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ABSTRACT 

 

The Cox-Proportional Hazards model is introduced as a potential tool to understand customer 

behavior relating to churn or disconnections in the telecommunications space. An overview of 

Survival Analysis is provided along with its associated quantities and metrics with examples to 

better illustrate concepts. The derivation of the classical Cox-Proportional Hazards model is 

discussed in detail and applied to network behavioural data. The development of additive models 

and generalised additive models are traced and described as a prelude to the additive Cox-

Proportional Hazards Regression.  

The cubic splines are used as a tool to automatically detect trends in the customer data and this is 

compared to the findings of the classic Cox-Proportional Hazard. 

It is shown that using the cubic splines, trends are automatically detected in the data and the cubic 

spline functions themselves can be easily derived and implemented using the RCS macro. Insights 

and recommendations are reported on and made available to the Network for use in informing 

future retention strategies and in general, to better understand customer specific behaviour. 
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1. Chapter 1 Introduction and Background 

 

1.1. Motivation 

 

The question of “how to best look after one’s own customers” is a challenge that is becoming 

more and more common for businesses in the economic climate of South-Africa and even the rest 

of the world. This is especially true with regards to customers who subscribe to some service of a 

bank, a retailer or a service provider in general.  

 

Before the advent of the National Credit Act in 2007 and the global financial crisis of 2009, service 

providers were more focused on acquiring new business. After the global financial crisis, 

“Customer Value Management” became more and more important and specific skill sets were 

recruited and cultivated within big organisations with the sole purpose of understanding a 

customer’s behavior and to apply analytical insights to client internal data to ensure that the 

customer remains loyal to the brand. These analytical teams mined customer behavioral data to 

look at what are drivers for; amongst others – new sales, closing an account and falling behind on 

payments or reduction in spend.  

 

Where in general, the organisational focus has been on acquiring and expanding the business, it 

is now more on maintaining market share and ensuring that customers do not move to 

competitors. Understanding customer spend and transactional patterns now are more important 

than before as these data elements can be used to predict future behavior. 

 

Specific emphasis now is also on the CVM department to set specific targets relating to customer 

attrition or churn as well as to cross and up sell to existing customers. In the credit space, this 

would translate as managing customers better to ensure they are well educated on the credit 

facility they have and that they do not fall behind on payments. The key performance indicator of 

the CVM team would be managing the so-called bad rate and provisioning. 

 

A unique situation exists in the telecommunications landscape in South Africa. Only as recently as 

fifteen years ago, the mobile phone was a piece of technology only seen in movies. Then suddenly 

it arrived and South-Africans started to take to this new medium of communication. When the 

networks launched pre-paid tariff plans, the uptake was enormous and over the following years, 

the networks saw a cell phone placed in the hand of every resident. (Hutton 2011). Now we have 
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a mobile penetration rate in excess of 100% - there are more active SIM-cards in circulation than 

persons in the country (Smith 2013). 

 

The shift in focus from acquiring new business to managing existing business also applies to the 

networks. In South-Africa, there are now four main networks. With the larger networks, 

acquisition and expansion of the business happened automatically as the population adopted 

mobile phone technology. South-Africa now has a saturated market and a user population that 

has become very informed and cell-phone savvy to the extent that they make use of services such 

as mobile banking and even applying for credit via the mobile device. 

These conditions are forcing the networks to look into their own customers’ behavioural data to 

better built a relationship with that customer and to understand what factors or indicators could 

possibly influence that customer to disconnect from the network.  

 

In this essay, the Cox-Proportional Hazards model will be introduced as a potential tool to 

understand customer behavior relating to churn or disconnections in the telecommunications 

space. Chapter two provides an overview of Survival Analysis, its associated quantities and metrics 

as well as some examples to better illustrate key concepts. Chapter three introduces and unpacks 

the classical Cox-Proportional Hazards model. In Chapter Four, the development of additive 

models is traced and described as a prelude to Chapter Five, where the additive Cox-Proportional 

Hazards model is discussed. An application on client data testing the questions discussed below is 

reported in Chapter Six, followed by a conclusion that contains key findings, next steps as well as 

insights and recommendations. 

 

Varying coefficient modelling and analysis, accelerated time to failure models, and coding of 

routines in IML® are out of scope for this essay. 

 

1.2. Questions and expected findings 

 

The Cox-Proportional Hazards Model has long been a powerful tool in the analysis of survival or 

“time to event” data. This model describes the relationship of several covariates on the hazard 

rate under study. These covariates or independent variables are often modelled in a “linear 

fashion” i.e. the untransformed variable is included in the model.  
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Recent developments have pushed the area of Proportional Hazards modelling to include non-

parametric or smooth functions as covariates to allegedly better capture underlying trends in the 

data.  

In this essay, the following questions will be posed and described: 

 By using the traditional Cox-Proportional Hazards model is it possible to develop a tool or 

gain insight into customer behavior with regards to disconnection? 

 By using an additive Cox-Proportional Hazards model with cubic splines, is it possible to 

develop a tool or gain insight into customer behavior with regards to disconnection? 

 Can these tools be used for future prediction? 

 What are the advantages and disadvantages with each? 

 Does the additive model really do a better job of uncovering trends in the data than the 

original Cox –Proportional hazards model? 
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1.3. Approach 

 

Using behavioural data from a major South-Africa telecommunications network, the classic Cox-

Proportional hazards model is applied as well as the Cox-Proportional additive model using SAS®. 

