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Abstract: Data Compression and Quantization 

Data Compression 

Due to limitations in data storage and bandwidth, data of all types has often required 
compression. This need has spawned many different methods of compressing data. In 
certain situations the fidelity of the data can be compromised and unnecessary information 
can be discarded, while in other situations, the fidelity of the data is necessary for the data 
to be useful thereby requiring methods of reducing the data storage requirements without 
discarding any information. 

The theory of data compression has received much attention over the past half century, 
with some of the most important work done by Claude E. Shannon in the 1940’s and 1950’s 
and at present topics such as Information and Coding Theory, which encompass a wide 
variety of sciences, continue to make headway into the interesting and highly applicable 
topic of data compression.  

Quantization 

Quantization is a broad notion used in several fields especially in the sciences, including 
signal processing, quantum physics, computer science, geometry, music and others. The 
concept of quantization is related to the idea of grouping, dividing or approximating some 
physical quantity by a set of small discrete measurements. 

Data Quantization involves the discretization of data, or the approximation of large data 
sets by smaller data sets.  

This mini dissertation is a research dissertation that considers how data, which is of a 
statistical nature, can be quantized and compressed. 
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Chapter One:  
Introduction to Data and Data Compression 

1.1 Some Introductory Concepts 

In order to understand the concepts of quantization and compression a few introductory 
notions need to be discussed. 

1.1.1 Analog and Digital Data 

Digital data uses discrete values to represent information. Analog data, on the other hand, 
uses a continuous range values to represent information. Digital data may represent 
discrete information, such as numbers, letters or symbols, however it can also be used to 
represent approximations of continuous information, such as sounds and images [1]. 

Only digital data can be compressed, while continuous data requires discretization, this can 
be achieved with the help of an Analog-to-Digital Converter. 

Analog-to-Digital Converter and Digital-to-Analog Converter 

 “An analog-to-digital converter (ADC) is a device that converts a continuous quantity to a 
discrete time digital representation of the continuous quantity.” A“digital-to-analog 
converter (DAC) performs the inverse operation to the analog-to-digital converter (ADC)“ 
[2]. 

In general, ADC uses sampling that is repeated over fixed time periods (or spaces) satisfying 
certain conditions in order that the signal may be reconstructed [3]. The sampled data is 
then approximated (quantized) by a set of representative values, this approximation is often 
in the form of high precision rounding.  

In Figure 1.1 a simplified Analog to Digital process is illustrated.  

The signal is sampled at fixed time intervals  . Quantization of the signal amplitude is then 
achieved by rounding the signal amplitude to its nearest (integer) value. The quantized 
amplitude values are then encoded into binary values. The digital signal is then sent across a 
channel or stored and then requires decoding which reconstructs an approximation of the 
original signal. 

                                                             
1 Mitra, S. K. Digital Signal Processing a Computer-Based Approach. Mcgraw Hill Higher Education. 2002. Page 
1. 
2
 en.wikipedia.org/wiki/Analog-to-digital_converter confirmed by Mitra, S. K. Digital Signal Processing a 

Computer-Based Approach. Mcgraw Hill Higher Education. 2002. Page 38. 
3
 For a more detailed discussion on statistical signal sampling theory, see Gray, R.M and Davisson, L.D. An 

Introduction to Statistical Signal Processing. Cambridge University Press. 2010. And in the context of image 
data, see Rosenfeld, A. and Kak, A. C. Digital Picture Processing. Academic Press. 1976. 
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Figure 1.1[4] Analog-to-Digital Converter The steps of analog to digital conversion: sampling, quantizing and 

encoding &decoding.  

1.1.2 The Stochastic Representation of a Digital Signal 

Before introducing a digital signal, it is useful to consider its analog counterpart. 

The Analog Signal 

An analog signal can be considered as a continuous time, continuous space stochastic 

process.   

For example audio or visual data signals, which according to [5] “travel in a waveform that 

can vary continuously and infinitely along two parameters, amplitude and frequency. 

Amplitude refers to signal intensity or signal strength, which manifests as volume in audio 

signals and brightness in visual signals. Frequency refers to the number of waveforms per 

second, or cycles per second … Frequency manifests as pitch, or tone, in audio signals, and 

as colour in image and video signals.”  

 

 

                                                             
4
 Image from  www.Encyclopedia_Britannica.com/Basic-steps-in-analog-to-digital-conversion-An-analog-signal 

obtained from a Google search. 
5 Webster's New World Telecom Dictionary. Wiley Publishing. 2008. 
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The Digital Signal 

According to statistical signal processing texts, a digital signal is a stochastic process with a 

countable set of indexing parameters     and a finite set of output values or states    , 

making it a discrete time, discrete space stochastic process (or random field).  

A digital signal will often contain significant statistical dependence structures, these include 

both linear and non-linear dependencies, both of which are very useful in data compression, 

however isolating and exploiting non-linear dependencies in digital signal data is often far 

more challenging to achieve than linear sources of dependency.   

1.1.3 Signal Sampling and Quantization 

According to the paper [6], quantization can be studied as a particular type of sampling, in 

fact quantization and sampling are related processes, where sampling here refers to signal 

sampling. It is shown that sampling theory can be used to analyse the statistical properties 

of quantized variables. 

Although statistical sampling theory will not be discussed in this mini dissertation, a brief 

comparison of the processes is useful. 

 Signal sampling discretizes time and space, while quantization discretizes amplitude 

or energy. 

 Signal sampling is a linear process, while quantization is non-linear. 

 Signal sampling and quantization are orthogonal processes and are independent, 

therefore the order of the processes of sampling and quantization are reversible. [7] 

 
Data in the Mini-Dissertation 

The examples, simulations and picture study are intended to describe the basic theory of 

the compression process.  

The data used in the mini-dissertation will be sourced from random variables (or vectors) 

with a discrete, finite indexing parameter   and a discrete finite sample space although this 

indexing parameter space and sample space may be very large. 

The long term behaviour of a signal, stationarity and ergodicity of a particular signal will not 

be discussed in this mini-dissertation. 

 

                                                             
6 Widrow, B. Statistical Theory of Quantization. IEEE Transactions on Instrumentation and Measurement, Vol. 
45, No 2, April 1996. 
7
 Quantization is often more computationally expensive than sampling, especially in the case of vector 

quantization. Often the data signal is sampled prior to quantization, to lessen the burden of quantizing a larger 
data set. 
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1.2 An Introduction to Data Compression 
 
Data compression is the reduction of bits required for the storage and/or transmission of 
data.  
 
Different types of data contained in text, programs, games, images, audio, video, etc. can be 
compressed to a reduced size, and then decompressed (reconstructed). 
 
There are many types of data compression, all of which fall into the two categories, lossless 
and lossy data compression. 
 
1.2.1 Lossless and Lossy Data Compression 
 
Lossless data compression is the compression of digital data, where there is no change 

(error) between the original data and the data after it has been reconstructed. The goal of 

lossless compression is the maximization of compression with zero loss of fidelity.  

Lossy data compression is the compression of analog or digital data that introduces an error 

(change) between the original data and the reconstructed data. The goal of lossy 

compression is the reduction of the data size to a required level so that the data may be 

reconstructed as accurately as possible.  

1.2.2 Lossy vs. Lossless Data Compression 
 
Lossy and lossless data compression are similar in many ways, the differences between 
these two data compression methods result from the quantization of the data before 
compression. A few of the differences are listed below.  
 

 Bounds of Compression 
 

For discrete data, both lossy and lossless compression may be applicable, lossless 
compression, however has a lower bound on the measure of compression 
achievable this will be shown in the next chapter. Lossy compression, on the other 
hand, can compress a data signal to arbitrarily low levels, this, however at the cost of 
increased error this will be shown in chapters three, four and five. 
 

 Generation Loss 
 

The repetition of lossy data compression to the same data will result in generation 
loss, which is the progressive loss in quality due to repeatedly compressing and 
decompressing the data file. In contrast, repeatedly compressing and decompressing 
the data file using lossless data compression will not result in any loss of quality. 

 

 Approximation Error 
 

Lossless compression can be used where lossy compression cannot, since no error is 
introduced, i.e. the reconstructed data is the same as the original data. In situations 
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where even the slightest error could render the data redundant, or where data 
errors could cause some program to malfunction, lossless compression will be used 
as opposed to lossy compression.  

 

 Analog-to-Digital Conversion 
 

Any analog-to-digital conversion requires a form of lossy compression, since analog 
data is continuous, while digitizing requires that the continuous data be discretized 
in a finite fashion, thereby introducing errors in the data. The direct application of 
lossless compression is not applicable for the ADC process. 
 

 Image and Sound Data Compression 
 

In image and sound data compression, often a large amount of data can be 
discarded before degradation in the output is perceivable by the human senses. This 
redundancy is often referred to as psycho-visual or audio redundancy in image and 
sound data compression respectively.  

 
Lossy compression is very effective at reducing the data size when significant 
redundancy is present within the data. Lossless compression, on the other hand is 
less effective at compressing image and sound data, since the complexity of the data 
cannot easily be restructured in order for any significant data compression to take 
place. 

 

 Quantization 
 

When lossless compression is used in conjunction with quantization, then it is 
considered as lossy compression.  

 
1.2.2 Data Information Redundancy 
 
Compression systems reduce information redundancy in data. Information redundancy is 
measured in bits which require additional bandwidth for transmission or extra hard drive 
space for storage in addition to the bandwidth or space required to transmit or store the 
information without the redundancy. 
 
Much of this redundancy is statistical redundancy i.e. patterns and dependency amongst 
data elements. This redundancy can be measured in bits by considering the difference 
between the information content of the data and the space required to store or transmit 
the data. 
 
The information content of data is a measureable quantity and will be discussed in more 
detail in the next chapter.  
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Example 1.1 
 

Rounding Quantization, Encoding and Data Redundancy in Image Data 
 
Consider the following context in image data compression. Redundancy in image data is a 
combination of coding redundancy (see chapter two), inter-pixel redundancy (see chapter 
five) and psycho-visual redundancy.  
 
Lossless compression is able to compress data with substantial redundancy, however in 
image compression the complexity of the data is often far too high to exploit the 
redundancy and thereby attain a high level of compression. When quantization and lossless 
data compression are used together, image data can be compressed more effectively.  
 
Quantization can introduce small enough errors that do not change the perceived quality of 
the image. These small errors however change the data structure in order that lossless 
encoding is better able to take advantage of the increased data redundancy and compress 
the data more effectively than without the use of quantization.  
 
Consider an RGB (Red-Green-Blue) image in colour image compression. The size of the 
image is       pixels and the RGB data matrix is a        matrix representing the 
bitmap image [8]. 
 

(

         

         

   
         

) with      (

    
    

    

). 

 
If, for example,  the red hue of an RGB data vector is to be compressed independently of the 
blue and green hues, then let   be the red vector of the top left-hand corner of the RGB 
matrix of an image [9]. 

 

  (
                    
                    
                    

) 

 

 
Figure 1.2  -by-  Pixel Illustration (Unquantized) Visualization of the colours represented by the   matrix. 

                                                             
8
 The digital image will be considered in more detail in section 5.3. 

9 The values of the RGB matrix were not simulated but rather picked artificially for the sake of illustration. 
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Notice that the colours in the 30 blocks representing   appear to be the same to the 
observer and no noticeable change in colour is apparent to the naked eye.The values of the 
elements of the matrix   seem to be scattered around 65. 

 
Applying lossless compression to the above data set will probably only yield slight 
compression, as almost no values are repeated in the data vector. 
 
If however, the values in   were quantized by assigning all numbers between    and    to 
the value    and all numbers between    and    to   , then the quantized matrix      
will be as follows 

     (
                    
                    
                    

) 

 

 
Figure 1.3  -by-  Pixel Illustration (Quantized) Visualization of the colours represented by the     matrix. 

Notice that the variation within the block colours does not seem to have changed, since the 
alterations (quantization) were inadequate in alerting the observer to visible irregularities, 
this demonstrates psycho-visual redundancy. 
 
There is however an increase in redundant information, the value    is repeated    times, 
reading the values left-to-right yields runs of   ’s up to   values long and reading in a zigzag 
pattern up to    values long. The value    is only repeated   times, and may even be able 
to be left out, thereby reducing the original random matrix to a set of    values of    [10], 
which in fact will characterize this matrix completely. We could of course also use    values 
of   , however, since    occurs substantially more, it would be more correct to replace the 
values by   , this will also reduce the overall distortion error which will be discussed in 
chapter three. 

 
The compression of the example was substantial however, it was also isolated, pixilation 
may occur in particular areas in the reconstructed image where the colour variation is very 
low. Pixilation and other are visible inconsistencies are known as artefacts and are 
undesirable.  
 
This was an example of uniform scalar quantization applied to the red hue vector of an RGB 
matrix. Uniform and non-uniform scalar quantization will be discussed in detail in chapter 
three. Uniform scalar quantization, however is seldom used alone in the compression of 
image data as done in Example 1.1.  

                                                             
10

 Explicitly stating a value and its number of sequential occurrences is known as “run length encoding” and 
will be briefly illustrated in the picture study in Chapter Five.  
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1.3 Theoretical Aspects of Data Compression  
 
1.3.1 Information Source 
 
The information source is a process, where data is created, transferred or stored. 
 
After quantization, the information source can be viewed as a discrete process which is 
represented by discrete random variable. The output of an information source with a finite 

outcome set          
  will be represented by the ordered pair (         ) where       is 

the discrete joint probability mass function of   
 
If the source is viewed as the output of a data quantizer   then the ordered pair will be 
made up of a discrete value        and its related probability       where      , that 
is if     , then   is a scalar and if     then   is a vector. 
 
1.3.2 Encoding 
 
Data is encoded when a value       is assigned to a binary representative     . Scalar 
encoding assigns a scalar value   to a binary representation     , while vector encoding 
assigns a vector   to a binary representation     . The process of encoding is one-to-one 
[11] so that the scalar   or the vector   can be retrieved uniquely when the representative is 

decoded    (    )   . 

 
1.3.3 Binary Code Alphabet 
 

The set of symbols {       } is known as a binary code alphabet. It has a radix 2, where the 

radix is the number of elements in the set [12]. 
 
1.3.4 Binary Codeword 
 
A binary codeword is a sequence from the binary code alphabet which represents the 
value       .  
 

The binary code alphabet will be indicated by    where    {       }.      
  is the set of 

all permutations up to and including the permutations of length   of the elements of   . So 
for         we have 
 

     
  {       }  

     
  {                           }  

 
For ease of notation we will adopt the relaxed notation  

                                                             
11 This criterion will be assumed throughout this mini-dissertation. The one-to-one requirement for encoding   
results in a non-singular code, and will be discussed later this chapter 
12

All the theory in the section will be considered for binary data, due to the nature of the problem of electronic 
data storage and compression, however the theory of binary data codes is easily extended to “r-ary” data 
codes. 
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The binary codewords of up to length   are sourced from the set   which is a non-empty 
subset of      

 .The set of binary codewords   is known as a codebook. The number of 

codewords in the codebook is referred to as the size of the codebook.  
 
1.3.5 Binary Encoder 
 
A binary encoder          is one-to-one mapping from the quantized space      onto 
the codebook   [13]. 
 
The binary encoding of the value        is the codeword       , where   is a       
binary codeword. The codeword   

                    where      is either   or  . 

 
The inverse of   is known as the decoder    .    maps a binary codeword onto its 

allocated output value   (      )     

 
1.3.6 Binary String 
 
A binary string is a sequence of concatenated binary codewords each representing a specific 
value       .  
 
The string is not delineated in any way, in other words, no commas, hyphens, spaces, etc. 
are used between the binary codewords. For the purpose of data compression, there are 
more efficient means to identify a binary codeword within a binary string than to use 
delineation [14].  
 
For example, the vector               may be represented by the binary string or vector 

by means of scalar encoding       (                  )
 

        
    

    
   or the 

vector encoding         [15]. 
 
 
1.3.7 Binary String Length 
 
The binary string length is the number of binary code alphabet elements contained within 
the string. The length   of the binary string   is denoted as      and is measured in bits.  
 

For the binary string       
   

   
  , the length        (   

   
   

  ) which can be 

calculated as     
       

       
    This will be illustrated in the next example. 

 
 

                                                             
13

 Roman, S. Coding and Information Theory. Springer-Verlag. 1997.  Page 39. 
14

This will be discussed later in this chapter and in chapter two. 
15

 The difference between scalar and vector or block encoding will be illustrated in example 1.2 and example 
1.3. 
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Example 1.2 Scalar Encoding 
 
An example of an arbitrary binary string    may be 
 

                          
 
This string may be made up of, say, three arbitrary binary codewords each representing 
some output sequence            sampled from the discrete random variables    for 
example 
 

                                                           
 

The length of the binary string  ,         (     )   (     )   (     )  

                 
 
 
Example 1.3 Vector Encoding 
 
In contrast with example 1.2, the arbitrary binary string may be 
 

                          
 
This string may be the binary codeword of the vector or block   of dimension   of a random 
vector               with output vector                 so for example 
 

                                                                      
 

The length of the binary string  ,         ( (          ))      

 
Scalar encoding individually encodes random variables, while vector or block encoding 
encodes random vectors. 
 
1.3.8 Code rate 

The code rate   is the average number of bits required to encode the random vector  .   

The code rate   is the measure of the efficiency of the encoding scheme. An increased code 
rate   implies that a greater capacity is needed to store or transmit the same data, which is 
less efficient. 

The string length   and the code rate   are determined by the encoding method. Two 
encoding methods will be discussed namely fixed rate encoding and variable rate encoding. 
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1.3.9 Fixed and Variable Code Rates  
 
Fixed rate encoding uses a fixed number of bits for each codeword, while variable rate 
encoding does not use a fixed number of bits for each codeword [16]. 
 

For an output set of        
  and a codebook          

  with         . 
 
Fixed rate encoding uses a fixed length binary string for each codeword      for all 
         the codebook   of size   will only contain codewords of length   where   is 
defined by        

       ∑  

 

   

          

 
Therefore the code rate   is equal to the length   where          and     . 
 

Variable rate encoding of an output set of        
  with         , the lengths may differ for 

each value   . So for the output set        
   with probability mass function       , the code 

rate is  

       ∑   

 

   

        

 
 

An interesting situation arises when     , then fixed rate encoding will be inefficient, 
since if      and           for some     then fixed rate encoding will require a 
fixed rate of    . This inefficiency may be reduced or eliminated by grouping random 
variables into blocks which will be illustrated next. 
 
The book [17] gives an example of grouping random variables into a block in order to reduce 
this inefficiency. If the random variables    has   output variables and     has    output 
variables, if both were encoded using fixed rate encoding, then  (      )   , since 

          and  (      )   , since         , implying that individually encoding 

output values from     and     will require   bits on average to encode, while if     and     were 

grouped into the vector            then the output set would be of size         and 
         which will require only   bits on average to encode, notice however that this 
has not entirely eliminated the inefficiency resulting from unused bits. 
 
 
 
 

                                                             
16

 Fixed code rate refers to the so called fixed to fixed mapping, which implies that a fixed number of output 
variables is assigned to a fixed code rate, while variable code rate refers to fixed to variable mapping, which 
implies that a fixed number of output variables is assigned to a variable code rate. Throughout the mini-
dissertation, fixed code rate will refers to a fixed to fixed mapping, while variable code rate will refer to fixed 
to variable mapping, unless stated otherwise. This is true for both scalar and vector encoding. 
17Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Page 226. 
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1.3.10 Code Rate for Vector Encoding 
 
A vector               of dimension   is a set of   random variables, that are not 
necessarily independent or identically distributed, that are grouped together and treated as 
a  -dimensional random vector, with joint density function 
 

        

(

 
 

(

 

  

  

 
  

)

 

)

 
 

 

 

Each possible output vector                 with the set          
    

 is then encoded as 

a binary codeword. Where      ∏   
 
    is the number of possible outcome vectors of 

dimension   each with    possible outcomes for each element of the vector [18]. 

So for the output vector          
    

  with probability mass function      , the code rate is  

 

       
 

 
 ∑  ( (  ))  

    

   

  (  )  

 

The scaling factor 
 

 
 before the summation is to determine the code rate as bits per output 

value or element-wise code rate, while without it, the summation determines the expected 
number of bits per block.  
 
1.3.11 Non-Singular, Uniquely Decipherable and Instantaneous Codes 
 
According to the book [19], non-singular codes are codes that are uniquely encoded 
/decoded so for any         where       implies that            . 

 
Unique decipherability implies that all encoded values should be able to be recovered 
perfectly upon the decoding of the respective binary codewords. This requires that the 
sequence                  is in a one-to-one relationship with its encoded counter 

part    (                        ) [20]. 

 
It is intuitively clear that uniquely decipherable codes are necessarily non-singular, however 
the opposite is not necessarily true. It is possible for a code to be non-singular but not be 
uniquely decipherable, this happens in the context of grouping, i.e. instantaneously decoded 
upon inspection. 
 

                                                             
18 If the number of output levels is the same for each random variable representing the block, then        . 
19 Roman, S. Coding and Information Theory. Springer-Verlag. 1997. Pages 41-42. 
20

 The lossless compression of a binary string must retain the data fidelity, in other words, it must be non-
singular and uniquely decipherable.  
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For example if             ,               and           , then       and    are 
non-singular, however when the binary string         is decoded it maybe decoded as 
        or as   this implies that the encoding is not uniquely decipherable.  
 
An instantaneous code is a code that has the requirement that codewords can be decoded 
without considering the entire binary string.  
 
An instantaneous code differs to a uniquely decipherable code, in that although a finite 
length, uniquely decipherable binary string has a one-to-one relationship with its decoded 
counterpart. This relationship may only be recognisable if the string is examined as a whole, 
while if the code is instantaneous, the binary codewords can be identified instantaneously, 
without considering the complete binary string. An instantaneous code is uniquely 
decipherable, but the converse is not necessarily true. 
 
Fixed rate encoding is by definition instantaneous as will be shown in example 1.4, while 
variable rate encoding requires an additional constraint [21]. 
 
Example 1.4 Fixed Rate Encoding 
 

Let         (
 

 
) with 

 

   
     {

 

 
          {  }   

 

                      

 

For              
 
Consider the random vector                
 
 
and the vector of observed values  

                
 
These could be encoded uniquely with a fixed rate encoder with          where    can be 

presented as   
  (              ) which has a length of  , therefore 

 

      
   

    
   (                                   )  

 
The binary string   has a length of     which is due to the   Observations, each of 
length  . 
 
 

Since the output set contains     values, the length  (     )      bits. 

The expected length or code rate  

                                                             
21See section 1.3.12 entitled Variable Rate Encoding, the Prefix Condition and Binary Trees. 
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 ( (    ))    ∑   

 

   

(
 

 
)  

 
The unique decipherability (in fact instantaneous encoding) of a fixed length code can be 
illustrated using the following scalar encoding 
 

                                                    
                                                      

 
Consider the string 
 

                            
 
It follows that     and   

       ,   
       ,   

       , … ,   
        with 

                                      

 
Therefore the decoded string is                                since  
      

     ,      
      ,…,        

     . 
 
In this example, fixed rate encoding was used, it can be seen that the codeword    alone is 
required in order for the unique decoding           , independent of the rest of the 
string. This illustrates the difference between instantaneous encoding and uniquely 
decipherable encoding. 
 
1.3.12 Variable Rate Encoding, the Prefix Condition and Binary Trees 
 
Instantaneous encoding is very advantageous since it allows for immediate decoding of a 
codeword within a string. If fixed rate codes are instantaneous, as shown in the example 
above, then why use variable rate encoding? 
 
Variable Rate Encoding 
 
If there is heterogeneity in the probabilities of the probability mass function      , then 
variable rate encoding will encode data strings at a lower code rate than fixed rate encoding 
on average [22].  Variable rate encoding is superior in terms of compression to fixed rate 
encoding [23] and can be made instantaneous, this is achieved with the help of the prefix 
condition. 
 
 
 
 
 

                                                             
22

 Under certain conditions variable rate encoding can always result in lower average rates than fixed rate 
encoding. 
23

 As will be shown in the next chapter, variable rate encoding is able to achieve the lower bound code rate 
under certain circumstances. 
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The Prefix Condition for Binary Codewords 
 
The prefix of a codeword will be illustrated using the encoding in section 1.3.11.  
 
The codewords            ,               and            were used to encode 
the output set        

 . The codeword      is a prefix of both the codewords             

and               and the codeword       is a prefix of the codeword       
       . This does not satisfy the prefix condition, which is described below. 
 
Let   be a random variable with a discrete probability mass function       and a finite 

output set        
  of size  . Then for the case where the block size    , each    can be 

represented by a binary codeword   
  (                  

) of length    which may vary.  

 
Then for a vector of observed values               , the representative binary 
codewords are concatenated into a single binary string       

   
    

   of length 

  ∑   
 
   . Notice that this string contains no delineation between codewords. 

 
The prefix condition requires that no codeword of    can be a prefix of any other codeword 
of    for all    .The prefix condition ensures that a binary encoding       

   
    

   of 

each possible output vector                 is instantaneous and therefore uniquely 
decipherable. 
 
According to the book [24] instantaneous or prefix codes are a subset of the set of uniquely 
decipherable codes, however, the optimal prefix code, will perform as well as an optimal 
uniquely decipherable code. In other words, there exists a prefix encoding of a particular 
output string that performs as well as the optimal uniquely decipherable encoding of the 
same string. The prefix condition is sufficient for output uniqueness and instantaneous 
decoding.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                             
24 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer.1992. Pages 269-270. 
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Application of the Prefix Condition: The Binary Tree Method and Huffman Encoding 
 
One way a codebook can be constructed satisfying the prefix condition is by using a binary 
tree to determine the codeword for each value  .  
 
In Figure 1.4 a branch of a binary tree is shown. Since there is a unique path from each leaf 
back to the root of the tree, a code built on the notion of the binary tree can be made 
uniquely decipherable and by ending at unique terminal nodes the process will satisfy the 
prefix condition.  

 
Figure 1.4 Binary Tree An example of a binary tree where the red nodes represent prefix tree leaf nodes [25].  

 
The binary tree method can be programmed as follows by means of the pseudo code given 
below. 
 
