next

2240   

2241   beam_loads=Pw

2242   

2243   End Function

2244   

2245   Function solve(ByVal global_stiffness As Variant,ByVal R As Variant,ByVal nfdof As 

Variant) As Variant

2246   

2247   Dim Kff() As Variant

2248   ReDim Preserve Kff(nfdof-1,nfdof-1)

2249   

2250   For i=0 To nfdof-1

2251   For j=0 To nfdof-1

2252   Kff(i,j)=global_stiffness(i,j)
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2253   Next

2254   Next

2255   

2256   solve=Matrix_solver(Kff,R,nfdof)

2257   

2258   End Function

2259   

2260   Function Matrix_addition(ByVal a As Variant,ByVal b As Variant,ByVal m1 As 

Variant,ByVal n1 As Variant) As Variant

2261   

2262   Dim Out() As Variant

2263   ReDim Preserve Out(m1-1,n1-1)

2264   

2265   For i=0 To m1-1

2266   For j=0 To n1-1

2267   Out(i,j)=a(i,j)+b(i,j)

2268   Next

2269   Next

2270   Matrix_addition=Out

2271   

2272   End Function

2273   

2274   Function Matrix_subtraction(ByVal a As Variant,ByVal b As Variant,ByVal m1 As 

Variant,ByVal n1 As Variant) As Variant

2275   

2276   Dim Out() As Variant

2277   ReDim Preserve Out(m1-1,n1-1)

2278   

2279   For i=0 To m1-1

2280   For j=0 To n1-1

2281   Out(i,j)=a(i,j)-b(i,j)

2282   Next

2283   Next

2284   Matrix_subtraction=Out

2285   

2286   End Function

2287   

2288   Sub memf(ByRef IMF_L As Variant,ByRef IMD_L As Variant,ByRef IMD_G As Variant,ByRef 

IMF_G As Variant,ByRef fso As Variant,ByVal supp As Variant,ByVal nnode As 

Variant,ByVal Disp As Variant,ByVal nbc As Variant,ByVal idbc As Variant,ByVal 

etran_local As Variant,ByVal etranT_local As Variant,ByVal estiff_local As 

Variant,ByVal Pw_local As Variant)

2289   '[IMF_L,IMD_L,IMD_G,IMF_G,fso,coord_out]=memf(supp,Disp,estiff_local,etran_local,idbc,

nbc,coord,nnode,Pw_local)

2290   

2291   Dim displacement_out() As Variant

2292   ReDim Preserve displacement_out(2,nnode-1)

2293   'displacement_out=zeros(m,n)

2294   Dim count As Variant

2295   count=-1

2296   

2297   For j=0 To nnode-1

2298   For i=0 To 2

2299   If supp(i,j)=1 Then

2300   displacement_out(i,j)=0

2301   ElseIf supp(i,j)=0 Then

2302   count=count+1

2303   displacement_out(i,j)=Disp(count,0)

2304   End If

2305   Next

2306   Next

2307   

2308   'Transform {displacement_out} from Global To local coordinates by multiplying With 

member local stiffness matrix

2309   'And transformation matrix

2310   

2311   For i=0 To nbc-1

2312   

2313   For K=0 To 2

2314       IMD_G(K,i)=displacement_out(K,idbc(i,0)-1)

2315       IMD_G(K+3,i)=displacement_out(K,idbc(i,1)-1)

2316   Next

2317   
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2318   Dim IMDLi() As Variant

2319   ReDim Preserve IMDLi(5,0)

2320   Dim IMFLi() As Variant

2321   ReDim Preserve IMFLi(5,0)

2322   Dim IMFGi() As Variant

2323   ReDim Preserve IMFGi(5,0)

2324   Dim fsoi() As Variant

2325   ReDim Preserve fsoi(5,0)

2326   Dim PwL() As Variant

2327   ReDim Preserve PwL(5,0)

2328   

2329   Dim trans As Variant

2330   ReDim Preserve trans(5,5)

2331   Dim transT As Variant

2332   ReDim Preserve transT(5,5)

2333   Dim estiff As Variant

2334   ReDim Preserve estiff(5,5)

2335   

2336   For j=0 To 5

2337   For K=0 To 5

2338   trans(j,K)=etran_local(j,K,i)

2339   transT(j,K)=etranT_local(j,K,i)

2340   estiff(j,K)=estiff_local(j,K,i)

2341   Next

2342   IMDLi(j,0)=IMD_G(j,i)

2343   PwL(j,0)=Pw_local(j,i)

2344   Next

2345   

2346   IMDLi=Matrix_multiplication(trans,IMDLi,6,6,6,1)

2347   IMFLi=Matrix_multiplication(estiff,IMDLi,6,6,6,1)

2348   fsoi=Matrix_multiplication(transT,IMFLi,6,6,6,1)

2349   IMFLi=Matrix_subtraction(IMFLi,PwL,6,1)

2350   IMFGi=Matrix_multiplication(transT,IMFLi,6,6,6,1)

2351   

2352   For j=0 To 5

2353   IMD_L(j,i)=IMDLi(j,0)

2354   IMF_L(j,i)=IMFLi(j,0)

2355   IMF_G(j,i)=IMFGi(j,0)

2356   fso(j,i)=fsoi(j,0)

2357   Next

2358   

2359   Next

2360   

2361   End Sub

2362   

2363   Sub memf_spring(ByVal KSpring As Variant,ByVal Disp As Variant,ByVal Smdof As 

Variant,ByRef ds As Variant,ByRef IMFs As Variant)

2364   'Calculates the New spring stiffness

2365   

2366   ds(0,0)=0

2367   ds(1,0)=Disp(Smdof(1,0)-1,0)

2368   Dim IMFsi() As Variant

2369   IMFsi=Matrix_multiplication(KSpring,ds,2,2,2,1)

2370   

2371   For i=0 To 1

2372   IMFs(i,0)=IMFsi(i,0)

2373   Next

2374   

2375   End Sub

2376   

2377   Sub initial_conditions_static(ByRef Fsi1 As Variant,ByRef Ui1 As Variant,ByVal fso 

As Variant,ByVal IMD_G As Variant,ByVal mdof As Variant,ByVal tdof As Variant,ByVal 

IMFs As Variant,ByVal Smdof As Variant,ByVal nbc As Variant)

2378   

2379   For i=0 To nbc-1

2380       For j=0 To 5

2381       Fsi1(mdof(j,i)-1,0)=Fsi1(mdof(j,i)-1,0)+fso(j,i)

2382       Ui1(mdof(j,i)-1,0)=IMD_G(j,i)

2383       Next

2384   Next

2385   

2386   Fsi1(Smdof(0,0)-1,0)=Fsi1(Smdof(0,0)-1,0)+IMFs(0,0)

2387   Fsi1(Smdof(1,0)-1,0)=Fsi1(Smdof(1,0)-1,0)+IMFs(1,0)
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2388   

2389   End Sub

2390   

2391   Function assemble_mass_self(ByRef global_mass As Variant,ByVal nbc As Variant,ByVal 

Prop As Variant,ByVal idbc As Variant,ByVal mem_info As Variant,ByVal mdof As 

Variant,ByVal tdof As Variant)

2392   

2393   Dim M_beam_local As Variant

2394   ReDim Preserve M_beam_local(5,5,nbc-1)

2395   

2396   For j=0 To nbc-1

2397   

2398   Dim local_mass() As Variant

2399   Dim local_etran() As Variant

2400   Dim local_etranTrans() As Variant

2401   Dim local_Mself() As Variant

2402   

2403   'e=Prop(0,idbc(j,2)-1)

2404   'a=Prop(1,idbc(j,2)-1)

2405   'i=Prop(2,idbc(j,2)-1)

2406   'l=mem_info(0,j)

2407   'den=Prop(3,idbc(j,2)-1)

2408   

2409   phi=mem_info(1,j)

2410   

2411   local_mass=mass_local(Prop(1,idbc(j,2)-1),mem_info(0,j),Prop(3,idbc(j,2)-1))

2412   local_etran=etrans(phi)

2413   local_etranTrans=eTransT(phi)

2414   

2415   'M_beam_local{1,j}=transpose(gamma)*mass*gamma

2416   local_Mself=Matrix_multiplication(local_etranTrans,local_mass,6,6,6,6)

2417   local_Mself=Matrix_multiplication(local_Mself,local_etran,6,6,6,6)

2418   

2419   For i=0 To 5

2420   For K= 0 To 5

2421   M_beam_local(i,K,j)=local_Mself(i,K)

2422   Next

2423   Next

2424   Next

2425   

2426   assemble_mass_self=M_beam_local

2427   

2428   For i=0 To nbc-1

2429   For j=0 To 5

2430   For K=0 To 5

2431   

global_mass(mdof(j,i)-1,mdof(K,i)-1)=global_mass(mdof(j,i)-1,mdof(K,i)-1)+M_be

am_local(j,K,i)