Both models are fitted and evaluated using SAS and the results compared and discussed in order 

to answer the questions stated in the previous section. 

 

1.4. Notation 

 

The purpose of this section is to provide an overview of some of the mathematical notation used 

in this essay.  

Random variables are represented in the upper case, for example: 𝑌, 𝑋1, and the observed values 

in lower case e.g. 𝑦𝑖1, 𝑥𝑖1. 

The 𝑛 𝑥 1 column vector is denoted in bold as, 𝑿1 = (𝑋11, 𝑋21, … , 𝑋𝑛1)
𝑇 

The 𝑛 𝑥 𝑝 matrix, denoting 𝑝 random variables, is written as: 

𝑿 = [

𝑋11 ⋯ 𝑋1𝑝

⋮ ⋱ ⋮
𝑋𝑛1 ⋯ 𝑋𝑛𝑝

] = (𝑿1, 𝑿2, … , 𝑿𝑝) 
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2. CHAPTER 2 – Survival Models and Hazard Functions 

 

2.1.1. Introduction 

 

Survival analysis is a branch of statistics that deals with death in biological organisms or failure in 

mechanical systems. In engineering, survival analysis is known as reliability theory and in biology 

simply as survival analysis. 

Survival analysis deals with the analysis and modelling of “time to event” data – i.e. it looks to 

answer the question: how long does it take for something to happen? Survival analysis can also 

answer questions such as which factors or covariates affect survival time and how, making it an 

incredibly powerful technique in applied statistics. 

Some examples of questions that survival analysis seeks to answer are: 

 What fraction of a population will survive past a certain time? 

 Of those that survive, at what rate will they die / fail? 

 Can multiple causes of death or failure be taken into account? 

 How do particular circumstances or characteristics increase or decrease the odds of survival? 

Survival analysis is by no means limited to only biological or mechanical applications. It can also 

be used to answer questions in the business setting, specifically in marketing or CVM that are 

faced with problems such as: 

 When does the business need to start worrying about their customers leaving / closing their 

account? 

 When is the next time that a customer is likely to migrate to a new customer segment? 

 When is the next time that a customer is likely to broaden or narrow a customer relationship? 

 Which are the factors in the customer relationship that increase or decrease the likely tenure 

of the customer? 

 What is the quantitative effect of various factors on customer tenure? E.g. what could possibly 

cause customers to leave? 

The answers to some of the above critical business issues (CBI) may be used to inform a customer 

retention strategy e.g. if one knows when a customer is likely to leave and how many are likely to 

go, the budget for a specific retention strategy can be set.  
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Also, studying customer behavior and understanding which factors impact customer tenure and 

affect it negatively can be used to define a retention strategy and offer different types of incentives 

to increase tenure to customers who will respond favourably. 

These insights into customers feed directly into the marketing process e.g. how long will particular 

segments of customers stay and how profitable will they be? 

In this section, the concept of survival analysis is explored as well as related concepts such as 

hazard probabilities and survival curves. Censoring, which is a problem often encountered in 

survival analysis, is also discussed in detail.  

The next chapter will build on the concepts developed here and provide an overview of parametric 

survival analysis and modelling, e.g. the proportional hazards model by Cox and concludes by 

summarising and illustrating the value of extending the above concepts to the non-parametric 

scene. 

For a more detailed discussion on survival analysis, refer to Collett D (2003). 

 

2.1.2. The Survival Function 

 

Key to survival is the survival function, also known as the survivor function or reliability function or 

complementary cumulative distribution function.  

If a random variable 𝑋 represents the lifetime of a unit, then the survival function of the unit at 

time 𝑡 is defined to be: 

𝑆(𝑡) = 𝑃[𝑋 > 𝑡] = 1 − 𝐹𝑋(𝑡). 

This function describes the probability that the system will survive beyond a specified time 𝑡. 

Typically, the time 𝑡 = 0  represents some origin such as the beginning of the study or the start of 

the operation of some system. 

𝑆(0) = 1 commonly but can be less to represent the probability that the system fails immediately 

upon operation. 

The survival function is non-increasing i.e. 𝑆(𝑢) ≤ 𝑆(𝑡) for all 𝑢 > 𝑡, since   
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𝑆(𝑡) = 1 − 𝐹𝑋(𝑡). 

The above reflects the concept that survival to a later age is only possible if all the younger ages 

have been attained. From this property, it follows that the lifetime and event density distributions 

are well defined. (Refer to the next section.) 

Because 𝑋 is nonnegative, distributions such as the Weibull, Gamma, Exponential and Lognormal 

are of interest.  

The survival function usually approaches zero as time increases to infinity in the limit, although 

the limit could be greater if eternal life is possible. As an example, when studying a mixture of 

stable and unstable carbon isotopes, unstable isotopes would decay sooner, but stable isotopes 

would last indefinitely.  

 

2.1.3. The Lifetime Distribution Function and Event Density 

 

The lifetime distribution and event density functions are quantities closely related to the survival 

function. 

The lifetime distribution function is the distribution function used to derive the survival function 

and is related to the survival function as follows i.e. 

𝐹𝑋(𝑡) = 𝑃[𝑋 ≤ 𝑡] = 1 − 𝑆(𝑡). 