Code 1.1 Pseudo Code: The Binary Tree Encoding Method[26] 
 

To encode an output set of   events        
  with the codebook          

   

Let      or              /*   is binary valued*/ 
Starting with                                      /*    can be chosen arbitrarily as either   or  */ 
Replace          with                /*     */ 
For             
    If                  
    Then                             /*Where                  */ 

    Replace                          with                  
                                                                        /*                  */ 
    Increment   
For       
    If                   
    Then                           /*                */ 
End 

 
 
 
 
 
 

                                                             
25 Image used from Wiegand, T. and Schwarz, H. Source Coding: Part I of Fundamentals of Source and Video 
Coding. Page 25. 
26 This process is one of many ways to encode a string of data uniquely and instantaneously. 
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Example 1.5 Application of the Binary Tree Method 
 
Let   be a random variable with probability mass function       with a finite output set of   

events        
 . 

 
Consider an output set of     events         

  with related ordered probabilities 

                    that are not all equal. 

 
It would be more efficient encoding to assign shorter length codewords to more probable 
outcomes and longer codewords to less probable outcomes, decreasing the expected length 
    . 
 
Create a codebook using the binary tree encoding method described in section 1.3.11 by 
letting 

 (    )       (    )        (    )         (    )          (    )           

 (    )            (    )             (    )             

 

If the vector    (                                  ) of length      is observed, then it can 

be uniquely encoded using the variable rate encoder as 
 

                                  
 
Notice that the above encoding can be decoded instantaneously by reading the string from 
left to right. 
 
1.3.13 Huffman Encoding 
 
Huffman encoding is a simple and optimal prefix coding technique, that is, it has the 
shortest expected length for a given discrete probability mass function [27] [28].  
 
Huffman encoding is based on the idea of the    -ary tree and simply assigns the     
smallest initial probabilities, known as terminal nodes, to a parent node, by adding the 
associated probabilities together. The newly created parent node is treated as a terminal 
node and the process is repeated. The process terminates when only the root node, and its 
representative probability namely   remain.  
 
In the case of binary encoding, the encoding begins by identifying the two terminal nodes 
with the smallest probabilities. The terminal node with the smallest probability is assigned 
a   and the terminal node with the second smallest probability is assigned a  . These 
terminal node probabilities are added together and this probability is assigned to a parent 
node which connects the two processed terminal nodes. The parent node is now treated as 

                                                             
27

 Cover, T. M. and Thomas, J. A. Elements of Information Theory. Wiley Series in Telecommunications and 
Signal Processing. Second Edition. Page 123. 
28

 See Roman, S. Coding and Information Theory. Springer-Verlag. 1997. Pages 59 – 61. For proofs of the 
existence of an optimal coding scheme based on the Huffman coding technique, and the proof of the 
optimality of the Huffman coding scheme. 
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a terminal node and the process is then repeated until all the nodes are connected to a 
single root node. 
 
The binary numbers are then read off from the root node down each branch until the initial 
terminal nodes are reached. The binary numbers are concatenated into a codeword with 
the same ordering that they are read off. The codeword is then assigned to the outcome of 
the random variable associated with the initial probabilities.  
 
The Huffman encoding algorithm assigns the longest codewords to the two output variables 
with the smallest probabilities and proceeds by assigning codewords with lengths that are 
inversely proportional to the probabilities of the respective output variables.  
 
1.3.13.1 Huffman’s Coding Algorithm (for binary encoding)  
 
The PDF [29] uses the following encoding algorithm. 
 

1. Select the two terminal nodes with the lowest associated probability, and then 
create a parent node for both nodes, that is a representative for the two outcomes 
in the binary code tree. 

2. Replace the two outcomes and the associated probabilities with the parent node’s 
representation and assign to it the probability equal to the sum of the combined 
terminal nodes’ probabilities. 

3. Repeat until the root node is reached and the sum of the probabilities is 1. 
 

Example 1.6 Table 1.1 An Example of Huffman Encoding 
 

                                                             
29

Wiegand, T. and Schwarz, H. Source Coding: Part I of Fundamentals of Source and Video Coding. Page 32. 

Output Vector Probabilities due to Huffman Process 

 
Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 

    0.21 0.21 0.21 0.21 0.21 0.35 0.41 0.59 1 

   0.2 0.2 0.2 0.2 0.2 0.24 0.35 0.41 
    0.19 0.19 0.19 0.19 0.24 0.21 0.24 

     0.12 0.12 0.12 0.16 0.19 0.2 
      0.08 0.08 0.08 0.12 0.16 

       0.08 0.08 0.08 0.12 
        0.07 0.07 0.12 

         0.04 0.05 
          0.01 

                  Huffman Encoding 

 Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 Encoding 

                1   0 01 

                0   0 00 

              1   1 1 111 

            1     0 1 101 

          1   0   1 1 1101 

          0   0   1 1 1100 

        1   0     0 1 1001 

      1 0   0     0 1 10001 

      0 0   0     0 1 10000 
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Table 1.2 Expected Length based on Huffman Encoding  

 
1.3.13.2 Huffman Encoding 
 
Several properties of Huffman encoding will be discussed in the next section, these can be 
found in the book [30], [31].  
 
Sibling Property 
 

1. A Huffman code has the sibling property, this property is unique to Huffman coding, 
when a binary alphabet is used. 

2. Every node in the binary code tree, except for the root node, has a sibling. 
3. The nodes can be listed in the order of decreasing probability, where each node will 

be next to its sibling. 
 

Optimality Property  
 

1. Huffman coding is a greedy algorithm that converges to a local optimum, however, 
shows that this local optimum is in fact a global optimum due to the sibling property. 
This optimum is known as the entropy of the random variable and will be discussed 
in more detail later in this chapter and in the next chapter. 

 
2. Huffman codes are optimal in the sense that they give a minimum expected length 

for a particular probability mass function. They are not always optimal for a specific 
string of data sourced from the probability mass function.  

 
3. The optimality of a Huffman encoding is also not necessarily unique, there are 

various other encoding algorithms that may achieve the same minimum expected 
length for a particular probability mass function.  
 

                                                             
30

Gersho , A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Pages 274-275 
31

Cover, T. M. and Thomas, J. A. Elements of Information Theory. Wiley Series in Telecommunications and 
Signal Processing. Second Edition. Pages 123-127. 

Probability       Codeword   
  Length    Probability   Length 

0.21 01 2 0.42 

0.2 00 2 0.4 

0.19 111 3 0.57 

0.12 101 3 0.36 

0.08 1101 4 0.32 

0.08 1100 4 0.32 

0.07 1001 4 0.28 

0.04 10001 5 0.2 

0.01 10000 5 0.05 

   

 (    )  2.92 
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Problems with the Huffman Encoding Algorithm in Practice 
 

1. Data processes in video, image and sound compression are seldom stationary, the 
probability distributions are generally not known and adaptive Huffman encoding for 
non-stationary sources is often far too complex for real time situations. Better 
alternatives to Huffman encoding are available for this type of situation.  
 

2. When Huffman encoding is applied to blocks of random variables, as these blocks 
increase with size, the decoder grows exponentially larger, which eventually 
becomes impractical and hence Huffman encoding is often only applied to small 
sized blocks of random variables.  

 
3. The Huffman encoding requires a codebook to decode the encoded data, therefore 

the codebook must also be saved with the encoded data. If the outcome set is very 
large, then the codebook may also be very large and may erase the gains of the 
compression. 
 

 
Different Huffman Encoding Algorithms  
 
According to [32] there are several variations to the basic Huffman encoding algorithm, these 
are 
 

 Adaptive coding for non-stationary sources 

 Conditional Huffman coding for Markov processes 

 Variable length vector Huffman coding, where blocks of varying sizes can be used as 
opposed to fixed size blocks. [33] 

 
1.4 Study1: Huffman Encoding applied to Bernoulli Data 
 
The rest of the chapter will explore the results of Huffman encoding applied to binary strings 
of differing probability structure. Several questions will be answered by means of examples 
and the principles illustrated will be proven in the next chapter. The questions are 
 
How does the heterogeneity of the probability function affect the efficiency of Huffman 
encoding as measured by the code rate in comparison to the entropy lower bound? 
 
How does blocking of random variables change the probability function, and how does that 
impact the efficiency of Huffman encoding? 
 
Does the dependence structure between random variables impact the encoding efficiency 
of Huffman encoding and the entropy lower bound?  
 
These questions are explored for binary data. 

                                                             
32

Wiegand, T. and Schwarz, H. Source Coding: Part I of Fundamentals of Source and Video Coding. Pages 32-42.  
33 None of these variations will be used in this mini-dissertation. 
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1.4.1 Entropy 
 
Entropy will be discussed in detail in next chapter, however for the purpose of these 
examples, entropy should be understood as the infimum of the code rate for a given 
probability function, independent of the encoding scheme used.  
 
The joint entropy   can be calculated as a function of the discrete joint probability mass 

function       of   (

  
  
 

  

) with finite output set that takes on the elements 

{                  
} for              

          ∑  ∑∑∑

(

 
 

  

(

 

  

  

 
  

)

 

)
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(

 
 

(

 

  

  

 
  

)

 

)

 
 

)

  
 

      

 

 
where the summation ∑              

 is over the output set of the     element of   and 

  the parameters for        
 
For     the entropy of the random variable   is given by, 

 

          ∑     

 

     (     )  

1.4.2 Blocking random variables when used in conjunction with Huffman encoding  
 
Let                with                 independently distributed 
 

        {
                  
            

 

for            . 
 
The entropy          can be calculated by 

          ∑  ∑ ∑ ∑   
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A vector of length   with each element either a   or a   results in    distinct vectors, but 

since the random variables are independently identically distributed there will be ( 
 
) 

binary strings containing         and   -         where             and the probability 

associated with each one of these strings will be             therefore          is 
reduced to 
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          ∑(
 

 
)                  ( 

          )

 

   

 

 
The entropy          per block size   can be seen in Figure 1.5 
 

 
Figure 1.5 The Entropy Function          Calculated for the Block Sizes    ,      and      for   -
values ranging between             (for         and   fixed),           is a continuous function of  . 
 

The entropy per block can be transformed into the entropy per output value in order to 
obtain an element-wise contribution to the entropy [34], by dividing          by the block 
size  , this can be seen in Figure 1.6  
 

 
Figure 1.6 The Scaled Entropy Function The result is an entropy rate that is a continuous function of  , but 
independent of the size  , this is can be related to the independence of the Bernoulli random variables and 
will be further discussed in the next chapter. 

 

                                                             
34

 This corresponds to dividing the code rate by the block size   in order to determine the code rate per 
output value, or element-wise code rate as discussed earlier in the chapter.  

0

10

20

30

40

50

60

0,01 0,08 0,15 0,22 0,29 0,36 0,43 0,5 0,57 0,64 0,71 0,78 0,85 0,92 0,99

En
tr

o
p

y 

Probability of Success 𝑝  

𝐻(𝒀;𝑝,𝑚)  

0

0,2

0,4

0,6

0,8

1

0,01 0,08 0,15 0,22 0,29 0,36 0,43 0,5 0,57 0,64 0,71 0,78 0,85 0,92 0,99

En
tr

o
p

y 

Probability of Success 𝑝  

(𝐻(𝒀;𝑝,𝑚))/𝑚 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



33 | P a g e  

 

As seen in Figure 1.6, the element-wise contribution to the entropy of a Bernoulli random 
variable will be largest for       and decrease towards zero as   tends towards either 
zero or one, i.e. where the outcome of the experiment is certain. The maximum element-
wise entropy where the block elements are identically Bernoulli distributed occurs when the 
probability function is most homogeneous and the minimum occurs when the probability 
function is least homogeneous. 
 
Example 1.7 
 
In this example we will examine the resulting effects to the code rate and entropy rate due 
to increasing block size and changing probability structure of a binary string. 
 
Blocks of size         will be encoded using Huffman encoding for               and 
   . The code rate   will be calculated using the formula 

       
 

 
∑  ( (  ))  

    

   

  (  ) 

where   (  )             ,     (Bernoulli) and        . 

 
Table 1.3.1 Block of Size      and       
 

Output Vector Probabilities due to Huffman Process 

 Initial 
Probabilities Step1 Step2 Step3 

(0 0) 0.16 0.4 0.4 1 

(0 1) 0.24 0.24 0.60   

(1 0) 0.24 0.36     

(1 1) 0.36       

Huffman Encoding 
 Step1 Step2 Step3 Encoding 
(0 0) 0   0 00 

(0 1) 1   0 01 

(1 0)   0 1 10 

(1 1)   1 1 11 

   

   The expected length      is  , while the entropy rate is      . This is a trivial example 
showing that with limited heterogeneity, Huffman encoding will not achieve any 
compression.  
 
In Table 1.3.2 the probability   is incremented by     to       and the resultant encoding 
is determined.  
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Table 1.3.2 Block of Size      and       
 

Output Vector Probabilities due to Huffman Process 

 Initial 
Probabilities Step1 Step2 Step3 

(0 0) 0.09 0.3 0.51 1 

(0 1) 0.21 0.21 0.49   

(1 0) 0.21 0.49     

(1 1) 0.49       

Huffman Encoding 
 Step1 Step2 Step3 Encoding 
(0 0) 0 1 1 110 

(0 1) 1 1 1 111 

(1 0)   0 1 10 

(1 1)     0 0 

 
The expected length      is      , while the entropy rate is       . 
 
In Table 1.3.3 the probability   is incremented by     to       and the resultant encoding 
is determined.  
 
Table 1.3.3 Block of Size      and       
 

Output Vector Probabilities due to Huffman Process 

 Initial 
Probabilities Step1 Step2 Step3 

(0 0) 0.04 0.2 0.36 1 

(0 1) 0.16 0.16 0.64   

(1 0) 0.16 0.64     

(1 1) 0.64       

Huffman Encoding 
 Step1 Step2 Step3 Encoding 
(0 0) 0 1 0 010 

(0 1) 1 1 0 011 

(1 0)   0 0 00 

(1 1)     1 1 

 
The expected length      is     , while the entropy rate is       . 
 
In Table 1.3.4 the probability   is incremented by     to       and the resultant encoding 
is determined.  
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Table 1.3.4 Block of Size      and       
 

Output Vector Probabilities due to Huffman Process 

 Initial 
Probabilities Step1 Step2 Step3 

(0 0) 0.01 0.1 0.19 1 

(0 1) 0.09 0.09 0.81   

(1 0) 0.09 0.81     

(1 1) 0.81       

Huffman Encoding 
 Step1 Step2 Step3 Encoding 
(0 0) 0 1 0 010 

(0 1) 1 1 0 011 

(1 0)   0 0 00 

(1 1)     1 1 

 
The expected length      is      , while the entropy rate is       . 
 
The Huffman encoder assigns the same number of bits to each output vector for   
        and      , the decrease in expected length is then only attributable to the 
increasing heterogeneity in the probability structure of the block.  
 
If   is increased to  , the Huffman encoder has greater flexibility in encoding the output 
vectors, this means that gains in efficiency are possible in the case of limited heterogeneity 
as in Table 1.4.1. 
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Table 1.4.1 Block of Size      and       
 

Output Vector Probabilities due to Huffman Process 

 Initial 
Probabilities Step1 Step2 Step3 Step4 Step5 Step6 Step7 

(0 0 0) 0.064 0.16 0.16 0.16 0.304 0.304 0.592 1 

(1 0 0) 0.096 0.096 0.192 0.192 0.192 0.408 0.408   

(0 1 0) 0.096 0.096 0.144 0.288 0.288 0.288     

(0 0 1) 0.096 0.144 0.144 0.144 0.216       

(1 1 0) 0.144 0.144 0.144 0.216         

(1 0 1) 0.144 0.144 0.216           

(0 1 1) 0.144 0.216             

(1 1 1) 0.216               
Huffman Encoding 

 Step1 Step2 Step3 Step4 Step5 Step6 Step7 Encoding 

(0 0 0) 0     1   1 1 1110 

(1 0 0) 1     1   1 1 1111 

(0 1 0)   0     0   0 000 

(0 0 1)   1     0   0 001 

(1 1 0)     0     0 1 100 

(1 0 1)     1     0 1 101 

(0 1 1)       0   1 1 110 

(1 1 1)         1   0 01 

 
The expected length      is       , while the entropy rate is       . A decrease in code 
rate is now possible for the case       compared to Table 1.3.1 due to the increased block 
size. 
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Table 1.4.2 Block of Size      and       
 

Output Vector Probabilities due to Huffman Process 

 Initial 
Probabilities Step1 Step2 Step3 Step4 Step5 Step6 Step7 

(0 0 0) 0.027 0.09 0.09 0.09 0.216 0.363 0.363  1 

(1 0 0) 0.063 0.063 0.126 0.126 0.294 0.294 0.637   

(0 1 0) 0.063 0.063 0.147 0.294 0.147 0.343     

(0 0 1) 0.063 0.147 0.147 0.147 0.343       

(1 1 0) 0.147 0.147 0.147 0.343         

(1 0 1) 0.147 0.147 0.343           

(0 1 1) 0.147 0.343             

(1 1 1) 0.343               
Huffman Encoding 

 Step1 Step2 Step3 Step4 Step5 Step6 Step7 Encoding 

(0 0 0) 0     0 1   0 0100 

(1 0 0) 1     0 1   0 0101 

(0 1 0)   0   1 1   0 0110 

(0 0 1)   1   1 1   0 0111 

(1 1 0)     0     0 1 100 

(1 0 1)     1     0 1 101 

(0 1 1)         0   0 00 

(1 1 1)           1 1 11 

 
The expected length      is       , while the entropy rate is       . Notice that the code 
rate for the block of size     and       is greater than that of     and       for 
Table 1.3.2, Huffman encoding decreases the code rate when the block size is increased, this 
however does not necessarily occur in a monotone fashion. The entropy remains the same 
for       (and  ), this is due to the independence of Bernoulli random variables 
constituting the block and was illustrated in Figure 1.6. 
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Table 1.4.3 Block of Size      and       
 

Output Vector Probabilities due to Huffman Process 

 Initial 
Probabilities Step1 Step2 Step3 Step4 Step5 Step6 Step7 

(0 0 0) 0.008 0.04 0.04 0.104 0.232 0.232 0.488 1 

(1 0 0) 0.032 0.032 0.064 0.128 0.128 0.256 0.512   

(0 1 0) 0.032 0.032 0.128 0.128 0.128 0.512     

(0 0 1) 0.032 0.128 0.128 0.128 0.512       

(1 1 0) 0.128 0.128 0.128 0.512         

(1 0 1) 0.128 0.128 0.512           

(0 1 1) 0.128 0.512             

(1 1 1) 0.512               
Huffman Encoding 

 Step1 Step2 Step3 Step4 Step5 Step6 Step7 Encoding 

(0 0 0) 0   0 0   0 0 00000 

(1 0 0) 1   0 0   0 0 00001 

(0 1 0)   0 1 0   0 0 00010 

(0 0 1)   1 1 0   0 0 00011 

(1 1 0)       1   0 0 001 

(1 0 1)         0 1 0 010 

(0 1 1)         1 1 0 011 

(1 1 1)             1 1 

 
The expected length      is 0.728, while the entropy rate is       . 
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Table 1.4.4 Block of Size      and       
 

Output Vector Probabilities due to Huffman Process 

 Initial 
Probabilities Step1 Step2 Step3 Step4 Step5 Step6 Step7 

(0 0 0) 0.001 0.01 0.01 0.028 0.109 0.109 0.271 1 

(1 0 0) 0.009 0.009 0.018 0.081 0.081 0.162 0.729   

(0 1 0) 0.009 0.009 0.081 0.081 0.081 0.729     

(0 0 1) 0.009 0.081 0.081 0.081 0.729       

(1 1 0) 0.081 0.081 0.081 0.729         

(1 0 1) 0.081 0.081 0.729           

(0 1 1) 0.081 0.729             

(1 1 1) 0.729               
Huffman Encoding 

 Step1 Step2 Step3 Step4 Step5 Step6 Step7 Encoding 

(0 0 0) 0   0 0   0 0 00000 

(1 0 0) 1   0 0   0 0 00001 

(0 1 0)   0 1 0   0 0 00010 

(0 0 1)   1 1 0   0 0 00011 

(1 1 0)       1   0 0 001 

(1 0 1)         0 1 0 010 

(0 1 1)         1 1 0 011 

(1 1 1)             1 1 

 
The expected length      is 0.5327, while the entropy rate is      . 
 
By comparing the encoding for Table 1.4.3 and Table 1.4.4, the Huffman encoder assigns the 
same number of bits to each output vector for       and      , the decrease in 
expected length is then only attributable to the increasing heterogeneity in the probability 
structure of the block.  
 
By extending the block size   to  , the Huffman encoder has even greater flexibility in 
encoding the output vectors, this means that greater gains in efficiency are possible.  
 
The optimal codeword length is included in Table 1.5.1 up to Table 1.5.4, the bit length of 
the Huffman encoding can be compared to the optimal codeword length, in order to 
determine where losses in efficiency occur. The optimal codeword length is calculated as 

 
 

    (  (  ))
 [35]. 

 
 
 
 
 
 

                                                             
35 The derivation of this value can be found in section 2.4. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



40 | P a g e  

 

Table 1.5.1 Block of Size      and       
 

Initial Probabilities   Output Vector Huffman Encoding Optimal Codeword Length  

0.0256 (0 0 0 0) 10000 5.287712 

0.0384 (1 0 0 0) 10001 4.70275 

0.0384 (0 1 0 0) 11000 4.70275 

0.0384 (0 0 1 0) 11001 4.70275 

0.0384 (0 0 0 1) 0010 4.70275 

0.0576 (0 0 1 1) 0011 4.117787 

0.0576 (0 1 1 0) 0100 4.117787 

0.0576 (1 1 0 0) 0101 4.117787 

0.0576 (1 0 1 0) 0110 4.117787 

0.0576 (1 0 0 1) 0111 4.117787 

0.0576 (0 1 0 1) 1001 4.117787 

0.0864 (1 1 1 0) 1101 3.532825 

0.0864 (1 1 0 1) 1110 3.532825 

0.0864 (1 0 1 1) 1111 3.532825 

0.0864 (0 1 1 1) 000 3.532825 

0.1296 (1 1 1 1) 101 2.947862 

 
The expected length      is 0.9812, while the entropy rate is      . Since the optimal 
codeword lengths are all fractions, and the codewords are restricted to integer values, the 
Huffman encoding in Table 1.5.1 is suboptimal.  
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Table 1.5.2 Block of Size      and       
 

Initial Probabilities   Output Vector Huffman Encoding Optimal Codeword Length  

0.0081 (0 0 0 0) 1111110 6.947862 

0.0189 (1 0 0 0) 1111111 5.72547 

0.0189 (0 1 0 0) 110001 5.72547 

0.0189 (0 0 1 0) 110000 5.72547 

0.0189 (0 0 0 1) 111110 5.72547 

0.0441 (0 0 1 1) 11001 4.503078 

0.0441 (0 1 1 0) 11010 4.503078 

0.0441 (1 1 0 0) 11011 4.503078 

0.0441 (1 0 1 0) 11100 4.503078 

0.0441 (1 0 0 1) 11101 4.503078 

0.0441 (0 1 0 1) 11110 4.503078 

0.1029 (1 1 1 0) 011 3.280685 

0.1029 (1 1 0 1) 010 3.280685 

0.1029 (1 0 1 1) 001 3.280685 

0.1029 (0 1 1 1) 000 3.280685 

0.2401 (1 1 1 1) 10 2.058293 

 
The expected length      is       , while the entropy rate is       . 
 
Table 1.5.3 Block of Size      and       
 

Initial Probabilities      Output Vector Huffman Encoding Optimal Codeword Length  

0.0016 (0 0 0 0) 11000110 9.287712 

0.0064 (1 0 0 0) 11000111 7.287712 

0.0064 (0 1 0 0) 1100000 7.287712 

0.0064 (0 0 1 0) 1100001 7.287712 

0.0064 (0 0 0 1) 1100010 7.287712 

0.0256 (0 0 1 1) 110010 5.287712 

0.0256 (0 1 1 0) 110011 5.287712 

0.0256 (1 1 0 0) 110100 5.287712 

0.0256 (1 0 1 0) 110101 5.287712 

0.0256 (1 0 0 1) 110110 5.287712 

0.0256 (0 1 0 1) 110111 5.287712 

0.1024 (1 1 1 0) 1110 3.287712 

0.1024 (1 1 0 1) 1111 3.287712 

0.1024 (1 0 1 1) 100 3.287712 

0.1024 (0 1 1 1) 101 3.287712 

0.4096 (1 1 1 1) 0 1.287712 
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The expected length      is 0.7408, while the entropy rate is       . 
 
Table 1.5.4 Block of Size      and       
 

Initial Probabilities   Output Vector Huffman Encoding Optimal Codeword Length  

0.0001 (0 0 0 0) 0110010110 13.28771 

0.0009 (1 0 0 0) 0110010111 10.11779 

0.0009 (0 1 0 0) 011001000 10.11779 

0.0009 (0 0 1 0) 011001001 10.11779 

0.0009 (0 0 0 1) 011001010 10.11779 

0.0081 (0 0 1 1) 0110011 6.947862 

0.0081 (0 1 1 0) 0110100 6.947862 

0.0081 (1 1 0 0) 0110101 6.947862 

0.0081 (1 0 1 0) 0110110 6.947862 

0.0081 (1 0 0 1) 0110111 6.947862 

0.0081 (0 1 0 1) 011000 6.947862 

0.0729 (1 1 1 0) 0111 3.777937 

0.0729 (1 1 0 1) 000 3.777937 

0.0729 (1 0 1 1) 001 3.777937 

0.0729 (0 1 1 1) 010 3.777937 

0.6561 (1 1 1 1) 1 0.608012 

 
The expected length      is 0.4925, while the entropy rate is      . 
 
For    , the Huffman encoding became very difficult to do by hand and too sizable to 
show in the document, so it was programmed in SAS IML for                the code 
rate and entropy were calculated for each case. The SAS IML code is included in the Table 
below [36]. 
 