2432   Next

2433   Next

2434   Next

2435   

2436   End Function

2437   

2438   Function mass_local(ByVal a As Variant,ByVal l As Variant,ByVal den As Variant) As 

Variant

2439   

2440   Dim Mass As Variant

2441   ReDim Preserve Mass(5,5)

2442   

2443   For i=0 To 5

2444   For j= 0 To 5

2445   Mass(i,j)=0

2446   Next

2447   Next

2448   

2449   Mass(0,0)=(a*l*den)/2

2450   Mass(1,1)=(a*l*den)/2

2451   Mass(3,3)=(a*l*den)/2

2452   Mass(4,4)=(a*l*den)/2

2453   

2454   mass_local=Mass

2455   
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2456   End Function

2457   

2458   Function assemble_mass_DL(ByRef global_mass As Variant,ByVal nbc As Variant,ByVal 

idbc As Variant,ByVal mem_info As Variant,ByVal mdof As Variant,ByVal tdof As 

Variant,ByVal tc As Variant,ByVal Span As Variant,ByVal Den_conc As Variant)

2459   

2460   Dim a As Variant

2461   a=tc*Span

2462   

2463   Dim M_beam_local As Variant

2464   ReDim Preserve M_beam_local(5,5,nbc-1)

2465   

2466   For j=0 To nbc-1

2467   

2468   If idbc(j,2)=2 Then

2469   Dim local_mass() As Variant

2470   Dim local_etran() As Variant

2471   Dim local_etranTrans() As Variant

2472   Dim local_MDL() As Variant

2473   

2474   phi=mem_info(1,j)

2475   

2476   local_mass=mass_local(a,mem_info(0,j),Den_conc)

2477   local_etran=etrans(phi)

2478   local_etranTrans=eTransT(phi)

2479   

2480   'M_beam_local{1,j}=transpose(gamma)*mass*gamma

2481   local_MDL=Matrix_multiplication(local_etranTrans,local_mass,6,6,6,6)

2482   local_MDL=Matrix_multiplication(local_MDL,local_etran,6,6,6,6)

2483   

2484   For i=0 To 5

2485   For K= 0 To 5

2486   M_beam_local(i,K,j)=local_MDL(i,K)

2487   Next

2488   Next

2489   

2490   Else

2491   For i=0 To 5

2492   For K= 0 To 5

2493   M_beam_local(i,K,j)=0

2494   Next

2495   Next

2496   End If

2497   

2498   Next

2499   

2500   assemble_mass_DL=M_beam_local

2501   

2502   For i=0 To nbc-1

2503   For j=0 To 5

2504   For K=0 To 5

2505   

global_mass(mdof(j,i)-1,mdof(K,i)-1)=global_mass(mdof(j,i)-1,mdof(K,i)-1)+M_be

am_local(j,K,i)

2506   Next

2507   Next

2508   Next

2509   

2510   

2511   End Function

2512   

2513   Function assemble_mass_LL(ByRef global_mass As Variant,ByVal nbc As Variant,ByVal 

idbc As Variant,ByVal mem_info As Variant,ByVal mdof As Variant,ByVal tdof As 

Variant,ByVal Span As Variant,ByVal LL As Variant)

2514   

2515   Dim a As Variant

2516   a=Span

2517   Dim den As Variant

2518   den=LL/9.81

2519   

2520   Dim M_beam_local As Variant

2521   ReDim Preserve M_beam_local(5,5,nbc-1)

2522   
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2523   For j=0 To nbc-1

2524   

2525   If idbc(j,2)=2 Then

2526   Dim local_mass() As Variant

2527   Dim local_etran() As Variant

2528   Dim local_etranTrans() As Variant

2529   Dim local_MLL() As Variant

2530   

2531   'e=Prop(0,idbc(j,2)-1)

2532   'a=Prop(1,idbc(j,2)-1)

2533   'i=Prop(2,idbc(j,2)-1)

2534   'l=mem_info(0,j)

2535   'den=Prop(3,idbc(j,2)-1)

2536   

2537   phi=mem_info(1,j)

2538   

2539   local_mass=mass_local(a,mem_info(0,j),den)

2540   local_etran=etrans(phi)

2541   local_etranTrans=eTransT(phi)

2542   

2543   'M_beam_local{1,j}=transpose(gamma)*mass*gamma

2544   local_MLL=Matrix_multiplication(local_etranTrans,local_mass,6,6,6,6)

2545   local_MLL=Matrix_multiplication(local_MLL,local_etran,6,6,6,6)

2546   

2547   For i=0 To 5

2548   For K= 0 To 5

2549   M_beam_local(i,K,j)=local_MLL(i,K)

2550   Next

2551   Next

2552   Else

2553   

2554   For i=0 To 5

2555   For K= 0 To 5

2556   M_beam_local(i,K,j)=0

2557   Next

2558   Next

2559   

2560   End If

2561   Next

2562   

2563   assemble_mass_LL=M_beam_local

2564   

2565   For i=0 To nbc-1

2566   For j=0 To 5

2567   For K=0 To 5

2568   

global_mass(mdof(j,i)-1,mdof(K,i)-1)=global_mass(mdof(j,i)-1,mdof(K,i)-1)+M_be

am_local(j,K,i)

2569   Next

2570   Next

2571   Next

2572   

2573   

2574   

2575   

2576   End Function

2577   

2578   Function Matrix_inverse(ByVal a As Variant,ByVal m1 As Variant,ByVal n1 As Variant)

2579   

2580   Dim m As Variant

2581   Dim pt() As Variant

2582   Dim pivot As Variant

2583   Dim counter As Variant

2584   Dim b() As Variant

2585   b=eye(n1)

2586   

2587   For K=0 To n1-2

2588   For i=K+1 To n1-1

2589   If a(K,K)<>0 Then

2590   m=a(i,K)/a(K,K)

2591   

2592   ElseIf a(K,K)=0 Then

2593   pt=eye(n1)
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2594   pivot=a(K,K)

2595   counter=K

2596   While pivot =0 And counter<n1-1

2597   counter=counter+1

2598   pivot=a(counter,K)

2599   Wend

2600   pt(K,K)=0

2601   pt(K,counter)=1

2602   pt(counter,K)=1

2603   pt(counter,counter)=0

2604   a=Matrix_multiplication(pt,a,n1,n1,n1,n1)

2605   b=Matrix_multiplication(pt,b,n1,n1,n1,n1)

2606   m=a(i,K)/a(K,K)

2607   End If

2608   For j=K+1 To n1-1

2609   a(i,K)=0

2610   a(i,j)=a(i,j)-m*a(K,j)

2611   Next

2612   For j=0 To n1-1

2613   b(i,j)=b(i,j)-m*b(K,j)

2614   Next

2615   Next

2616   Next

2617   

2618   For K=n1-1 To 1 Step -1

2619   For i=K-1 To 0 Step -1

2620   

2621   m=a(i,K)/a(K,K)

2622   

2623   For j=K-1 To 0 Step -1

2624   a(i,K)=0

2625   a(i,j)=a(i,j)-m*a(K,j)

2626   Next

2627   

2628   For j=0 To n1-1

2629   b(i,j)=b(i,j)-m*b(K,j)

2630   Next

2631   Next

2632   Next

2633   

2634   For i=0 To n1-1

2635   For j=0 To n1-1

2636   b(i,j)=b(i,j)/a(i,i)

2637   Next

2638   Next

2639   

2640   Matrix_inverse=b

2641   

2642   End Function

2643   

2644   Sub static_condensation_initial(ByRef Lm As Variant,ByRef kttv() As Variant,ByRef 

Uto As Variant,ByRef tmdof As Variant,ByRef Mttf() As Variant,ByVal K As 

Variant,ByVal global_mass As Variant,ByVal mdof As Variant,ByVal nfdof As 

Variant,ByVal fso As Variant,ByVal Uio As Variant,ByVal nbc As Variant)

2645   'The model incorporates Static condensation of the frame structure To only

2646   'include certain degrees of freedom where the mass will act

2647   'THe model accounts For only horizontal mass And vertical mass response And

2648   'ignores the rotational mass moment of inertia

2649   'The Function reorders the matrixes And solves For the equivalent

2650   'statically condensed stiffnes matix

2651   '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2652   

2653   Dim Lmi() As Variant

2654   ReDim Preserve Lmi(nfdof-1,0)

2655   For i=0 To nfdof-1

2656   Lmi(i,0)=0

2657   Next

2658   

2659   For i=0 To 5

2660       For j=0 To nbc-1

2661           If i<>2 And i<>5 Then

2662               If mdof(i,j)<=nfdof Then

2663                   Lmi(mdof(i,j)-1,0)=1
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2664               End If

