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Abstract

This study provides systematic analysis of points of structural change in probability distributions.

In observed frequency data of earthquakes, such a threshold exists due to the non-detection of events

below a certain magnitude. By examining the factors influencing the operational risk exposure of

institutions, a similar threshold is hypothesized to exist in operational loss data. In both fields of

study, this threshold is termed the threshold of completeness, above which 100% of events are de-

tected. External factors have caused this level of completeness to shift over time for earthquake data.

The level of complete recording influences the volume of data that can be consistently incorporated

in a study of seismic activity. Such data can be used by re-insurers and direct writers of catastrophe

agreements who deal in seismic hazard. Historically, a variety of methods have been proposed by

authors in an attempt to gauge the location of the threshold of completeness in earthquake data.

This study aims to evaluate the efficacy of some of the most prominent methods under differing

assumptions regarding the incomplete portion of the data. Furthermore, a new threshold estimation

scheme (MITC) is developed and tested against the prevailing methods. Additionally, earthquake

data and the wealth of literature will aid in introductory analysis and assessing applicability of esti-

mation techniques in the context of operational losses.

Keywords: Magnitude of completeness, Event detection, probability of event detection, operational

risk, Moment incorporating threshold computation, event detection threshold.

Supervisor : Prof. A. Kijko
Co-Supervisor : Dr. C. Beyers
Department : Actuarial Sciences
Degree : Master of Science

Declaration
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1 Introduction

“Everything flows, nothing stands still”

- Plato (Cratylus 402a)

This principle prevails in the work of countless authors and has shaped their views. Furthermore, as

academic advancements have been made, the understanding of the influence of said philosophical cor-

nerstone has grown immensely. Over time, systematic changes in key characteristics of a large number

of processes have been observed. With the groundwork being layed more than 2 millennia ago, rigour

and quantification is what might be described as the challenge of the day.

Building on this principle, one well-posed problem in modern day academia, is that in the study of

time-series. This is known as the change-point problem [5], where a process can undergo considerable

change at certain unknown time(s). Examples of such changes include [9]:

Genetic data analysis - Change point models can be used to quantify DNA copy number vari-

ations.

Traffic mortality rates - Traffic death rates could possibly have changed starting from 1987, due

to an increase in the speed limit from 55 to 65 miles per hour on certain roads in the United

States.

Quality Control - Measurable quality of products are expected to remain constant during a

production process, if the process is indeed under control and stable. Points of significant

change in the quality of the produced items may exist. Identification thereof can help ascertain

the stability of the overall process.

Stock market analysis - Apart from stock price fluctuations, as predicted by normal economic

theory, systematic developments can cause further movements [9]. Structural changes of

processes, in this particular field, have received much attention and therefore a rich literature

is available. Examples include methods for detecting multiple change points in multivariate

time series, with specific application in financial markets [34]. A number of authors affirm the

existence of structural breaks in parameters of these processes [5].

If the time domain of these processes were replaced by another quantitative measure, such as size, an

adaptation of the change point problem can be studied in a plethora of fields. Two such extensions

of the change point problem can be seen in the studies of seismic activity related to the realization of

earthquakes and the other being the analysis of operational risk data.
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In the context of earthquake data, shifts can be observed in a number of different manners: From changes

in the rate of seismic event occurrence to changes in the proportion of large to smaller generated events.

If one considers the stochastic process relating to detected earthquakes, rather than generated earth-

quakes, it can easily be hypothesized that this process might also be subject to some shifts over time,

space and event size.

This study will focus on event size change-points. Typically, some characteristic of the distribution is

altered at the change point. The magnitude of completeness is a specific case of a change-point in earth-

quake data. This point carries importance, since events equal to or larger than the change-point will

be detected with a probability of 1, whereas, events with sizes below the threshold value might not be

detected. This problem can therefore also be described as the estimation of a threshold.

Operational risk data, as part of the risk quantification process, carries the possibility of having various

distributional thresholds. It can fairly easily be hypothesized that such data is subject to the existence

of an analogous detection threshold. Academic examples of such a threshold relates to extreme events

and has also received academic attention [12, p.87].

The notion of “complete reporting” can therefore be introduced. In this context, a dataset (or subset

thereof) that is described as being completely reported on, is to be characterized in that all events that

have realized, have indeed been reported on. When considering data where the numbers of recorded

events are not indicative of the entire process, the “level of complete reporting”, i.e. the event detection

threshold, is the event size that differentiates between a subset that has been completely reported on,

and the subset that has not. This is a generalization of the magnitude of completeness, that specifically

refers to earthquake data.
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2 Motivation

Two, relatively disjoint, academic fields can both benefit from a central study of threshold estimation,

namely earthquake risk as well as operational risk quantification. Intuitively, smaller earthquakes as well

as operational losses can be harder to detect than larger sized (valued) events. This broadly described

relationship, where smaller events attract a larger probability of not being detected, is the focus of the

study.

A vast number of possibilities exist relating to the structure of the probability distribution of event

detection. In some instances the probability of not detecting an event is non-zero for any event size, this

is termed a “soft detection threshold”. This concept will be revisited shortly, together with the idea of

a “sharp detection threshold”. This second type of threshold can be hypothesized to exist, above which

all generated events are indeed detected. In practice, both of these situations are important. This study

will mainly focus on “sharp detection thresholds”, but “soft detection thresholds” will form part of an

auxiliary investigation into the efficacy of threshold estimation.

As will follow from more a detailed review in Section 2.2, obtaining sufficient operational risk data

presents a number of difficulties. Hence, this paper will incorporate an investigation of earthquake data.

The availability of such datasets is slightly better than for operational risks. By undertaking such a

cross-discipline study, a general framework of threshold estimation can be developed and the efficacy of

the resulting estimation methods can be gauged. From this point modifications can be made specific

to the proposed distribution of operational losses. As stated, this derived processes, relating to the size

and frequency of observed events (rather than generated events) has received considerable attention in

the seismological community. Such a wealth of literature will further the understanding of threshold

estimation techniques.

Sections 2.1 and 2.2 of this chapter will focus on the importance of accurate threshold estimation in

probability distributions. The importance in these respective fields will be stressed from an actuarial

perspective. This mainly relates to how subsequent actuarial calculations will be impacted based on the

end results of the threshold estimation exercise.

This study also advocates the modification of probability distributions used when modelling earthquake

and operational risk data. A brief outlining motivation is given in Section 2.3 for such modifications.

Section 2.4 will provide motivation for the development of the newly proposed MITC threshold estima-

tion scheme.
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2.1 Actuarial motivation for the analysis of

earthquake data

As described in the Introduction (Chapter 1) the magnitude of completeness is an example of a change

point, i.e. distributional threshold, that exists in earthquake event data. This point is defined as the

lowest magnitude at which 100% of the events in a space-time volume are detected [46]. The reliabil-

ity of a number of subsequent analyses, for example, seismicity- and hazard rate analyses, rests on the

accurate determination of this threshold value [60]. Traditionally, the motivation is that the magnitude

of completeness determines the specific range, from the available data, that can be used to estimate the

values of other distributional parameters [60].

Affirming the importance of such distributional parameters, is their routine use by direct insurance busi-

ness writers and re-insurers in the calculation of premiums and reserves for, e.g., catastrophe insurance

and reinsurance agreements [7].

A variable that readily depends on the magnitude of completeness is the b-Value, found in the Gutenberg-

Richter relation [22], classically expressed as

log10N(M) = a− bM (2.1)

where a (seismicity rate, or productivity, in a given period) and b (ratio of large to small events) are

positive constants; M represents the magnitude of a seismic event and N(M) is the number of seismic

events that are equal or larger than magnitude M .

This is a prime example of a cumulative frequency-magnitude distribution (Cumulative FMD). The log

transformed quantity in (2.1) is a linear function of magnitude representable by a straight line, as can

be seen in Figure 2.1 for illustrative values of the parameters a and b. The basis for a cumulative FMD

is that the total number (frequency) of events that have magnitudes greater or equal to a magnitude M

is plotted against the specific magnitude M . The cumulative frequencies displayed on the cumulative

FMD are typically presented on a logarithmic scale.

The importance of accurate estimation of the magnitude of completeness has increased over time and is

said to become even more important. Activities of man can induce earthquakes, leading to structural

changes in the natural physical processes of certain regions. Examples of such are, reservoir triggered

earthquakes in India [17] as well as shale gas extraction through hydraulic fracturing (fracking). Such

induced earthquakes have already been observed in the United States and could also become a local

reality due to the possibility of hydraulic fracturing practices being implemented in the Karoo region of

South Africa. Over time such activities can introduce inhomogeneous factors into recorded data. This
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Figure 2.1: Graphical representation of Gutenberg-Richter relation. Illustrative parameter values
of a = 107 and b = 0.91.

can ultimately alter the level of completeness by changing, for example, seismicity rates. Subsequently

the importance of accurately estimating distributional thresholds in data is increased.

In the case of the Gutenberg-Richter frequency-magnitude distribution, such distributional change points

can easily be visualized as the deviation from the straight line relation in (2.1). Figure 2.2a gives a prime

example of such a visualisation of a change point. The deviation from the pattern predicted in Figure

2.1 is readily identified. Furthermore, as will be shown in (8.1), page 23, the Gutenberg-Richter relation

in (2.1) can also be interpreted as a probability density. This coincides with the notion of an incremental

Frequency-Magnitude Distribution (incremental FMD). For the case of the incremental version, events

are grouped and counted by magnitude bins. This is done in much the same way as a histogram is

constructed. What typically distinguishes an incremental FMD from a histogram is that frequencies

are displayed on a logarithmic scale. In this case, the distributional threshold can be observed as the

deviation from the linear pattern for bins representing progressively smaller magnitudes. This can be

seen in Figure 2.2b. These illustrated anomalies in both cumulative and incremental FMDs can be linked

to the level of complete reporting.

Although the distributional threshold can be identified, by visual inspection of Figure 2.2, to be near a

magnitude of 2.5, this approach lacks objectivity and precision. These needs form the basis to identify

accurate methods for automatically estimating distributional thresholds.

2.2 Actuarial motivation for the analysis of

operational risk data

As written up in a 2007 working paper of the International Monetary Fund [31], operational risk can be

broadly defined as

“The risk of loss or some adverse outcome, such as financial loss, resulting from acts

5
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Figure 2.2: Frequency-magnitude distribution for earthquake events recorded in Western Freestate,
South Africa (S 28◦11′′34′ to S 30◦54′′20′; E 20◦24′′28′ to E 29◦37′′35′). Data has been collected from
various sources, the main source being the ISC (International Seismological Centre) for the period 1971-
2005.

undertaken (or neglected) in carrying out business activities, such as inadequate or failed

internal processes and information systems, from misconduct by people (e.g. breaches in

internal controls and fraud) or from external events (e.g. unforeseen catastrophes)”

Events pertaining to operational risk and the subsequent losses form part of an integral process aimed at

describing the risk exposure of a corporate entity. The approach to managing and making provisions for

operational risk exposure, relating to banking activities, are further described by the Basel II framework.

In contrast, South African insurers will have to comply with the regulatory framework as set out in the

Solvency Assessment and Management (SAM) Roadmap. SAM is the risk-based regulatory framework

of the Financial Services Board (FSB) that is modelled after its European counterpart, Solvency II.

In order to estimate this exposure, under any regime, the efficiency at which event realizations are de-

tected must be assessed. A well founded example of events that warrant the incorporation of detection

probabilities are fraud and theft. If the detection probability of such financial losses are assumed to

be influenced by the monetary amount (size) of the loss, the existence of a distributional threshold of

complete reporting can fairly easily be hypothesized. Analogous to the magnitude of completeness this

threshold is such that all losses of monetary value greater than the threshold value are detected.

Knowledge of completeness in reporting can enable organizations to actively determine the efficiency of

controls and measures implemented aimed at reducing operational risk. Furthermore, this puts orga-

nizations in a position to better understand their exposure to reported versus unreported operational

losses, enabling pro-active measures to be put in place.
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Publicly available operational risk data has been described as “notoriously scarce” [31] and “hard (if not

impossible) to come by” [57]. Such shortages of data can be explained by the following causal factors :

1. A shortage of industry-wide initiatives for the collection and ultimate provision of operational risk

data to participating parties and researchers. South Africa is a prime example of such a situation.

2. Internally and/or externally gathered data will only be adequate when sufficient time has elapsed

for the realization of event data.

3. Recording of operational risk events may be subject to an inadequate detection process, e.g. unre-

ported theft or fraud.

Such difficulties are the main motivation for considering earthquake data when undertaking this study.

2.3 Motivation for modification of probability

distributions used for event severity

It is generally understood that any study needs to identify a suitable time window to be used. The aim

is to eliminate any inhomogeneities that have been introduced into the data due to the passage of time.

Such factors will be discussed in Sections 6.1.2 and 6.1.3. By restricting, and possibly shortening, the

time window of investigation, the amount of data to be used is reduced. This especially raises concern

for the inclusion of extreme events. Such unease is predominantly due to extreme events taking a large

amount of time to sufficiently accumulate in data.

In order to keep the time horizon spanning the investigation as long as possible, and therefore maintain

the volume of extreme events in the data, some adjustments are necessitated. The main consideration

for consistency of the data is that the relationship between event realizations must be maintained. An

example of such a relationship can be seen in (2.1), the Gutenberg-Richter relation, as well as subse-

quently derived probability density functions. For this relationship to hold, the data that is known to

be inconsistent (e.g. as a result of time-dependent inhomogeneities) must be excluded. This is the tradi-

tional approach, but once again, reduces the amount of usable data and infringes on statistical reliability.

A different modus operandi would be to specify an alternative relationship, and subsequent probabil-

ity distributions, governing the process. Through this approach, the amount of usable data will not

be reduced and the investigation time window will not have to be shortened whereby extreme events

are excluded. This approach is ultimately advocated in the current study and furthermore forms the

motivation for undertaking an investigation into modified probability distributions used to model event

severities. This will be discussed in more detail in Section 8.2.1.
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2.4 Motivation for development of MITC estimation

scheme

When considering the prevailing methods of threshold estimation used in the field of earthquake data

analysis, only the Entire Magnitude Range (EMR) method [60] explicitly allows for the use of a detection

probability. This spurred the development of a new method, that would also be able to allow for the

explicit modelling of a detection probability. Furthermore, due to the restrictions on data availability,

the explicit inclusion of a detection probability can increase the reliability of statistical results. This is

due to the fact that not all data on the process is needed to be able to fit a distribution, but only the

data on the detected events.

As will be shown in this study, the EMR method is a powerful approach to threshold estimation. How-

ever, implementation of the algorithm can be computationally intensive and lengthen the time taken to

conclude a study. This has been a further motivation for the implementation of the MITC scheme, as a

way to reduce computation time while still retaining much of the associated estimation power.
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3 Objectives

This study is aimed at

• Establishing parallels between operational risk and earthquake magnitude events.

• Formalizing incorporation of a detection probability into a data generating distribution.

• Establishing preliminaries and formalizing some of the prevailing threshold estimation tech-

niques. Additionally, a new threshold estimation scheme is developed. The efficacy of this

new scheme, termed Moment Incorporating Threshold Computation (MITC), will also be

determined relative to that of the other studied methods.

• Accurate estimation of the distributional threshold, termed the level of complete reporting,

in presented data.

• The objective comparison of estimation methods must indicate the most appropriate method

for varying circumstances:

– Given a dataset with a specific form of the detection probability. This is a situation that

could present itself based on prior information such as a separate investigation into the

detection capabilities of a network or simply subjective beliefs.

– Given a dataset with a specific level of completeness, i.e. a known value of the detection

threshold. This situation should be very rare in practice, since this is particularly the

value that is being estimated. However, from a theoretical perspective, results from such

an enquiry will aid in understanding the underlying efficiency of the estimation methods.

– Given a dataset with unknown characteristics. This situation should present itself in

a typical fashion for most researchers. Here a researcher might have subjective beliefs

regarding the dataset, but will most typically still have to conclude diagnostic tests on

the dataset.
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4 Outline of dissertation

• In Chapter 2 the importance of taking distributional thresholds into account has briefly been

discussed and a statement of the objectives of this study has been made in Chapter 3.

• The similarities between operational risk and earthquake data will be detailed in Chapter 5.

It is also seen how the problem of estimating a distributional threshold can be generalized to a

multi-disciplinary level.

• Chapter 6 will provide a brief overview of the respective seismological and operational risk contexts

in which the problem of threshold estimation will be discussed.

• In Chapter 7 the assumptions underlying the study will be stated as well as the limitations that

are encountered.

• In order to gauge the relative performance of the threshold estimation methods, Chapter 8 will be

devoted to deriving statistical distributions that will represent real-world data. The distributions

that are derived will, however, represent a “perfect” world. Additionally, similar distributions will

be derived incorporating a “soft detection threshold”. The aim is to compare estimation methods

in less than ideal conditions. Consequences of modelling inadequacies will subsequently be realized.

• In Chapter 9 the most prominent methods for estimating the distributional threshold will be

discussed. This will include an assessment of underlying assumptions which leads to the resultant

weaknesses and strengths. A brief demonstration of each estimation method will be included.

Furthermore, the newly proposed MITC estimation method is also derived in this chapter.

• Rigorous evaluation of the threshold estimation methods will be done in Chapter 10. This will

be undertaken considering varying circumstances of the data generating process. The questions

relating to which is the most appropriate estimation method for varying circumstances, as stated

in the objectives of the study, will also be addressed in this chapter.

• In Chapter 11 the threshold estimation methods will be compared by analysing real-world earth-

quake data in order to demonstrate practical application. Chapter 12 will be devoted to the

consideration of operational risk data on which threshold estimation techniques will be applied.

• Chapter 13 will present a summary and conclusion on the effectiveness of the methods. In

addition, objectives will be outlined for future follow up studies.

• Appendices ...
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5 Cross discipline parallels of earthquake
data and operational risk data

5.1 Motivation for assessing similarities

As mentioned, the scarcity of historical operational risk data is one of the main stumbling blocks for

institutions when attempting to construct comprehensive models. Furthermore, it is stated that even

the largest banks have only in the vicinity of 5 to 6 years of loss data [11]. Even though such estimates

were obtained in 2006, the data can still be considered insufficient in the context of extreme events. The

problem is further exacerbated due to data being subject to external factors leading to inhomogeneities.

For these reasons it is proposed to utilize earthquake data when assessing the techniques of thresh-

old estimation. When compared to operational risk data, earthquake data can be seen to be more freely

available and the time horizon of examinable events is longer. To further substantiate this act of cross

discipline data analysis, a brief discussion of the data similarities is undertaken in the following section.

5.2 Similarities

A number of parallels can be drawn between data gathered for the analysis of operational and earthquake

risk.

1. Distribution of event severities

In general, risk can be quantified to be the effect and interaction between incident frequencies and

the severity of such incidents. Specific constraints placed on the a process lead to the manner in

which these two factors must be combined to obtain a quantitative measure of the risk.

2. Incomplete data

Operational losses, only larger than specified monetary amounts, e.g. US $ 10,000 or e5,000, are

recorded on bank’s databases [10]. This truncation point is comparable to the quantity of mmin

as seen in earthquake data.

Distinction can be made between occurrence of events and events that are recorded, i.e. detected.

Furthermore, the probability of an event to be recorded can be seen as a function of event size,

with larger events having a proportionally larger probability of being detected.

3. Alternative characterization of detection threshold

In earthquake literature the magnitude of completeness has, up to this point, been modelled as

a sharp detection threshold. As will be shown in Section 8.2.1, a soft detection threshold can be

introduced. It can however be seen that in operational risk the opposite situation has implicitly

been encountered, illustrated by the following general example. In operational risk modelling, the
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Log-Normal distribution has been a popular choice for severity distributions [44]. However, others

argue that tail events are understated by the Log-Normal distribution and therefore authors have

developed models such as the composite Pareto-Log-Normal model. This specific distribution is

characterized by the body of a Log-Normal and the tail of a Pareto distribution, a combination

that allows for a tail that is heavier than the traditional Log-Normal distribution. It can be seen

that the density function of any Log-Normally distributed random variable X can be expressed as

the combination of a Pareto severity distribution and a scaling function comparable to that of a

detection probability :

fX(x) =
1

xσ
√

2π
e−

1
2σ2

(ln x−µ)2 for x > 0, µ ∈ R and σ > 0

∝
(
x−(1− µ

σ2
)
)(

e−
1

2σ2
(ln x)2

)
(5.1)

The second factor in (5.1), which can be interpreted as the detection probability, is a function that

is increasing for x < 1 and decreasing otherwise. The effect is that the upper tail of the distribution

becomes lighter than that described by a power law and therefore resulting in reduced probability

of extreme events.

Such behaviour is unwanted since the modelling of low frequency, high severity events is gen-

erally considered of utmost importance. This phenomenon is only realized when the scaling factor

(detection probability) acts upon the entire support of the random variable X, as is the case when

defining a soft detection threshold. This further motivates the use of a sharp detection threshold

and that the use of a soft detection threshold be limited. The need for a soft detection threshold

must be established through thorough investigation of the studied data. This will ensure that

studies are not compromised by a reduced probability of extreme events where such events are of

critical importance.

4. Extreme events

For both earthquake and operational risk analysis the estimation of extreme events is a subject

which attracts considerable attention. The impact of such low frequency - high severity events,

can substantially add to the volatility when establishing risk exposure. Data scarcity, especially

when considering longer time horizons (as can be seen in both fields), complicates the study of

such events [11].

5. Largest possible event

Continuing in the study of extreme events, the concept of a maximal event magnitude has attracted

considerable attention in the study of earthquakes. For an example of such threshold estimation

relating to maximum earthquake magnitude events as well as further references, see the 2004 study

made by Kijko [32]. It can be seen that fairly a small amount of attention has been awarded to
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studies of such maximal events in operational risk analysis. However, due to the finite nature of

institutional exposure such a maximal event magnitude can be hypothesized to exist in operational

risk.

This might however be of more use for internal understanding of the business and management

purposes than fit for regulatory uses. This is due to the possibility of regulatory bodies being

sceptic on the applicability of a point estimate, such as a maximal event.
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6 Data gathering and existence of
distributional threshold

6.1 Earthquake Data

Attention is first given to earthquake data and the existence of distributional thresholds induced by

varying detection capabilities.

6.1.1 Earthquake catalogues as a source of data

Earthquake catalogues give a recorded listing of earthquakes and several of their most prominent fea-

tures, such as the time of occurrence, physical location and magnitude. As such, these catalogues are

one of the most important products of seismology [60]. Due to seismic event recordings, dating back

as early as the 12th century B.C. [35], modern day earthquake catalogue equivalents have been made

possible. One such document, published in 1956 named (The ∼) “Chronological Tables of Earthquake

Data of China” [13], describes earthquake occurrences from 1189 B.C. up to A.D. 1955.

Since seismic events with large magnitudes are seen as rare occurrences, such events fall in the tail of the

relevant probability distribution. Therefore, in order to accurately ascribe a monetary value to the act

of covering risks under catastrophe (re-)insurance agreements, the volume of available data studied must

be maximized. Unfortunately instrumental data dates back, at best, to the start of the 20th century [35].

For this reason it can be envisaged that datasets be supplemented by data from other sources, e.g. paleo-

seismic data. Inclusion of such pre-historic earthquake data through the study of paleoseismology might

aid in the understanding of extreme earthquakes. Paleoseismic data represents earthquakes that need

hundreds, or even thousands, of years worth of stress to be built up before occurring [35]. These type

of events are registered when undertaking investigations of excavation trenches. However, through such

augmentation, the possibility of data distortion exists. This unwanted consequence can arise due to the

disproportional representation of earthquakes with respect to event size. Such resulting datasets would

be contrary to the Gutenberg-Richter relation in (2.1) and could induce further distributional thresholds.

In theory, such distributional thresholds can be allowed for in similar ways as described herein. However,

this remains to be investigated further and will not be directly considered in the current study.

6.1.2 Data quality of catalogues

Earthquake catalogues, although conceptually straightforward, hold data that carry a wealth of com-

plexities. This should not be unexpected, since they are an aggregation of data that have been collected

through human engineered systems. These systems include instruments, communication lines, computer

programs as well as natural human involvement [23]. Alterations in any of the aforementioned proce-
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dures and/or methods can potentially introduce inhomogeneities into the data gathered from the true

underlying physical process. Examples of such changes in earthquake catalogues are:

• Increases or decreases in the rate of seismic events.

• Increases or decreases in the magnitude readings of individual seismic events, resulting in

detected magnitudes that differ from the actual generated event magnitude.

These effects may be seen over the whole of the magnitude spectrum, or be localized to certain smaller

subintervals.

In a 1987 article Habermann [23] categorized the types of deterioration in data quality due to hu-

man influences. Some of the factors that pertain to distributional thresholds are highlighted below. In

addition, possible causal factors for each of the perceived changes are described.

1. Detection Changes : Changes that are related to the capability of the network to recognize and

locate seismic events.

• Increases in registered earthquake event rates:

– Possible cause:

∗ Newly installed stations that lead to increased reporting of smaller events in the region

surrounding the new stations.

∗ Improvements in the methods of analysis [59]

– Possible impact:

∗ The reporting of events larger than some level does not increase (such events are

detected by the existing network).

• Decreases in registered seismic rates:

– Possible cause:

∗ The closure of stations, leading to the non-detection of events, that would otherwise

have been logged.

∗ However counter intuitive, detection decreases in one region of a local catalogue, can

be related to installation of stations in another region and the associated increase in

workload.

2. Reporting changes: Changes relating to the lack of magnitude reporting for detected events.

• Small systematic increase in the magnitudes assigned to events [24].

• Some events can be detected and listed in catalogues, but magnitudes are not assigned.

3. Shift in magnitude: Systematic changes in the magnitudes.
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• Such changes are similar to reporting changes. The difference, however, is that the assigned

magnitudes shift by some small amount (e.g. 0.1 to 0.5 units) above or below the true value

[25]. This can be seen as the inclusion of a magnitude error that is not centred around 0.

The current investigation will consider detection changes as the main confounding factor. This will be

discussed further in the following section.

6.1.3 Further discussion : Impact of changes in detection
capabilities

Improvements over the last few decades in seismic networks have led to increased detection of low

magnitude earthquakes [48]. Expansion of a seismic network is a time dependent process in itself. As an

example, Table 6.1 details operational time windows for the instrumental detection of seismic events in

South Africa during the period 1910 to 1981.

Instrument Location and Institute Period of Operation

Obsolete type Kimberley, De Beers Not known
Meteorological Station

Wiechert horizontal Johannesburg Union Observatory 1910 to 1972
Milne-Shaw horizontal Cape Town Royal Observatory 1920 to 1931
Milne-Shaw horizontal University of Cape Town 1928 to 1947
Wiechert horizontal Johannesburg, Bernard Price 1938 to 1939

Institute of Geophysical Research
Benioff short-period vertical. Grahamstown, South African 1949 to 1963

Geological Survey
Willmore short period WWSSN Hermanus Magnetic Observatory 1950 to 1983
3-component short and long period
Milne-Shaw horizontal (x2)
Benioff short-period vertical Pietermaritzburg, South African 1950 to 1972
Willmore short period Geological Survey

Benioff short-period vertical. Kimberley, South African 1951 to 1972
Sprengnether short-period vertical Geological Survey

Benioff short-period vertical. Pretoria (moved to Silverton), 1963 to 1981
Willmore short period WWSSN South African Geological Survey
3-component short and long period

Table 6.1: Seismic Instrumentation Deployed in South Africa During the Period 1910 to 1981 [47].

Interpreting the time-dependent nature of network detection capabilities (Table 6.1) together with the

discussion in the previous section (Section 6.1.2), it can be seen that complete reporting of events varies

as a function of time. Therefore, when conducting a study, a suitable time window of investigation will

be identified. As discussed in Section 2.3, the resulting aim of such an identification will be to eliminate

any inhomogeneities in the data that has been introduced as a result of the passage of time. Unfortu-

nately, this can reduce the amount of data relating to extreme events. For this reason, the importance of

threshold estimation is reiterated, together with the subsequent modification of probability distributions
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to account for changes in the underlying process.

6.2 Operational risk data

Two main sources of operational risk data exist for any organization wishing to conduct a study, namely

internal and external operational risk data. Where internal data would consist of data collected by the

organization itself, external data can be contributed by a number of different entities. Examples of such

external data sources include [21, p. 43]:

1. The Global Operational Loss Database (GOLD) by the British Bankers Association (BBA)

2. The Operational Risk Insurance Consortium (ORIC) by the Association of British Insurers (ABI)

3. OpBase by Aon Corporation

4. The operational risk database maintained by the Operational Riskdata eXchange Association

(ORX).

Due to information being obtained from a large number of sources, differences in collection processes

and business management cultures, it can easily be hypothesized that available operational risk data

is influenced by various factors. Such inhomogeneities might be similar to those found in earthquake

event data. Ultimately, these factors have yet to be fully documented and their impact quantified. What

follows is a brief discussion of some causal factors for incomplete reporting in operational risk data.

6.2.1 Causal factors relating to fluctuating operational risk
exposure

A number of factors can impact the exposure and level of susceptibility of activities to operational risk.

Some examples from the banking industry are set out as follows [31]:

1. Globalization and deregulation of financial markets

2. Growing complexity in banking industry.

3. Large-scale mergers and acquisitions

4. Increasing sophistication of financial products

5. Greater use of outsourcing arrangements

While some types of operational risks are measurable, such as detected fraud or system failure, others

escape any measurement discipline due to their inherent characteristics and the absence of historical

precedent [31]. Such incomplete reporting can relate especially to event detection.

It is also natural to suspect that the influence of such factors varies over time, possibly due to
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1. Different dates of first implementation, occurrence or introduction

2. Varying speed of implementation of preventative operational risk measures.

3. Varying effectiveness between organizations regarding differing risk management procedures.

In addition, it has been stated that internal data on operational risks in the insurance industry are often

limited and potentially biased. This is not only due to internal collection problems but also because

large operational losses do not happen very often and take time to be fully appreciated [49].

Therefore, in much the same way as for earthquake events, data gathered in such a dynamic environment

can readily be hypothesized to suffer some form of incompleteness. Such incompleteness can manifest in

the form of a level of completeness, that may very well be time-varying.

6.3 Application of actuarial and statistical techniques

As stated in the introductory literature study, it is readily seen that a number of factors contribute to

the creation of a rather synthetic divide : a subset of smaller valued events in earthquake and operational

risk data that are represented by distorted observations, and a subset of larger valued events which are

observationally unaffected.

In order to assist in the proper analysis of data and subsequent interpretation of results, the range

affected by synthetically induced changes must be identified. This must be accomplished in order to

detect external influences and to identify a distributional threshold that indicates either a cut-off, which

eliminates the affected events from consideration, or the need to incorporate alternative models.

Table 6.2 summarizes the prevailing threshold estimation techniques and some of their prominent char-

acteristics. The newly derived MITC scheme has also been included. These characteristics include the

basis (statistical or graphical) and whether a distributional assumption is made for the data in some

way (parametric or non-parametric). A method is described as having a statistical basis if the notion of

probability and likelihood is utilized. A statistical basis is where the implementation of the method draws

upon statistical techniques. Furthermore, a method is described as having a graphical basis when the

threshold estimation does not draw as sharply on statistical techniques, but more on the characteristics

of the data. Motivation for the respective methods will be outlined when each method is described in

Chapter 9.
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Threshold estimation method and abbreviation
Characteristics of method

Statistical Graphical
Parametric Non-Parametric

basis basis

Goodness of fit (GOF) X X
Maximum curvature (MAXC) X X
mc by b-value stability (bVS) X X
Entire-magnitude-range (EMR) X X
Median based assessment of the segment slope (MBASS) X X
Moment incorporating threshold computation (MITC) X X

Table 6.2: Tabulation of threshold estimation methods and prominent characteristics.

As will be seen when fully discussing these methods, they can fairly easily be extended to differing forms

of the event magnitude distribution. A benefit of this generalization is the use in threshold estimation

in operational risk data.
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7 Considerations and limitations of study

7.1 Data

Historic instrumental data may most directly reflect the nature of event-generating stress. As briefly

touched on in Section 6.1.1, the usable part of this earthquake data is unfortunately extremely short,

and considerable caution should be taken to assess the completeness (level of ∼) of all datasets used

[36]. For this particular reason it has been decided to first test all threshold estimation methods using

synthetically generated data. Synthetically generated data will have some obvious advantages over real

seismicity data:

1. The magnitude at which complete reporting starts (mc) can be specified beforehand. Such speci-

fication aids in the objective comparison of the effectiveness of estimation methods.

2. The shape of the incomplete portion of the magnitude range can be varied to portray differing

physically plausible situations, whilst retaining the position of mc.

3. The number of events generated or, alternatively, the time period over which the synthetic dataset

spans can be specified at outset. As such, statistical credibility of the analysis can be guaranteed.

For the current study, the number of events will be specified.

However, it should be mentioned that some of these points have been scrutinized by authors. These

parties argue that the use of synthetically created datasets is not relevant since doubts exist on the

theoretical shape of frequency - magnitude distributions (FMD’s) [3].

It is felt that such critique indeed motivates the use of synthetically generated FMDs, seeing as they

provide an excellent opportunity to incorporate differing forms of the detection probability. Subsequent

testing of threshold estimation techniques can therefore also be rated according to their robustness when

dealing with these various forms of the detection probabilities. Furthermore, such incorporation can aid

in the understanding of relations between possible observed patterns of earthquake magnitude and the

ensuing results of statistical analyses.

7.2 Critical assumptions

A main objective of this investigation is to accurately determine the magnitude of completeness (mc) in

earthquake data. As such, assumptions must be made regarding other facets of the process, which will

not form part of this investigation. A brief discussion of these assumptions follows.

1. Events as a system with characteristics of self-organized criticality (SOC)

A self-organized critical process has the inherent feature that the process, without external in-

fluence, naturally moves to a critical state. This serves as a driving agent to provide complexity
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in systems [4]. The notion of earthquake events as a self-organized critical process establishes a

solid framework for self-similarity and magnitude scaling of said earthquake events when expressed

in terms of the seismic moment (M0) or energy. Such self-similar phenomena can consistently

be modelled by a suitable power law or Pareto distribution. Pareto distributions and power law

distributions furthermore possess the property of scale invariance since fM0
(λm) = λαfM0

(m) for

some α. This in turn implies self-similarity of the distribution function of M0. Consequently the

transformed random variable M = log10M0 follows an exponential distribution, which is the case

when magnitude is expressed in terms of the Richter-scale. Main [39, 40] discusses this topic and

list further references. A similar assumption is made regarding operational risk data. This can be

seen when considering the established fit of Generalized Pareto and Extreme value distributions to

loss data.

2. mmin (Smallest event magnitude)

In the literature on earthquakes some authors have discussed the departure from self-similarity

at low magnitude ranges [2, 18, 38, 52, 55]. When considering data described by this departure

from self-similarity, it might be seen that a Log-Normal distribution offers a reasonable fit to lower

magnitude events, whereas a Pareto or Extreme Value fit is preferable for higher magnitude events.

This can be seen to be the case in operational risk studies. In this study the assumption is made

that the lower magnitude of generated events do not depart from self-similarity and therefore no

distortion of lower magnitude data arises as a result of this departure from self-similarity.

Considering the detected distribution of events, versus the generated distribution of events, it is

assumed that the only reason for a departure from the law governing generated distributions is the

act of not detecting and registering of events.

Another point is that studies have generally truncated the magnitude distribution from the left

due to distortion of data found in the incomplete portion. However, since the motivation for this

investigation is the estimation of the magnitude of completeness, the chosen truncation point will

be of a smaller magnitude. This is done so as to include the incomplete portion of data. This point

of truncation will be referred to as mmin.

3. mmax (Largest event magnitude)

In earthquake literature, a fundamental aspect of the higher magnitude range has been debated,

namely whether the Gutenberg-Richter law can continue indefinitely. This has been argued due

to the existence of the physical requirement of finite-energy flux, or equivalently a finite-seismic

moment-release rate [39]. Due to these concerns a number of authors [14, 15, 26, 32, 43, 53,

58] have discussed an upper bound for the magnitude range, namely mmax. In this study the

considered magnitude range will also be bounded from above by mmax. Furthermore, due to the
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finite risk exposure of institutions, the existence assumption of mmax carries over very reasonably

to operational loss data.

4. Certainty of mmin and mmax

As this study is primarily focused on the estimation of the magnitude of completeness, the assump-

tion is made that these points are not subject to change or uncertainty and also known in advance.

This assumption can however, be relaxed through, e.g., inclusion of techniques to estimate mmax

such as those proposed by Kijko in a 2004 article [32].

5. Elimination of false event detections

Suppose G is the set of all events in a given space-time volume and D is the set of events that have

been observed. The assumption is made that D ⊆ G, such that false detections are an impossibility,

i.e. D ∩GC = ∅. If significant contrary evidence accumulates, revision of this assumption will be

required. However, this falls outside the scope of the current investigation.

6. Observational error

It is assumed that reported magnitudes are the true magnitudes of earthquake events and therefore

there is no need to make allowance for observational error. However, this is an assumption that can

be easily relaxed through defining of a new random variable MA. Here MA represents the apparent

magnitude which takes account of stochastic observation error, e.g. MA = MG+ e, where e follows

some distribution of errors.

7. Independence of frequency and severity

The assumption is made that the process responsible for earthquake occurrences and the resulting

size of the earthquake is independent. This simplifying assumption is generally accepted in earth-

quake studies. Furthermore, in studies of operational risk modelling [49] the same assumption has

been made.
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8 Generating severity data

In this chapter attention will be given to the complete as well as the incomplete portion of the event size

distribution. The end goal is to be able to produce realistic data that includes events from the entire

magnitude range. Initially, the focus will be on earthquake magnitude distributions. Hereafter the event

size distribution relating to operational risk can be considered.

8.1 Complete data

In terms of earthquake events, it has been widely accepted that the Gutenberg-Richter [22] distribution

can be used to model the distribution of earthquake events. In the absence of any destruction process

acting on the data, data generated from this distribution will represent the complete portion of the

catalogue. This translates into the scenario where any event that has been generated, has a probability

of 1 to be observed, i.e. recorded.

The Gutenberg-Richter probability distribution takes the following form.

fM (m) =

{
βe−βm if m > 0

0 otherwise

(8.1)

where β = b ln 10 > 0 is the original b-value in the Gutenberg-Richter frequency magnitude relation

in (2.1). In deriving (8.1) from (2.1) it can be seen that the a - value has been cancelled out by the

normalizing constant.

Upon restriction of the magnitude range to the closed interval [mmin,mmax] and thereby modifying

the support of the random variable, the probability density takes on the form

fM (m) =

{
β exp(−βm)

exp(−βmmin)−exp(−βmmax) if mmin ≤ m ≤ mmax

0 otherwise

(8.2)

By utilizing (B.30) in the appendix (p. 136) the expected magnitude can be expressed as

E[Mr]

∣∣∣∣
r=1

= E[M ] =
1

β
+
mmaxe

−βmmax −mmine
−βmmin

e−βmmax − e−βmmin
(8.3)

From the density in (8.2) the cumulative probability distribution, FM (m), and quantile function, QM (p),

can respectfully be stated as

FM (m) =


0 if m ≤ mmin

1−exp(−β(m−mmin))
1−exp(−β(mmax−mmin)) if mmin < m ≤ mmax

1 if m > mmax

(8.4)
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QM (p) = mmin −
1

β
ln
(

1− p
(

1− e−β(mmax−mmin)
))

for 0 ≤ p ≤ 1 (8.5)

In order to obtain random samples from the distribution in (8.2), the inverse probability integral trans-

form method can be applied by using the quantile function (8.5).

8.2 Data simulation

8.2.1 The detected magnitude distribution

In this section the approach of producing earthquake catalogues and operational risk data is formalized.

The synthesizing of data will be undertaken by generating random samples based on the Gutenberg-

Richter probability distribution to represent earthquake risk data. However, this assumes complete

reporting of all events. In order for us to generate samples that are subject to the loss of data, a proba-

bility distribution of detected events must be derived. The newly derived distribution will be described

in terms of priorly known distributions. As a starting point let G denote the stochastic set of all events

generated in a given space-time volume, i.e. a set where the number of elements is a random variable

and the magnitude of each such event is also stochastically generated. Now, let D denote the set of all

events that have been detected. As stated in Section 7.2, the assumption is made that D is a subset of

G. However, the equality of the sets D and G is not disallowed. In keeping with the defined sets, MG

will denote the random variable that represents the generated magnitude of an event, whereas MD will

denote the random variable associated with the magnitude of the detected event.

From these definitions and assumptions it can be readily seen that the occurrence of detecting an event

in the magnitude range [m,m+ h], i.e. {m ≤MD ≤ m+ h}, is equivalent to having an event generated

with magnitude in the range [m,m + h] and subsequently having the generated event being observed,

i.e. {(m ≤MG ≤ m+ h) ∩ (MG ∈ D)}.

Using the limit definition of a probability density function, the density of the detected magnitude distri-

bution can therefore be expressed as:

fMD
(m) = lim

h→0

P [m ≤MD < m+ h]

h

= lim
h→0

P [{MG ∈ D} ∩ {m ≤MG < m+ h}]
h

= lim
h→0

P [m ≤MG < m+ h]P [MG ∈ D|{m ≤MG < m+ h}]
h

= lim
h→0

P [m ≤MG < m+ h]

h
lim
h→0

P [MG ∈ D|{m ≤MG < m+ h}] (8.6)

= fMG
(m)P [MG ∈ D|MG = m] (8.7)
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As can be seen P [MG ∈ D|MG = m] represents the conditional probability of an event being detected,

given that the event has been generated and fMG
(m) represents the density function of an event being

generated of magnitude m. Throughout this study FD(m) will exclusively denote the function used to

model this probability, i.e. FD(m) = P [MG ∈ D|MG = m].

The relation in (8.7) states that all events, regardless of magnitude, have a non-zero probability of

not being detected. This is termed the soft magnitude of completeness or more generally, an implicit or

soft detection threshold. However, in the traditional sense of the discussed problem of complete report-

ing, only events falling in a specific magnitude have a non-zero probability of not being detected, which

will be termed a sharp, or explicit, threshold of detection.

8.2.1.1 Soft detection threshold

In this study, this form of the data destruction process will only be considered for the modelling of

earthquake data and not for the case of operational risk data. In this scenario, the magnitude of

completeness is not defined as a specific point in the magnitude range, but the data-destruction effect

is included implicitly. Artificially, this can also be achieved by equating the point mc to mmax, yielding

the result that all events in the magnitude range [mmin,mmax] have a non-zero probability of not being

detected. After gauging the core effectiveness of the threshold estimation methods, the performance and

robustness of threshold estimation will be tested under this variation of the detection distribution. The

sensitivities of estimation methods are checked and the number of events lost as a result of the data

destruction process computed. This auxiliary study will demonstrate the decisiveness of the methods to

identify a level of completeness that is regarded as complete by the specific method.

8.2.1.2 Sharp detection threshold

The magnitude of completeness is pre-specified and will be incorporated as a particular point in the mag-

nitude range. This has the effect that only events in the magnitude range [mmin,mc) have a non-zero

probability of not being detected. Subsequently, events larger than mc up to mmax, are detected with

probability 1.

Although not expressly stated, some authors of earthquake literature [42, 60] have adopted a defini-

tion of a detection probability that can be expressed in the following manner :

P [{Detection of seismic event of size M = m}] =


0 if m ≤ mmin

g(m) if mmin < m ≤ mc

1 if m > mc

(8.8)

with g(m) some function dependent on magnitude M . This function is non-decreasing over the range

[mmin,mmax]. It has also not been explicitly stated, but in a number of cases (e.g. Woessner and Wiemer

25

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



[60]) the function g(m) does not assume the value of 1 at mc. This is worrying, since the interval to which

g(m) is applied, as per the detection probability definition, is closed at the point mc. Subsequently, a

discontinuity can exist at this point of the detected magnitude density. To avoid such a manifestation

in this study, g(m) will take the form of a scaled function where the value of 1 is attained at mc.