The Lifetime distribution function, being the complement of the survival function, gives the 

probability of dying / failing before a certain time 𝑡. 

The derivative of the Lifetime distribution function 𝑓, is known as the event density function 

𝑓(𝑡) =
𝑑

𝑑𝑡
𝐹𝑋(𝑡). 

This is the rate of death or failure per unit time. 

Similarly, a survival event density function can be defined as 

𝑠(𝑡) =
𝑑

𝑑𝑡
𝑆(𝑡) =

𝑑

𝑑𝑡
[1 − 𝐹𝑋(𝑡)] = −𝑓(𝑡).  
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2.1.4. Estimating the Survival Function 

 

Several methods exist for estimating the survival function and two of these will be discussed in 

this section.  

2.1.4.1. Empirical Survival Function 

 

Given the definition of the survival function (the probability that a unit will survive beyond a 

specific point in time) and assuming that there are no censored observations, the survival function 

can be estimated by the following definition: 

�̂�(𝑡) =
∑ 𝐼𝑗(𝑡)

𝑛
𝑗=1

𝑛
. 

where 𝑛 is the number of individuals in the dataset and 𝐼𝑗(𝑡) is an indicator variable for individual 

𝑖 with values one if that individual has a survival time ≥ 𝑡 and zero otherwise. 

The above definition is a generalisation assuming that there are no censored observations in the 

dataset. The topic of censoring is addressed in section 2.1.6.  

 

2.1.4.2. Life Table Estimate of the Survival Function 

 

The life table estimate, which is also known as the actuarial estimate of the survival function, is 

calculated by first dividing the data into several intervals. The intervals need not be of equal length 

but often are in practice. The number of intervals will depend on the size of the sample and will 

usually range between 5 and 15 intervals.  

Let the survival times be divided into 𝑚 intervals such that the 𝑗 th interval is the time window 𝑡′𝑗 to 

𝑡′𝑗+1. Further assume, that in this interval the following quantities can be observed: 

 𝑛𝑗 the number of individuals who are alive and therefore at risk of death at the start of 

the 𝑗𝑡ℎ interval. 

 𝑑𝑗the number of deaths in the 𝑗𝑡ℎ interval 
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 𝑐𝑗 the number of censored observations in the 𝑗𝑡ℎ interval 

The life table approach assumes that the censored survival times occur uniformly during the 𝑗𝑡ℎ  

interval so that the average number of individuals at risk during this interval is: 

𝑛′𝑗 = 𝑛𝑗 −  𝑐𝑗/2.  

This assumption is also known as the actuarial assumption. In the 𝑗𝑡ℎ interval, the probability of 

death can be estimated by 𝑑𝑗/𝑛′𝑗 and therefore the corresponding probability of surviving is 

𝑛′𝑗 − 𝑐𝑗

𝑛′𝑗
. 

The probability of an individual surviving beyond time 𝑡𝑘 , 𝑘 = 1,2, … ,𝑚 that is until sometime 

after the start of the kth interval, will be the product that the individual survives beyond the start 

of the kth interval and through each of the 𝑘 − 1 preceding intervals. Therefore the life table 

estimate of the survival function is given by: 

�̂�(𝑡) = ∏(
𝑛′𝑗 − 𝑐𝑗

𝑛′𝑗

𝑘

𝑗=1

), 

for 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, 𝑘 = 1,2, … ,𝑚. 

A graphical representation of the life table survival function will be a step function with constant 

values of the function at each interval. 

The estimation of surviving to the start of the first interval will be one, as intuitively expected and 

the estimation of surviving beyond the last interval, e.g. 𝑡𝑚+1 will be zero. 

As expected, the estimates obtained are very sensitive to the selection of the intervals. 

 

2.1.4.3. Example using Life Table Estimate of the Survival Function 

 

In his book, Modelling survival data in medical research (2003), David Collett makes use of data 

from a study carried out at the Medical Center of the University of West Virginia, USA. The data is 

on survival times of patients with multiple Myelonoma, which is a malignant disease characterised 

by the accumulation of abnormal plasma cells in the bone marrow. The aim of the above study 
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was to determine the association between certain explanatory variables and survival times. For 

the purpose of illustration, this data set will be used in examples throughout this essay.  

In the construction of the life table to estimate the survival function, the survival times were 

divided into intervals of 12 and the below results obtained: 

Table 1 Life Table Estimate of the Survival Function for the Multiple Myelonoma Data 

Time 
Period 

dj cj nj n'j (n'j -dj)/n'j S*(t) 

0- 16 4 48 46.0 0.6522 0.6522 

12- 10 4 28 26.0 0.6154 0.4013 

24- 1 0 14 14.0 0.9286 0.3727 

36- 3 1 13 12.5 0.7600 0.2832 

48- 2 2 9 8.0 0.7500 0.2124 

60- 4 1 5 4.5 0.1111 0.0236 

 

A graphical representation of the above estimate of the survival function yields the following: 

 

Figure 1 Life Table Estimate of Survival Time  
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2.1.5. Hazards 

 

2.1.5.1. Background to Hazards 

 

Vital to the analysis of survival data is the concept of hazards or hazard probabilities and hazard 

functions. These quantities can be directly linked back to the survival curve and will be explored 

in this section. 