2665           End If

2666       Next

2667   Next

2668   

2669   Dim Lms As Variant

2670   Lms=Matrix_sum(Lmi,nfdof,1)

2671   

2672   Dim counter As Variant

2673   counter=-1

2674   For i=0 To nfdof-1

2675       If Lmi(i,0)<>0 Then

2676           counter=counter+1

2677           Lm(counter,0)=i

2678       End If

2679   Next

2680   tmdof=counter+1

2681   

2682   For i=0 To nfdof-1

2683       If Lmi(i,0)=0 Then

2684           counter=counter+1

2685           Lm(counter,0)=i

2686       End If

2687   Next

2688   

2689   Dim Kff() As Variant

2690   ReDim Preserve Kff(nfdof-1,nfdof-1)

2691   

2692   Dim Mff() As Variant

2693   ReDim Preserve Mff(nfdof-1,nfdof-1)

2694   

2695   For i=0 To nfdof-1

2696   For j=0 To nfdof-1

2697   Kff(i,j)=K(i,j)

2698   Mff(i,j)=global_mass(i,j)

2699   Next

2700   Next

2701   

2702   Dim Kfft() As Variant

2703   ReDim Preserve Kfft(nfdof-1,nfdof-1)

2704   

2705   Dim Mfft() As Variant

2706   ReDim Preserve Mfft(nfdof-1,nfdof-1)

2707   

2708   For i=0 To nfdof-1

2709   For j=0 To nfdof-1

2710   Kfft(i,j)=0

2711   Mfft(i,j)=0

2712   Next

2713   Next

2714   

2715   Dim Fsto() As Variant

2716   ReDim Preserve Fsto(nfdof-1,0)

2717   

2718   For i=0 To nfdof-1

2719   Uto(i,0)=0

2720   Fsto(i,0)=0

2721   Next

2722   

2723   For i=0 To nfdof-1

2724       Fsto(i,0)=fso(Lm(i,0),0)

2725       Uto(i,0)=Uio(Lm(i,0),0)

2726       For j=0 To nfdof-1

2727           Kfft(i,j)=Kff(Lm(i,0),Lm(j,0))

2728           Mfft(i,j)=Mff(Lm(i,0),Lm(j,0))

2729       Next

2730   Next

2731   

2732   Dim kttf() As Variant

2733   ReDim Preserve kttf(tmdof-1,tmdof-1)

2734   

2735   For i=0 To tmdof-1

2736   For j=0 To tmdof-1
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2737   kttf(i,j)=Kfft(i,j)

2738   Next

2739   Next

2740   

2741   Dim ktof() As Variant

2742   ReDim Preserve ktof(tmdof-1,nfdof-tmdof-1)

2743   

2744   For i=0 To tmdof-1

2745   For j=0 To nfdof-tmdof-1

2746   ktof(i,j)=Kfft(i,j+tmdof)

2747   Next

2748   Next

2749   

2750   Dim kotf() As Variant

2751   ReDim Preserve kotf(nfdof-tmdof-1,tmdof-1)

2752   

2753   For i=0 To nfdof-tmdof-1

2754   For j=0 To tmdof-1

2755   kotf(i,j)=Kfft(i+tmdof,j)

2756   Next

2757   Next

2758   

2759   Dim koof() As Variant

2760   ReDim Preserve koof(nfdof-tmdof-1,nfdof-tmdof-1)

2761   

2762   For i=0 To nfdof-tmdof-1

2763   For j=0 To nfdof-tmdof-1

2764   koof(i,j)=Kfft(i+tmdof,j+tmdof)

2765   Next

2766   Next

2767   

2768   Dim koofinv() As Variant

2769   ReDim Preserve koofinv(nfdof-tmdof-1,nfdof-tmdof-1)

2770   koofinv=Matrix_inverse(koof,nfdof-tmdof,nfdof-tmdof)

2771   

2772   Dim kttvi() As Variant

2773   

2774   'kttv=kttf-ktof*inv(koof)*kotf;

2775   kttvi=Matrix_multiplication(ktof,koofinv,tmdof,nfdof-tmdof,nfdof-tmdof,nfdof-tmdof)

2776   kttvi=Matrix_multiplication(kttvi,kotf,tmdof,nfdof-tmdof,nfdof-tmdof,tmdof)

2777   ReDim kttv(tmdof,tmdof)

2778   kttv=Matrix_subtraction(kttf,kttvi,tmdof,tmdof)

2779   

2780   'Mttf=Mfft(1:tmdof,1:tmdof)

2781   ReDim Mttf(tmdof-1,tmdof-1)

2782   For i=0 To tmdof-1

2783   For j=0 To tmdof-1

2784   Mttf(i,j)=Mfft(i,j)

2785   Next

2786   Next

2787   

2788   End Sub

2789   

2790   Function Matrix_sum(ByVal a As Variant,ByVal m As Variant,ByVal n As Variant) As 

Variant

2791   

2792   Dim Sumi As Variant

2793   Sumi=0

2794   

2795   For i=0 To m-1

2796   For j=0 To n-1

2797   Sumi=Sumi+a(i,j)

2798   Next

2799   Next

2800   

2801   Matrix_sum=Sumi

2802   

2803   End Function

2804   

2805   Function Rayleigh_damping_nonlinear(ByVal eig As Variant,ByVal m As Variant,ByVal K 

As Variant,ByVal Dp As Variant,ByVal tmdof As Variant)

2806   'Determine the Constants ao And a1

2807   'Rayleigh damping (2 modes)
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2808   '[A]{a}=2[D]

2809   'Construction of the [A]

2810   

2811   Dim a() As Variant

2812   ReDim Preserve a(1,1)

2813   Dim D() As Variant

2814   ReDim Preserve D(1,0)

2815   Dim R() As Variant

2816   ReDim Preserve R(1,0)

2817   Dim Damp() As Variant

2818   ReDim Preserve Damp(1,0)

2819   

2820   a(0,0)=1/eig(0,0)

2821   a(0,1)=eig(0,0)

2822   a(1,0)=1/eig(1,0)

2823   a(1,1)=eig(1,0)

2824   

2825   D(0,0)=2*Dp

2826   D(1,0)=2*Dp

2827   

2828   R=Matrix_solver(a,D,2)

2829   

2830   Dim mi() As Variant

2831   ReDim Preserve mi(tmdof-1,tmdof-1)

2832   Dim ki() As Variant

2833   ReDim Preserve ki(tmdof-1,tmdof-1)

2834   

2835   mi=Matrix_multiplcation_constant(R(0,0),m,tmdof,tmdof)

2836   ki=Matrix_multiplcation_constant(R(1,0),K,tmdof,tmdof)

2837   

2838   Rayleigh_damping_nonlinear=Matrix_addition(mi,ki,tmdof,tmdof)

2839   

2840   End Function

2841   

2842   

2843   Function Matrix_multiplcation_constant(ByVal c As Variant,ByVal matrixi As 

Variant,ByVal m As Variant,ByVal n As Variant) As Variant

2844   

2845   Dim mati() As Variant

2846   ReDim Preserve mati(m-1,n-1)

2847   

2848   For i=0 To m-1

2849   For j=0 To n-1

2850   mati(i,j)=c*matrixi(i,j)

2851   Next

2852   Next

2853   

2854   Matrix_multiplcation_constant=mati

2855   

2856   

2857   End Function

2858   

2859   Function eigenvalues(ByVal Mass As Variant,ByVal Kstiff As Variant,ByVal n As Variant)

2860   

2861   'Finds the first two eigenvalues det(K-wn^2*M)=0

2862   

2863   Dim rangew As Variant

2864   rangew=6000

2865   Dim y() As Variant

2866   ReDim Preserve y(rangew-1,0)

2867   Dim x() As Variant

2868   ReDim Preserve x(rangew-1,0)

2869   

2870   x=linspace(0,200000,rangew)

2871   

2872   For ii=0 To rangew-1

2873   wi=x(ii,0)

2874   

2875   Dim mi() As Variant

2876   ReDim Preserve mi(n-1,n-1)

2877   Dim a() As Variant

2878   ReDim Preserve a(n-1,n-1)

2879   
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2880   mi=Matrix_multiplcation_constant(wi,Mass,n,n)

2881   a=Matrix_subtraction(Kstiff,mi,n,n)

2882   

2883   Dim m As Variant

2884   Dim pt() As Variant

2885   Dim pivot As Variant

2886   Dim counter As Variant

2887   

2888   For K=0 To n-2

2889   For i=K+1 To n-1

2890   If a(K,K)<>0 Then

2891   m=a(i,K)/a(K,K)

2892   ElseIf a(K,K)=0 Then

2893   pt=eye(n)

2894   pivot=a(K,K)

2895   counter=K

2896   While pivot =0 And counter<n-1

2897   counter=counter+1

2898   pivot=a(counter,K)

2899   Wend

2900   pt(K,K)=0

2901   pt(K,counter)=1

2902   pt(counter,K)=1

2903   pt(counter,counter)=0

2904   a=Matrix_multiplication(pt,a,n,n,n,n)

2905   m=a(i,K)/a(K,K)

2906   End If

2907   For j=K+1 To n-1

2908   a(i,K)=0

2909   a(i,j)=a(i,j)-m*a(K,j)

2910   Next

2911   Next

2912   Next

2913   

2914   Dim deti As Variant

2915   deti=1

2916       For i=0  To n-1

2917           deti=deti*a(i,i)