As shown in (A.17) in the appendix (p. 132) the detected magnitude distribution, for a sharp detection

threshold, can be expressed in the following piecewise manner :

fMD
(m) =


fMG

(m) · P [MG ∈ D|{MG = m} ∩ {MG < mc}] if m ∈ [mmin,mc)

fMG
(m) if m ∈ [mc,mmax]

0 otherwise

(8.9)

In keeping with the need for the detection probability to attain the value of 1 at the magnitude of

completeness, the CDFs used to model the probability will be further normalized by rather considering

the CDF of the truncated random variables. The point of truncation will be mc, which corresponds to

P [MG ∈ D|{MG = m} ∩ {MG < mc}] =
FD(m)

FD(mc)

(8.10)

= FTD(m) (8.11)

where the superscript T is used to indicate that the distribution is truncated from the right.

8.2.2 Functional forms of detection probability

For the respective cases of a soft- and sharp detection threshold, the following probabilities must be

considered : P [MG ∈ D|{MG = m}] and P [MG ∈ D|{MG = m} ∩ {MG < mc}].

Some authors have already confirmed the Cumulative Normal distribution function as a suitable choice

for a detection probability [42]. Woessner and Wiemer [60] have directly used this function to model

the incomplete portion. In the same article, Woessner and Wiemer, indicate three other possibilities

of directly modelling the incomplete portion of earthquake catalogues. These include the cumulative

distribution functions of random variables that are either Exponentially or Log-Normally distributed as

well as an Exponential decay. It is further stated that the three CDFs produce competitive likelihood

scores, but the Normal CDF generally best fits the data.

Since the inclusion of a detection probability has not been investigated in a manner comparable to this

study, no further direct motivation for the choice of detection probabilities can be drawn from. As an

exploratory step, it is aimed to create a full and diverse spectrum of detection probability progressions. It

is envisioned that this can be realized when considering the cumulative distribution functions of random

variables that are distributed according to the following distributions :
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1. Normal

2. Logistic

3. Log-Normal

4. Pareto type II

The three last mentioned distribution functions can be regarded as extensions of the detection probability

theory and offer alternative forms that in certain circumstances may provide a better fit. This remains

to be investigated and the fit of any specific detection distribution quantified.

Table 8.1 gives a summary of the cumulative distribution functions that will be used to model the de-

tection probability, together with some of the prominent distributional characteristics.

CDF
Distribution characteristics

Symmetric Non-Symmetric Heavy-tailed Light-tailed Free parameters

Normal X X 2
Logistic X X 2
Log-Normal X X 2
Pareto type II X X 3

Table 8.1: Tabulation of considered forms of the detection probability along with prominent features
of respective distributions.

Reference will be made throughout this study to the generic concept of a “cumulative distribution func-

tion used to model the detection probability”. Due to the frequency of such reference, the aforementioned

concept can be used interchangeably with the shortened reference of a “detection distribution”.

What follows in Sections 8.2.3 up to 8.2.6 are derivations of the detected magnitude distribution (fMD
(m))

for various forms of the detection distribution (FD(m)), as described above. Thereafter, Section 8.2.7 will

be dedicated to examining the sensitivities of the derived detected magnitude distributions to changes

in the parameters of the detection distributions.

8.2.3 Detection probability modelled by cumulative
Normal distribution

In the following two sections the detection probability takes the form of a cumulative Normal distribution

function Φ(zm), where

Φ(zm)=
∫ zm
−∞

1
σφ(t) dt where zm = m−µ

σ and (8.12)

φ(t)= 1√
2π
e−

1
2 t

2

for t ∈ R (8.13)
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8.2.3.1 Soft detection threshold

The probability of observing a seismic event of size m will be represented by the value from the cumulative

Normal distribution, i.e. P [MG ∈ D|MG = m] = Φ(zm). From this definition, it can be seen that the

detected magnitude distribution follows to be

fMD
(m) ∝ fMG

(m) · Φ(zm) for m ∈ [mmin,mmax] (8.14)

Which implies

fMD
(m) = CNorm · fMG

(m) · Φ(zm) for m ∈ [mmin,mmax] and some CNorm ∈ R (8.15)

Cumulative distribution function and normalizing constant

The density of the detected magnitude must satisfy the relation

∫ mmax

mmin

fMD
(m)dm = CNorm

∫ mmax

mmin

fMG
(m)Φ(zm) dm = 1 (8.16)

with CNorm a suitable normalizing constant. From (B.35) in the appendix (p. 138) it can be seen that

(CNorm)
−1

= Φ(zmmax)− c1
(
Φ(zmmax)− Φ(zmmin)− c2

(
Φ(z∗mmax)− Φ(z∗mmin)

))
(8.17)

since FMG
(mmin) = 0 and FMG

(mmax) = 1

Where

c1 = (1− exp (−β (mmax −mmin)))
−1

(8.18)

c2 = exp

(
−β
(
µ−mmin −

1

2
σ2β

))
(8.19)

z∗m =
m− (µ− σ2β)

σ
(8.20)

Therefore the detected magnitude for m ∈ [mmin,mmax], has the following distribution function :

FMD
(m) = CNorm ·

(
FMG

(m)Φ(zm)− c1
(
Φ(zm)− Φ(zmmin)− c2

(
Φ(z∗m)− Φ(z∗mmin)

)))
(8.21)

= CNorm · (FMG
(m)Φ(zm)− c1 (Φ(zm)− c2 · Φ(z∗m)) + c3) (8.22)

where c3 = c1
(
Φ(zmmin)− c2 · Φ(z∗mmin)

)
.

Quantile function

From (8.22), the implicit quantile function QMD
(m) = p follows readily and can be numerically solved

by defining :
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g(m) :=
p

CNorm
− FMG

(m) · Φ(zm) + c1 (Φ(zm)− c2 · Φ(z∗m))− c3

⇒g′(m) = −fMG
(m) · Φ(zm)− FMG

(m) · 1

σ
φ(zm) +

c1
σ

(φ(zm)− c2 · φ(z∗m))

(8.23)

The required quantile can be obtained by utilizing the Newton-Raphson iterative scheme :

mn+1 = mn −
g(mn)

g′(mn)
(8.24)

1 2 3 4 5 6 7

Magnitude (m)

f M
D
(m
)

10−4

10−3

10−2

10−1

100

Illustrative parameter values

μ = 3 σ = 0.6

(a) Density function of detected magnitude distribu-
tion. Illustrative values used together with µ = 3 and
σ = 0.6

1 2 3 4 5 6 7

Magnitude (m)

1
−F

M
D
(m
)

10−5

10−4

10−3

10−2

10−1

100

Illustrative parameter values

μ = 3 σ = 0.6

(b) Complementary distribution function of detected
magnitude. Illustrative values used together with µ =
3 and σ = 0.6

Figure 8.1: Illustration of density function (8.15) and complementary distribution function of detected
magnitude distribution with detection probability, over entire magnitude range, modelled by the cumu-
lative Normal distribution function. Illustrative values for parameters include : mmin = 1 , mmax = 7,
b-Value = 0.9. Reference lines are included at µ

8.2.3.2 Sharp detection threshold

An explicit magnitude break can be produced by having the event detection probability modelled by

the cumulative distribution function of a truncated Normal random variable in the following manner :

P [MG ∈ D|{MG = m} ∩ {MG < mc}] =
Φ(zm)

Φ(zmc)
= ΦT (zm), which leads to

fMD
(m) ∝


fMG

(m) · ΦT (zm) if mmin ≤ m < mc

fMG
(m) if mc ≤ m ≤ mmax

0 otherwise

(8.25)

The superscript T is used to indicate that the distribution is truncated from the right. For the specific
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case of this investigation the point of truncation is the magnitude of completeness. As can be seen from

Section 8.2.1.2, the motivation for this definition is to ensure that the detected magnitude distribution

continues as the traditional Gutenberg-Richter distribution at the magnitude of completeness.

Normalizing constant

To ensure validity as a probability density function the normalizing constant CNorm must be computed

to satisfy the relation :

1 = CNorm

(∫ mc

mmin

fMG
(m) · ΦT (zm) dm+

∫ mmax

mc

fMG
(m) dm

)
(8.26)

Therefore,

(CNorm)
−1

=
1

Φ(zmc)
[FMG

(t)Φ(zt)− c1[Φ(zt)− c2Φ(z∗t )]]
mc
mmin

+ FMG
(mmax)− FMG

(mc) from (8.17)

=
1

Φ(zmc)

(
FMG

(mc)Φ(zmc)− c1[Φ(zmc)− c2Φ(z∗mc)] + c1[Φ(zmmin)− c2Φ(z∗mmin)]
)

+ 1− FMG
(mc)

since FMG
(mmin) = 0 and FMG

(mmax) = 1

= 1− c1
Φ(zmc)

·
(
Φ(zmc)− Φ(zmmin)− c2 · (Φ(z∗mc)− Φ(z∗mmin))

)
Cumulative distribution function

The distribution of the detected magnitude distribution follows readily :

1. for m ∈ [mmin,mc)

FMD
(m) =

CNorm
Φ(zmc)

·
∫ m

mmin

fMG
(m)Φ(zt)dt

=
CNorm
Φ(zmc)

· (FMG
(m) · Φ(zm)− c1 · (Φ(zm)− c2 · Φ(z∗m)) + c3) from (8.22)

(8.27)

2. for m ∈ [mc,mmax]

FMD
(m) = CNorm ·

(
1

Φ(zmc)

∫ mc

mmin

fMG
(m)Φ(zt) dt+

∫ m

mc

fMG
(m) dt

)
= CNorm ·

(
FMG

(m)− 1

Φ(zmc)

(
c1 · (Φ(zmc)− c2 · Φ(z∗mc)) + c3

))
from (8.27)

(8.28)

Quantile function
By defining

g(m) := p · Φ(zmc)

CNorm
− FMG

(m) · Φ(zm) + c1 (Φ(zm)− c2 · Φ(z∗m))− c3 (8.29)

The iterative scheme presented in (8.24) can be used to solve for values of the quantile function QMD
(p) =

p where p < FMD
(mc). Values of the quantile function where p ≥ FMD

(mc), i.e. m ∈ [mc,mmax], can

be obtained by solving (8.28) for m :
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p

CNorm
= FMG

(m)− 1

Φ(zmc)

(
c1 ·

(
Φ(zmc)− c2Φ(z∗mc)

)
+ c3

)
⇒ m = QMG

(
p

CNorm
+

1

Φ(zmc)

(
c1
(
Φ(zmc)− c2Φ(z∗mc)

)
+ c3

))
(8.30)

1 2 3 4 5 6 7

Magnitude (m)

f M
D
(m
)

10−4

10−3

10−2

10−1

100

Illustrative parameter values

μ = 3 σ = 0.6

(a) Density function of detected magnitude distribu-
tion. Illustrative values used together with µ = 3 and
σ = 0.6
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10−3
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100

Illustrative parameter values

μ = 3 σ = 0.6

(b) Complementary distribution function of detected
magnitude. Illustrative values used together with µ =
3 and σ = 0.6

Figure 8.2: Sensitivity illustrations of density function and complementary distribution function of de-
tected magnitude with detection probability, below mc, modelled by the cumulative Normal distribution
function. Illustrative values for parameters include : mmin = 1 , mc = 3, mmax = 7, b-Value = 0.9.
Reference lines are included at mc
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8.2.4 Detection probability modelled by cumulative
Logistic distribution

In the following two sections the probability of observing an event will be represented by the cu-

mulative Logistic distribution. The cumulative Logistic distribution function can be expressed, for

m,µ ∈ R and s > 0 as follows:

FD(m) =
1

1 + exp(−
(
m−µ
s

)
)

(8.31)

=
1

2

[
1 + tanh

(
m− µ

2s

)]
(8.32)

8.2.4.1 Sharp detection threshold

Breaking with the convention of the earlier section, the situation of a sharp detection threshold will first

be considered. Where the event detection probability is modelled as the cumulative distribution function

of a truncated Logistic random variable, the following can be written

P [MG ∈ D|{MG = m} ∩ {MG < mc}] = FTD(m) (8.33)

=
FD(m)

FD(mc)
(8.34)

Just as in (8.25), is is found that (where the superscript T indicates that the distribution is truncated

to the right at mc) :

fMD
(m) ∝


fMG

(m) · FTD(m) if mmin ≤ m < mc

fMG
(m) if mc ≤ m ≤ mmax

0 otherwise

(8.35)

Normalizing constant

The normalizing constant CNorm can be calculated from the following relation :

1=CNorm

(∫ mc

mmin

fMG
(m) · FTD(m) dm+

∫ mmax

mc

fMG
(m) dm

)
=
CNorm
c4

[
1

2FD(mc)

(∫ mc

mmin

βe−β(m−mmin) dm+

∫ mc

mmin

βe−β(m−mmin) · tanh

(
m− µ

2s

)
dm

)
+

∫ mmax

mc

βe−β(m−mmin) dm

]
where c4 = c−1

1 = 1− e−β(mmax−mmin) is the reciprocal of the normalizing constant for fMG
(m).

=
CNorm
c4

[
1

2FD(mc)

(
1− e−β(mc−mmin) + β

∫ mc

mmin

e−β(m−mmin) · tanh

(
m− µ

2s

)
dm

)
+e−β(mc−mmin) − e−β(mmax−mmin)

]
(8.36)
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=
CNorm
c4

[
e−β(mc−mmin) − e−β(mmax−mmin) +

1

2FD(mc)

(
1− e−β(mc−mmin)

+sβe−β(mc−mmin)

[
exp (mc−µs )

1− βs 2F1

(
1− βs, 1; 2− βs;− exp

(
mc − µ

s

))
+

1

βs
2F1

(
1,−βs; 1− βs;− exp

(
mc − µ

s

))]

−sβ
[

exp (mmin−µs )

1− βs 2F1

(
1− βs, 1; 2− βs;− exp

(
mmin − µ

s

))
+

1

βs
2F1

(
1,−βs; 1− βs;− exp

(
mmin − µ

s

))])]

by replacing the last remaining integral with the results of (B.40) as seen in the appendix (p.139).

Cumulative distribution function

1. For m ∈ [mmin,mc)

FMD
(m) = CNorm

∫ m

mmin

fMG
(t) · FTD(t) dt

=
CNorm

2FD(mc)

(∫ m

mmin

fMG
(t) dt+

∫ m

mmin

fMG
(t) · tanh

(
t− µ

2s

)
dt

)
The distribution function follows readily by following the same method as that used when

calculating the normalizing constant.

=
CNorm
c4

1

2FD(mc)

[
1− e−β(m−mmin)

+sβe−β(m−mmin)

[
exp (m−µs )

1− βs 2F1

(
1− βs, 1; 2− βs;− exp

(
m− µ
s

))
+

1

βs
2F1

(
1,−βs; 1− βs;− exp

(
m− µ
s

))]

−sβ
[

exp (mmin−µs )

1− βs 2F1

(
1− βs, 1; 2− βs;− exp

(
mmin − µ

s

))
+

1

βs
2F1

(
1,−βs; 1− βs;− exp

(
mmin − µ

s

))]]

(8.37)
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2. For m ∈ [mc,mmax]

FMD
(m) = CNorm

(∫ mc

mmin

fMG
(t) · FTD(t) dt+

∫ m

mc

fMG
(t) dt

)
= CNorm

(∫ mc

mmin

fMG
(t) · FTD(t) dt+ FMG

(m)− FMG
(mc)

)
By utilizing the results in (8.37) the following is obtained.

= CNorm

[
FMG

(m)− FMG
(mc) +

1

2 · c4 · FD(mc)

[
1− e−β(mc−mmin)

+sβe−β(mc−mmin)

[
exp (mc−µs )

1− βs 2F1

(
1− βs, 1; 2− βs;− exp

(
mc − µ

s

))
+

1

βs
2F1

(
1,−βs; 1− βs;− exp

(
mc − µ

s

))]

−sβ
[

exp (mmin−µs )

1− βs 2F1

(
1− βs, 1; 2− βs;− exp

(
mmin − µ

s

))
+

1

βs
2F1

(
1,−βs; 1− βs;− exp

(
mmin − µ

s

))]]]

(8.38)

Quantile function

For values of p < FMD
(mc), i.e. m < mc, the quantile function QMD

(p) can be solved numerically by

defining

g(m) := p · 2 · c4 · FD(mc)

CNorm
−

[
1− e−β(m−mmin)

+sβe−β(m−mmin)

[
exp (m−µs )

1− βs 2F1

(
1− βs, 1; 2− βs;− exp

(
m− µ
s

))
+

1

βs
2F1

(
1,−βs; 1− βs;− exp

(
m− µ
s

))]

−sβ
[

exp (mmin−µs )

1− βs 2F1

(
1− βs, 1; 2− βs;− exp

(
mmin − µ

s

))
+

1

βs
2F1

(
1,−βs; 1− βs;− exp

(
mmin − µ

s

))]]

(8.39)

from where the Newton-Raphson iterative scheme can be implemented, as defined in (8.24).

For values of p ≥ FMD
(mc), i.e. m ≥ mc, the quantile function has analytical form that can be expressed

as :
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QMD
(p) = QMG

(
p

CNorm
+ FMG

(mc)−
1

2 · c4 · FD(mc)

[
1− e−β(mc−mmin)

+sβe−β(mc−mmin)

[
exp (mc−µs )

1− βs 2F1

(
1− βs, 1; 2− βs;− exp

(
mc − µ

s

))
+

1

βs
2F1

(
1,−βs; 1− βs;− exp

(
mc − µ

s

))]

−sβ
[

exp (mmin−µs )

1− βs 2F1

(
1− βs, 1; 2− βs;− exp

(
mmin − µ

s

))
+

1

βs
2F1

(
1,−βs; 1− βs;− exp

(
mmin − µ

s

))]])

(8.40)

Remark

Due to the inclusion of the Gauss hyper-geometric function 2F1(a, b; c; z) in the expressions for the

distribution and quantile functions derived in this section, an additional constraint is placed on the

parameters of the distribution. This must be enforced to ensure convergence of the series that defines

the function 2F1(a, b; c; z). These additional constraints arise from the fact that the z argument in the

Gauss hyper-geometric function has the following constraint placed on it : |z| < 1. For the various Gauss

hyper-geometric functions, it therefore follows that

∣∣∣−emmin−µ
s

∣∣∣ < 1 and
∣∣∣−emc−µs

∣∣∣ < 1

⇒ mmin < µ and mc < µ (8.41)

A third restriction derived from the above condition |z| < 1 is that m < µ for all values of m to be passed

to the Gauss hyper-geometric function. However, since the equality mc < µ must hold and computation

of quantiles, through the use of the Gauss hyper-geometric function, only include m ∈ [mmin,mc),

this condition is automatically satisfied and need not be considered any further for the case of a sharp

threshold of completeness.
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Illustrative parameter values

μ = 3 s = 0.6

(a) Density function of detected magnitude distribu-
tion. Illustrative values used together with µ = 3 and
s = 0.6
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(b) Complementary distribution function of detected
magnitude. Illustrative values used together with µ =
3 and s = 0.6

Figure 8.3: Sensitivity illustrations of complementary distribution function of detected magnitude with
detection probability, below mc, modelled by the cumulative logistic distribution function. Illustrative
values for parameters include : mmin = 1 , mc = 3, mmax = 7, b-Value = 0.9. Reference lines are
included at mc

8.2.4.2 Soft detection threshold

In this section, the case where the probability of detecting an event being modelled by the cumulative

logistic distribution function will now be considered under the assumption that the detected magnitude

distribution incorporates a soft detection threshold.

As mentioned at the end of the previous section, the inclusion of the Gauss hyper-geometric function

2F1(a, b; c; z) in the distribution and quantile function results in an additional constraint being placed on

the parameters of the distribution. Considering the situation where the distribution function includes

the Gauss hyper-geometric function for magnitudes in the interval [mmin,mc), as is the case for a sharp

detection threshold, the restriction is such that mc < µ. Even with this restriction, resultant detected

magnitude distributions could still accurately depict a distribution that has been influenced by a data

destruction process, such as non-detection. However, when the Gauss hyper-geometric function is utilized

in the detected magnitude distribution for magnitudes in the range [mmin,mmax], as is the case when

considering a soft detection threshold, the above restriction is replaced by mmax < µ. This restriction

produces detected magnitude distributions where the effect of data destruction can not be modelled as

effectively as in the case of a sharp detection threshold. For this reason the modelling of a soft magnitude

of completeness will not be computed utilizing Gauss hyper-geometric functions, but rather expressed in

terms of integrals to be evaluated numerically.
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Continuing, the detected magnitude distribution takes the form :

fMD
(m) ∝

{
fMG

(m) · FD(m) if m ∈ [mmin,mmax]

0 otherwise
(8.42)

where the detection probability is modelled by (8.32).

Normalizing constant

The normalizing constant should be such that

1 =

∫ mmax

mmin

fMD
(m) dm = CNorm

∫ mmax

mmin

fMG
(m) · FD(m) dm (8.43)

Due to the functional form of the detected magnitude distribution (8.42) leads to the above integral that

cannot be expressed in terms of elementary functions. Therefore numerical integration techniques are

employed to further the investigation of this detected magnitude distribution.

Cumulative distribution function

FMD
(m) =

∫ m

mmin

fMD
(t) dt (8.44)

As previously stated, due to the form of the density fMD
(m), the cumulative distribution function must

be evaluated numerically.

Quantile function

Due to the inability of the cumulative distribution function to be expressed in terms of elementary

functions, values of the quantile function (QMD
(p) = m) must also be obtained numerically. The

Newton-Raphson algorithm will be employed by defining

g(m) :=

∫ m

mmin

fMD
(t) dt− p (8.45)

and solving for g(m) = 0.
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Illustrative parameter values

μ = 3 s = 0.6

(a) Density function of detected magnitude distribu-
tion. Illustrative values used together with µ = 3 and
s = 0.6.
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(b) Complementary distribution function of detected
magnitude. Illustrative values used together with µ =
3 and s = 0.6

Figure 8.4: Sensitivity illustrations of density function of detected magnitude distribution with de-
tection probability, over the entire magnitude range, modelled by the cumulative logistic distribution
function. Illustrative values for parameters include : mmin = 1 , mmax = 7 and b-Value = 0.9. Refer-
ence lines are included at µ.
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8.2.5 Detection probability modelled by cumulative
Pareto type II distribution

In the following two sections the probability of observing an event of size m will be represented by the

value from the cumulative Pareto type II distribution. This distribution is characterized by the following

continuous distribution and density functions :

FD(m) = 1−
(

1 +
m− µ
σ

)−α
(8.46)

fD(m) =
α

σ

(
1 +

m− µ
σ

)−α−1

(8.47)

where m > µ; µ ∈ R; σ > 0; α ∈ R

8.2.5.1 Soft detection threshold

The probability of observing a seismic event of size m will be represented by the value from the cumulative

Pareto type II distribution. The detection probability will be incorporated as follows:

fMD
(m) ∝

{
fMG

(m) · FD(m) for m ∈ [mmin,mmax]

0 otherwise
(8.48)

Cumulative distribution function and normalizing constant

In order to obtain the cumulative distribution function it is worth noting that

∫ b

a

fMG
(m)FMD

(m) dm

=

∫ b

a

fMG
(m) dm−

∫ b

a

fMG
(m)

(
1 +

m− µ
σ

)−α
dm

= FMG
(m)|ba −

βeβmmin

1− e−β(mmax−mmin)

∫ b

a

e−βm
(

1 +
m− µ
σ

)−α
dm

= FMG
(m)|ba −

e−β(µ−mmin−σ)

1− e−β(mmax−mmin)
(βσ)

α
γ(1− α; r(a), r(b))

from (B.43) in the appendix (p.140) where r(t) is also defined. Furthermore,

γ(1− α; r(a), r(b)) is the incomplete gamma function with respect to a range.

(8.49)

From the above, the normalizing constant (that must ensure that the density function integrates to 1

over the support of the random variable) follows to be :

C−1
Norm = 1− e−β(µ−σ)

e−βmmin − e−βmmax
(βσ)αγ(1− α; r(mmin), r(mmax))

(8.50)
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The distribution function also follows from the above integral,

FMD
(m) = CNorm

∫ m

mmin

fMG
(t)FD(t) dt

= CNorm

(
FMG

(m)− e−β(µ−σ)

e−βmmin − e−βmmax
(βσ)αγ(1− α; r(mmin), r(m))

)
(8.51)

Quantile function

From (8.51), the implicit quantile function QMD
(m) = p follows readily. Furthermore, it can be solved

for values of p using numerical methods by defining :

g(m) :=
p

CNorm
−
∫ m

mmin

fMG
(t)FD(t) dt (8.52)

:=
p

CNorm
− FMG

(m) +
e−β(µ−σ)

e−βmmin − e−βmmax
(βσ)αγ(1− α; r(mmin), r(m))

⇒g′(m) = −fMG
(m)FMD

(m) by (8.52)

(8.53)

from where the required quantile can be obtained by utilizing the Newton-Raphson iterative scheme :

mn+1 = mn −
g(mn)

g′(mn)
(8.54)
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Illustrative parameter values

α = 3 μ = 1 σ = 5

(a) Density function of detected magnitude distribu-
tion. Illustrative values for parameters used.
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(b) Complementary distribution function of detected
magnitude. Illustrative values used for parameters.

Figure 8.5: Sensitivity illustrations of density function of detected magnitude distribution with detec-
tion probability, over entire magnitude range, modelled by the cumulative Generalized Pareto distribution
function. Illustrative values for parameters include : mmin = 1 , mmax = 7, b-Value = 0.9, µ = mmin,
σ = 5 and α = 3.

40

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



8.2.5.2 Sharp detection threshold

An explicit magnitude break in the detection probability can be introduced.

fMD
(m) ∝


fMG

(m) · FTD(m) if m ∈ [mmin,mc)

fMG
(m) if m ∈ [mc,mmax]

0 otherwise

(8.55)

Where the superscript T indicates that the detection probability distribution is truncated from the right

at the point mc.

Normalizing constant

The normalizing constant should be such that

1 = CNorm

∫ mmax

mmin

fMD
(m) dm (8.56)

Therefore, it follows that

C−1
Norm =

∫ mc

mmin

fMG
(m) · FTD(m) dm+

∫ mmax

mc

fMG
(m) dm

=
1

FD(mc)

∫ mc

mmin

fMG
(m) · FD(m) dm+ FMG

(m)
∣∣∣mmax
mc

It follows that after substituting the above integral for the expression in (8.49) and subsequent simplifi-

cations that

C−1
Norm = 1− FMG

(mc) +
1

FD(mc)

(
FMG

(mc)−
e−β(µ−σ)

e−βmmin − e−βmmax
(βσ)αγ(1− α; r(mmin), r(mc))

)
(8.57)

Cumulative distribution function

1. For m ∈ [mmin,mc) :

FMD
(m) = CNorm

∫ m

mmin

fMG
(t)FTD(t) dt =

CNorm
FD(mc)

∫ mc

mmin

fMG
(t)FD(t) dt

=
CNorm
FD(mc)

(
FMG

(m)− e−β(µ−σ)

e−βmmin − e−βmmax
(βσ)αγ(1− α; r(mmin), r(m))

)
from (8.49) and subsequent simplification.

(8.58)

2. For m ∈ [mc,mmax] :
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FMD
(m) = CNorm

(∫ mc

mmin

fMG
(t)FTD(t) dt+

∫ m

mc

fMG
(t) dt

)
= CNorm

(
1

FD(mc)

∫ mc

mmin

fMG
(t)FD(t) dt

)
+ FMG

(t)
∣∣∣m
mc

= CNorm

(
FMG

(m)− FMG
(mc) +

1

FD(mc)

(
FMG

(mc)

− e−β(µ−σ)

e−βmmin − e−βmmax
(βσ)αγ(1− α; r(mmin), r(mc))

))

from (8.49) and subsequent simplification.

(8.59)

Quantile function

1. For m ∈ [mmin,mc) :

From (8.58), the implicit quantile function QMD
(m) = p follows readily and can be solved using

numerical methods by defining :

g(m) :=
p · FD(mc)

CNorm
−
∫ m

mmin

fMG
(t)FMD(t) dt

:=
p · FD(mc)

CNorm
− FMG

(m) +
e−β(µ−σ)

e−βmmin − e−βmmax
(βσ)αγ(1− α; r(mmin), r(m))

⇒g′(m) = −fMG
(m)FD(m)

(8.60)

The required quantile can be obtained by utilizing the Newton-Raphson iterative scheme :

mn+1 = mn −
g(mn)

g′(mn)
(8.61)

2. For m ∈ [mc,mmax] :

From (8.59), the quantile function QMD
(m) = p can be expressed explicitly as

m = QMD
(p)

= QMG

(
p

CNorm
+ FMG

(mc)

− 1

FD(mc)

(
FMG

(mc)−
e−β(µ−σ)

e−βmmin − e−βmmax
(βσ)αγ(1− α; r(mmin), r(mc))

))
(8.62)
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Illustrative parameter values

α = 3 μ = 1 σ = 5

(a) Density function of detected magnitude distribu-
tion. Illustrative values used for parameters.
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(b) Complementary distribution function of detected
magnitude. Illustrative values used for parameters.

Figure 8.6: Sensitivity illustrations of density function of detected magnitude distribution with de-
tection probability, below mc, modelled by the cumulative Generalized Pareto distribution function.
Illustrative values for parameters include : mmin = 1 , mc = 3, mmax = 7, b-Value = 0.9, µ = mmin,
σ = 5 and α = 3. Reference lines are included at mc.
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8.2.6 Detection probability modelled by cumulative
Log-Normal distribution

In the following two sections, the case to be considered is that where the probability of detecting an

earthquake is modelled by the cumulative Log-Normal distribution function. For m > 0, µ ∈ R and

σ > 0 the Log-Normal distribution is characterized by the following continuous density and distribution

functions

FD(m) = Φ

(
lnm− µ

σ

)
(8.63)

fD(m) =
1

mσ
√

2π
e−

1
2 ( lnm−µ

σ )
2

(8.64)

where Φ(·) denotes the cumulative distribution function of a standard Normal random variable. Even

though the detected magnitude distribution will be include the cumulative distribution function of a

Normal random variable, techniques employed such as in Section 8.2.3 do not yield similar solutions to

the integrals. This is due to the specific form of the density function of the Log-Normal distribution. In

order to bypass this problem, when necessary, techniques of numerical integration are implemented in

the following two sections.

8.2.6.1 Soft detection threshold

When considering the case where the probability of detecting an event of magnitude m is modelled by

the cumulative Log-Normal distribution function. The detected magnitude distribution can be expressed

as follows :

fMD
(m) ∝

{
fMG

(m) · FD(m) if m ∈ [mmin,mmax]

0 otherwise
(8.65)

Normalizing constant
The normalizing constant should be such that

1 =

∫ mmax

mmin

fMD
(m) dm = CNorm

∫ mmax

mmin

fMG
(m) · FD(m) dm (8.66)

The combination of the functions in the density of the detected magnitude distribution (8.65) leads to

the above integral that cannot be expressed in terms of elementary functions. Therefore numerical inte-

gration techniques are employed to further the investigation of this detected magnitude distribution.

Cumulative distribution function

FMD
(m) =

∫ m

mmin

fMD
(t) dt (8.67)

As stated above, values of the cumulative distribution function must be obtained through numerical

methods, due to the functional form of the cumulative distribution function.
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Quantile function
Due to the inability to express the cumulative distribution function in terms of elementary functions,
values of the quantile function (QMD

(p) = m) must also be obtained numerically. The Newton-Raphson
algorithm will be employed as follows to subsequently solve for g(m) = 0 :

g(m) :=

∫ m

mmin

fMD
(t) dt− p (8.68)
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Magnitude (m)

f M
D
(m
)

10−4

10−3

10−2

10−1

100

Illustrative parameter values

μ = 2 σ = 0.7

(a) Density function of detected magnitude distribu-
tion. Illustrative values used together with µ = 2 and
σ = 0.7.
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(b) Complementary distribution function of detected
magnitude. Illustrative values used together with µ =
2 and σ = 0.7

Figure 8.7: Sensitivity illustrations of density function of detected magnitude distribution with detec-
tion probability, over the entire magnitude range, modelled by the cumulative Log-Normal distribution
function. Illustrative values for parameters include : mmin = 1 , mmax = 7 and b-Value = 0.9. Reference
lines are included at µ.

8.2.6.2 Sharp detection threshold

An explicit magnitude break in the detection probability can be introduced.

fMD
(m) ∝


fMG

(m) · FTD(m) if m ∈ [mmin,mc)

fMG
(m) if m ∈ [mc,mmax]

0 otherwise

(8.69)

Where the superscript T indicates that the detection probability distribution is truncated from the right

at the point mc.

Normalizing constant

The normalizing constant should be such that
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1 = CNorm

∫ mmax

mmin

fMD
(m) dm

= CNorm

(∫ mc

mmin

fMG
(m) · FD(m) dm+ 1− FMG

(mc)

)
(8.70)

As in the previous section, where a soft detection threshold has been modelled by a cumulative Log-

Normal distribution function, due to the form of the constituent functions of fMD
(·) the above integral

cannot be expressed in terms of elementary functions. This necessitates the use of numerical integration

methods to obtain a value of the normalizing constant.

Cumulative distribution function

FMD
(m) =


0 if m < mmin

CNorm
∫m
mmin

fMG
(t) · FD(t) dt if m ∈ [mmin,mc)

CNorm

(∫mc
mmin

fMG
(t) · FD(t) dt+ FMG

(m)− FMG
(mc)

)
if m ∈ [mc,mmax)

1 if m ≥ mmin

(8.71)

For the same reason as for the normalizing constant, the above functions must also be evaluated numer-

ically.

Quantile function

1. For m ∈ [mmin,mc)
Due to the inability of expressing the cumulative distribution function in terms of elementary
functions, values of the quantile function (QMD

(p) = m) must be obtained by use of numerical
methods. The Newton-Raphson algorithm will be employed by defining

g(m) :=

∫ m

mmin

fMD
(t) dt− p (8.72)

and solving for g(m) = 0.

2. For m ∈ [mc,mmax]

From (8.71), the quantile function QMD
(m) = p can be explicitly expressed as

m = QMG

(
p− FD(mc)

CNorm
+ FMG

(mc)

)
(8.73)
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Illustrative parameter values
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(a) Density function of detected magnitude distribu-
tion. Illustrative values used together with µ = 2 and
σ = 0.7.
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(b) Complementary distribution function of detected
magnitude. Illustrative values used together with µ =
2 and σ = 0.7

Figure 8.8: Sensitivity illustrations of density function of detected magnitude distribution with detec-
tion probability, over the entire magnitude range, modelled by the cumulative Log-Normal distribution
function. Illustrative values for parameters include : mmin = 1 , mc = 3, mmax = 7 and b-Value = 0.9.
Reference lines are included at mu and at mc.
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8.2.7 Parameter sensitivities of detected magnitude
distributions

In this section some of the parameter sensitivities of the derived distributions in Sections 8.2.3 up to

8.2.6 will be investigated. As will be seen, the parameters of the distribution used to model the detection

probability have an influence on the eventual detected magnitude distribution. These parameters have

differing interpretations for the various detected magnitude distributions.

It can be seen that the three parameter types responsible for characterizing the detection probability are

1. Location parameters

Where such parameters affect the location of a probability distribution (i.e. rigid shifts of the entire

density function, either to the left or right of a specific starting value). Therefore this parameter

affects the effectiveness of detecting events. Shifts in this quantity cause a uniform displacement

of probability over the support of the random variable.

2. Scale parameters

Scale parameters affect the statistical dispersion of probability distributions. For smaller values

of scale parameters, the distribution is more localized. This in contrast to larger valued scale

parameters, where the resulting distribution is spread out over a larger region. Such parameters

affect the rate at which detection changes.

3. Shape parameters

This is a parameter that is not classified as a scale or location parameter (not a shift or stretch of

the probability distribution), but directly affects the shape of the distribution. Shape parameters

determine the characteristic progression of a detection probability, e.g. a concave, versus a convex

progression of a detection probability.

An interesting point to note is that the amount of influence individual parameters have on a distribution

varies when considering the spectrum of values of the other remaining parameters. These profile sensi-

tivities indicate the relationship between the distributional parameters.

For the current study the parameters of the cumulative probability distributions used to model the

detection probability can be tabulated as follows:

Distributional parameter type
Location Scale Shape

Normal distribution µ σ -

CDF
Logistic distribution µ s -
Log-Normal distribution µ (log-scale) - σ
Pareto type II distribution µ σ α

Table 8.2: Categorization of different parameter types for the various cumulative distribution functions
used to model the event detection probability in the current study.
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8.2.7.1 Soft detection threshold

For distributions where a soft detection threshold has been incorporated, the physical interpretation

of the above parameters can be directly translated from their respective influences on the particular

probability distribution. The reason for this is that the probability of event detection is modelled by the

various well-studied cumulative probability distributions, in their respective natural forms.

The sensitivities of the detection probability to the parameters can be seen when considering the quan-

tile function of the different forms of the detection probability. Intuitively, by considering the quantile

function, shifts of the probability distribution can be quantified by fixing a detection probability p and

estimating the difference in possible observed magnitudes for that detection probability.

1. Sensitivity to location parameter

When considering the quantile functions as described in (B.45), (B.51) and (B.63) for the Normal,

Logistic and Pareto type II distributions, it can be seen that shifts in the quantity µ cause a dis-

placement of probability, but uniformly over the support of the random variable. Furthermore, for

the case of the Normal and Logistic form of the detection probability an event with magnitude µ

has exactly a 50/50 chance of being detected or missed.

Although not strictly seen as a location parameter, the value of µ in the case where the detection

probability is modelled by a cumulative Log-Normal distribution, affects the detected magnitude

distribution in a multiplicative exponential fashion. This can be seen by the quantile function as

described in (B.56).

Therefore, the sensitivity of the distributions to the location parameter can be summarized as

follows:

(a) Detected magnitude distributions where the detection probability is modelled by one of the

symmetric distributions (Normal and Logistic) display a rigid shift in probability while re-

taining their shape to a fairly high degree due to shifts in the location parameter.

(b) Where the detection probability is modelled by the non-symmetric Pareto type II distribution,

the distribution does not retain its shape under shifts of this quantity and appears to be less

sensitive to shifts than the situation described in the previous point.

(c) The case where the detection distribution is modelled by a cumulative Log-Normal distribution

is particularly susceptible to large changes when even small changes occur in the location

parameter.

The above summary can also be noted in the following graphic representation of the detected

magnitude distributions.
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(a) Sensitivity of density function of detected magni-
tude distribution to parameter µ. Illustrative values
used and σ = 0.6
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(b) Sensitivity of density function of detected magni-
tude distribution to parameter µ. Illustrative values
used and s = 0.6
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(c) Sensitivity of density function of detected magni-
tude distribution to parameter µ. Illustrative values
used for remaining parameters.

1 2 3 4 5 6 7

Magnitude (m)

f M
D
(m
)

10−5

10−4

10−3

10−2

10−1

100

Profile parameter values

μ = 1
μ = 1.5
μ = 2
μ = 2.5
μ = 3

Illustrative parameter values

σ = 0.7

(d) Sensitivity of density function of detected magni-
tude distribution to parameter µ. Illustrative values
used and σ = 0.7
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(a) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter µ. Illustra-
tive values used and σ = 0.6
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(b) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter µ. Illustra-
tive values used and s = 0.7
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(c) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter µ. Illustra-
tive values used for remaining parameters.
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(d) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter µ. Illustra-
tive values used and σ = 0.7

Figure 8.10: Sensitivity illustrations of complementary distribution function of detected magnitude
with detection probability, over entire magnitude range, modelled by the cumulative Normal distribution
function. Illustrative values for parameters include : mmin = 1 , mmax = 7, b-Value = 0.9. Reference
lines are included at µ

2. Sensitivity to scale parameter

According to the quantile functions in (B.45), (B.51) and (B.63) for the Normal, Logistic and

Pareto type II distributions, the influence of changes in the scale parameter are partly determined

by the following multipliers
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(a) Cumulative Normal distribution

Multiplier1(p) = Φ−1(p) (8.74)

(b) Cumulative Logistic distribution

Multiplier2(p) = ln

(
p

1− p

)
(8.75)

(c) Cumulative Pareto type II distribution

Multiplier3(p) = (1− p)−
1
α − 1 (8.76)
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Figure 8.11: Progression of scaling factor multiplier as function of p for different forms of detection
probability as modelled by cumulative distribution functions.

Figure 8.11 aids in the reaching of the following conclusions:

(a) As can be seen from the original quantile functions, the scale parameter affects the detection

probability in a multiplicative fashion with a multiplying factor that is dependent on the exact

magnitude of an event.

(b) The effect of the scale parameter varies over the range of the detection probability. It can be

seen from Figure 8.11 that for the case of the cumulative Normal and logistic distributions, a

change in scale factor is multiplied by relatively large factors and significantly influences the

distribution of detected magnitudes at the low and higher end of detection probabilities.

(c) The multiplier has greater effect for the case of the Normal distribution, than for that of the

Logistic distribution, for values lower than µ and the opposite is true for values greater than

µ. For this reason it is believed that if a soft detection threshold is to be used, a Cumulative

Normal distribution should be used, as to restrict the volatility of detection probability for

larger magnitude events, since these events have a naturally bigger chance of being detected.
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(d) If Figure 8.11 is interpreted in absolute values, it shows that the lower magnitude range (situa-

tion where the detection probability is modelled by the cumulative Pareto type II distribution)

is the least susceptible to changes of the scale parameter. This due to the fact that the value

of the multiplier is relatively low. Furthermore, this can be seen in Figures 8.12c and 8.13c,

displaying the restricted use of this distribution.

1 2 3 4 5 6 7

Magnitude (m)

f M
D
(m
)

10−5

10−4

10−3

10−2

10−1

100

101

Profile parameter values

σ = 1.4
σ = 1.2
σ = 1
σ = 0.8
σ = 0.6
σ = 0.4

Illustrative parameter values

μ = 3

(a) Sensitivity of density function of detected magni-
tude distribution to parameter σ. Illustrative values
used and µ = 3
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(b) Sensitivity of density function of detected magni-
tude distribution to parameter s. Illustrative values
used and µ = 3
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(c) Sensitivity of density function of detected magni-
tude distribution to parameter σ. Illustrative values
used for remaining parameters.
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(d) Sensitivity of density function of detected magni-
tude distribution to parameter σ. Illustrative values
used and µ = 2

Figure 8.12: Sensitivity illustrations of density function of detected magnitude distribution (8.15) with
detection probability, over entire magnitude range, modelled by the cumulative Normal distribution
function. Illustrative values for parameters include : mmin = 1 , mmax = 7, b-Value = 0.9. Reference
lines are included at µ
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(a) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter σ. Illustra-
tive values used and µ = 3
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(b) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter s. Illustra-
tive values used and µ = 3
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(c) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter σ. Illustra-
tive values used for remaining parameters.
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tion of detected magnitude to parameter σ. Illustra-
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Figure 8.13: Sensitivity illustrations of complementary distribution function of detected magnitude
with detection probability, over entire magnitude range, modelled by the cumulative Normal distribution
function. Illustrative values for parameters include : mmin = 1 , mmax = 7, b-Value = 0.9. Reference
lines are included at µ

3. Sensitivity to shape parameter

Figures 8.14 and 8.15, show that the detected magnitude distribution is relatively impervious to

changes in the value of the shape parameter where the detection probability is modelled by a

cumulative Pareto type II distribution. On the other hand Figures 8.12d and 8.13d show the

extreme flexibility of the detected magnitude distribution to changes in the shape parameter when

54

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



the detection probability is modelled by the Log-Normal distribution. This extreme sensitivity can

be seen through inspection of the quantile function, where a multiplicative effect can be observed

relating to changes in the shape parameter.
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Figure 8.14: Sensitivity illustrations of density function of detected magnitude distribution with detec-
tion probability, over entire magnitude range, modelled by the cumulative Generalized Pareto distribution
function. Illustrative values for parameters include : mmin = 1 , mmax = 7, b-Value = 0.9, µ = mmin,
σ = 5 and α = 3.
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Figure 8.15: Sensitivity illustrations of complementary distribution function of detected magnitude
with detection probability, over entire magnitude range, modelled by the cumulative Pareto distribution
function. Illustrative values for parameters include : mmin = 1 , mmax = 7, b-Value = 0.9, µ = mmin,
σ = 5 and α = 3.
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8.2.7.2 Sharp detection threshold

Pertaining to the case of a sharp detection threshold, this study has placed a restriction on the detection

probability to take on the value 1 at the detection threshold. By replacing the probability p in the

quantile functions the following adjusted quantile functions are applicable :

1. Normal Distribution

m = µ+ Φ−1

(
p

Φ(zmc)

)
σ (8.77)

Where Φ(·) is the cumulative distribution function of aN (0, 1) random variable and zmc =
mc − µ
σ

.