Code 1.2 SAS 9.2 Code for Table 1.6 
*Generating Joint Probability Distributions* 

*Based on Independent Identically Distributed Bernoulli Variables*; 

Proc iml; 

*  ={1,2,3,4,5,6,7,8,9}*; 

*  ={0.6,0.7,0.8,0.9}*; 

n=  ; 

p=  ; 

count=0; 

v=j((2**n),1,0); 

doi=0 to n; 

do j=1 to comb(n,i); 

count=count+1; 

v[count]=(p)**(n-i)*(1-p)**(i); 

end; 

end; 

                                                             
36

 Please note that the SAS coding used was for the mini-dissertation’s purpose only and is not economic with 
regards to time efficiency. 
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*Huffman Encoding Counting Algorithm* 
Proc iml; 

row={}; 

v=row`; 

call sort(v,1); 

doi=1 to nrow(v); 

index=index//i; 

end; 

*Huffman Coding Process*; 

v_index=index||v; 

one_vec={1,1}//j(nrow(v)-2,1,0); 

m=j(nrow(v),1,0); 

do until (stop=1); 

call sort(v_index,2); 

seeker1=v_index[1,1]; seeker2=v_index[2,1]; 

replace=(one_vec`*v_index[,2]); 

Temp=v_index[,1]||one_vec; 

v_index=v_index[,1]||(v_index[,2]-(v_index[,2]#Temp[,2])+(Temp[,2])); 

v_index[1,2]=replace; 

call sort(Temp,1); 

c=j(nrow(v),1,0); 

do j=1 to ncol(m); 

if m[seeker1,j]>0 then c=c||m[,j]; 

if m[seeker2,j]>0 then c=c||m[,j]; 

end; 

m_1=(c[,+]+temp[,2]>0); 

call sort(v_index,2); 

m=m||m_1; 

ifncol(m)=nrow(v) then stop=1; 

else stop=0; 

end; 

*End of Huffman Coding Process*; 

 

*Determining the Average Bit Rate*; 

call sort(v,1); 

m_final=m[,+]; 

bitrate=(v`*m_final)/(log2(nrow(v))); 

print bitrate; 

quit; 
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Table 1.6 Comparison of Code Rates and Entropy for varying   and   values 
 

Block Size Probability   Code Rate Entropy 
5 0.6 0.977664 0.9709506 
5 0.7 0.888996 0.8812909 
5 0.8 0.73792 0.7219281 
5 0.9 0.480194 0.4689956 
6 0.6 0.9762987 0.9709506 
6 0.7 0.8881745 0.8812909 
6 0.8 0.725248 0.7219281 
6 0.9 0.4701568 0.4689956 
7 0.6 0.9753655 0.9709506 
7 0.7 0.8844696 0.8812909 
7 0.8 0.7317559 0.7219281 
7 0.9 0.4743416 0.4689956 
8 0.6 0.9744358 0.9709506 
8 0.7 0.8858608 0.8812909 
8 0.8 0.7322282 0.7219281 
8 0.9 0.4757994 0.4689956 
9 0.6 0.9744167 0.9709506 
9 0.7 0.8842474 0.8812909 
9 0.8 0.7251399 0.7219281 
9 0.9 0.4749981 0.4689956 

10 0.6 0.9736992 0.9709506 
10 0.7 0.8842745 0.8812909 
10 0.8 0.7282013 0.7219281 
10 0.9 0.4766912 0.4689956 

 
The graph below (Figure 1.7) compares the entropy and the code rate as function of block 
size and probability   given in Tables 1.3.1 through to Table 1.6.  
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Figure 1.7 Entropy vs. Code Rate for Different Block Sizes An increase in block size  , for a particular success 

probability       will result in a decrease in code rate  , this decrease may not be monotone, but as the 

block size   gets larger, it appears as though the code rate will converge to the entropy of the random 

variable[
37]. 

 
The entropy rates are smaller for smaller values of  , however they remain unchanged for 
increasing block sizes   for a particular  . An increase in block size   results in a decrease 
in code rate, however this is not a monotone decrease as seen in Figure 1.7.  It should also 
be noted that the decrease in code rate to the entropy rate occurs slower for increasing 
probabilities  . 
 
The graph below (Figure 1.8) compares the code rates for increasing probabilities   for the 
block sizes          

                                                             
37 This will be proven in the next chapter for all discrete random variables. 
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Figure 1.8 Decrease in Code Rate for Increasing Heterogeneity As the probability function shows greater 
heterogeneity more efficient encoding results from Huffman encoding, which results in a decrease in the code 
rate. 

 
Figure 1.8 shows that an increase in block size   from     to     results in a large 
decrease in code rate for probabilities   of     and upwards, while a smaller decrease in 
code rate occurs when the block size is extended to    .  
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1.5 Study2: Huffman Encoding applied to Bernoulli data with Dependence Structure 
 
In 1.4 Study1 we examined the code rate and entropy rate a binary string made up of 
independently identically distributed Bernoulli distributed random variables. In 1.5 Study2, 
we will examine the effect of a dependence structure on the entropy, by creating a 
conditional distribution between the random variable constituents of the binary string. 
 
Consider the random variable    with probability mass function  

   
     {

                     
               

 

 
and the conditional probability of       

      
        {

                           
                     
                           
                     

 

 
Then the joint probability mass function       

        and the marginal probability mass 

function of    are 
 

      
        {

                                                 

                                           
                                           
                                 

 

 

   
        

     

{
 

 
                                                                      
                                                        
                                                               
                                             

 

 
All possible combinations of        and     are picked by looping through the set 
                    . For each combination of         and    , the joint probability 
mass function       

        and the product of the marginal probability mass functions 

   
        

     are used to calculate the entropy. The entropy calculation is based on the 

equation in 1.4.2 and is determined for both the independent probabilities and the 
dependent probabilities.  
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Code 1.3 SAS 9.2 Code [38] 
Proc iml; 

P={0.10.20.30.40.50.60.70.80.9, 

0.90.80.70.60.50.40.30.20.1}; 

one=j(2,1,1); 

doi=1 to 9; 

do j=1 to 9; 

do k=1 to 9; 

Conditional_mat=(p[,j]`//p[,k]`); 

Marginal_mat=p[,i]; 

Joint_mat= Marginal_mat#Conditional_mat; 

Joint_Ind_mat= Joint_mat[+,]@Joint_mat [,+]; 

Self_info_Dep=log2(Joint_mat); 

Self_info_Indep=log2(Joint_Ind_mat); 

Entropy_Dep_mat= Self_info_Dep#(Joint_mat); 

Entropy_Indep_mat=Self_info_Indep#(Joint_Ind_mat); 

Entropy_Dep=(Entropy_Dep_mat *one)`*one; 

Entropy_Indep=(Entropy_Indep_mat*one)`*one; 

Vec=Vec//(Entropy_Indep||Entropy_Dep); 

end;end;end;Vec=Vec/2;quit; 

 

 
 

 
Figure 1.9 Comparison of the Entropy of Independent and Dependent Bernoulli Blocks The joint distributions 

of dependent random variables and their respective joint independent counterparts.  

                                                             
38

 There is quite a lot of repetition of entropy values in SAS IML output, so Figure 2.7 was chosen out of several 
other images, that had no repetition, due its aesthetic appeal. The output, however is consistent with all the 
other images and correctly represents the fact (which is proven in the next chapter), that the entropy of a 
block of random variables with a dependence relation among its constituents has a lower entropy than a block 
of independently identically distributed random variables.  
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The dependent Bernoulli strings result in lower or equal entropies for each combination of 
        and    .  

 
Thus far we have shown that a dependence structure between random variables in a binary 
string reduces the entropy. How would the code rate be affected by a dependence structure 
between the random variables constituting the binary string? 

 
In order to compare code rates and entropies for block sizes     and   for dependent 
variables and independent variables, Table 1.7 for       and Table 1.8 for       were 
setup. The probabilities for both tables were hand-picked and follow no specific order.
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Table 1.7

 

Table 1.7 A Comparison of Code Rates with Dependency Structure for     Compares the code rate (expected block len.) and entropy for a block of size     whose 

constituents are independently distributed and a binary string whose constituents have a dependence structure, introduced by a conditional probability distribution (not 

included on Table 1.7). The three (out-of-four) shades of grey tables reading from left-to-right are the marginal probabilities, the joint dependent probabilities and the joint 

independent probabilities. The fourth grey table (far right) consists of the representative entropies for the marginal, dependent and independent probability distributions. 

The Huffman code column contains the codeword length of the bold vector at the top of each column.
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Table 1.8

 

Table 1.8 A Comparison of Code Rates with Dependency Structure for     Compares the code rate (expected block len.) and entropy for a block of size     whose 

constituents are independently distributed and a binary string whose constituents have a dependence structure, introduced by a conditional probability distribution (not 

included on Table 1.8).The top table consists of the marginal probabilities and the joint dependent probabilities with respective expected block lengths and entropy code 

rates. The bottom table consists of the same marginal probabilities as the top table, but calculates the independent probability distribution and respective expected block 

lengths and entropy code rates (for both the marginal and joint independent probabilities).The Huffman code column contains the codeword length of the bold vector at 

the top of each column.
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Several remarks can be made with regards to Table 1.7 and Table 1.8.  
 
Firstly, the entropy code rates for dependent random variables are lower than their 
independent and marginal counterparts (as shown in Study 2), this can be seen by 
comparing the marginal entropy code rate to the joint independent and dependent entropy 
code rates and the joint independent and dependent entropy code rates to one another. 
 
Secondly, the code rate per block decreases with increasing block size, i.e. the code rate for 
marginal probabilities – block size    , compared to the joint independently distributed 
and dependently distributed – block size    , is greater (as shown in Study 1).  
 
Lastly, the code rate decreases when there is dependence structure in the binary string 
compared to where there is none. 
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1.6 Conclusions of Chapter One  
 

 Data compression is the reduction of bits required for the encoding of data.  
 

 Compression systems reduce redundancy in data much of which is statistical in 
nature. 
 

 There are two types of data compression, lossless and lossy data compression, 
lossless data compression implies that the data can be perfectly reconstructed, while 
lossy implies that there will be error in the reconstructed values.  
 

 Data can be encoded as individual random variables, or as blocks (or random 
vectors).  
 

 A binary codeword is a sequence or sub-string of      and      , it is a binary 
representative of the output value    or vector                of dimension  , 
sampled from the information source. 
 

 The code rate   is the number of bits required to uniquely decode each individual 
output value    or block               . The code rate is a measure of encoding 
efficiency. 
 

 Fixed rate encoding uses the same number of bits to encode each of the output 
values, while variable rate encoding uses a varying number of bits to encode each of 
the output values.  
 

 Unique decipherability is a necessary condition for lossless encoding and 
instantaneous decoding is a good encoding property that is satisfied by the prefix 
condition. 
 

 The binary tree encoding algorithm and Huffman encoding both satisfy the prefix 
condition. 
 

 Huffman Coding is optimal in the sense that it is able to encode data at a code rate 
that may achieve the entropy lower bound. 
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The effects of heterogeneity, block size and statistical dependence were examined for 
varying size blocks of Bernoulli distributed random variables (vectors) on the code rate and 
entropy. The following observations were made 
 

 Increased heterogeneity leads to a decrease in code rate and entropy of a particular 
Bernoulli probability mass function.  
 

 Increased block size will result in a decrease code rate and entropy, that is if the 
probability distribution is not homogeneous and the constituent random variables of 
the block are not independent. If the constituent random vectors making up the 
block are independent, then the code rate will still decrease with an increase in block 
size. 
 

 Heterogeneity is directly related to the size of the block required to bring the code 
rate within a neighbourhood of the entropy measure of the particular joint 
probability mass function when Huffman encoding is used, an increase in 
heterogeneity will require an increase in block size in order to achieve a decrease in 
code rate within a particular neighbourhood of entropy. 
 

 Dependency relationships between the random variables within a block affect the 
entropy and code rate of encoded random vectors. Dependent random variables 
incur a lower entropy than the independent random variables obtained from the 
marginal probability mass function of the dependent random variables. 
 

 If there is substantial heterogeneity in the probabilities of the underlying probability 
mass function, the difference between the code rate obtained by a Huffman block 
encoding of smaller size blocks and the entropy code rate is larger. In other words, 
larger blocks are required to obtain marginally better code rates for strongly 
heterogeneous probability distributions than for more homogeneous probabilities. 
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Chapter Two:  
Information Theory 

2.1 What is information? 
 

Information is a message, a pattern, a sensory input or abstract data. Information has a 
physical underlying representation [39]. 
 
The measure of the amount of information is the measure of the freedom of choice, 
uncertainty or entropy of a message or data string being selected out of all possible 
messages.  
 
According to [40] the basis of randomness lies in probability theory, while uncertainty is 
related to information theory.  
 
The information content of a (discrete) random variable is dependent on the amount of 
uncertainty as to the outcome of an experiment. If the random variable is highly 
homogeneous, say for example it is a uniformly distributed, with a few number of 
outcomes, then the information content will be high due to the level of uncertainty. An 
increase in the number of outcomes of a uniformly distributed random variable is directly 
related to the level of uncertainty [41].  
 
If however certain outcomes are more probable than others, in other words, the random 
variable is more heterogeneous (than a uniform random variable) then the uncertainty 
pertaining to the outcome of an experiment will be less. An increase in the number of 
possible outcomes of a non-uniform random variable will increase the level of uncertainty 
by a rate that is less than that of a uniform random variable and this increase is inversely 
related to the heterogeneity of the random variable.  
 
2.2 Information in a String 
 
In terms of the ideas presented in the previous chapter, the above statements can be 
applied to a random string of data. 
 
The amount of information in a random string is dependent on the underlying probability 
structure of the string, but independent of its encoding. We assume that the probability 
distribution is discrete unless stated otherwise. 
 

                                                             
39

 As pointed out, it does have a physical representation, however, it does not necessarily have a particular 
interpretation. 
40

Cambel, A.B. Applied Chaos Theory: A Paradigm for Complexity. Academic press. 1993.  Page 8. 
41

 An increase in the number of outcomes results in a logarithmic increase in uncertainty, the logarithmic 
nature will be discussed later in this chapter. 
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The information content of a string is quantified by the joint probability mass function of the 
random string. It is therefore related to the number of output values and the homogeneity 
of the data contained within the string.  
 
Therefore the joint probability mass function of the set of all possible output strings is very 
heterogeneous, then the information content is low and if the probability mass function is 
very homogeneous, then the information content is high. The information content will 
increase with the increase of the length of the string. 
 
A string with high information content will in general require a greater number of bits to 
store or transmit than one with lower information content. 
 
If a string or message is encoded it is typically made up of an information component and 
coding redundancy space, the code rate then indicates the amount of the space required to 
store (or transmit) the information contained within the string and the redundant 
component of the encoding process. If an encoding process has less redundancy (than 
another), then the process is said to be more efficient, if the coding redundancy is zero, then 
the code rate is said to be optimal. 
 
2.3 An Intuitive Introduction to Uncertainty and Entropy 
 
Uncertainty and the Additive Property  
 
The uncertainty of a random variable is defined as the number of bits required to encode 
any outcome of an experiment. 
 

Consider a discrete uniformly distributed random variable   with an output set        
  of 

size  . The number of bits required to encode any    is      . This can be written as 

     (
 

 
)       (      )              

 
An increase in size of the output set,   results in an increase in the number of bits that are 
required to encode any   .  
 
For more than one random variable, consider a random vector of   independent discrete 
uniform  random variables                  , the output set has the size         
         to encode any output vector of the random vector   requires             

          ∑         
 
    bits. The uncertainty of independent (uniform) random 

variables is equal to the sum of their individual uncertainties, this is referred to as the 
additive property of uncertainty. [42] 
 
The entropy   of a random variable is its expected uncertainty.   
 
 
 

                                                             
42

 The random variables need not be uniform, nor identically distributed. This will be shown later in this 
chapter.  
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The Branching Property 
 

Consider a random variable   which has three outcomes        
  each with a corresponding 

probability           . If we were to group outcomes    and    and rename it    and 
rename    into   , then by grouping the two outputs, we have 
 

    (     )  {
        
        

 

 

    (     )  {

                     
  

     
       

 

 

    (     )  {

                    
  

     
       

 

 

  (  )  {
                    
            

 

 
The expected uncertainty or entropy of picking   ,    or    in an experiment maybe 
determined by considering the experiment in two stages.  
 
The first stage requires picking    or   , the expected uncertainty of picking either   is 
              
 
The second stage requires picking   ,    or    from out of the previously picked group. If    
was picked in the first stage, then it is certain that    will be chosen from it. If    was picked, 

then    or    may be picked with the uncertainty given by  (
  

     
 

  

     
). 

 
Therefore the entropy or the expected uncertainty of picking   ,    or    following the two 
stage process is given by 

                                         (
  

     
 

  

     
)  

 
       since the uncertainty related to picking   from    is zero, so 
 

                                        (
  

     
 

  

     
)   

 
If we replace   with   ,   with      and   with          then we have 
 

                                   (       )  

 
This is known as the recursion formula or branching formula and will be used to derive the 
entropy equation.  
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Entropy 
 
The entropy of a random variable is a measure of the amount of information required on 
the average to describe a random variable [43]. 
 
The entropy is the measure of the amount of uncertainty before sampling and the amount 
of information obtained through sampling [44]. 
 
As seen earlier in 3.3, the uncertainty of a uniformly distributed random variable is       or 

more generally      (      )            , the more general definition is applicable to 

non-uniform random variables as well. The expected uncertainty for the random variable   
is given below, it is a special case of definition given in Chapter One, section 1.4.1 where 
    

  [     (     )]   ∑      

 

   

     (      ) 

and               for convention. 
 
The derivation of the above expression will follow in the next two sections, 3.4 and 3.5. 
 
An alternative, simpler and more intuitive derivation is included in section 3.12 the simpler 
derivation assumes independence and identical distribution with probabilities all rational.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                             
43

 Cover, T. M. and Thomas, J. A. Elements of Information Theory. Wiley Series in Telecommunications and 
Signal Processing. Second Edition. Page 15. 
44 Roman, S. Coding and Information Theory. Springer-Verlag. 1997. Page 11. 
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2.4 The Derivation of Entropy  
 
The derivation of entropy      is done with the help of four conditions relating to 
information as a function of the probabilities associated with each outcome value of a 
discrete random variable.  
 
Let   be a discrete random variable with associated probability mass function        and 

outcome value set        
 . 

 
Consider a function      for which the four conditions hold [45]. 
 

1. Regularity:          is Lebesgue integrable on the interval        
2. Symmetry:                  is symmetrical in each of its variables. 
3. Recursion: for every      ,  

 (                             )

  (                  )  (           )  

4. Normalization:  (
 

 
 
 

 
)     

 
The four conditions are satisfied by the function 

                  ∑  

 

   

          

which is the entropy of the random variable  . 
 
Condition    ensures that the function is bounded and continuous on the interval 
      except possibly at a countable number of values.  
 
Condition     implies that the ordering of the probabilities, do not affect the entropy of the 
random variable.  
 
Condition     was described above and is a property of uncertainty.  
 
Property    ensures that the entropy is   when there is maximum homogeneity and two 
outcomes.  
 
Starting at the recursion formula     for    . 
 
For notational simplicity let      and        and           and         
      where     then it follows that 

 

                  (       (
 

     
 

 

     
))                           

                                                             
45

There are many different derivations of the entropy function based on similar axioms, this derivation follows 
the one described Mathai, A.M. and Rathie, P.N. Basic Concepts in Information Theory and Statistics. Wiley. 
1975. Pages 6-8. 
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due to the symmetry property    ,                   where  
 

                  (       (
 

     
 

 

     
))  

Therefore 

         (       (
 

     
 

 

     
)) 

          (       (
 

     
 

 

     
))  

 
Let                with             
 

            (
 

     
)              (

 

     
)                          

 
Then by integrating over the variable   from   to     (we replace   with   as is good 
practice). 

 

∫ (            (
 

     
))  

   

 

 ∫ (            (
 

     
))   

   

 

  

 
Using the substitutions 

  
 

     
     

  

     
 

  
 

     
    

 

      
   

 

                  ∫       
 

 

 ∫       
   

 

    ∫           
 

 

             

 
Now since      is Lebesgue integrable for      , then all terms of the above equation 
are absolutely continuous, except possibly for      itself, however, since the equality holds 
for all       , then      is also absolutely continuous on      . 
 
So then by differentiating on the LHS and RHS in terms of   
 

 

  
(                  ∫       

 

 

)  
 

  
(∫       

   

 

    ∫           
 

 

) 

                        ∫       
 

 

 

            ∫           
 

 

           

But due to the symmetry property     
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Then by cancelling      on the LHS and        on the RHS 

                   ∫       
 

 

    ∫           
 

 

                  

This can be rewritten as  
 

        ∫       
 

 

  (
 

   
)  ∫           

 

 

 
 

       
                  

 
By differentiating       in terms of   and replacing      with      and      with      this 
reduces to  
 

          (
 

       
)  ∫       

 

 

                                                                              

 
Then by integrating over  , and the fact that  
 

 

       
 

 

 
 

 

   
  

 
An alternative expression for       can be obtained (where    is a constant of integration). 

                         ∫       
 

 

     

By integrating over   again we get 
 

                                       ∫       
 

 

                            

 
From symmetry             

                                             ∫       
 

 

        

 
Then by equating the two equations      and     , it follows that        , therefore  
 

                                ∫       
 

 

  

                                          ∫       
 

 

                          

 

Due to normalization    ,  (
 

 
 
 

 
)   , then  (

 

 
)   , so by substituting   

 

 
 into      

 

         [(
 

 
)      (

 

 
)  (  (

 

 
))      (  (

 

 
))]  ∫       
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         ∫       
 

 

 
 

       
                                                                                              

 
Therefore by combining     and       we get 
 

                                                                                                   
 
where       and allowing            . 
 

                                     
For       
 
By replacing   with    and     with    we get  

                                                   ∑            

 

   

                                                        

 
By applying the recursion formula     we get 

                                                       ∑           

 

   

                                       

 

It can be shown that the entropy is bounded below by zero in the minimum uncertainty or 

certain case where      for every   except for one outcome, where     . Entropy is 

bounded above by         where       (
 

 
) which corresponds to the maximum 

uncertainty for a discrete random variable. 

 
 
2.5 The Kraft inequality for a Binary Codebook 
 
The derivation of the entropy formula in section 2.4 deals solely with the discrete random 
variable and its underlying probability mass function. In order to connect the idea of 
instantaneous encoding/decoding with the entropy function, the Kraft inequality will firstly 
be derived and then used to show that the minimum code rate for a uniquely decipherable 
encoding is the entropy rate of the encoded random variable.   
 
The derivation of the Kraft inequality is completed first and it is given in two parts, Part One 
shows that an instantaneous code with corresponding lengths             must satisfy the 
Kraft inequality. Part Two shows that there is an instantaneous code with corresponding 
lengths             that satisfies the Kraft inequality.  
 
The Kraft inequality is then used to show that a uniquely decipherable encoding process 
cannot achieve a lower code rate than the entropy of the encoded random variable. 
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2.5.1 The Kraft inequality[46] 
 

For a variable length encoding of a random variable   with an output set          
 , the 

encoding  is uniquely decipherable [47] if the binary codeword lengths     (     ) satisfy 

the inequality 

∑     

 

   

    

The Kraft inequality is both the necessary and sufficient condition for the existence of a 
unique decipherable code and hence instantaneous code. 
 
2.5.1.1 Part One 
 
Consider the set of instantaneous binary codewords               of an output value 

set        
  with corresponding lengths             .  

 

Any codeword [48]      can be written as    (                     
) as described in the 

previous chapter. 
 

Let the maximum length of a binary codeword in    be         ({  }   

 
), then the total 

number of possible binary codewords of length      is      , with a structure given by 
 

                          
                       

 

 
The expression above, shows that if    has the same first    values as the codeword     , 

then it is a prefix of     . For each codeword    there are            codewords that are 
prefixes of      and will not be permitted into the codebook  . 
 
The codebook   is either empty or contains a positive integer number of codewords, 
therefore 

              ∑     

 

   

  

Binary codewords of length         permitted to be in  .  

 
The inequality can be factored  

       (  ∑    

 

   

)  

 
Since       is non-zero and positive , the Kraft inequality is obtained, by dividing by      . 

                                                             
46The proof given below is similar to one sketched in Roman, S. Coding and Information Theory. Springer-
Verlag. 1997. Pages 44-46. 
47

The Kraft inequality will be proven for the specific case of instantaneous coding, however this holds for the 
more general case of uniquely decipherable coding. 
48 For notational simplicity, the transpose vector notation for the codeword will be dropped. 
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  (  ∑    

 

   

)  

∑     

 

   

    

 
2.5.1.2 Part Two 
 
We show that a codebook comprising of codewords that satisfies both the Kraft inequality 
and the prefix condition can be constructed. 
 
Let    be the number of codewords of length  . The number of codewords of length 1 is 

therefore   . 
 
Note that     , if  
 
Case of codeword up till length   
 

     the codebook is         
     the codebook is       or       
     the codebook is       

 
If     , then           , if 
 
Case of codeword up till length   
 

     and      the codebook is             or             
     and     the codebook is          or          or          or 
         
     then      and the codebook is                . 

 
If      and           , then                 , that is if 
 
Case of codeword up till length   
 

     and      and      then the codebook 
                 or                  or                  or  

                 . 
 
Case of codeword up till length   
 
The encoding satisfies the inequalities 
 
     and             and so on, to the number of strings of length   
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What is left to be shown is that this encoding scheme satisfies the Kraft inequality. 
 
Multiplying the previous expression on both sides of the inequality by     leads to 
 

                                    
 
This can be written as 
 

                                       
 
This can be rewritten in sigma notation as 
 

∑      

 

   

   

∑ ∑   

  

   

 

   

    

 
Since the total number of codewords is ∑   

 
     , we obtain the Kraft inequality 

 

∑     

 

   

    

 
2.5.2 Code Rate for Instantaneous Encoding[49] 
 
Let   be a discrete random variable with associated probability mass function     and output 

value set        
 .The code rate is the average codeword length and is given by  , so with a 

little algebra, 

        ∑   

 

   

        ∑          

 

   

        

 
An instantaneous encoding satisfies the Kraft inequality, so by substituting the Kraft 
inequality into the code rate formula, 
 

   ∑    (
    

∑      
   

)  

 

   

        

 
Let  

       (
    

∑      
   

)  

                                                             
49

Based on the methodology from the book by Gersho , A. and Gray, R. M. Vector Quantization And Signal 
Compression. Springer. 1992. Pages 267-269. 
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   ∑   

 

   

        ∑(    ( 
     ))  

 

   

        

 

When the set of output values        
 are encoded with codewords of lengths    that satisfy 

the Kraft inequality, the resulting code rate is less than or equal to the code rate of encoding 
using a codewords of length    that do not satisfy the Kraft inequality.  
 