2918       Next

2919   y(ii,0)=deti

2920   Next

2921   

2922   Dim counter2 As Variant

2923   counter2=0

2924   Dim A1 As Variant

2925   Dim B1 As Variant

2926   Dim c1 As Variant

2927   Dim D1 As Variant

2928   Dim det As Variant

2929   Dim Eig_values() As Variant

2930   ReDim Preserve Eig_values(1,0)

2931   i=0

2932   Do Until counter2=2

2933   i=i+1

2934   If y(i,0)=0 Then

2935           counter2=counter2+1

2936   A1=y(i-1,0)

2937   B1=y(i,0)

2938   c1=x(i-1,0)

2939   D1=x(i,0)

2940           det=((-A1)*(D1-c1)/(B1-A1))+c1

2941           Eig_values(counter2-1,0)=Sqr(det)

2942   ElseIf (y(i-1,0)/y(i,0))<0 Then

2943           counter2=counter2+1

2944   A1=y(i-1,0)

2945   B1=y(i,0)

2946   c1=x(i-1,0)

2947   D1=x(i,0)

2948           det=((-A1)*(D1-c1)/(B1-A1))+c1

2949           Eig_values(counter2-1,0)=Sqr(det)

2950       End If

2951   Loop

2952   
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2953   eigenvalues=Eig_values

2954   

2955   End Function

2956   

2957   Function linspace(ByVal min As Variant,ByVal max As Variant,ByVal n As Variant) As 

Variant

2958   

2959   Dim part() As Variant

2960   ReDim Preserve part(n-1,0)

2961   

2962   For I=0 To n-1

2963   part(I,0)=((max-min)/(n-1))*I+min

2964   Next

2965   

2966   linspace=part

2967   

2968   End Function

2969   

2970   Function Import_data(ByVal nt As Variant ) As Variant

2971   

2972   Dim Earthquake() As Variant

2973   ReDim Preserve Data(nt-1,1)

2974   Dim objXls As Object

2975   Set objXls = CreateObject("Excel.Application")

2976   objXls.Workbooks.Open "C:\Octave\Dynamics\Pseudo\ElCentro0.87g.xlsx"

2977   For i=0 To nt-1

2978   Data(i,0)=objXls.Worksheets(1).Cells(i+1,1).Value

2979   Data(i,1)=objXls.Worksheets(1).Cells(i+1,2).Value

2980   Next

2981   objXls.Quit

2982   

2983   Import_data=Data

2984   

2985   End Function

2986   

2987   Sub Sort_matrix(ByRef mati As Variant,ByRef mat As Variant,ByVal m As Variant,ByVal 

n As Variant)

2988   

2989   For i=0 To m-1

2990   For j=0 To n-1

2991   mati(i,j,1)=mat(i,j)

2992   Next

2993   Next

2994   

2995   End Sub

2996   

2997   Function vector_sort(ByRef veci As Variant,ByRef vec As Variant,ByVal m As 

Variant,ByVal col As Variant)

2998   

2999   For i=0 To m-1

3000   veci(i,col)=vec(i,0)

3001   Next

3002   

3003   End Function

3004   

3005   Sub Initial_sort_mat(ByRef mati As Variant,ByVal m As Variant,ByVal n As 

Variant,ByVal matfrom As Variant,ByVal matto As Variant)

3006   

3007   For i=0 To m-1

3008   For j=0 To n-1

3009   mati(i,j,matto)=mati(i,j,matfrom)

3010   Next

3011   Next

3012   

3013   End Sub

3014   

3015   Sub Initial_sort_vec(ByRef veci As Variant,ByVal m As Variant,ByVal vecfrom As 

Variant,ByVal vecto As Variant)

3016   

3017   For i=0 To m-1

3018   veci(i,vecto)=veci(i,vecfrom)

3019   Next

3020   
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3021   End Sub

3022   

3023   Sub Dynamic_analysis_coefficients(ByRef a_1() As Variant,ByRef a_2() As 

Variant,ByRef a_3() As Variant,ByVal dt As Variant,ByVal Mttf As Variant,ByVal Cff 

As Variant,ByVal tmdof As Variant )

3024   'a_1=(1/(Beta*dt^2))*Mttf+(Gamma/(Beta*dt))*Cff

3025   'a_2=(1/(Beta*dt))*Mttf+((Gamma/Beta)-1)*Cff

3026   'a_3=((1/(2*Beta))-1)*Mttf+dt*((Gamma/(2*Beta))-1)*Cff

3027   

3028   Dim Beta As Variant

3029   Beta=0.25

3030   Dim Gamma As Variant

3031   Gamma=0.5

3032   

3033   ReDim Preserve a_1(tmdof-1,tmdof-1)

3034   ReDim Preserve a_2(tmdof-1,tmdof-1)

3035   ReDim Preserve a_3(tmdof-1,tmdof-1)

3036   

3037   a_1=Matrix_addition(Matrix_multiplcation_constant(1/(Beta*dt^2),Mttf,tmdof,tmdof),Matr

ix_multiplcation_constant(Gamma/(Beta*dt),Cff,tmdof,tmdof),tmdof,tmdof)

3038   a_2=Matrix_addition(Matrix_multiplcation_constant(1/(Beta*dt),Mttf,tmdof,tmdof),Matrix

_multiplcation_constant((Gamma/Beta)-1,Cff,tmdof,tmdof),tmdof,tmdof)

3039   a_3=Matrix_addition(Matrix_multiplcation_constant((1/(2*Beta))-1,Mttf,tmdof,tmdof),Mat

rix_multiplcation_constant(dt*((Gamma/(2*Beta))-1),Cff,tmdof,tmdof),tmdof,tmdof)

3040   

3041   End Sub

3042   

3043   Function Pa_calc(ByVal tmdof As Variant,ByVal nfdof As Variant,ByVal Ps As 

Variant,ByVal PEarth As Variant,ByVal ktof As Variant,ByVal koof As Variant) As 

Variant

3044   'Pa=P+Ps(1:tmdof,1)-ktof*(koof\Ps(tmdof+1:nfdof,1))

3045   Dim Pa() As Variant

3046   ReDim Preserve Pa(tmdof-1,0)

3047   

3048   Dim ps1() As Variant

3049   ReDim Preserve ps1(tmdof-1,0)

3050   Dim ps2() As Variant

3051   ReDim Preserve ps2(nfdof-tmdof-1,0)

3052   

3053   For i=0 To tmdof-1

3054   ps1(i,0)=Ps(i,0)

3055   Next

3056   

3057   For i=0 To nfdof-tmdof-1

3058   ps2(i,0)=Ps(i+tmdof,0)

3059   Next

3060   

3061   Dim koofs() As Variant

3062   ReDim Preserve koofs(nfdof-tmdof-1,0)

3063   Pa=Matrix_subtraction(Matrix_addition(PEarth,ps1,tmdof,1),Matrix_multiplication(ktof,M

atrix_solver(koof,ps2,nfdof-tmdof),tmdof,nfdof-tmdof,nfdof-tmdof,1),tmdof,1)

3064   Pa_calc=Pa

3065   

3066   End Function

3067   

3068   Function Pp_calcs(ByVal Pa As Variant,ByVal tmdof As Variant,ByVal ui As 

Variant,ByVal upi As Variant,ByVal uppi As Variant,ByVal a_1 As Variant,ByVal a_2 As 

Variant,ByVal a_3 As Variant) As Variant

3069   

3070   Dim Pp As Variant

3071   ReDim Preserve Pp(tmdof-1,0)

3072   

3073   Dim Ppdis As Variant

3074   ReDim Preserve Ppdis(tmdof-1,0)

3075   Dim Ppvel As Variant

3076   ReDim Preserve Ppvel(tmdof-1,0)

3077   Dim Ppac As Variant

3078   ReDim Preserve Ppac(tmdof-1,0)

3079   Dim uipp() As Variant

3080   ReDim Preserve uipp(tmdof-1,0)

3081   Dim upipp() As Variant

3082   ReDim Preserve upipp(tmdof-1,0)

3083   Dim uppipp() As Variant
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3084   ReDim Preserve uppipp(tmdof-1,0)

3085   

3086   For i=0 To tmdof-1

3087   uipp(i,0)=ui(i,0)

3088   upipp(i,0)=upi(i,0)

3089   uppipp(i,0)=uppi(i,0)

3090   Next

3091   

3092   Ppdis=Matrix_multiplication(a_1,uipp,tmdof,tmdof,tmdof,1)

3093   Ppvel=Matrix_multiplication(a_2,upipp,tmdof,tmdof,tmdof,1)

3094   Ppac=Matrix_multiplication(a_3,uppipp,tmdof,tmdof,tmdof,1)

3095   

3096   Pp=Matrix_addition(Pa,Ppdis,tmdof,1)

3097   Pp=Matrix_addition(Pp,Ppvel,tmdof,1)

3098   Pp=Matrix_addition(Pp,Ppac,tmdof,1)

3099   Pp_calcs=Pp

3100   

3101   End Function

3102   

3103   Function R_calc(ByVal Pp As Variant,ByVal fsi As Variant,ByVal a_1 As Variant,ByVal 

ui As Variant,ByVal tmdof As Variant)