2. Logistic Distribution

m = µ+ s

(
ln

(
p

F (mc)

)
− ln

(
1− p

F (mc)

))
(8.78)

Where F (·) is the cumulative distribution function of a Logistic(µ, s) random variable.

3. Log-Normal Distribution

m = exp

(
µ+ σΦ−1

(
p

F (mc)

))
(8.79)

Where F (·) is the cumulative distribution function of a LN(µ, σ2) random variable.

4. Pareto type II Distribution

m = µ+ σ

((
1− p

F (mc)

)− 1
α

− 1

)
(8.80)

Where F (·) is the cumulative distribution function of a P(II)(µ, σ, α) random variable.

Through the replacement of the variable p by the, generic function,
p

F (mc)
, for differing forms of the de-

tection probability, the interpretation of the parameters have been confounded. All parameters now play

a part in the shaping and scaling of the detected magnitude distribution. However, through inspection

of the figures illustrating parameter sensitivities in the previous sections, it has been determined that

the resulting detected magnitude threshold displays the same characteristics with regards to parameter

sensitivities. The only difference is that these sensitivities only affect the region below the detection

threshold. Therefore, the general interpretation of sensitivities in the section pertaining to soft detection

thresholds can be utilized to this end.
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(a) Sensitivity of density function of detected magni-
tude distribution to parameter µ. Illustrative values
used and σ = 0.6
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(b) Sensitivity of density function of detected magni-
tude distribution to parameter µ. Illustrative values
used and s = 0.6
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(c) Sensitivity of density function of detected magni-
tude distribution to parameter µ. Illustrative values
used for remaining parameters.
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(d) Sensitivity of density function of detected magni-
tude distribution to parameter µ. Illustrative values
used and σ = 0.7

Figure 8.16: Sensitivity illustrations of density function of detected magnitude distribution with detec-
tion probability, below mc, modelled by the cumulative Normal distribution function. Illustrative values
for parameters include : mmin = 1 , mc = 3, mmax = 7, b-Value = 0.9. Reference lines are included at
mc
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(a) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter µ. Illustra-
tive values used and σ = 0.6
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(b) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter µ. Illustra-
tive values used and s = 0.6
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(c) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter µ. Illustra-
tive values used for remaining parameters.
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(d) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter µ. Illustra-
tive values used and σ = 0.7

Figure 8.18: Sensitivity illustrations of complementary distribution function of detected magnitude
with detection probability, below mc, modelled by the cumulative logistic distribution function. Illustra-
tive values for parameters include : mmin = 1 , mc = 3, mmax = 7, b-Value = 0.9. Reference lines are
included at mc
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(a) Sensitivity of density function of detected magni-
tude distribution to parameter σ. Illustrative values
used and µ = 3
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(b) Sensitivity of density function of detected magni-
tude distribution to parameter s. Illustrative values
used and µ = 3
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(c) Sensitivity of density function of detected magni-
tude distribution to parameter σ. Illustrative values
used for remaining parameters.
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(d) Sensitivity of density function of detected magni-
tude distribution to parameter σ. Illustrative values
used and µ = 2

Figure 8.19: Sensitivity illustrations of density function of detected magnitude distribution with detec-
tion probability, below mc, modelled by the cumulative Normal distribution function. Illustrative values
for parameters include : mmin = 1 , mc = 3, mmax = 7, b-Value = 0.9. Reference lines are included at
mc
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(a) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter σ. Illustra-
tive values used and µ = 3
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(b) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter s. Illustra-
tive values used and µ = 3
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(c) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter σ. Illustra-
tive values used for remaining parameters.
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(d) Sensitivity of complementary distribution func-
tion of detected magnitude to parameter σ. Illustra-
tive values used and µ = 2

Figure 8.20: Sensitivity illustrations of complementary distribution function of detected magnitude
with detection probability, below mc, modelled by the cumulative Normal distribution function. Illus-
trative values for parameters include : mmin = 1 , mc = 3, mmax = 7, b-Value = 0.9. Reference lines
are included at mc
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Figure 8.21: Sensitivity illustrations of density function of detected magnitude distribution with de-
tection probability, below mc, modelled by the cumulative Generalized Pareto distribution function.
Illustrative values for parameters include : mmin = 1 , mc = 3, mmax = 7, b-Value = 0.9, µ = mmin,
σ = 5 and α = 3. Reference lines are included at mc.
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Figure 8.22: Sensitivity illustrations of complementary distribution function of detected magnitude
with detection probability, below mc, modelled by the cumulative Pareto distribution function. Illustra-
tive values for parameters include : mmin = 1 , mc = 3, mmax = 7, b-Value = 0.9, µ = mmin, σ = 5 and
α = 3. Reference lines are included at mc.
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9 Description of threshold estimation
methods

In this section some of the prevailing threshold estimation methods, as found in earthquake literature,

are described. The methods are described as presented in the relevant papers, however, in this section it

has been aimed to describe the methods in a rigorous manner. This is done to aid in the understanding

as well as objective formulations. Before continuing, a brief summary of concepts, values and functions

utilized in the threshold estimation methods is provided.

Definitions

S The set of all observed events, with magnitudes in the range [mmin,mmax], originating within a

specified time- and space window of the dataset under investigation.

mi The magnitude of the ith recorded event of a particular dataset A, i.e. mi ∈ A.

∆m The binning-width of events of dataset.

mb
i The left end-point of the ith event magnitude bin, i = 1, 2, . . . , k. Furthermore the distance between

consecutive mb
i ’s (mb

i+1 −mb
i ) is equal to the binning width ∆m.

PE The standard partitioning of the entire magnitude range based on the sequence of mb
i ’s, where

mmin = mb
1 < mb

2 < . . .mb
i < mb

i+1 . . . < mb
k < mb

k+1 = mmax, which leads to k subintervals

defined by the successive mb
i ’s.

PO(A) The partitioning of the interval
[
b 1

∆m min(A) c∆m, d 1
∆m max(A) e∆m

]
which contains the

range of magnitudes (mi) in the set A. The partition is a sequence (mb
i ) of the form mb

1 < mb
2 <

. . .mb
i < mb

i+1 . . . < mb
t < mb

t+1, where mb
1 = b 1

∆m min(A) c∆m and mb
t+1 = d 1

∆m max(A) e∆m,

which leads to t subintervals defined by the successive mb
i ’s.

H(A;P ) The histogram of the elements in the set A, based on the bins as described by partition P .

The number of elements in the ith bin will be denoted by H(A;P )i.

Si The ith subset of the set S which only includes events with magnitudes greater than magnitude mb
i ,

i.e. Si = {m ∈ S : m ≥ mb
i}, where i = 1, 2, . . . k.

m̂c The estimated magnitude of complete reporting.
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For illustrative purposes, for each estimation method, an example of the implementation will be included.

Such examples of implementation will be based on simulated data, where the detection probability for

the incomplete portion of the distribution is modelled by a Normal CDF. Illustrative values for distribu-

tional parameters are as follows : mmin = 1, mc = 3, mmax = 7, b-Value = 0.9, µ = 5 and σ = 1.
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Figure 9.1: Generated Seismic catalogue with mc = 3

All implementations of the threshold estimation methods, except MBASS, have been attached as code

extracts in Appendix I. The coding of the MBASS method has been used as supplied by the author in

the published academic article.
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9.1 Goodnes of fit estimation method

(GOF)

As described by Wiemer and Wyss [59], the basis of this method is the validity of the Gutenberg-Richter

[22] relation, as seen in (2.1). The magnitude of completeness is defined as the point in the FMD that

allows for the best fit of the data from the complete portion of the magnitude range to the Gutenberg-

Richter model.

Assumptions made

1. The assumption is made that the data, above the magnitude of completeness, obey an exponential

law.

2. The magnitude distribution below mc is assumed not to follow the same exponential distribution as

the data above mc. Further specification of the distribution over the range [mmin,mc] is omitted.

The result is that the minimum magnitude is specified to be mc.

Outline of method

1. For a given set of data S, a- and b-values are computed for each subset Si, as if reporting were

complete over the magnitude range [mb
i ,mmax]. These subset specific a- and b-values will be

indicated through use of a relevant subscript, i.e. ai and bi. The a and b values are determined,

under the invariance property of maximum likelihood estimators, by using the maximum likelihood

estimator β̂.

2. For each pair ai- and bi-values calculated, a synthetic frequency-magnitude distribution is con-

structed for m ∈ [mmin; mmax], i.e. FMG
(m; bi). This distribution represents a perfect fit to the

estimated parameters.

3. The histogram of observed seismic events, denoted by HO(Si;Pm), is computed for each subset Si,

where the histogram has bin counts HO(Si;Pm)j for j = 1, 2, . . . , k.

4. The expected number of events in each interval of the partition Pm is calculated based on the

synthetic distribution FMG
(m; bi). This is analogous to a histogram of the expected events, denoted

by HE(S;P ; bi) with bin counts HE(S;P ; bi)j for j = 1, 2, . . . , k.

5. The extent to which the observed data deviated from the expected (synthetic) data is obtained by

calculating a R statistic for each Si:

R(ai, bi,m
b
i ) = 100

1−

∑
j:mj∈[mbi ;mmax]

|HO(Si;P )j −HE(S;P ; bi)j |∑
j:mj∈[mmin,mmax]

HE(S;P ; bi)j

 (9.1)
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The summation in the numerator is taken over all magnitude bins starting from mb
i up to mmax.

The summation in the denominator is taken over all detected event magnitudes in order to, ac-

cording to Wiemer and Wyss, “normalize the distribution”. This is however to ensure that a lower

deviation based on a smaller number of bins carries a proportionally lower weight when comparing

R statistics for different mb
i ’s.

6. The magnitude of completeness of the set of observations S from the particular catalogue is taken

as m̂c = argmax
mbi

R(ai, bi,m
b
i )

Example of estimation algorithm

As stated, the illustrative dataset as described at the start of this chapter will be used to demonstrate

the specified threshold estimation method. The R implementation of the GOF estimation method can

be found in Appendix I.1.4 on page 206.

Figure 9.2a shows that the goodness of fit statistic R attains a maximum of 83.23 when the threshold

of detection is at m = 3. Upon applying the binning width correction the threshold is estimated as

m̂c = 3.05. The sampling distribution, based on 1000 bootstrap replications, yields a 90% confidence

interval for mc of [2.85, 3.35] with expected value of 2.95.
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(a) Graphical representation of modified goodness of
fit statistic, R(·), for varying detection thresholds.
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(b) Sampling distribution for estimated mc based on
1000 bootstrap re-samples.

Figure 9.2: Graphical representation and estimation results of GOF method

Comment on method

1. The sampling distribution is positively skewed with the method slightly underestimating the true

magnitude of completeness. This is confirmed by Woessner and Wiemer in a 2005 comparison
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study [60].

2. Due to the reliance of the method on magnitude binning, it is of utmost importance that the sample

be of sufficient size such that no empty bins are present at the lower magnitude range.

3. Due to the definition of the magnitude of completeness within this method, the result is heavily

influenced by binning width, as well as the location of the magnitude bins. Hence, the estimated

value can merely be seen as an approximation, which can perhaps be used to validate other, more

rigorous estimation methods. Alternatively, such result may be used as a starting value for iterative

schemes.
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9.2 Maximum curvature method

(MAXC)

A non-parametric estimation method of Wiemer and Wyss [59] that attempts to determine the magni-

tude of completeness in a fast and reliable manner. The method determines mc as the point of maximum

curvature of the frequency-magnitude distribution.

Assumptions made

1. The method does not assume any specific distribution for the complete or incomplete portion of

the catalogue. The method only assumes general characteristics of the distribution.

2. The method assumes that the frequency of events, larger than the magnitude of completeness is a

decreasing function of event size. Such behaviour can typically be seen in exponentially distributed

data.

3. Below mc the frequency of events is assumed to be some non-decreasing function of event size.

Further specification of the relationship between event size and frequency is not made.

Outline of method

Wiemer and Wyss define curvature as the first derivative of the frequency-magnitude curve. Under

the assumptions described in point 2 and 3 above, the point of maximum curvature of the FMD lies

within the magnitude bin of the incremental FMD holding the highest number of events. The resulting

implementation of this estimation method is relatively simple :

1. Compute the incremental histogram of observed events HO(S, Pm)

2. The magnitude of completeness is estimated as m̂c = mb
j , where j = argmax

i
HO(S;Pm)i.

3. Due to the fact that magnitude bins are labelled by the starting magnitude of the bin (mb
i ),

modification, to take account of the binning width can be made. Under the assumption that events

are uniformly distributed over each magnitude bin, the magnitude of completeness can be estimated

as m̂c = mb
j + ∆M

2 , where j = argmax
i

HO(S;Pm)i.

Example of estimation algorithm

The R implementation of the MAXC estimation method can be found in Appendix I.1.5 on page 207.

As shown in Figure 9.3a, the estimated magnitude of completeness falls in the bin with the highest

frequency of events, which is in the bin with left endpoint at m = 2.9. After incorporating the binning

width correction it is found that m̂c = 2.95. The sampling distribution has also been obtained by 800

bootstrap samples. The resulting 90% confidence interval is [2.75, 3.05].

Comment on method
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(a) Histogram of events computed for MAXC estima-
tion method. Dashed line at m̂c = 2.95.
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Figure 9.3: Graphical representation of MAXC estimation method

1. The MAXC method offers a fast alternative to estimate the magnitude of completeness, as well as

offering the advantage of not being computationally intensive.

2. The reliance of the method on magnitude binning puts emphasis on adequate sample size to ensure

that no empty bins are present at the lower magnitude range.

3. Partitioning of magnitude bins (bin width and location) heavily influences the value of estimation

results due to the definition of the magnitude of completeness in the MAXC method. Therefore,

the estimated value can merely be seen as a robust approximation. MAXC results can be used to

validate other, more rigorous estimation methods, or as a starting value for other iterative schemes.

68

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



9.3 mc by b-value stability

(bVS)

As described by Cao and Gao this threshold estimation method [8] attempts to determine the magnitude

of completeness by analysing the variation of the exponential parameter. The basis of this method is

by mapping b-values

(
b =

β

ln 10

)
for various subsets Si of the original dataset S. These subsets are,

by construction, dependent on a lower cut-off magnitude mb
i (mmin ≤ mb

i ≤ mmax). Subsequently, the

variability of the b-value estimates are investigated.

Assumptions made

1. An exponential distribution is assumed to perfectly describe the FMD of events larger than the

magnitude of completeness.

2. In a single sub-sample Si with cut-off magnitude mb
i the following is assumed to hold

• For mb
i ≤ mc : Due to the incomplete portion of data, b-values typically ascend for pro-

gressively higher cut-off magnitudes. This is owing to a gradually decreasing fraction of the

incomplete portion being included in the studied earthquake catalogue.

• For mb
i ≥ mc : Due to the exclusion of the incomplete portion of earthquake catalogues,

b-values will remain constant for progressively higher cut-off magnitudes.

• For mb
i � mc : b-value estimates will ascend again for increasing magnitude cut-off values.

In this manner the b-value of a sample can be thought of as a function of the cut-off magnitude,

i.e. b̂(mb
i ).

Since the data in this study is generated from a doubly truncated magnitude distribution as seen in (8.2)

(p. 23) the Aki-Utsu b-Value estimator, as used by Cao and Gao, will not be used. For this study, the

invariance property of MLE’s, together with the maximum likelihood estimator for β which satisfies the

following relation, see Page [43], will be used :

1

β̂
= m̄−mmin +

(mmax −mmin)

eβ̂(mmax−mmin) − 1
(9.2)

Outline of method

1. Identifying data.

Subsets, Si (i = 1, 2, 3, . . . , k), of the original event dataset S must be identified.

2. Estimating b-values for various cut-off magnitudes.

For each subset Si b-value’s are calculated by utilizing the the Page relation, shown in (9.2), and

numerical methods.
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3. Measure variability of b-values between cut-off dependent sub-samples.

Cao and Gao initially expressed b-value variability (∆b̂(mb
i )) as the difference in sample estimates

of successive magnitude cut-off shifts, i.e. ∆b̂(mb
i ) = b̂(mb

i+1) − b̂(mb
i ). Woessner and Wiemer in

their 2005 comparison of different threshold estimation techniques [60] have extended this notion

by expressing the variability as the difference between individual b-value sample estimates and the

arithmetic average of these estimates over a certain range (∆m). In their study Woessner and

Wiemer calculated the arithmetic average over half a magnitude range, where the binning width

(∆m) is 0.1. Therefore a variability estimate is obtained over a smoothed 5 magnitude bin range,

i.e.

∆b̂(mb
i ) = |b̂(mb

i )− b̄(mb
i )| where b̄(mb

i ) =
1

5

4∑
j=0

b̂(mb
i+j) (9.3)

4. Obtaining estimate of mc.

Cao and Gao originally stipulated that mc is the magnitude for which the change in b-value between

two successive magnitude cut-off sub-samples, is smaller than 0.03. That is m̂c = inf{mb
i ∈ S :

∆b̂(mb
i ) < 0.03}. However, Woessner and Wiemer [60] have claimed that this definition is unstable

and therefore offer an improvement, where it has been suggested that the magnitude of completeness

be estimated as

m̂c = inf{mb
i ∈ S : ∆b̂(mb

i ) < δb} where δb = 2.3(b̂(mb
i ))

2

√∑N
j=1(mj − m̄)2

n(n− 1)
(9.4)

Here δb can be seen to be the b-value uncertainty [50].

Example of estimation algorithm

To demonstrate the method, the illustrative dataset, as described at the beginning of the chapter, will

be examined by estimating mc as well as sampling distribution. The R implementation of the bVS

estimation method can be found in Appendix I.1.6 on page 208.

The following is a graphical representation of the mc determination process. Although the process is

based on the difference in b-values based on the Page relation, the b-value differences, based on the Aki-

Utsu MLE estimator is also plotted in aid of the demonstration. It can therefore be seen that although

the difference between consecutive b-values is smaller for the Aki-Utsu estimator, the significant change

in differences occur for both estimators in the vicinity of the true threshold of completeness. Based on

the initial dataset, mc is slightly underestimated to be 2.9, with a 90% confidence interval of [2.8, 3]

based on the quantiles of the sampling distribution.
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Figure 9.4: Threshold estimation and estimate uncertainties of bVS method.

Comment on method

Woessner and Wiemer state that choosing ∆m differently can have a large impact on the results for

m̂c. This can be seen to hold true for two different reasons. The first being that the range of values

m̂c can take on is directly altered and the estimates may not be as refined as possible when larger

magnitude bins are used. Furthermore, where larger binning widths are used, the b-value calculated

by ∆b̂(mb
i ) will be averaged over a smaller number of magnitude bins, if the averaging range is not ex-

tended. This can lead to instabilities in the method as originally described by Woessner and Wiemer [60].
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9.4 Entire magnitude range method

(EMR)

This threshold estimation method of Woessner and Wiemer, as introduced in their comparison study of

estimation methods [60], attempts to incorporate available data from the entire magnitude range (EMR).

The method aims to comprehensively address the estimation problem through explicit modelling of the

incomplete portion of event size data. The magnitude of completeness is taken to be threshold value

that results in the best fit of the complete as well as incomplete portion of the model to the data.

As will be seen in point 4 in the listed assumptions below, a critical assumption is altered of the EMR

method. This change cannot be ignored and therefore, the method implemented in this study can be

referred to as either the EMR method or the Modified EMR method (MEMR).

Assumptions made

1. The complete portion of the data is assumed to be adequately modelled by an exponential law

(similar to that of the Gutenberg-Richter relation).

2. The incomplete portion of the catalogue can be modelled by applying a detection probability to

the exponential distribution used to model the complete portion.

3. The probability of detecting an event of magnitude M , q(M |µ, σ), used to model the incomplete

portion of the data is the CDF of a N (µ, σ2) random variable. This assumption is in line with that

made by other authors [42]. In this formulation the parameter µ indicates the magnitude at which

50% of the events are detected and the variability in the detection range is further defined by the

standard deviation σ.

4. Woessner and Wiemer directly attempt to model the incomplete portion of the magnitude range

with the detection probability. However, the EMR method will be slightly modified in order to

enforce consistency with the method of deriving detected magnitude distributions in Section 8.2.1.

Furthermore, the detection probability has been scaled such that the value of 1 is attained at mc.

This is done to ensure that the probability density of the detected magnitude does not suffer from

any discontinuities at mc. Hence, the detected magnitude distribution takes the following form:

fMD
(m)=


fMG

(m) · q(m|µ,σ)
q(mc|µ,σ) if mmin ≤ m < mc

fMG
(m) if mc ≤ m ≤ mmax

0 otherwise

(9.5)

As per (8.25) on page 29, in the modified version of the EMR method, q(m|µ, σ) in (9.5) is equivalent

to Φ(zm) where zm = m−µ
σ . This results in the equivalence of (9.5) and (8.25) in their entirety.

Outline of method
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1. Specify range of m̂c

The range of values that m̂c can assume is the values in the sequence f , where f = (mb
i ).

2. Estimation of nuisance parameters

For a given event size dataset S and for each possible value of the magnitude of completeness in

the sequence f the parameter vector Θ̂ = (β̂, µ̂, σ̂) is estimated. A maximum likelihood approach

is utilized for this estimation.

Θ̂ = argmax
Θ

l(Θ;mc = mb
i |m1,m2, . . . ,mn) (9.6)

where l is the log-likelihood function obtained from the likelihood function L in the following

manner :

L(Θ;mc = mb
i |m1,m2, . . . ,mn) =

n∏
i=1

fMD
(m) =

( ∏
mi<mc

fMD
(mi)

) ∏
mi≥mc

fMD
(mi)


l(Θ;mc = mb

i |m1,m2, . . . ,mn) = lnL(Θ;mc = mb
i |m1,m2, . . . ,mn)

=
∑

mi<mc

ln fMD
(mi) +

∑
mi≥mc

ln fMD
(mi)

=
∑

mi<mc

ln fMG
(mi)

Φ(zm)

Φ(zmc)
+

∑
mi≥mc

ln fMG
(mi) + n lnCNorm

=
∑

mi<mc

(ln Φ(zm)− ln Φ(zmc)) +
n∑
i=1

ln fMG
(mi) + n lnCNorm

=
∑

mi<mc

(ln Φ(zm)− ln Φ(zmc)) + n lnβ − β
n∑
i=1

(mi −mmin)

−n ln (1− e−β(mmax−mmin)) + n lnCNorm (9.7)

As shown fMD
(m) is as in (8.25) on page 29. Partial derivatives of the log-likelihood function are

derived in Appendix F (p. 196).

3. Model comparison and estimating mc

The threshold value in the specific model that maximizes the likelihood test score for all mb
i in

sequence f is taken as the magnitude of completeness for the set of events S, i.e.

m̂c = argmax
mbi

(
argmax

Θ
l(Θ;mc = mb

i |m1,m2, . . . ,mn)

)
(9.8)

Example of estimation algorithm

The R implementation of the MEMR estimation method can be found in Appendix I.1.7 on page 210.

The following is a graphical representation of the mc estimation process. Since the initial dataset has

been generated from a distribution where the detection probability is modelled by a Normal CDF, the
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MEMR method yields ideal results. These ideal conditions, also culminate in the sampling distribution

of the estimator being concentrated in one point, namely the true value of mc = 3.
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(a) Graphical representation of detection function
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(b) Sampling distribution for estimated mc based
on 1000 bootstrap re-samples.

Figure 9.5: Threshold estimation and estimate uncertainties as per the MEMR method

Comment on method

Woessner and Wiemer have tested four functions (CDF of exponential, Log-Normal and Normal ran-

dom variable, as well as an exponential decay function) to fit the incomplete part of actual earthquake

datasets. Furthermore, they state that the the exponential decay and Normal CDF perform relatively

well in comparison to the other functions. However the Normal CDF provides the best fit to the data,

when the considered data ranges from regional to worldwide sources. For this reason the EMR method

(as well as the MEMR method) utilizes the Normal CDF for modelling detection probabilities.
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9.5 Median Based Assessment of the Segment Slope

(MBASS)

The basis of the MBASS method, by D. Amorèse [3], is to estimate significant magnitude breaks by mak-

ing use of a non-parametric approach adapted from the analysis of climate data [33]. Both approaches

are based on the change-point test of Siegel and Castellan [51, p. 399], which seeks to establishes the

statistical significance of a difference between the medians of two samples.

The magnitude of completeness is defined as the smallest magnitude point where a statistically signifi-

cant break in the logarithmic slope of the frequency-magnitude distribution occurs.

Assumptions made

1. The assumption is made that the event sizes larger than the magnitude of completeness are ex-

ponentially distributed. This is not explicitly stated, but can be seen through examination of the

slope value r(mb
i ) as defined by (9.9) in the outline of the method below. For further elaboration

on this point, see the general comment below.

2. The distribution of event sizes smaller than the magnitude of completeness is not specified, however

it is assumed that this data does not follow the same distribution as that specified for the data

with magnitudes greater than mc.

Outline of method

1. Construct histogram of event magnitudes.

For a given set of data S, the incremental histogram of observed events H(S, PO(S)) is computed,

with magnitude bins i = 1, 2, . . . , k. Cumulative FMDs are not computed since successive magni-

tude bins would be dependent on the information contained in preceding bins. This violates the

assumption of independence within groups that is required by the Wilcoxon-Mann-Whitney U test

[27].

2. Calculate piecewise slope of FMD.

For each magnitude segment, defined by the endpoints of the relevant bin [mb
i−1,m

b
i ], the slope of

the incremental FMD is calculated as

r(mb
i ) =

lnH(S, PO(S))i−1 − lnH(S, PO(S))i
mb
i−1 −mb

i

for i = 2, 3, . . . , k (9.9)

3. Identify position of most probable change in FMD slope.

Ranks are assigned to the slopes r(mb
i ) from 1 to k, where ties receive a rank equal to the average

of the ranks they span. Thereafter, for each i = 2, 3, . . . , k in the sequence of magnitude bins,
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the sum of the ranks (SR)i of the segment slopes, r(mb
j) ∀j ≤ i, is computed. This value is then

adjusted as follows

(SA)i = |2(SR)i − i(k + 1)| (9.10)

The reasoning of the adjustment stems from the Wilcoxon-Mann-Whitney U -test, which has test

statistic U = (SR)i − i(i+1)
2 , with expected value i(k−i)

2 for k ∈ N observations [41]. For varying

i, each statistic U is centred around a different magnitude. To aid comparison of this statistic for

a range of possible magnitude breaks, the expected value at each i is subtracted from U . This

yields the statistic (SR)i − i(k+1)
2 , which can be multiplied by 2 for display purposes. Finally, by

taking the absolute value of the statistic it is ensured that the absolute physical shift in process is

considered.

The magnitude bin which yields the largest value of (SA)i for all i = 2, 3, . . . , k must be cho-

sen, i.e.

i∗ = argmax
i

(SA)i (9.11)

Magnitude mb
i∗ divides the range [mb

1,m
b
k+1] into two intervals, namely I1 = [mb

1,m
b
i∗ ] and I2 =

[mb
i∗+1,m

b
k]. Subsequently the event size data in S can be split into two sets S1 = {mi ∈ S : mi ∈

I1} and S2 = {mi ∈ S : mi ∈ I2}, with S1∪S2 = S. Hence, the respective median value of segment

slopes of subsets S1 and S2 show the greatest promise of being statistically different.

4. Assess statistical significance of magnitude break.

The sets S1 and S2 will respectfully have k1 = i∗ and k2 = k−k1 numbers of elements. Continuing,

the statistic W = (SR)k1 is defined.

A hypothesis test is done to determine whether the segment slopes of the two subsets S1 and S2

are significantly different. If so, this change will be indicated at the point Mk1 . The Wilcoxon-

Mann-Whitney U -test is performed at a suitably chosen significance level in order to determine if a

difference is present. If a statistically significant magnitude break is identified, then this magnitude

is taken to be the magnitude of completeness, i.e. m̂c = mb
i∗ . Binning width can be taken into

account by having m̂c = mb
i∗ + ∆M

2 . This modification assumes that event sizes are uniformly

distributed over each magnitude bin.

5. Continuing search for additional magnitude breaks

If in the previous step it is found that a statistically significant difference in median FMD slopes of

the subsets S1 and S2 exist, then this effect can be compensated for in order to continue searching

for further statistically significant magnitude breaks. After subtracting the respective median FMD
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slope values from S1 and S2, a further iteration of the above process can be carried out, until no

more statistically significant magnitude breaks can be identified.

Example of estimation algorithm

The R implementation, as published by Amorèse has been used for the estimation of threshold values.

This can be found in the authors original paper detailing the method [3].

A binning width (∆m) of 0.1 has been used. As in the study of Amorèse, a 10% level of significance is

specified for the Wilcoxon-Mann-Whitney U -test. Figure 9.6 illustrates how the magnitude bins can be

divided into two distinct groups based on the slope over the bins. For this dataset, the MBASS estimate

of the detection threshold is m̂c = 2.8 and, after application of the binning width correction, an adjusted

value of m̂c = 2.8 + ∆m
2 = 2.85 is obtained. A bootstrap implementation with 800 resamples yielded the

sampling distribution, for this specific dataset, as a point distribution centred at m̂c.
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Figure 9.6: Graphical representation of the MBASS estimation method: Plot of slopes over magnitude
bins. Refernce line has been added at m̂c.

Comment on method
The assumption of exponentially distributed data can arrived at as follows. For i = 2, 3, . . . , k :

β =
ln fMG

(mi−1)− ln fMG
(mi)

mb
i−1 −mb

i

≈ lnH(S, PO(S))i−1 − lnH(S, PO(S))i
mb
i−1 −mb

i

(9.12)

= r(mb
i ) (9.13)

Since the PDF fMG
(m) is of the form fMG

(m) ∝ CNorm ·e−βm (where CNorm is the normalizing constant

of the relevant exponential distribution) the above relation also states that MBASS method disregards

whether the random variable MG is truncated or not. This unmentioned strength, makes threshold

estimation by use of the MBASS method extremely robust.
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The reliance of the method on magnitude binning puts emphasis on adequate sample size to ensure that

no empty bins are present at the lower magnitude range.

As a hypothesis test is implemented in estimating the magnitude of completeness, the possibility exists

that the null hypothesis will not be rejected. The only conclusion then reached is that, based on the

assessment of segment slopes, sufficient evidence has not been found to state that the event data S can

be divided into complete and incomplete subsets. In such a situation, the magnitude where a threshold

is most likely to exist (mb
i∗) can be used to further an investigation on detection probabilities. Otherwise

the sample can be regarded as statistically complete. For this reason the current investigation establishes

m̂c = mb
i∗ .
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9.6 Moment incorporating threshold computation

(MITC)

In this section a new threshold estimation scheme, termed MITC, is developed. As an introduction, a

brief summary of the assumptions underlying the method is given.

Assumptions made

1. The complete portion of the catalogue is assumed to be adequately modelled by an exponential

law (similar to that of the Gutenberg-Richter relation).

2. The incomplete portion of the catalogue can be modelled by applying a detection probability to

the exponential distribution used to model the complete portion.

3. The functional form of the probability to detect an event of magnitude M must be explicitly stated.

An example of such a function, as well as that used throughout this investigation, is the CDF of a

N (µ, σ2) random variable. This assumption is in line with that made by Ogata and Katsura [42].

Woessner and Wiemer [60] incorporate this detection probability in a similar manner, but directly

apply it to the whole of the incomplete magnitude range.

4. In order to avoid a discontinuity in the probability density of the detected magnitude, this detection

probability has been normalized such that the value of 1 is attained at mc. Therefore the detected

magnitude distribution takes the following form:

fMD
(m)=


fMG

(m) · Φ(zm)
Φ(zmc ) if m ∈ [mmin ; mc)

fMG
(m) if m ∈ [mc ; mmax]

0 otherwise

(9.14)

Derivation of threshold estimation scheme

Incorporating the technique of integration by parts, the expected value of the detected magnitude dis-

tribution in (9.14) can be obtained as follows :

E[MD] =

∫ mc

mmin

mfMD
(m) dm+

∫ mmax

mc

mfMD
(m) dm

= FMD
(m)m

∣∣∣mc
mmin

−
∫ mc

mmin

FMD
(m) dm+

∫ mmax

mc

mfMD
(m) dm

= FMD
(mc)mc −

∫ mc

mmin

FMD
(m) dm+ E[MD

∣∣MD > mc]P [MD > mc] (9.15)

After rearranging and substitution of the population moments with sample moments in (9.15) the fol-

lowing is obtained

0 = m̄[mmin,mmax] +

∫ mc

mmin

FMD
(m) dm− m̄[mc,mmax]P [MD > mc]−mc FMD

(mc) (9.16)
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where m̄S = 1∑
IS(mi)

∑
mi∈Smi is the average over the elements in the set S and IS(x) the indicator

function. Based on (9.16) a new function g() can be defined. In the function g(), the probability

P [MD > mc] has been expressed in terms of the distribution function of the random variable MD as

(1− FMD
(mc)).

g(mc ,mmin,mmax,Ψ)

:= m̄[mmin,mmax] +

∫ mc

mmin

FMD
(m; mc,mmin,mmax,Ψ) dm

− m̄[mc,mmax](1− FMD
(mc;mc,mmin,mmax,Ψ))−mc FMD

(mc;mc,mmin,mmax,Ψ)

(9.17)

where Ψ is a vector consisting of nuisance parameters of the detected magnitude distribution. Further-

more, the distribution function FMD
(m) in (9.17) is explicitly stated as being variable with respect to the

quantities mc,mmin,mmax and Ψ. Hence, all parameters of the detected magnitude distribution must

be estimated. In this paper such estimation is accomplished by the method of maximum likelihood.

Therefore, zeros are sought for :

g(mc,mmin,mmax,Ψ = argmax
Θ

lMD
(Θ;mc|m1,m2, . . . ,mn)) (9.18)

lMD
(Θ;mc|m1,m2, . . . ,mn) is the log-likelihood function of the detected magnitude distribution. It is

fairly easy to envision the possibility of (9.18) having multiple roots. For this investigation it will be

assumed that the first root of the equation corresponds to the sought threshold, however it is proposed

that this assumption be scrutinized in further studies.

Utilizing (9.18) m̂c can be obtained through a variety of numerical methods, the simplest of which is by

defining a fixed point iterative scheme:

(m̂c)i+1 =
1

FMD
((m̂c)i)

(
m̄[mmin,mmax] +

∫ (m̂c)i

mmin

FMD
(m) dm− m̄[(m̂c)i,mmax]P [MD > (m̂c)i]

)
(9.19)

For this implementation it is proposed that the MAXC estimate of the threshold [59] be used as the

starting value, and a stopping criterion of |(m̂c)i+1 − (m̂c)i| < ε = 0.001. However, after a number of

trials it has been ascertained that the fixed-point method does produce threshold estimates, but is highly

dependent on the starting value and requires a substantial number of iterations to achieve accurate results.

Outline of proposed method

To ensure the robustness of the threshold estimation method the following algorithm is proposed:

1. Isolate the first root of (9.18)

This is achieved by systematically evaluating the equation for values of mc contained in the set
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{mi = m + i · ∆m : i = 0, 1, 2, . . . , [mmax−mmin∆m ]} stopping when sgn (g(mi,mmin,mmax,Ψ)) 6=

sgn (g(mi + ∆m,mmin,mmax,Ψ)) for the smallest value of i. If the distribution of detected events

is constructed to be a proper probability distribution, the mild assumption can be made that (9.18)

is continuous. By the intermediate value theorem it can then be seen that a root for the equation

must lie in the interval

[mi∗ ; mi∗ + ∆m]

where i∗ = inf (i : sgn (g(mi,mmin,mmax,Ψ)) 6= sgn (g(mi + ∆m,mmin,mmax,Ψ))) (9.20)

Due to the estimation of nuisance parameters (Ψ) being dependent upon the value of mc it is pos-

sible for discontinuities to arise in the function g(), however this is beyond the current investigation

and left for future endeavours.

2. Utilize a robust solving algorithm to estimate the threshold.

For the current investigation the R implementation of Brent’s method [6] will be used to solve the

equation for the root in the interval [mi∗ ; mi∗ + ∆m] with i∗ as determined in the previous step.

3. Obtain standard error

It is suggested that uncertainties in the estimated threshold be obtained through bootstrapping.

Additionally, uncertainties in the estimates of the nuisance parameters can be obtained utilizing

the observed Fisher information matrix, if maximum likelihood is used.

It should be noted that this method of threshold estimation can be interpreted as a modified form of

moment estimation.

For the current investigation the detection probability of the detected magnitude distribution will only

be modelled by the Normal CDF. The validity of modelling the detection probability by use of this

function is left to be established through future work.

Example of estimation algorithm

The R implementation of the MITC estimation method can be found in Appendix I.1.8 on page 211.

The illustrative dataset, as described at the beginning of the chapter, will be used for estimating mc as

well as the sampling distribution.

Figure 9.7 is a graphical representation of the (9.18) for which the root is sought in order to estimate

mc. Based on the specific dataset, mc is slightly overestimated to be 3.1, with a 90% confidence interval

of [2.97 3.21] based on the quantiles of the sampling distribution.
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Figure 9.7: Sketch of (9.18) that must be solved for 0 in order to estimate threshold of detection mc

as well as nuisance parameters of detected severity distribution.
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Figure 9.8: Maximum likelihood estimation of nuisance parameters of observed magnitude distribution
for varying detection threshold values (mc). Dotted line indicates the value of m̂c as obtained via MITC.

m̂c

F
re
qu
en
cy

0
50

10
0

15
0

20
0

2.85 2.9 2.95 3 3.05 3.1 3.15 3.2 3.25 3.3

Percentiles

5th
50th (Median)
95th

Figure 9.9: Histogram of sampling distribution approximated through bootstrapping with 1000 repe-
titions of threshold estimation.
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10 Performance evaluation of estimation
methods

In this section the efficiency of the previously discussed threshold estimation methods will be gauged

under varying circumstances. Artificial catalogues are compiled with observations being generated from

detected magnitude distributions from Section 8.2.3 (p.27) up to and including Section 8.2.6 (p.44).

Comparisons will be made based on the mean-squared error (MSE) that can be shown to be composed

of the bias of the estimator, as well as the variance of the estimator.

The results will be summarized according to

1. Magnitude of completeness

The characterization of the magnitude of completeness, as either sharp or soft will form a natural

division for data analysis. For the case where the magnitude of completeness is characterized as

sharp, i.e. being explicitly included, the level at which it has been specified will further categorize

the data.

2. Estimation Method

Fundamental to the current investigation is the specific method that has been implemented in order

to estimate the magnitude of completeness. This will directly provide information relating to the

efficacy of the relevant methods.

3. Distribution of seismic detection probability

The different forms of the probability describing the detection of events further follows as a natural

way of categorizing the data.

4. Moments of detection distribution

The distribution characterizing the probability of seismic event detection will further be categorized

according to the lower order moments of the distribution. Factors will be created based on non-

overlapping and exhaustive intervals of the range of the observed moment values. These moments

include the Expected Value, Variance and Third null-point moment of the detection distribution.

Furthermore, to aid in the objective comparison of methods, the parameter region for the simulated

catalogues must be specified. This parameter region is set up in the following section, by enforcing

consistency between in the values of the lower order moments of the detection distributions.
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10.1 Parameter domain of simulated catalogues

10.1.1 General Parameter Region

The complete portion, and therefore the parameter values of the original Gutenberg-Richter Distribution,

of all datasets are simulated according to the following fixed parameters : mmin = 1, mmax = 7 and

b =
β

ln(10)
= 0.9. The incomplete portion of the respective datasets are characterized by varying the

parameters of the detection distribution. Let Θ = (θ1, θ2, . . . θn) represent the vector of parameters of

each respective detection distribution. In order to consistently compare estimation results, under varying

forms of the detection distribution, the set of parameters to be examined for each detection probability

are specified based on restrictions of the lower order moments of the detection distribution. Within this

study n is 3 for the cumulative Pareto type II distribution and 2 for the remaining detection distribu-

tions. For the case where n = 2 the expected value and variance of the detection distribution will be

considered, whereas for n = 3, the third moment about the origin will be additionally be considered.

The motivation for considering the third moment about the origin is that this moment contains infor-

mation about the expected value, variance and skewness of the distribution. The range of the the third

moment about the origin will be determined for the distributions where n = 2, which will be modified

to represent an interval of conceivable values. This interval will act as restriction on the third moment

about the origin for case of n = 3, which will ensure that the different detection distributions will be of

comparable nature.

Let XD represent the random variable to which the particular CDF is attributed that is used to de-

scribe the detection probability (i.e. detection distribution). The lower order moments of the detection

distribution, as functions of the distributional parameters contained in Θ, can be written as

h1(Θ) = E[XD|MG; Θ] and h2(Θ) = V ar(XD|MG; Θ) (10.1)

and for the case where n = 3 :

h3(Θ) = E
[
X3
D|MG; Θ

]
(10.2)

which can be written as the vector valued function H(Θ) = (h1(Θ), h2(Θ), . . . , hn(Θ)). The admissible

range of expected values and variances of a specific detection distribution can be written as the following

C(I1, I2, . . . In) = {H(Θ) ∈ Rn : h1(Θ) ∈ I1, h2(Θ) ∈ I2, . . . hn(Θ) ∈ In} (10.3)

where I1, I2, . . . In are intervals on the real line. From where the set of all permissible parameters can be

obtained through the inverse image of H

H−1(C(I1, I2, . . . In)) = {Θ ∈ Rn : (h1(Θ), h2(Θ), . . . hn(Θ)) ∈ C(I1, I2, . . . In)} (10.4)
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Empirically, it has been found that detected magnitude distributions based on I1 = [0.2, 6] , I2 = [0.2,

4] (for n = 2) and, additionally, I3 = [0.2, 300] (for n = 3) produce datasets comparable to real-world

earthquake data.

10.1.2 Partitioning of parameter region

Some lower order moments are non-linear functions of the parameters and therefore exhibit either concave

or convex behaviour. This has the implication that if the investigated values of θ1, θ2, . . . , θn are equi-

spaced over the set of H−1(C(I1, I2, . . . , In)) the resulting variances and expectations of the detection

distribution will not be evenly spaced. Therefore, to ensure a fair representation of parameter induced

forms of the distribution, rather than explicitly partitioning the parameter space H−1(C(I1, I2, In)), the

region C(I1, I2, In) will be evenly partitioned.

It is designed that the number of elements (x, y) ∈ C(I1, I2) distributed over I1 must be proportional

to the length of the interval, with the number of elements (x, y) distributed over I2 specified in the

same manner. Therefore, if T is the total number of elements in the set C(I1, I2) and Ti the number of

points (x, y) distributed over the interval Ii and di = | sup(Ii) − inf(Ii)|, for i = 1, 2, it can be shown

that T1 =
√
T d1
d2

and T2 = d2
d1
T1. Accordingly the number of subintervals over I1 and I2 are respectively

T1−1 and T2−1. Initially it is aimed that 440 catalogues be generated per mc category for the sharp-mc

models as well as for the entire investigation under the soft-mc model.