The set codewords of lengths    that satisfy the Kraft inequality constitute a subset of all 
possible codewords. The inequality shown above holds for all codewords of length   , this 
implies that the assignment of codewords satisfying the above inequality is not unique and 
there are (possibly many) other codebooks comprising of codewords whose lengths satisfy 
the above inequality.    
 
Note that        can be considered as a probability mass function, since  
 

∑(
    

∑      
   

)

 

   

         (
    

∑      
   

)         

 
What remains to be shown is that there exists a lower bound of the expression  

 ∑(    ( 
     ))  

 

   

       

and that this lower bound maybe achieved if the codeword lengths satisfy a particular 
condition. The lower bound is the entropy of the random variable  . 
 
2.5.3 Determining the Probability Mass Function obtaining the Lower Bound 
 
According to the book, [50] by considering the difference between the entropy of the 
random variable   and the code rate of a codebook satisfying the Kraft inequality 

 ∑(    (      ))  

 

   

       ( ∑(    ( 
     ))  

 

   

      ) 

 

 ∑(    (
 

      
))  

 

   

       ∑(    (
 

      
))  

 

   

       

 

 ∑(    (
      

      
))  

 

   

        

 
The Taylor series expansion of         shows that            for         with 
equality when     therefore, 

                                                             
50 Gersho , A. and Gray, R. M. Vector Quantization And Signal Compression. Springer. 1992. Pages 267-269. 
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    (
     

     
)  (

     

     
)     

 
Then by a changing the base of the logarithm 
 

 

     
 ∑(    (

      

      
))  

 

   

       

 
and substituting the above expression into the logarithmic inequality we get 
 

 

     
 ∑ (    (

      

      
))  

 

   

       
 

     
 ∑((

      

      
)  )  

 

   

        

 
By multiplying into the brackets on the RHS of the above expression  
 

 

     
 ∑(    (

      

      
))  

 

   

       
 

     
 ∑               

 

   

  

 
Using the fact that both    and    are both probability mass functions 
 

∑               

 

   

 ∑      

 

   

 ∑      

 

   

    

 
Thus we have  
 

 ∑(    (      ))  

 

   

       ( ∑(    ( 
     ))  

 

   

      )    

 

 ∑(    (      ))  

 

   

        ∑(    ( 
     ))  

 

   

        

 
The LHS is the entropy of the random variable   and is the minimum code rate for encoding 
the output set of a random variable with a uniquely decipherable code, as shown above.  
 
The equality holds if it is possible to encode using lengths    that match the probability mass 
function 

              (
    

∑      
   

) 

 
The rest of the chapter deals with the properties of entropy and code rate of blocks of 
random variables. 
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2.6 Entropy of Random Vectors of dimension    
 
In the previous chapter, the joint entropy of a random vector   was defined as  

          ∑ ∑∑ ∑

(

 
 

  

(

 

  

  

 
  

)

 

)

 
 

  

     

(

 
 

  

(

 

  

  

 
  

)

 

)

 
 

      

 

With dimension   and a discrete joint probability mass function       where   (

  
  
 

  

) 

with finite output set   , where      is a discrete random variable with probability mass 

function    
     with     {                  

} for            . The summation 

∑              
 is over the outcome set of the     element of  . 

 
The following properties 2.7 – 2.10 and derivations of entropy are found in the book [51] and 
will re-derived for the purpose of understanding the concept of joint entropy and 
interpreting the results from the previous chapter. 
 
2.7 Independent      
 
If the      are independent, then  
 

  (

  
  
 

  

)  ∏    
    

    and     (∏    
    

   )   ∑     (   
(  ))

 
    

 

          ∑  ∑∑∑ (∏   
(  )

 

   

)

  

 (∑    (   
(  ))

 

   

)

      

  

 
Consider the case where     
 

          ∑∑(∏   
(  )

 

   

)

  

 (∑    (   
(  ))

 

   

)

  

 

 

  ∑∑(   
        

    )

  

 (    (   
    )      (   

    ))

  

 

  ∑∑(   
        

    )

  

     (   
    )  ∑∑(   

        
    )

  

     (   
    )

    

 

 

  ∑   
    

  

 ∑(   
    )      (   

    )  ∑   
     ∑(   

    )      (   
    )

      

 

                                                             
51

 Cover, T. M. and Thomas, J. A. Elements of Information Theory. Wiley Series in Telecommunications and 
Signal Processing. Second Edition. Chapter Two. Pages 13-23. 
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  ∑(   
    )      (   

    )  ∑(   
    )      (   

    )

    

 

 

                       ∑          

 

   

  

 
Similarly for any   

          ∑          

 

   

  

 
If the      are independently identically distributed, then it follows from above that 
 

                     
 
2.8 Conditionally Dependent      
 

Let   (
  

  
) where    and    are not independent, then the conditional entropy is given by 

 

             ∑   
     ( ∑      

            (      
       )

  

)

  

 

 

  ∑∑    
           

            (      
       )

    

 

  ∑∑      
            (      

       )

    

 

 

                   
[    (      

       )]  

 

This can be extended to a vector   (

  
  
 

  

) of dimension    

 
                          

  ∑∑  ∑                   (                
                 )

      

 

 

            
[    (                

                 )]  
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2.9 The Chain Rule for Entropy 
 
Consider the joint entropy for the case where     
 

          ∑∑     
            (     

       )

    

 

  ∑∑      
            (   

           
       )

    

 

  ∑∑     
            (   

    )

  

 ∑∑     
            (      

       )

      

 

  ∑   
         (   

    )  ∑∑     
            (      

       )

      

 

 
                                                                                  

 

This can be extended to a vector   (

  
  
 

  

) of dimension    

 

                                 ∑                      

 

   

  

 
 
2.10 Mutual Information and Information Inequality 
 
Mutual information is the measure of the amount of information that one random variable 
contains about another random variable. It represents the reduction of uncertainty of one 
random variable due to knowledge of the other variable and is given by          [52].  
 
2.10.1 Mutual Information 
 

 Consider the random vector   (
  

  
) of dimension     

 

         ∑ ∑      
            (

      
       

   
        

    
)

    

 

 ∑∑      
            (

      
           

    

   
        

    
)

    

 

  ∑∑      
        

    

    (   
    )  ∑∑       

            (      
       )

    

 

                                                             
52

Cover, T. M. and Thomas, J. A. Elements of Information Theory. Second Edition. Wiley Series in 
Telecommunications and Signal Processing. Second Edition. 2002. Page 19.  
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  ∑   
     

  

    (   
    )  ∑∑     

            (      
       )

    

 

 

     
[    (   

    )]        
[    (      

       )] 

 
                                    

 
It [53] can be shown that  
 

                                    
 
2.10.2 Mutual Information Inequality 
 
Consider the negative of the mutual information 
 

           ∑∑      
            (

      
       

   
        

    
)

    

 

 ∑∑      
            (

   
        

    

      
       

)

    

 

 

     (∑∑      
        (

   
        

    

      
       

)

    

)  

Since      is (strictly) concave using Jensen’s Inequality [54]. 

              (∑∑   
        

    

      

) 

     (∑    
     ∑   

    

      

) 

 
    

Thus  
 

             
 
 

                                   
 

                        
 
That is if    contains information about   , then the uncertainty related to    is reduced. 

                                                             
53Wiegand, T.  Rate Distortion Theory & Quantization. Digital Image Communication. Page 14. 
54

www.encyclopediaofmath.org/index.php/Jensen_inequality. 
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2.11 Blocking Random Variables  
 
In the previous chapter, the concept of a block of random variables of size   was 
introduced, and was defined as a random vector of dimension   composed of random 
variables that are grouped together. 
 
The reason for blocking random variables will become apparent in the next two sections 
(section 2.11.1 and 2.11.2) that have been adapted from those given in [55]. 
 
2.11.1 Blocking Reduces Entropy 
 
Consider the joint entropy of   a random vector of dimension  , according to the mutual 
information inequality 
 

                                                      
                                        

                                                                    
  

 ∑         

 

   

                                                            

 
Blocking random variables together reduces the entropy below that of the individual 
random variable constituents, equality holds if the   random variables in the block are 
independent. This confirms what was shown in the previous chapter with Bernoulli random 
variables. This result can be argued from a geometric perspective as well. 
 
2.11.2 Blocking Reduces Code Rate 
 
In the previous chapter a reduction in code rate was even noticeable for the case of 
independently distributed random variables. This reduction was due to the convergence of 
the code rate to the entropy lower bound as block size increases. This aspect will be shown 
next. The authors show that an increase in block size reduces the code rate, the derivation 
based on the book will be given below. 
 
Consider the probability density function       for a particular random variable   , if it is 
possible to encode each output value    with a codeword of length    for           so 
that it satisfies  

       
    

∑      
   

 

then the code rate will be equal to the entropy. 
 
If there is no codeword of integer length    that allows for the encoding as shown in the 
above expression, then the encoding will not be optimal, that is, attaining entropy.  

                                                             
55 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Pages 276-277. 
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In this case, codewords with integer valued lengths    can be assigned to the probabilities 
       such that  
 

                                  
 
This satisfies the Kraft inequality, since the LHS can be written as 
 

∑    

 

   

 ∑             

 

   

 ∑      

 

   

    

 
Also by taking the expected values, we have 
 

 ∑                   

 

   

 ∑           

 

   

  ∑                     

 

   

  

 
Which is  
 

                          
 
This shows that there is an instantaneous encoding that is within one bit of the entropy 
code rate. The increased efficiency of blocking can now be established, since the previous 

expression also holds for a random vector   (

  
  
 

  

) of dimension  , with a discrete joint 

probability mass function       where    has a probability mass function    
     for  

   {                  
},            .  

 

There are      ∏   
 
    vector permutations possible. 

 
In the same way as before, by assigning code words of length    to the probabilities        
such that 

     (      )          (      )     

 
Then by taking the expected values over the joint distribution       we get 
 

                           
 
Where       is the expected block length, this differs from      , the element-wise code 

rate, since      blocks of length   are represented by the codebook, as explained in the 
previous chapter, the element-wise code rate is calculated as  
 

     
 

 
 ∑  ( (  ))  

    

   

  (  )  
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The expected length per output value (or element-wise bit rate) is       
 

 
       and 

 

 
          

     

 
 

 

 
          

 

 
  

 
By increasing the block size  , code rates converge towards the joint entropy code rate of 
the random vector    of size  . 
 
Combining the expression given above with the inequality obtained in section 2.11.1, 
namely 

         ∑         

 

   

  

 
Then for a large   the element-wise bit rate can be reduced below the individual entropy 
values calculated for each random variable    averaged over the block size    
 

     

 
 

 

 
 ∑         

 

   

  

 
2.12 Alternative Entropy Derivation [56] 
 

Consider a vector   (

  
  
 

  

) of size   where each    is independently identically     (
 

 
) 

distributed. The number of bits required to uniquely encode every output variable    is given 
by       and to encode anyone of the    possible strings will require       

   
         bits. 
 
If however, each    is non-uniform then, as seen in the previous chapter, it is possible to 
encode more probable outcomes with shorter codewords and less probable outcomes with 
longer codewords. 
 
So if    is non-uniform but still independently identically distributed [57] with   outcome 

values      with             where  (       )     for every              then 

there are    possible strings, each with a probability ∏ (  )
   

    where    is the number of 

occurrences of the outcome value     .  

 
 
This can be considered in the context of a multinomial distribution given by 
  

                      {
(

  

          
)   

    
    

     
                       ∑   

 
     

                                                                        
   

                                                             
56

 Proof found in text by Rozanov,Y.A. Probability Theory: A Concise Course. Dover. Pages 115-116.  
57

 This is not a necessary prerequisite for the entropy calculation, it is however a necessary consideration in 
this proof. 
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The random vector   can take on any one of   possible outcomes each with probability 
given by the above expression. 
 
If   is very large, then by the strong law of large numbers [58],  
 

   
   

(
 

 
 ∑  

 

   

)     

   

If    is large there are (
  

              
) overwhelmingly likely outcomes each with the 

probability   
    

    
     

    , where          and   ∑   
 
    [59].  

 
In other words, if the vector   has a very large dimension   then most of the information 

would be accounted for by considering a subset of size (
  

              
)  possible output 

vectors. Only a little information would be unaccounted for if the rest of the output vectors 
are ignored.  
 
If only this subset is considered, then this corresponds once again to a uniform distribution 

with (
  

              
) outcomes each with the probability (

              

  
) of occurring. 

 
In order to calculate the element-wise bit rate, we divide through by the string length  , so 

the element-wise bit rate is  
 

 
     (

  

              
) bits to encode each output value.  

 
By replacing all factorials by Stirling’s formula [60]  
 

   √     
 

         
We get 

 

 
     (

  

              
) 

 
 

  
          

 

  
                  

 

 
 ∑           

 

   

  

 
And by replacing    with      
 

 (
   

  
)           ∑           

 

   

  

                                                             
58

 Rozanov,Y.A.  Probability Theory: A Concise Course. Dover. Page 115. 
59

 Only rational probability values are considered. 
60

 Stirling’s Formula, Y.A. Rozanov, Probability Theory: A Concise Course. Page 10.  
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Therefore, the element-wise bit rate of encoding a random variable   with   outcome 

values with   large is given by the entropy of   

          ∑           
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2.13 Conclusions of Chapter Two 
 

 Entropy is a measure of the amount of information required on the average to 
describe a random variable.  
 

 The uncertainty of a random variable is defined as the number of bits required to 
encode any outcome of an experiment. 
 

 The entropy          of a discrete random variable   with probability mass 

function    is  ∑       
 
        (      )  

 

 The Kraft Inequality provides a bound on the lengths of uniquely decipherable 
variable rate encoding schemes, and therefore instantaneous codes. 
 

 Blocks of random variables, can achieve lower rates than individual random variables 
when encoded with uniquely decipherable variable rate encoding, even if the 
random variables are independent.  
 

 If a dependency structure exists amongst the random variables constituting a block, 
then the block entropy rate is lower than the sum of the individual entropy rates. 
 

 If a dependency structure exists amongst the random variables constituting a block, 
then the code rates achievable, may be below that of the individual entropy rates 
averaged over the block size  . 
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Chapter Three: 
SCALAR QUANTIZATION 

 

 

 

 

 

Figure 3.1 Scalar Quantization Applied to a Continuously Sampled Signal (left block) with quantized output 

(right block). [
61

] 

In the previous chapter it was shown that lossless data compression is bounded below by 

the joint entropy which was calculated from the joint probability mass function of the 

random vector encoded. Lossy data compression, is able to reduce the code rate below that 

achieved by lossless data compression by means of data quantization, this however at the 

cost of approximation error. 

3.1 Quantization in Data Compression 
 
Data quantization is a process which is applied to quantitative continuous/discrete data that 
reduces the data size to a pre-set value by means of approximation, as described in chapter 
one as lossy data compression.  
 
Data quantization achieves increased data compression by discarding the information 
content, in order that the quantized data may be encoded at a lower rate, thereby reducing 
the storage capacity of the encoded data. The reduction in information content is due to a 
combination of the restructuring of the random variable’s probability mass/density function 
and the decrease in its output set size through quantization. 
 
3.2 Scalar and Vector Quantization 
 
In general, quantization is applied to scalar or vector data sampled from a discrete or 
continuous random variable or vector, which results in discrete, countable random outcome 
values or vectors.  In this chapter, the focus will be on the quantization of a continuous 
random variable    (scalar) with a density function   . A value   from the support of    is 
quantized by replacing it with a suitable reproduction point  . The value   approximates  . 

                                                             
61 Kolesnikov, A. Image Compression, Lecture 8, Scalar Quantization. Department of Computer Science, 

University of Joensuu, Joensuu, Finland. 

 

Scalar 
Quantization 
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The quantization of   results in a discrete random variable   with a discrete probability 

mass function     and a reproduction point set        
 .    

 
3.3 Quantizer Design 
 
The quantizer design partitions the support of a random variable and allocates all values 
within a partition to a specific value known as a reproduction point.   
 
The quantizer design is usually done prior to the process of quantization, although there are 
many applications where the quantizer is designed “on-the-run”, as the data is analysed the 
quantizer evolves in tandem with the data feed. 
 
The number of reproduction points   and a performance measure that penalizes the 

dissimilarity between the input value   and output reproduction point   are often chosen 

before the quantizer is designed. These performance measures are often called distortion 

measures in the context of data quantization. 

Three scalar quantizer designs will be discussed in this chapter namely: a uniform scalar 
quantizer, a companded scalar quantizer and a Lloyd Max locally optimal quantizer.  
 
3.4 Scalar Quantization 
 
Three important aspects of a scalar quantizer are: the reproduction set, the boundary value 

set and the quantizer rule  .  

3.4.1 Partitioning the Support of   and the Boundary Values 

Consider the continuous random variable   with probability density function    with 

support on the interval    . Let    be a sub-interval of   with    ⋃   
 
    and        

  for all    . If the sub-interval    is bounded, then it is known as a granular sub-interval, if 

it is not, then is known as an overloaded sub-interval.  

The sub-interval is defined as open, half-open or closed by the inclusion or exclusion of its 

boundary values. 

Open interval    (       )  

Half- open interval    [       )    (       ]  

Closed interval    [       ]  

If every sub-interval    is closed or half- open and the reproduction point       then the 

scalar quantizer is called regular [62]. 

 

                                                             
62 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Page 135. 
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3.4.2 Scalar Quantizer   

The scalar quantizer is the mapping   of the interval   onto the reproduction set   where 

         
 . The mapping   is a composite function made up of an index encoder and an 

index decoder [63]. 

Mapping the random variable   onto an index   is achieved by the index encoder          

 , while the mapping of the index   onto the reproduction point set          
  is achieved 

by the index decoder            [64]. 

So for a continuous random variable  , if      then        , since         and 

             

3.4.3 Probability Mass Function of the Reproduction Set 

For the quantized random variable        for the random variable   with probability 

density function   , the reproduction set          
  has a discrete probability mass 

function   

  (  )  {
∫    
  

               

                          

  

 

 

Figure 3.2 Regular Scalar Quantizer The random variable   is plotted against an regular scalar quantizer 

      . Under-predictions occur on the sub-intervals                , exact predictions at the set of points 

       and over predictions occur on the set of sub-intervals                 . The reproduction point set 

  {  }   
 is the set of points       , while the boundary values {  }   

  are the set of points            . 

                                                             
63

 It is important to notice that there is a difference between and index encoder and the encoder referred to in 
chapter one and two. 
64

 Quantization as a composite mapping will be discussed in Chapter Four in the more general case of vector 
quantization. 
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3.5 Distortion Measures of Scalar Quantization 

A scalar distortion measure is the degree of dissimilarity or the approximation error 

between the input random variable   and output quantized random variable  .  

The distortion measure used is dependent on the application, the type of data and the input 

data distribution. 

3.5.1 Distortion Measure 

A distortion measure              and          

is a metric if  

                                                                                   

                                                                     

                                                                          

                                                        

 

3.5.2 Two Commonly Used Distortion Measures [65]   

Consider the random variable   with probability function    and the scalar quantizer   that 

approximates   with     . Then      is the quantized value of   and the distortion due to 

  being approximated by      is given by  (      ). 

Squared Error Distortion (also called noise energy) 

The squared error distortion is the most commonly used distortion and is given by  

 (      )  (      )
 
 

Its popularity is due to the wide knowledge of mean squared error theory. It is also the 

square of the Euclidian distance between   and       as used in neutral geometry. 

Hamming Distortion (also called 0/1 loss) 

The Hamming distortion is used if   is a discrete random variable, and is given by 

 (      )  {
           
           

 

 

                                                             
65

 See Deza, E. Deza, M. Dictionary of Distances. Elsevier Science & Technology Books. 2006. for more distance 
measures. 
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3.5.3 Entropy Constrained Distortion 

The entropy constrained distortion measure which is the linear combination of a distortion 

          and the uncertainty      (     ) where        is 

                       (     (     ))  

Where   is a weighting or penalty factor. As the distortion decreases, a related increase in 

information content will result, and hence a decrease in compression efficiency.  

Minimization of            over all     leads to the constrained problem relating to the 

rate distortion function which will be briefly discussed in the next chapter. 

3.5.4 Combined Distortion 

The combined distortion is a function of the distortion measure computed over the support 

of the input random variable  . The most commonly used combined distortion is the mean 

or expected distortion. 

3.5.5 Mean Distortion  

Let   be a continuous random variable with probability density function       , the mean 

distortion is given by 

   [ (      )]   ∫  (      )         
 

  

  

Or for the sub-intervals   ,           

   [ (      )]   ∑∫                
  

    

 

   

  

The mean distortion may be divided into granular and overloaded regions 
 

  ∫  (      )         ∑∫  (      )        
  

    

 

   

 

  

 ∫  (      )  
 

 

        

Then since both  (      )    and              

  ∑∫  (      )        
  

    

 

   

  

If the sub-interval       is chosen so that ∫       
 

  
 ∫       

 

 
  , 

then distortion will be approximately equal to ∑ ∫  (      )        
  

    

 
    on average. 
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3.5.6 Sample Mean Distortion  

For a set of observations        
  quantized according to the set of reproduction points   

       
  the mean distortion   can be estimated by   

  ∑∑  (  )   (     )        

 

   

 

   

 

where   (  )  {
                   

                   
  

This is an estimate of the combined mean distortion. 
 
3.6 Three Methods of Scalar Quantization  

Three scalar quantization methods will be considered: uniform scalar quantization, 

companded scalar quantization and Lloyd Max scalar quantization. 

3.6.1 Uniform Scalar Quantization  

Uniform scalar quantization is a scalar quantization technique that uses equal length sub-

intervals to partition the support   of  . 

The step-size between two adjacent reproduction points is   .  

             for            

    
         

 
 for             

If the support of   is the bounded interval         then   
   

 
 the input random 

variable has a bounded sample space with maximum error 
 

 
. 

If the support is the unbounded interval    , then the quantizer design for overloaded 

intervals         and/or        is often done independently of the bounded 

interval          This is due to large errors that may occur in quantizing observations from 

the unbounded region.  

Consider a random variable   with density function   , the uniform scalar quantizer has the 

following properties 

 The uniform scalar quantizer is regular. 

 The boundary values of a uniform scalar quantizer are equally spaced. 

 The reproduction points are the midpoints of the two adjacent boundary values. 
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Figure 3.3[
66

] Midrise and Midtread Scalar Quantizer     is known as midrise uniform scalar quantization, 

while     is known as midtread uniform scalar quantization. The midtread uniform scalar quantizer shown 

above is equivalent to rounding to the nearest integer and maps the zero value onto zero, while the midrise 

uniform quantizer does not map onto the zero value. 

Uniform scalar quantization is robust, it is often simpler than its non-uniform counterparts 

and near-optimal for a large reproduction value sets [67].   

Uniform scalar quantization will be considered for uniform and non-uniform probability 

functions in the next section. 

3.6.1.1 Uniform Quantization Applied to a Uniform Distribution  

If    follows a             , then for   reproduction points, the step size is given by 

  
   

 
     

The reproduction points    and the boundary values    can be calculated as  

          and          for             

The quantization error   (      ) is     ( 
 

 
  

 

 
) then 

       and        
  

  
 and         

  

  
    

3.6.1.2 Uniform Quantization Applied to a Non-Uniform Distribution  

If the continuous random variable   is not uniform and has a support that is not bounded in 
 , then uniform scalar quantization can be applied to a bounded sub-interval       of   and 
the overloaded sub-interval/s can be dealt with independently by either discarding the 
observations that occur outside of the interval, or by quantizing them with a larger step-
size. 
 

                                                             
66 Image obtained from PDF Cleveland State University CIS 658 Fall 2005. 
67 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Pages 151, 153 and 
299. 
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3.6.2 Non-Uniform Scalar Quantization  

The difference between non-uniform and uniform scalar quantization is that the step-size 

(sub-interval lengths) between the reproduction points for a non-uniform quantizer is not 

constant. 

Two major advantages of non-uniform scalar quantization over uniform scalar quantization 

are [68]. 

1. For a given reproduction point set size  , one can increase the range that can be 

accommodated by a reproduction point set from a source with an overloaded 

region. 

2. For a specific input probability density function, a non-uniform quantizer can be 

developed to match the probability density function, which will result in lower 

combined distortion levels. 

One such non-uniform scalar quantization technique is companding. 

3.6.3 Companding 

Companding applies a non-linear transformation to a random variable, and then applies 

uniform scalar quantization to the transformed random variable. The inverse transform is 

then applied to the quantized random variable. The companding process is illustrated in 

figure 3.4. 

 

Figure 3.4: Compressor (Far Left), Uniform Quantizer (Middle), Expander (Far Right) 

The input random variable   is transformed by an invertible non-linear function   into a 

bounded random variable  ̃.  ̃ is then quantized by uniform scalar quantization. The 

resultant quantized random variable  ̃ is then transformed by the inverse of the non-linear 

function     the expander. 

A signal to be transmitted that requires compression by means of companding prior to 

transmission is first compressed by the function  , it is then uniformly scalar quantized and 

encoded before transmitting it. At the receiver, the compressed signal is decoded and then 

expanded by the function    .  

                                                             
68 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Page 156. 
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The effect of companding can be interpreted as using a tightly packed reproduction set on 

the sub-intervals of high probability, while using a sparse and loosely packed reproduction 

point set on intervals of lower probability, this is due to the shape of the compressor curve. 

Three companding methods will be considered: Probability Integral Transform compandor, 

piece-wise compandor and logarithmic compandor. 

3.6.3.1 Probability Integral Transform Compandor 

Consider the distribution function    , we know that the distribution function compresses    

onto the unit interval      . That is          then               . 

If    is one-to-one, the probability integral transform provides a compressor   and 

expandor     where   maps the support of a random variable   onto the unit interval 

      and    maps the interval       onto the reproduction point set  .  

If   is not one-to-one, the probability integral transform still holds, however the use of   as 

a compressor is problematic, as     may not be unique. One way of solving this is by 

approximating   by a smooth curve such that 
  

  
   for    . 

If   is a continuous random variable with a distribution function    with an unbounded 

support, with either the minimum, maximum or both boundary points undefined, then for a 

reproduction point set of size  , the boundary points        
    can be determined as follows 

∫          
 

 
                    

  

  

 

with      or      where applicable, that is    is the (
 

 
)

  

percentile of the distribution 

function   .  

The reproduction points        
  are determined by  

∫        
  

  

  
   

 
 

 

   
                    

If   has a bounded support        , then the boundary points can be obtained by 

substituting      and      into the above formula. 