Theoretically, the hazard function or failure rate function for a PDF is defined as follows: 

ℎ(𝑥) =  
𝑓(𝑥)

1−𝐹(𝑥)
=

𝑑𝑆(𝑥)

𝑑𝑥

𝑆(𝑥)
=

𝑑

𝑑𝑥
[𝑙𝑛(𝑆(𝑥))].  from (Bain and Engelhardt, 1992) 

From the above definition, it can be seen that the hazard function is a property of a distribution, 

much like the mean and the variance. 

Force of mortality in Actuarial Science is a synonym for the hazard function. 

In simpler terms, the hazard function can be interpreted as the probability of having survived up 

to time  𝑥 and then failing in time 𝑥 + ∆, where ∆ is a small positive quantity. In the context of 

marketing, this would equate to a customer having survived (has tenure) until a time 𝑥 and the 

probability of that customer leaving before time 𝑥 + ∆𝑥. 

Another way of stating this is to say; the hazard at time 𝑡 is the risk of losing customers between 

time 𝑡 and time 𝑡 + ∆𝑡. 

Mathematically, the hazard function can be expressed as a conditional probability and interpreted 

as the instantaneous failure rate, or conditional density of failure at time 𝑥, given that the unit has 

survived until time 𝑥. 

The conditional probability of an event A given the event B is given by: 

𝑃(𝐴|𝐵) =
𝑃(𝐴 𝑎𝑛𝑑 𝐵)

𝑃(𝐵)
. 

From Bain and Engelhardt (1992), the following derivation for the hazard function is given: 

ℎ(𝑥) = 𝑓(𝑥|𝑋 ≥ 𝑥) 
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          =
𝑑𝐹(𝑥|𝑋 ≥ 𝑥)

𝑑𝑥
 

          = lim
∆𝑥→0

𝐹(𝑥 + ∆𝑥|𝑋 ≥ 𝑥) − 𝐹(𝑥|𝑋 ≥ 𝑥)

∆𝑥
 

          = lim
∆𝑥→0

𝑃[𝑥 ≤ 𝑋 ≤ 𝑥 + ∆𝑥|𝑋 ≥ 𝑥]

∆𝑥
 

          = lim
∆𝑥→0

𝑃[𝑥 ≤ 𝑋 ≤ 𝑥 + ∆𝑥, 𝑋 ≥ 𝑥]

∆𝑥𝑃[𝑋 ≥ 𝑥]
 

          = lim
∆𝑥→0

𝑃[𝑥 ≤ 𝑋 ≤ 𝑥 + ∆𝑥]

∆𝑥[1 − 𝐹(𝑥)]
 

          =  
𝑓(𝑥)

1 − 𝐹(𝑥)
. 

 

The hazard probability summarises the survival data and reflects the information already present 

in the data. No special function is fitted to the data to aid interpretation. 

 

2.1.5.2. Example of Hazards using Life Tables 

 

To better understand the idea of hazard probabilities and functions and illustrative example using 

US life tables is given below. 

These tables describe the probability of someone dying at a particular age for the U.S population 

in 2000 from (Berry and Linoff 2004) 

Table 2 Hazards for mortality in the United Stated in 20000, shown as a life table 

Age Percent Of Population That Dies In Each Age Range 

0 – 1 yrs 0.73% 

1 – 4 yrs 0.03% 

5 – 9 yrs 0.02% 

10 – 14 yrs 0.02% 

15 – 19 yrs 0.07% 

20 – 24 yrs 0.10% 

25 – 29 yrs 0.10% 

30 – 34 yrs 0.12% 

35 – 39 yrs 0.16% 
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40 – 44 yrs 0.24% 

45 – 49 yrs 0.36% 

50 – 54 yrs 0.52% 

55 – 59 yrs 0.80% 

60 – 64 yrs 1.26% 

65 – 69 yrs 1.93% 

70 – 74 yrs 2.97% 

75 – 79 yrs 4.56% 

80 – 84 yrs 7.40% 

85 yrs or more 15.32% 

 

Life tables are good examples of hazards. From the above table it can be seen that infants have a 

0.73% chance of not surviving past one year of age. Thereafter, the mortality rate decreases and 

then starts to steadily increase after age 45. This is an example of a “bathtub” shape for hazards 

where hazards start high, drop quickly and then gradually increase.  

The below figure illustrates the characteristic ‘bathtub’ shape of this data: 

 

Figure 2 Graphic display of the life table data showing the Bathtub-shaped hazard 

 

2.1.5.3. Examples and Interpretation of Hazards 

 

In practice there are some typical examples of hazard functions. Each of these is discussed briefly 

below. 
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 The Bathtub hazard 

The bathtub hazard, described above, is an example of a hazard function often encountered in 

practice. As described earlier, a bathtub hazard starts with high hazards which then drop quickly 

and eventually then gradually increase. 

Customers who are on cell-phone contracts typically cause a bathtub like hazard – early in the 

contract, the customer cancels the contract because the service is bad or they do not know that 

they have actually taken a contract or they do not pay their account. Thereafter, they tend to stay 

with their service provider. Towards the end of the contract lifetime, customers then churn again, 

having fulfilled the obligation of the contract, and move to another network.  

 A Constant Hazard 

A constant hazard function is typically more appropriate in physics rather than business sciences 

e.g. the half-life property of decaying uranium. What the constant hazard describes is a hazard 

that is always the same – no matter what happened in the past, e.g. in customer lifetime analysis, 

the chance of that customer leaving is always the same, no matter how long that customer has 

been around. This is in effect the “no memory” property of the hazard function derived from the 

Exponential distribution. 