For the case where n = 3 (Pareto type II distribution) the total number of events to be apportioned

over I1 and I2 is taken to be the total number of points divided by the number of points spread over

I3, which is pre-specified to be 17. This number of points is pre-specified since a proportional allocation

(similar as for the case of n = 2) would result in a much larger number of points being allocated to this

interval. The reason for this is the large difference of d3 when compared to d1 and d2.

After suitable integer rounding at certain calculation stages the following summary of parameter parti-

tioning is obtained.

Table 10.1 provides a summary of the number of catalogues to be simulated.
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I1 I2 I3
Infimum 0.2 0.2 0.2

Supremum 6 4 300
di 5.8 3.8 299.8

Number of points in interval 25.9148 16.9786 17
Rounded number of points in interval 26 17 17

Number of subintervals 25 16 16
Length of individual subintervals 0.232 0.2375 17.63

Table 10.1: Parameters for traditional Gutenberg-Richter seismic event distribution, as used to model
complete earthquake catalogue.

For n = 2, a specific earthquake catalogue can now be defined as an element of the set

E = {H(Θ) = (x, y) : x = 0.2 + 0.232i and y = 0.2 + 0.2375j ;

i = 0, 1, 2, . . . , 25 and j = 0, 1, 2, . . . , 16} (10.5)

whereas for n = 3 the earthquake catalogue can be defined as an element of the modified set E :

E = {H(Θ) = (x, y, z) : x = 0.2 + 0.232i , y = 0.2 + 0.2375j and z = 0.2 + 17.63k ;

i = 0, 1, 2, . . . , 25 , j = 0, 1, 2, . . . , 16 and k = 0, 1, 2, . . . , 16} (10.6)

In this way it can be seen that E ⊂ C(I1, I2, . . . , In) for n = 2 or 3. Furthermore this partitioning leads

to 442 catalogues per mc category for sharp mc models and 442 catalogues in total for soft mc models.
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10.2 Results for magnitude of completeness for

explicit detection threshold

It is readily seen that the threshold estimation methods come from diverse backgrounds. This especially

when considering the individual derivations and assumptions. In order to facilitate a consistent compar-

ison between results obtained from the varying methods, a metric must be obtained that can relate to all

methods. The Mean-Squared Error (MSE) is chosen as a simple metric. Furthermore, the MSE can be

shown to be composed of the variance of the estimator θ̂ and the bias of the estimator when considering

the true value of the parameter θ0.

MSE(θ̂) = E

[(
θ̂ − θ0

)2
]

= V ar(θ̂) + (E[θ̂ − θ0])2 (10.7)

= V ar(θ̂) + (Bias(θ̂, θ0))2 (10.8)

It can therefore be seen that an ideal estimator has small MSE. This consequently translates into an

estimator having a small variance and a small absolute bias. Additionally, a good estimator will have a

symmetric sampling distribution.

In the sense of threshold estimation a prudent scenario can be described as an estimator having a positive

bias (over-estimating the threshold value). When considering the contrary situation, of underestimating

the threshold value, it can be seen that this can lead to the inclusion of inhomogeneous data in the

complete portion of the distribution, which will skew any parameter results obtained.

10.2.1 Significance of magnitude of completeness as factor

Table 10.2 shows the p-Value of the Shapiro Wilk test for Normality of the estimated biases. The test is

performed individually for groupings of the estimated bias for each of the threshold estimation methods

and then also for differing forms of the detection distribution. It can therefore be concluded that, at

a 5% level of significance, the estimated biases of the various mc estimation methods do not follow a

Normal distribution. It is for this reason that the investigation be continued based on non-parametric

statistical methods.
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Normal 0.92 <0.001 0.95 <0.001 0.92 <0.001 0.94 <0.001 0.99 <0.001 0.97 <0.001
Log-Normal 0.96 <0.001 0.95 <0.001 0.96 <0.001 0.98 <0.001 0.98 <0.001 0.98 <0.001
Logistic 0.83 <0.001 0.96 <0.001 0.86 <0.001 0.85 <0.001 1.00 <0.001 0.94 <0.001
Pareto type II 0.95 <0.001 0.92 <0.001 0.95 <0.001 0.96 <0.001 0.98 <0.001 0.97 <0.001
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Table 10.2: Test statistic and p-Value of Shapiro-Wilk test for normality of estimated biases. Test
individually performed for estimated bias of each estimation method and differing CDF of RV attributed
to detection probability.
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Normal 0.91 <0.001 0.81 <0.001 0.90 <0.001 0.69 <0.001 0.98 <0.001 0.93 <0.001
Log-Normal 0.93 <0.001 0.80 <0.001 0.88 <0.001 0.55 <0.001 0.99 <0.001 0.92 <0.001
Logistic 0.91 <0.001 0.69 <0.001 0.88 <0.001 0.77 <0.001 0.96 <0.001 0.94 <0.001
Pareto type II 0.91 <0.001 0.92 <0.001 0.90 <0.001 0.63 <0.001 0.97 <0.001 0.88 <0.001

Table 10.3: Test statistic and p-Value of Shapiro-Wilk test for normality of estimated standard error
of mc estimation method. Test individually performed for estimated standard error of each estimation
method and differing CDF of RV attributed to detection probability.

The statistical significance of the pre-specified magnitude of completeness in estimating the threshold is

established by utilization of the R implementation [19] of the multiple comparison Kruskal-Wallis test

procedure [51, p. 213]. The results are stated in Table 10.4. Based on the multiple comparison Kruskal-

Wallis test at a 5% level of significance the following results have been obtained for the bias estimates

of the competing estimation methods:

Pairwise mc GOF MAXC bVS EMR MBASS MITC
comparison OD CD OD CD OD CD OD CD OD CD OD CD

2 2.5 908.4 220.3 1331.6 220.3 974.1 220.3 512.2 220.4 1187.2 220.3 1797 219.5
2 3 1899.4 222.4 2638.1 222.4 2116.3 222.4 1105.7 222.6 2827.1 222.4 3168.1 222.7
2 3.5 2982.6 224.0 3904.1 224 3299.3 224 1711.1 224.2 4233.6 224 4387.8 224.2
2 4 4042.3 225.6 5144.9 225.6 4465.2 225.6 2173.9 225.5 5343 225.6 5522.5 223.5
2.5 3 991 223.8 1306.5 223.8 1142.1 223.8 593.5 223.9 1639.8 223.8 1371 224.1
2.5 3.5 2074.1 225.3 2572.4 225.3 2325.1 225.3 1198.9 225.5 3046.3 225.3 2590.7 225.6
2.5 4 3133.9 226.9 3813.2 226.9 3491.0 226.9 1661.7 226.8 4155.8 226.9 3725.4 224.9
3 3.5 1083.1 227.4 1265.9 227.4 1182.9 227.4 605.4 227.6 1406.5 227.4 1219.7 228.7
3 4 2142.8 229.0 2506.7 229.0 2348.8 229 1068.2 228.9 2515.9 229 2354.4 228
3.5 4 1059.7 230.5 1240.7 230.5 1165.9 230.5 462.8 230.4 1109.4 230.5 1134.7 229.5

Table 10.4: Observed difference (OD) and critical differences (CD) for the multiple comparison Kruskal-
Wallis test for estimated biases by pre-specified mc. Test individually performed for estimation methods.

It can be seen that no grouping of biases by magnitude of completeness is similar to another. Therefore,

it can be concluded at a 5% level of significance, that the pre-specified magnitude of completeness is a

statistically significant factor when analysing bias as well as the variance of the competing estimation

methods.

This signifies unwanted behaviour, since no correction for the bias can be attempted. This is the case

since the level of bias is heavily dependent on the true value of the threshold.
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10.2.2 Results of threshold estimation methods incorporating
threshold as factor

Analysis of results, with the true threshold as a factor, yields consistently smaller biases for cases with

lower valued thresholds. This holds true for all analyses performed by expected value, variance and

skewness of the detection distribution. Hence, much of the variation in the aggregated results are

artificial and due to the value of the true threshold.

10.2.3 Aggregated results of threshold estimation methods

The situation is examined where data is aggregated solely based on the function used to model the

detection probability as well as the threshold estimation method. In this way a high level analysis is

performed of general robustness of estimation methods.

The main quantities of the sampling distribution will be illustrated. Instead of directly displaying quan-

tities of the sampling distribution, the figures will be shifted, by respectively subtracting the correct

value of mc, to represent expected biases. Quantities used to characterize the sampling distribution of

expected biases include the mean as well as 5% and 95% quantiles, illustrating a 90% confidence interval.

In order to smooth results for the various detection distributions, quantities of sampling distribution

data have been grouped by intervals of the moment domains of the detection distributions. In order

to construct an image of the skewness of the sampling distribution of expected biases, the average and

median of the respective quantities have been calculated.

10.2.3.1 Threshold estimation by Goodness of fit (GOF) method

In order to consider the behaviour of the GOF method, Tables 10.5, 10.6 and 10.7 have been constructed

to respectively display Mean-Squared Error (MSE), Bias and Standard Error values.

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro
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p
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d
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u
ti
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y

E
x
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.
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e

T
ru

e
th
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sh
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d

va
lu

e

2 0.6 0.19 0.1 - 0.19 0.14 0.72 0.1 0.05 0.66 0.22 -
2.5 1.51 0.51 0.15 - 0.44 0.25 1.73 0.23 0.09 1.68 0.89 -
3 3.02 1.18 0.36 - 0.72 0.59 3.22 0.63 0.09 3.19 1.79 -

3.5 4.98 2.59 0.75 - 1.97 1.61 5.34 1.48 0.11 5.17 2.89 -
4 7.4 4.14 1.49 - - 3.2 7.79 2.59 0.17 7.74 5.56 -

V
ar

ia
n

ce

2 0.23 0.26 0.35 0.08 0.15 0.24 0.62 0.56 0.62 0.76 0.62 0.65
2.5 0.44 0.65 0.96 0.11 0.28 0.59 1.46 1.44 1.35 1.58 1.66 1.66
3 0.89 1.35 2.05 0.15 0.46 1.22 2.78 2.62 2.58 3.46 3.2 3.1

3.5 1.59 2.44 3.86 0.15 1.08 3.57 4.57 4.44 4.59 5.23 5.12 5.09
4 2.61 4.02 5.77 0.17 2.79 6.2 6.74 6.63 6.62 8.24 7.68 7.64

S
ke

w
n

es
s 2

NA NA

0.3 0.76 0.8 0.61 0.62 0.69
2.5 0.71 1.85 2.02 1.54 1.66 1.67
3 1.53 3.36 3.49 3.27 3.05 3.25

3.5 2.89 5.47 5.81 5.02 5.09 5.13
4 4.35 8.07 8.21 7.74 7.57 7.81
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Table 10.5: MSE values of GOF method

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
in

g
ev

en
t

d
et

ec
ti

on
d
is

tr
ib

u
ti

on
b
y

E
x
p
.

V
al

u
e

T
ru

e
th
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d
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lu

e

2 -0.68 -0.28 -0.1 - -0.29 -0.2 -0.78 -0.13 0.06 -0.76 -0.35 -
2.5 -1.18 -0.56 -0.17 - -0.48 -0.31 -1.28 -0.31 0.02 -1.26 -0.72 -
3 -1.71 -0.98 -0.3 - -0.69 -0.52 -1.77 -0.64 -0.02 -1.77 -1.36 -

3.5 -2.22 -1.46 -0.57 - -1.08 -0.92 -2.29 -1.07 -0.1 -2.27 -1.75 -
4 -2.72 -1.97 -0.9 - - -1.41 -2.78 -1.52 -0.26 -2.78 -2.35 -

V
ar

ia
n
ce

2 -0.19 -0.33 -0.48 -0.07 -0.23 -0.39 -0.66 -0.64 -0.66 -0.8 -0.73 -0.74
2.5 -0.37 -0.59 -0.84 -0.09 -0.36 -0.65 -1.09 -1.07 -1.07 -1.25 -1.25 -1.24
3 -0.59 -0.94 -1.32 -0.03 -0.46 -1.14 -1.53 -1.51 -1.53 -1.81 -1.76 -1.75

3.5 -0.86 -1.35 -1.85 -0.06 -0.81 -1.85 -2.02 -2 -2.02 -2.26 -2.25 -2.25
4 -1.2 -1.81 -2.38 -0.1 -1.48 -2.46 -2.49 -2.48 -2.48 -2.81 -2.75 -2.76

S
ke

w
n
es

s 2

NA NA

-0.34 -0.83 -0.84 -0.72 -0.74 -0.76
2.5 -0.65 -1.32 -1.37 -1.2 -1.23 -1.27
3 -1.02 -1.82 -1.84 -1.74 -1.74 -1.78

3.5 -1.48 -2.33 -2.37 -2.23 -2.25 -2.26
4 -1.9 -2.83 -2.85 -2.74 -2.75 -2.78

Table 10.6: Bias values of GOF method

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
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g
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en
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e

T
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e
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ol
d
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lu

e

2 0.28 0.27 0.25 - 0.26 0.28 0.21 0.22 0.2 0.23 0.28 -
2.5 0.28 0.36 0.29 - 0.38 0.35 0.22 0.31 0.19 0.23 0.4 -
3 0.27 0.38 0.39 - 0.49 0.49 0.23 0.31 0.24 0.24 0.37 -

3.5 0.28 0.43 0.44 - 0.57 0.59 0.22 0.31 0.24 0.23 0.36 -
4 0.26 0.4 0.5 - - 0.6 0.22 0.35 0.26 0.23 0.35 -

V
ar

ia
n

ce

2 0.24 0.27 0.28 0.23 0.28 0.29 0.21 0.22 0.21 0.18 0.22 0.23
2.5 0.27 0.31 0.35 0.25 0.36 0.45 0.22 0.25 0.26 0.23 0.24 0.24
3 0.29 0.35 0.4 0.31 0.49 0.61 0.24 0.24 0.25 0.17 0.23 0.25

3.5 0.31 0.39 0.44 0.3 0.67 0.68 0.23 0.24 0.26 0.21 0.23 0.23
4 0.29 0.42 0.46 0.31 0.8 0.56 0.24 0.25 0.27 0.2 0.24 0.23

S
ke

w
n

es
s 2

NA NA

0.24 0.21 0.19 0.23 0.23 0.23
2.5 0.28 0.21 0.18 0.24 0.25 0.22
3 0.29 0.21 0.22 0.25 0.25 0.23

3.5 0.28 0.21 0.2 0.22 0.23 0.24
4 0.3 0.2 0.23 0.23 0.25 0.22

Table 10.7: Standard error values of GOF method

From these tables the following conclusions can be drawn :

1. Bias

(a) Biases are consistently negative

2. mc as factor

(a) MSE values increase for increasing mc

(b) Absolute biases increase for increasing mc

(c) Standard error values are humped. These decrease for mid valued threshold values and then

ultimately increase.
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3. Expected value of detection distribution as factor

(a) MSE values reduce for increasing expected values

(b) Absolute biases reduce for increasing expected values

(c) Standard error (SE)

i. Symmetric detection probability distributions

As expected values increase . . .

A. Standard errors decrease for small mc

B. Standard errors are humped (increase, then ultimately decrease) for mid values of mc

C. Standard errors increase for large values of mc

ii. Non-symmetric detection probability distributions

SE values appear humped (increaseing, then decreasing), at least for Log-Normal detection

distribution. This can however not be conclusively stated, due to lack of values under the

scenario of a Pareto Type II distribution.

4. Variance of detection distribution as factor

(a) MSE values

i. Symmetric detection distributions : MSE generally increases as variance increases

ii. Non-symmetric detection distributions : MSE generally decreases as variance increases

(b) Bias values

i. Symmetric detection distributions : Absolute biases increase for increasing variance

ii. Non-symmetric detection distributions : Bias values generally unaffected for differing

variances

(c) Standard error values increase for increasing variances

5. Skewness of detection distribution as factor

(a) MSE values

i. MSE increases sharply for increasing skew of Log-Normal detection distribution.

ii. MSE increases only slightly for increasing skew of the Pareto Type II detection distribu-

tion.

(b) Bias values

i. Bias values increase sharply for increasing skew of Log-Normal detection distribution.

ii. Bias values increase only slightly for increasing skew of Pareto Type II detection distri-

bution.

(c) Standard error

91

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



i. SE reduces for increasing skew of Log-Normal detection distribution.

ii. SE remains constant, with somewhat of humped progression (increasing, then decreasing)

for increasing skew of Pareto Type II detection distribution.

The method show that considerable biases are possible over the range of expected values of the detection

distribution, especially when the expected values are small. Biases are also consistently negative, show-

ing that the estimation methods underestimate the true value of the detection threshold. For the cases

of the Normal, Log-Normal and Pareto type II detection probability the biases appear to diminish with

increasing expected values of the detection distribution. This establishes that for datasets with detection

thresholds that become increasingly more prominent, the bias of the methods become smaller. For the

case of a Logistic detection probability, the bias appears to remain relatively constant for increasing

expected values of the detection distribution, showing a systematic error. The tendency of the median of

the sampling distribution to be equal or smaller than the expected value appears indicative of a negative

skew distribution enforcing the tendency of underestimated threshold estimates.

Considerable biases are also possible over the range of variances of the detection distribution. For the

case of the symmetric distributions such biases are possible for increasing variances. For the distributions

that can exhibit skewness, Pareto type II - and Log-Normal distribution, a constant systematic bias is

shown. Bias for these two distributions are shown to be invariant for different values of the variance of

the detection distribution.

The skewness of the Pareto type II and Log-Normal distributions also do not impact the bias of the

estimation method. It does however appear that the bias , when the detection probability is modelled

by the cumulative Log-Normal distribution, tends to be lower for skewness values smaller than 10.

In general, the GOF method show a maximum bias of −2.78. Biases are smaller for distributions where

the threshold is more prominently defined and therefore the success of these estimation methods is heavily

dependent on the expected value and variance of the detection distribution. A rule of thumb can follow

that these methods have the possibility to yield unbiased results if the expected value of the detection

distribution is greater or equal to 3. If the performance of the estimation method is influenced by the

variance of the detection distribution, the value should be, on average, 1.75 or smaller. The combination

of these factors shows that the detection threshold must be very prominently defined.

10.2.3.2 Threshold estimation by Maximum Curvature (MAXC) method

In order to consider the behaviour of the MAXC method, Tables 10.8, 10.9 and 10.10 have been con-

structed to respectively display Mean-Squared Error (MSE), Bias and Standard Error values.
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Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p

in
g

ev
en

t
d

et
ec

ti
on

d
is

tr
ib

u
ti

o
n

b
y

E
x
p

.
V

a
lu

e

T
ru

e
th

re
sh

ol
d

va
lu

e
2 0.77 0.58 0.38 - 0.64 0.62 0.78 0.21 0.01 0.77 0.48 -

2.5 1.89 1.47 1 - 1.56 1.54 1.9 0.74 0.02 1.91 1.34 -
3 3.5 2.85 1.95 - 2.86 2.81 3.54 1.63 0.11 3.52 3.03 -

3.5 5.64 4.72 3.26 - 4.48 4.49 5.68 2.98 0.4 5.65 5.04 -
4 8.26 7.08 4.92 - - 6.71 8.28 4.88 0.94 8.3 7.33 -

V
ar

ia
n

ce

2 0.29 0.61 0.77 0.34 0.73 0.77 0.66 0.66 0.66 0.74 0.76 0.77
2.5 0.79 1.54 1.88 0.8 1.84 1.89 1.63 1.67 1.68 1.9 1.88 1.89
3 1.58 2.99 3.46 1.36 3.4 3.5 3.08 3.1 3.2 3.44 3.45 3.52

3.5 2.67 4.87 5.64 2.02 5.5 5.6 5.03 5.06 5.11 5.67 5.6 5.64
4 4.2 7.29 8.18 3.35 8.06 8.24 7.41 7.43 7.63 8.23 8.19 8.3

S
ke

w
n

es
s 2

NA NA

0.44 0.8 0.78 0.74 0.76 0.77
2.5 1.17 1.94 1.95 1.83 1.89 1.91
3 2.31 3.58 3.6 3.42 3.52 3.5

3.5 3.91 5.74 5.76 5.57 5.62 5.66
4 5.94 8.35 8.36 8.2 8.28 8.27

Table 10.8: MSE values of MAXC method

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
in

g
ev

en
t

d
et

ec
ti

on
d
is

tr
ib

u
ti

on
b
y

E
x
p
.

V
al

u
e

T
ru

e
th

re
sh

ol
d

va
lu

e

2 -0.86 -0.68 -0.44 - -0.73 -0.68 -0.87 -0.32 0.02 -0.86 -0.68 -
2.5 -1.36 -1.11 -0.76 - -1.13 -1.11 -1.37 -0.68 -0.03 -1.37 -1.18 -
3 -1.86 -1.57 -1.09 - -1.54 -1.52 -1.87 -1.12 -0.16 -1.86 -1.7 -

3.5 -2.36 -2.06 -1.46 - -1.94 -1.93 -2.37 -1.59 -0.39 -2.37 -2.22 -
4 -2.86 -2.56 -1.87 - - -2.36 -2.87 -2.08 -0.72 -2.87 -2.7 -

V
ar

ia
n
ce

2 -0.36 -0.7 -0.85 -0.39 -0.82 -0.86 -0.74 -0.75 -0.76 -0.85 -0.86 -0.86
2.5 -0.63 -1.15 -1.34 -0.62 -1.32 -1.36 -1.2 -1.21 -1.23 -1.36 -1.36 -1.36
3 -0.92 -1.62 -1.84 -0.82 -1.8 -1.85 -1.67 -1.68 -1.72 -1.85 -1.84 -1.86

3.5 -1.26 -2.1 -2.35 -1.01 -2.3 -2.35 -2.15 -2.17 -2.21 -2.36 -2.35 -2.36
4 -1.66 -2.62 -2.84 -1.28 -2.8 -2.85 -2.64 -2.65 -2.71 -2.86 -2.85 -2.87

S
ke

w
n
es

s 2

NA NA

-0.53 -0.88 -0.88 -0.85 -0.86 -0.86
2.5 -0.92 -1.38 -1.39 -1.34 -1.36 -1.37
3 -1.34 -1.88 -1.89 -1.84 -1.86 -1.86

3.5 -1.8 -2.38 -2.39 -2.35 -2.36 -2.36
4 -2.28 -2.88 -2.89 -2.84 -2.86 -2.86

Table 10.9: Bias values of MAXC method

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p

in
g

ev
en

t
d

et
ec

ti
on

d
is

tr
ib

u
ti

on
b
y

E
x
p

.
V

al
u

e

T
ru

e
th

re
sh

ol
d

va
lu

e

2 0.04 0.1 0.13 - 0.11 0.13 0.04 0.11 0.05 0.05 0.1 -
2.5 0.05 0.12 0.17 - 0.14 0.15 0.04 0.14 0.08 0.04 0.09 -
3 0.05 0.13 0.19 - 0.19 0.18 0.04 0.14 0.12 0.04 0.1 -

3.5 0.05 0.14 0.22 - 0.18 0.22 0.04 0.15 0.18 0.04 0.1 -
4 0.04 0.15 0.22 - - 0.25 0.04 0.16 0.19 0.04 0.1 -

V
ar

ia
n

ce

2 0.09 0.13 0.07 0.19 0.09 0.06 0.05 0.06 0.07 0.05 0.05 0.05
2.5 0.13 0.16 0.08 0.24 0.09 0.06 0.06 0.08 0.07 0.05 0.05 0.05
3 0.14 0.18 0.08 0.3 0.11 0.07 0.07 0.07 0.08 0.05 0.05 0.04

3.5 0.16 0.2 0.07 0.36 0.12 0.07 0.07 0.09 0.09 0.05 0.05 0.04
4 0.18 0.19 0.08 0.42 0.12 0.07 0.08 0.08 0.1 0.04 0.05 0.04

S
ke

w
n

es
s 2

NA NA

0.08 0.03 0.03 0.05 0.05 0.05
2.5 0.1 0.03 0.03 0.05 0.05 0.05
3 0.11 0.03 0.03 0.06 0.05 0.04

3.5 0.12 0.03 0.03 0.05 0.05 0.04
4 0.13 0.03 0.03 0.05 0.04 0.04

Table 10.10: Standard error values of MAXC method
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From these tables the following conclusions can be drawn :

1. Bias

(a) Biases are consistently negative.

2. mc as factor

(a) MSE values increase for increasing mc.

(b) Absolute biases increase for increasing mc.

(c) Standard error values relatively constant for increasing mc. Slight increases are possible for

increasing values of mc.

3. Expected value of detection distribution as factor

(a) MSE values sharply decrease for increasing expected values.

(b) Absolute biases decrease sharply for increasing expected values.

(c) Standard error (SE) increases for increasing expected values for all, but low to mid valued mc

thresholds of Log-Normal detection distribution.

4. Variance of detection distribution as factor

(a) MSE values

i. Symmetric detection distributions : MSE generally increases as variance increases.

ii. Non-symmetric detection distributions : MSE generally remains constant for differing

variances.

(b) Bias values

i. Symmetric detection distributions : Absolute biases increase for increasing variance.

ii. Non-symmetric detection distributions : Bias values generally unaffected for differing

variances.

(c) Standard error values

i. Symmetric detection distributions : Values progress in a general humped (increasing, then

decreasing) manner.

ii. Non-symmetric detection distributions : Values remain relatively constant with slight

decreases as variance increases.

5. Skewness of detection distribution as factor

(a) MSE values : Slight increase in MSE values for increased skewness.

(b) Bias values : Initial increase in absolute values for increasing skew, thereafter relatively con-

stant.

(c) Standard error : Reduces for increasing skew of the detection distribution
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10.2.3.3 Threshold estimation by b-Value Stability (bVS) method

In order to consider the behaviour of the bVS method, Tables 10.11, 10.12 and 10.13 have been con-

structed to respectively display Mean-Squared Error (MSE), Bias and Standard Error values.

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p

in
g

ev
en

t
d

et
ec

ti
on

d
is

tr
ib

u
ti

on
b
y

E
x
p

.
V

al
u

e

T
ru

e
th

re
sh

ol
d

va
lu

e

2 0.72 0.25 0.07 - 0.23 0.13 0.86 0.08 0.02 0.8 0.27 -
2.5 1.82 0.82 0.2 - 0.64 0.45 2.02 0.27 0.03 1.96 0.81 -
3 3.49 1.95 0.58 - 1.57 1.49 3.65 0.89 0.04 3.62 2.35 -

3.5 5.7 3.55 1.54 - 3 3.25 5.88 1.87 0.1 5.75 3.4 -
4 8.4 5.77 2.84 - - 5.84 8.48 3.23 0.27 8.4 6.65 -

V
ar

ia
n

ce

2 0.2 0.32 0.47 0.04 0.15 0.33 0.72 0.68 0.7 0.86 0.73 0.8
2.5 0.5 0.83 1.34 0.07 0.41 1.05 1.69 1.67 1.64 1.89 1.91 1.93
3 1.04 1.84 2.82 0.08 1.25 3 3.11 3.02 3.13 3.64 3.59 3.58

3.5 1.87 3.38 5.03 0.15 3.27 5.76 5.05 4.99 5.07 5.82 5.68 5.68
4 3.05 5.55 7.68 0.32 7.56 8.84 7.36 7.36 7.29 8.45 8.26 8.37

S
ke

w
n

es
s 2

NA NA

0.31 0.94 0.95 0.72 0.79 0.8
2.5 0.88 2.13 2.25 1.82 1.9 1.98
3 1.77 3.87 3.94 3.46 3.56 3.64

3.5 3.22 6.1 6.2 5.5 5.69 5.73
4 4.93 8.79 8.86 8.22 8.33 8.41

Table 10.11: MSE values of bVS method

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
in

g
ev

en
t

d
et

ec
ti

on
d
is

tr
ib

u
ti

on
b
y

E
x
p
.

V
al

u
e

T
ru

e
th

re
sh

ol
d

va
lu

e

2 -0.78 -0.38 -0.17 - -0.38 -0.28 -0.87 -0.19 0.02 -0.84 -0.44 -
2.5 -1.3 -0.75 -0.3 - -0.69 -0.53 -1.37 -0.4 -0.03 -1.36 -0.86 -
3 -1.84 -1.23 -0.55 - -1.08 -0.97 -1.87 -0.78 -0.07 -1.87 -1.51 -

3.5 -2.36 -1.75 -0.96 - -1.54 -1.52 -2.39 -1.22 -0.2 -2.37 -1.9 -
4 -2.85 -2.28 -1.38 - - -2.09 -2.88 -1.71 -0.41 -2.87 -2.51 -

V
ar

ia
n
ce

2 -0.26 -0.42 -0.58 -0.14 -0.32 -0.51 -0.74 -0.72 -0.73 -0.88 -0.8 -0.84
2.5 -0.45 -0.74 -1.05 -0.17 -0.58 -0.98 -1.18 -1.16 -1.17 -1.33 -1.34 -1.35
3 -0.7 -1.15 -1.61 -0.16 -1.03 -1.69 -1.64 -1.62 -1.65 -1.88 -1.85 -1.86

3.5 -1 -1.66 -2.22 -0.25 -1.78 -2.35 -2.12 -2.11 -2.15 -2.37 -2.35 -2.35
4 -1.34 -2.2 -2.75 -0.42 -2.69 -2.92 -2.59 -2.59 -2.63 -2.89 -2.85 -2.87

S
ke

w
n
es

s 2

NA NA

-0.4 -0.93 -0.93 -0.79 -0.84 -0.84
2.5 -0.74 -1.42 -1.47 -1.3 -1.34 -1.36
3 -1.13 -1.93 -1.95 -1.83 -1.85 -1.87

3.5 -1.59 -2.44 -2.46 -2.32 -2.35 -2.36
4 -2.04 -2.93 -2.96 -2.83 -2.86 -2.88

Table 10.12: Bias values of bVS method
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Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p

in
g

ev
en

t
d

et
ec

ti
on

d
is

tr
ib

u
ti

o
n

b
y

E
x
p

.
V

a
lu

e

T
ru

e
th

re
sh

ol
d

va
lu

e
2 0.18 0.19 0.14 - 0.18 0.18 0.13 0.12 0.11 0.14 0.17 -

2.5 0.16 0.25 0.22 - 0.27 0.3 0.13 0.19 0.1 0.14 0.2 -
3 0.16 0.25 0.3 - 0.32 0.35 0.13 0.21 0.13 0.14 0.18 -

3.5 0.15 0.25 0.33 - 0.34 0.37 0.12 0.22 0.13 0.13 0.21 -
4 0.14 0.25 0.32 - - 0.36 0.12 0.23 0.21 0.13 0.19 -

V
ar

ia
n

ce

2 0.13 0.18 0.19 0.11 0.19 0.22 0.12 0.13 0.13 0.1 0.14 0.14
2.5 0.14 0.23 0.25 0.14 0.32 0.34 0.13 0.14 0.15 0.14 0.14 0.14
3 0.17 0.27 0.28 0.17 0.46 0.31 0.13 0.15 0.16 0.11 0.13 0.15

3.5 0.19 0.28 0.28 0.29 0.52 0.21 0.14 0.14 0.14 0.13 0.13 0.14
4 0.2 0.3 0.24 0.48 0.38 0.15 0.14 0.15 0.17 0.09 0.13 0.13

S
ke

w
n

es
s 2

NA NA

0.14 0.12 0.12 0.14 0.14 0.14
2.5 0.17 0.12 0.08 0.15 0.14 0.14
3 0.18 0.11 0.09 0.13 0.14 0.13

3.5 0.18 0.11 0.08 0.14 0.13 0.14
4 0.2 0.11 0.09 0.12 0.14 0.12

Table 10.13: Standard error values of bVS method.

1. Bias

(a) Biases are consistently negative.

2. mc as factor

(a) MSE values increase for increasing mc.

(b) Absolute biases increase for increasing mc.

(c) Standard error (SE) values

i. SE decreases for low expected values of the detection distribution as mc increases.

ii. SE values hump (increases, then ultimately decreases) for all other cases.

3. Expected value of detection distribution as factor

(a) MSE values decrease for increasing expected values.

(b) Absolute biases decrease sharply for increasing expected values.

(c) Standard error (SE) values

i. SE humped (increaseing, then ultimately decreasing) for small mc of Normal detection

distribution as expected values increase.

ii. SE humped for mid to large mc of Log-Normal detection distribution as expected values

increase.

iii. Otherwise, SE increases for increasing expected values

increases for increasing expected values for all, but low to mid valued mc thresholds of Log-

Normal detection distribution.

4. Variance of detection distribution as factor

96

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



(a) MSE values

i. Symmetric detection distributions : MSE generally increases as variance increases.

ii. Non-symmetric detection distributions : MSE generally humped (increasing, then de-

creasing) with decreases for larger variances.

(b) Bias values

i. Symmetric detection distributions : Absolute biases increase for increasing variance.

ii. Non-symmetric detection distributions : Bias values generally humped (increasing, then

decreasing )for increasing variances.

(c) Standard error values : Generally increasing for increasing variance values.

5. Skewness of detection distribution as factor

(a) MSE values : MSE value increase for increased skewness.

(b) Bias values : Absolute biases increase for increased skewness.

(c) Standard error : SE reduces for increased skew.

From the above listing it can be seen that where the bias of the method increases, the standard error

decreases. This can translate into a situation where greater errors can be made and there exists less

chance to escape them. Furthermore this situation gives the opportunity to correct for known biases,

since the variability in estimates are lower. However, given the high dependence of the bias on the true

value of the threshold, the possibility to correct for bias is greatly reduced.

When the results are aggregated and compared only by threshold estimation method and functional form

of the detection probability, these three methods consistently yield comparable results.

The methods show that considerable biases are possible over the range of expected values of the detection

distribution, especially when the expected values are small. Biases are also consistently negative, show-

ing that all three threshold estimation methods underestimate the true value of the detection threshold.

For the cases of the Normal, Log-Normal and Pareto type II detection probability the biases appear to

diminish with increasing expected values of the detection distribution. This establishes that for datasets

with detection thresholds that become increasingly more prominent, the bias of the methods become

smaller. For the case of a Logistic detection probability, the bias appears to remain relatively constant

for increasing expected values of the detection distribution, showing a systematic error. The tendency of

the median of the sampling distribution to be equal or smaller than the expected value appears indicative

of a negative skew distribution enforcing the tendency of underestimated threshold estimates.

Considerable biases are also possible over the range of variances of the detection distribution. For the

case of the symmetric distributions such biases are possible for increasing variances. For the distributions
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that can exhibit skewness, Pareto type II - and Log-Normal distribution, a constant systematic bias is

shown. Bias for these two distributions are shown to be invariant for different values of the variance of

the detection distribution.

The skewness of the Pareto type II and Log-Normal distributions also do not impact the bias of the

estimation method. It does however appear that the bias , when the detection probability is modelled

by the cumulative Log-Normal distribution, tends to be lower for skewness values smaller than 10.

In general, the GOF, MAXC and bVS methods show a maximum bias of −2. Biases are smaller for dis-

tributions where the threshold is more prominently defined and therefore the success of these estimation

methods is heavily dependent on the expected value and variance of the detection distribution. A rule of

thumb can follow that these methods have the possibility to yield unbiased results if the expected value

of the detection distribution is greater or equal to 3. If the performance of the estimation method is

influenced by the variance of the detection distribution, the value should be, on average, 1.75 or smaller.

The combination of these factors shows that the detection threshold must be very prominently defined.

10.2.3.4 Comment on GOF, MAXC and bVS estimation methods

AS can be seen from the preceding results. Detection capability of method is generally affected by the

graphical prominence of threshold. A measure of this can be found by examining the expected value

of the detection distribution. In general these methods can identify threshold values that are to some

degree readily spotted by graphical inspection. Further more, for these cases where a value is identified,

the bias of the method reduces, but this comes with trade-off with higher standard errors.

A different situation to consider is where biases increase and standard errors decrease. Through this,

worse results are obtained, with less probability of escaping from them. However, this theoretically gives

opportunity to correct for bias, since variability of the estimates are low. Unfortunately, this cannot be

done, due to the biases being dependent on the true value of the threshold value.

What can be seen in in short is that these methods do not improve much on visual inspection and cannot

accurately estimate less prominently defined threshold values.

10.2.3.5 Threshold estimation by Entire Magnitude Range (EMR) method

In order to consider the behaviour of the EMR method, Tables 10.14, 10.15 and 10.16 have been con-

structed to respectively display Mean-Squared Error (MSE), Bias and Standard Error values.
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Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p

in
g

ev
en

t
d

et
ec

ti
on

d
is

tr
ib

u
ti

o
n

b
y

E
x
p

.
V

a
lu

e

T
ru

e
th

re
sh

ol
d

va
lu

e
2 2.31 2.2 1.28 - 1.81 1.65 2.42 0.7 3.34 2.37 2.4 -

2.5 1.83 1.23 1.67 - 1.19 1.61 1.97 0.45 0.93 2.05 0.49 -
3 2.15 1.84 1.09 - 1.71 1.38 1.78 0.98 1.93 2.01 1.07 -

3.5 2.66 2.15 2.07 - 2.11 1.8 2.45 1.33 0.91 2.56 1.71 -
4 3.26 2.52 2.3 - - 2.36 3 1.42 0.69 3.22 3.25 -

V
ar

ia
n

ce

2 2.47 1.44 1.93 1.53 2.16 1.46 2.32 2.14 1.94 2.56 2.3 2.38
2.5 1.36 1.55 1.75 1.55 1.17 1.58 1.75 1.42 1.96 1.79 2.12 1.99
3 1.79 1.55 1.71 1.11 1.4 1.89 1.61 1.66 1.94 2.22 2.04 1.95

3.5 2.3 2.02 2.51 1.68 1.48 2.38 2.34 2.06 2.03 2.84 2.16 2.63
4 2.27 2.27 3.41 1.47 2.32 3.15 2.74 2.69 2.39 3.85 3.2 3.19

S
ke

w
n

es
s 2

NA NA

2.09 2.27 2.08 2.95 2.38 2.22
2.5 1.22 1.99 1.84 2.14 1.85 2.18
3 1.5 1.72 1.48 1.93 2.04 1.92

3.5 1.92 2.63 2.21 2.32 2.6 2.49
4 2.43 3.09 1.87 3.24 3.22 3.23

Table 10.14: MSE values of EMR method

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
in

g
ev

en
t

d
et

ec
ti

on
d
is

tr
ib

u
ti

on
b
y

E
x
p
.

V
al

u
e

T
ru

e
th

re
sh

ol
d

va
lu

e

2 0.37 0.47 0.34 - 0.33 0.38 0.61 0.2 0.98 0.53 0.8 -
2.5 -0.11 0.03 0.44 - 0.02 0.24 0.17 0.2 0.32 0.15 -0.12 -
3 -0.56 -0.1 0.26 - -0.01 0.05 -0.27 0.13 0.7 -0.52 -0.56 -

3.5 -1.08 -0.47 0.35 - -0.36 -0.19 -0.82 -0.07 0.44 -0.96 -0.82 -
4 -1.32 -1.08 0.03 - - -0.59 -1.16 -0.58 0.28 -1.21 -1.49 -

V
ar

ia
n
ce

2 0.66 0.29 0.27 0.47 0.51 0.1 0.6 0.59 0.43 0.75 0.61 0.51
2.5 0.2 0.18 0.01 0.51 0.05 -0.07 0.18 0.11 0.31 0.29 0.25 0.1
3 0.24 -0.17 -0.36 0.39 0.09 -0.33 -0.16 -0.11 -0.27 -0.8 -0.45 -0.53

3.5 0.16 -0.51 -0.68 0.64 -0.34 -0.85 -0.77 -0.55 -0.36 -1.48 -0.72 -1
4 -0.24 -0.69 -1.29 0.61 -0.74 -1.46 -1.01 -0.99 -1.01 -1.82 -1.28 -1.15

S
ke

w
n
es

s 2

NA NA

0.45 0.58 0.36 0.7 0.52 0.53
2.5 0.1 0.08 0.59 0.04 0.16 0.14
3 -0.1 -0.34 0 -0.67 -0.53 -0.47

3.5 -0.6 -0.87 -0.47 -0.82 -1.04 -0.87
4 -0.97 -1.08 -0.88 -1.52 -1.2 -1.18

Table 10.15: Bias values of MEMR method

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p

in
g

ev
en

t
d

et
ec

ti
on

d
is

tr
ib

u
ti

on
b
y

E
x
p

.
V

al
u

e

T
ru

e
th

re
sh

ol
d

va
lu

e

2 0.52 0.4 0.27 - 0.46 0.44 0.36 0.21 - 0.39 0.34 -
2.5 0.55 0.53 0.27 - 0.53 0.49 0.42 0.28 - 0.46 0.47 -
3 0.63 0.64 0.46 - 0.72 0.59 0.38 0.3 - 0.42 0.27 -

3.5 0.5 0.71 0.62 - 0.87 0.67 0.38 0.32 - 0.4 0.34 -
4 0.52 0.73 0.96 - - 0.64 0.39 0.32 - 0.41 0.72 -

V
ar

ia
n

ce

2 0.24 0.4 0.5 0.21 0.5 0.53 0.33 0.33 0.36 0.41 0.29 0.41
2.5 0.28 0.51 0.54 0.12 0.5 0.69 0.39 0.3 0.52 0.28 0.53 0.44
3 0.48 0.59 0.65 0.08 0.66 0.83 0.34 0.42 0.33 0.23 0.22 0.48

3.5 0.43 0.63 0.74 0.08 0.84 0.85 0.34 0.4 0.35 0.59 0.43 0.37
4 0.68 0.74 0.86 0.14 0.76 0.75 0.35 0.38 0.42 0.3 0.39 0.44

S
ke

w
n

es
s 2

NA NA

0.4 0.32 0.25 0.42 0.38 0.38
2.5 0.34 0.46 0.34 0.57 0.44 0.46
3 0.42 0.36 0.06 0.25 0.47 0.38

3.5 0.37 0.37 0.28 0.55 0.36 0.41
4 0.41 0.38 0.1 0.59 0.43 0.36

Table 10.16: Standard error values of MEMR method
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1. Bias

(a) Biases are consistently negative.

2. mc as factor

(a) MSE values increase for increasing mc.

(b) Absolute biases increase for increasing mc.

(c) Standard error (SE) values

i. SE decreases for low expected values of the detection distribution as mc increases.

ii. SE values hump (increases, then ultimately decreases) for all other cases.

3. Expected value of detection distribution as factor

(a) MSE values decrease for increasing expected values.

(b) Absolute biases decrease sharply for increasing expected values.

(c) Standard error (SE) values

i. SE humped (increaseing, then ultimately decreasing) for small mc of Normal detection

distribution as expected values increase.

ii. SE humped for mid to large mc of Log-Normal detection distribution as expected values

increase.

iii. Otherwise, SE increases for increasing expected values

increases for increasing expected values for all, but low to mid valued mc thresholds of Log-

Normal detection distribution.

4. Variance of detection distribution as factor

(a) MSE values

i. Symmetric detection distributions : MSE generally increases as variance increases.

ii. Non-symmetric detection distributions : MSE generally humped (increasing, then de-

creasing) with decreases for larger variances.

(b) Bias values

i. Symmetric detection distributions : Absolute biases increase for increasing variance.

ii. Non-symmetric detection distributions : Bias values generally humped (increasing, then

decreasing )for increasing variances.

(c) Standard error values : Generally increasing for increasing variance values.

5. Skewness of detection distribution as factor

(a) MSE values : MSE value increase for increased skewness.
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(b) Bias values : Absolute biases increase for increased skewness.

(c) Standard error : SE reduces for increased skew.

Compared to previously discussed threshold estimation methods (GOF, MAXC and bVS) this method

yields an absolute expected biases of a smaller order. The sampling distribution of the EMR method

is more closely centred around the true value of the threshold than the previous methods. Having a

sampling distribution where the median is larger than the mean, is indicative of a positively skewed

distribution and shows over-estimation of the threshold is more likely. Absolute biases decrease for in-

creasing expected values up to an expected value of around 3.5, where after absolute biases increase

again. Error bounds completely converge for expected values of non-symmetric distributions with ex-

pected value greater than 3.