3104   'R=Pp-fsi(:,i_Load)-a1*ui(:,i_Load)

3105   Dim R() As Variant

3106   ReDim Preserve R(tmdof-1,0)

3107   

3108   Dim uiR() As Variant

3109   ReDim Preserve uiR(tmdof-1,0)

3110   For i=0 To tmdof-1

3111   uiR(i,0)=ui(i,1)

3112   Next

3113   

3114   Dim R2() As Variant

3115   ReDim Preserve R2(tmdof-1,0)

3116   

3117   R2=Matrix_multiplication(a_1,uiR,tmdof,tmdof,tmdof,1)

3118   R=Matrix_subtraction(Pp,fsi,tmdof,1)

3119   R=Matrix_subtraction(R,R2,tmdof,1)

3120   R_calc=R

3121   

3122   End Function

3123   

3124   Function Norm_Residual(ByVal Residual As Variant, ByVal tmdof As Variant) As Variant

3125   'Calculates the norm of the array

3126   Dim max As Variant

3127   max=Abs(Residual(0,0))

3128   

3129   For i=1 To tmdof-1

3130   If Abs(Residual(i,0))>max Then

3131   max=Abs(Residual(i,0))

3132   End If

3133   Next

3134   Norm_Residual=max

3135   

3136   End Function

3137   

3138   Sub static_condensation_out(ByRef uig() As Variant,ByRef uigdu() As Variant,ByRef 

Puig() As Variant,ByVal ui As Variant,ByVal kotf As Variant,ByVal koof As 

Variant,ByVal Ps As Variant,ByVal Lm As Variant,ByVal i_Load As Variant,ByVal tmdof 

As Variant,ByVal nfdof As Variant,ByVal tdof As Variant,ByVal du As Variant,ByVal 

PEarth As Variant)

3139   

3140   'Reverses the static condensation

3141   Dim ps1() As Variant

3142   ReDim Preserve ps1(tmdof-1,0)

3143   Dim ps2() As Variant

3144   ReDim Preserve ps2(nfdof-tmdof-1,0)

3145   

3146   For i=0 To tmdof-1

3147   ps1(i,0)=Ps(i,0)

3148   Next

3149   

3150   For i=0 To nfdof-tmdof-1

3151   ps2(i,0)=Ps(i+tmdof,0)
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3152   Next

3153   

3154   'Pload=p+Ps(1:tmdof,1);

3155   Dim Pload() As Variant

3156   ReDim Preserve Pload(tmdof-1,0)

3157   Pload=Matrix_addition(PEarth,ps1,tmdof,1)

3158   Dim uiR() As Variant

3159   ReDim Preserve uiR(tmdof-1,0)

3160   For i=0 To tmdof-1

3161   uiR(i,0)=ui(i,1)

3162   Next

3163   

3164   'uo=koof\Ps(tmdof+1:nfdof,1)-koof\(kotf*ui(:,i_Load))

3165   Dim uo1() As Variant

3166   ReDim Preserve uo1(nfdof-tmdof-1,0)

3167   Dim uo2() As Variant

3168   ReDim Preserve uo2(tmdof-1,0)

3169   Dim uo() As Variant

3170   ReDim Preserve uo(nfdof-tmdof-1,0)

3171   

3172   uo1=Matrix_solver(koof,ps2,nfdof-tmdof)

3173   

3174   uo2=Matrix_solver(koof,Matrix_multiplication(kotf,uiR,nfdof-tmdof,tmdof,tmdof,1),nfdof

-tmdof)

3175   uo=Matrix_subtraction(uo1,uo2,nfdof-tmdof,1)

3176   

3177   'uodu=-koof\(kotf*du(:,1))

3178   Dim uodu() As Variant

3179   ReDim Preserve uodu(nfdof-tmdof,0)

3180   uodu=Matrix_multiplcation_constant(-1,Matrix_solver(koof,Matrix_multiplication(kotf,du

,nfdof-tmdof,tmdof,tmdof,1),nfdof-tmdof),nfdof-tmdof,1)

3181   

3182   'uoi=[ui(:,i_Load);uo]

3183   'uoidu=[du(:,1);uodu];

3184   Dim uoi() As Variant

3185   ReDim Preserve uoi(nfdof-1,0)

3186   Dim uoidu() As Variant

3187   ReDim Preserve uoidu(nfdof-1,0)

3188   'Pload=[Pload;Ps(tmdof+1:nfdof,1)];

3189   Dim counter As Variant

3190   Dim Pload1() As Variant

3191   ReDim Preserve Pload1(nfdof-1,0)

3192   

3193   counter=-1

3194   For i=0 To tmdof-1

3195   counter=counter+1

3196   uoi(counter,0)=uiR(i,0)

3197   uoidu(counter,0)=du(i,0)

3198   Pload1(counter,0)=Pload(i,0)

3199   Next

3200   'Pload=[Pload;Ps(tmdof+1:nfdof,1)];

3201   

3202   For i=0 To nfdof-tmdof-1

3203   counter=counter+1

3204   uoi(counter,0)=uo(i,0)

3205   uoidu(counter,0)=uodu(i,0)

3206   Pload1(counter,0)=ps2(i,0)

3207   Next

3208   

3209   ReDim Preserve uig(tdof-1,0)

3210   ReDim Preserve uigdu(tdof-1,0)

3211   ReDim Preserve Puig(tdof-1,0)

3212   

3213   For i=0 To tdof-1

3214   uig(i,0)=0

3215   uigdu(i,0)=0

3216   Puig(i,0)=0

3217   Next

3218   

3219   For i=0 To nfdof-1

3220       uig(Lm(i,0),0)=uoi(i,0)

3221       uigdu(Lm(i,0),0)=uoidu(i,0)

3222   Puig(Lm(i,0),0)=Pload1(i,0)
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3223   Next

3224   End Sub

3225   

3226   Sub internal_dynamic_loads(ByRef IMD_G() As Variant,ByRef IMD_L() As Variant,ByRef 

IMF_L() As Variant,ByRef IMF_G() As Variant,ByRef Fsi2() As Variant,ByVal nbc As 

Variant,ByVal uig As Variant,ByVal mdof As Variant,ByVal etran_local As 

Variant,ByVal etranT_local As Variant,ByVal estiff_local As Variant,ByVal Pw_local 

As Variant)

3227   

3228   'duv=zeros(6,nbc)

3229   Dim duv() As Variant

3230   ReDim Preserve duv(5,nbc-1)

3231   

3232   For i=0 To nbc-1

3233       For j=0 To 5

3234           duv(j,i)=uig(mdof(j,i)-1,0)

3235       Next

3236   Next

3237   

3238   'Calculate the internal member force at the time

3239   

3240   'Transform {displacement_out} from Global To local coordinates by multiplying With 

member local stiffness matrix

3241   'And transformation matrix

3242   ReDim Preserve Fsi2(5,nbc-1)

3243   For i=0 To nbc-1

3244   For K=0 To 5

3245       IMD_G(K,i)=duv(K,i)

3246   Next

3247   

3248   Dim IMDLi() As Variant

3249   ReDim Preserve IMDLi(5,0)

3250   Dim IMFLi() As Variant

3251   ReDim Preserve IMFLi(5,0)

3252   Dim IMFGi() As Variant

3253   ReDim Preserve IMFGi(5,0)

3254   Dim fsoi() As Variant

3255   ReDim Preserve fsoi(5,0)

3256   Dim PwL() As Variant

3257   ReDim Preserve PwL(5,0)

3258   

3259   Dim trans As Variant

3260   ReDim Preserve trans(5,5)

3261   Dim transT As Variant

3262   ReDim Preserve transT(5,5)

3263   Dim estiff As Variant

3264   ReDim Preserve estiff(5,5)

3265   

3266   For j=0 To 5

3267   For K=0 To 5

3268   trans(j,K)=etran_local(j,K,i)

3269   transT(j,K)=etranT_local(j,K,i)

3270   estiff(j,K)=estiff_local(j,K,i)

3271   Next

3272   IMDLi(j,0)=IMD_G(j,i)

3273   PwL(j,0)=Pw_local(j,i)

3274   Next

3275   IMDLi=Matrix_multiplication(trans,IMDLi,6,6,6,1)

3276   IMFLi=Matrix_multiplication(estiff,IMDLi,6,6,6,1)

3277   fsoi=Matrix_multiplication(transT,IMFLi,6,6,6,1)

3278   IMFLi=Matrix_subtraction(IMFLi,PwL,6,1)

3279   IMFGi=Matrix_multiplication(transT,IMFLi,6,6,6,1)

3280   

3281   For j=0 To 5

3282   IMD_L(j,i)=IMDLi(j,0)

3283   IMF_L(j,i)=IMFLi(j,0)

3284   IMF_G(j,i)=IMFGi(j,0)

3285   Fsi2(j,i)=fsoi(j,0)

3286   Next

3287   

3288   Next

3289   End Sub

3290   

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3291   Sub memf_spring_dynamic(ByRef Fs As Variant,ByRef IMFsi As Variant,ByRef IMDsi As 