For example, if 𝑋~𝐸𝑋𝑃(𝜃) then the hazard function of X is 

ℎ(𝑥)  =  
𝑓(𝑥)

1 − 𝐹(𝑥)
 

           =  

1
𝜃 𝑒−

𝑥
𝜃

𝑒−
𝑥
𝜃

 

           =  
1

𝜃
. 

The above quantity does not depend on time or the age of the unit. 

Typically, an increasing hazard function at time 𝑥 means that the unit is more likely to fail in the 

next increment of time i.e. the unit is wearing out with age. 

A decreasing hazard function at time 𝑥 can be interpreted as a unit that is getting better with time. 
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2.1.5.4. Examples of Hazard Calculation on the Myelonoma Data 

 

Suppose that the data again have been grouped into 𝑚 intervals as in the life table example. An 

appropriate estimate of the average hazard of death per unit time over each interval is the 

observed number of deaths in that interval divided by the average time survived in that interval 

which is also the average number of persons at risk in that interval multiplied by the length of the 

interval.  

Following on the quantities defined for the life table estimate in section 2.1.4.3, define  

 𝜏𝑗 the length of the 𝑗𝑡ℎ time interval. 

Assuming that the death rate during the 𝑗𝑡ℎ  interval is constant, the life table estimate of the 

hazard function is then given by: 

ℎ∗(𝑡) =
𝑑𝑗

(𝑛′𝑗 − 𝑑𝑗/2)𝜏𝑗
, 

for 𝑡𝑗 ≤ 𝑡 < 𝑡𝑗+1, j = 1,2,…,m. 

ℎ∗(𝑡) will also be a step function. 

Expanding on the table using the estimation of the survival function for the Myelonoma data, the 

estimated hazard function is calculated as: 

Table 3 Life Table Estimate of the Hazard Function for the Multiple Myelonoma Data 

Time 
Period 

dj cj nj n'j (n'j -dj)/n'j S*(t) τj h*(t) 

0- 16 4 48 46.0 0.6522 0.6522 12 0.0351 

12- 10 4 28 26.0 0.6154 0.4013 12 0.0397 

24- 1 0 14 14.0 0.9286 0.3727 12 0.0062 

36- 3 1 13 12.5 0.7600 0.2832 12 0.0227 

48- 2 2 9 8.0 0.7500 0.2124 12 0.0238 

60- 4 1 5 4.5 0.1111 0.0236 36 0.0444 

 

The estimated hazard function is plotted below. From the graph, it can be seen that the hazards 

remain roughly constant over the first two years of analysis, after which time it declines and then 

gradually increases again. 
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Figure 3 Life Table Estimate of Survival Time 

 

2.1.5.5. Properties of Hazard Functions 

 

The hazard function must be non-negative (because it is a rate) and its integral over [0,∞] must 

be infinite, but not otherwise constrained. The proof is given below in property 2. 

It can be increasing or decreasing, non-monotonic or discontinuous.  A hazard function completely 

defines a CDF and vice versa. The below properties are taken from Bain and Engelhardt (1992). 

Property 1 - For any hazard function, ℎ(𝑥), the associated CDF is determined by the relationship 

𝐹(𝑥) = 1 − 𝑒−∫ ℎ(𝑡)𝑑𝑡
𝑥

0 , 

or 

𝑓(𝑥) = ℎ(𝑥)𝑒−∫ ℎ(𝑡)𝑑𝑡
𝑥

0 . 

Proof 

The result follows from the relationship: 

ℎ(𝑥) =
𝑑

𝑑𝑥
[ln(𝑆(𝑥))], 

and 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 10 20 30 40 50 60 70 80 90

h
*(

t)

Survival Time

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



27 
 

∫ ℎ(𝑡)𝑑𝑡
𝑥

0

= −∫
𝑑

𝑑𝑡
[ln(𝑆(𝑡))]

𝑥

0

𝑑𝑡 

                   = − ln(𝑆(𝑡)). 

 

Property 2 - The hazard function must be non-negative (because it is a rate) and its integral over [0,∞] 

must be infinite: 

1. ℎ(𝑥) ≥ 0 ∀ 𝑥 

2. ∫ ℎ(𝑡)𝑑𝑡 =
∞

0
∞ 

Proof 

The above properties are necessary because: 

 

𝑓(𝑥)

1 − 𝐹(𝑥)
≥ 0, 

 

and 

 

∫ ℎ(𝑡)𝑑𝑡 =
∞

0

∫
𝑑

𝑑𝑡
[𝑙𝑛(𝑆(𝑡))]𝑑𝑡

∞

0

 

                    = 𝑙𝑛(𝑆(𝑡)) |0
∞ 

                    = ∞. 

These properties are sufficient because the resulting CDF will be a valid CDF in terms of ℎ(𝑥). 

 

F(-∞) = 𝐹(0) = 1 − 𝑒−∫ ℎ(𝑡)𝑑𝑡
0

0 = 0, 

𝐹(∞) = 1 − 𝑒−∫ ℎ(𝑡)𝑑𝑡
∞

0 = 1, 

 

and 𝐹(𝑥) is an increasing function of 𝑥 because ∫ ℎ(𝑡)𝑑𝑡
𝑥

0
 is an increasing function of 𝑥. 
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2.1.6. Censoring 

2.1.6.1. Background on Censoring 

 

One aspect of survival analysis is that of censoring or censored sampling. Censoring happens when 

some of the data is missing and the complete survival time cannot be recorded. There are different 

types of censoring depending on the nature of the experiment and the ultimate aim of the study.  