Compared to previous methods, estimates form the EMR method show a markable reduced bias for

differing variances of the detection distribution. The trend, however, still continues in that symmetric

distributions show decreasing bias (eventually becoming negative) for progressively larger variance val-

ues, whereas the non-symmetric distributions show steadily decreasing biases in absolute terms.

The skewness of the non-symmetric impact the bias of the estimation method very slightly. Greater

positively skewed distributions yield slightly smaller absolute biases. For the Log-Normal detection

probability the biases are of a considerably lower order as that for the Pareto type II distribution, where

the previous maximum of −2 is attained by the progression of the 95% bias quantile.

A useful consequence of this method is that the β and nuisance parameters (µ and σ from Normal dis-

tribution) of the detection distribution is estimated from the data. The situation where the simulated

data incorporates a detection probability modelled by a cumulative Normal distribution is considered,

as this represents ideal circumstances for recovery of the correct parameters. The bias of estimates is

plotted against expected values and variances of the detection distribution in Figures 10.1, a and b with

a summary of the distribution of biases given in Table 10.17. Although the EMR method has proven

to be very robust for the determination of threshold values, analysis of biases shows that improvements

are possible. Biases for the β and σ parameters remain stable, whereas biases for the µ parameter vary

significantly. These biases do decrease for increasing expected values, but indicate the possibility of a

very large maximum. Furthermore, as the variance of the Normal distribution is not dependent on µ the

systematic increase in bias for increasing variance values represents unwanted behaviour. Considering

the importance of the β value, the biases present in Table 10.17 is worrying. This particularly since β

has been kept constant through the investigation.
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Figure 10.1: Biases of parameter estimates obtained through EMR method where true detection
probability is modelled by the cumulative Normal distribution.

Parameter Mean 5% Quantile Median 95% Quantile

β 3.21 -0.39 0.15 15.16
µ 34.30 -1.95 3.57 188.26
σ 1.49 -1.17 0.20 7.07

Table 10.17: Table of summary statistics on the distribution of biases of estimates of parameters. Es-
timates are through EMR method utilizing maximum likelihood estimation where true detection proba-
bility is modelled by cumulative Normal distribution.

In general, the EMR method shows considerable improvement over the previously investigated methods

when considering absolute biases, error bounds and the distribution of biases around 0. A strength of

this method is that it can successfully estimate detection thresholds that are not as prominently defined

as that needed by previous methods for accurate estimates. Expected values of the detection distribution

as low as 0, for the Log-Normal distribution, can be handled by the method. In general, biases are of

small order for varying variances. The combination of these factors shows that this estimation method

is relatively robust.

10.2.3.6 Threshold estimation by Median Based Assessment of the

Segment-Slope (MBASS) method

In order to consider the behaviour of the MBASS method, Tables 10.18, 10.19 and 10.20 have been

constructed to respectively display Mean-Squared Error (MSE), Bias and Standard Error values.
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Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p

in
g

ev
en

t
d

et
ec

ti
on

d
is

tr
ib

u
ti

o
n

b
y

E
x
p

.
V

a
lu

e

T
ru

e
th

re
sh

ol
d

va
lu

e
2 1.42 1.29 0.89 - 1.43 1.15 1.33 0.61 0.13 1.33 0.86 -

2.5 1.48 1.52 1 - 1.65 1.59 1.27 0.63 0.23 1.36 0.89 -
3 1.51 1.78 1.66 - 1.95 2.12 1.21 0.72 0.68 1.38 0.83 -

3.5 1.55 1.94 2.46 - 2.48 2.77 1.26 0.96 1.36 1.41 1.14 -
4 1.62 1.96 2.92 - - 3.88 1.32 0.96 1.86 1.37 1.06 -

V
ar

ia
n

ce

2 0.7 1.17 1.62 0.65 1.41 1.75 1.12 1.2 1.28 1.25 1.28 1.33
2.5 0.81 1.42 1.67 0.94 1.93 1.91 1.11 1.12 1.21 1.38 1.37 1.34
3 1.04 1.83 2 1.29 2.16 2.65 1.1 1.08 1.2 1.11 1.38 1.38

3.5 1.68 2.02 2.27 2.18 2.99 2.92 1.18 1.24 1.38 1.34 1.39 1.41
4 1.97 2.14 2.45 3.56 4.2 3.85 1.29 1.28 1.34 0.95 1.31 1.4

S
ke

w
n

es
s 2

NA NA

0.88 1.44 1.32 1.38 1.26 1.36
2.5 0.93 1.28 1.28 1.44 1.32 1.36
3 0.99 1.26 1.19 1.38 1.34 1.4

3.5 1.23 1.27 1.03 1.41 1.42 1.37
4 1.39 1.28 1.38 1.25 1.46 1.26

Table 10.18: MSE values of MBASS method

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
in

g
ev

en
t

d
et

ec
ti

on
d
is

tr
ib

u
ti

on
b
y

E
x
p
.

V
al

u
e

T
ru

e
th

re
sh

ol
d

va
lu

e

2 0.72 0.55 0.31 - 0.61 0.53 0.74 0.14 0.14 0.69 0.05 -
2.5 0.26 0.22 0.16 - 0.31 0.33 0.23 -0.22 -0.02 0.24 -0.39 -
3 -0.21 -0.16 -0.07 - 0 0.05 -0.27 -0.63 -0.18 -0.25 -0.84 -

3.5 -0.67 -0.56 -0.32 - -0.35 -0.21 -0.77 -1.09 -0.4 -0.76 -1.32 -
4 -1.13 -1.03 -0.69 - - -0.45 -1.25 -1.59 -0.73 -1.24 -1.79 -

V
ar

ia
n
ce

2 0.28 0.53 0.72 0.29 0.63 0.75 0.62 0.63 0.66 0.63 0.6 0.7
2.5 0.02 0.23 0.36 0.14 0.38 0.42 0.14 0.16 0.16 0.2 0.2 0.24
3 -0.25 -0.12 -0.07 -0.04 0.05 0.1 -0.32 -0.32 -0.28 -0.32 -0.32 -0.25

3.5 -0.54 -0.52 -0.47 -0.15 -0.25 -0.29 -0.81 -0.76 -0.8 -0.9 -0.81 -0.75
4 -0.93 -0.99 -0.91 -0.21 -0.5 -0.6 -1.27 -1.3 -1.26 -1.36 -1.3 -1.24

S
ke

w
n
es

s 2

NA NA

0.35 0.79 0.77 0.62 0.67 0.7
2.5 -0.04 0.25 0.28 0.15 0.23 0.23
3 -0.47 -0.22 -0.23 -0.33 -0.28 -0.24

3.5 -0.91 -0.74 -0.68 -0.84 -0.77 -0.77
4 -1.38 -1.21 -1.21 -1.28 -1.26 -1.25

Table 10.19: Bias values of MBASS method

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p

in
g

ev
en

t
d

et
ec

ti
on

d
is

tr
ib

u
ti

on
b
y

E
x
p

.
V

al
u

e

T
ru

e
th

re
sh

ol
d

va
lu

e

2 0.57 0.6 0.58 - 0.65 0.65 0.53 0.52 0.35 0.57 0.6 -
2.5 0.59 0.64 0.6 - 0.65 0.66 0.54 0.52 0.19 0.57 0.7 -
3 0.6 0.68 0.66 - 0.71 0.71 0.53 0.54 0.24 0.56 0.68 -

3.5 0.58 0.72 0.75 - 0.79 0.77 0.54 0.56 0.32 0.57 0.68 -
4 0.57 0.72 0.82 - - 0.82 0.54 0.59 0.34 0.56 0.69 -

V
ar

ia
n

ce

2 0.48 0.62 0.63 0.59 0.69 0.65 0.51 0.51 0.55 0.53 0.58 0.56
2.5 0.49 0.66 0.65 0.57 0.73 0.65 0.52 0.53 0.55 0.56 0.58 0.57
3 0.53 0.7 0.69 0.59 0.78 0.73 0.51 0.54 0.53 0.59 0.58 0.56

3.5 0.56 0.76 0.72 0.68 0.86 0.76 0.52 0.55 0.55 0.62 0.57 0.57
4 0.58 0.8 0.73 0.73 0.94 0.77 0.52 0.57 0.57 0.53 0.59 0.56

S
ke

w
n

es
s 2

NA NA

0.56 0.5 0.48 0.57 0.56 0.57
2.5 0.56 0.52 0.48 0.62 0.57 0.57
3 0.58 0.51 0.47 0.59 0.57 0.56

3.5 0.58 0.52 0.46 0.6 0.57 0.58
4 0.59 0.51 0.48 0.58 0.57 0.57

Table 10.20: Standard error values of MBASS method
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When compared to estimation techniques with graphical basis, the MBASS method also shows improved

estimation capability. The method consistently underestimates the cases where the detection probability

is modelled by a Normal, Log-Normal and Pareto type II distribution, but over estimates the threshold

for the case of the Logistic distribution. The behaviour of expected biases grouped by expected value

of the detection distribution shows some peculiarities, e.g. biases increase for larger values of the skew

distributions, but, at least for the Log-Normal distribution, only up to a point. After this point biases

decrease for larger values of the expected value.

The sampling distribution of this estimation method is more closely centred around the true value of

the threshold than the graphical methods. Except for the case of the Pareto type II distribution, the

median and mean of the sampling distribution is consistently close. This is an indication of a symmetric

sampling distribution. The method also shows that absolute biases decrease for increasing expected

values, up to an expected value of around 3.5 from where it increases. For the case of the non-symmetric

distributions, error bounds completely converge for expected values greater than 3.

When analysed by variance, the method underestimates the threshold for all forms of the detection

distribution, except for the Logistic distribution, which it overestimates. For these groups, symmetric

distributions seem to have a much lower bias than for the skew distributions, which appear to have

systematic biases.

Varying skewness of the non-symmetric distributions minimally impact the bias, which appears to be

systematic, of the estimation method. The absolute systematic bias should be slightly greater for nega-

tively skewed distributions than for those with positive skew.

A striking difference of this method is the large error bounds on the estimates. This indicates an ex-

tremely larger variance for the estimator and although very accurate, will increase the MSE value. The

exception to this is the case where the detection distribution is modelled by the skew Log-Normal CDF

and where the expected value of this distribution is very high.

In general, the MBASS method shows considerable improvement over the GOF, MAXC and bVS methods

regarding bias. However, under certain circumstances, the error bounds of estimates might be excep-

tionally wide. The strength of this method is that it can successfully estimate detection thresholds that

are not as prominently defined as that needed by other methods. Increased variance of the detection

distribution translates into increased biases, but however, error bounds stay relatively constant. The

combination of these factors shows that this estimation method is relatively robust, while not being as

computationally intensive as parametric methods such as EMR and MITC.
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10.2.3.7 Threshold estimation by Moment Incorporating Threshold Compu-

tation (MITC) method

In order to consider the behaviour of the bVS method, Tables 10.21, 10.22 and 10.23 have been con-

structed to respectively display Mean-Squared Error (MSE), Bias and Standard Error values.

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p

in
g

ev
en

t
d

et
ec

ti
on

d
is

tr
ib

u
ti

on
b
y

E
x
p

.
V

al
u

e

T
ru

e
th

re
sh

ol
d

va
lu

e

2 1.29 1.57 1.49 - 1.61 1.41 1.38 1.42 1.51 1.29 1.84 -
2.5 0.59 0.24 0.06 - 0.14 0.1 0.84 0.26 0.03 0.84 0.54 -
3 0.86 0.46 0.16 - 0.29 0.31 1 0.55 0.12 1.03 0.84 -

3.5 1.59 1.09 0.59 - 0.8 0.74 1.67 1.21 0.47 1.66 1.55 -
4 2.92 2.31 1.17 - - 1.53 2.76 1.91 0.94 2.82 1.81 -

V
ar

ia
n

ce

2 2.12 1.46 0.85 1.92 1.15 1.51 1.46 1.35 1.18 0.84 1.33 1.34
2.5 0.25 0.22 0.37 0.03 0.14 0.19 0.75 0.6 0.83 0.58 0.75 0.88
3 0.46 0.39 0.57 0.04 0.34 0.6 0.9 0.84 1.09 0.79 1.15 1.01

3.5 0.89 0.93 1.36 0.06 0.84 1.43 1.61 1.62 1.38 1.18 1.57 1.7
4 1.7 1.87 2.61 0.11 2.08 2.67 2.59 2.62 2.88 2.81 2.53 2.88

S
ke

w
n

es
s 2

NA NA

1.31 1.42 1.53 1.05 1.41 1.23
2.5 0.42 0.92 0.88 0.57 0.72 1.04
3 0.65 0.88 1.16 0.9 1.06 1.01

3.5 1.37 1.66 1.79 1.53 1.68 1.64
4 2.38 2.74 2.84 2.52 2.81 2.82

Table 10.21: MSE values of MITC method

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
in

g
ev

en
t

d
et

ec
ti

on
d
is

tr
ib

u
ti

on
b
y

E
x
p
.

V
al

u
e

T
ru

e
th

re
sh

ol
d

va
lu

e

2 0.54 0.52 0.5 - 0.53 0.48 0.61 0.53 0.51 0.59 0.41 -
2.5 -0.01 -0.05 -0.02 - -0.06 -0.04 0.08 0.05 0.04 0.07 0.02 -
3 -0.51 -0.42 -0.15 - -0.32 -0.25 -0.43 -0.16 0.11 -0.44 -0.42 -

3.5 -1 -0.89 -0.44 - -0.69 -0.6 -0.93 -0.49 0.21 -0.94 -0.92 -
4 -1.47 -1.37 -0.82 - - -1.04 -1.36 -0.98 0.08 -1.42 -1.31 -

V
ar

ia
n
ce

2 0.61 0.5 0.47 0.57 0.47 0.48 0.61 0.56 0.57 0.6 0.58 0.58
2.5 0.01 -0.03 -0.05 0.01 -0.05 -0.1 0.07 0.07 0.11 0.04 0.06 0.07
3 -0.25 -0.35 -0.46 0.02 -0.26 -0.53 -0.38 -0.37 -0.35 -0.31 -0.43 -0.45

3.5 -0.56 -0.76 -0.96 -0.01 -0.66 -1.1 -0.85 -0.81 -0.8 -0.99 -0.94 -0.94
4 -0.95 -1.2 -1.45 -0.04 -1.29 -1.66 -1.27 -1.29 -1.32 -1.48 -1.41 -1.41

S
ke

w
n
es

s 2

NA NA

0.53 0.63 0.64 0.64 0.58 0.57
2.5 0.03 0.08 0.17 0.03 0.05 0.1
3 -0.32 -0.44 -0.38 -0.44 -0.44 -0.43

3.5 -0.69 -0.93 -0.87 -0.95 -0.94 -0.93
4 -1.18 -1.33 -1.38 -1.46 -1.42 -1.39

Table 10.22: Bias values of MITC method

105

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
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g

ev
en

t
d
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on

d
is
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u
ti

o
n

b
y

E
x
p

.
V

a
lu

e

T
ru

e
th

re
sh

ol
d

va
lu

e
2 0.61 0.64 0.62 - 0.65 0.63 0.62 0.69 0.65 0.6 0.57 -

2.5 0.52 0.35 0.2 - 0.3 0.24 0.59 0.35 0.1 0.58 0.44 -
3 0.53 0.37 0.3 - 0.33 0.36 0.6 0.47 0.22 0.59 0.49 -

3.5 0.56 0.42 0.39 - 0.41 0.45 0.59 0.53 0.36 0.57 0.49 -
4 0.58 0.46 0.46 - - 0.47 0.63 0.57 0.62 0.6 0.56 -

V
ar

ia
n

ce

2 0.7 0.62 0.56 0.7 0.61 0.61 0.65 0.62 0.6 0.62 0.61 0.6
2.5 0.33 0.36 0.41 0.14 0.26 0.35 0.54 0.55 0.57 0.53 0.54 0.6
3 0.37 0.37 0.46 0.14 0.4 0.41 0.57 0.56 0.6 0.58 0.61 0.57

3.5 0.39 0.44 0.53 0.2 0.55 0.48 0.58 0.57 0.6 0.51 0.55 0.58
4 0.44 0.49 0.56 0.28 0.62 0.44 0.63 0.62 0.59 0.5 0.58 0.61

S
ke

w
n

es
s 2

NA NA

0.64 0.65 0.64 0.66 0.62 0.57
2.5 0.46 0.58 0.58 0.55 0.57 0.61
3 0.49 0.58 0.62 0.57 0.58 0.59

3.5 0.53 0.59 0.62 0.54 0.57 0.58
4 0.56 0.68 0.57 0.53 0.58 0.63

Table 10.23: Standard error values of MITC method

This method also shows superior estimation capability when compared to the previously discussed thresh-

old estimation techniques (GOF, MAXC and bVS). For the cases where the detection probability is

modelled by the Normal and Pareto type II CDFs, the method consistently underestimates the true

value of the threshold. As for the situation where the detection probability is modelled by the Logistic

and Log-Normal CDFs the sign of the bias is reversed at a certain point. Skewness of the sampling

distribution is impacted by the expected value of the detection distribution.

The sampling distribution of this estimation method is more closely centred around the true value of

the threshold than the graphical methods. Considering the relation of the median to the mean of the

sampling distribution, the sampling distribution appears to be near symmetric. Also, absolute biases

decrease for increasing expected values. Non-symmetric distributions detection probability distributions

show that the error bounds completely converge for expected values greater than 3.

When analysed by variance of detection distribution, the method underestimates the threshold for all

forms of the detection distribution, except for the Logistic distribution, which it overestimates. For these

groups, symmetric distributions seem to have a much lower bias than for the skew distributions, which

show to have systematic biases.

When grouped by skewness of the detection distribution, varying skewness of the non-symmetric dis-

tributions minimally impact the bias of estimates and it appears that systematic bias is present. It

does however appear that the absolute systematic bias should be slightly greater for negatively skewed

distributions, when compared to those with positive skew.

Error bounds on are on par with those seen from the MBASS method, which are much larger than

for other methods This indicates a larger variance for the estimator and will increase the MSE value.

106

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



The exception to this is the case where the detection distribution is modelled by the skew Log-Normal

distribution and where the expected value of this distribution is very high.

Comparable to the MEMR method, a useful by-product of the MITC scheme is that estimates of beta

and nuisance parameters (µ and σ of Normal distribution) must be obtained. The ideal situation, where

the simulated data incorporates a detection probability modelled by a Normal CDF is considered. The

progression of biases as a function of expected value and variance of the detection distribution is illus-

trated in Figures 10.2 a and b with a summary of the distribution of biases given in Table 10.24. As in

the case of the EMR method, biases for the β and σ parameters remain stable when compared to the µ

parameter. In this case biases for the parameter µ increase for increasing expected values, i.e. increasing

µ. However, the expected bias is much lower than the estimates obtained through the EMR method.

Also, expected biases of the µ parameter increase for increasing variances. Comparable to results from

the EMR method, this represents unwanted behaviour. Biases for estimates of the β parameter (Table

10.24) is considerably lower and the distribution thereof much more symmetric about the mean than the

case of the EMR method. The importance of the β parameter affirms the usefulness of this method in

estimating the complete set of distributional parameters.
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Figure 10.2: Biases of parameter estimates obtained through MITC scheme where true detection
probability is modelled by the cumulative Normal distribution.
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Parameter Mean 5% Quantile Median 95% Quantile

β -0.03 -0.51 -0.04 0.41
µ 5.25 -2.98 0.10 36.88
σ 0.46 -1.49 -0.04 4.52

Table 10.24: Table of summary statistics on the distribution of biases of estimates of parameters.
Estimates are through MITC scheme utilizing maximum likelihood estimation where true detection
probability is modelled by cumulative Normal distribution.

The MITC scheme can be seen as a general improvement over the GOF, MAXC and bVS methods.

Performance is comparable to that of the EMR method due to the incorporation of maximum likelihood

estimation. A comparable strength of this method is that it can successfully estimate detection thresholds

that are not as prominently defined as those needed by graphical methods. It is proposed that the

technique of establishing maximum likelihood estimates be investigated to better the method.

10.2.3.8 Comment on EMR, MBASS and MITC estimation methods

As can be seen by the preceding analysis of the results, biases are positive in the following cases :

1. For smaller threshold values, which can be seen in general.

2. Large threshold values with large expected value of detection distribution

3. Small threshold values with high variance of detection distribution

4. Large threshold values with small variance of detection distribution

These methods will be seen as acting cautiously (obtaining an estimate with a positive bias) when

1. Maximising the quantity of complete data with respect to incomplete data

2. Expected value of detection distribution should be in vicinity of the threshold value

3. Sensitivity of detection probability (variance) is inversely related to the threshold value i.e. Small

threshold values, with detection capabilities very stable, or High threshold values, with sudden

changes present

10.2.4 Findings on stated study objective questions

In this section some of the fundamental questions relating to threshold estimation efficacy are addressed.

These questions have been listed in the section relating to the objectives of the current study (Section

3, p. 9).

The questions will be answered based on a consideration of the MSE of estimates from the various meth-

ods, while taking the constituent components, i.e. bias and variance of the estimates into account.
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The most appropriate estimation method to use under varying circumstances . . .

1. Given a dataset with a specific form of the detection probability

No value of the detection threshold, or values of the lower order moments of the RV whose CDF is

attributable to the detection probability is specified. Therefore the Table 10.25 can be constructed

by interpreting the bottom block of aggregated results in Table E.10 in the appendix.

Cumulative distribution function of RV attributed to detection probability
Normal Logistic Log-Normal Pareto type II

Estimation

MITC (1.075) MITC (0.821) MBASS (1.186) MBASS (1.358)

method

MBASS (1.670) GOF (0.950) MITC (1.493) MITC (1.527)
GOF (1.871) EMR (1.713) EMR (2.099) EMR (2.424)
EMR (2.021) bVS (1.780) GOF (3.197) GOF (3.645)
bVS (2.456) MBASS (2.099) bVS (3.572) MAXC (4.011)
MAXC (3.188) MAXC (2.725) MAXC (3.582) bVS (4.066)

Table 10.25: Table of threshold estimation methods sorted in descending order of appropriateness
(based on MSE values), according to functional form of event detection probability.

It can therefore be seen that the MITC scheme outperforms all methods for the cases where the

detection probability is modelled by a cumulative Normal - or cumulative Logistic distribution.

Furthermore, the MBASS method consistently outperforms all other methods for the case where

the detection probability is modelled by a cumulative Log-Normal - or cumulative Pareto type II

distribution. What is interesting to note is that the MITC method outperforms for symmetric

detection probability distributions, whereas the MBASS method outperforms for cases of a non-

symmetric detection distribution. It should be noted however, that for the case where the detection

probability is modelled by a cumulative Logistic distribution, the MBASS method is ranked as the

5th most effective method, whereas the lowest ranking that the MITC method is awarded is 2nd

best over all functional forms of the event detection probability.

The MAXC estimation method is awarded the lowest ranking in all but one situation, the case

where the detection probability is modelled by the cumulative Pareto type II distribution, where

it is ranked 2nd lowest.

2. Given a dataset with a specific level of completeness

No assumption is made regarding the form or characteristics of the detection probability. Therefore

data has been aggregated only by the true detection threshold as well as threshold estimation

method and stated in Table 10.26 below.
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Value of detection threshold
2 2.5 3 3.5 4

Estimation

GOF (0.43) MITC (0.50) MITC (0.72) MITC (1.33) MBASS (1.91)

method

bVS (0.51) GOF (1.07) MBASS (1.50) MBASS (1.72) MITC (2.41)
MAXC (0.66) bVS (1.30) EMR (1.73) EMR (2.27) EMR (2.79)
MBASS (1.24) MBASS (1.34) GOF (2.12) GOF (3.73) GOF (5.79)
MITC (1.42) MAXC (1.63) bVS (2.63) bVS (4.50) bVS (6.91)
EMR (2.07) EMR (1.69) MAXC (3.06) MAXC (4.96) MAXC (7.36)

Table 10.26: Table of threshold estimation methods sorted in descending order of appropriateness
(based on MSE values), according to the true value of the detection threshold.

As can be seen when MSE values are compared, the MITC method offers superior estimation results

for the middle ranged values of the true detection threshold. For the case where the true detection

threshold has a value of 2, the GOF method has the lowest MSE and for the case of a detection

threshold of 4 the MBASS method shows superior performance. This indicates the relative strength

of these two methods when smaller amounts of data are available of a specific side of the detection

threshold. Furthermore, the high MSE value of the GOF method for for higher values of the true

detection threshold illustrates the relatively low ranking of the method in Question 1, as discussed

above.

3. Given a dataset with unknown characteristics

This question requires that all available data be aggregated by threshold estimation method. There-

fore the following table has been constructed :

Estimation
MSE

method

bVS 3.08
EMR 2.10
GOF 2.55
MAXC 3.44
MBASS 1.53
MITC 1.27

Table 10.27: Tabulation of aggregated MSE values for different threshold estimation procedures.

Accordingly, it can be seen that based on all available data the MITC and MBASS methods

outperform the other threshold estimation methods. Therefore, if no other data is available, such

as expert opinion, it is advised to estimate the detection threshold by these methods.

10.3 Results for magnitude of completeness

modelled as implicit detection threshold

Being that a detection threshold has been implicitly included in the event distribution, direct calculation

of biases in threshold estimation is not possible. For this reason data will be analysed by the expected

number of events not detected as a result of the relevant threshold estimate, m̂c. If NG(m) represents
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the number of events, greater than magnitude m, that are generated in a given space-time volume, the

following result can be derived :

NG(m) = NG(mmin)F̄MG
(m) = NG(mmin)

∫ mmax

m

fMG
(m) dm

= NG(mmin)

∫ mmax

m

fMG
(m) (1− P [MG ∈ D|MG = m] + P [MG ∈ D|MG = m]) dm

= NG(mmin)

∫ mmax

m

fMG
(m)P [MG ∈ D|MG = m] dm

+NG(mmin)

∫ mmax

m

fMG
(m) (1− P [MG ∈ D|MG = m]) dm

= ND(m) +NDC (m) (10.9)

where ND(m) and NDC (m) is, respectfully, the total number of events of magnitude m and larger that

have been detected and otherwise not been detected, in a given space-time volume. When the expected

total number of undetected events, larger than m, is expressed as a percentage of the expected number

of events with magnitude greater than m, the following metric is obtained :

Expected percentage of undetected events greater or equal to m

=
NDC (m)

NG(m)

=
NG(mmin)

∫mmax
m

fMG
(m) (1− P [MG ∈ D|MG = m]) dm

NG(mmin)F̄GM (m)

=

∫mmax
m

fMG
(m) (1− P [MG ∈ D|MG = m]) dm

F̄GM (m)

(10.10)

Per definition, for any value of MG > mc the probability P [MG ∈ D|MG = m] must be equal to one and

therefore the expected percentage of undetected events greater than m must be 0 for all m > mc.

10.3.1 Threshold estimation by Goodness of fit (GOF) method

The following discussion pertains to the results illustrated in Figures E.32 and E.33 of the Section “Es-

timated proportion of events not detected” in appendix D.1.1.2 (p. 182 & p. 183) as well as Table E.11

(p. 195).

When grouped by expected value of the detection distribution, it can be seen that the percentage of

undetected events quickly increases for increasing expected values, except for the case where the proba-

bility is modelled by the Log-Normal distribution, where it seems that the percentage of missed events

is bound from above at the 0.42 level.
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Analysis by variance yields a striking difference between the distributions that are symmetric and those

that are not. For non-symmetric distributions, the percentage of missed events stay bounded up to the

0.24 mark, while the figure quickly grows for symmetric distributions, reaching the 0.85 mark in the case

of the logistic distribution.

For the non-symmetric distributions, it appears as if the percentage of missed events is slightly higher

for positively skewed distributions than for negative distributions.

In general, it can be seen that the method produces a vastly varying percentage of completeness, ranging

anywhere between 0.2 and 0.85 depending on the detection distribution.

10.3.2 Threshold estimation by Maximum curvature (MAXC)
method

The following discussion pertains to the results illustrated in Figures E.34 and E.35 of the Section “Es-

timated proportion of events not detected” in appendix D.1.1.2 (p. 184 & p. 184) as well as Table E.11

(p. 195).

As can be seen from the results of the MAXC method, when grouped by expected value of the detec-

tion distribution, the method tends to underestimate the level at which only a reasonable number of

events are missed. This percentage of events missed steadily increases for increasing expected values,

but is bounded from above in the case of the detection probability being modelled by the Log-Normal

distribution. In this case it can be seen that the percentage of missed events decrease after a certain point.

Percentage of missed events increase for increasing values of the variance of the detection distribution,

but at a considerably faster pace for symmetric distributions than for non-symmetric distributions. The

percentage for non-symmetric distributions is bound at 0.28, while symmetric distributions can attain

values as high as 0.9.

The percentage of missed events appears to decrease for increased skewness of the Log-Normal distri-

bution, as well as for positive skewness of the Pareto type II distribution. However, it appears that for

negative skew of the Pareto type II distribution the percentage of events missed is indeed lower.

In general, the level at which the MAXC method regards a data sample as complete can vary significantly

depending on the form of the detection distribution and shows that it is possible to grossly underestimate

the level at which reasonable completeness is attained.
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10.3.3 Threshold estimation by b-Value stability (bVS) method

The following discussion pertains to the results illustrated in Figures E.36 and E.37 of the Section “Es-

timated proportion of events not detected” in appendix D.1.1.2 (p. 186 & p. 187) as well as Table E.11

(p. 195).

Results for the bVS method show consistently that the greatest percentage of missed events is possible

when utilizing this method, with losses as high as 0.99 in the case of the Log-Normal distribution.

Results from the bVS method, when grouped by expected value of the detection distribution, show that

the expected percentage of events missed grows quickly for increasing expected values of the detection

distribution. Once again, the method tends to underestimate the level at which only a reasonable number

of events are missed. Not even in the case where the detection probability is modelled by the Log-Normal

distribution, is the maximum number of events missed bound to a reasonable level.

Percentage of missed events increase for increasing values of the variance of the detection distribution,

but at a considerably faster pace for symmetric distributions, including the Log-Normal distribution,

than for the non-symmetric Pareto type II distribution.

The percentage of missed events appears to decrease for increasing skewness of the Log-Normal, as well

as for positive skewness of the Pareto type II distribution. However, it appears that for negative skew of

the Pareto type II distribution the percentage of events missed is indeed lower.

In general, the level at which the bVS method regards a data sample as complete can vary significantly

depending on the form of the detection distribution and shows that it is possible to grossly underestimate

the level at which reasonable completeness is attained.

10.3.4 Threshold estimation by Modified Entire Magnitude Range
(MEMR) method

The following discussion pertains to the results illustrated in Figures E.38 and E.39 of the Section

“Estimated proportion of events not detected” in appendix D.1.1.2 (p. 188 & p. 189) as well as Table

E.11 (p. 195).

When grouped by expected value of the detection function, it can be seen that the percentage of un-

detected events quickly increases for increasing expected values. It does appear as if there is an upper

bound on the percentage of missed events for all distributions at a level of 0.67.

Analysis by variance yields a striking difference between the distributions that are symmetric and those
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that are not. For non-symmetric distributions, the percentage of missed events stay bounded with a

maximum value of 0.18, while the figure quickly grows for symmetric distributions, reaching the 0.7

mark for the logistic distribution and 0.53 for the Normal distribution.

For the non-symmetric distributions, the percentage of missed events is slightly higher for positively

skewed distributions than for those with negative skew.

In general, it can be seen that the EMR method produces levels of completeness that still vary vastly

depending on the detection distribution, but are bounded to a slightly lower level than the previous

graphical methods. The error bounds on the percentage of events missed can be seen to be much narrower

when compared to previous methods. This method appears to be quite robust when a soft detection

threshold is present in the data, since the method consistently yields some of the lowest percentages of

events lost as a result of estimation.

10.3.5 Threshold estimation by Median Based Assessment of
the Segment-Slope (MBASS) method

The following discussion pertains to the results illustrated in Figures E.40 and E.41 of the Section

“Estimated proportion of events not detected” in appendix D.1.1.2 (p. 190 & p. 191) as well as Table

E.11 (p. 195).

When grouped by expected value of the detection distribution, it can be seen that the percentage of

undetected events quickly increases for increasing expected values of the Normal distribution, as well

as for the Logistic distribution. However, only moderate increases are present for the non-symmetric

distributions, with the maximum percentage of lost events being 0.45 for the Pareto distribution.

Analysis by variance yields a striking difference between the distributions that are symmetric and those

that are not. For non-symmetric distributions, the percentage of missed events stay attain a maximum

of 0.16, while the figure quickly grows for symmetric distributions, reaching the 0.55 mark in the case of

the Logistic distribution.

For the non-symmetric distributions, it appears as if the percentage of missed events is slightly higher

for positively skewed distributions than for those with negative skew.

In general, it can be seen that the MBASS method produces levels of completeness that still vary

vastly depending on the detection distribution, but are bounded to a slightly lower level than most of

the previous graphical methods. As is the case when estimating sharp magnitude thresholds, the error

bounds on the percentage of events missed are very large when compared to other methods. This method

consistently produces threshold estimates that result in some of the lowest percentage of events lost.
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10.3.6 Threshold estimation by Moment Incorporating Thresh-
old Computation (MITC) method

The following discussion pertains to the results illustrated in Figures E.42 and E.43 of the Section

“Estimated proportion of events not detected” in appendix D.1.1.2 (p. 192 & p. 193) as well as Table

E.11 (p. 195).

When grouped by expected value of the detection function, it can be seen that the percentage of un-

detected events quickly increases for increasing expected values. A maximum percentage of undetected

events can be seen to be 0.9 in the case of a Logistic distribution.

Analysis by variance yields a striking difference between the distributions that are symmetric and those

that are not. For non-symmetric distributions, the percentage of missed events stay bounded well below

the 0.2 mark, while the figure quickly grows for symmetric distributions, reaching the 0.72 mark in the

case of the logistic distribution.

For the non-symmetric distributions, it appears as if the percentage of missed events is slightly higher

for positively skewed distributions than for negatively skewed distributions.

In general, it can be seen that the MITC method produces levels of completeness that vary vastly

depending on the detection distribution. The method is ranked at the top of the bottom half of preferable

soft threshold estimation methods. This should however not be so unexpected since the method is

mathematically constructed around the premise of a sharp detection threshold. Therefore it is not

advised that this method be used to gauge the completeness of the this type of sample.

115

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



11 Comparitive evaluation of MITC scheme
for real-world data

To gauge the efficacy of the newly derived MITC scheme, the threshold of complete reporting will be

estimated for real-world earthquake data.

The datasets to be used have also been reviewed by Woessner and Wiemer in their 2005 comparison

study [60] and their description of the data is as follows:

Catalogue 1 Regional Catalogue : A subset of the Earthquake Catalogue of Switzerland (ECOS) of

the Swiss Seismological Service (SSS) in the southern province Wallis for the period 1992-2002.

Catalogue 2 Volcanic region: A subset of the earthquake catalogue maintained by the National Re-

search Institute for Earthquake Science and Disaster Prevention (NIED). The subset spans the

small volcanic region in the Kanto province, Japan, for the period 1992-2002.

The restrictions placed on the data to be extracted from the catalogues is described in Table 11.1.

Date Longitude Latitude Magnitude
Number of

Starting Ending Starting Ending Minimum Maximum
events

Start End Point Point Point Point Included Recorded

Catalogue 1 1992/01/13 2002/12/28 6.8 E 8.4 E 45.9 N 46.65 N 0.7 4.6 988
Catalogue 2 1992/01/01 2000/12/28 138.95 E 139.35 E 34.8 N 35.05 N 0 5.1 30,882

Table 11.1: Restrictions placed on data to be extracted from catalogues. Subset of catalogue to be
used for estimation of detection threshold.

Results for Catalogue 1

Estimation
Sampling Distribution

method
m̂c Expected Standard Quantiles

Value Deviation 0% 5% 50% 95% 100%

GOF 1.85 1.92 0.31 1.35 1.55 1.85 2.35 3.25
MAXC 1.45 1.41 0.07 1.25 1.35 1.45 1.45 1.75

bVS 1.30 1.38 0.11 1.30 1.30 1.30 1.50 2.00
EMR 1.90 1.89 0.03 1.80 1.80 1.90 1.90 1.90

MBASS 1.60 1.44 0.17 1.30 1.30 1.40 1.80 3.00
MITC 1.90 2.13 0.46 1.75 1.80 1.90 2.97 4.50

Table 11.2: Results for various methods used for estimating the detection threshold, mc, in catalogue
1 (Cat1).

Results for Catalogue 2
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Estimation
Sampling Distribution

method
m̂c Expected Standard Quantiles

Value Deviation 0% 5% 50% 95% 100%

GOF 4.05 2.98 0.56 2.25 2.25 2.75 4.05 4.75
MAXC 1.05 1.05 0.00 1.05 1.05 1.05 1.05 1.05

bVS 1.80 1.75 0.74 1.00 1.00 1.80 3.20 4.00
EMR 2.20 2.16 0.05 2.10 2.10 2.20 2.20 2.20

MBASS 1.40 1.44 0.12 1.00 1.30 1.40 1.60 1.80
MITC 1.70 1.70 0.01 1.60 1.70 1.70 1.70 1.70

Table 11.3: Results for various methods used for estimating the detection threshold, mc, in catalogue
2 (Cat2).

Considering the findings relating to question 3, as discussed in Section 3, the prudent approach would be

to estimate the threshold by considering the EMR, MBASS and MITC estimation results. Furthermore,

by the analysis in Section 10.2.3, the value of a threshold can be determined through simultaneous con-

sideration of the estimation results. Due to poor performance of the GOF, MAXC and bVS methods,

the relevant estimation results will only be shown for illustrative purposes, but will be excluded from

further considerations.

Catalogue 1 : In general, the MBASS method shows a very small level of bias and through the previous

discussion, is seen as a truly robust estimation method. However in this case the MBASS estimate of the

threshold agrees with those of the graphical methods, which tend to grossly underestimate the value of

the threshold. Furthermore, it can be seen that the EMR and MITC estimates agree and carry weight.

The estimated value, erring on the side of caution might be to estimate the threshold within the interval

[1.44; 2.36]. This is one standard deviation above and below the MITC estimate.

Catalogue 2 : The picture here is much less clear on how to interpret, since no 2 methods are in

agreement. The MBASS method yields an estimate playing to its strength, namely an estimate that is

not in the mid-values. Therefore MBASS estimates the threshold to be within the interval [1.22; 1.56]

(One standard deviation above and below the MBASS estimate). However, the MITC estimate has a

very low standard deviation, yielding an estimate within the interval [1.69; 1.71] (One standard deviation

above and below the MITC estimate). A conservative estimate might be in the interval [1.22; 1.71], since

the intervals of the MBASS and MITC methods do not overlap.
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12 Threshold estimation in operational risk
data

An operational risk dataset of the ORX Association (www.orx.org) has been utilized in a recent study

relating to modelling of losses [57]. This dataset has also been obtained and will aid in the demonstra-

tion of establishing threshold values. This operational risk dataset can be obtained by contacting the

administrator of the ORX Association website.

As per the description given in the original study, the dataset consists of 1 178 operational risk events

that have been publicly reported since 1974. For the current investigation, the only information to be

used is the stated loss amount in GBP of the events. A distribution of these losses is shown in Figure

12.1 with a summary given in Table 12.1.
Histogram of Gross Losses in operational risk dataset
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Figure 12.1: Histogram of operational loss amounts in the considered operational risk database [57].
Amounts are stated in GBP.

Minimum 1st Quantile Median Mean 3rd Quantile Maximum

60 1 200 000 7 880 000 76 840 000 47 170 000 1 900 000 000

Table 12.1: Summary of losses encountered in the considered operational risk dataset. Amounts stated
in GBP

As previously referenced, loss data is typically modelled by a power-law, such as that described by a

Pareto distribution. For this investigation the Generalized Pareto distribution is chosen, which has a

PDF and CDF of the following forms, respectively
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fMG
(m) =

1

β

(
1 +

α (m− γ)

β

)− 1
α−1

(12.1)

FMG
(m) =

1−
(

1 + α(m−γ)
β

)− 1
α

for α 6= 0

1− exp
(
−m−γβ

)
for α = 0

(12.2)

An analogous detected severity distribution can be derived for operational risk data that is similar to the

detected magnitude distribution for earthquake data. This derivation is based on (8.9) on page 26. In

this case the cumulative Normal distribution function has been chosen as the detection probability, i.e.

P [MG ∈ D|{MG = m} ∩ {MG < mc}] = ΦT (zm). Where zm =
m− µ
σ

and the superscript T indicates

that the Normal distribution is truncated at the point mc. From this the detected severity distribution

can be expressed as :

fMD
= CNorm ·

{
fMG

(m) · ΦT (zm) if mmin ≤ m < mc

fMG
(m) if mc ≤ m ≤ mmax

(12.3)

For the current investigation γ = mmin = 0, α 6= 0 and mmax = 1 900 000 000. The boundaries of the

distribution remain to be justified and are open to scrutiny.

Based on the findings throughout this investigation, it has been decided that the threshold estimation

methods with graphical backgrounds will not be used to estimate the threshold of complete report-

ing. Furthermore, the MBASS method shows complications in that the nuisance parameters of the

distribution explicitly enter in the calculation of segment slopes. It is left for further investigations to

establish consistent manners of incorporating estimates of these parameters when calculating segment

slopes. Biases in the nuisance parameter estimates of the EMR method have also lead to this method

being excluded from consideration. Therefore, a MITC estimation scheme has been derived, which is

analogous to that obtained for the exponential distribution.

A key difference in the current implementation of the estimation scheme is that a heavy reliance has

been put on numerical integration. For this reason, as well as the magnitude of events to be directly

entered into special functions, such as the CDF of the Normal distribution, numerical volatilities have

been noted. Carrying forward it is proposed that investigation into optimization schemes be undertaken

with specific applicability to the problem at hand. Bootstrapping of the estimates therefore also pre-

sented issues of convergence of results and was therefore not carried out at this point in time.

However, the following estimates have been obtained after empirical establishment of suitable conver-

gence criteria when examining the entire dataset : m̂c = 87, 357, 708; β̂ = 4, 059, 933; α̂ = 1.361;

µ̂ = 13, 745, 228 and σ̂ = 19, 750, 341.
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Figure 12.2 shows a histogram of the operational loss events with values greater than the estimated

level of complete reporting, m̂c. Furthermore, Figures 12.3 and 12.4a to 12.4d display the progression of

estimated parameters as the threshold converges to the end estimation result of m̂c = 87, 357, 708. These

progressions differ greatly from those encountered for previous MITC implementations, which motivate

the scrutinization of numerical techniques and computational stability.
Histogram of operational losses above threshold of completeness 

 Losses specified in GBP

Value of operational losses

F
re

qu
en

cy

0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09
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Figure 12.2: Histogram of operational risk data with event losses greater than the estimated threshold
of completeness.
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Figure 12.3: Graphical representation of (9.18) that must be solved for 0 in order to estimate threshold
of detection mc as well as nuisance parameters of detected severity distribution.
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Figure 12.4: Maximum likelihood estimation of nuisance parameters of observed magnitude distribution
for varying detection threshold values (mc). Dotted line indicates the value of m̂c as obtained via MITC.
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13 Conclusion

13.1 Findings on methodology

1. Soft detection threshold

As displayed through this study, in circumstances where the process of data destruction acts upon

data over the entire support of the random variable, modelling the data by a sharp-detection

threshold model will be a misspecification. Hence, utilizing sharp detection threshold estimation

techniques on such data samples, leads to estimates of completeness that generally warrant concern.

In such circumstances, all data should be retained and parameters estimated for soft-detection

threshold distributions. However, it should be stated that the EMR and MBASS techniques show

reasonable promise in estimating a magnitude cut-off for complete reporting in such data.