Variant,ByVal KSpring As Variant,ByVal uig As Variant,ByVal Smdof As Variant,ByVal 

uigdu As Variant,ByVal i_Load As Variant)

3292   

3293   Dim ds() As Variant

3294   ReDim Preserve ds(1,0)

3295   Dim dsidu() As Variant

3296   ReDim Preserve dsidu(1,0)

3297   

3298   For I=0 To 1

3299   ds(I,0)=0

3300   dsidu(I,0)=0

3301   Next

3302   

3303   ds(1,0)=uig(Smdof(1,0)-1,0)

3304   dsidu(1,0)=uigdu(Smdof(1,0)-1,0)

3305   

3306   'IMFs=KSpring*dsidu

3307   Dim IMFs() As Variant

3308   ReDim Preserve IMFs(1,0)

3309   IMFs=Matrix_multiplication(KSpring,dsidu,2,2,2,1)

3310   

3311   'IMFsi{i_Load}=IMFsi{i_Load}+IMFs;

3312   IMFsi(0,i_Load)=IMFsi(0,i_Load)+IMFs(0,0)

3313   IMFsi(1,i_Load)=IMFsi(1,i_Load)+IMFs(1,0)

3314   

3315   'IMDsi{i_Load}=IMDsi{i_Load}+dsidu;

3316   IMDsi(0,i_Load)=IMDsi(0,i_Load)+dsidu(0,0)

3317   IMDsi(1,i_Load)=IMDsi(1,i_Load)+dsidu(1,0)

3318   

3319   'Fs=IMFsi{i_Load}(2,1)

3320   Fs=IMFsi(1,i_Load)

3321   

3322   End Sub

3323   

3324   Sub Post_calcs_nonlinear_dynamic(ByRef Fsi1 As Variant,ByRef ks As Variant,ByRef 

IMFsi As Variant,ByVal Fsi2 As Variant,ByVal Fs As Variant,ByVal mdof As 

Variant,ByVal Smdof As Variant,ByVal tdof As Variant,ByVal IMDsi As Variant,ByVal 

i_Load As Variant,ByVal nbc As Variant)

3325   

3326   For i=0 To tdof-1

3327   Fsi1(i,0)=0

3328   Next

3329   

3330   For i=0 To nbc-1

3331   For j=0 To 5

3332   Fsi1(mdof(j,i)-1,0)=Fsi1(mdof(j,i)-1,0)+Fsi2(j,i)

3333   Next

3334   Next

3335   

3336   Fsi1(Smdof(0,0)-1,0)=Fsi1(Smdof(0,0)-1,0)-Fs

3337   Fsi1(Smdof(1,0)-1,0)=Fsi1(Smdof(1,0)-1,0)+Fs

3338   

3339   IMFsi(1,i_Load)=Fs

3340   IMFsi(0,i_Load)=-Fs

3341   

3342   If Abs((IMDsi(1,i_Load)-IMDsi(1,i_Load-1)))*1000<0.0001 Then

3343   EA_Panel.GetCell(Panel1,"Converge_time_table",1,1,converge_time_step)

3344   ElseIf Abs((IMDsi(1,i_Load)-IMDsi(1,i_Load-1)))*1000>=0.0001 Then

3345   ks=Abs((IMFsi(1,i_Load)-IMFsi(1,i_Load-1))/(IMDsi(1,i_Load)-IMDsi(1,i_Load-1)))

3346   End If

3347   End Sub

3348   

3349   Sub velocity_acceleration(ByVal ui As Variant,ByRef upi As Variant,ByRef uppi As 

Variant,ByVal dt As Variant,ByVal tmdof As Variant)

3350   

3351   Dim Gamma As Variant

3352   Dim Beta As Variant

3353   Gamma=0.5

3354   Beta=0.25

3355   

3356   For i= 0 To tmdof-1

3357   upi(i,1)=(Gamma/(Beta*dt))*(ui(i,1)-ui(i,0))+(1-Gamma/Beta)*upi(i,0)+dt*(1-Gamma/(2*Be
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ta))*uppi(i,0)

3358   uppi(i,1)=(1/(Beta*dt^2))*(ui(i,1)-ui(i,0))-(1/(Beta*dt))*upi(i,0)-((1/(2*Beta))-1)*up

pi(i,0)

3359   Next

3360   

3361   End Sub

3362   

3363   Function reactions(ByVal global_stiffness As Variant,ByVal Disp As Variant,ByVal 

nfdof As Variant,ByVal tdof As Variant) As Variant

3364   

3365   Dim Rs() As Variant

3366   Dim Ksf() As Variant

3367   ReDim Preserve Ksf(tdof-nfdof-1,nfdof-1)

3368   Dim fixdof As Variant

3369   fixdof=tdof-nfdof

3370   

3371   For i=0 To fixdof-1

3372   For j=0 To nfdof-1

3373   Ksf(i,j)=global_stiffness(i+nfdof,j)

3374   Next

3375   Next

3376   

3377   Rs=Matrix_multiplication(Ksf,Disp,tdof-nfdof,nfdof,nfdof,1)

3378   reactions=Rs

3379   

3380   End Function

3381   

3382   Function assemble_mass_Point(ByRef global_mass As Variant,ByVal dof As Variant,ByVal 

tdof As Variant,ByVal N_mas As Variant,ByVal Nodes_mas As Variant,ByVal M_mas As 

Variant,ByVal mdof As Variant) As Variant

3383   'Assembles the mass as a result of the masonary walls

3384   

3385   Dim global_mass_Point() As Variant

3386   ReDim Preserve global_mass_Point(tdof-1,tdof-1)

3387   For i=0 To tdof-1

3388   For j=0 To tdof-1

3389   global_mass_Point(i,j)=0

3390   Next

3391   Next

3392   

3393   For i=0 To N_mas-1

3394   For j=0 To 1

3395   

global_mass_Point(dof(j,Nodes_mas(i,0)-1)-1,dof(j,Nodes_mas(i,0)-1)-1)=global_mass

_Point(dof(j,Nodes_mas(i,0)-1)-1,dof(j,Nodes_mas(i,0)-1)-1)+M_mas

3396   Next

3397   Next

3398   

3399   For i=0 To tdof-1

3400   For j=0 To tdof-1

3401   global_mass(i,j)=global_mass(i,j)+global_mass_Point(i,j)

3402   Next

3403   Next

3404   assemble_mass_Point=global_mass_Point

3405   

3406   End Function

3407   

3408   Sub Axial_stop_OnClick

3409   'Automatically created procedure: Do not change or delete name or signature!

3410   EA_Panel.SetCell(Panel3,"Axial_stop_table",1,1,1)

3411   

3412   End Sub

3413   

3414   Sub Converge_OnClick

3415   'Automatically created procedure: Do not change or delete name or signature!

3416   EA_Panel.SetCell(Panel1,"Converge_table",1,1,1)

3417   End Sub

3418   

3419   Sub Converge_time_OnClick

3420   'Automatically created procedure: Do not change or delete name or signature!

3421   EA_Panel.SetCell(Panel1,"Converge_time_table",1,1,1)

3422   End Sub
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1   Sub Main

2   'Performs a cyclic load test

3   EA_IO.ZeroBalanceControl("Displacement_Hor",1)

4   EA_IO.ZeroBalanceControl("Force_Hor",1)

5   EA_IO.SetAnalogOut("PMX_1 CH 9",1,0,1)

6   

7   'Activating plots In the panel And setting them To zero

8   EA_Graph.RemovePlot(Panel1,"Graph1",1)

9   EA_Graph.Refresh(Panel1,"Graph1")

10   EA_Graph.RemovePlot(Panel1,"Displacement_out",1)

11   EA_Graph.Refresh(Panel1,"Displacement_out")

12   EA_Graph.RemovePlot(Panel1,"LVDT_plot",1)

13   EA_Graph.Refresh(Panel1,"LVDT_plot")

14   EA_Graph.RemovePlot(Panel1,"Strain_out_disp",1)

15   EA_Graph.Refresh(Panel1,"Strain_out_disp")

16   'EA_IO.ZeroBalanceControl("MX840_SR",1)

17   'EA_IO.ZeroBalanceControl("MX840_SL",1)

18   EA_IO.ZeroBalanceControl("PMX_LVDT1",1)

19   EA_IO.ZeroBalanceControl("PMX_LVDT2",1)

20   EA_IO.ZeroBalanceControl("PMX_LVDT3",1)

21   EA_IO.ZeroBalanceControl("PMX_LVDT4",1)

22   EA_IO.ZeroBalanceControl("Displacement_Hor",1)

23   EA_IO.ZeroBalanceControl("Force_Hor",1)

24   

25   End Sub

26   

27   Sub Axial_load

28   'Runs data logging during axial load application

29   Dim Analysis As Variant 'Input to change for the number of analysis being performed

30   Analysis=2

31   Dim objXls_a As Object

32   Set objXls_a = CreateObject("Excel.Application")

33   objXls_a.Workbooks.Add

34   objXls_a.Worksheets(1).Name = "Linear results"