Sometimes censoring can be intentional e.g. when testing a specific component, it could take years 

for all the units in the study to break / expire. In this case, the study may not be economically 

feasible in terms of funding and time and it can be agreed at the onset to terminate the experiment 

either after a certain number of components have failed, or after a specific amount of time has 

passed. 

 

2.1.6.2. Types of Censoring 

 

It is practical to also look at censoring in terms of order statistics - Bain and Engelhardt, (1992). If 

a random sample of 𝑛 units is used for a survival analysis, then the first observed failure time is 

automatically the first order statistic 𝑥1:𝑛. Similarly, the second observed failure time is the second 

order statistic and so one can continue until all failure times have been observed. Should this be 

the case, it is known as complete sampling. 

Type II censored sampling on the right occurs when the experiment is stopped after the first 𝑟 

observations have been obtained. 

Type II censored sampling on the left happens if for some reason the first 𝑠 observations are not 

available.  

Type I censored sample or truncated sampling occurs when the experiment is terminated after a 

fixed time 𝑥0. 

As all observations are naturally ordered, not all the information is lost for the censored 

observations. In the case of Type II censoring, it is known that the survival time is at least 𝑥0. 
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Some cases may also result due to calibration of equipment e.g. a scale that can only measure up 

to 100kg. For a unit that weighs more than 100kgs in the study, it will only be known that its weight 

is at least 100 kg. 

 

2.1.6.2.1. Examples of Survival and Hazard Calculation with Censoring 

 

When looking at customer data in a marketing example, there are three possible outcomes – 

ACTIVE, CENSORED and STOPPED. 

ACTIVE indicates that the customer relationship is still ongoing whereas STOPPED indicates that 

the customer relationship has ceased in that time interval because the customer has churned or 

cancelled the deal. CENSORED means that the customer is not included in the calculation. 

The below is a hypothetical example from Berry and Linoff (2004).  

Table 4 Tenure Data for Several Customers 

CUSTOMER CENSORED TENURE 

2 N 4 

3 N 3 

4 Y 3 

5 N 2 

6 Y 1 

7 N 1 

 

The above summary of customer tenure can be represented as follows: 

Table 5 Tracking Customers over Several Time Periods 

CUSTOMER CENSORED LIFETIME TIME0 TIME1 TIME2 TIME3 TIME4 TIME5 
1 Y 5 ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE 

2 N 4 ACTIVE ACTIVE ACTIVE ACTIVE STOPPED CENSORED 

3 N 3 ACTIVE ACTIVE ACTIVE STOPPED CENSORED CENSORED 

4 Y 3 ACTIVE ACTIVE ACTIVE ACTIVE CENSORED CENSORED 

5 N 2 ACTIVE ACTIVE STOPPED CENSORED CENSORED CENSORED 

6 Y 1 ACTIVE ACTIVE CENSORED CENSORED CENSORED CENSORED 

7 N 1 ACTIVE STOPPED CENSORED CENSORED CENSORED CENSORED 

 

 

To compute the hazards for the example, one would proceed as follows: 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



30 
 

Table 6 from Times to Hazards 

CUSTOMER TIME0 TIME1 TIME2 TIME3 TIME4 TIME5 

ACTIVE 7 6 4 3 1 1 

STOPPED 0 1 1 1 1 0 

CENSORED 0 0 2 3 5 5 

HAZARD 0% 14% 20% 25% 50% 0% 

 

Notice that the censoring always takes place one unit after the lifetime, as intuitively expected. 

The first customer survived until time 5, what happened after this time period is unknown.  

The Hazard at any given point in time is the number of customers that have stopped, divided by 

the sum of number of customers that are active and that have stopped in that time period.  

 

2.1.6.3. Other types of Censoring 

 

There can be other reasons why it might be necessary to exclude or censor observations in a 

lifetime study. To best illustrate this, a medical example is considered. 

Suppose cancer patients in a survival study are treated with a new medicine that eliminates a type 

of cancer cell and allegedly increases the cure rate. Say these patients are observed for 10 years 

after having undergone treatment. Some of these patients die in a ski accident within this ten year 

period. Technically, these patients died not because of the cancer but another cause.  

This is an example of competing risks. Competing risks arise when there are multiple causes for 

failure unrelated to the study – a patient can die of cancer, a patient can also die in a ski accident. 

Also, patients can move without notifying the researcher of the change in address. In this case, 

these patients have been “lost to follow up.” 

In both of the cases above, it is known that the patients were healthy up to the point where they 

either moved away or died in a ski accident. This information is useful and should be included in 

the study to calculate hazards. Afterward, one cannot know what happened and the observations 

are censored at the point when they exit the study. If a patient dies of some other cause (e.g. a ski 

accident) then the patient will be censored at time of death and this death will not be included in 

the hazard calculation.  
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Competing risks often happen in the business environment – especially in customer retention and 

churn. There are two main types of churn; voluntary and involuntary churn. The prior happens 

when a customer decides of their own accord to leave, and the latter when a customer is forced 

to leave e.g. if not paying their bills. 