2. Sharp detection threshold

Based on the results obtained the more recent techniques of threshold estimation (EMR, MBASS

and MITC) offer superior performance to the techniques with graphical background. Moving

forward, it is recommended that methods with a higher degree of mathematical / statistical back-

ground be utilized. This suggestion is based on consideration of the MSE values and progression

of constituent components, i.e. the bias and variance of the estimator. Through the simultaneous

consideration of these factors a relative picture of the methods tendency to over- / underestimate

the value of the threshold can be constructed.

Based on the relatively small MSE values, the MITC scheme and MBASS method show promise as

two of the more robust threshold estimation methods. These findings relate to various functional

forms of the detection probability as well as values of the detection threshold. An alternative to

be suggested is that the threshold estimation methods be used as a battery of tests to further the

understanding of specific detection thresholds in data. From such a point, informed decisions can

be made as to the value of a threshold. As illustration, such a deduction can be seen in the previous

section.

3. Operational loss threshold

Preliminary investigation into the considered dataset of operational losses, shows that the model

has indicated a possible threshold value. This enables a researcher to confidently continue with

either an entirely complete dataset (with a subset of loss events with values greater than the

indicated threshold), or to develop and fit modified models that incorporates all data and makes

adjustments for data above and below the threshold. It has been found that reasonable results

have been obtained when assuming a Normal CDF as detection probability, as has been the case

for the considered exponentially distributed data.
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13.2 Future work to be done

1. Operational risk data analysis

An in-depth investigation of the possible threshold inducing causes must be undertaken to better

understand the process of data destruction. This will enable eventual modelling of detected data.

2. Justify the use of detection probability models

For earthquake and operational risk data it must be seen if detection based models offer an improved

fit to observed data.

3. Derive metric to establish statistical significance of detection threshold

Apart from the MBASS method, none of the previously discussed methods include a method to

gauge whether the estimated threshold of completeness contributes significantly to the analysed

dataset. Therefore a general measure must be derived to ascertain whether it is advisable to

incorporate a detection based model, or continue with a model assuming complete reporting.

4. Investigation of optimization methods used for MLE estimates

Due to the biases obtained from nuisance parameter estimation for the EMR and MITC methods, it

is proposed that the optimization methods be scrutinized by which maximum likelihood estimates

are obtained. A particular investigation into reformulation of the distributions with orthogonal

parameters can yield greater efficiency when optimizing through more accurate estimation results

and, possibly, reduced computation time. Furthermore, to aid in future work on this subject partial

derivatives have been obtained for the maximum likelihood function of the detected magnitude

distribution where the detection probability is modelled by a cumulative Normal distribution.

These equations can be found in appendix F (p. 196).

5. Extension of estimation methods to include various forms of detection distribution

It has been shown that when incorporating the CDF of a Normal random variable in the MITC and

EMR methods, relatively robust estimation methods are obtained. However, both of these methods

can be reworked so as to incorporate various other functional forms of the detection probability.

Such an investigation could yield interesting results pertaining to the biases and variability of

resulting estimates.

6. Combining estimation techniques through stacking

As has been proposed, the results from the various threshold estimation techniques can be seen as

a battery of tests. This idea can be furthered by combining the more efficient estimation techniques

through a process of stacking.

7. Threshold estimation of Pareto type data

It can be seen that such threshold estimation holds considerable challenges not encountered in

exponentially distributed data. However, threshold estimates have been obtained and further work
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to be done on this subject must focus on refining of results. The validity of the Normal CDF as

a detection probability must also be scrutinized. Furthermore, it is proposed that non-parametric

methods, such as the MBASS method be adapted to take account of the Pareto distribution. This

will have the obvious consequence of not being as computationally intensive while avoiding potential

numerical instabilities during the estimation process.
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Appendicies

Appendix A :

Formulation of detected magnitude distribution

Before continuing it is worth mentioning the following general result:

Lemma A.1 By repeatedly utilizing the definition of conditional probability for general events A,B as

well as C and the complementary event CC , P [A|B] = P [A∩B]
P [B] , the following result can be derived

P [A ∩B ∩ C] + P [A ∩B ∩ Cc]
P [B]

=
P [A|B ∩ C]P [B ∩ C] + P [A|B ∩ Cc]P [B ∩ Cc]

P [B]

= P [A|B ∩ C]P [C|B] + P [A|B ∩ Cc]P [Cc|B] (A.1)

�

For notational convenience the event {m ≤ MG < m + h} is defined as Mh
G(m). Continuing, the

conditional probability in (8.6) (p. 24) can expressed as

P [MG ∈ D | m ≤MG < m+ h] (A.2)

= P [MG ∈ D|Mh
G(m)] (A.3)

=
P [{MG ∈ D} ∩Mh

G(m)]

P [Mh
G(m)]

(A.4)

=
P [{MG ∈ D} ∩Mh

G(m) ∩ {{MG < mc} ∪ {MG ≥ mc}}]
P [Mh

G(m)]
(A.5)

=
P [{{MG ∈ D} ∩Mh

G(m) ∩ {MG < mc}} ∪ {{MG ∈ D} ∩Mh
G(m) ∩ {MG ≥ mc}}]

P [Mh
G(m)]

(A.6)

=
P [{MG ∈ D} ∩Mh

G(m) ∩ {MG < mc}] + P [{MG ∈ D} ∩Mh
G(m) ∩ {MG ≥ mc}]

P [Mh
G(m)]

(A.7)

Since {MG < mc} ∩ {MG ≥ mc} = ∅. Furthermore, utilizing Lemma (A.1) with A = {MG ∈ D} ,

B = Mh
G(m) and C = {MG < mc}, the above can be written as

= P [MG ∈ D|Mh
G(m) ∩ {MG < mc}]P [MG < mc|Mh

G(m)]

+P [MG ∈ D|Mh
G(m) ∩ {MG ≥ mc}]P [MG ≥ mc|Mh

G(m)] (A.8)

Upon taking the limit as in (8.6) the following is obtained
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lim
h→0

P [MG ∈ D|Mh
G(m)] = P [MG ∈ D|{MG = m} ∩ {MG < mc}]P [MG < mc|MG = m]

+ P [MG ∈ D|Mh
G(m) ∩ {MG ≥ mc}]P [MG ≥ mc|Mh

G(m)] (A.9)

and rearranging

P [MG ∈ D|Mh
G(m)] = P [MG ∈ D|Mh

G(m) ∩ {MG < mc}]P [MG < mc|Mh
G(m)]

+P [MG ∈ D|Mh
G(m) ∩ {MG ≥ mc}]P [MG ≥ mc|Mh

G(m)] (A.10)

yields

P [MG ∈ D|MG = m] = lim
h→0

P [MG ∈ D|m ≤MG < m+ h]

= P [MG ∈ D|{MG = m} ∩ {MG < mc}] lim
h→0

P [MG < mc|Mh
G(m)]

+P [MG ∈ D|{MG = m} ∩ {MG ≥ mc}] lim
h→0

P [MG ≥ mc|Mh
G(m)] (A.11)

Of interest to us is the two limiting factors in (A.11). Continuing, the probability found in the first limit

of the above expression can be expanded

P [MG < mc|Mh
G(m)] =

P [{MG < mc} ∩ {m < MG ≤ m+ h}]
P [m < MG ≤ m+ h]

(A.12)

{MG < mc} ∩ {m < MG ≤ m+ h} =


{m < MG ≤ m+ h} if m < m+ h ≤ mc

{m < MG ≤ mc} if m < mc ≤ m+ h

∅ if mc ≤ m < m+ h

P [MG < mc|Mh
G(m)] =



P [m<MG≤m+h]
P [m<MG≤m+h] if m < m+ h ≤ mc

P [m<MG≤mc]
P [m<MG≤m+h] if m < mc ≤ m+ h

P [∅]
P [m<MG≤m+h] if mc ≤ m < m+ h

=



1 if m < m+ h ≤ mc

P [m<MG≤mc]
P [m<M≤m+h] if m < mc ≤ m+ h

0 if mc ≤ m < m+ h

and lim
h→0

P [m < MG ≤ mc]

P [m < MG ≤ m+ h]
= 1 if m < mc ≤ m+ h since m < mc ≤ m+ h→ m = mc as h→ 0
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Therefore it can be seen that the first limiting factor in (A.11) reduces to

lim
h→0

P [MG < mc|Mh
G(m)] = I[mmin,mc)(m) =

{
1 if m ∈ [mmin,mc)

0 if m /∈ [mmin,mc)

where IA(x) represents the indicator function that is 1 if x ∈ A and 0 otherwise. Similarly, it can be

shown that the second limiting factor in (A.11) reduces to

lim
h→0

P [MG ≥ mc|Mh
G(m)] = I[mc,mmax](m) =

{
1 if m ∈ [mc,mmax]

0 if m /∈ [mc,mmax]

Therefore (A.11) reduces to

P [MG ∈ D|MG = m] = P [MG ∈ D|{MG = m} ∩ {MG < mc}] · I[mmin,mc)(m)

+P [MG ∈ D|{MG = m} ∩ {MG ≥ mc}] · I[mc,mmax](m)

=


P [MG ∈ D|{MG = m} ∩ {MG < mc}] if m ∈ [mmin,mc)

P [MG ∈ D|{MG = m} ∩ {MG ≥ mc}] if m ∈ [mc,mmax]

0 otherwise

(A.13)

The case where m ∈ [mc,mmax] in (A.13) can be expanded as follows

lim
h→0

P [MG ∈ D|Mh
G(m) ∩ {MG ≥ mc}] = lim

h→0

P [{MG ∈ D} ∩Mh
G(m) ∩ {MG ≥ mc}]

P [Mh
G(m) ∩ {MG ≥ mc}]

= lim
h→0

P [{MG ∈ D} ∩Mh
G(m)|MG ≥ mc] · P [MG ≥ mc]

P [Mh
G(m)|MG ≥ mc] · P [MG ≥ mc]

= lim
h→0

P [MG ∈ D|MG ≥ mc]P [Mh
G(m)|MG ≥ mc]

P [Mh
G(m)|MG ≥ mc]

(A.14)

= P [MG ∈ D|MG ≥ mc]

= 1 (A.15)

Combining this result with (A.13), the following is obtained

fD|MG
(m) =


P [MG ∈ D|{MG = m} ∩ {MG < mc}] if m ∈ [mmin,mc)

1 if m ∈ [mc,mmax]

0 otherwise

(A.16)

which can be incorporated into (8.7) to obtain

fMD
(m) =


fMG

(m) · P [MG ∈ D|{MG = m} ∩ {MG < mc}] if m ∈ [mmin,mc)

fMG
(m) if m ∈ [mc,mmax]

0 otherwise

(A.17)

this gives an expression for the detected magnitude distribution fMD
(m).
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Appendix B :

Mathematical results

B.1.1 Special functions

1. Gamma function

Γ(z) =

∫ ∞
0

tz−1e−t dt

(B.18)

2. Lower incomplete gamma function

γ(s, x) =

∫ x

0

ts−1e−t dt

(B.19)

3. Incomplete gamma function with respect to a range

This function has been defined in this study for ease of reference. It can be seen that the main

method of differentiation between (B.19) and the incomplete gamma function with respect to a

range is the number of parameters of the function.

γ(s; a, b) =

∫ b

a

ts−1e−t dt

= γ(s, b)− γ(s, a) (B.20)

4. Upper incomplete gamma function

Γ(s, x) =

∫ ∞
x

ts−1e−t dt

(B.21)

5. Gaussian density function

φ(z) =
1√
2π
e−

z2

2 z ∈ R

(B.22)

6. Gaussian distribution function

Φ(z) =

∫ z

−∞
φ(t) dt with φ(t) the Gausian density

function as in (B.22).

(B.23)
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7. Normal inverse cumulative distribution function

Φ−1(p) = z z ∈ R , p ∈ [0, 1]

such that Φ(z) = p where Φ(z) the

Gaussian distribution function as

in (B.23).

(B.24)

8. Indicator function

IA(x) =

{
1 if x ∈ A
0 if x /∈ A

Where x ∈ R

and A some real valued set.

(B.25)

9. Gauss hypergeometric function

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

· z
n

n!
for |z| < 1

(B.26)

Where (q)n is the rising Pochhammer symbol which is defined as :

(q)n =

{
1 if n = 0

q(q + 1) . . . (q + n− 1) if n > 0

(B.27)
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B.1.2 Useful Identities

1. Lower incomplete gamma function

γ(r + 1;x) = r!

(
1− e−x

r∑
k=0

xk

k!

)
for r = [0, 1, 2, . . .]

Equation 8.352 from Table of Integrals, Series and Products [20].

(B.28)

2. Incomplete Gamma function subject to range

γ(r + 1; a; b) = γ(r + 1; b)− γ(r + 1; a)

= r!

(
1− e−b

r∑
k=0

bk

k!

)
− r!

(
1− e−a

r∑
k=0

ak

k!

)
for r = [0, 1, 2, . . .] from (B.28)

= r!

r∑
k=0

ake−a − bke−b

k!

(B.29)
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B.1.3 Frequently evaluated integrals

1.

∫ b

a

mrfMG
(m) dm with fMG

(m) as in (8.2).

(B.30)

=
β

e−βmmin − e−βmmax

∫ b

a

mre−βm dm

By letting βm = t and after subsequent simplification the following is obtained

=
β−r

e−βmmin − e−βmmax
γ (r + 1;βa, βb)

Where γ(x, a, b) is the incomplete gamma function with respect to a range (B.20).

=
1

e−βmmin − e−βmmax
r!

r∑
k=0

βk−r
ake−βa − bke−βb

k!
for r = [0, 1, 2, . . .]

By using (B.29) and subsequent simplification.

�

2.

∫
mfMG

(m) dm with fMG
(m) as in (8.2).

(B.31)

This can be seen to be a restatement of (B.30) as an indefinite integral for the specific case r = 1.

Utilizing integration by parts it can easily be seen that the expression simplifies to

∫
mfMG

(m) dm =
−e−βm(m+ 1

β )

e−βmmin − e−βmmax

= −fMG
(m)

1

β

(
m+

1

β

)
�

3.

∫ b

a

e−βx
1

σ
φ(zx) dx

where zx =
x− µ
σ

; µ ∈ R; β, σ > 0 and 0 < a ≤ b.

(B.32)
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=

∫ b

a

1

σ
√

2π
exp

(
− 1

2σ2
(x− µ)2 − βx

)
dx

=

∫ b

a

1

σ
√

2π
exp

(
− 1

2σ2
(x2 − 2xµ+ µ2 + 2σ2βx)

)
dx

=

∫ b

a

1

σ
√

2π
exp

(
− 1

2σ2
(x− (µ− σ2β))2 − β

(
µ− 1

2
σ2β

))
dx by completing the square.

= e−β(µ− 1
2σ

2β)
∫ b

a

1

σ
√

2π
exp

(
− 1

2σ2
(x− (µ− σ2β))2

)
dx

The expression inside the integral represents the PDF of a Normally

distributed random variable with mean
(
µ− σ2β

)
and variance σ2. Therefore

the variable z∗x =
x−

(
µ− σ2β

)
σ

is defined.

= e−β(µ− 1
2σ

2β)Φ (z∗x)

∣∣∣∣b
a

= e−β(µ− 1
2σ

2β) (Φ (z∗b )− Φ (z∗a))

�

4.

∫ b

a

fMG
(m)

1

σ
φ(zm) dm

(B.33)

where zm = m−µ
σ ; µ ∈ R; σ > 0; 0 < mmin ≤ a ≤ b ≤ mmax and fMG

(m) is defined in (8.2)

on page 23.

=

∫ b

a

β exp (−βm)

exp (−βmmin)− exp (−βmmax)

1

σ
φ(zm) dm

=
β

e−βmmin − e−βmmax

∫ b

a

exp (−βm)
1

σ
φ(zm) dm

=
β

e−βmmin − e−βmmax

∫ b

a

exp (−βm)
1

σ
φ(zm) dm

=
βe−β(µ− 1

2σ
2β)

e−βmmin − e−βmmax
(Φ (z∗b )− Φ (z∗a))

By utilizing (B.32) and defining z∗m =
m− (µ− σ2β)

σ

�
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5.

∫ b

a

FMG
(m)

1

σ
φ(zm) dm

(B.34)

where zm = m−µ
σ ; µ ∈ R; σ > 0; 0 < mmin ≤ a ≤ b ≤ mmax and FMG

(m) is defined in (8.4)

on page 23.

=

∫ b

a

1− exp (−β(m−mmin))

1− exp (−β(mmax −mmin))

1

σ
φ(zm) dm

=
1

1− exp (−β(mmax −mmin))

(∫ b

a

1

σ
φ(zm) dm− eβmmin

∫ b

a

e−βm
1

σ
φ(zm) dm

)

=
1

1− exp (−β(mmax −mmin))

(
Φ(zb)− Φ(za)− e−β(µ−mmin− 1

2σ
2β) (Φ (z∗b )− Φ (z∗a))

)

By utilizing (B.32) and rearranging, also by defining z∗m =
m− (µ− σ2β)

σ

�

6.

∫ b

a

fMG
(m)Φ(zm) dm

(B.35)

where zm = m−µ
σ ; µ ∈ R; σ > 0; 0 < mmin ≤ a ≤ b ≤ mmax and FMG

(m) is defined in (8.4)

on page 23.

= FMG
(m)Φ(zm)

∣∣∣∣m=b

m=a

−
∫ b

a

FMG
(m)

1

σ
φ(zm) dm

Integration by parts.

= FMG
(b)Φ(zb)− FMG

(a)Φ(za)− 1

1− exp (−β(mmax −mmin))

(
Φ(zb)− Φ(za)−

e−β(µ−mmin− 1
2σ

2β) (Φ (z∗b )− Φ (z∗a))

)

By utilizing (B.34).

=
−1

β
(Φ(zb)fMG

(b)− Φ(za)fMG
(a))− e−β(µ− 1

2σ
2β)

e−βmmin − e−βmmax
(Φ (z∗b )− Φ (z∗a))

where z∗m =
m− (µ− σ2β)

σ
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�

7.

∫ a

−∞
x

1

σ
φ(zx) dx (B.36)

where zx = x−µ
σ ; µ ∈ R; σ > 0.

=
1

σ
√

2π

∫ a

−∞
x exp

(
−1

2

(
x− µ
σ

)2
)

if the substituition z =
x− µ
σ

is made, it holds that x = σz + µ and therefore dx = σ dz

=
1√
2π

∫ a−µ
σ

−∞
(σz + µ) exp

(
−z

2

2

)
dz

= µΦ

(
a− µ
σ

)
+ σ

∫ a−µ
σ

−∞

1√
2π
z exp

(
−z

2

2

)
dz

by letting u =
z2

2
it holds that z dz = du

= µΦ

(
a− µ
σ

)
+ σ

1√
2π

∫ 1
2 ( a−µσ )

2

∞
e−u du

= µΦ (za)− σφ (za)

�

8.

∫
eax tanh(bx) dx (B.37)

(B.38)

=
e(a+2b)x

(a+ 2b)
2F1

(
1 +

a

2b
, 1; 2 +

a

2b
;−e2bx

)
− 1

a
eax2F1

(
1,
a

2b
; 1 +

a

2b
;−e2bx

)
+K

; for some constant K ∈ R and 2F1 the Gauss hyper-geometric function.

Evaluated using Mathematica symbolic integration [61]

�

9.

∫
e−β(m−mmin) tanh

(
m− µ

2s

)
dm (B.39)

(B.40)
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Simplification

By making the substitution x =
(
m−µ

2s

)
⇒ m = 2sx+ µ and dm = 2s dx is is found that∫

e−β(m−mmin) tanh

(
m− µ

2s

)
dm (B.41)

= 2s

∫
e−β(2sx+µ−mmin) tanh(x) dx

= 2se−β(µ−mmin)

∫
e−2βsx tanh(x) dx

with a = −2βs and b = 1 , the results of integral (B.38) can be used

= 2se−β(µ−mmin)

(
e(−2βs+2)x

(−2βs+ 2)
2F1

(
1 +
−2βs

2
, 1; 2 +

−2βs

2
;−e2x

)

− 1

−2βs
e−2βsx

2F1

(
1,
−2βs

2
; 1 +

−2βs

2
;−e2x

)
+K1

)
; for some constant K1 ∈ R

= se−β(µ−mmin)

[
e2(1−βs)x

1− βs 2F1

(
1− βs, 1; 2− βs;−e2x

)
+

1

βs
e−2βsx

2F1

(
1,−βs; 1− βs;−e2x

)
+K2

]
; for some constant K2 ∈ R

= se−β(m−mmin)

[
e
m−µ
s

1− βs 2F1

(
1− βs, 1; 2− βs;−e

m−µ
s

)
+

1

βs
2F1

(
1,−βs; 1− βs;−e

m−µ
s

)]
+K3

; for some constant K3 ∈ R

�

10.

∫ b

a

e−βm
(

1 +
m− µ
σ

)−α
dm (B.42)

(B.43)

Simplification

By making the substitution x = 1 + m−µ
σ ⇒ m = µ + σ(x − 1) and dm = σ dx it is found, after

some simplification, that

∫ b

a

e−βm
(

1 +
m− µ
σ

)−α
dm
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= σe−β(µ−σ)

∫ b2

a2

e−βσxx−α dx (B.44)

from where a further substitution can be made t = βσx⇒ x =
1

βσ
t and dx =

1

βσ
dt. After

subsequent simplification, it is found that

= βα−1σαe−β(µ−σ)

∫ b3

a3

e−tt(1−α)−1 dt

�

Translating through the above substitutions, the new integration bounds are found to be

a3 = βσ · a2 = βσ

(
1 +

a− µ
σ

)
=β (σ + a− µ)

b3 = βσ · b2 = βσ

(
1 +

b− µ
σ

)
=β (σ + b− µ)

This forms the basis for the following definition, r(t) := β (σ + t− µ).

Due to the fact that the principle integral originates from the combination of a detection probability

and the kernel of a exponential distribution, some parameter restrictions may exist. For this case,

where the detection probability is modelled by a Pareto type II distribution function, the parameter

restriction, m ≥ µ∀m must be satisfied. From this restriction, the following conclusion can be

drawn :

m ≥ µ⇒ m− µ ≥ 0

therefore r(m) = β (σ +m− µ) ≥ 0 since σ, β > 0

and a3, b3 ≥ 0

Due the positivity of the integration bounds, as well as the functional form, the above stated

integral can be written in terms of the incomplete gamma function with respect to a range (B.20).

∫ b

a

e−βm
(

1 +
m− µ
σ

)−α
dm = βα−1σαe−β(µ−σ)γ(1− α; r(a), r(b))
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B.1.4 Distributions used to describe detection probability

1. Normal Distribution

If X ∼ N (µ, σ2), then the following relations can be stated :

(a) Quantile function

if p ∈ [0, 1] represents a probability such that P [X ≤ x] = p, x ∈ R, then

x = µ+ Φ−1(p)σ (B.45)

where Φ−1(x) is the Normal inverse cumulative distribution function.

(b) Moments of distribution

E[X] = µ (B.46)

V ar(X) = σ2 (B.47)

E
[
X3
]

= µ3 + 3µσ2 (B.48)

(c) Mapping moments to distribution parameters

It follows directly from (B.46) and (B.47) that

µ = E[X] (B.49)

σ =
√
V ar(X) (B.50)

2. Logistic Distribution

If X ∼ Logistic(µ, s), then the following relations can be stated :

(a) Quantile function

if p ∈ [0, 1] represents a probability such that P [X ≤ x] = p, x ∈ R, then

x = µ+ s ln

(
p

1− p

)
(B.51)

(b) Moments of distribution

E[X] = µ (B.52)

V ar(X) =
1

3
(sπ)2 (B.53)

(c) Mapping moments to distribution parameters

From (B.52) and (B.53) it follows directly that

µ = E[X] (B.54)

s =
1

π

√
3V ar(X) (B.55)
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3. Log-Normal Distribution

If ln(X) ∼ N (µ, σ2), then the following relations can be stated :

(a) Quantile function

if p ∈ [0, 1] represents a probability such that P [X ≤ x] = p, x ∈ R, then

x = exp
(
µ+ σΦ−1(p)

)
(B.56)

where Φ−1(x) is the Normal inverse cumulative distribution function.

(b) Moments of distribution

E [Xr] = exp

(
µr +

1

2
r2σ2

)
(B.57)

E[X] = exp

(
µ+

1

2
σ2

)
(B.58)

V ar(X) = exp
(
2µ+ σ2

) (
exp (σ2)− 1

)
(B.59)

E
[
X3
]

= exp

(
3µ+

9

2
σ2

)
(B.60)

(c) Mapping moments to distribution parameters

By substituting (B.59) into (B.58) and solving for σ the following is obtained

σ =

√
ln

(
1 +

V ar(X)

E[X]2

)
(B.61)

Thereafter (B.61) can be combined with (B.58) and solved for µ to yield

µ = ln
E[X]2√

E[X]2 + V ar(X)
(B.62)

4. Pareto type II Distribution

If X ∼ P(II)(µ, σ, α), then the following relations can be stated :

(a) Quantile function

if p ∈ [0, 1] represents a probability such that P [X ≤ x] = p, x ∈ R, then

x = µ+ σ
(

(1− p)−
1
α − 1

)
(B.63)

(b) Moments of distribution

E[Xr] = ασα(µ− σ)r−αB

(
1− σ

µ
;α− r;−α

)
(B.64)

E[X] = µ+
σ

α− 1
(B.65)

E[X2] = µ2 +
2µσ

α− 1
+

2σ2

(α− 1)(α− 2)
(B.66)

E[X3] = µ3 +
3µ2σ

α− 1
+

6µσ2

(α− 1)(α− 2)
+

6σ3

(α− 1)(α− 2)(α− 3)
(B.67)
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(c) Mapping moments to distribution parameters

When solving for µ from (B.65) and (B.66) the following is respectively obtained

µ = E[X]− σ

α− 1
(B.68)

µ = − σ

α− 1
±

√
E[X2]− σ2α

(α− 1)2(α− 2)
(B.69)

on combining (B.68) and (B.69) and solving for σ it is found that

σ = (α− 1)

√
α− 2

α
V ar(X) (B.70)

which can again be substituted into (B.68) to obtain

µ = E[X]−
√
α− 2

α
V ar(X) (B.71)

Thereafter, (B.70) and (B.71) can be substituted into (B.67) yielding an equation involving

the lower order moments of the distribution and the distributional parameter α. This relation

will be used to define the function f(α) as

f(α) := −E
[
X3
]

+ (E[X])3 − 3E[X]V ar(X)
α− 2

α
+ 2

(
V ar(X)

α− 2

α

) 3
2

+ 6
α− 1

α
V ar(X)

(
E[X]−

√
V ar(X)

α− 2

α

)
+ 6

(α− 1)2

(α− 3)(α− 2)

(
V ar(X)

α− 2

α

) 3
2

(B.72)

where f(α) = 0 will be solved numerically for α. Upon obtaining a value for α, values for µ

and σ can be found through (B.70) and (B.71).
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Appendix C :

Numerical computation of quantities

The computation of values from various quantile functions must be done numerically. Values of m, for

which FMD
(m) = p or equivalently g(m) := p − FMD

(m) = 0, can be obtained by implementing the

Newton-Raphson iterative scheme as follows

mn+1 = mn −
g(mn)

g′(mn)
for n > 0 (C.73)

For some suitable starting values m0, mn
∞−→
n

m. In order to briefly examine the adequacy of the starting

value regarding convergence, the function g(·) will be plotted for some of the quantile functions. In this

illustrative section the detection probability is modelled by the cumulative distribution function of a

Normal random variable.

C.1.1 Soft detection threshold

Quantiles from the distribution FMD
(m) = p, as seen in (8.22) (p. 28), can only be solved using numerical

methods. Therefore it is defined that

g(m) :=
p

CNorm
− FMG

(m) · Φ(zm) + c1 [Φ(zm)− c2 · Φ(z∗m)]− c3

⇒g′(m) = −fMG
(m) · Φ(zm)− FMG

(m) · 1

σ
φ(zm) +

c1
σ

[φ(zm)− c2 · φ(z∗m)]

(C.74)

and in summary, Φ(t) represents the cumulative distribution function of a standard Normal random

variable. Additionally, zm = m−µ
σ and z∗m =

m−(µ−σ2β)
σ .

c1 = [1− exp (−β(mmax −mmin))]−1 ; c2 = exp

(
−β(µ−mmin −

1

2
σ2β)

)
c3 = c1

[
Φ(zmmin)− c2Φ(z∗mmin)

]
Summary of function g(·)

To investigate sensitivities of the parameters, the surface generated by (C.74) can be plotted. Without

loss of generality all subsequent plots are made for p = 0.5.

As seen by examining Figures C.1 to C.3, the function g(m) has a general shape for the parameter

space when considered over the magnitude range. For various p ∈ [0, 1] it appears that the function

is, generally, well-behaved in the neighbourhood of the root at g(m) = 0 and it is seen that a starting

value of m0 = mmin is a suitable choice in a number of circumstances. However this starting value
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Figure C.1: Plot of function g(m) (from (C.74)) with illustrative values of p = 0.5; mmin = 1;
mmax = 7; µ = 2 and σ = 0.8.
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Figure C.2: Illustration of sensitivities of functions g(m) and first derivative g′(m) (from (C.74)) to
the parameter µ. Illustrative values for parameters : p = 0.5; mmin = 1; mmax = 7 and b = 0.9.
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Figure C.3: Illustration of sensitivities of functions g(m) and first derivative g′(m) (from (C.74)) to
the parameter σ. Illustrative values for parameters : p = 0.5; mmin = 1; mmax = 7 and b = 0.9.
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does not guarantee convergence under all circumstances. One such example is the detected magnitude

distribution with the following parameter values :

Parameter Value
mmin 1
mmax 7

b-Value 0.9 (β ≈ 2.072)
µ 3
σ 0.8

Table C.1: Parameters of detected magnitude distribution under which numerical computation of the
quantile function, implementing the Newton-Raphson method, does not converge for all values when the
starting value is mmin.

When evaluating the quantile function for probabilities in the approximate range 0.597 to 0.974 (resul-

tant magnitudes of approximately 2.44 to 4.14), the Newton-Raphson method does not yield converging

results for the particular starting value of m0. In this case the starting value m0 = µ is chosen and

indeed convergence of the quantiles is obtained.

Hence, the following has been empirically added to the current application of the Newton-Raphson

algorithm:

If it is established that the Newton-Raphson method does not converge for a specific starting value, the

algorithm is re-implemented with a subsequent starting value as found in Table C.2.

Implementation of Newton-Raphson method Starting Value
after number of previous failed attempts

1 mmin

2 µ
3 1

3 (mmax +mmin)
4 1

2 (mmax +mmin)
5 mmax

Table C.2: List of starting values to be used in the Newton-Raphson method when evaluating the
quantile function QMD

(p).

C.1.2 Sharp detection threshold

In order to obtain values of the quantile function QMD
(p) = p where p < FMD

(mc) the following can be
defined

g(m) := p · Φ(zmc)

CNorm
− FMG

(m) · Φ(zm) + c1 [Φ(zm)− c2 · Φ(z∗m)]− c3 (C.75)

Where upon the iterative scheme presented in (8.24) can be used to solve for specific values of m.

148

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



It can be seen that (8.29) is simply a shift of (C.74) by an amount of
(

1− p
CNorm

)
Φ(zmc). Because of

this, the previous Newton-Raphson analysis of (C.74) is valid in this case as well.

A critical difference though, is that the domain of the function g, and subsequently its first derivative, is

restricted to [mmin,mc), where the previous function had domain [mmin,mmax]. The use of Table C.2

as reference lookup for starting values is also applied.
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Appendix D :

b-Value estimation

D.1.1 Page relation

β values (as well as subsequent b-values) can only be extracted from eqrefeq:Page, on page 69, by utilizing

numerical methods. Therefore, let

g(β̂) :=
1

β̂
− (m̄−mmin)− mmax −mmin

eβ̂(mmax−mmin) − 1
(D.76)

⇒ g′(β̂) =
−1

β̂2
+

(
mmax −mmin

eβ̂(mmax−mmin) − 1

)2

eβ̂(mmax−mmin) (D.77)

Summary of function g(·)

Without loss of generality and to further the current investigation, g(·) is plotted for illustrative values

of the parameters.

0 1 2 3 4
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g(
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(a) Function of g(β̂). Reference lines added at g(β̂) =
0 as well as the estimated location of the root.
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(b) First derivative of function of g(β̂). Reference line
added at estimated location of the root.

Figure D.4: Plot of functions g(β̂) and g′(β̂) ((D.76) and (D.77)) with illustrative values of mmin =
1; mmax = 7 and m̄ = E[M ] (calculated from (8.3), p. 23, with consistent values for parameters.
Additionally β = b ln 10 = 0.9 ln 10 ≈ 2.072).

As seen in Figure D.4 above, function g(·) as well as it’s derivative, is well-behaved in the neighbourhood

of the root. Therefore, added to the fact that g(·) has a simple mathematical form, the application of

the Newton-Raphson algorithm seems to be suited.

D.1.1.1 Numerical computation of estimates
The following scheme can subsequently be used to solve for g(β̂) = 0 :

β̂n+1 = β̂n −
g(β̂n)

g′(β̂n)
(D.78)

β̂0 =
1

m̄−mmin
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Because of it’s resemblance to the Page relation, it should be clear why the Aki-Utsu [1, 56] maximum-

likelihood estimator is an apt choice for the starting value β̂0. Utilizing this algorithm, the quadratic

convergence of the Newton-Raphson method, together with the well behaved nature of g(β̂) and suitable

starting value β̂0, yields stable values of β̂, usually, in as little as 2 to 3 iterations.

D.1.1.2 Sampling distribution

Asymptotically the method of maximum likelihood specifies that the estimator will be unbiased and

Normally distribution, however due to the size of the simulated dataset, further investigation is warranted.

Since there is no closed form solution for β̂ stochastic simulations will be resorted to in order to gauge the

performance of the estimator. A sampling distribution is estimated based on the following parameters :

b-Value = 0.9 (β ≈ 2.072); mmin = 1 and mmax = 7. The number of simulations have been specified as

10,000 with 1,000 events per simulation. The resulting sampling distribution can be seen in Figure D.5.

Simulated Gutenberg−Richter Distribution:
mmin = 1 ;  mmax = 7 ;  β ≈ 2.072 (b = 0.9)

β̂
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en
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Figure D.5: Estimated sampling distribution of β̂.

Normality Test p-Value

D’Agostino test for skewness in Normally distributed data 0.0005445
t-Test for location 0.0001400
Anderson-Darling test for normality 0.0001679

Table D.3: Tests performed on estimated sampling distribution

According to the QQ-plot in Figure D.5, although most of the quantiles coincide with those of a theoreti-

cal Normal distribution with same mean and standard deviation, the quantiles relating to the tails of the

distribution seem to deviate from that expected under normality. This is further supported by the statis-
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tically significant p-values obtained from the D’Agostino skewness test, as well as the Anderson-Darling

test for normality. The distribution of sample errors further demonstrate that there seems to exist a

slight bias in the estimator. This is to some extent expected, since Zhang and Song [62] concluded, from

the exact distribution of the Aki-Utsu estimator β̂, that E[β̂] = β n
n−1 . Using this result, the currently

examined estimator can also be corrected for bias.

In order to measure the effectiveness of the estimator over the entire range of possibilities a detailed

simulation of the error distribution is undertaken according to the framework as set out in in Table ??.

For this exercise, only the mean and standard deviation of the estimation error from each individual

simulation will be entered into the comparison. During this simulation the range over which events

are generated and the β value estimated has constantly been kept at a magnitude interval of length 6.

Therefore the full specification of parameters are as follows : b-Value ∈ [0.5; 1.5] ,i.e. β ∈ [1.151; 3.453];

mmin ∈ [1; 5]; mmax = mmin + 6. Furthermore, the number of simulations have been fixed at 10,000

with 1,000 events per simulation. The resultant sampling distribution can be seen in Figure D.6.
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Figure D.6: Statistics for sampling distribution of β̂.

From this simulation it appears that the bias-correcting factor only makes a slight improvement, but

does not correct for the full bias of the estimator. Further investigation of this must be undertaken, but

currently does not fall in the scope of this investigation.

Alternatively, when the maximum point of the simulated Gutenberg-Richter distribution remains con-

stant (i.e. the range over which seismic events are generated and the β value estimated varies), a slightly

different scenario presents itself.

The following parameters have been specified in order to estimate the sampling distribution of the β

estimator as seen in Figure D.7 : b-Value ∈ [0.5; 1.5], i.e. β ∈ [1.151; 3.453]; mmin ∈ [1; 5]; mmax = 7.
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The number of simulations have been specified as 10,000 with 1,000 events per simulation.
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Figure D.7: Statistics for sampling distribution of β̂.

This evident systematic bias can only be the result of narrowing the magnitude range of the investigation

for increasing mmin. For this reason mmin is assumed fixed throughout the investigation. Furthermore,

this indicates the need to consider the length of permissible magnitudes, i.e. mmax −mmin. Therefore,

throughout the investigation this range is assumed fixed at a length of 6 (mmin = 1 and mmax = 7).
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Appendix E :

Statistical Results

E.1.1 Explicit modelling of detection threshold

E.1.1.1 Aggregated results of threshold estimation methods

Goodness of fit estimation method
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Figure E.8: Expected bias of sampling distribution together with error bounds for GOF estimation method
illustrated as a function of expected value (figs. a and b) and variance (figs. c and d) of distribution used to model
detection probability. Detection probability in Figures a and c modelled by a cumulative Normal distribution,
while modelled by a cumulative logistic distribution in Figures b and d.
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Figure E.9: Expected bias of sampling distribution and error bounds for GOF estimation method illustrated
as a function of expected value (figs. a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution
used to model detection probability. Detection probability in Figures a, c and e modelled by a cumulative
Log-Normal distribution, while modelled by a cumulative Pareto type II distribution in Figures b, d and f.
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Maximum Curvature estimation method
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Figure E.10: Expected bias of sampling distribution together with error bounds for GOF estimation method
illustrated as a function of expected value (figs. a and b) and variance (figs. c and d) of distribution used to model
detection probability. Detection probability in Figures a and c modelled by a cumulative Normal distribution,
while modelled by a cumulative logistic distribution in Figures b and d.
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Figure E.11: Expected bias of sampling distribution and error bounds for GOF estimation method illustrated
as a function of expected value (figs. a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution
used to model detection probability. Detection probability in Figures a, c and e modelled by a cumulative
Log-Normal distribution, while modelled by a cumulative Pareto type II distribution in Figures b, d and f.
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mc by b-Value stability
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Figure E.12: Expected bias of sampling distribution together with error bounds for bVS estimation method
illustrated as a function of expected value (figs. a and b) and variance (figs. c and d) of distribution used to model
detection probability. Detection probability in Figures a and c modelled by a cumulative Normal distribution,
while modelled by a cumulative logistic distribution in Figures b and d.
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Figure E.13: Expected bias of sampling distribution and error bounds for bVS estimation method illustrated
as a function of expected value (figs. a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution
used to model detection probability. Detection probability in Figures a, c and e modelled by a cumulative
Log-Normal distribution, while modelled by a cumulative Pareto type II distribution in Figures b, d and f.
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Entire Magnitude Range estimation method
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Figure E.14: Expected bias of sampling distribution together with error bounds for EMR estimation method
illustrated as a function of expected value (figs. a and b) and variance (figs. c and d) of distribution used to model
detection probability. Detection probability in Figures a and c modelled by a cumulative Normal distribution,
while modelled by a cumulative logistic distribution in Figures b and d.
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Figure E.15: Expected bias of sampling distribution and error bounds for EMR estimation method illustrated
as a function of expected value (figs. a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution
used to model detection probability. Detection probability in Figures a, c and e modelled by a cumulative
Log-Normal distribution, while modelled by a cumulative Pareto type II distribution in Figures b, d and f.
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Median based assessment of the segment-slope
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Figure E.16: Expected bias of sampling distribution together with error bounds for MBASS estimation method
illustrated as a function of expected value (figs. a and b) and variance (figs. c and d) of distribution used to model
detection probability. Detection probability in Figures a and c modelled by a cumulative Normal distribution,
while modelled by a cumulative logistic distribution in Figures b and d.
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Figure E.17: Expected bias of sampling distribution and error bounds for GOF estimation method illustrated
as a function of expected value (figs. a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution
used to model detection probability. Detection probability in Figures a, c and e modelled by a cumulative
Log-Normal distribution, while modelled by a cumulative Pareto type II distribution in Figures b, d and f.
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Moment incorporating threshold calculation
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Figure E.18: Expected bias of sampling distribution together with error bounds for MITC estimation method
illustrated as a function of expected value (figs. a and b) and variance (figs. c and d) of distribution used to model
detection probability. Detection probability in Figures a and c modelled by a cumulative Normal distribution,
while modelled by a cumulative logistic distribution in Figures b and d.