If the probability density function of   is either not known or the integration intractable, 

then the empirical cumulative distribution function  ̂ can be used, where  ̂ is given by   

 ̂    
 

 
∑ (    )
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      {
        
         

 

The cumulative probabilities can be divided into   sub-intervals, with step size  
 

 
 , with the 

number of observations    such that       and the empirical cumulative distribution 

function can be used to design the non-uniform quantizer. 

Let    be a boundary point where  ̂     
 

 
                   and let    be a 

reproduction point where  ̂      
   

 
 

 

   
                   

In order to estimate   , the first order statistic can be used      ̂    and similarly for the 

estimation of   , the last order statistic      ̂    may be used, where  ̂    is the estimated 

    order statistic.  

The probability integral transform is a conceptual application to the non-uniform 

compression problem and can be implemented in many situations, however, since most 

data signals are generally non-stationary and have a varying dynamic range. An easier 

solution would be to find an invertible function independent of the data signal that is 

defined for the whole real line. One such function is the logarithmic compressor. 

3.6.3.2 Logarithmic Companding  

The section follows from the article [69]. 

The logarithmic compandor is a transformation which is applied to the random variable    

Two such logarithmic compandors are the  -law compandor and the  -law compandor, 

where   and   are parameters of the respective functions. Both of these compandors have 

been used extensively in telecommunication.  

A logarithmic curve is used as the non-linear transformation, since perceived sound intensity 

is logarithmic in form, this leads to the companded signal being louder (increase in 

perceived intensity) than the original signal.  

Logarithmic companding in telecommunications serves the dual purpose of efficiently 

encoding and increasing the perceived intensity of the analog signal [70].  

                                                             
69 Brokish, C. W. Lewis, M. A-Law and mu-Law Companding Implementations using the TMS320C54x, MTSA. 
Texas Instruments. 1997. 
70 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Pages 159-160. 
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Figure 3.5 The Logarithmic Compressor Curve based on the  -law (Left) Figure 3.6 The Logarithmic Expander 

Curve based on the  -law (Right) 

The  -law 

The compressor   and expandor      with the compression intensity parameter   

       
           

       
                            

  
      (

 

 
)                                          

The   -law algorithm is used to modify the dynamic range of an analog signal. The   -law is 
used in the USA and in Japanese digital systems. The   = 255 for 8-bit systems (        
[71]. 

 

Figure 3.7  The Logarithmic Compressor Curve based on the A-law (Left) Figure 3.8 The Logarithmic Expander 
Curve based on the A-law (Right) 

                                                             
71 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Page 160. 
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In figure 3.5 and figure 3.7, the compressor   of the logarithmic compandor is symmetric 

and approximates the logarithmic curve for positive values. By comparing the figures above, 

the A-law algorithm has a smaller dynamic range than the   -law algorithm, this leads to less 

distortion for smaller analog signals, but at the cost of less dynamic range for larger analog 

signals.  

The  -law 

The compressor   and expandor      with the compression intensity parameter   

      

{
 
 

 
      

        
                                           

 

 

             

        
                   

 

 
      

   

 

  
      

{
 
 

 
              

 
                                           

 

         

                    

 
                   

 

         
      

 

The A-law is used in European digital systems. In Europe the                    [72]. 

3.6.3.3 Piece-wise Companding 

The piece-wise compandor has a range made up of several segments, each of which consists 
of uniformly spaced intervals, with differing step sizes for different segments to 
accommodate the dynamic range of the input signal. Piece-wise uniform scalar quantizers 
are often used in the place of the compandor’s compressor curve.  

According to the book, [73] given any finite regular scalar quantizer, there exists a piece-wise 

compandor model to match it.  

Assume that   is a finite regular scalar quantizer, with the set of ordered boundary points 

       
  and the reproduction point set        

 , and then define the set of points in the 

Cartesian plane. 

                         

where     is the   co-ordinate and       is the   co-ordinate. With     constant, and 

    constant. 

                                                             
72

 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Page 160. 
73

 The proof and result follows from the one given in the book, Gersho, A. and Gray, R. M. Vector Quantization 
and Signal Compression. Springer. 1992. Pages 157-158. 
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Similarly the set of points  

   (        
 

 
  )               

can be plotted on the Cartesian plane, where     is the   co-ordinate and     
 

 
   is the 

  co-ordinate. 

The point    is connected to    using a straight line, then   is connected to    using a 

straight line and    is then connected to    , and continuing in this way, each point    is 

connected to the points      and    by means of lines with varying gradients.  

The resulting graph   will be piecewise continuous and monotone increasing over the 

interval        . 

For any predefined set of boundary points        
  , reproduction points         

  and a finite 

regular scalar quantizer one can obtain a set of uniformly spaced, transformed reproduction 

points and boundary points in a one-to-one relationship with their untransformed 

counterparts.  

Therefore, for any finite regular quantizer  , there exists a compandor    to match it. 

A smooth monotone increasing function can replace the piecewise defined function 

described above. In the book [74] piece-wise uniform scalar quantizers are considered as a 

practical version of logarithmic compandors.  

Companding is used in several applications other than telephony, in particular problems 
where high dynamic range causes visual and audio inconsistencies in image and audio 
compression.  

There are many discussion on the topic, one interesting on the use of companding in the 
compression of HDR images is Li, Y.  Sharan, L.  Adelson, E. H. Compressing and Companding 
High Dynamic Range Images with Subband Arcitectures. 2005. 

 

 

 

 

 

                                                             
74

 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Pages 160-162 
entitled piece-wise uniform scalar quantizers. 
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3.6.4 Lloyd-Max Scalar Quantization: The Optimal Problem 

Another approach to designing a scalar quantizer for the random variable   comes from the 

minimization of the optimal problem, which is given below.  

If   is any continuous random variable with probability density function    and      is a 

scalar quantizer then the optimal problem can be considered as finding the boundary values 

       
  and the reproduction points        

  satisfying   

             
         

(∑∫                
  

    

 

   

)  

If the optimal problem is successfully minimized, then the resulting (generally non-uniform) 

scalar quantizer design will be optimal in terms minimizing the combined distortion. 

In general, there is no closed form for solving the above mentioned minimization problem. 

There are however, effective algorithms to deal with the optimal problem, one such 

algorithm is the Lloyd-Max algorithm.  

3.6.4.1 Deriving the Lloyd-Max Algorithm (Partial Solutions)   

If the distortion measure   is the squared error distortion, then the optimal problem is 

given by 

             
         

∑ ∫                
  

    

 

   

  

Consider the following two partial problems,  

1. Conditioning on boundary values         
  and finding the optimal reproduction 

set        
    

2. Conditioning on the reproduction set        
  and finding the optimal boundary 

values        
    

Conditioning on the Boundary Values 

Assuming that        
                

  are fixed, then minimizing   with respect to        
 . 

That is find        
  such that 

      
    

(∑∫                
  

    

 

   

)   

    
    

(∑  

 

   

)   
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where      ∫                
  

    
              . 

By differenting    in terms of      and setting the derivative equal to zero 

                       ∫               
  

    

    

                                                                      ∫        
  

    

 ∫  
  

    

           

from which it follows that 

   
∫  

  

    
        

∫        
  

    

  

This can be written as  

   
∫  

 

  
              

               
 

 
where the indicator function is given by  
 

  (   )  {
                   

                     
 

 
 

 ∫  
 

  

   (             )    

This is the conditional expectation over the sub-interval    and is known as the centroid 

condition. 

                                 

Conditioning on the Reproduction Set 

Assuming that        
  are fixed, then minimizing  . 

      
    

(∑∫                
  

    

 

   

)   

Notice that if we define the interval    such that    {  (    )
 

        } for 

all          . Then for any density function    we have 

∫ (    )
 
        

  

 ∫                
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Summing over all the intervals    and the reproduction points    

∑∫ (    )
 
        

  

 

   

 ∑∫                
  

 

   

  

Therefore by choosing the intervals interval    such that    {  (    )
 

        } for 

all          , then   can be minimized for the set of reproduction points        
  for any 

density function   . 

The set of boundary points        
  corresponding to the intervals              must 

satisfy the equation 

(         )
 

          
  for all          . 

This is the midpoint of the reproduction points      and    defined by 

      
       

 
 for all          . 

This is known as the nearest neighbour condition. 

3.6.4.2 Application of the Lloyd-Max Algorithm to Empirical data  

According to the book, [75] direct application of the Lloyd-Max Algorithm to empirical data is 

often not tractable, specifically determining the reproduction set using the centroid 

condition, often numerical integration and Monte Carlo simulation are used in tandem to 

solve this problem.  

The direct application of the Lloyd-Max Algorithm to the problem requires the distribution 

function which is typically not known. 

The unbiased estimator of the conditional expected value                  is the 

conditional sample mean from which estimated boundary points can be determined 

without estimating the probability function.  

Since determining the conditional sample mean depends on the yet to be determined 

boundary points, a set of   sample means can arbitrarily [76] be assigned and the optimal 

boundary points can then be calculated to match the sample means. This unsupervised, 

iterative process is commonly known as the  -means algorithm or the Linde-Buzo-Gray 

algorithm and will be discussed below. 

                                                             
75 Discussion follows the discussion presented in the book, Gersho, A. and Gray, R. M. Vector Quantization and 
Signal Compression. Springer. 1992. Pages 190-191. 
76 There are several considerations when initializing the reproduction set, see 1. Meila, M. and Heckerman, D.  
An experimental comparison of several clustering methods. 1998. and 2. Bradley , P. S. Microsoft Research and 
Fayyad, U. M. Microsoft Research. Refining Initial Points for K-Means Clustering. 1998.  
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3.6.4.3 The Linde-Buzo-Gray Algorithm  

1. Starting with initial reproduction set          
  for iteration    .  

2. Apply nearest neighbour partitioning using          
  to obtain the boundary points 

for each of the intervals      

        
           

 
               

Assign all observations      within the interval      to the nearest reproduction point 

      

3. Apply the centroid condition to obtain the new reproduction set             
  by 

finding the mean of all the observations      that have been assigned to the 

reproduction point       

 

        
∑         (  )

 
   

∑     
 
   (  ) 

              

where  

  (   )  {
                   

                     
  

 

4. Determine the estimated combined distortion as 

     
 

 
 ∑∑      (  )   (         )

 

   

 

   

  

5. Stop if some threshold is reached, else return to 2.  

If a point    is equidistant from two reproduction points    and     , then an allocation rule 

is necessary to assign the point uniquely to one interval.  

A threshold is also required to stop the iteration process as the iteration process will 

converge. The threshold may be compared to the relative decrease in estimated combined 

distortion 
       

  
. Another option is comparing the threshold to the maximum change in the 

reproduction set points                  .  
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3.6.4.4 A Few Properties of Lloyd Max Scalar Quantization  

The book [77] gives several properties of Lloyd Max scalar quantizers, these are stated with 

proofs form the book below.  

Property One 

A quantizer that satisfies the centroid condition will satisfy   

 (      )   .  

Starting with the centroid condition 

      ( |           )   

 (    )   ( ( |           ))         

So  (      )      

Property Two 

A quantizer that satisfies the centroid condition will satisfy  

 (     (      ))   .  

Starting with 

 (     (      ))  

  ( (     (      )            )). 

Notice that if             then        , so then it follows that 

  (                        )  

  ((                    )    
 )  

 (     (      ))      

The reproduction set        
  is orthogonal to the quantizer error. 

 

 

 
                                                             
77 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Pages 180-182. 
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Property Three 

A quantizer that satisfies the centroid condition will satisfy  

 (  (      ))      

Starting with 

 (  (      ))         (      )  

        (     )     

Notice that from property two,            (     ), it follows then that                                                                     

          (      )   (     )                                                                     

  ((      )
 
)     

  (  (      ))                                                                                                       

A random variable    is positively correlated with the quantizer error [78]. 

Property Four 

The nearest neighbour condition implies scalar quantizer convexity, that is, if 

           and        (  )    , then  (  )    . 

Firstly, if any reproduction point           
  and any two points         where       

that satisfy        
         

                  and similarly        
  

       
                   

Then for any point            we show that 

       
         

                   

Starting with 

                 where         and |     |  |     |  |     |                                                                      

|     |  |                |   

                                                             
78 According to the author, the quantizer error (      ) is a deterministic function of the input data  . 

Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Page 182.  
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 |            (                 )|  

               (|                 |)                                                

             (      |     |)  

 (  |     |)  (      |     |)                           

(  |     |)  (      |     |)                                                                       

 |(         )  (                 )|                                               

 |                |  

 |     |   

       
         

                         

 

Therefore if            and        (  )    , then  (  )      

Property Five 

The nearest neighbour condition implies scalar quantizer regularity. 

As shown in property four, the nearest neighbour condition implies scalar quantizer 

convexity. The allocation rule forces the reproduction point    to be contained on the open 

interval (       ), Therefore, a scalar quantizer   that satisfies the nearest neighbour 

conditions is regular. 

Scalar quantizer regularity is an important property of Lloyd Max scalar quantizers as it is a 

requirement for optimal scalar quantization as will be discussed in section 3.7. 
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3.7 High Code Rate Estimate of Distortion  

In the book [79], the authors discuss the optimality of the uniform scalar quantizer, for a high 

code rate, over any other scalar quantizers.  

The authors first establish an expression for the estimated combined distortion  , then the 

author uses the point density function      to obtain the distortion integral. Finally, the 

distortion integral is then used to show that a uniform scalar quantizer combined with an 

entropy encoder is the best scalar quantizer for a high code rate.  

The first and last steps are included with details in order to better understand the results 

obtained.  

3.7.1 Estimated Combined Distortion for High Code Rate Quantization 

Consider a random variable   which follows a smooth non-uniform probability 

distribution   , then for a very large reproduction set        
  and    small sub-intervals 

where the granular region comprises of most if not all of the support of  .  

If a regular scalar quantizer   is applied to   then the combined mean squared error 

distortion   is 

  ∑∫       
 

  

    

 

   

           

Since the granular interval            includes most if not all the probability, we have 

∫        
    

  

     

Since   is large and   is smooth, the partitions are small enough to be approximated by a 

constant probability    over the sub-interval           , so 

       ∫      
  

    

                 

In other words, 

   
      

         
  

The combined mean squared error distortion   is given by, 

                                                             
79 The High Resolution Approximation and the Uniform Scalar Quantizer follows directly from the proof in 
Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Pages 161-162 and 
Pages 298-300. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



99 | P a g e  

 

  ∑       ∫
      

 

         

  

    

 

   

     

If the codeword    is chosen as the midpoint of the interval          , which is the nearest 

neighbour condition for optimal quantization of a uniform random variable, then the above 

integral becomes 

∫
      

 

         

  

    

    ∫
(  

         

 
)

 

         

  

    

    

 
 

         
(∫                (

         

 
)

   

    
   )  

 
 

         
(

          

 
 

                    

 
           (

         

 
)

 

)  

 
 

         
(

          

 
 

                    

 
           (

         

 
)

 

)  

 (
          

 
 

                   

 
 (

         

 
)

 

)  

 
          

  
.  

By substituting the expression above into the combined mean squared error distortion we 

get 

  ∑       
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3.7.2 Uniform Scalar Quantizer as an Optimal Scalar Quantizer  

The authors [80] define the point density function      as given by  

        
   

    

 
  

where        is the number of quantization levels between           

The authors also show that for   large the interval length is approximately given by  

          
 

        
  

The authors then prove that the combined distortion is given by the distortion integral, 

given by 

                                                     
 

  
   (

 

(      )
  )                                                

where the expectation is taken over the granular region of the random variable    

The authors finally show that scalar quantizer that achieves the minimum entropy for a 

given average distortion is the uniform scalar quantizer with a large reproduction set.  

 
As in section 3.7.1, if   is large and   is smooth, then the probability mass function can be 
approximated by the rectangular areas, 
 

                         
 
But, as stated earlier, this expression can be modified by the approximation, 
 

          
 

        
  

By substitution, we get 

       
      

        
  

In section 2.4 it was shown that the lower bound of the code rate for encoding a discrete 
random variable   with probability mass function       is given by the entropy, 
 

          ∑      

 

   

     (      )  

                                                             
80 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Pages 163-164. 
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By substituting        into          we have, 
 

          ∑(                )

 

   

     (
      

        
) 

 

  ∑(                )

 

   

     (      )  ∑(                )

 

   

     (
 

        
)  

Allowing the number of reproduction points    , then we have, 

  ∫ ((     )      (     ))   
 

  

 ∫ ((     )      (
 

       
))  

 

  

 

  ∫ ((     )      (     ))  
 

  

   (    (
 

       
)) 

  ∫ ((     )      (     ))   
 

  

 
 

 
   (    (

 

(       )
 ))  

Due to the convexity of          and by Jensen’s Inequality [81] we have 

  ∫ ((     )      (     ))   
 

  

 
 

 
 (    ( (

 

(       )
 )))  

Then by substituting the distortion integral into the above expression, we get 

  ∫ ((     )      (     ))  
 

  

 
 

 
               

         is bounded below by  

 ∫ ((     )      (     ))  
 

  

 
 

 
               

With the lower bound achievable if and only if       is constant, which is if the quantization 

point density function is uniform.  

This proves that for a large reproduction set, uniform scalar quantization applied in tandem 

with an entropy encoder is in general better than any other scalar quantizer, independent of 

the input probability distribution. 

                                                             
81

 Cover, T. M. and Thomas, J. A. Elements of Information Theory. Wiley Series in Telecommunications and 
Signal Processing. Second Edition. 2002. Page 25. 
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3.8 Conclusions of Chapter Three  

 A scalar quantizer approximates a random variable   with a set of reproduction 

points          
  for the purpose of discretizing continuous data or reducing the 

information content for compression purposes. 

 

 Scalar quantization is made up of three constituents, namely a scalar quantizer  , a 

reproduction set          
   and the set of boundary values which bound the 

quantization sub-intervals. 

 

 The result of scalar quantization, is a discrete random variable        with 

probability mass function that is a function of the probability density/mass function 

of  . 

 

 The scalar quantizer introduces redundancy by means of approximation, therefore a 

distortion measure is used to calculate the degree of dissimilarity between the input 

random variable   and output quantized random variable  .  

 

 The mean distortion is the combined distortion between   and   which is calculated 

over the support of  . 

 

 Scalar quantization can be achieved by both a uniform and non-uniform scalar 

quantization. The difference between uniform and non-uniform scalar quantization 

is the uniform and non-uniform length of the quantization sub-intervals respectively, 

that partition the support of      

 

 Three forms of scalar quantization were considered, namely, uniform scalar 

quantization, companded scalar quantization and Lloyd Max scalar quantization.  

 

 Companding applies a non-linear transformation to the random variable X, before 

applying uniform scalar quantization to the transformed variable. Three compandors 

are considered, namely, probability integral transform companding, logarithmic 

companding and piecewise companding.  

 

 Lloyd Max scalar quantization is the result of the minimization of the optimal 

problem of minimizing the combined distortion for the Euclidian distortion measure. 

 

 The nearest neighbour condition and centroid condition are obtained by 

conditionally minimizing the mean square error distortion in the optimal problem. 
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 Linde-Buzo-Gray algorithm is the iterative procedure that attempts to find an 

optimal reproduction set and corresponding boundary points. 

 

 The centroid condition results in several properties including the positive correlation 

between the random variable   and the quantization error. 

 

 The nearest neighbour condition results in scalar quantizer convexity and regularity. 

 

 In the case of a large reproduction set, uniform scalar quantization outperforms any 

other scalar quantizers when used in conjunction with an entropy encoder.  
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Chapter Four: Vector Quantization  

4.1 Vector Quantization 

Vector quantization is the extension of scalar quantization, that is, vector quantization is 

applied to a random vector      where the vector   is quantized as a single unit. The 

quantization of a random vector results in a set of discrete, countable random quantized 

vectors.  

A vector quantizer   of  , is defined as the mapping of the random vector   onto the 

reproduction set  . 

          

where          
  and       , with discrete joint probability mass function        where 

  (  )  {
∫    
  

               

                          

  

4.2 Scalar Quantization to Vector Quantization [82] 

Two immediate implications of extending from scalar to vector quantizers are the change 

from intervals to cells and the change of the quantizer function. 

4.2.1 Intervals to Cells  

Scalar quantization is applied to random variables of dimension    , although these 

random variables may constitute the elements  of a random vector, scalar quantization is 

the element-wise application of a scalar quantizer to a random vector  .  

The element-wise scalar quantization of the vector components will result in rectangular 

partitions, due to scalar quantization in each dimension, this is known as product scalar 

quantization. 

For example, if     , the random vector      where     (
  

  
) may be quantized 

using the scalar quantizer   which is applied to each element of the vector   where       

is the mapping from    onto the reproduction set           
  and       is the mapping 

from    onto the reproduction set    {  }   

  
. 

                                                             
82

 The random vector   will be considered to be continuous, all the theory can be extended to discrete random 
variables with a few variations to the theory, however, in practice the quantization methods discussed in this 
document remain alike. 
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The result of combining these two sets into a reproduction set, is the set of reproduction 

points       {(  
  

)}
       

     

 and a grid in    of size        of       (possibly unequal 

length for non-uniform scalar quantization) rectangles which are known as rectangular cells. 

Regular vector quantization on the other hand, results in Voronoi tessellations, which in 

general are regular, polygonal shapes (or polytopal shapes for         )  of differing size, 

bounded by planes of lower dimension. An example of this can be seen in figure 4.1. 

 

Figure 4.1 A Voronoi Tessellation [83]. 

A cell [84]      is a generalization of the interval    in  , this generalization will be 

restricted to the set of non-overlapping regular polytopes in this mini dissertation. 

The region extending over the sample space of the random vector   with a joint probability 

density function       is divided into   sub-regions or cells. 

The cell    with                  is defined as 

1.                        

2.   ⋃    
 
      

3.   ⋂                 

with inverse image             with the reproduction set        
     

The cell    will be considered in more detail next. 

 

 

 

                                                             
83

 Image obtained by means of a Google search http://dasl.mem.drexel.edu/Hing/VoronoiTutorial.htm. 
84

 Throughout chapter four, the cell will be referred to as  , this is not to be confused with the codebook   
from chapters one and two. 
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4.2.1.1 Boundedness of    

The cell    is unbounded if there exists an        such that   

                     

where the sphere of radius   is given by        with     as the centroid of the cell    

                         

An unbounded cell is known as overloaded and a set of overloaded cells is known as an 

overloaded region, while a bounded cell is known as granular and a set of granular cells is 

known as a granular region.  

4.2.1.2 Boundaries of    

The boundaries of the cell    are the set of planes    

            
          

which intersect to form closed bounded polytopals in the granular regions of    and open 

unbounded regions in the overloaded regions of   . 

4.2.1.3 Regular Polytopal Cell 

The polytopal cell    is defined in [85] as the intersection of    half spaces, 

    ⋂   
      

            
          

 where    is the number of        dimensional faces of    . 

A regular polytopal cell is a polytopal cell that is both convex, that is for any            

                                   and contains its reproduction point vector.  

A polytopal cell is convex, this will be shown in property one. 

Property One 

If              , then            and                                . 

For         we have,  

               and                                             . 

By adding the above two inequalities we get,  

                                                             
85 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Page 320. 
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This implies that, 

                                            .  

Therefore the set of half-spaces  

                     

is a convex set and the intersection of any collection of convex subsets of    is a convex set 

[86].  Therefore the cell    is convex. 

Figure 4.2 below illustrates the form of a regular cell in   . 

 

Figure 4.2 [87] Regular Vector Quantization The Voronoi regions are regular cells, their boundaries are linear, 

convex and they contain their reproduction points   . The central cells are granular, since they are bounded. 

The cells on the exterior may be unbounded, and hence overloaded. 

4.2.1.4 Decomposing the Vector Quantizer Function  

In the book [88], the authors show how the vector quantizer can be decomposed into 

simpler constituent parts for application. 

The vector quantizer   is the composite function made up of an encoder   and a decoder 

 . The process of quantization then takes the composite form 

        (    )  

                                                             
86

 Bartle, R.G. The Elements of Real Analysis. Second Edition. Wiley. 1976. Page 59. 
87

 Image was obtained from www.mqasem.net/vectorquantization/vq.html by means of a Google search.  
88 Gersho, A. and Gray, R. M. Vector Quantization And Signal Compression. Springer. 1992. Pages 317- 323. 
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The mapping of the random vector   onto an index   is achieved by the encoder        , 

while the mapping of the index   onto the reproduction set          
  is achieved by the 

decoder        . A brief summary is given below.   

The vector encoder      can be defined as a composite function made up of a selector 

vector          and an index function  . 

If an observed     , then the selector vector   

     

(

 
 
 

 
 
 
 
 
 
 )

 
 
 

 has a   in the     position and   s elsewhere and           .  

The     element of the selector vector       is determined by the indicator function 

      {
        
        

  

The indicator function is applied to the scalar product        , which will be positive if 

    .  

The selector vector,       is defined as 

      ∏   
             

where    is the number of       dimensional intersecting half planes that constitute the 

cell   .  

The decoder      is defined by the inverse function     applied to the index  , where  

     ∑   

 

   
             

This assigns the index   to the reproduction point   . 
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4.3 Vector Distortion  

A vector distortion measure is the degree of dissimilarity or the approximation error 

between the input random vector   and output quantized random vector  .  

The distortion or approximation error was described in the previous chapter, as a cost 

function that would assign a greater cost to greater deviation of the approximated value 

from the original value.  The increase in dimensionality over that of scalar distortion 

measures provides both challenges and advantages in picking the correct distortion 

measure. 

 

4.3.1 Five Distortion Measures [89] 

Five distortion measures that are applicable for vector quantization will be considered in the 

next section. 

4.3.1.1   - Norm Distortion  

 (      )              

where           
    

      
  

 

  . 

The    - norm is a natural extension from the squared error distortion applied to scalars in   

to the squared error distortion applied to vectors in   .  

4.3.1.2   - Norm Distortion 

The   - norm can be extended to the   - norm, where  

 (      )              

where             
      

          
 

  . 

4.3.1.3 Weighted Squared Error Distortion [90] 

For a matrix of weights    that is symmetric and positive definite defines the weighted 

square distortion as 

 (      )  (      )
 
  (      )  

One such matrix of weights is the inverse of the covariance matrix   .  

                                                             
89

 See Deza, E.; Deza, M. (2006), “Dictionary of Distances”, for more distance measures. 
90

 Definitions obtained from the book Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. 
Springer. 1992.  Pages 325-327. 
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If   is the covariance matrix of the random vector   where 

                      

The distortion measure  (      )   (      )   (      )
 

 is known as the 

Mahalanobis distance. 