Voluntary and Involuntary churn should be analysed separately and each should have its own set 

of hazard curves.  
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3. CHAPTER 3 – The Cox Proportional Hazards Model for Survival Data 

 

3.1.  Introduction 

 

In survival models, the aim is to relate the “time to event” dependent variable to one or more 

independent covariates which are relevant to the study. The values of these covariates or 

explanatory variables have been recorded at the onset of the study for each individual.  

There are two main reasons why one would be interested in modelling survival data –  

1. To answer the question of which set or subset of explanatory variables affect the hazard 

function, and in particular, what the effect of this is on the hazard of death 

2. To obtain an estimate of the hazard function itself for an individual and use this for 

forecasting or preventative measures (e.g. to inform a strategy for a retentions campaign 

for individuals who are likely to move their business away) 

In the analysis of survival data, the interest is mainly on the risk or the hazard of death at any time 

after the onset of the study. It is for this reason that the focus is more on modelling the hazard 

function rather than the survival function. 

An important class of models in survival analysis is the proportional hazard models in which the 

unit increase in a covariate is multiplicative with respect to the hazard rate. For example, 

customers who take out a certain type of contract may have a higher hazard rate than customers 

on another type of contract. 

Other types of survival models such as the accelerated failure time’s model are available and may 

be applicable where the assumption of proportional hazards does not hold. For example, a 

situation where a drug reduces a subject’s immediate risk of going into remission from cancer, but 

where there is no reduction in the hazard rate after one year for subjects who do not go into 

remission in the first year of the analysis. 
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3.2. Proportional Hazard Models 

 

3.2.1. Background 

 

The proportional hazards model was first introduced by Sir David Cox (Cox 1972). He studied the 

effects of initial factors (time zero covariates) on hazards extensively. By making the assumption 

that these factors have a uniform proportional effect on the hazards themselves, he was able to 

understand how to measure these effects for different factors. 

The Cox model has the form: 

𝜆(𝑡|𝑋) = 𝜆0(𝑡)𝑒
(𝑋𝛽).  

where 𝜆(𝑡|𝑋) is the hazard at time 𝑡 for an individual with explanatory variable (risk profile) 𝑋, 

𝜆0(𝑡) is the baseline hazard and 𝑒(𝑋𝛽) is a weighted function of the individual variables of the 

individual’s risk profile. 

Proportional hazards are often quoted in public, e.g. the risk of leukemia for smokers is 1.53 times 

higher than for nonsmokers etc. In this example, at the beginning of the study the researchers 

knew whether an individual was a smoker or not. This is an example of an initial condition.  

Initial conditions can also be analysed by looking at the hazard rates for each level e.g. hazard rates 

of customers who signed up over an internet channel vs. customers who signed up using a mobile 

device.  

In both of the above examples, the initial conditions are described by categorical variables i.e. 

smoker vs non smoker, mobile vs internet channel etc. It is also possible to have an initial condition 

as a continuous variable. Consider another statement about the dangers of smoking: the risk of 

colon cancer increases 6.7% per pack year smoked. With proportional hazards it is possible to 

determine the input of both continuous and categorical variables. In the case of continuous 

variables, the hazard responds logarithmically.  
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Survival models can be viewed as consisting of two parts namely: 

 ℎ0(𝑡) - the underlying hazard function. This function describes how the hazards change 

over time at baseline levels of the covariates  

 The effect variables, describing how the hazard varies in response to explanatory variables 

In a marketing example, covariates could be account type as well as demographic characteristics 

such as age, gender and income.  

As mentioned earlier, the proportional hazards condition states that the covariates are 

multiplicatively related to the hazard. As a basic example, a treatment may halve a subject’s hazard 

at time 𝑡, while the baseline hazard may vary.  

Sir David Cox found that if the proportional hazard assumption is assumed to hold, then it is 

possible to estimate the effect of the parameters without any consideration of the hazard function. 

This approach to survival data is called the application of the Cox proportional hazards model, 

also known as Cox model or proportional hazards model. 

 

3.2.2. The General Proportional Hazards Model 

 

Suppose that two treatments are being investigated and each has its own set of hazards associated 

with it: 

ℎ1(𝑡) for treatment one, and ℎ2(𝑡) for treatment two. 

Assume further that the hazard at time 𝑡 for a patient on treatment two is proportional to the 

hazards at the same time for a patient on treatment one, i.e. 

ℎ1(𝑡) = 𝜑ℎ2(𝑡) where 𝜑 is a constant.  

The implication of this assumption is that the corresponding survival curves will not cross. 

The value 𝜑 is the ratio of the hazards of death at any time for an individual on treatment two 

relative to treatment one i.e. 

𝜑 =
ℎ1(𝑡)

ℎ2(𝑡)
. 

This quantity is the relative hazard or the hazard ratio.  
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Since a hazard ratio cannot be negative, it is convenient to set 𝜑 = 𝑒𝛽  

Let 𝑋 be an indicator variable with values 0 if the patient is on treatment one, and 1 if the patient 

is following treatment two.  

If 𝑋𝑖  is the value of X for the 𝑖 th individual in the study, the hazard function for this individual can 

then be written as  

ℎ𝑖(𝑡) = 𝑒𝛽𝑥𝑖ℎ0(𝑡). 