164

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



1 2 3 4 5 6

-1
.0

-0
.5

0.
0

0.
5

1.
0

Expected Value

E
xp

ec
te

d 
B

ia
s 

of
 E

st
im

at
or

Average 5% Quantile
Average Mean
Average 95% Quantile

Median 5% Quantile
Median Mean
Median 95% Quantile

(a)

1 2 3 4 5 6

-1
.0

-0
.5

0.
0

0.
5

1.
0

Expected Value

E
xp

ec
te

d 
B

ia
s 

of
 E

st
im

at
or

Average 5% Quantile
Average Mean
Average 95% Quantile

Median 5% Quantile
Median Mean
Median 95% Quantile

(b)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Variance

E
xp

ec
te

d 
B

ia
s 

of
 E

st
im

at
or

Average 5% Quantile
Average Mean
Average 95% Quantile

Median 5% Quantile
Median Mean
Median 95% Quantile

(c)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Variance

E
xp

ec
te

d 
B

ia
s 

of
 E

st
im

at
or

Average 5% Quantile
Average Mean
Average 95% Quantile

Median 5% Quantile
Median Mean
Median 95% Quantile

(d)

-10 0 10 20 30 40 50

-1
.0

-0
.5

0.
0

0.
5

1.
0

Skewness

E
xp

ec
te

d 
B

ia
s 

of
 E

st
im

at
or

Average 5% Quantile
Average Mean
Average 95% Quantile

Median 5% Quantile
Median Mean
Median 95% Quantile

(e)

-10 0 10 20 30 40 50

-1
.0

-0
.5

0.
0

0.
5

1.
0

Skewness

E
xp

ec
te

d 
B

ia
s 

of
 E

st
im

at
or

Average 5% Quantile
Average Mean
Average 95% Quantile

Median 5% Quantile
Median Mean
Median 95% Quantile

(f)

Figure E.19: Expected bias of sampling distribution and error bounds for MITC estimation method illustrated
as a function of expected value (figs. a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution
used to model detection probability. Detection probability in Figures a, c and e modelled by a cumulative
Log-Normal distribution, while modelled by a cumulative Pareto type II distribution in Figures b, d and f.
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E.1.1.2 Results of threshold estimation methods incorporating threshold as

factor

Goodness of fit estimation method
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Figure E.20: Bias of estimates for GOF estimation method illustrated as a function of expected value (figs.
a and b) and variance (figs. c and d) of distribution used to model detection probability. Detection probability
in Figures a and c modelled by a cumulative Normal distribution, while modelled by a cumulative logistic
distribution in Figures b and d.
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Figure E.21: Bias of estimates for GOF estimation method illustrated as a function of expected value (figs. a
and b), variance (figs. c and d) and skewness (figs. e and f) of distribution used to model detection probability.
Detection probability in Figures a, c and e modelled by a cumulative Log-Normal distribution, while modelled
by a cumulative Pareto type II distribution in Figures b, d and f.
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Maximum Curvature estimation method
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Figure E.22: Bias of estimates for MAXC estimation method illustrated as a function of expected value
(figs. a and b) and variance (figs. c and d) of distribution used to model detection probability. Detection
probability in Figures a and c modelled by a cumulative Normal distribution, while modelled by a cumulative
logistic distribution in Figures b and d.
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Figure E.23: Bias of estimates for MAXC estimation method illustrated as a function of expected value (figs.
a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution used to model detection probability.
Detection probability in Figures a, c and e modelled by a cumulative Log-Normal distribution, while modelled
by a cumulative Pareto type II distribution in Figures b, d and f.
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Method of mc estimation by b-Value stability
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Figure E.24: Bias of estimates for bVS estimation method illustrated as a function of expected value (figs.
a and b) and variance (figs. c and d) of distribution used to model detection probability. Detection probability
in Figures a and c modelled by a cumulative Normal distribution, while modelled by a cumulative logistic
distribution in Figures b and d.
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Figure E.25: Bias of estimates for bVS estimation method illustrated as a function of expected value (figs. a
and b), variance (figs. c and d) and skewness (figs. e and f) of distribution used to model detection probability.
Detection probability in Figures a, c and e modelled by a cumulative Log-Normal distribution, while modelled
by a cumulative Pareto type II distribution in Figures b, d and f.
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Entire magnitude range threshold estimation method
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Figure E.26: Bias of estimates for EMR estimation method illustrated as a function of expected value (figs.
a and b) and variance (figs. c and d) of distribution used to model detection probability. Detection probability
in Figures a and c modelled by a cumulative Normal distribution, while modelled by a cumulative logistic
distribution in Figures b and d.
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Figure E.27: Bias of estimates for EMR estimation method illustrated as a function of expected value (figs. a
and b), variance (figs. c and d) and skewness (figs. e and f) of distribution used to model detection probability.
Detection probability in Figures a, c and e modelled by a cumulative Log-Normal distribution, while modelled
by a cumulative Pareto type II distribution in Figures b, d and f.
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Median Based Assessment of the segment-slope threshold estimation method
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Figure E.28: Bias of estimates for MBASS estimation method illustrated as a function of expected value
(figs. a and b) and variance (figs. c and d) of distribution used to model detection probability. Detection
probability in Figures a and c modelled by a cumulative Normal distribution, while modelled by a cumulative
logistic distribution in Figures b and d.
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Figure E.29: Bias of estimates for MBASS estimation method illustrated as a function of expected value (figs.
a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution used to model detection probability.
Detection probability in Figures a, c and e modelled by a cumulative Log-Normal distribution, while modelled
by a cumulative Pareto type II distribution in Figures b, d and f.
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Moment Incorporating Threshold Computation
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Figure E.30: Bias of estimates for MITC estimation method illustrated as a function of expected value (figs.
a and b) and variance (figs. c and d) of distribution used to model detection probability. Detection probability
in Figures a and c modelled by a cumulative Normal distribution, while modelled by a cumulative logistic
distribution in Figures b and d.
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Figure E.31: Bias of estimates for MITC estimation method illustrated as a function of expected value (figs.
a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution used to model detection probability.
Detection probability in Figures a, c and e modelled by a cumulative Log-Normal distribution, while modelled
by a cumulative Pareto type II distribution in Figures b, d and f.
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E.1.1.3 MSE summary of threshold estimation methods

A summary is given of the MSE values for the various threshold estimation methods. The results are

displayed in 5 tables (Tables E.5 to E.10), with respective values of the detection threshold ranging from

2 to 4 in increments of 0.5. A sixth table is included where averaged results over the entire detection

threshold spectrum is shown.

In addition to being calculated for different values of the detection threshold and estimation meth-

ods, the MSE is tabulated for various values of the 1) Expected Value 2) Variance and 3) Skewness (if

applicable) of the random variable whose cumulative distribution function is being used to model the

detection probability.

The range of these lower order moments will be, respectively, divided into 3 intervals of equal length.

Table E.4 illustrates how these intervals are also labelled as either “Low values” (L), “Mid values” (M)

or “High values” (H).

Lower order Categories of values
moments Low (L) Mid (M) High (H)

Expected Value (0,2] (2,4] (4,6]
Variance (0,1.33] (1.33,2.67] (2.67,4]
Skewness (-20,3.33] (3.33,26.7] (26.7,50]

Table E.4: Table illustrating intervals of low (L), mid (M) and high (H) values of lower order moments
of random variable whose distribution function is used to model the event detection probability.

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
in

g
of

ev
en

t
d
et

ec
ti

on
d
is

tr
ib

u
ti

o
n

b
y

..
.

E
x
p

ec
te

d
V

al
u
e

T
h
re

sh
ol

d
es

ti
m

at
io

n
m

et
h
o
d

GOF 0.595 0.189 0.100 - 0.187 0.137 0.723 0.102 0.053 0.657 0.215 -
MAXC 0.774 0.578 0.385 - 0.638 0.615 0.780 0.214 0.006 0.771 0.483 -

bVS 0.722 0.253 0.074 - 0.232 0.130 0.859 0.079 0.017 0.801 0.267 -
EMR 2.307 2.196 1.283 - 1.806 1.645 2.416 0.698 3.337 2.367 2.402 -

MBASS 1.416 1.290 0.891 - 1.430 1.153 1.332 0.611 0.129 1.327 0.858 -
MITC 1.294 1.568 1.491 - 1.607 1.409 1.375 1.424 1.509 1.286 1.844 -

V
ar

ia
n
ce

GOF 0.227 0.261 0.352 0.077 0.153 0.244 0.615 0.565 0.617 0.756 0.616 0.646
MAXC 0.291 0.608 0.769 0.335 0.734 0.769 0.662 0.665 0.660 0.739 0.757 0.766

bVS 0.199 0.315 0.468 0.044 0.146 0.332 0.720 0.684 0.703 0.858 0.726 0.800
EMR 2.467 1.441 1.927 1.532 2.160 1.457 2.320 2.140 1.939 2.555 2.296 2.379

MBASS 0.697 1.167 1.618 0.646 1.406 1.747 1.123 1.199 1.276 1.245 1.277 1.329
MITC 2.116 1.462 0.848 1.924 1.146 1.507 1.462 1.352 1.178 0.836 1.327 1.336

S
ke

w
n
es

s

GOF

NA NA

0.300 0.760 0.798 0.611 0.617 0.688
MAXC 0.441 0.799 0.785 0.743 0.759 0.772

bVS 0.310 0.937 0.954 0.724 0.786 0.799
EMR 2.085 2.271 2.076 2.954 2.379 2.217

MBASS 0.882 1.436 1.324 1.381 1.263 1.364
MITC 1.307 1.423 1.528 1.049 1.406 1.233

A
v
er

ag
ed

GOF 0.283 0.162 0.603 0.644
MAXC 0.571 0.627 0.663 0.763

bVS 0.335 0.181 0.708 0.786
EMR 1.914 1.726 2.216 2.368

MBASS 1.186 1.290 1.166 1.313
MITC 1.464 1.508 1.390 1.306
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Table E.5: MSE summary of threshold estimation methods where mc = 2. Results grouped by 1)
Estimation Method, 2) CDF representing the detection probability and 3) the lower order moments
(Expected value, variance and Skewness) of RV attributed to detection probability.

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
in

g
of

ev
en

t
d
et

ec
ti

o
n

d
is

tr
ib

u
ti

o
n

b
y

..
.

E
x
p

ec
te

d
V

a
lu

e

T
h
re

sh
ol

d
es

ti
m

a
ti

o
n

m
et

h
o
d

GOF 1.514 0.512 0.154 0.441 0.252 1.729 0.234 0.090 1.675 0.889 -
MAXC 1.886 1.471 1.004 - 1.561 1.535 1.903 0.740 0.019 1.907 1.342 -

bVS 1.820 0.823 0.198 - 0.645 0.449 2.021 0.273 0.030 1.958 0.810 -
EMR 1.829 1.230 1.666 - 1.190 1.612 1.967 0.452 0.933 2.053 0.487 -

MBASS 1.480 1.518 0.996 - 1.651 1.595 1.275 0.626 0.231 1.363 0.892 -
MITC 0.593 0.237 0.064 - 0.143 0.100 0.838 0.258 0.028 0.843 0.537 -

V
a
ri

a
n
ce

GOF 0.443 0.646 0.957 0.108 0.275 0.588 1.462 1.443 1.350 1.576 1.655 1.656
MAXC 0.789 1.539 1.875 0.802 1.839 1.892 1.634 1.666 1.680 1.903 1.885 1.891

bVS 0.496 0.834 1.341 0.072 0.414 1.052 1.692 1.672 1.640 1.893 1.913 1.931
EMR 1.358 1.555 1.749 1.549 1.174 1.577 1.753 1.421 1.964 1.789 2.117 1.987

MBASS 0.811 1.415 1.672 0.935 1.932 1.906 1.111 1.123 1.212 1.383 1.366 1.340
MITC 0.246 0.215 0.366 0.030 0.136 0.194 0.748 0.601 0.828 0.583 0.748 0.879

S
ke

w
n
es

s

GOF

NA NA

0.711 1.852 2.016 1.538 1.661 1.668
MAXC 1.166 1.938 1.952 1.829 1.888 1.908

bVS 0.880 2.131 2.247 1.820 1.905 1.976
EMR 1.216 1.990 1.843 2.144 1.852 2.181

MBASS 0.926 1.281 1.281 1.435 1.324 1.360
MITC 0.424 0.915 0.881 0.566 0.717 1.041

A
v
er

ag
ed

GOF 0.696 0.335 1.440 1.652
MAXC 1.437 1.547 1.649 1.890

bVS 0.913 0.535 1.679 1.925
EMR 1.565 1.427 1.704 2.008

MBASS 1.327 1.619 1.130 1.348
MITC 0.276 0.119 0.725 0.832

Table E.6: MSE summary of threshold estimation methods where mc = 2.5. Results grouped by 1)
Estimation Method, 2) CDF representing the detection probability and 3) the lower order moments
(Expected value, variance and Skewness) of RV attributed to detection probability.

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
in

g
of

ev
en

t
d
et

ec
ti

o
n

d
is

tr
ib

u
ti

on
b
y

..
.

E
x
p

ec
te

d
V

al
u
e

T
h
re

sh
ol

d
es

ti
m

at
io

n
m

et
h
o
d

GOF 3.015 1.180 0.364 - 0.719 0.593 3.225 0.625 0.088 3.187 1.786 -
MAXC 3.502 2.852 1.952 - 2.861 2.809 3.538 1.627 0.114 3.517 3.029 -

bVS 3.491 1.952 0.582 - 1.571 1.486 3.655 0.892 0.042 3.621 2.349 -
EMR 2.150 1.844 1.090 - 1.709 1.382 1.780 0.976 1.931 2.012 1.074 -

MBASS 1.507 1.781 1.656 - 1.945 2.116 1.208 0.720 0.685 1.385 0.833 -
MITC 0.855 0.459 0.162 - 0.291 0.311 0.996 0.550 0.115 1.031 0.844 -

V
ar

ia
n
ce

GOF 0.887 1.351 2.052 0.148 0.457 1.221 2.777 2.623 2.579 3.461 3.202 3.105
MAXC 1.577 2.994 3.457 1.361 3.403 3.502 3.081 3.102 3.203 3.442 3.449 3.525

bVS 1.041 1.836 2.825 0.076 1.252 3.004 3.114 3.017 3.127 3.641 3.587 3.579
EMR 1.792 1.547 1.711 1.108 1.395 1.891 1.607 1.663 1.943 2.225 2.043 1.948

MBASS 1.044 1.826 2.004 1.291 2.158 2.654 1.099 1.083 1.205 1.111 1.378 1.385
MITC 0.456 0.393 0.567 0.037 0.338 0.600 0.898 0.842 1.091 0.791 1.149 1.007

S
ke

w
n
es

s

GOF

NA NA

1.531 3.364 3.487 3.266 3.048 3.247
MAXC 2.308 3.582 3.599 3.415 3.519 3.501

bVS 1.769 3.866 3.938 3.463 3.560 3.643
EMR 1.501 1.720 1.483 1.926 2.045 1.919

MBASS 0.990 1.257 1.187 1.384 1.337 1.405
MITC 0.652 0.882 1.157 0.898 1.062 1.007

A
v
er

ag
ed

GOF 1.462 0.632 2.708 3.146
MAXC 2.741 2.825 3.105 3.503

bVS 1.951 1.512 3.092 3.584
EMR 1.677 1.482 1.673 1.985

MBASS 1.655 2.065 1.111 1.369
MITC 0.470 0.305 0.913 1.026

Table E.7: MSE summary of threshold estimation methods where mc = 3. Results grouped by 1)
Estimation Method, 2) CDF representing the detection probability and 3) the lower order moments
(Expected value, variance and Skewness) of RV attributed to detection probability.
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Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
in

g
of

ev
en

t
d
et

ec
ti

o
n

d
is

tr
ib

u
ti

o
n

b
y

..
.

E
x
p

ec
te

d
V

a
lu

e

T
h
re

sh
o
ld

es
ti

m
a
ti

o
n

m
et

h
o
d

GOF 4.976 2.594 0.754 - 1.967 1.608 5.336 1.484 0.105 5.167 2.891 -
MAXC 5.641 4.720 3.255 - 4.481 4.491 5.680 2.980 0.396 5.651 5.041 -

bVS 5.703 3.549 1.539 - 3.005 3.253 5.877 1.875 0.100 5.754 3.403 -
EMR 2.658 2.147 2.067 - 2.111 1.796 2.452 1.332 0.912 2.557 1.709 -

MBASS 1.552 1.941 2.457 - 2.479 2.774 1.265 0.961 1.365 1.407 1.140 -
MITC 1.592 1.089 0.587 - 0.797 0.739 1.666 1.208 0.474 1.655 1.550 -

V
a
ri

a
n
ce

GOF 1.586 2.440 3.859 0.149 1.084 3.570 4.574 4.438 4.588 5.231 5.115 5.087
MAXC 2.673 4.871 5.640 2.023 5.498 5.596 5.027 5.059 5.107 5.674 5.598 5.643

bVS 1.874 3.375 5.025 0.150 3.272 5.764 5.048 4.988 5.068 5.818 5.681 5.679
EMR 2.297 2.023 2.513 1.676 1.477 2.381 2.337 2.060 2.033 2.843 2.164 2.634

MBASS 1.678 2.021 2.268 2.179 2.989 2.921 1.179 1.237 1.385 1.340 1.389 1.406
MITC 0.892 0.933 1.357 0.063 0.836 1.433 1.613 1.620 1.380 1.183 1.566 1.704

S
ke

w
n
es

s

GOF

NA NA

2.887 5.469 5.810 5.018 5.094 5.129
MAXC 3.907 5.737 5.761 5.566 5.624 5.662

bVS 3.224 6.103 6.196 5.495 5.686 5.732
EMR 1.921 2.633 2.212 2.320 2.603 2.490

MBASS 1.228 1.271 1.028 1.409 1.419 1.369
MITC 1.367 1.656 1.791 1.528 1.685 1.635

A
v
er

ag
ed

GOF 2.690 1.673 4.542 5.101
MAXC 4.496 4.490 5.048 5.634

bVS 3.516 3.208 5.036 5.686
EMR 2.277 1.853 2.221 2.533

MBASS 2.004 2.719 1.226 1.399
MITC 1.060 0.751 1.576 1.652

Table E.8: MSE summary of threshold estimation methods where mc = 3.5. Results grouped by 1)
Estimation Method, 2) CDF representing the detection probability and 3) the lower order moments
(Expected value, variance and Skewness) of RV attributed to detection probability.

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
in

g
of

ev
en

t
d
et

ec
ti

on
d
is

tr
ib

u
ti

on
b
y

..
.

E
x
p

ec
te

d
V

al
u
e

T
h
re

sh
o
ld

es
ti

m
at

io
n

m
et

h
o
d

GOF 7.395 4.141 1.486 - - 3.197 7.792 2.590 0.166 7.744 5.556 -
MAXC 8.260 7.079 4.925 - - 6.713 8.276 4.876 0.944 8.295 7.330 -

bVS 8.396 5.774 2.844 - - 5.836 8.480 3.227 0.273 8.400 6.648 -
EMR 3.260 2.518 2.298 - - 2.355 3.005 1.418 0.693 3.225 3.248 -

MBASS 1.617 1.961 2.919 - - 3.882 1.323 0.957 1.860 1.370 1.057 -
MITC 2.923 2.313 1.174 - - 1.530 2.758 1.908 0.938 2.816 1.812 -

V
ar

ia
n
ce

GOF 2.607 4.021 5.773 0.167 2.790 6.201 6.737 6.633 6.625 8.236 7.677 7.642
MAXC 4.200 7.294 8.180 3.354 8.061 8.244 7.409 7.426 7.627 8.228 8.192 8.295

bVS 3.049 5.546 7.684 0.318 7.561 8.840 7.358 7.355 7.287 8.449 8.262 8.371
EMR 2.270 2.267 3.406 1.468 2.316 3.155 2.745 2.693 2.387 3.850 3.199 3.190

MBASS 1.973 2.137 2.449 3.561 4.205 3.850 1.291 1.277 1.344 0.947 1.314 1.405
MITC 1.701 1.870 2.610 0.115 2.082 2.670 2.591 2.621 2.880 2.811 2.528 2.880

S
ke

w
n
es

s

GOF

NA NA

4.350 8.069 8.213 7.736 7.574 7.808
MAXC 5.944 8.350 8.357 8.197 8.277 8.270

bVS 4.929 8.789 8.862 8.216 8.326 8.411
EMR 2.431 3.094 1.868 3.244 3.216 3.232

MBASS 1.390 1.279 1.379 1.250 1.456 1.261
MITC 2.376 2.742 2.838 2.521 2.810 2.822

A
v
er

ag
ed

GOF 4.223 3.197 6.694 7.680
MAXC 6.697 6.713 7.447 8.267

bVS 5.566 5.836 7.346 8.349
EMR 2.670 2.355 2.675 3.225

MBASS 2.196 3.882 1.296 1.361
MITC 2.078 1.530 2.640 2.790

Table E.9: MSE summary of threshold estimation methods where mc = 4. Results grouped by 1)
Estimation Method, 2) CDF representing the detection probability and 3) the lower order moments
(Expected value, variance and Skewness) of RV attributed to detection probability.
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Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

L M H L M H L M H L M H

G
ro

u
p
in

g
of

ev
en

t
d
et

ec
ti

o
n

d
is

tr
ib

u
ti

o
n

b
y
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E
x
p

ec
te

d
V

a
lu

e

T
h
re

sh
o
ld

es
ti

m
a
ti

o
n

m
et

h
o
d

GOF 3.499 1.723 0.572 - 0.526 1.157 3.761 1.007 0.100 3.686 2.267 -
MAXC 4.013 3.340 2.304 - 1.685 3.233 4.036 2.087 0.296 4.028 3.445 -

bVS 4.026 2.470 1.047 - 0.859 2.231 4.178 1.269 0.093 4.107 2.695 -
EMR 2.441 1.987 1.681 - 1.620 1.758 2.327 0.975 1.561 2.443 1.784 -

MBASS 1.514 1.695 1.781 - 1.690 2.297 1.281 0.776 0.854 1.371 0.956 -
MITC 1.444 1.131 0.728 - 0.851 0.805 1.590 1.050 0.806 1.534 1.307 -

V
a
ri

a
n
ce

GOF 1.150 1.744 2.599 0.122 0.748 1.862 3.233 3.140 3.152 3.852 3.653 3.627
MAXC 1.906 3.461 3.984 1.328 3.282 3.364 3.563 3.584 3.655 3.997 3.976 4.024

bVS 1.332 2.381 3.468 0.111 1.934 3.057 3.586 3.543 3.565 4.132 4.034 4.072
EMR 2.037 1.767 2.261 1.469 1.685 1.949 2.153 1.998 2.055 2.651 2.364 2.428

MBASS 1.236 1.715 1.996 1.477 2.305 2.441 1.160 1.184 1.285 1.204 1.345 1.373
MITC 1.153 0.969 1.128 0.584 0.788 1.126 1.514 1.439 1.499 1.257 1.475 1.564

S
ke

w
n
es

s

GOF

NA NA

1.956 3.903 4.065 3.634 3.599 3.708
MAXC 2.753 4.081 4.091 3.950 4.014 4.023

bVS 2.222 4.365 4.439 3.944 4.053 4.112
EMR 1.832 2.344 1.896 2.517 2.419 2.408

MBASS 1.084 1.304 1.236 1.371 1.360 1.352
MITC 1.223 1.614 1.698 1.295 1.534 1.571

A
v
er

ag
ed

GOF 1.871 0.950 3.197 3.645
MAXC 3.188 2.725 3.582 4.011

bVS 2.456 1.780 3.572 4.066
EMR 2.021 1.713 2.099 2.424

MBASS 1.670 2.099 1.186 1.358
MITC 1.075 0.821 1.493 1.527

Table E.10: MSE summary of threshold estimation methods averaged over all values of mc. Results
grouped by 1) Estimation Method, 2) CDF representing the detection probability and 3) lower order
moments (Expected value, Variance and Skewness) of RV attributed to detection probability.
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E.1.2 Implicit modelling of detection threshold

E.1.2.1 Estimated proportion of events not detected

Goodness of fit estimation method
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Figure E.32: Expected number of events not detected as a percentage of expected number of events greater
than m̂c together with error bounds for GOF estimation method illustrated as a function of expected value
(figs. a and b) and variance (figs. c and d) of distribution used to model detection probability. Detection
probability in Figures a and c modelled by a cumulative Normal distribution, while modelled by a cumulative
logistic distribution in Figures b and d.
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Figure E.33: Expected number of events not detected as a percentage of expected number of events greater
than m̂c together with error bounds for GOF estimation method illustrated as a function of expected value (figs.
a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution used to model detection probability.
Detection probability in Figures a, c and e modelled by a cumulative Log-Normal distribution, while modelled
by a cumulative Pareto type II distribution in Figures b, d and f.
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Maximum curvature estimation method
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(d)

Figure E.34: Expected number of events not detected as a percentage of expected number of events greater
than m̂c together with error bounds for MAXC estimation method illustrated as a function of expected value
(figs. a and b) and variance (figs. c and d) of distribution used to model detection probability. Detection
probability in Figures a and c modelled by a cumulative Normal distribution, while modelled by a cumulative
logistic distribution in Figures b and d.
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Figure E.35: Expected number of events not detected as a percentage of expected number of events greater
than m̂c together with error bounds for MAXC estimation method illustrated as a function of expected value
(figs. a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution used to model detection
probability. Detection probability in Figures a, c and e modelled by a cumulative Log-Normal distribution, while
modelled by a cumulative Pareto type II distribution in Figures b, d and f.
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mc estimation by b-Value stability
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(d)

Figure E.36: Expected number of events not detected as a percentage of expected number of events greater
than m̂c together with error bounds for bVS estimation method illustrated as a function of expected value
(figs. a and b) and variance (figs. c and d) of distribution used to model detection probability. Detection
probability in Figures a and c modelled by a cumulative Normal distribution, while modelled by a cumulative
logistic distribution in Figures b and d.
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(f)

Figure E.37: Expected number of events not detected as a percentage of expected number of events greater
than m̂c together with error bounds for bVS estimation method illustrated as a function of expected value (figs.
a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution used to model detection probability.
Detection probability in Figures a, c and e modelled by a cumulative Log-Normal distribution, while modelled
by a cumulative Pareto type II distribution in Figures b, d and f.
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Entire magnitude range estimation method
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(d)

Figure E.38: Expected number of events not detected as a percentage of expected number of events greater
than m̂c together with error bounds for EMR estimation method illustrated as a function of expected value
(figs. a and b) and variance (figs. c and d) of distribution used to model detection probability. Detection
probability in Figures a and c modelled by a cumulative Normal distribution, while modelled by a cumulative
logistic distribution in Figures b and d.
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(f)

Figure E.39: Expected number of events not detected as a percentage of expected number of events greater
than m̂c together with error bounds for EMR estimation method illustrated as a function of expected value (figs.
a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution used to model detection probability.
Detection probability in Figures a, c and e modelled by a cumulative Log-Normal distribution, while modelled
by a cumulative Pareto type II distribution in Figures b, d and f.
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Median based assessment of the segment-slope
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(d)

Figure E.40: Expected number of events not detected as a percentage of expected number of events greater
than m̂c together with error bounds for MBASS estimation method illustrated as a function of expected value
(figs. a and b) and variance (figs. c and d) of distribution used to model detection probability. Detection
probability in Figures a and c modelled by a cumulative Normal distribution, while modelled by a cumulative
logistic distribution in Figures b and d.
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Figure E.41: Expected number of events not detected as a percentage of expected number of events greater
than m̂c together with error bounds for MBASS estimation method illustrated as a function of expected value
(figs. a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution used to model detection
probability. Detection probability in Figures a, c and e modelled by a cumulative Log-Normal distribution, while
modelled by a cumulative Pareto type II distribution in Figures b, d and f.
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Figure E.42: Expected number of events not detected as a percentage of expected number of events greater
than m̂c together with error bounds for MITC estimation method illustrated as a function of expected value
(figs. a and b) and variance (figs. c and d) of distribution used to model detection probability. Detection
probability in Figures a and c modelled by a cumulative Normal distribution, while modelled by a cumulative
logistic distribution in Figures b and d.

192

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Expected Value

P
er

ce
nt

ag
e 

un
de

te
ct

ed
 e

ve
nt

s 
gr

ea
te

r 
th

an
 e

st
im

at
ed

   
m

c

Average 95% Quantile
Average Mean
Average 5% Quantile

Median 95% Quantile
Median Mean
Median 5% Quantile

(a)

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Expected Value

P
er

ce
nt

ag
e 

un
de

te
ct

ed
 e

ve
nt

s 
gr

ea
te

r 
th

an
 e

st
im

at
ed

   
m

c

Average 95% Quantile
Average Mean
Average 5% Quantile

Median 95% Quantile
Median Mean
Median 5% Quantile

(b)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Variance

P
er

ce
nt

ag
e 

un
de

te
ct

ed
 e

ve
nt

s 
gr

ea
te

r 
th

an
 e

st
im

at
ed

   
m

c

Average 95% Quantile
Average Mean
Average 5% Quantile

Median 95% Quantile
Median Mean
Median 5% Quantile

(c)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Variance

P
er

ce
nt

ag
e 

un
de

te
ct

ed
 e

ve
nt

s 
gr

ea
te

r 
th

an
 e

st
im

at
ed

   
m

c

Average 95% Quantile
Average Mean
Average 5% Quantile

Median 95% Quantile
Median Mean
Median 5% Quantile

(d)

-20 -10 0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Skewness

P
er

ce
nt

ag
e 

un
de

te
ct

ed
 e

ve
nt

s 
gr

ea
te

r 
th

an
 e

st
im

at
ed

   
m

c

Average 95% Quantile
Average Mean
Average 5% Quantile

Median 95% Quantile
Median Mean
Median 5% Quantile

(e)

-20 -10 0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Skewness

P
er

ce
nt

ag
e 

un
de

te
ct

ed
 e

ve
nt

s 
gr

ea
te

r 
th

an
 e

st
im

at
ed

   
m

c

Average 95% Quantile
Average Mean
Average 5% Quantile

Median 95% Quantile
Median Mean
Median 5% Quantile

(f)

Figure E.43: Expected number of events not detected as a percentage of expected number of events greater
than m̂c together with error bounds for MITC estimation method illustrated as a function of expected value (figs.
a and b), variance (figs. c and d) and skewness (figs. e and f) of distribution used to model detection probability.
Detection probability in Figures a, c and e modelled by a cumulative Log-Normal distribution, while modelled
by a cumulative Pareto type II distribution in Figures b, d and f.
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E.1.2.2 Four Figure summary of threshold estimation methods

In this section a brief overview is given pertaining to the four-figure summary of the threshold estimation

methods when being subjected to a soft detection threshold.

Since no explicit threshold is defined when constructing the distribution a different metric must be

chosen when evaluating the efficiency of threshold estimation methods. The specified measure is the

percentage of non-detected events greater than the estimated threshold.

This percentage can be seen to vary for different estimation methods as as well as for differing val-

ues of the 1) Expected Value 2) Variance and 3) Skewness (if applicable) of the random variable whose

cumulative distribution function is being used to model the detection probability.

It is due to this variation that the following three figures (based on the respective lower order moments

as stated above) are included in the four-figure summary :

1. Value of the lower order moment at which 25% of events are non-detected.

2. Value of the lower order moment at which 50% of events are non-detected.

3. Value of the lower order moment at which 75% of events are non-detected.

In situations where the exact magnitude of these non-detection percentages is not available, linear in-

terpolation can be used to approximate these figures. In this study data has been grouped by intervals

relating to the lower order moments of the random variable whose distribution function is used to model

the detection probability and therefore linear interpolation has been used to approximate these exact

percentages.

Knowledge of the above three values can be indicative of the following:

1. What characteristics the detected magnitude distribution must exhibit (based on the lower order

moments) for a reasonable amount (25%), half of the events (50%) and an extreme amount (75%)

of events to be non-detected.

2. The rate at which the percentage of non-detected events increases.

The final figure to be included in the summary is the maximum percentage of events not detected over the

entire range considered. This allows for the consideration of a “worst case scenario” over the considered

range. This figure also holds key information in the event that the estimation method does not attain

at least one of the event non-detection figures. This figure is also useful to consider maximal loss when

the rate of event non-detection increases rapidly and continues above the 75% mark.
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In this investigation the four-figure summary (Table E.11) is provided for 1) the various threshold esti-

mation methods, 2) differing forms of the detection probability and 3) for differing values of the lower

order moments of the random variable attributed to each respective detection probability.

Detection probability modelled by . . .
Cum. Normal Dist. Cum. Logistic Dist. Cum. Log-Normal Dist. Cum. Pareto type II Dist.

% of events lost Max % of events lost Max % of events lost Max % of events lost Max
0.25 0.5 0.75 % lost 0.25 0.5 0.75 % lost 0.25 0.5 0.75 % lost 0.25 0.5 0.75 % lost

G
ro

u
p
in

g
of

ev
en

t
d
et

ec
ti

on
d
is

tr
ib

u
ti

on
b
y

..
.

E
x
p

ec
te

d
V

al
u
e

T
h
re

sh
ol

d
es

ti
m

at
io

n
m

et
h
o
d

GOF 0.77 2.33 - 0.68 - 2.36 5.04 0.79 2.29 - - 0.42 1.4 - - 0.47
bVS 0.63 1.94 4.1 0.82 - - - 0.6 1.29 2.23 2.71 0.99 1.73 2.59 - 0.53

MAXC 0.7 1.79 3.15 0.87 - - 2.92 0.9 1.3 2.3 - 0.63 1.38 2.52 - 0.54
EMR 1.75 5.02 - 0.55 - 3.8 - 0.67 3.23 - - 0.33 1.66 2.55 - 0.54

MBASS 2.34 3.55 5.32 0.8 2.48 3.94 5.62 0.76 2.24 3.68 - 0.56 1.67 - - 0.45
MITC 2.07 3.16 4.77 0.85 - 3.18 4.58 0.9 2.33 3.88 - 0.5 2.39 - - 0.35

V
ar

ia
n
ce

GOF 0.7 1.41 - 0.67 0.52 0.96 1.65 0.85 - - - 0.24 - - - 0.22
bVS 0.49 0.95 - 0.71 0.34 0.88 - 0.69 - 2.19 3.16 0.75 1.93 - - 0.35

MAXC 0.26 0.61 - 0.71 - 0.34 0.54 0.9 2.81 - - 0.28 - - - 0.24
EMR 1.22 3.04 - 0.53 0.66 1.35 - 0.7 - - - 0.18 - - - 0.16

MBASS 0.26 - - 0.44 - 1.79 - 0.55 - - - 0.16 - - - 0.16
MITC 0.79 2.03 - 0.52 0.34 0.86 - 0.72 - - - 0.14 - - - 0.16

S
ke

w
n
es

s

GOF

NA NA

- -1.81 - 0.55 - -1.81 - 0.55
bVS - -1.81 - 0.55 - -1.81 - 0.55

MAXC - -1.81 - 0.55 - -1.81 - 0.55
EMR - -1.81 - 0.55 - -1.81 - 0.55

MBASS - -1.81 - 0.55 - -1.81 - 0.55
MITC - -1.81 - 0.55 - -1.81 - 0.55

Table E.11: Four-figure summary relating to percentage of events lost as a result of each threshold
estimation method. Displayed figures are based on results grouped by 1) Estimation Method, 2) detection
distribution and 3) the lower order moments (Expected value, Variance and Skewness) of RV attributed
to detection probability.
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Appendix F :

Maximum likelihood parameter estimation of detected

magnitude distribution

In this appendix the maximum likelihood equations for the detected magnitude distribution (fMD
) is

derived. This is done for the case where a sharp detection threshold is found in the distribution and the

detection probability is modelled by the cumulative Normal distribution.

As seen in (8.25), on p. 29, the detected magnitude distribution takes on the following form :

fMD
(m) = CNorm


fMG

(m)ΦT (zm) if mmin ≤ m < mc

fMG
(m) if mc < m ≤ mmax

0 otherwise

(F.79)

where zm = m−µ
σ and ΦT (zm) = Φ(zm)

Φ(zmc ) . Furthermore m represents the data vector (m1,m2, . . . ,mn) of

event magnitudes related to the n observations. From here the likelihood and subsequent log-likelihood

can be found to be :

L(β, µ, σ|m) =
n∏
i=1

fMD
(m) =

( ∏
mi<mc

fMD
(mi)

) ∏
mi≥mc

fMD
(mi)


l(β, µ, σ|m) =

∑
mi<mc

ln fMD
(mi) +

∑
mi≥mc

ln fMD
(mi)

=
∑

mi<mc

ln fMG
(mi)

Φ(zm)

Φ(zmc)
+

∑
mi≥mc

ln fMG
(mi) + n lnCNorm

=
∑

mi<mc

(ln Φ(zm)− ln Φ(zmc)) +
n∑
i=1

ln fMG
(mi) + n lnCNorm

(F.80)

The following general result holds where x is one of the parameters β, µ or σ of the likelihood function

∂

∂x
lnCNorm =

∂
∂xCNorm

CNorm

= (CNorm)−1 ∂

∂x

(∫ mc

mmin

fMG
(m)ΦT (zm) dm+

∫ mmax

mc

fMG
(m) dm

)−1

= (CNorm)−1(−1)(CNorm)2 ∂

∂x

(∫ mc

mmin

fMG
(m)ΦT (zm) dm+

∫ mmax

mc

fMG
(m) dm

)
= (−1)(CNorm)

(∫ mc

mmin

∂

∂x
fMG

(m)ΦT (zm) dm+

∫ mmax

mc

∂

∂x
fMG

(m) dm

)
By equation 0.410 from the Table of Inegrals, Series and Products [20].

(F.81)
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Three cases are now individually considered.

Case 1 : x = β

From (9.2) the following can be seen, together with the subsequent restatement

∂

∂β
ln fMG

(m) =
1

β
−m+

mmine
−βmmin −mmaxe

−βmmax

e−βmmin − e−βmmax
(F.82)

∂

∂β
fMG

(m) = fMG
(m) (E[MG]−m) (F.83)

Therefore,

∂

∂β
lnCNorm

= (−1)(CNorm)

(∫ mc

mmin

∂

∂β
fMG

(m)ΦT (zm) dm+

∫ mmax

mc

∂

∂β
fMG

(m) dm

)
= (−1)(CNorm)(E[M ] · C−1

Norm −
(∫ mc

mmin

mfMG
(m)ΦT (zm) dm+

∫ mmax

mc

mfMG
(m) dm

)

= (−1)E[M ] + C−1
Norm

(
− e−βm

e−βmmin − e−βmmax

(
m+

1

β

)
ΦT (zm)

∣∣∣∣mc
mmin

− 1

Φ(zmc)

(∫ mc

mmin

(
−fMG

(m)
1

β

(
m+

1

β

))
1

σ
φ(zm) dm+

∫ mmax

mc

mfMG
(m) dm

))
Integration by parts and utelizing (B.31). (F.84)

When considering the first of the two integrals from above, the following simplification can be made

− 1

β

∫ mc

mmin

fMG
(m)

(
m+

1

β

)
1

σ
φ(zm) dm

= − 1

β

βe−β(µ− 1
2σ

2β)

e−βmmin − e−βmmax

(∫ mc

mmin

m
1

σ
φ(z∗m) dm+

1

β

∫ mc

mmin

1

σ
φ(z∗m) dm

)
By combining the expressions as in (B.33)

= − e−β(µ− 1
2σ

2β)

e−βmmin − e−βmmax

((
µ− σ2β +

1

β

)(
Φ(z∗mc)− Φ(z∗mmin)

)
− σ

(
φ(z∗mc)− φ(z∗mmin)

))
By incorporating (B.36) and thereafter simplifying. (F.85)

The second integral in (F.84), is of the form represented by (B.30). Therefore, the partial derivative of

the normalizing constant can be found to be
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∂

∂β
lnCNorm

= (−1)E[MG]

+
1

CNorm · (e−βmmin − e−βmmax)

(
−
(
e−βmc

(
mc +

1

β

)
ΦT (zmc)− e−βmmin

(
mmin +

1

β

)
ΦT (zmmin)

)
− 1

Φ(zmc)

(
− e−β(µ− 1

2σ
2β)
((

µ− σ2β +
1

β

)(
Φ(z∗mc)− Φ(z∗mmin)

)
− σ

(
φ(z∗mc)− φ(z∗mmin)

))
+

1

β

(
e−βmmin − e−βmc

)
+mmine

−βmmin −mce
−βmc

))
(F.86)

Before considering the remaining two cases (x = µ and x = σ), it is worth noting that the following can

be derived by using the chain rule of differentiation :

∂

∂µ
Φ(zm) = φ(zm)

∂

∂µ

(
m− µ
σ

)
= − 1

σ
φ(zm) (F.87)

∂

∂σ
Φ(zm) = φ(zm)

∂

∂σ

(
m− µ
σ

)
= −m− µ

σ2
φ(zm) (F.88)

Case 2 : x = µ
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∂

∂µ
lnCNorm = (−1)CNorm

(∫ mc

mmin

∂

∂µ
fMG

(m)ΦT (zm) dm+

∫ mmax

mc

fMG
(m) dm

)
= (−1)CNorm

∫ mc

mmin

fMG
(m)

∂

∂µ

Φ(zm)

Φ(zmc)
dm

= (−1)CNorm

∫ mc

mmin

fMG
(m)

(
∂
∂µΦ(zm)

)
Φ(zmc)− Φ(zm) ∂

∂µΦ(zmc)

(Φ(zmc))
2

dm

= − CNorm

(Φ(zmc))
2

(
Φ(zmc)

∫ mc

mmin

fMG
(m)

(
∂

∂µ
Φ(zm)

)
dm−

(
∂

∂µ
Φ(zmc)

)∫ mc

mmin

fMG
(m)Φ(zm) dm

)
(F.89)

= − CNorm

(Φ(zmc))
2

(
Φ(zmc)

∫ mc

mmin

fMG
(m)

(
− 1

σ
φ(zm)

)
dm−

(
− 1

σ
φ(zmc)

)∫ mc

mmin

fMG
(m)Φ(zm) dm

)
By (F.87).

=
CNorm

(Φ(zmc))
2

(
Φ(zmc)

∫ mc

mmin

fMG
(m)

1

σ
φ(zm) dm− 1

σ
φ(zmc)

∫ mc

mmin

fMG
(m)Φ(zm) dm

)

=
CNorm

(Φ(zmc))
2

(
Φ(zmc)

βe−β(µ− 1
2σ

2β)

e−βmmin − e−βmmax
(
Φ(z∗mc)− Φ(z∗mmin)

)
− 1

σ
φ(zmc)

(
FMG

(mc)Φ(zmc)−
1

1− exp (−β(mmax −mmin))

(
Φ(zmc)− Φ(zmmin)

−e−β(µ−mmin− 1
2σ

2β) (Φ(z∗mc)− Φ(z∗mmin)
) )))

By (B.33) and (B.35), where z∗m =
m− (µ− σ2β)

σ
and since FMG

(mmin) = 0

Case 3 : x = σ

∂

∂σ
lnCNorm = − CNorm

(Φ(zmc))
2

(
Φ(zmc)

∫ mc

mmin

fMG
(m)

(
∂

∂σ
Φ(zm)

)
dm−

(
∂

∂σ
Φ(zmc)

)∫ mc

mmin

fMG
(m)Φ(zm) dm

)
Simmilarly as for (F.89).

= − CNorm

(Φ(zmc))
2

(
Φ(zmc)

∫ mc

mmin

fMG
(m)

(
−m− µ

σ2
φ(zm)

)
dm

−
(
−mc − µ

σ2
φ(zmc)

)∫ mc

mmin

fMG
(m)Φ(zm) dm

)
By (F.88).

(F.90)

when considering the first integral in isolation the following simplifications can be made
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∫ mc

mmin

fMG
(m)

(
−m− µ

σ2
φ(zm)

)
dm

= − 1

σ

∫ mc

mmin

fMG
(m)(m− µ)

1

σ
φ(zm) dm

= − 1

σ

βe−β(µ− 1
2σ

2β)

e−βmmin − e−βmmax

∫ mc

mmin

(m− µ)
1

σ
φ(z∗m) dm

By combining the expressions fMG
(m) and φ(m) as in (B.32) where z∗m =

m− (µ− σ2β)

σ
.

=
βe−β(µ− 1

2σ
2β)

e−βmmin − e−βmmax
(
σβ(Φ(z∗mc)− Φ(z∗mmin)) + φ(z∗mc)− φ(z∗mmin)

)
By (B.36) and thereafter rearranging.

(F.91)

The second integral can be simplified according to (B.35). Therefore it holds that

∂

∂σ
lnCNorm = − CNorm

(Φ(zmc))
2

(
Φ(zmc)

βe−β(µ− 1
2σ

2β)

e−βmmin − e−βmmax
(σβ(Φ(z∗mc)− Φ(z∗mmin)) + φ(z∗mc)− φ(z∗mmin))

+
mc − µ
σ2

φ(zmc)

(
FMG

(mc)Φ(zmc)−
1

1− e−β(mmax−mmin)

(
Φ(zmc)− Φ(zmmin)−

e−β(µ−mmin− 1
2σ

2β) (Φ (z∗mc)− Φ
(
z∗mmin

)) )))
(F.92)

Therefore, from the log-likelihood function in (F.80) and utilizing the above results, the partial derivatives

of the function are as follows

∂

∂β
l(β, µ, σ|m) =

n∑
i=1

∂

∂β
ln fMG

(mi) + n
∂

∂β
lnCNorm

= n

(
1

β
+
mmine

−βmmin −mmaxe
−βmmax

e−βmmin − e−βmmax

)
−

n∑
i=1

mi + n

(
(−1)

(
1

β
+
mmine

−βmmin −mmaxe
−βmmax

e−βmmin − e−βmmax

)

+
1

CNorm · (e−βmmin − e−βmmax)

(
−
(
e−βmc

(
mc +

1

β

)
ΦT (zmc)− e−βmmin

(
mmin +

1

β

)
ΦT (zmmin)

)
− 1

Φ(zmc)

(
− e−β(µ− 1

2σ
2β)
((

µ− σ2β +
1

β

)(
Φ(z∗mc)− Φ(z∗mmin)

)
− σ

(
φ(z∗mc)− φ(z∗mmin)

))

+
1

β

(
e−βmmin − e−βmc

)
+mmine

−βmmin −mce
−βmc

)))
(F.93)
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∂

∂µ
l(β, µ, σ|m) =

∑
mi<mc

(
∂
∂µΦ(zmi)

Φ(zmi)
−

∂
∂µΦ(zmc)

Φ(zmc)

)
+ n

∂

∂µ
lnCNorm

= − 1

σ

∑
mi<mc

(
φ(zmi)

Φ(zmi)
− φ(zmc)

Φ(zmc)

)

+n
CNorm

(Φ(zmc))
2

(
Φ(zmc)

βe−β(µ− 1
2σ

2β)

e−βmmin − e−βmmax
(
Φ(z∗mc)− Φ(z∗mmin)

)
− 1

σ
φ(zmc)

(
FMG

(mc)Φ(zmc)−
1

1− exp (−β(mmax −mmin))

(
Φ(zmc)− Φ(zmmin)

−e−β(µ−mmin− 1
2σ

2β) (Φ(z∗mc)− Φ(z∗mmin)
) )))

(F.94)

∂

∂σ
l(β, µ, σ|m) =

∑
mi<mc

(
∂
∂σΦ(zmi)

Φ(zmi)
−

∂
∂σΦ(zmc)

Φ(zmc)

)
+ n

∂

∂σ
lnCNorm

= − 1

σ2

∑
mi<mc

(mi − µ)

(
φ(zmi)

Φ(zmi)
− φ(zmc)

Φ(zmc)

)

−n CNorm

(Φ(zmc))
2

(
Φ(zmc)

βe−β(µ− 1
2σ

2β)

e−βmmin − e−βmmax
(σβ(Φ(z∗mc)− Φ(z∗mmin)) + φ(z∗mc)− φ(z∗mmin))

+
mc − µ
σ2

φ(zmc)

(
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(mc)Φ(zmc)−
1

1− e−β(mmax−mmin)

(
Φ(zmc)− Φ(zmmin)−

e−β(µ−mmin− 1
2σ

2β) (Φ (z∗mc)− Φ
(
z∗mmin

)) )))
(F.95)
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Appendix G :

List of Acronyms

CPP Change point problem

FMD Frequency-Magnitude Distribution

PDF Probability density function

CDF Cumulative distribution function

bVS b-Value Stability threshold estimation method as described by Cao and Gao [8]

EMR Entire Magnitude Range threshold estimation method as described by Woessner and Wiemer [60]

GOF Goodness of fit threshold estimation method as described by Wiemer and Wyss [59]

MAXC Maximum Curvature threshold estimation method as described by Wiemer and Wyss [59]

MBASS Median based assessment of the segment slope threshold estimation method as described by

D. Amorèse [3]

MITC Moment incorporating threshold computation, as developed in this investigation.