35   objXls_a.Workbooks(1).SaveAs 

"C:\Octave\Dynamics\Pseudo\Axial_unload_test_pseudo1_linear"+CStr(Analysis)+".xlsx"  

' "C:\Octave\Dynamics\Pseudo\OutputDispOutput4.xls"

36   

37   objXls_a.Worksheets(1).Cells(1,1).Value ="Counter"

38   objXls_a.Worksheets(1).Cells(1,2).Value ="Axial load (kN)"

39   objXls_a.Worksheets(1).Cells(1,3).Value ="Strain gauge left (micro)"

40   objXls_a.Worksheets(1).Cells(1,4).Value ="Strain gauge right (micro)"

41   

42   Dim Force_axial As Double

43   Dim Strain_Left As Double

44   Dim Strain_right As Double

45   Dim Axial_load_applied() As Double

46   Dim Strain_Left_disp() As Double

47   Dim Strain_right_disp() As Double

48   Dim StepInc() As Double

49   

50   Dim Button2 As Variant

51   Button2=0

52   Dim counter As Variant

53   counter=0

54   

55   EA_Panel.SetCell(Panel2,"Axial_stop_table",1,1,0)

56   

57   Do While Button2=0 'Convergence at each time step

58   

59   EA_Panel.GetCell(Panel2,"Axial_stop_table",1,1,Button2)

60   

61   ReDim Preserve StepInc(counter+1)

62   ReDim Preserve Axial_load_applied(counter+1)

63   ReDim Preserve Strain_Left_disp(counter+1)

64   ReDim Preserve Strain_right_disp(counter+1)

65   StepInc(counter)=CDbl(counter)

66   objXls_a.Worksheets(1).Cells(counter+2,1).Value =counter

67   

68   'Read out axial force from servo controller

69   EA_IO.Measure("Load cell",Force_axial,1) 'Axial force from load cell

70   objXls_a.Worksheets(1).Cells(counter+2,2).Value =Force_axial 'Saves force to 

excel spreadsheet
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71   Axial_load_applied(counter)=CDbl(Force_axial) 'Stores force in array for 

plotting

72   

73   'Read out Strain gauge Left from servo controller

74   EA_IO.Measure("MX840_SL",Strain_Left,1) 'Left strain gauge reading from 

strain gauge

75   objXls_a.Worksheets(1).Cells(counter+2,3).Value =Strain_Left 'Saves left 

strain gauge reading to excel spreadsheet

76   Strain_Left_disp(counter)=CDbl(Strain_Left) 'Stores left strain gauge 

reading in array for plotting

77   

78   'Read out Strain gauge Right from servo controller

79   EA_IO.Measure("MX840_SR",Strain_right,1) 'Right strain gauge reading from 

strain gauge

80   objXls_a.Worksheets(1).Cells(counter+2,4).Value =Strain_right 'Saves right 

strain gauge reading to excel spreadsheet

81   Strain_right_disp(counter)=CDbl(Strain_right) 'Stores right strain gauge 

reading in array for plotting

82   

83   'Axial load out (Plotting)

84   EA_Graph.PlotArrayXY(Panel2,"Axial_load_initial",1,counter+1, StepInc(), 

Axial_load_applied())

85   EA_Graph.SetPlotProperty(Panel2,"Axial_load_initial",1,2,vbRed)

86   EA_Graph.Refresh(Panel2,"Axial_load_initial")

87   

88   'Plots Strain values (Plotting)

89   EA_Graph.PlotArrayXY(Panel2,"Strain_gauge_axial",1,counter+1, StepInc(), 

Strain_right_disp())

90   EA_Graph.SetPlotProperty(Panel2,"SStrain_gauge_axial",1,2,vbBlue)

91   EA_Graph.SetPlotProperty(Panel2,"Strain_gauge_axial",1,5,0)

92   

93   counter=counter+1 'Counter per loop

94   objXls_a.Workbooks(1).Save 'Save excel spreadsheet

95   Loop

96   

97   objXls_a.Workbooks(1).Save 'Final save of excel spreadsheet

98   objXls_a.Quit 'Closes excel spreadsheet

99   End Sub

100   

101   Sub Cyclic_test

102   'Runs a cyclic test on the specimum

103   'Pulling (Tension) Negative

104   'Pushing (Compression) Positive

105   EA_IO.ZeroBalanceControl("Displacement_Hor",1)

106   EA_IO.ZeroBalanceControl("Force_Hor",1)

107   

108   'Data files - Excel output of the data

109   Dim Analysis As Variant 'Input to change for the number of analysis being performed

110   Analysis=4

111   Dim objXls_u As Object

112   Set objXls_u = CreateObject("Excel.Application")

113   objXls_u.Workbooks.Add

114   objXls_u.Worksheets(1).Name = "Linear results"

115   objXls_u.Workbooks(1).SaveAs 

"C:\Octave\Dynamics\Pseudo\Pseudo1_load_test_0512"+CStr(Analysis)+".xlsx"  ' 

"C:\Octave\Dynamics\Pseudo\OutputDispOutput4.xls"

116   Dim n As Variant

117   Dim pi As Variant

118   pi=4*Atn(1)

119   Dim x() As Variant

120   x=Sine_increment(n)

121   Dim analog_out As Variant

122   

123   objXls_u.Worksheets(1).Cells(1,1).Value ="Displacement (mm)"

124   objXls_u.Worksheets(1).Cells(1,2).Value ="Analog out (V)"

125   objXls_u.Worksheets(1).Cells(1,3).Value ="Displacement in (mm)"

126   objXls_u.Worksheets(1).Cells(1,4).Value ="Horizontal force (N)"

127   objXls_u.Worksheets(1).Cells(1,5).Value ="Vertical force (kN)"

128   objXls_u.Worksheets(1).Cells(1,7).Value ="LVDT1 (mm)"

129   objXls_u.Worksheets(1).Cells(1,8).Value ="LVDT2 (mm)"

130   objXls_u.Worksheets(1).Cells(1,9).Value ="LVDT3 (mm))"

131   objXls_u.Worksheets(1).Cells(1,10).Value ="LVDT4 (mm)"

132   objXls_u.Worksheets(1).Cells(1,12).Value ="Strain gauge left (micro)"
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133   objXls_u.Worksheets(1).Cells(1,13).Value ="Strain gauge right (micro)"

134   

135   Dim Disp_read_servo As Double

136   Dim Force_servo_hor As Double

137   Dim Force_axial As Double

138   Dim LVDT1 As Double

139   Dim LVDT2 As Double

140   Dim LVDT3 As Double

141   Dim LVDT4 As Double

142   Dim StrainLeft As Double

143   Dim StrainRight As Double

144   objXls_u.Workbooks(1).Save

145   

146   Dim Displacement_xOut() As Double

147   ReDim Preserve Displacement_xOut(n-1)

148   Dim Displacement_xIn() As Double

149   ReDim Preserve Displacement_xIn(n-1)

150   Dim Force_hor() As Double

151   ReDim Preserve Force_hor(n-1)

152   Dim Strain_Left As Double

153   Dim Strain_right As Double

154   Dim Strain_Left_disp() As Double

155   ReDim Preserve Strain_Left_disp(n-1)

156   Dim Strain_right_disp() As Double

157   ReDim Preserve Strain_right_disp(n-1)

158   

159   Dim LVDT1_disp() As Double

160   ReDim Preserve LVDT1_disp(n-1)

161   Dim LVDT2_disp() As Double

162   ReDim Preserve LVDT2_disp(n-1)

163   Dim LVDT3_disp() As Double

164   ReDim Preserve LVDT3_disp(n-1)

165   Dim LVDT4_disp() As Double

166   ReDim Preserve LVDT4_disp(n-1)

167   Dim Axial_load() As Double

168   ReDim Preserve Axial_load(n-1)

169   Dim StepInc() As Double

170   ReDim Preserve StepInc(n-1)

171   Dim Button_stop As Variant

172   Button_stop=0

173   

174   EA_Panel.SetCell(Panel1,"Linear_push_stop",1,1,0)

175   

176   'Starts applying the horizontal load

177   For i_Load=0 To n-1

178   

179   EA_Panel.SetValue(Panel1,"Counter1out",i_Load)

180   

181   StepInc(i_Load)=CDbl(i_Load)

182   

183   Dim xout As Variant

184   xout=x(i_Load,0)

185   objXls_u.Worksheets(1).Cells(i_Load+2,1).Value =xout 'Displacement

186   

187   analog_out=(1/-6.6025)*xout 'volts from mm (Check to make sure of correct direction)