4.3.1.4  Noise Energy-to-Signal Energy Distortion 

If           
      where    is the identity matrix of size   and          , then  

 (      )  
(           )

 

         
  

The Noise Energy-to-Signal Energy distortion is not a metric [91]. 

4.3.1.5  Log Likelihood Ratio Distortion  

The Kullback-Leibler distance is given by 

 (      )      (
     

     
)  

According to [92] Kullback-Leibler distance (or the expected log likelihood ratio) is the 

“coding penalty” for approximating the distribution        with      .  

The Kullback-Leibler distance or one of its variations is a powerful “distance measure” that is 

often used in image compression. The Log Likelihood ratio is however not a metric.  

For an interesting introduction to Kullback-Leibler distance see [93]. 

4.3.2 Combined Distortion of a Random Vector  

Similarly to the previous chapter, the combined distortion is a function of the distortion 

measure computed over the support of the input random vector  . The most commonly 

used combined distortion is the mean or expected distortion. 

 

 

 

 

                                                             
91

 The definition of a metric was given in section 3.5.1. 
92

 Cover, T. M. and Thomas, J. A. Elements of Information Theory. Wiley Series in Telecommunications and 
Signal Processing. Second Edition. Page 19. 
93 Shlens, J. Notes on Kullback-Leibler Divergence and Likelihood Theory. 2007. 
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4.3.2.1 Mean Distortion  

Let   be a continuous random vector with joint probability density function      .  

The mean distortion is given by 

   ( (      ))   ∫ (      )   
 

  

Now since the cells    are disjoint and                

   ( (      ))   ∑∫           
  

 

   

  

4.3.2.2  Sample Mean Distortion  

To calculate the sample mean distortion for a set of observations        
  quantized 

according to the reproduction set          
  we have 

  ∑(   ∑   (     )    (  )

 

   

)

 

   

 

where    
 

 
∑   (  )

 
   . 
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4.4 Rate and Distortion Minimization  

According to the web page Data-Compression.com [94], the main aim of data compression is 

to represent data obtained from an information source as accurately as possible using the 

fewest number of bits possible. Achieving this requires that both the distortion and code 

rate need to be minimized simultaneously. 

In order to decrease the distortion of a quantized random vector or a quantized signal 

below a pre-specified level, a reproduction set          
  of size  , a quantizer rule  , a 

distortion measure   and the set of cells         
  must be chosen with a large enough  .  

According to section 2.5.3, for the quantized random vector  , the expected code rate as a 

function of the probability mass function of the quantized random vector is bounded below 

by         . 

According to the author [95], an increase in the size   of the reproduction set   will decrease 
(or leave unchanged) the combined distortion of a quantized random vector or quantized 
signal, if its support is bounded on   . In most situations, an increase in the size of the  
reproduction point set will result in a decrease in overall distortion, however an increase will 
result in a larger code rate.  
 
The constrained problem in rate distortion theory aims to find a lower bound for the code 
rate given for a particular distortion. Rate distortion theory is used for comparison purposes, 
it may however assist in choosing the reproduction point set in a few specialized cases.  
 
4.4.1 Rate-distortion Theory 
 
In section 2.11.2 it was shown that blocks of random variables of larger dimension   could 

be encoded at a lower code rate than their scalar counter-parts. In section 4.5 it will be 

shown that by quantizing blocks of random variables more efficient encoding and 

quantization could be performed. The increase in dimension, however leads to a greater 

distortion as the need for more reproduction points increases due to the increase in space 

volume. 

Rate-distortion theory gives the theoretical bounds on what code rate can be achieved for a 
given loss of fidelity or what the minimum distortion is for a given code rate for encoded 
quantized vectors from a particular  probability distribution [96]. 
 

                                                             
94 www.data-compression.com is a suggested site on the Stanford University Electrical Engineering site for 
Vector Quantization. 
95

 According to the book by Gersho , A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 
1992. Page 153. If the sample space is unbounded while the probability density in the overloaded sub-intervals 
is “small” and the probability density function is “smooth”, then an increase in reproduction point set size  , 
will decrease the combined distortion (or leave it unchanged) that is if the combined distortion is finite.  
96 Wiegand, T. and Schwarz, H. Source Coding: Part I of Fundamentals of Source and Video Coding. Page 10. 
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The rate distortion function is the minimum code rate for all achievable code rates for a 
given distortion [97]. It is determined as a function of the increasing block size of 
independently identically distributed random variables constituting the random vector  . 
 
4.4.2 The Rate-Distortion Function 
 
The distortion   between a random vector   of dimension   of independently identically 
distributed random variables and the respective quantized random vector   obtained by 
means of a particular quantizer   is calculated as the element-wise distortion as given by  

        
 

 
∑        

 

   

  

The mean distortion is  

     (       )  

 

If the code rate of encoding the   reproduction points        
 is  , then the minimum of the 

rates for a given distortion   is given by the rate distortion function which is given by, 
 

        
         

        

where        is the mutual information between the input random vector   and the 
quantized random vector       , and the mutual information as defined in chapter two 
is given by 

       ∑∑              (
         

           
)

  

  

 
The minimum is taken over every possible quantization  . 
 
 
 

 
Figure 4.3 Rate-Distortion Function The minimum distortion   for a given rate   is determined over all 
possible quantization schemes      for a particular code rate.  

 
 
 
                                                             
97

 Cover, T. M. and Thomas, J. A. Elements of Information Theory. Wiley Series in Telecommunications and 
Signal Processing. Second Edition. Page 306. 
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4.4.3 Performance of Scalar and Vector Quantizers and Encoders 
 
According to the article [98], uniform scalar quantization of an independent source combined 

with an entropy encoder can achieve rate distortion values near the rate-distortion curve 

independent of the shape of the distribution.  

When dependence structure is present, then vector quantizers have substantial gains over 

scalar quantizers and vector quantizers are able to achieve the rate distortion lower bound 

without entropy encoding [99].   

4.4.4 Some Properties of       
 

According to the power point presentation [100], the rate distortion function      is a 
continuous, monotone decreasing function of   and it is convex. 
 

If   and (      ) are statistically independent, then the lower bound can be achieved.  

In section 3.6.4.4, it was shown that the Lloyd Max conditions with squared error distortion 

does not achieve independence between the input random vector   and the error 

(      ). Therefore according to the author, although the Lloyd Max conditions are 

necessary and sufficient for an optimal quantizer in terms of minimizing the combined 

distortion, they are inadequate for the minimization rate distortion function.  

4.4.5 The Unconstrained Problem 

The problem of minimizing the code rate for a particular distortion can also be achieved by 
means of the unconstrained problem of minimizing the expected distortion, where the 
distortion is now a function of both the distortion and the uncertainty of   with the penalty 
parameter  . This was defined in the previous chapter as entropy constrained distortion, 
and was given by 
 

                 (     (     ))  

One approach to minimizing the un-constrained problem is the iterative procedure known 

as the ECVQ algorithm, the algorithm will be discussed in section 4.7.1. 

For an introduction to the unconstrained problem see the PDF [101]. 

 

 

                                                             
98

Lookabaugh, T.D. and Gray, R. M. High-Resolution Quantization Theory and the Vector Quantizer Advantage. 
IEEE Transactions on Information Theory, Vol. 35, no. 5, September 1989. Pages 1 and 3. 
99

 Makhoul, J.  Roucos, S. and Gish, H. Vector Quantization in Speech Coding. From the proceedings of the IEEE, 
vol. 73, no. 11, November 1985 , Section E, entitled Vector Quantization Model. Page 1566. 
100

 Wiegand, Thomas: Digital Image Communication RD Theory and Quantization. Page 13. 
101 http://www.stanford.edu/class/ee368b/Handouts/04-RateDistortionTheory.pdf 
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4.5 Efficacy of the Vector Quantizer 

This section looks at the increased effectiveness of vector quantization over scalar 

quantization and refers to results from section 2.11 with regards to vector encoding and 

scalar encoding. 

4.5.1 Encoding Random Vectors 
 
In section 2.11.1 it was shown that by increasing the block size or dimension   of a random 
vector, a decrease in the joint entropy of the random vector would result whenever there 
was a dependency relationship amongst the constituent elements of the vector.  
 
It section 2.11.2 was also shown that a decrease in code rate would result from encoding a 
random vector as opposed to encoding its constituent elements and that this decrease 
would result even in the case where the constituent elements were statistically 
independent.   
 
Therefore, as shown in section 2.11, encoding random vectors as opposed to the 
constituent random elements making up the random vector, will achieve a decrease in the 
code rate. 
 
4.5.2 Quantizing Random Vectors as Opposed to Random Variables 
 

According to the paper [102], the quantization of vectors, as opposed to scalars would take 

advantage of four properties that could lead to optimal quantization performance. 

The four properties are linear dependencies, non-linear dependencies, shape of the 

distribution and dimensionality. Each will be discussed briefly and references will be made 

to various papers containing detailed discussions. 

4.5.3 Linear Statistical Dependencies 

The authors give a graphical illustration of a two dimensional correlated rectangular joint 

uniform probability density function is given.  

It is argued that if scalar quantization is applied to each of the correlated random variables 

independently based on the appropriate marginal probability density functions and these 

quantized random variables are then jointly encoded, that reproduction points will be 

encoded that represent regions that lie outside the sample space of the joint probability 

density function.   

The set of reproduction points and their related cells form a grid of size       which cover 

a rectangular area, greater than the actual sample space. 

                                                             
102

 Makhoul, J.  Roucos, S. and Gish, H. Vector Quantization in Speech Coding. From the proceedings of the 
IEEE, vol. 73, no. 11, November 1985, Section E, entitled Vector Quantization Model. 
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The authors argue that if vector quantization is applied to such a situation, that areas 

containing zero probability will not necessarily be assigned to reproduction points, thereby 

reducing the number of necessary reproduction points and the related code rate. This of 

course assumes that the same distortion will be incurred in both situations.  

The increase in code rate due to assigning reproduction points to regions of zero probability 

(or very low probabilities) when scalar quantization is applied as opposed to vector 

quantization holds true for any joint probability distribution and is often exacerbated when 

correlation is present amongst the random variables. 

4.5.4 Non-Linear Statistical Dependencies 

When vector quantization is applied to random vectors, non-linear statistical dependencies 

within the source can be exploited. The authors use a similar illustration as in section 4.4.3, 

however, the rectangle is no longer slanted therefore showing that no correlation is present 

between the random variables.  

The rectangle now contains a rectangular “hole” within it and a different spread in the 

probability mass function, which is used to represent some joint probability mass function 

whereby non-linear dependencies exist between the constituent random variables.  

Once again, if scalar quantization is applied to each of the random variables independently 

based on the appropriate marginal probability density functions and these quantized 

random variables are then jointly encoded, then the reproduction points will be encoded 

that represent regions that lie on the “hole” in the joint probability density function which 

has zero probability of occurring. 

The authors argue, once again that if vector quantization is applied to such a situation, that 

areas containing zero probability will not necessarily be assigned to reproduction points, 

which will reduce the related code rate.  

Both the arguments in section 4.4.3 and 4.4.4 can be extended to higher dimensions, for 
different probability density functions. 
  
4.5.5 Distribution Function Shape 

Vector quantization is able to take advantage of the shape of the source probability density 

function, using cells of different shapes and sizes.  

For example, if a particular probability density function has several modes, applying uniform 

scalar quantization to each vector element of the sample space will result in a rectangular 

grid of cells, however modal regions would require additional reproduction point vectors in 

order to reduce distortion for high probability outcomes, while allowing increased distortion 

in low probability areas, a rectangular grid would not achieve this goal.  
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In the paper [103] it was shown that though a high rate uniform scalar quantizer is optimal, it 

remains above the rate distortion function  whereas a vector quantizer is able to achieve the 

rate distortion function, this is due to the inability of the scalar quantizer interval shape to 

cover the sample spaces with a high dimension without overlapping. In the case of entropy 

constrained optimization, however, the shape of the distribution function does not provide 

an advantage in efficiency of vector quantization over scalar quantizers [104].  

4.5.6 Dimensionality 

Vector quantization is more apt at dealing with quantization problems of dimension 
      than scalar quantization, because of the greater generality of the regions used for 
quantization and due to its space-filling ability.  
 
In the paper [105], it is shown that by increasing the dimension from one to two, a 

rectangular grid can be replaced by a hexagonal lattice (which is an optimal polytope for 

    using the Euclidean distortion measure [106]), resulting in incremental efficiency due 

to the space filling capabilities of a hexagon over that of the rectangle.  

In the paper [107], high rate vector quantizers are looked at theoretically in order to 

determine what increases in efficiency are attainable for increased dimension. These 

incremental increases in efficiency are considered for increasing dimensions where varying 

quantization methods, probability density function shapes and dependency relationships 

are used. Low rate vector and scalar quantizers and scalar and vector transformations are 

also examined.  

Finally, according to the book [108], “Vector quantization is the “ultimate” solution to the 

quantization of a signal vector…it can at least match the performance of any arbitrary given 

coding system that operates on a vector of signal samples”. 

This all seems to show that vector quantization is far superior to scalar quantization – which 

it is, however in the next chapter it will be shown that scalar quantization combined with 

orthogonal transformations and entropy encoding achieves “good” compression at far less 

computational cost. 

 

                                                             
103 Gish ,H. and Pierce, J. N. Asymptotically efficient quantizing. IEEE Trans. Inform. Theory, vol. IT-14, no. 5. 
Pages 676-683. 
104 Lookabaugh, T. D. and Gray, R. M. High-Resolution Quantization Theory and the Vector Quantizer 
Advantage. IEEE Transactions on Information Theory, vol. 35, no. 5, September 1989. Page 1027. 
105 Makhoul, J.  Roucos, S. and Gish, H. Vector Quantization in Speech Coding. From the proceedings of the 
IEEE, vol. 73, no. 11, November 1985 , Section E, entitled Vector Quantization Model. Page 1560. 
106

 Gersho, A. Asymptotically Optimal Block Quantization. IEEE Transactions on Information Theory, vol.IT-25, 
no.4, July 1979. Page 3. 
107

 Lookabaugh, T. D. and Gray, R. M. High-Resolution Quantization Theory and the Vector Quantizer 
Advantage. IEEE Transactions on Information Theory, Vol. 35, no. 5, September 1989. 
108 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Page 313. 
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4.6 Generalized Lloyd Vector Quantization: The Optimal Problem  

The vector optimal problem is minimizing the combined distortion given by 

      
         

∑ ∫                
  

 

   

  

An increase in complexity should be considered when considering the vector valued form of 

the optimal problem discussed in the previous chapter. One example of this increase in 

complexity is that the intervals containing the reproduction points have now been extended 

to polytopal cells     with multiple boundary planes containing the reproduction vectors   .  

In general, there is no closed form for finding an optimal vector quantizer. 

Solving the partial problems can be done in the same way as the previous chapter, a 

centroid and nearest neighbour condition can be obtained by either conditioning on the 

reproduction vectors or by conditioning on the     cell    [
109].  

The vector centroid condition is given by 

                            

This can calculated as 

   

 

 
∑      (  )

 
   

 

 
∑   (  )

 
   

  

with 

  (  )  {
               

               
  

The vector nearest neighbour condition is given by 

   {             (     )          }
   

 
  

An allocation rule is necessary to assign the point uniquely to one cell in the case of equal 

distances.  

Section 4.2.1.3, showed that polytopals cells are regular, in the next section 4.6.1, it will be 

shown that the nearest neighbour condition implies cell regularity. 

 

                                                             
109

 Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992. Pages 350-354. 
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4.6.1 The Nearest Neighbour Condition implies Cell Regularity. 

Let    and    be the reproduction points of the cells    and    respectively where 

   {               (     )          }
   

 
  

The set of vectors {              (     )} are uniquely assigned to one of the cells    

and    based on a prescribed allocation rule. If the distortion measure is the squared error 

distortion measure then the points will satisfy the linear equation 

          

The set of points will constitute a hyper-plane in    that (possibly) [110] forms one of the 

boundaries of the cell    implying cell regularity by section 4.2.1.3. 

Since we are given that 

           (     ) 

 where the error squared distortion measure is used. This implies that     

                

         
                  

         

         
             

    

                       (  
    

 )     

 If we define the gradient vector       (  
    

 ) and the intercept vector as 

             , then we have the hyper-plane          as one of the boundaries 

of the cell   . Since all the boundaries of each cell   are determined by the nearest 

neighbour condition, then the boundaries are hyperplanes, which by the result in section 

4.2.1.3 implies that the cells are convex and regular in the case the reproduction point 

     . 

 

 

 

 

 

                                                             
110

 Not all centroids are necessarily used to determine the boundaries of a cell    reference Voronoi 
tessellation. 
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4.6.2 The Generalized Lloyd Algorithm (K-means Algorithm) 

The Generalized Lloyd Algorithm is an extension of the Linde-Buzo-Gray Algorithm of scalar 

quantization. The Generalized Lloyd Algorithm is used to design a set of polytopal cells with 

a representative reproduction point set for data that is observed from a particular random 

vector source and is applicable for future vector quantization purposes. 

For a continuous random vector   of dimension   with probability density function    , let 

       
  be a set of   observed random vectors and          

  be the reproduction vector 

set.  

4.6.2.1 Computing with the K-means Algorithm 

1. Starting with initial reproduction points          
  for iteration    .  

 

2.  Apply nearest neighbour partitioning using the set          
  using the nearest 

neighbour condition - Assign all observations      with the nearest reproduction 

point   .  

 

3. Apply the centroid condition to obtain the set of reproduction points             
 , 

by finding the mean of all the observations      that have been assigned to the 

reproduction point   . 

Determine the estimated combined distortion as  

     ∑(       ∑ (         )            

 

   

)

 

   

 

where        
 

 
∑           

 
     

 

4. Stop if a threshold is reached, else return to 2.  
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4.6.2.2 Problems with the Generalized Lloyd algorithm 

The optimization process of the Generalized Lloyd algorithm is a descent algorithm that is 

very dependent on its initial conditions, which often causes suboptimal convergence. 

 Sensitivity to Initial Conditions  

Since the Generalized Lloyd algorithm is a descent algorithm, it is fast and converges to local 

minima in general, however, since the descent algorithm does not allow for an increase in 

average distortion the average distortion will not escape local minima, resulting in sub-

optimum results. This is due to the shape and dimensionality of the distortion function, 

which is multimodal function in a high dimension, making it difficult to optimize.  

 Dependence on Training Data 

The model’s dependence on training data is a general problem in data modelling, if the 

training data is poor, the model will be poor. This is even more applicable, if the model is 

unsupervised and the model is very general as is true for most vector quantization 

problems. 

 The Number of Reproduction Vectors    

Deciding on the number of reproduction points   is often a problem in clustering, however, 

in vector quantization, the size of the codebook will be limited to the number of bits 

allocated to encode the quantized data set. The number of reproduction points   will often 

be predefined by the storage capacity or transmission capacity available.  

4.7 Two Variations on the Generalized Lloyd Algorithm 

Two variations of the Generalized Lloyd algorithm will be briefly described, their relationship 

with the Generalized Lloyd algorithm will be established and references will be given.  

4.7.1 Entropy Constrained Vector Quantization: The Chou, Lookabaugh and Gray Algorithm  

In section 4.5.5, the unconstrained rate distortion problem was stated. The paper [111] 

introduces a variation on the Generalized Lloyd algorithm named ECVQ or Entropy 

Constrained Vector Quantization.  

The ECVQ algorithm is a descent algorithm that includes a weighted self-information factor 

that is added to the distortion measure, the new distortion is then minimized by means of 

an iterative minimization scheme (a descent algorithm) similar to that of the Generalized 

Lloyd algorithm. The minimization is locally optimal and can be used in conjunction with an 

entropy encoder like a Huffman encoder.  

                                                             
111

 See the paper by Chou, P.  A. Lookabaugh, T. and Gray, R.  M. Entropy-Constrained Vector Quantization. 
IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol.  31, No.I. January 1989.   
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4.7.1.1 The Entropy Constrained Vector Quantization Algorithm 

Given a random vector   with density function    generally unknown, let        
  be a set of 

  observed random vectors and          
  be the reproduction vector set.  

1. Start with initial reproduction points          
  for iteration    . 

 

2. Apply biased [112] nearest neighbour partitioning using the set          
  by 

assigning   to the reproduction vector       by the rule, assign   to the 

reproduction vector       for a given  , if 

 (      )    (     (   
(    )))   (      )    (     (   

(    ))) 

where    
(    ) is estimated by 

 

 
∑         

 
      

  

3. Apply the centroid condition to obtain the set of reproduction points             
  

by finding the mean of all the observations      that have been assigned to the 

reproduction point   . 

 

4. Determine combined distortion as  

 

∑(       ∑  ( (         )    (     (      )))            

 

   

)

 

   

 

where        
 

 
∑           

 
     

 

5. Stop if a threshold is reached, else return to 2.  

If the parameter    , then ECVQ is just the K-means algorithm.  

The initial values for        are often determined from prior information or by applying K-

means to identify the initial reproduction points        
 and the respective estimated 

probabilities of                  . 
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 de Garrido, D. P. and Pearlman, W. A. Conditional Entropy-Constrained Vector Quantization: High-Rate 
Theory and Design Algorithms. 2001. Page 4. 
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4.7.2 The Expectation Maximization Algorithm 

The Expectation Maximization algorithm is described in the paper [113]. The EM algorithm is 

derived by maximizing the incomplete log likelihood of a mixture Gaussian distribution or 

the hidden Markov model. EM uses gradient decent iteration to find a locally optimal 

solution to the maximization problem.  

Although the EM algorithm will not be discussed in detail here, it will be shown in section 

4.7.3 that the EM algorithm can be considered as a more general form of the K-means 

algorithm, for a more general data structure. Please notice the notation          
  

representing the reproduction point set before the     iteration is replaced by          
  due 

to the well-known       Gaussian notation for the mean and covariance matrix.  

4.7.2.1 The Maximum Likelihood Problem 

Let    be a random vector of dimension   with density function    where    is modelled on 
a mixture of multivariate Gaussian densities with   mixtures and let        

  be a set of 

observations. The conditional density function is given by 

  (         |       
   ( 

 

 
(      )

 
   

  (      ))

    
 

      
 

 

   

The set of prior probabilities        
  where  

 

  (     )      

 
The maximum log-likelihood problem is given by  

   
   

(∑∑    

 

   

 ( 
 

 
          

 

 
(      )

 
   

  (      ))

 

   

) 

with the constraint that ∑   
 
       

The maximum likelihood is determined over the set of mean vectors        
  and covariance 

matrices        
  where the mean vectors represent the reproduction points in terms of the 

vector quantization problem. 

1. Given the parameter set    {              }   

 
 for iteration    . 

2. Determine the parameter set      {                    }   

 
 by computing the 

following 

 

                                                             
113 Bilmes, J. A. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian 
Mixture and Hidden Markov Models. 1998. 
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E-Step 

       
       (              )

∑        (              )
 
   

  

       
 

 
∑      

 

   

  

M-Step 

       ∑(
         

∑       
 
   

)

 

   

  

       ∑ (
       (          )  (          )

 

∑       
 
   

)

 

   

  

The initial values for     and   are either determined due to prior information or by 

applying K-means to identify the set of initial means (reproduction points)        
  with 

  
 

 
  and      where    is the     identity matrix or by using other methods. 

The use of K-means as an initialization strategy will become apparent in the next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



125 | P a g e  

 

4.7.3 The K-Means: Special Case of Expectation Maximization  

The K-means algorithm is a specific case of the expectation maximization and can be used in 

the context of vector quantization when data is modelled using a mixture Gaussian 

distribution. 

 
4.7.3.1 The Relationship between the EM Algorithm and K-Means [114] 

By introducing the following constraints to the mixture Gaussian distribution 

 Quantization (also known as hard-clustering) 

       {
  (         |                

                                 
   

 Spherical density functions with equal variances for each cell    

                     

 

The conditional probability density function for     is then given by 

  (        
 |             

 

     ( 
          

 

   
)  

The unconditional density function can be calculated by  

  (        
 )  ∑  (        

 |         (     ) 

 

   

 

The likelihood function is then given by 

              
     ∏∑  (        

 |         (     ) 

 

   

 

   

 

Using quantization we have  

  (        )     

Leading to the reduction of the sum from 

∑   (        
 |         (     ) 

 

   

 

                                                             
114 Based on the helpful power point presentation by Guestrin, C. Machine Learning. Carnegie Mellon 
University. 2007. 
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to 

  (        
 |         (     )  

Substituting the above expressions into the likelihood function we get 

              
     ∏        

 

     ( 
          

 

   
)

 

   

  

By taking the natural logarithm we get the log-likelihood function 

                  
    ∑        

 

 
        

 

   

  
          

 

   
  

The maximum likelihood in terms of    can be determined by fixing the set of prior 

probabilities    and maximizing the above expression by minimizing the sum 

   
  

                  
        

 
∑            

  
 

   
 

If     is replaced by the reproduction point   , then the expectation maximization applied to 

find the reproduction point set        
  is equivalent to the Generalized Lloyd algorithm. 
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4.8 Conclusions of Chapter Four 

 Vector quantization is the natural extension of scalar quantization to   . This 

extension results in an increase in power and complexity. 

  

 Vector quantization is applied to a random vector      where the vector   is 

quantized as a single unit. The quantization is determined by a set of non-

overlapping, regular polytopes        
  known as cells.   

 

 In the case where a vector quantizer has already been designed, then the process of 

vector quantization can be decomposed into a set of linear function combined with 

logical operators. 

 

 The concept of distortion can be extended to vector quantizers. 

 

 Rate-distortion theory attempts to find the theoretical bounds on the amount of 

compression achievable for a given combined distortion. 

 

 The quantization of vectors as opposed to scalars takes advantage of four properties, 
namely linear dependencies, non-linear dependencies, the density function shape 
and dimensionality. Vector quantization is shown to be substantially more powerful 
than scalar quantization, in particular when structural dependency is present. 
 

 The Generalized Lloyd Algorithm or K-Means algorithm is the result of the 

minimization of the vector optimal problem of minimizing the combined distortion 

for the Euclidian distortion measure. 

 

 The sub-optimality of the Generalized Lloyd is considered with respect to the 

weakness of the greedy algorithm, sensitivity to initial values, the determination of 

the reproduction set size and it’s susceptibility to poor training data. 