MSE Mean-squared error
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Appendix H :

List of Programming Aids

The R Project for Statistical Computing [45]

Package “coin” [29], [30]

Package “multcomp” [28]

Package “pgirmess” [19]

Package “ismev” [16]

Package “evd” [54]

Package “Rmpfr” [37]
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Appendix I :

Programming

I.1.1 Catalogue functions

1 #~~~~~~~~~~~~~~~~~~~ Earthquake Catalog Functions & Operations~~~~~~~~~~~~~~~~~~#
2 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
3 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
4 #################################################################################
5
6 #Binning (Incremental or Cumulative)
7 EQBinning <-function(dataEQ , binWidth = 0.1, bType = "inc"){
8 # bType = "inc" (Incremental) or "cum" (Cumulative)
9

10 #Get Min Mag
11 MagMin <- floor(min(dataEQ)/binWidth) * binWidth
12 #Get Max Mag
13 MagMax <- ceiling(max(dataEQ)/binWidth) * binWidth
14
15 #Construct Binning partition
16 bins <- base:: matrix(seq(MagMin ,MagMax , by = binWidth))
17 numBins <- nrow(bins)
18
19 #Binning
20 lvDataEQ <- base:: matrix(dataEQ)
21 RetArray <- base:: matrix(,numBins ,2)
22 RetArray [,1] <- bins
23
24 for(i in 1: numBins){
25 RetArray[i,2] <- NROW(lvDataEQ [(abs(lvDataEQ - c(bins[i])) <= binWidth / 2)])
26 }
27
28 if(tolower(bType) == "cum"){
29 BinnedEQ <- RetArray
30 for(i in 1: numBins){
31 RetArray[i,2] <- sum(BinnedEQ[i:numBins ,2])
32 }
33 }
34
35 return(RetArray)
36 }

./RCode/EQFunc Catalog.r

I.1.2 Distributional functions

1 #Density - Distribution - Quantile - Simulation
2
3
4 #Pure Continuous GR ~~~~~~ mMin <= M <= mMax (can be Inf)
5 #(d)Density Function
6 dGR <-function(Mag , bValue , mMin = 0, mMax = Inf){
7 betaValue <- log (10)*bValue
8 ret <- betaValue * exp(-betaValue * Mag) / (exp(-betaValue * mMin) - exp(-betaValue * mMax))
9 return(ret)

10 }
11
12 #(p)Probability - Cumulative Distribution Function
13 pGR <-function(Mag , bValue , mMin = 0, mMax = Inf){
14 betaValue <- log (10)*bValue
15 ret <- (1 - exp(-betaValue * (Mag - mMin))) / (1 - exp(-betaValue * (mMax - mMin)))
16 return(ret)
17 }
18
19 #(q)Quantile Function
20 qGR <-function(x, bValue , mMin = 0, mMax = Inf){
21 betaValue <- log (10)*bValue
22 ret <- mMin - (1 / betaValue) * log(1 - x * (1 - exp(-betaValue * (mMax - mMin))))
23 return(ret)
24 }
25
26 #Simulate (r)Random GR Deviate
27 rGR <- function(n, bValue , mMin = 0, mMax = Inf , obsErr = 0){
28 U <- runif(n)
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29 ret <- qGR(U, bValue , mMin , mMax)
30 #Include random observation error
31 if(obsErr > 0){ret <- ret + rnorm(n, sd = obsErr)}
32 return(ret)
33 }
34 #Log -Likelihood Function
35 likl.GR <- function(mVec , bValue , mMin = 0, mMax = Inf){
36 betaValue <- log (10) * bValue
37 n <- NROW(mVec)
38 sumM <- sum(mVec)
39
40 ret <- (betaValue ^ n) * (exp(-betaValue * sumM)) / (exp(-betaValue * mMin) - exp(-betaValue *

mMax)) ^ n
41 ret <- log(ret)
42
43 return(ret)
44 }
45
46
47 #Binned GR Distribution
48 #Probability (m)Mass Function of Binned GR
49 mBinGR <-function(mCenter , bValue , mMin , mMax = Inf , binWidth =0.1){
50 #See Note on summing these bins! sum {Mmin - (binWidth / 2) TO Mmax + (binWidth / 2)} = 1
51 M2 <- mCenter + binWidth / 2
52 M1 <- mCenter - binWidth / 2
53
54 ret <- pGR(M2, bValue , mMin , mMax) - pGR(M1, bValue , mMin , mMax)
55 return(ret)
56 }
57
58 #Log -Likelihood Functions
59 #Multinomial Formulation
60 likl.MultBinGR <-function(lvEQData , bValue , mMin = -1, mMax = -1){
61 if(mMin == -1){MagMin <- min(lvEQData [,1])}
62 if(mMax == 1){MagMax <- max(lvEQData [,1])}
63
64 numEQs <- sum(lvEQData [,2])
65
66 binWidth <- abs(lvEQData [2,1] - lvEQData [1,1])
67 betaValue <- bValue * log (10)
68
69 #Function
70 #NOTE : log(N! / product(xi!)) has been left out since factorials introduce large number

scaling
71 # This term is however constant for all likelihood values and can therefore be left

out
72
73 tempA <- betaValue* sum(matrix(lvEQData [,1] * lvEQData [,2]))
74 tempB <- numEQs * log(sinh(betaValue * binWidth / 2))
75 tempC <- numEQs * log(exp(-betaValue * MagMin) - exp(-betaValue * MagMax))
76
77 likl <- -tempA + tempB - tempC
78 return(likl)
79 }

./RCode/EQFunc DDQS.r

I.1.3 Implementation of b-Value estimation algorithm

1 #GR Distribution (Continious) - TRuncated on Left & Right - Page MaxLik Relation
2 betaValue.mle.PageRelation <-function(lvEQData , epsilon = 0.0000001 , maxIt = 10000, mmin = -1,

mmax = -1){
3 #Page (1968) - Data in Perfect World
4 #Starting value for beta in Newton -Raphson Scheme will be obtained from the Aki (1965) - Utsu

(1965) formula.
5
6 f_beta <- function(beta , mbar , mmin , mmax){1 / beta - mbar + mmin - (mmax - mmin) / (exp(beta*(

mmax - mmin)) - 1)}
7
8 fPrime_beta <- function(beta , mmin , mmax){-1/ (beta ^2) + ((mmax - mmin) / (exp(beta*(mmax -

mmin)) - 1))^2 * exp(beta*(mmax - mmin))}
9

10 mbar = mean(lvEQData)
11 if(mmin == -1){mmin = min(lvEQData)}
12 if(mmax == -1){mmax = max(lvEQData)}
13
14 if(mbar == mmin){return(NaN)}
15
16 betaStar = 1 / (mbar - mmin) #Start Value
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17 beta = betaStar + 2 * epsilon
18 itCount = 0
19
20 betaReset <- 0
21
22 #Note : If only one value passed - mmin = mmax = mbar & exception will be thrown
23 while((abs(betaStar -beta) >= epsilon) && (itCount <= maxIt)){
24 itCount = itCount + 1
25 beta = betaStar
26 betaStar = beta - f_beta(beta , mbar , mmin , mmax) / fPrime_beta(beta , mmin , mmax)
27 #print(c(betaStar , beta , betaReset))
28 if((abs(betaStar) == Inf) && (betaReset < 10)){
29 betaReset = betaReset + 1
30 if(betaReset == 1){betaStar = 7}
31 else if(betaReset == 2){betaStar = 10}
32 }
33 }
34 return(betaStar)
35 }

./RCode/EQFunc bValue Est.r

I.1.4 Implementation of GOF threshold estimation algorithm

1 findMc.WiemerWyss2000 <-function(dImpEQ , binWidth =0.1, blnPrintSteps=F, lngBootStrapResamples =-1,
signif=-1, mmin=-1, mmax=-1){

2
3 ffDetectFunc <- function(dImpEQ , binWidth , blnPrintSteps , signif , mmin , mmax){
4 #Full Magnitudge Range
5 dImpBinIncEQ = EQBinning(dImpEQ , binWidth)
6 dImpBinCumEQ = EQBinning(dImpEQ , binWidth , "cum") #plot(dImpBinCumEQ [,1], log10(

dImpBinCumEQ [,2]))
7
8 if(mmin ==-1){minMag_ImpData = max(min(dImpBinIncEQ [,1]) - binWidth / 2,0)}else{minMag_ImpData

= mmin}
9 if(mmax ==-1){maxMag_ImpData = max(dImpBinIncEQ [,1]) + binWidth / 2}else{maxMag_ImpData = mmax

}
10
11 numBins = NROW(dImpBinIncEQ)
12
13 Rstat = cbind(dImpBinIncEQ[-numBins ,1], matrix (0,(numBins -1) ,1),matrix (0,(numBins -1) ,1))
14 ABstat = cbind(dImpBinIncEQ[-numBins ,1], matrix (0,(numBins -1) ,3))
15
16 for(i in 1:( numBins - 1)){
17 #print(paste(1," : ", i, " of ", numBins , "=", numBins))
18 #Setting up cencored data - for detection procedure
19 dCenBinIncEQ = dImpBinIncEQ[i:NROW(dImpBinIncEQ),]
20 minMag_CenData = min(dCenBinIncEQ [,1]) - binWidth / 2
21
22 #Binning
23 dCenBinCumEQ = dCenBinIncEQ
24 for(j in 1:NROW(dCenBinIncEQ)){dCenBinCumEQ[j,2] = sum(dCenBinIncEQ[j:NROW(dCenBinIncEQ)

,2])}
25
26 #print(paste(2," : ", i, " of ", numBins , "=", numBins))
27
28 dCenEQ = dImpEQ[which(dImpEQ >= dImpBinIncEQ[i,1])]
29 betaHat = betaValue.mle.PageRelation(dCenEQ)
30 estBValue = betaHat / log (10)
31 estAValue = log10(dCenBinCumEQ [1,2]) + estBValue * minMag_CenData
32
33 #print(paste(3," : ", i, " of ", numBins , "=", numBins))
34
35 #Estimating Expected numbers (Entire Range)
36 ExTotalEQ = 10 ^ (estAValue - estBValue * minMag_ImpData)
37
38 #Incremental
39 dER_ExBinIncEQ = dImpBinIncEQ
40 dER_ExBinIncEQ [,2] = mBinGR(dER_ExBinIncEQ [,1], estBValue , minMag_ImpData , maxMag_ImpData

) * ExTotalEQ
41
42 #print(paste(4," : ", i, " of ", numBins , "=", numBins))
43
44 #Binning
45 dER_ExBinCumEQ = dER_ExBinIncEQ
46 for(j in 1:NROW(dER_ExBinIncEQ)){dER_ExBinCumEQ[j,2] = sum(dER_ExBinIncEQ[j:NROW(dER_

ExBinIncEQ) ,2])}
47
48 #print(paste(5," : ", i, " of ", numBins , "=", numBins))
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49
50 #Estimating GOF Statistic
51 Rstat[i,2] = 100 * (1 - sum(abs(dER_ExBinCumEQ[i:NROW(dER_ExBinCumEQ) ,2] - dCenBinCumEQ

[,2])) / dCenBinCumEQ [1,2] )
52 tempData <- dImpEQ[which(dImpEQ > minMag_CenData)]
53
54 #x <- try(ks.test(tempData , "dGR", bValue=betaHat/log (10), mMin=minMag_CenData , mMax=mmax),

silent=!blnPrintSteps)
55 if(FALSE){Rstat[i,3] = x$p.value} # !inherits(x, "try -error") #Error will be printed even

though is will continue with rest of program
56 if(blnPrintSteps){print(paste("mmin = ", minMag_CenData ," - numObs = ", NROW(dImpEQ[which(

dImpEQ > minMag_CenData)]), " - Rstat = ", Rstat[i,3], sep=""))}
57
58 #print(paste(6," : ", i, " of ", numBins , "=", numBins))
59 #Additional Output data
60 ABstat[i,2] = estAValue
61 ABstat[i,3] = estBValue
62 ABstat[i,4] = ExTotalEQ
63
64 }
65
66 ret <- data.frame(BinCenterMag = ABstat [,1]) #which is also Rstat [,1]
67 ret$estValue_a <- ABstat [,2]
68 ret$estValue_b <- ABstat [,3]
69 ret$estValue_TotalNumEQs <- ABstat [,4]
70
71 ret$Stat_ModifiedGOF <- Rstat[,2]
72 ret$Stat_KS.pVal <- Rstat[,3]
73
74 #Find Mc
75 mc_GOF <- ret[complete.cases(ret),]
76 mc_GOF <- mc_GOF[which(mc_GOF$Stat_ModifiedGOF ==max(mc_GOF$Stat_ModifiedGOF)),]$BinCenterMag

- binWidth/2
77
78 if(signif != -1){
79 mc_KS <- ret[complete.cases(ret),]
80 mc_KS <- min(mc_KS[mc_KS$Stat_KS.pVal >= signif ,]$BinCenterMag) - binWidth / 2
81 }else{
82 mc_KS = 0
83 }
84
85 ret <- list(SampleStats=ret , mc_GOF=mc_GOF , mc_KS=mc_KS)
86
87 return(ret)
88 }
89
90 ret <- ffDetectFunc(dImpEQ , binWidth , blnPrintSteps , signif , mmin , mmax)
91
92 if(lngBootStrapResamples != -1){
93 stats <- matrix(0, lngBootStrapResamples ,2)
94 for(i in 1: lngBootStrapResamples){
95 rData <- sample(dImpEQ ,size=NROW(dImpEQ),replace=T)
96 temp <- ffDetectFunc(rData , binWidth , blnPrintSteps=F, signif , mmin , mmax)
97 stats[i,1] <- temp$mc_GOF
98 stats[i,2] <- temp$mc_KS
99 if(blnPrintSteps){print(paste("Done : ",i, " of ", lngBootStrapResamples , sep=""))}

100 }
101
102 ret <- list(SampleStats=ret$SampleStats , mc_GOF=ret$mc_GOF , mc_KS=ret$mc_KS ,SamplingDist_GOF=

stats[,1], SamplingDist_KS=stats [,2])
103 }
104
105 return(ret)
106 }

./RCode/ThresholdEstimation GOF Exp.r

I.1.5 Implementation of MAXC threshold estimation algorithm

1 findMc.WiemerWyss2000.MAXC <- function(dEQ , Indices=-1, binWidth =0.1, blnPrintSteps=T,
lngBootStrapResamples =-1){

2
3 if(NROW(Indices) != 1){
4 d <- dEQ[Indices]
5 }else{
6 if(Indices != -1){
7 d <- dEQ[Indices]
8 }else{
9 d <- dEQ
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10 }
11 }
12
13 ffDetectFunc <- function(dEQ , binWidth , blnPrintSteps){
14 dBinEQ_Cum <- EQBinning(dEQ , binWidth , "inc")
15
16 max.count <- max(dBinEQ_Cum[,2])
17
18 mc <- as.numeric(dBinEQ_Cum[which(dBinEQ_Cum[,2] == max.count) ,1])
19 if(length(mc) == 0){
20 mc <- NA}
21 else{
22 if(NROW(mc) > 1){
23 mc <- mc[NROW(mc)]
24 }
25 }
26
27 mc <- mc + binWidth / 2
28
29 Ret <- data.frame(mc = mc)
30 return(Ret)
31 }
32
33 Ret <- ffDetectFunc(dEQ=d, binWidth , blnPrintSteps)
34
35 if(lngBootStrapResamples != -1){
36 stats <- vector("numeric",lngBootStrapResamples)
37 for(i in 1: lngBootStrapResamples){
38 rData <- sample(dEQ ,size=NROW(dEQ),replace=T)
39 stats[i] <- ffDetectFunc(rData , binWidth , blnPrintSteps=F)$mc
40 if(blnPrintSteps ==T){print(paste("Done : ",i, " of ", lngBootStrapResamples , sep=""))}
41 }
42 Ret <- list(mc = Ret$mc , SamplingDist=stats)
43 }
44
45 return(Ret)
46 }

./RCode/ThresholdEstimation MAXC.r

I.1.6 Implementation of bVS threshold estimation algorithm

1 findMc.CaoGao2002 <- function(dEQ , binWidth =0.1, numBinsToAve =5, blnPrintSteps=T,
lngBootStrapResamples =-1, numBinsLeftOfAve = 0){

2
3 ffDetectFunc <- function(dEQ , binWidth , numBinsToAve , blnPrintSteps , numBinsLeftOfAve){
4 dBinEQ_Cum <- EQBinning(dEQ , binWidth , "cum")
5
6 tempRet <- base:: matrix (1,(NROW(dBinEQ_Cum) -1), 6)
7
8 if(NROW(tempRet) != 0){
9 #Set up subsamples & Statistics

10 for(i in 1:( NROW(dBinEQ_Cum) -1)){
11 mco <- dBinEQ_Cum[i,1]
12 #print(paste(i, " ~~~ ", mco , sep =""))
13 dSampleEQ <- dEQ[which(dEQ >= mco)]
14 MinMag_Sample <- min(dSampleEQ)
15 bVal1 <- try(betaValue.mle.PageRelation(dSampleEQ , mmin=(mco - binWidth/2)) / log (10),

silent=T)
16 if(inherits(bVal1 , "try -error")){bVal1 <- NA}
17
18 bVal2 <- mle.bValue.Cont.trunc.left(dSampleEQ , MagMin =(mco - binWidth/2))
19
20
21 temp <- dSampleEQ - mean(dSampleEQ)
22 temp <- t(temp) %*% temp
23 numObs <- NROW(dSampleEQ)
24 deltab <- 2.3 * (bVal2 ^ 2) * sqrt(temp / (numObs * (numObs - 1)))
25
26 #Insert Data
27 #print(paste(i, " ~~~ ", mco , " ~~~ ", NROW(dBinEQ_Cum), sep =""))
28 #print(dSampleEQ)
29
30 tempRet[i,1] <- mco
31 tempRet[i,2] <- numObs
32 tempRet[i,3] <- MinMag_Sample
33 tempRet[i,4] <- bVal1
34 tempRet[i,5] <- bVal2
35 tempRet[i,6] <- deltab
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36
37 if(blnPrintSteps){print(paste("(",i,"/", NROW(dBinEQ_Cum) ,")", " m_co=", format(mco ,

nsmall =2), " || MinMag= ", format(MinMag_Sample ,nsmall =8), "|| numObs=", format(
numObs , nsmall =3) ," || delta.b=", format(deltab , nsmall =4) ," || bVal1=", format(
bVal1 ,nsmall =8), " || bVal2=", format(bVal2 ,nsmall =8), sep=""))}

38 }
39 ##### REMEMBER !!! sTATISTICS ARE ONLY CALCULATED FOR THE FIRST (N-1) MAGNITUDE BINS !!!!
40
41 #Search for Mc
42 # bDiff <- matrix(0, (NROW(dBinEQ_Cum) - numBinsToAve - 1), 2)
43 # for(i in 1:NROW(bDiff)){
44 # #print(paste(i, " of ", NROW(bDiff), " and MaxRow= ", NROW(tempRet) , sep ="" ))
45 # bDiff[i,1] <- mean(tempRet[i:(i+numBinsToAve - 1) ,4])
46 # bDiff[i,2] <- mean(tempRet[i:(i+numBinsToAve - 1) ,5])
47 # }
48
49 #Search for Mc
50 bDiff <- base:: matrix(NA, (NROW(dBinEQ_Cum) - 1), 2)
51 for(i in (numBinsLeftOfAve +1):(NROW(bDiff) - numBinsToAve + numBinsLeftOfAve + 1)){
52 #print(paste(i, " from ",( numBinsLeftOfAve +1) ," to ",(NROW(bDiff) - numBinsToAve +

numBinsLeftOfAve + 1), " and MaxRow= ", NROW(tempRet) , sep="" ))
53 #print(tempRet [(i-numBinsLeftOfAve):(i - 1 + (numBinsToAve - numBinsLeftOfAve)) ,4])
54 bDiff[i,1] <- mean(tempRet [(i-numBinsLeftOfAve):(i - 1 + (numBinsToAve - numBinsLeftOfAve))

,4])
55 bDiff[i,2] <- mean(tempRet [(i-numBinsLeftOfAve):(i - 1 + (numBinsToAve - numBinsLeftOfAve))

,5])
56 }
57
58 #print(cbind(bDiff ,tempRet [ ,4:5]))
59
60 bDiff[( numBinsLeftOfAve +1):(NROW(bDiff) - numBinsLeftOfAve),] <- abs(bDiff [( numBinsLeftOfAve

+1):(NROW(bDiff) - numBinsLeftOfAve),] - tempRet [( numBinsLeftOfAve +1):(NROW(bDiff) -
numBinsLeftOfAve) ,4:5])

61
62 #print(bDiff [1,])
63
64 Ret <- data.frame(mco = tempRet [1: NROW(bDiff) ,1])
65 Ret$Sample_numObs <- tempRet [1: NROW(bDiff) ,2]
66 Ret$Sample_MinMag <- tempRet [1: NROW(bDiff) ,3]
67 Ret$Sample_bVal.Page <- tempRet [1: NROW(bDiff) ,4]
68 Ret$Sample_bVal.AkiUtsu <- tempRet [1: NROW(bDiff) ,5]
69 Ret$Sample_bValVar.ShiBolt <- tempRet [1: NROW(bDiff) ,6]
70
71 Ret$Sample_bDiff.Page <- bDiff[,1]
72 Ret$Sample_bDiff.AkiUtsu <- bDiff [,2]
73
74 mc <- Ret[complete.cases(Ret),]
75 #mc <- mc[which(mc$Sample_bDiff.Page <= mc$Sample_bValVar.ShiBolt) ,]
76 mc <- mc[which(mc$Sample_bDiff.AkiUtsu <= mc$Sample_bValVar.ShiBolt) ,]
77 mc <- mc[which(mc$mco == min(mc$mco)) ,]
78 mc <- as.numeric(mc$mco)
79
80 if(length(mc) == 0){mc <- NA}
81 }else{
82 Ret <- data.frame(mco = NA)
83 Ret$Sample_numObs <- NA
84 Ret$Sample_MinMag <- NA
85 Ret$Sample_bVal.Page <- NA
86 Ret$Sample_bVal.AkiUtsu <- NA
87 Ret$Sample_bValVar.ShiBolt <- NA
88
89 Ret$Sample_bDiff.Page <- NA
90 Ret$Sample_bDiff.AkiUtsu <- NA
91 mc <- NA
92 }
93
94 Ret <- list(SampleStats=Ret , mc=mc)
95 return(Ret)
96 }
97
98 Ret <- ffDetectFunc(dEQ , binWidth , numBinsToAve , blnPrintSteps ,numBinsLeftOfAve)
99

100 if(lngBootStrapResamples != -1){
101 stats <- vector("numeric",lngBootStrapResamples)
102 for(i in 1: lngBootStrapResamples){
103 rData <- sample(dEQ ,size=NROW(dEQ),replace=T)
104 stats[i] <- ffDetectFunc(rData , binWidth , numBinsToAve , blnPrintSteps=F, numBinsLeftOfAve)$mc
105 if(blnPrintSteps ==T){print(paste("Done : ",i, " of ", lngBootStrapResamples , sep=""))}
106 }
107 Ret <- list(SampleStats=Ret$SampleStats , mc = Ret$mc, SamplingDist=stats)
108 }
109
110 return(Ret)
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111 }

./RCode/ThresholdEstimation bVS Exp.r

I.1.7 Implementation of MEMR threshold estimation algorithm

1 findMc.EMR2005 <- function(dEQ , mmin=-1, mmax=-1, blnPrintSteps=F, lngBootStrapResamples =-1){
2
3 ffDetectFunc <- function(obsEQ , mmin=-1, mmax=-1, binWidth =0.1){
4 ## Specify Log likelihood functions #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5 #Detection probability moddled by Normal distribution with sharp m_c
6 ffCNorm <- function(mmin , mc, mmax , beta , mu , sigma){
7 C1 <- (1 - exp(-beta*(mmax - mmin)))^(-1)
8 mu2 <- mu - beta * sigma^2
9

10 ret <- 1 - (C1 / pnorm(mc , mu, sigma)) * (pnorm(mc, mu , sigma) - pnorm(mmin , mu, sigma) - exp(-
beta*(mu - mmin - 0.5*beta*sigma ^2)) * (pnorm(mc, mu2 , sigma) - pnorm(mmin , mu2 , sigma)))

11 ret <- 1 / ret
12 return(ret)
13 }
14
15 loglikl.EMR <- function(param , obs , mmin , mmax , mc) {
16 #Can ’t pass normalising constant to here <- is determined by following params :
17 mu <- param [1]
18 sigma <- param [2]
19 beta <- param [3]
20
21 C_Norm <- C_Norm <- ffCNorm(mmin , mc, mmax , beta , mu , sigma)
22
23 n <- NROW(obs)
24
25 q <- rep(1,NROW(obs))
26 q[which(obs < mc)] <- pnorm(obs[which(obs < mc)], mean=mu ,sd=sigma) / pnorm(mc , mean=mu,sd=

sigma)
27
28 -(n * log(C_Norm) + n * log(beta) - beta * sum(obs - mmin) - n*log(1 - exp(-beta*(mmax - mmin))

) + sum(log(q)))
29 }
30
31 mle.est <- function(mc, obsEQ , mmin , mmax){
32 #Starting Values
33 sVal_mu = 0.1 #mean(m_belowMC)
34 sVal_sigma = 0.2 #sd(m_belowMC)
35 sVal_beta = log (10) #1/(mean(m_aboveMC)-mc)
36 sVal_Vec <- c(sVal_mu, sVal_sigma , sVal_beta)
37
38 ## Optimization Routine #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
39 # Not usuing nlm - not always as robust
40 #O1=try(nlm(f = loglikl.EMR , p = sVal_Vec , obs=obsEQ , mmin=mmin , mmax=mmax , mc=mc, hessian=F)

, silent=T)
41 # Not using nlminb - emperically found to return answers slightly off
42 O3 <- try(nlminb(sVal_Vec , objective=loglikl.EMR , obs=obsEQ ,mmin=mmin ,mmax=mmax ,mc=mc,hessian

=TRUE), silent=T)
43
44 loglikl.EMR.GlobalParams <- function(param) {loglikl.EMR(param , obsEQ , mmin , mmax , mc)}
45 O2 <- try(optim(par=sVal_Vec , fn = loglikl.EMR.GlobalParams , hessian=TRUE), silent=T)
46
47 indOptimRoutine = 0
48 if(!inherits(O2 , "try -error")){
49 ret.routine <- list(estimate=O2$par , minimum=O2$value , hessian=O2$hessian)
50 indOptimRoutine <- 2
51 }else if(!inherits(O3, "try -error")){
52 ret.routine <- list(estimate=O3$par , minimum=O3$objective , hessian=O3$hessian)
53 indOptimRoutine <- 3
54 }
55
56 SE <- rep(-1, 3) #Initially
57 if(!is.null(ret.routine$hessian)){
58 if(det(ret.routine$hessian) != 0){SE <- sqrt(diag(solve(ret.routine$hessian)))}
59 }
60
61 params <- data.frame(mmin=mmin , mmax=mmax , mc=mc ,
62 est.mu=ret.routine$estimate [1], est.sigma=ret.routine$estimate [2], est.

beta=ret.routine$estimate [3],
63 est.mu.se=SE[1], est.sigma.se=SE[2], est.beta.se=SE[3],
64 mle.val = -ret.routine$minimum , OptimRoutine=indOptimRoutine)
65
66 params <- unique(params)
67 return(params)
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68 }
69
70 if(mmin == -1){mmin = floor(min(obsEQ))}
71 if(mmax == -1){mmax = ceiling(max(obsEQ))}
72 mc <- seq(mmin , mmax , binWidth)
73
74 ret <- mle.est(mc[1], obsEQ=obsEQ , mmin=mmin , mmax=mmax)
75 for(i in 2:NROW(mc)){ret <- rbind(ret , mle.est(mc[i], obsEQ=dEQ , mmin=mmin , mmax=mmax))}
76
77 retSampleStats <- ret[complete.cases(ret),]
78 retRecord <- subset(retSampleStats , mle.val==max(retSampleStats$mle.val))
79 retMc <- retRecord$mc
80
81 ret <- list(mc=retMc , SampleStats=retSampleStats ,
82 muHat = retRecord$est.mu, sigmaHat=retRecord$est.sigma , betaHat=retRecord$est.beta ,
83 muHat.SE = retRecord$est.mu.se , sigmaHat.SE = retRecord$est.sigma.se, betaHat.SE =

retRecord$est.beta.se)
84 return(ret)
85 }
86
87 Ret <- ffDetectFunc(dEQ , mmin , mmax)
88
89 if(lngBootStrapResamples != -1){
90 stats <- vector("numeric",lngBootStrapResamples)
91 for(i in 1: lngBootStrapResamples){
92 rData <- sample(dEQ ,size=NROW(dEQ),replace=T)
93 stats[i] <- ffDetectFunc(rData , mmin , mmax)$mc
94 if(blnPrintSteps ==T){print(paste("Done : ",i, " of ", lngBootStrapResamples , sep=""))}
95 }
96 Ret <- list(SampleStats=Ret$SampleStats , mc = Ret$mc, SamplingDist=stats ,
97 muHat=Ret$muHat , sigmaHat=Ret$sigmaHat , betaHat=Ret$betaHat ,
98 muHat.SE=Ret$muHat.SE, sigmaHat.SE=Ret$sigmaHat.SE, betaHat.SE=Ret$betaHat.SE)
99 }

100
101 return(Ret)
102 }

./RCode/ThresholdEstimation EMR Exp.r

I.1.8 Implementation of MITC threshold estimation algorithm

1 #MITC
2
3 #Auxiliry Functions
4 {
5 f_Mg <- function(m, mmin , mmax , beta){
6 f <- function(m, mmin , mmax , beta){
7 if(m < mmin || m > mmax){
8 ret <- 0
9 }else{

10 ret <- beta * exp(-beta*m) / (exp(-beta*mmin) - exp(-beta*mmax))
11 }
12 return(ret)
13 }
14 return(sapply(m, f, mmin=mmin , mmax=mmax , beta=beta))
15 }
16
17 F_Mg <- function(m, mmin , mmax , beta){
18 f <- function(m, mmin , mmax , beta){
19 if(m < mmin){m = mmin}else if(m > mmax){m = mmax}
20 return( (1 - exp(-beta*(m - mmin))) / (1 - exp(-beta*(mmax - mmin))) )
21 }
22 return(sapply(m, f, mmin=mmin , mmax=mmax , beta=beta))
23 }
24
25 ffCNorm <- function(mmin , mc, mmax , beta , mu , sigma){
26 C1 <- (1 - exp(-beta*(mmax - mmin)))^(-1)
27 mu2 <- mu - beta * sigma^2
28
29 1/(1 - (C1 / pnorm(mc , mu, sigma)) * (pnorm(mc, mu , sigma) - pnorm(mmin , mu, sigma) - exp(-

beta*(mu - mmin - 0.5*beta*sigma ^2)) * (pnorm(mc, mu2 , sigma) - pnorm(mmin , mu2 , sigma)))
)

30 }
31
32 f_Ma <- function(m, mmin , mc ,mmax , beta , mu , sigma , C_Norm = -1){
33 if(C_Norm == -1){C_Norm <- ffCNorm(mmin , mc , mmax , beta , mu, sigma)}
34
35 f <- function(m, mmin , mc ,mmax , beta , mu, sigma , C_Norm) {
36 if(m < mmin || m > mmax){
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37 ret <- 0
38 }else{
39 ret <- C_Norm * f_Mg(m, mmin , mmax , beta) * ifelse(m < mc, pnorm(m, mu , sigma) / pnorm(mc ,

mu, sigma), 1)
40 }
41 return(ret)
42 }
43
44 return(sapply(m, f, mmin=mmin , mc=mc , mmax=mmax , beta=beta , mu=mu, sigma=sigma , C_Norm=C_Norm))
45 }
46
47 F_Ma <- function(m, mmin , mc, mmax , beta ,mu , sigma , C_Norm = -1){
48 mu2 <- mu - beta*sigma^2
49 C1 <- (1 - exp(-beta*(mmax - mmin)))^(-1)
50 C2 <- exp(-beta*(mu - mmin - 0.5*beta*sigma ^2))
51
52 if(C_Norm == -1){C_Norm <- ffCNorm(mmin , mc , mmax , beta , mu, sigma)}
53
54 f <- function(m, mmin , mc , mmax , beta ,mu, sigma , C_Norm , mu2 , C1 , C2) {
55 if(m < mmin){m <- mmin} else if(m > mmax){m <- mmax}
56
57 if(m < mc){
58 ret <- (C_Norm / pnorm(mc, mu, sigma)) *
59 (
60 F_Mg(m, mmin , mmax , beta) * pnorm(m, mu, sigma) - C1*(pnorm(m, mu, sigma) - pnorm(mmin ,

mu, sigma) - C2*(pnorm(m, mu2 , sigma) - pnorm(mmin , mu2 , sigma)))
61 )
62 }else{
63 ret <- C_Norm *
64 (
65 F_Mg(m, mmin , mmax , beta) - (C1 / pnorm(mc, mu, sigma)) *
66 (
67 pnorm(mc, mu, sigma) - pnorm(mmin , mu, sigma) - C2 * (pnorm(mc, mu2 , sigma) - pnorm(

mmin , mu2 , sigma))
68 )
69 )
70 }
71 return(ret)
72 }
73
74 return(sapply(m, f, mmin=mmin , mc=mc , mmax=mmax , beta=beta ,mu=mu, sigma=sigma , C_Norm=C_Norm ,

mu2=mu2 , C1=C1 , C2=C2))
75 }
76
77 loglikl.EMR <- function(param , obs , mmin , mmax , mc) {
78 #Can ’t pass normalising constant to here <- is determined by following params :
79 mu <- param [1]
80 sigma <- param [2]
81 beta <- param [3]
82
83 C_Norm <- C_Norm <- ffCNorm(mmin , mc, mmax , beta , mu , sigma)
84
85 n <- NROW(obs)
86
87 q <- rep(1,NROW(obs))
88 q[which(obs < mc)] <- pnorm(obs[which(obs < mc)], mean=mu ,sd=sigma) / pnorm(mc , mean=mu,sd=

sigma)
89
90 -(n * log(C_Norm) + n * log(beta) - beta * sum(obs - mmin) - n*log(1 - exp(-beta*(mmax -

mmin))) + sum(log(q)))
91 }
92 }
93
94 f <- function(mc, dEQ , mmin , mmax , MaxMethod="O1", optimMethod=""){
95
96 m_belowMC <- dEQ[which(dEQ < mc)]
97 m_aboveMC <- dEQ[which(dEQ >= mc)]
98
99 sVal_mu = 0.1 #mean(m_belowMC)

100 sVal_sigma = 0.2 #sd(m_belowMC)
101 sVal_beta = log (10) #1/(mean(m_aboveMC)-mc)
102 sVal_Vec <- c(sVal_mu, sVal_sigma , sVal_beta)
103
104 loglikl.EMR.GlobalParams <- function(param) {loglikl.EMR(param , dEQ , mmin , mmax , mc)}
105
106 #MLE for nuisance parameters - beta , mu, sigma
107 {
108 if(MaxMethod == "O1" | MaxMethod == "mixed") O1=try(nlm(f = loglikl.EMR , p = sVal_Vec , obs=dEQ ,

mmin=mmin , mmax=mmax , mc=mc , hessian=T), silent=T)
109
110 if(MaxMethod == "O2" | MaxMethod == "mixed"){
111 if(optimMethod == ""){oMethod <- "Nelder -Mead"}else{oMethod <- optimMethod}
112 #print(optimMethod)
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113 O2 <- try(optim(par=sVal_Vec , fn = loglikl.EMR.GlobalParams , hessian=TRUE , method=oMethod),
silent=T)

114 }
115
116 if(MaxMethod == "O3" | MaxMethod == "mixed") O3 <- try(nlminb(sVal_Vec , objective=loglikl.EMR ,

obs=dEQ , mmin=mmin , mmax=mmax , mc=mc, hessian=TRUE), silent=T)
117
118 if(MaxMethod == "O4"){
119 O4 <- maxLik(loglikl.EMR.GlobalParams , start=sVal_Vec)
120 }
121
122 if(MaxMethod == "O1"){
123 muHat = O1$estimate [1]
124 sigmaHat = O1$estimate [2]
125 betaHat = O1$estimate [3]
126 }else if(MaxMethod == "O2"){
127 #print(O2)
128 #print(O2$par)
129 muHat = O2$par [1]
130 sigmaHat = O2$par [2]
131 betaHat = O2$par [3]
132 }else if(MaxMethod == "O3"){
133 muHat = O3$par [1]
134 sigmaHat = O3$par [2]
135 betaHat = O3$par [3]
136 }else if(MaxMethod == "O4"){
137 muHat = coef(O4)[1]
138 sigmaHat = coef(O4)[2]
139 betaHat = coef(O4)[3]
140 }else if(MaxMethod == "mixed"){
141 muHat = O3$par [1]
142 sigmaHat = O2$par [2]
143 betaHat = O1$estimate [3]
144 }
145 }
146
147 mbar_A <- mean(dEQ)
148 mbar_A_AboveMC <- mean(m_aboveMC)
149 x <- integrate(F_Ma , lower=mmin , upper=mc, mmin=mmin , mc=mc , mmax=mmax , beta=betaHat , mu=muHat ,

sigma=sigmaHat)
150
151 F_Mg.mc <- F_Mg(mc , mmin , mmax , betaHat)
152 F_Ma.mc <- F_Ma(mc , mmin , mc, mmax , betaHat , muHat , sigmaHat)
153
154 f.mc <- mbar_A - mbar_A_AboveMC * (1 - F_Ma.mc) + x$value - mc*F_Ma.mc
155
156 ret <- data.frame(func.Val=f.mc, betaHat=betaHat , muHat=muHat , sigmaHat=sigmaHat)
157
158 return(ret)
159 }
160
161 f_Solve <- function(mc, dEQ , mmin , mmax , MaxMethod , optimMethod , blnRet.OnlyFuncVal=T){
162 x <- f(mc=mc, dEQ=dEQ , mmin=mmin , mmax=mmax , MaxMethod=MaxMethod , optimMethod)
163
164 if(blnRet.OnlyFuncVal){
165 return(x$func.Val)
166 }else{
167 return(x)
168 }
169 }
170
171 ffFindFirstSignChange <- function(func , domain.interval , blnRetVal.FunctionValue=TRUE , ...){
172 xCurr <- func(domain.interval [1], ...)
173 xNext <- func(domain.interval [2], ...)
174 i <- 1
175 while((sign(xCurr) == sign(xNext)) & (i + 2 <= NROW(domain.interval))){
176 i <- i + 1
177 xCurr <- xNext
178 xNext <- func(domain.interval[i + 1], ...)
179 }
180
181 if(sign(xCurr) == sign(xNext)){
182 ret <- NA
183 }else{
184 ret <- c(i, i + 1)
185 if(blnRetVal.FunctionValue){ret <- sapply(ret , func , ...)}
186 }
187 return(ret)
188 }
189
190 findMc.MITC <- function(dEQ , mmin , mmax , blnPrintSteps=T, lngBootStrapResamples =-1, MaxMethod="O2",

optimMethod=""){
191
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192 ffDetectFunc <- function(dEQ , mmin , mmax , blnPrintSteps , MaxMethod , optimMethod){
193 #Isolate Root
194 int.Mag <- seq(mmin+1, mmax -0.1, 0.1)
195 intToSearch <- ffFindFirstSignChange(f_Solve , int.Mag , blnRetVal.FunctionValue=FALSE , dEQ=dEQ ,

mmin=mmin , mmax=mmax , MaxMethod=MaxMethod , optimMethod=optimMethod)
196
197 #Continue to find root
198 if(NROW(intToSearch) == 2){
199 intToSearch <- int.Mag[intToSearch]
200
201 #Estimation
202 mcHat <- uniroot(f_Solve , interval=intToSearch , dEQ=dEQ , mmin=mmin , mmax=mmax , MaxMethod=

MaxMethod , optimMethod=optimMethod)$root
203
204 ret <- f_Solve(mcHat , dEQ=dEQ , mmin=mmin , mmax=mmax , MaxMethod=MaxMethod , optimMethod=

optimMethod , blnRet.OnlyFuncVal=F)
205
206 ret <- data.frame(mcHat = mcHat , betaHat=ret$betaHat , muHat=ret$muHat , sigmaHat=ret$sigmaHat)
207
208 return(ret)
209 }
210 }
211
212 Ret <- try(ffDetectFunc(dEQ , mmin , mmax , blnPrintSteps , MaxMethod , optimMethod), silent=T)
213 if(inherits(Ret , "try -error")){
214 Ret <- data.frame(mcHat = NA , muHat = NA, sigmaHat = NA , betaHat = NA)
215 }
216
217 if(lngBootStrapResamples != -1){
218 stats <- vector("numeric",lngBootStrapResamples)
219 for(i in 1: lngBootStrapResamples){
220 rData <- sample(dEQ ,size=NROW(dEQ),replace=T)
221 x <- try(ffDetectFunc(rData , mmin , mmax , blnPrintSteps=F, MaxMethod=MaxMethod , optimMethod=

optimMethod), silent=T)
222
223 if(inherits(x, "try -error")){
224 stats[i] <- NA
225 print("No Return")
226 }else{
227 if(length(x) != 0){
228 stats[i] <- x$mcHat
229 }else{
230 stats[i] <- NA
231 }
232 }
233
234 if(blnPrintSteps ==T){print(paste("Done : ",i, " of ", lngBootStrapResamples , sep=""))}
235 }
236
237 Ret <- list(mc = Ret$mcHat , muHat = Ret$muHat , sigmaHat=Ret$sigmaHat , betaHat=Ret$betaHat ,

SamplingDist=stats)
238 }
239
240 return(Ret)
241 }

./RCode/ThresholdEstimation MITC Exp.R
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