188   EA_IO.SetAnalogOut("PMX_1 CH 9",1,analog_out,1)

189   objXls_u.Worksheets(1).Cells(i_Load+2,2).Value =analog_out 'Analog out

190   

191   'Read out disp from servo controller

192   EA_IO.Measure("Displacement_Hor",Disp_read_servo,1) 'Displacement from servo 

controller

193   objXls_u.Worksheets(1).Cells(i_Load+2,3).Value =Disp_read_servo 'Saves horizontal 

displacement to excel spreadsheet

194   

195   'Read out horizontal force from servo controller

196   EA_IO.Measure("Force_Hor",Force_servo_hor,1) 'Horizontal force from servo controller

197   objXls_u.Worksheets(1).Cells(i_Load+2,4).Value =Force_servo_hor 'Saves horizontal 

force to excel spreadsheet

198   

199   'Read out axial force from servo controller

200   EA_IO.Measure("Load cell",Force_axial,1) 'Axial force from servo controller

201   objXls_u.Worksheets(1).Cells(i_Load+2,5).Value =Force_axial 'Saves axial force to 

excel spreadsheet
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202   EA_Panel.SetValue(Panel1,"DIGIT_2_axial",Force_axial)

203   

204   'Read out LVDT1 from servo controller

205   EA_IO.Measure("PMX_LVDT1",LVDT1,1) 'LVDT1 reading

206   objXls_u.Worksheets(1).Cells(i_Load+2,7).Value =LVDT1 'Saves LVDT1 reading to excel 

spreadsheet

207   

208   'Read out LVDT2 from servo controller

209   EA_IO.Measure("PMX_LVDT2",LVDT2,1) 'LVDT2 reading

210   objXls_u.Worksheets(1).Cells(i_Load+2,8).Value =LVDT2 'Saves LVDT2 reading to excel 

spreadsheet

211   

212   'Read out LVDT3 from servo controller

213   EA_IO.Measure("PMX_LVDT3",LVDT3,1) 'LVDT3 reading

214   objXls_u.Worksheets(1).Cells(i_Load+2,9).Value =LVDT3 'Saves LVDT3 reading to excel 

spreadsheet

215   

216   'Read out LVDT4 from servo controller

217   EA_IO.Measure("PMX_LVDT4",LVDT4,1) 'LVDT4 reading

218   objXls_u.Worksheets(1).Cells(i_Load+2,10).Value =LVDT4 'Saves LVDT4 reading to excel 

spreadsheet

219   

220   'Read out Strain gauge Left from servo controller

221   EA_IO.Measure("MX840_SL",StrainLeft,1) 'Strain gauge left reading

222   objXls_u.Worksheets(1).Cells(i_Load+2,12).Value =StrainLeft 'Saves strain left 

reading to excel spreadsheet

223   

224   'Read out Strain gauge Right from servo controller

225   EA_IO.Measure("MX840_SR",StrainRight,1) 'Strain gauge right reading

226   objXls_u.Worksheets(1).Cells(i_Load+2,13).Value =StrainRight 'Saves strain right 

reading to excel spreadsheet

227   

228   objXls_u.Workbooks(1).Save 'Saves excel spreadsheet data

229   

230   Displacement_xOut(i_Load)=CDbl(xout)'Output displacement array for plotting

231   Displacement_xIn(i_Load)=CDbl(Disp_read_servo)'Input Displacement array for plotting

232   

233   Force_hor(i_Load)=CDbl(Force_servo_hor)

234   

235   LVDT1_disp(i_Load)=CDbl(LVDT1) 'LVDT1 array for plotting

236   LVDT2_disp(i_Load)=CDbl(LVDT2) 'LVDT2 array for plotting

237   LVDT3_disp(i_Load)=CDbl(LVDT3) 'LVDT3 array for plotting

238   LVDT4_disp(i_Load)=CDbl(LVDT4) 'LVDT4 array for plotting

239   

240   Strain_Left_disp(i_Load)=CDbl(StrainLeft) 'Strain gauge left array for plotting

241   Strain_right_disp(i_Load)=CDbl(StrainRight) 'Strain gauge right array for plotting

242   

243   Axial_load(i_Load)=CDbl(Force_axial) 'Axial load array for plotting

244   

245   'Force displacement out (Plotting)

246   EA_Graph.PlotArrayXY(Panel1,"Graph1",1,i_Load+1, Displacement_xOut(), Force_hor())

247   EA_Graph.SetPlotProperty(Panel1,"Graph1",1,2,vbRed)

248   EA_Graph.Refresh(Panel1,"Graph1")

249   

250   'Displacement load out (Plotting)

251   EA_Graph.PlotArrayXY(Panel1,"Displacement_out",1,i_Load+1, StepInc(), 

Displacement_xOut())

252   EA_Graph.SetPlotProperty(Panel1,"Displacement_out",1,2,vbRed)

253   EA_Graph.Refresh(Panel1,"Displacement_out")

254   

255   EA_Graph.PlotArrayXY(Panel1,"Displacement_out",2,i_Load+1, StepInc(), 

Displacement_xIn())

256   EA_Graph.SetPlotProperty(Panel1,"Displacement_out",1,2,vbBlue)

257   EA_Graph.Refresh(Panel1,"Displacement_out")

258   

259   'Plots Strain values (Plotting)

260   EA_Graph.PlotArrayXY(Panel1,"Strain_out_disp",1,i_Load+1, StepInc(), 

Strain_right_disp())

261   EA_Graph.SetPlotProperty(Panel1,"Strain_out_disp",1,2,vbBlue)

262   EA_Graph.SetPlotProperty(Panel1,"Strain_out_disp",1,5,0)

263   

264   'EA_Graph.PlotArrayXY(Panel1,"Strain_out_disp",2,i_Load+1, StepInc(), 

Strain_Left_disp())
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265   'EA_Graph.SetPlotProperty(Panel1,"Strain_out_disp",2,2,vbRed)

266   'EA_Graph.SetPlotProperty(Panel1,"Strain_out_disp",2,5,0)

267   'EA_Graph.Refresh(Panel1,"Strain_out_disp")

268   

269   'Plots LVDT values out (Plotting)

270   EA_Graph.PlotArrayXY(Panel1,"LVDT_plot",1,i_Load+1, StepInc(), LVDT1_disp())

271   EA_Graph.SetPlotProperty(Panel1,"LVDT_plot",1,2,vbBlack)

272   EA_Graph.SetPlotProperty(Panel1,"LVDT_plot",1,5,0)

273   

274   EA_Graph.PlotArrayXY(Panel1,"LVDT_plot",2,i_Load+1, StepInc(), LVDT2_disp())

275   EA_Graph.SetPlotProperty(Panel1,"LVDT_plot",2,2,vbRed)

276   EA_Graph.SetPlotProperty(Panel1,"LVDT_plot",2,5,0)

277   

278   EA_Graph.PlotArrayXY(Panel1,"LVDT_plot",3,i_Load+1, StepInc(), LVDT3_disp())

279   EA_Graph.SetPlotProperty(Panel1,"LVDT_plot",3,2,vbBlue)

280   EA_Graph.SetPlotProperty(Panel1,"LVDT_plot",3,5,0)

281   

282   EA_Graph.PlotArrayXY(Panel1,"LVDT_plot",4,i_Load+1, StepInc(), LVDT4_disp())

283   EA_Graph.SetPlotProperty(Panel1,"LVDT_plot",4,2,vbMagenta)

284   EA_Graph.SetPlotProperty(Panel1,"LVDT_plot",4,5,0)

285   EA_Graph.Refresh(Panel1,"LVDT_plot")

286   

287   Wait 0.1

288   

289   Next

290   objXls_u.Workbooks(1).Save

291   objXls_u.Quit

292   

293   End Sub

294   

295   Sub BUTTON_1_OnClick

296   'Automatically created procedure: Do not change or delete name or signature!

297   Dim Button1 As Double

298   Button1=1

299   EA_Panel.SetValue(Panel1,"Button1out",Button1)

300   EA_Panel.SetCell(Panel1,"TABLE_1",1,1,Button1)

301   

302   End Sub

303   

304   Sub Axial_stop_OnClick

305   'Automatically created procedure: Do not change or delete name or signature!

306   EA_Panel.SetCell(Panel2,"Axial_stop_table",1,1,1)

307   End Sub

308   

309   Sub Linear_push_stop_OnClick

310   'Automatically created procedure: Do not change or delete name or signature!

311   EA_Panel.SetCell(Panel2,"Linear_push_stop",1,1,1)

312   End Sub

313   

314   Function Sine_increment(ByRef n As Variant) As Variant

315   Çreates an incrementally increasing cyclic load

316   Dim increments As Variant

317   n1=100

318   Dim nmm As Variant

319   nmm=25

320   Dim x_inc() As Variant

321   ReDim Preserve x_inc(4*n1*nmm+nmm,0)

322   Dim pi As Variant

323   pi=4*Atn(1)

324   Dim counter As Variant

325   counter=0

326   

327   For i=0 To nmm-1

328   For j=0 To 4*n1

329   x_inc(counter,0)=-1*(i+1)*Sin((pi/(2*n1))*j))

330   counter=counter+1

331   Next

332   Next

333   n=counter

334   Sine_increment=x_inc

335   

336   End Function
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