  

 The ECVQ algorithm is a descent algorithm, similar to that of the Generalized Lloyd 
algorithm, with a distortion measure, that includes a penalty parameter that 
punishes increased uncertainty of the quantized random variable. The ECVQ 
algorithm reduces to the Generalized Lloyd algorithm when the penalty parameter is 
equal to zero. 
 

 The EM algorithm is descent algorithm that maximizes the incomplete log-likelihood 
function in two steps, namely the expectation and maximization steps. The 
Generalized Lloyd algorithm is a special case of the EM algorithm. 
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Chapter Five: Scalar Transformations 
and Picture Study 

In the previous chapter, it has been argued that vector quantization is substantially more 

powerful than scalar quantization in quantizing data, in that it is able to reduce the 

combined distortion for a given code rate below that of scalar quantization. In practice 

(image, sound and video encoding) vector quantization is seldom used.   

Three reasons will be given for this, namely computational complexity, alternative bit 

allocation strategies and the availability of techniques that reduce gains in of vector 

quantization over that of scalar quantization due to distribution shape and linear 

dependence. 

Bit allocation provides a scalar quantization alternative to quantizing and encoding vectors, 

while linear transformations combined with entropy encoding reduce linear dependence, 

achieve more effective bit allocations and encode higher dimensional data more efficiently. 

5.1 Complexity 

In general vector quantization is far more computationally complex and time consuming 

than scalar quantization. Vector Quantization is often too slow for use “on-the-run” 

compression for image, audio and video data compression. 

In the case where uniform scalar quantization is combined with procedures like image space 

transforms [115] and unitary linear transforms in order to compress data efficiently with as 

little perceived distortion as required, these procedures combined with uniform scalar 

quantization are still substantially less time consuming and complex than even simple vector 

quantization techniques. 

5.2 Bit Allocation  

The bit allocation problem is discussed in the book [116] it will be considered briefly in this 

section. 

Consider the random vector   (

  

  

 
  

) of dimension   with constituent random variable 

elements    each with a known marginal density function    
 with         and 

          . 

                                                             
115

 A particular image space transform is discussed in section 5.2. For a detailed discussion on image space 
transforms see Pratt , William K. Digital Image Processing. Fourth Edition. Chapters 3-4. 
116Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Springer. 1992.  Pages 226 -234. 
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If scalar quantization is applied to each random variable   , how then can bits be assigned 

to each quantized random variable          in order to minimize the combined distortion 

if the overall code rate is constrained by the value      

Since the overall code rate ∑   
 
    incurred by encoding each random variable    is 

dependent on the encoding scheme and on the number of reproduction points    available 

for encoding   , then the combined distortion incurred by quantizing    with    is a function 

of the code rate   .  

This relationship is given by          where    is the combined distortion incurred by 

quantizing    with   . 

The bit allocation problem can then be worded as, 

find the set of code rates        
   to satisfy the inequality, where 

∑   

 

   

    

with the code rate    incurred by encoding the     element   . In order to minimize the 

combined distortion       incurred by quantizing    with    summed over each element of 

the random vector  . 

That is find a set        
 of code rates in order to minimize   ∑      

 
    [117]. 

 

The bit allocation problem will not be assessed in this mini dissertation, it does however 

present another template to compress data, that is, to reduce the code rate below some 

threshold by quantizing data in a selectively “smart” way [118].  

In the book, [119] it is shown that under certain assumptions, the individual codebook sizes 

should be directly proportional to the variance of that random variable.  

Since the distortion incurred by quantizing individual random variables is additive, and since 

the amount of distortion incurred for each random variable is a function of its variance and 

reproduction sets size, random variables with greater variance would require larger 

reproduction sets, whilst random variables with smaller variance would then require smaller 

reproduction sets in order to achieve similar overall distortion levels.  

                                                             
117

 An optimal scalar quantizer         has a reproduction point set of size     that minimizes the overall 
distortion this quantizer will satisfy the Lloyd Max conditions, however will not necessarily be determined by 
the Lloyd Max algorithm (or LBG algorithm). 
118

 Gersho, A. and Gray, R. M. Vector Quantization And Signal Compression. Springer. 1992. Page 229. 
119 Gersho, A. and Gray, R. M. Vector Quantization And Signal Compression. Springer. 1992. Pages 229 and 231. 
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In chapter one, the notion of selectively assigning longer codewords to less probable 

outcomes and shorter codewords to more probable outcomes was introduced, similarly 

ordering random variables in an order of importance would allow for a greater number of 

bits to be assigned to random variables containing more information and fewer bits to those 

containing less information.  

5.3 Techniques that Increase Scalar Quantization Gains  

 Entropy Encoding (like Huffman encoding, Arithmetic encoding [120], etc.) 

In the paper [121] the space filling, dependence and shape advantages of using vector 

quantization compared to scalar quantization are calculated using asymptotic assumptions 

and sphere packing bounds.  

The question of using a high rate scalar quantizer with entropy encoding as opposed to 

vector quantization is addressed. The following is concluded.  

In the case where the random vector is made up of independently identically distributed 

random variables, if the uncertainty is constrained, then it is shown that due to the 

independence assumption that the dependence advantage and shape gains are absent and 

the gains in space filling achieved by vector quantization over scalar quantization are 

bounded above.  

However, in the case where dependency structure is present amongst the random variables, 

then entropy encoding combined with scalar quantization does not achieve the efficacy of 

vector quantization.  

 Decorrelation  

If the correlation amongst the random variables constituting the random vector could be 

reduced or eliminated and “selective” scalar quantizers could be applied to the de-

correlated transformed variables, then the gains of vector quantization and encoding over 

that of scalar quantization and encoding will be reduced. 

As discussed in section 4.4.5 although vector quantization can take advantage of the shape 

of the distribution, in the case of entropy constrained optimization, the shape of the 

distribution does not provide an advantage in efficiency for vector quantization over scalar 

quantization[122].  

                                                             
120 Only Huffman encoding is discussed in this mini dissertation, but many other entropy encoders exist, an 
excellent introduction can be found in the book Solomon, D. and Motta, G. Handbook of Data Compression, 
Springer. 2010. 
121

 Lookabaugh,T. D. and Gray, R. M. High-Resolution Quantization Theory and the Vector Quantizer 
Advantage. IEEE Transactions on Information Theory, Vol. 35, no. 5, September 1989. Page 1025. 
122

 Lookabaugh, T. D. and Gray, R. M. High-Resolution Quantization Theory and the Vector Quantizer 
Advantage. IEEE Transactions on Information Theory, Vol. 35, no. 5, September 1989. Page 1027. 
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If linear transformations are applied to the data in order to remove most of the linear 

dependence and allow for selective bit allocation, then scalar quantization and entropy 

encoding can be applied to achieve compression results that are possibly near that of vector 

quantization, with a smaller combined distortion.   

5.4 Linear Transformations 

Linear transforms will be discussed as a method to de-correlate data and allow for efficient 

bit allocation. 

5.4.1 Data Processing Inequality, Linear Transformations and Quantization  

When applying linear transforms to a random vector, does the amount of information 

change and what about quantization? 

According [123] if   and   are any two discrete random vectors with mutual 

information       , if   is a random vector obtained by an operation on   alone, then 

               

And if            then  , which is a function of the raw data  , is a sufficient statistic of 

 . In other words, a reduction in mutual information content will occur unless a sufficient 

statistic is used to represent the raw data  . 

According to the textbook [124], if      is a sufficient statistic for  , then any one-to-one 

function of      is also sufficient.  

A linear transform      which is a one-to-one function of the raw data, will not result in a 

decrease in mutual information.  

A non-linear transform, such as quantization will lead to a reduction in mutual information 

content.  

5.4.2 Decomposing a Random Vector into its General Spectrum and Applying Bit Allocation 

One effective and very common approach is to transform a random vector into a set of 

transformed coefficients by decomposing it into its generalized spectrum.  

The resulting spectrum will be composed of the transform coefficients and their related 

orthogonal bases functions or vectors.  

Each spectral component in the transform domain (transform coefficients) represents the 

amount of energy of the specific spectral function in the original image [125].  

                                                             
123

 Golomb, S. W., Peile, R. E. and Sholtz, R. A. Basic Concepts in Information Theory: The Adventures of Secret 
Agent 00111. Springer. 1994. The Data Processing Theorem (Theorem 6.1). Page 313. 
124

 Biswas, S. and Srivastav, G.L. Mathematical Statistics, A Textbook. Alpha Science International. 2011. 
Theorem 13.4. Page 13.10. 
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The transformed coefficients are much less correlated (at best orthogonal) and often a 

smaller subset of the coefficients can account for most of the variability of process. There is 

almost as much information in the smaller subset of transformed coefficients as there is in 

the original coefficients, so the information can be compacted.  

A greater number of reproduction points may be assigned to the random variable with 

larger transform coefficients since these coefficients represent a greater amount of energy 

or variation within the random variable.  This bit allocation strategy allows a substantial 

reduction in code rate for a small increase in distortion.  

5.4.3 The Unitary Linear Transformation   

In images, it is more efficient to represent a picture by uncorrelated data, than in a 

correlated form. If the data can then be ranked, from most information content and picture 

quality, to the least, then less important data can be removed (or quantized at a lower rate).  

The unitary linear transform is a linear transformation in the form of a unitary transform 

matrix applied to a vector of random variables.  

 

5.4.4 Unitary Transformation Matrix  

According to the book, [126] a square matrix   of dimension   with complex entries is 

unitary if its column vectors are orthonormal, i.e.       where    is the conjugate 

transpose of  .  

Several important properties of the unitary matrix are listed below  

1. The unitary transform matrix is invertible           

2. The unitary transform matrix   preserves measure,              

3. The quantized transformed coefficients will have the same distortion as their un-

transformed counterparts.  

When considering the mean squared error distortion measure, statement two implies 

statement three. This will be shown next.  

Proof 

Consider the random vector  , the quantized random vector    and the unitary 

transformation matrix  . The combined distortion   is calculated as  

              

                                                                                                                                                                                             
125

 Pratt, W. K. Digital Image Processing. Fourth Edition. Wiley. 2007. Page 192. 
126 Beauregard, F. Linear Algebra. Third Edition. Addison Wesley Longman. 1995. Page 470.  
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Let  ̃     be the transformed random vector and  ̃   (    ) be the transformed, 

quantized random vector, then consider the difference 

   ̃   ̃    

            

                  

But           

            

Therefore, 

 (   ̃   ̃   )                

The overall distortion of the transformed coefficients is equal to the overall distortion of 

their untransformed counterparts as stated in property three.  

The transformation that removes (most) of the correlation from the data and does not 

increase the overall distortion is a rotation. This can be achieved with an orthogonal 

transformation, that is a real unitary transformation.  

Two such orthogonal transformations are the Discrete Karhunen-Loeve Transform, and the 

Discrete Cosine Transform. 

5.4.5 The Discrete Karhunen-Loeve Transform [127] 

The discrete Karhunen-Loeve transform (better known as principal component analysis) is 

an orthogonal transform applied to the statistical nature of the data. It is data dependent 

and based on the minimization of the mean squared error overall distortion.. 

The transformation is achieved as follows, 

If   is an     random vector   (

  
  
 

  

) with a mean vector        (

  
  
 

  

) 

and     covariance matrix                   with eigenvector matrix 

  (

   
  

   
  
 

   
  

)  of the covariance matrix   and the eigenvalue and normalized eigenvector 

pairs                             with                 

 

                                                             
127

 Johnson, R. and Wichern, D. Applied Multivariate Statistical Analysis. Pearson Prentice Hall. 2007. Pages 
430-433. 
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The Karhunen-Loeve Transform of the random vector   is given by  

         

And the inverse transformation is given by 

        

The transformed coefficient is given by  

 ̃         

With covariance matrix given by   

     ̃   ̃      
       {

           

       
   

It can be shown that the Karhunen-Loeve Transform is the best possible transform for 

minimizing overall distortion, for a given bit allocation [128]. 

The Karhunen-Loeve Transform is the optimal orthogonal transform with minimal mean 

square error for a given bit allocation, but due to having to obtain the eigenvalues and 

eigenvectors of the covariance matrices that may be arbitrarily large, it is computationally 

expensive to implement [129].  

An alternative is the Discrete Fourier Transform and in particular, the Discrete Cosine 

Transform, which will be discussed in the next three sections. 

5.4.6 The Discrete Two Dimensional Fourier Transform 

In certain situations, a random matrix   of size       will be considered, with the     

row and     column entry      a random variable with density function      
[130]. 

The discrete two dimensional Fourier transform of an indexed random variable      is  

 

      
 

 
 ∑ ∑      

   

   

   

   

    
               

     √    

The inverse transform is given by 

 

                                                             
128

 Gersho, A. and Gray, R. M. Vector Quantization And Signal Compression. Springer. 1992. Page 241. 
129

 Solomon, D. and Motta, G. Handbook of Data Compression. Springer. 2010. Page 475. 
130

 The use of a random matrix will become apparent later on in the chapter when looking at image data, 
where the statistical dependence structure is contained in the row –column matrix structure. 
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 ∑ ∑     

   

   

   

   

  
               

     √    

Alternatively, the transform matrix can be used, where  

  
 

√ 
 

[
 
 
 
 
         

           

               

     

                      ]
 
 
 
 

 

with      
     

  where                                   

The transformation of the random matrix   of size       can be achieved by means of 

matrix multiplication 

        

The inverse transformation of the random matrix   of size       can be achieved by 

means of matrix multiplication by the complex conjugate 

         

The discrete Fourier transform is independent of the distribution of the random matrix, it is 

however dependent only on the size       of the random matrix. 

The discrete cosine transformation is a special case of the discrete Fourier transform. 

5.4.7 The Discrete Cosine Transform from a Discrete Fourier Transform 

The Fourier transform of a real, symmetric matrix is real [131]. In the case of image pixels, the 
matrix   is real, but not symmetric.  

According to the book [132] by applying a reflection of the real matrix values in   over each 

of its edges see Figure 5.1, we obtain a symmetric             matrix     
 .    

This reflection can be achieved by defining the             matrix  

    
  

{
 

 
                           

                        

                        

                    

 

                                                             
131

 Pratt, W. K. Digital Image Processing. Fourth Edition. Wiley. 2007, Pages 195-196. 
132 Pratt, W. K. Digital Image Processing. Fourth Edition. Wiley. 2007. Page 196.  
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Reflected 

Matrix 

Reflected 

Matrix 

Reflected 

Matrix 

Pixel 
Matrix 

Figure 5.1 Reflection of Image over Each of its Edges The pixel matrix is made symmetric by reflecting it over 

the x-axis, y-axis and origin.  

The Fourier transform of this real, symmetric              matrix is 

    
   

 

   
 ∑ ∑     

 

   

    

   

    

    

(  (  
 
 
)   (  

 
 
))      

     

This however, can be simplified, the redundancy is discarded and the summation is 

normalized into the regular discrete cosine transform, which is represented by the discrete 

cosine transform matrix     

5.4.8 The Discrete Cosine Transform Matrix 

The DCT (also known as DCT-2) matrix   of size     where the     row and     column 

entry is given by 

     

{
 
 

 
 
√

 

 
     (

 

 
   (  

 

 
))                                    

√
 

 
     (

 

 
   (  

 

 
))                                                 

  

The application of the     transform matrix to the matrix   is shown next.   

5.4.9 DCT Transformation of   [133] 

The transformation of the random matrix   of size        with           is given 

by 

      
 

 
           ∑ ∑     

   

   

   

   

    (
           

   
)     (

           

   
)  

with      {

 

√ 
                                           

                                 
 

And the inverse transform     of size    , then           is given by 

                                                             
133 http://www.mathworks.com/help/toolbox/images/f21-16366.html. 
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 ∑ ∑                   (

           

   
)     (

           

   
)

   

   

   

   

  

 

The discrete cosine transform is more computationally efficient than Karhunen-Loeve 

transform in terms of computational time and ease of use and since discrete cosine 

transform matrix is determined independently of the random vector.  

If the random variables constituting the random matrix   are highly correlated, then the 

discrete cosine transform coefficients are “near” to the optimal coefficients of the 

Karhunen-Loeve transform. The relationship between the discrete cosine transform and the 

Karhunen-Loeve transform as applied to a Markov chain of order one will be discussed next. 

5.4.10 Discrete Karhunen-Loeve Transform to the Discrete Cosine Transform 

In the paper [134] the relationship between discrete Karhunen-Loeve transform and discrete 

cosine transform is derived.  

Consider the random variable    with         and           
 .  

Given    a stationary random process of order 1 where                       and 

     . 

The correlation matrix     (     ) is given by the Toeplitz matrix [135] 

    (     )   

[
 
 
 
 

         

     

       

     

         ]
 
 
 
 

  

The eigenvalues    where               are given by 

   
       

                
                

where    are the real positive roots of the equation:  

          
                

                    
    

 

                                                             
134

 Ray, W.D. and Driver, R.M. Futher decomposition of the Karhunen-Loeve series representation of a 
stationary random process. IEEE Trans. 1970, IT-16. Pages 845-850. 
135

 Wang, R. Introduction to Orthogonal Transforms with Applications in Data Processing and Analysis. 
Cambridge. 2012. Page 554. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



138 | P a g e  

 

The Karhunen-Loeve transform   matrix is given by 

      √
 

    
    (   (  

       

 
)  

   

 
)                   

It has be shown that as     then      and            then      becomes  

     

{
 
 

 
 
√

 

 
     (

 

 
   (  

 

 
))                                    

√
 

 
     (

 

 
   (  

 

 
))                                                 

 

The transform matrix      is just the discrete cosine transform matrix described in the 

previous section.  
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5.5 Picture Study 

In this section, the compression of a digital image is studied in the context of the rest of the 

mini dissertation. 

A small amount of detail is included about RGB images, linear transformations applied to 

RGB images and the distribution of a transformed image’s coefficients.  

Firstly, a brief introduction to the analog and digital image is necessary. 

5.5.1  Analog Image 

An (analog) image is a spatial energy function   applied to a  -dimensional spatial 
distribution of Cartesian coordinates       and the wavelength   [136].  

 
                 

 
Any point of Cartesian coordinates      , the amounts of red, green and blue light to match 
the colour response of an observer, can be obtained by integration 

 

       ∫                
 

 

 

       ∫                
 

 

 

       ∫                
 

 

 

 
with     ,     ,      known as the spectral tristimulus values. 
 
The domain       of the image        is generally bounded on a       rectangle and 
can be sampled and quantized to obtain a digital image. 
 

5.5.2 Digital Red-Green-Blue (RGB) Image  

The RGB pixel values are a result of the sampling and quantization of an analog image, the 
method of sampling is done as follows. 
 
The energy function values for the       image        are sampled at regular spatial 
intervals . 

                  
 
with            and            .  
The values of    and    defined as 

   
 

 
    

 

 
 

                                                             
136

 Nixon, M. S. and Aguado, A. S. Feature Extraction and Image Processing. Amsterdam: Academic, 2008. Page 
62. 
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where           with     as the number of sampling points. 
 
The colour values are measured at each point            , this value is then quantized 
(rounded) for digital use, this point is known as a pixel.  
 
Each pixel has a colour that can be matched by specific proportions of the primary colours, 
red, green and blue, this is known as additive colour matching [137]. 
 
The result is a digital image         with   and   the integer co-ordinates for the        
pixels. 

If each pixel is encoded with    bits then each element of the RGB vector will be quantized 

onto one of               binary values. A colour RGB image with       pixels will 
then require           bits to store or transmit. 

5.5.3 RGB Pixel as a Random Vector 
 
Each pixel      is a random RGB vector, where the index       identifies to which row and to 

which column the pixel belongs. The random vector      is a 3 dimensional vector containing 

the RGB values of each pixel.  

     (
  

  

  

)  

The random variables           that make up the vector are discrete values, where 
 

                
 
 
The digital image can then be defined by the (       ) matrix      

 

   

(

 
 
 
 
 

  
   

  
   

 
  

   

  
   

 
  

   )

 
 
 
 
 

  

  
 
 

                                                             
137 Pratt, W. K. Digital Image Processing. Fourth Edition. Wiley. 2007. Pages 49-50.  
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Figure 5.2 A 24 Bit RGB Format Photo Digital Image of taken at Second Beach, Port St. Johns, Eastern Cape. The 
image is in 24 bit RGB format with a length       pixels and a height of        pixels. The space 
required to store the image is 2813 kilobytes. 

 

   
 

Figure 5.3 Zooming into the Photo By zooming into the image (zooming increases from leftmost to rightmost 

image) over a particular area, the pixels making up the image become visible. Each of these pixels is obtained 

my colour matching of the three primary colours, red, green and blue. Each pixel is given by the vector     . 
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5.5.4 The Image Compression Process  

 

Figure 5.4 Process of Image Compression The       and       have been replaced with       and 

      respectively for notational purposes within this document [138].  

 
This short image study is similar to the process of compressing a colour RGB image into a 

JPEG image format, based on the procedure given in [139] and several other texts. 

Compressing an Image  

1. The image was loaded onto SAS 9.2 using the code included at the end of the 
chapter. Code 5.1 SAS 9.2 Code: Input and Output Image. 
 

2. The RGB vectors are converted to       by means of a linear transformation of the 
       row by   column     matrix [140]. 

          

[
 
  

  

]  [
                
                 
                  

]  [
 
 
 
]  [

 
   
   

] 

The colour space transformation from RGB to       is used since, human observers are 
more sensitive to changes in brightness than colour [141].       allows for manipulations of 
the luma    , chroma blue     and chroma red      vectors as opposed to the red, green 
and blue     colour vectors. 

 

 

 

                                                             
138

 Image obtained in a Google search. 
139

 Solomon, D. and Motta, G. Handbook of Data Compression, Springer. 2010. Pages 520-534. 
140

 Pratt, W. K. Digital Image Processing. Fourth Edition. Wiley. 2007. Page 83. 
141 Pratt, W. K. Digital Image Processing. Fourth Edition. Wiley. 2007. Pages 39-42. 
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Code 5.1 SAS 9.2 Code: RGB Transform  

data bitmap_raw1; 

set bitmap_raw1; 

t=_n_; 

Ty=(0.299*Red+0.587*Green+0.114*Blue); 

TCb=-0.169*Red-0.331*Green+0.5*Blue+128; 

TCr=0.5*Red-0.419*Green-0.081*Blue+128; 

run; 

3. The image is split into blocks of     pixels, for each block each of the  ,    and    
data vectors undergo a discrete cosine transform as discussed earlier in this chapter. 

The transform coefficients or weights of the projections of each     block onto the set of 

(orthogonal) basis images correspond to the amount of energy of the specific basis function 

within the original image. Since these basis images are orthogonal, then the transform 

coefficients will be uncorrelated. 

Code 5.2 SAS 9.2 Code: Discrete Cosine Transform 

dct=j(8,8,0); 

r=nrow(dct); 

c=ncol(dct); 

pi=3.1415926535897932384626433832795; 

do i=2 to r; 

  do j=1 to c; 

   dct[i,j]=sqrt(2/r)*COS((2*(j-1)+1)*(i-1)*pi/(2*r)); 

  end; 

 end; 

 

do j=1 to c; 

 dct[1,j]=sqrt(1/r); 

end; 

y_red=dct*red_8_8*dct`; 

y_green=dct*green_8_8*dct`; 

y_blue=dct*blue_8_8*dct`; 

 

Table 5.1 Eight by Eight Discrete Cosine Transform Matrix 

Eight by Eight Discrete Cosine Transform Matrix 

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 

0.4904 0.4157 0.2778 0.0975 -0.0975 -0.2778 -0.4157 -0.4904 

0.4619 0.1913 -0.1913 -0.4619 -0.4619 -0.1913 0.1913 0.4619 

0.4157 -0.0975 -0.4904 -0.2778 0.2778 0.4904 0.0975 -0.4157 

0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536 0.3536 

0.2778 -0.4904 0.0975 0.4157 -0.4157 -0.0975 0.4904 -0.2778 

0.1913 -0.4619 0.4619 -0.1913 -0.1913 0.4619 -0.4619 0.1913 

0.0975 -0.2778 0.4157 -0.4904 0.4904 -0.4157 0.2778 -0.0975 
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After the discrete cosine transform has been applied to the     block matrix, the result is 
a coefficient matrix or transformed matrix  . 

The top left hand corner of   contains the coefficients which are the most important in 
terms of variation and therefore information content, these are generally larger than zero in 
absolute value, while the coefficients decrease in absolute value as one moves towards the 
bottom right-hand corner.  

4. Scalar quantization is applied to the coefficient matrix  , however, each 
transformed matrix       

    
 is firstly divided by a scaled quantization matrix. 

The    
    

 matrixes are divided by the chrominance quantization matrix, while    is 

divided by the luminance quantization matrix. These matrices are scaled by an integer factor 
  that determines the amount of compression.  

The scaled coefficients are then scalar quantized by rounding down to the nearest integer. 
The scaling reduces the already small spread of lower order transform coefficients to very 
near zero, thereby increasing the probability that they will be quantized onto zero by 
rounding. 

Code 5.3 SAS 9.2 Code: Quantization Matrix with Scaling Factor     

qr=round(y_red_1/(5*C_quantization_matrix)); 

qg=round(y_green_1/(5*L_quantization_matrix)); 

qb=round(y_blue_1/(5*C_quantization_matrix)); 

Table 5.2 Luminance Quantization Matrix [142] 

16 11 10 16 24 40 51 61 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 

72 92 95 98 112 100 103 99 

 

 

 

 

 

                                                             
142 Solomon, D. and Motta, G. Handbook of Data Compression. Springer. 2010. Page 529. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



145 | P a g e  

 

Table 5.3 Chrominance Quantization Matrix 

17 18 24 47 99 99 99 99 

18 21 26 66 99 99 99 99 

24 26 56 99 99 99 99 99 

47 66 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

The scalar quantization of the transform coefficients, results in the majority of the matrix 
being zero, in particular the bottom-right half of the matrix, while the top-left corner is 
generally greater than zero in absolute terms. 

5. The quantized coefficients are then encoded using an entropy encoding algorithm 
using run length encoding and variations of either Huffman encoding or an 
arithmetic encoder. 

The top left hand coefficient is commonly known as a    coefficient and is encoded 
separately from the other       coefficients, the reason for this will become apparent in 
section 5.5.5.3 [143]. 

The    coefficients are first differenced and then encoded using a table based on Huffman 
encoding. The use of a table is possible due to the fact that the DC coefficients are very 
similar, in general have a particular distribution shape and are the average of all the other 
   pixels in their particular     pixel matrix. 

The    coefficients on the other hand are encoded using a combination run length 
encoding, as illustrated in example 1.1 in chapter one, and either Huffman encoding or 
arithmetic encoding. The    coefficients, often have long runs of zero’s and are encoded in 
a zig-zag fashion.  

 

 

 

 

 

 

                                                             
143

 For a more complete discussion see Solomon, D. and Motta, G. Handbook of Data Compression. Springer. 
2010. Pages 530-535.  
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Reconstructing an Image  

1. Decode quantized coefficients, which will not be shown in this document. 

2. Multiply by quantization table. 

Code 5.4 SAS 9.2 Code: Reconstruction with Scaling Factor     

rr=(qr#(5*L_quant_matrix)); 

rg=(qg#(5*C_quant_matrix)); 

rb=(qb#(5*C_quant_matrix)); 

 

3. Apply inverse discrete cosine transform. 

This is achieved by transposing the DCT matrix in table 5.1 and applying the inverse 

transformation in section 5.4.9. 

4. Convert image back to    ,            
 

[
 
 
 
]  [

                 
                 
                

]  [
 

      
      

]  

The results of the process will be given in section 5.6. 
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5.5.5 Sub-images,    coefficients and Linear Transform Similarities 

Two interesting facets of the transform coefficients will be discussed in this section, namely 

the distribution of the    coefficients due to the discrete cosine transform and the 

similarity between the Karhunen Loeve and discrete cosine coefficients.  

Both facets are due to the strong correlation structure within the      pixel matrix or sub-

image.  

5.5.5.1 Sub-images and the Correlation Structure 
 
Pixels can be grouped together into       blocks (or sub-images) based on their spatial 
location as seen in table 5.5. The random vectors in each sub-image are often very 
correlated due to their proximity within an image. 
 
Table 5.4        Block Sub-image Pixel Matrix 
 

                          

                   

                         

 

The block consists of  8-connected neighbours of the pixel     . These blocks can be made 

arbitrarily large and need not be square. 
 

The sample correlation matrix of the sub-image can be determined for each colour.  
 
For the set of green elements of the       sub-image, the matrix can be reshaped into a 
      vector and the sample correlations maybe determined. This will be shown next. 
 
The green, reshaped        vector is given by 
 

   

(

 
 
 

      

      

      

      

 
      )

 
 
 

  

 
 

The green sample mean vector    is calculated over the entire        image by obtaining 
the average of the corresponding values       in each sub-image.  
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If the sub-images are       in size, then there are 
   

   
 values and the element        is 

given by,   

       
   

   
∑        

 

The sample variances   
      are calculated for each element        over the set of 

   

   
 

values, where   
      is given by, 

  
      

   

         
∑(             )

 
  

 
For the image in figure 5.2, for illustrative purposes, the value assigned for    , so each 

sub-image element is added over the entire set of  
        

   
       sub-images.       

 
The sample correlation between the elements is determined over the entire image, by the 
formula 

                   

((     )(     )
 
)

     ((     )(     )
 
)

  

 
The sample correlation matrix for figure 5.2 with     is given below. 
 
Table 5.5 Sample Correlation Matrix 
 

                                                                                                                  

       1 0.978 0.955 0.93 0.992 0.97 0.948 0.924 0.984 0.964 0.942 0.916 0.893 0.876 0.857 0.833 

       0.978 1 0.977 0.951 0.97 0.992 0.969 0.945 0.963 0.984 0.962 0.937 0.874 0.894 0.875 0.852 

       0.955 0.977 1 0.974 0.948 0.97 0.992 0.967 0.942 0.963 0.985 0.959 0.855 0.875 0.895 0.872 

       0.93 0.951 0.974 1 0.922 0.944 0.966 0.992 0.917 0.938 0.96 0.985 0.833 0.852 0.873 0.895 

       0.992 0.97 0.948 0.922 1 0.978 0.955 0.93 0.992 0.971 0.949 0.923 0.901 0.882 0.863 0.839 

       0.97 0.992 0.97 0.944 0.978 1 0.977 0.952 0.971 0.993 0.97 0.944 0.881 0.902 0.883 0.858 

       0.948 0.969 0.992 0.966 0.955 0.977 1 0.974 0.949 0.971 0.993 0.966 0.861 0.882 0.903 0.878 

       0.924 0.945 0.967 0.992 0.93 0.952 0.974 1 0.924 0.946 0.968 0.993 0.839 0.859 0.88 0.902 

       0.984 0.963 0.942 0.917 0.992 0.971 0.949 0.924 1 0.978 0.956 0.93 0.908 0.889 0.87 0.846 

       0.964 0.984 0.963 0.938 0.971 0.993 0.971 0.946 0.978 1 0.977 0.951 0.888 0.909 0.889 0.865 

       0.942 0.962 0.985 0.96 0.949 0.97 0.993 0.968 0.956 0.977 1 0.974 0.867 0.888 0.909 0.885 

       0.916 0.937 0.959 0.985 0.923 0.944 0.966 0.993 0.93 0.951 0.974 1 0.844 0.864 0.886 0.909 

       0.893 0.874 0.855 0.833 0.901 0.881 0.861 0.839 0.908 0.888 0.867 0.844 1 0.98 0.959 0.935 

       0.876 0.894 0.875 0.852 0.882 0.902 0.882 0.859 0.889 0.909 0.888 0.864 0.98 1 0.979 0.955 

       0.857 0.875 0.895 0.873 0.863 0.883 0.903 0.88 0.87 0.889 0.909 0.886 0.959 0.979 1 0.976 

       0.833 0.852 0.872 0.895 0.839 0.858 0.878 0.902 0.846 0.865 0.885 0.909 0.935 0.955 0.976 1 
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There is a high correlation between the elements contained within each vector, in particular 
adjacent pixels, the correlation seems to decrease slowly as the distance between pixels 
increases, however all the elements within the data vector still remain highly correlated. 
 
In the previous three chapters it was shown that,  
 

 The strong dependence relationship between pixels means that encoding vectors (as 
opposed to scalars) would lead to larger decreases in code rate.  

 

 By applying an orthogonal transform to the data, an increase in efficiency of a scalar 
quantizer applied to the transformed image data, was to be expected. 

 
 
5.5.5.2 Comparison of Transform Coefficients due to KLT and DCT 

The discrete cosine transform and Karhunen-Loeve transform were discussed in sections 

5.4.5 and 5.4.8 respectively, in section 5.4.10 it was shown that under certain 

circumstances, namely a strong correlation structure, that the coefficients of both 

transformations should be very similar. This was tested on figure 5.2 and the results are 

contained below in table 5.6. 

Table 5.6 The DCT and KLT Transformed Coefficients 

Transformed Coefficient Variances for DCT and KLT  (Three by Three Pixel Vector) 

KLT – Red Variances KLT – Green Variances KLT – Blue Variances DCT – Red Variances DCT – Green Variances DCT – Blue Variances 

11570.81243 11064.012 6786.8834 11569.957 11063.375 6786.0709 

212.7326117 190.10672 165.3958 170.04413 153.35281 134.3281 

83.59251066 87.074358 83.916816 83.684224 87.162095 83.961279 

27.79516128 28.992503 27.932139 56.682701 51.112232 44.783035 

13.27699135 13.820358 12.951452 27.839153 29.001855 27.933561 

0.975048529 0.9735916 0.9904367 0.9689963 0.9675922 0.9844558 

0.329662865 0.3283919 0.3382222 0.3229978 0.3225307 0.3281518 

0.310876418 0.3112064 0.3125115 0.3229945 0.3225245 0.3281459 

0.104781369 0.1046898 0.1062306 0.1076625 0.1075051 0.1093784 

 

The variation of the discrete cosine transform coefficients is very close to that of the 

Karhunen-Loeve transform coefficients, the second, fourth transform coefficient of the 

discrete cosine transform show marked differences. The Karhunen-Loeve transform 

variances decrease quicker in the early-middle coefficients than the discrete cosine 

transform variances. The lower variances, however are pretty much the same for both 

transforms.  
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5.5.5.3 Histograms of the    and    Transform Coefficients  
 
The discrete cosine transform coefficients were plotted for all             sub-images, 
they were almost identical in form to the Karhunen-Loeve coefficients for the RGB colours.  
 

 

 

 
Figure 5.5 Histograms of the    and    Coefficients The top left hand corner image is the histogram of the    
coefficients, while the rest of the coefficients are the remaining       coefficients. 
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In the case of both the discrete cosine transform and the Karhunen-Loeve transform, the 

transform was applied on each of the             sub-images of a RGB image matrix of 

size         . 

The histograms for all    coefficients seemed to follow a similar distribution for both 
transformations. The possible distribution of the coefficients was confirmed by several 
sources, including the paper [144].  
 
A summary of the discussion presented will follow. 
 
The       sub-image contains       values of the un-transformed pixel values       for 

red, green and blue.  

According to the authors, since the pixel values are assumed to be identically distributed, 

then the weighted sum of these pixels is approximately normally distributed, due to the 

central limit theorem, while the spatial correlation between pixels determines the width of 

the distribution.  

Now since both the discrete cosine transform and Karhunen-Loeve transform are unitary 

transformations, the mean of the transform coefficients is zero, while the variance      

differs for each element  ̃    of the sub-image. 

Therefore each of the    transformed coefficients  ̃    constituting the       sub-image 

matrix follows a normal distribution with a variance that differs     
  where           and 

         . That is  

  (         
    )   

 
 

       

    

√          

According to the author, empirical data showed that the variances     
  which where 

estimated by the sample variances     
  were approximately exponentially or half Gaussian 

distributed. 

The conditional distribution of      is 

   (    )   ∫   (         
    )

 

 

               

Assuming an exponential probability density function for the variance   

       {
               
                      

    

                                                             
144 Lam, E. Y. and Goodman, J. W. A Mathematical Analysis of the DCT Coefficient Distributions for Images. IEEE 
Trans.on Image Proc., vol. 9, no. 10, Oct. 2000. Pages 1-5. 
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  (    )   ∫
 

 
      

 

    

√       

 

 

         
       

Then by substituting      and            into the expression, we get 

 
   

√   
  ∫  
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√   
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√   

 
   √           

  (    )         (√   
 

)  

The authors argue similarly for a   that follows the half Gaussian distribution, the result is 

also a Laplace distributed      

  (    )         (√
 

 

 

)  

The width of the Laplace distributions become smaller as the coefficients       move towards 

the right-hand bottom corner of the coefficient matrix, in other words as       get larger, 

the coefficients      which are centred at zero have increasingly smaller variance.  

The width of the transform coefficient distribution, it’s steady monotone decrease and it’s 

zero mean due to the nature of the orthogonal transform provide a template for data 

compression.  

The Laplace distribution of the discrete cosine and Karhunen-Loeve transform coefficients is 

not agreed upon by everybody see [145] for arguments on why no particular distribution will 

fit the DCT statistics exactly over a wide range of applications.  

 

 

                                                             
145 Yovanof, G. S. and Liu, S. Statistical Analysis of the DCT Coefficients and their Quantization Error. In Conf. 

Rec. 30th Asilomar Conf. Signals, Systems, Computers, vol. 1, 1997. Pages 1-5.  
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In the book [146], the author provides several look up tables of Huffman encodings for both 

the    and differenced    coefficients - independently of the image encoded [147]! The 

author, however comments that adaptive arithmetic encoders are sometimes used, and can 

achieve slightly better (5%-10%) compression ratios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
146

 Solomon, D. and Motta, G. Handbook of Data Compression. Springer. 2010. Pages 532-535. 
147

 This seems to agree with the article by Lam, E. Y. and Goodman, J. W. that the coefficients do in fact follow 
a specific distribution, namely the Laplace distribution, with deviation occurring at parameter as opposed to 
distribution level. 
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5.5.6 Image Compression Results 

Figure 5.6 Comparison of the Compressed Image with its Uncompressed Counterpart The top image is the 

original 24 bit 800 by 1200 RGB bitmap image, while below it is the reconstructed image for increasing (left-to-

right) compression ratios obtained by the increasing the quantization matrix scaling factor   from 1 through to 

10. 
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Figure 5.7 The Error Image The difference between the original 24 bit 800 by 1200 RGB bitmap image the 

reconstructed image for increasing (left-to-right) compression ratios obtained by the increasing the 

quantization matrix scaling factor   from 1 through to 10. 

The error image was determined for each     vector by calculating the absolute difference, 
 

             
             
             

where    is the error image for the vector  ,    is the original image vector   and    is the 
reconstructed image vector  . 
 
Table 5.7 Comparison of Compression Ratios 
 

  Original Bitmap Storage 
Capacity (kilobytes) 

Compressed Storage 
Capacity (kilobytes) 

  Original Storage Capacity over the 
Compressed Storage Capacity 

  2813 310 907  
  2813 241 1167  
  2813 201 1400  
  2813 167 1684  
  2813 145 1940  
  2813 121 2325  
  2813 105 2679  

  2813 92 3058  
  2813 86 3271  
   2813 71 3962  
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5.5.6.1 Comments on Image Compression Results 

The two images in figure 5.6 are compared and the error image in figure 5.7 is examined to 

highlight the difference between the two images. 

Four differences are briefly discussed, namely, the blocking and pixilation, ringing around 

several edges, the error image’s colouration and the compression achieved.  

 Blocking Artefacts and pixilation 

For smaller values of   pixilation becomes perceptible, even for     there is small criss-

cross artefacts at the edges of the rocks in the foreground. As   gets larger, particularly 

around    , blocking artefacts are very noticeable and affect the image quality.  

For      the image quality is severely distorted with discolouration and loss of specific 

elements (sticks, edges and water foam) of the image. 

 Ringing  

Due to the discrete cosine transform approximating jumps in colour at the edges of the 

rocks, there is a ring around them which is more apparent for higher values of  . 

 Error Image 

The error image shows the increase in discolouration with the increase in the parameter  , 

it also shows the loss of clearly defined edges in particular with the water and foam. 

 Compression 

The amount of compression achievable is high, but the loss of vital image information is very 

apparent for increasing values of  . 
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5.6 Conclusions of Chapter Five 

 

 Vector quantization is far more computationally complex and time consuming than 
scalar quantization, so alternative strategies are considered in order to make up for 
using scalar quantization as opposed to vector quantization. These include scalar 
quantization combined with bit allocation approaches, orthogonal transforms and 
entropy encoding. 
 

 The bit allocation problem attempts to assign bits optimally to the random variables 
that constitute the random vector. The variance of the random variable provides a 
template, that is, to achieve an optimal bit allocation more reproduction points need 
to be assigned to random variables with greater variance. 
 

 The computational complexity, bit allocation problem and trouble with dependence 
structure is partially solved by means of scalar quantization combined with entropy 
encoding and orthogonal transforms, the latter is discussed in greater detail. 
 

 The discrete Karhunen-Loeve transform is an orthogonal transform applied to the 
statistical nature of the data. It is the optimal orthogonal transformation for de-
correlation and bit allocation. The discrete Karhunen-Loeve is however data 
dependent and therefore impractical due to time economy. 
 

 The discrete cosine transform is a special case of the discrete Fourier transform and 
is substantially more computationally efficient than Karhunen-Loeve transform in 
terms of computational economy, due to being independent of the statistical nature 
of the data.  
 

 The discrete cosine transform, is a limiting case of the discrete Karhunen-Loeve 
transform where the correlation between random variables that constitute the 
random vector approach a unity.  
 

 The discrete cosine transform coefficients and the Karhunen-Loeve transform 
coefficients appear to follow a Laplace distribution centred around zero with 
decreasing variance, which allows for bit allocation and uniform scalar quantization 
of the in-significant coefficients onto zero.  
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Final Conclusion and Summary 

This dissertation looked at how data compression works, how quantization is used in 
compression, how vector quantization and scalar quantization compare in reducing error 
and compressing data and how linear transformations assist in the data compression 
process. 

These are the conclusions. 

Data compression is divided into two overlapping compression methods, namely lossy and 
lossless compression, where lossless compression forms an integral part of lossy 
compression. 

Lossless compression of discrete data has lower bound on the bit rate per data element (or 
code rate). This lower bound is known as the entropy which is calculated as a function of the 
probability distribution determined over the set of outcomes obtained at the data source (a 
random variable) and is measured in bits.  

Several important relationships between the probability distribution, the entropy and the 
code rate were identified.  

Firstly, increased heterogeneity results in lower entropy. Zero entropy in the case of 
maximum heterogeneity, or determinism and maximum entropy for discrete 
uniform data, which exhibits maximum homogeneity. 

Secondly, grouping or blocking data elements reduces or leaves the (joint) entropy 
unchanged. In the case of blocks comprised of independent random variables, the 
joint entropy is equal to the entropy of the ungrouped data, while in the case of a 
dependence structure between random variables, the joint entropy is reduced below 
that of the entropy of the ungrouped random variables.  

Lastly, the effect of blocking data elements reduces the code rate, this is true even in 
the case where the blocks are comprised of independent random variables.  

Lossy compression is achieved by combining lossless compression with scalar or vector 
quantization.  

Scalar Quantization 

Scalar quantization is a technique of (selectively) introducing errors into scalar data by 
assigning observations to a predefined set of codewords, or a codebook. Scalar quantization 
decreases the range of the random source of the data thereby increasing the compression.  

Three types of scalar quantization were discussed, namely uniform scalar quantization, 
companded uniform scalar quantization and Lloyd Max scalar quantization. The difference 
between the three methods is found in the design phase of the quantizer that is how the 
codebook and intervals are determined.  
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The implementation is the same for all three, that is, assign the observation to the 
codeword which represents the interval where the observation is taken. 

Since scalar quantization introduces error into the data, distortion measures are required to 
measure the error in order to determine the performance for a given constraint on 
codebook size.  

Some scalar quantization designs rely on performance measures that minimize the mean 
error for a given codebook size, alternative designs minimize the mean error against the 
entropy of the quantized random source- inverse requirements that are described by the 
rate – distortion theory.   

The LBG algorithm is a greedy iterative procedure for designing a codebook and boundary 
points by clustering and assigning temporary means to simulated or real data. The LBG 
algorithm is the result of iteratively applying Lloyd Max conditions which result from the 
minimization of the mean squared distortion measure.  

For low code rates, several alternative scalar quantization techniques are available, however 

for high code rates uniform scalar quantization is (near) optimal in that it minimizes the 

code rate for any bounded, well behaved random source.  

Vector Quantization   

Vector quantization is a generalization of scalar quantization in its application to random 
vectors as opposed to scalars.  

Vector quantization allows for greater flexibility over scalar quantization in the design phase 
which results in smaller errors and greater compression. This is due to the diversity of 
available shapes, the volume increase due to increased dimensionality and the ability to 
incorporate dependence structure into the design.   

The rate distortion lower bound is an optimum bound on the code rate for a given 
distortion. The improvements in the design of a vector quantizer imply that for a large 
dimension, a vector quantizer is able to achieve the rate distortion lower bound (even) in 
the presence of statistical dependency. 

The generalized Lloyd algorithm extends the LBG algorithm into two or more dimensions. 
The ECVQ algorithm and the EM algorithm can be viewed as extensions of the generalized 
Lloyd algorithm framework by using different distortion measures, resulting in more 
parameters and extensions to the optimization process. 

Linear Scalar Transformations and Picture Study 

Vector quantization is very effective at quantizing data, however it is often too time 
consuming in both design and implementation phases, especially when the probability 
structure is unknown or changing. An alternative to vector quantization is scalar 
quantization combined with techniques that improve scalar quantization performance. 
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High code rate scalar quantizers are very effective at quantizing data, however when 
dependence structure is present, vector quantizers are still far better.  

A bit allocation strategy that assigns more codewords to variables with greater variance 
combined with a linear transform that removes linear dependence before scalar 
quantization can be achieved with a single linear operation, the Karhunen Loeve transform 
(also known as the Principle Component transform). 

The Karhunen Loeve transform, which is data dependent, can be substituted with the 
Discrete Cosine transform, which is data independent, with very similar results when the 
data is highly correlated, as in image data. 

The Discrete Cosine transform of image data results in     predictable probability 
distributions, with zero means and decreasing variance, of the   transform coefficients.  

These coefficients are quantized by means of a uniform scalar quantizer and then encoded 
by an entropy encoder. 

All the processes are reversible except for quantization, so the data can be decoded easily 
with only the codebook and the compressed transform coefficients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



161 | P a g e  

 

Appendix 

Code 5.1  SAS 9.2 Code: Input and Output Image 

SAS/4GL macro for reading BMP files (DIB3, no compression, 24 bits 

only)Copyright 2010 Bogdan Taranta 

%LET BLIBNAME=WORK; 

/*destition libname, output will be stored in BITMAP_RAW dataset */ 

%LET BSOURCE=g:\Vector Quantization\image 

segmentation\Test_pics\test_pic7.bmp; 

/* path to BMP picture */ 

/* reading raw HEX data */ 

data BITMAP_RAW; 

  infile "&BSOURCE" recfm=n; 

  length byte $1; 

  input byte $char1.;  

  offset = _n_-1; 

  /*byte possition*/ 

  value = rank(byte); 

  /*byte value*/ 

  format offset HEX4.; 

  keep offset value; 

run; 

/*data _null_;*/ 

/*  set bitmap_raw;*/ 

/*  file "c:\temp\mytest.bmp" recfm=n ;*/ 

/**/ 

/*  out_char = byte(value);*/ 

/*  put out_char $char1. @;*/ 

/*run;*/ 

/* making DIB pattern header, reffering to 

http://en.wikipedia.org/wiki/BMP_file_format */ 

data BITMAP_HEADER; 

  format soffset HEX4.; 

    input @1 soffset HEX4. /*field position*/ 

        @6 bytes /*field lenght*/ 

        @9 desc $; /*field description*/ 

  do i=1 to bytes; /*repeating field */ 

    add = (i-1)*256; /* this will be used to convert values into integers*/ 

    if add = 0 then add = 1; 

    offset = soffset+i-1; /*ordinary counter*/ 

    output; 

  end; 

  drop soffset bytes i; 

  format offset HEX4.; 

  datalines; 

0000  2 MAGIC 

0002  4 F_SIZE 

0006  2 RES1 

0008  2 RES2 

000A  4 B_OFFSET 

000E  4 H_SIZE 

0012  4 B_WIDTH 

0016  4 B_HEIGHT 

001A  2 COL_PLAN 

001C  2 COL_DEP 

001E  4 COMPRESS 

0022  4 I_SIZE 
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0026  4 HRES 

002A  4 VRES 

002E  4 PALETE 

0032  4 IMPCOL 

run; 

proc sort data=BITMAP_HEADER  out=BITMAP_HEADER ; 

  by offset; 

run; 

proc sort data=BITMAP_RAW  out=BITMAP_RAW ; 

  by offset; 

run; 

/* comparing DIB header from file to previosly generated pattern */ 

data BITMAP_HEADER; 

  merge BITMAP_HEADER (in=l)  BITMAP_RAW; 

  by offset; 

  if l = 0 then stop;/* stop when pattern is finished */ 

run; 

/* reading data from DIB header into macro variables */ 

proc sort; 

  by desc; 

run; 

data BITMAP_HEADER; 

  set BITMAP_HEADER; 

  by desc; 

  retain cvalue 0; 

  cvalue = cvalue + (value*add); 

  if last.desc then do; 

    call symput(desc,compress(put(cvalue,best12.))); 

    output; 

    cvalue = 0; 

  end; 

  keep desc cvalue; 

run; 

 

%put &b_offset; 

%put &b_width; 

%put &b_height; 

data _null_; 

  pixel_row_total=ceil(&b_width*24/32)*4; 

  call symput("pixel_row_total",compress(put(pixel_row_total,best12.))); 

  pixel_row = (24*&b_width/32)*4; 

  call symput("pixel_row",compress(put(pixel_row,best12.))); 

run; 

%put &pixel_row_total; 

%put &pixel_row; 

data BITMAP_RAW1; 

  set BITMAP_RAW (where=(offset>=&B_OFFSET)); 

  retain X 0; 

  retain Y &B_HEIGHT; 

  retain BLUE; 

  retain GREEN; 

  retain RED; 

  retain BYTE3 0; 

  retain byte_cnt 1; 

 

  if (&pixel_row=&pixel_row_total and byte_cnt>&pixel_row) then do; 

    byte_cnt = 1; 

    Byte3 = 0;end; 

 

  if (byte_cnt<=&pixel_row) then do; 

    if ( BYTE3 < 3 ) then BYTE3 = BYTE3 + 1; 
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    else BYTE3 = 1; 

    if BYTE3 = 1 then BLUE=value; 

    if BYTE3 = 2 then GREEN=value; 

    if BYTE3 = 3 then RED=value; 

    if BYTE3 = 1 then X = X + 1; 

    if ( BYTE3 = 3 ) then do; 

      if X>&B_WIDTH then do; 

        X = 1; 

        Y = Y - 1; 

      end; 

    end; 

    if BYTE3 = 3 and X<=&B_WIDTH then do; 

      output BITMAP_RAW1; 

      *myout = 1; 

    end; 

 

    byte_cnt + 1; 

  end; 

  else if (byte_cnt<&pixel_row_total) then do; 

    /*nothing - these are padding to make up 32 bytes*/ 

    byte_cnt + 1; 

  end; 

  else do; 

    Byte3 = 0; 

    X = X + 1; 

/*    if X>&B_WIDTH then do;*/ 

/*      X = 1;*/ 

/*      Y = Y - 1;*/ 

/*    end;*/ 

    byte_cnt = 0; 

    byte_cnt + 1; 

  end; 

  keep X Y BLUE GREEN RED; 

run; 

 

%macro print_2_file(in,out); 

%LET BTARGET=g:\Vector Quantization\image 

segmentation\Test_pics\&out._result.bmp; 

proc sort data=&in. out=bitmap_raw2; 

  by descending y x; 

run; 

data bitmap_raw_header; 

  set bitmap_raw; 

  where (offset<&B_OFFSET); 

run; 

proc transpose data=bitmap_raw2 out=bitmap_raw_tps(rename=(col1=value)); 

  by descending y x; 

  var blue green red; 

run; 

data _null_; 

  set bitmap_raw_header bitmap_raw_tps; 

  file "&BTARGET" recfm=n;  

  out_char = byte(value); 

  put out_char $char1. @; 

run;%mend; 
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