To set the scene for the general proportional hazards model, assume that the hazard of death or 

failure at a particular point in time of a sample of 𝑛  individuals depends on the explanatory 

variables X1, X2, … , Xp represented by the vector X. 

Let ℎ0(𝑡) be the hazard function for an individual for whom the values of all the explanatory 

variables in X are zero. This quantity is called the baseline hazard function. 

The Hazard function for the 𝑖 th individual in the sample is then given by: 

ℎ𝑖(𝑡) = 𝜑(𝑿𝑖)ℎ0(𝑡).  

where 𝜑(𝑿𝒊) is a function of the values of the vector X. Since the relative hazard, 𝜑(𝑿𝒊) cannot 

be negative, it is convenient to assume 𝑒𝜂𝑖 where 𝜂𝑖  is a linear combination of the 𝑝 exploratory 

or independent variables in X. Therefore  

𝜂𝑖 = 𝛽1𝑋𝑖1+𝛽2𝑋𝑖2 + ⋯+ 𝛽𝑝𝑋𝑖𝑝 or 

 𝜂𝑖 = ∑ 𝛽𝑗𝑋𝑖𝑗.
𝑝
𝑗=1  

This quantity is also known as the linear component, the risk score or the prognostic index for the 

𝑖 th individual. 

The general proportional hazard model then becomes: 

ℎ𝑖(𝑡) = 𝑒𝛽1𝑋𝑖1+𝛽2𝑋𝑖2+⋯+𝛽𝑝𝑋𝑖𝑝ℎ0(𝑡). 

Because this model can also be expressed in the form below, the proportional hazards model can 

be regarded as a linear model for the logarithm of the hazard ratio. 

𝑙 𝑛 (
ℎ𝑖(𝑡)

ℎ0(𝑡)
) = 𝛽1𝑋𝑖1+𝛽2𝑋𝑖2 + ⋯+ 𝛽𝑝𝑋𝑖𝑝. 
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Notice that there are no constant terms in the proportional hazards model – this is because the 

addition of a constant will simply scale the base line function by dividing ℎ0(𝑡) by the exponent of 

the constant and the constant term will simply be cancelled out.  Notice also that no assumptions 

have been made regarding the actual form of the baseline function.  

 

3.2.3. Fitting the Cox Proportional Hazards Model 

 

Fitting the proportional hazards model involves estimating the coefficients, 𝛽1, 𝛽2,⋯ , 𝛽𝑝 as well 

as the baseline function. These two components can be estimated separately by first estimating 

the coefficients, 𝛽1, 𝛽2, ⋯ , 𝛽𝑝and then using the estimated coefficients to arrive at an estimate for 

the baseline hazard function.  

To estimate the coefficients, 𝛽1, 𝛽2, ⋯ , 𝛽𝑝 the method of maximum likelihood is used, using 

sample data and maximising the likelihood function.  

Suppose that data has been observed for 𝑛 individuals, within which there are 𝑟 distinct death 

times and 𝑛 − 𝑟 right censored survival times. For the moment, it is assumed that there are no 

ties in the data.  

The 𝑟 death times are denoted as 𝑡(1) < 𝑡(2) < ⋯ < 𝑡(𝑟) so that 𝑡(𝑗)is the 𝑗𝑡ℎ ordered death time.  

The set of individuals who are at risk at time 𝑡(𝑗)is denoted by 𝑅(𝑡(𝑗)) - i.e. 𝑅(𝑡(𝑗))is the set of 

individuals who are alive and uncensored just before time 𝑡(𝑗). 

Cox (1972) showed that the likelihood for the proportional hazards model is then:   

𝐿(𝛽) = ∏
𝑒(𝑋𝑗

𝑇𝛽)

∑ 𝑒(𝑋𝑙
𝑇𝛽)

𝑙𝜖𝑅(𝑡(𝑗))

𝑟

𝑗=1

, 

where 𝑋𝑗is the vector of covariates of the individual who dies at the 𝑗𝑡ℎ ordered death time 𝑡(𝑗). 

The summation in the denominator of the likelihood is the sum of all individuals who are at risk at 

time 𝑡(𝑗) . Notice that the product is taken for those individuals where a death time has been 

recorded – individuals whose survival times have been censored are excluded from the numerator. 

Notice also that the likelihood depends on the ranking of the death times as this determines the 

risk set at each death time.  
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Suppose now that the data consist of 𝑛 observed survival times, denoted by 𝑡1, 𝑡2,⋯ , 𝑡𝑛. 

Define 𝛿𝑖  as an indicator variable that equals zero if the 𝑖𝑡ℎ survival time 𝑡𝑖 𝑖 = 1,2,… , 𝑛 is right 

censored and one otherwise.  

The likelihood can then be expressed as follows: 

𝐿(𝛽) = ∏{
𝑒(𝑋𝑖

𝑇𝛽)

∑ 𝑒(𝑋𝑙
𝑇𝛽)

𝑙𝜖𝑅(𝑡(𝑖))

}𝛿𝑖

𝑛

𝑖=1

. 

The corresponding log-likelihood is then given by: 

𝑙𝑜𝑔𝐿(𝛽) = ∑ 𝛿𝑖{𝑋𝑗
𝑇𝛽 − 𝑙𝑜𝑔 ∑ 𝑒(𝑋𝑙

𝑇𝛽)

𝑙𝜖𝑅(𝑡(𝑗))

𝑛

𝑖=1
}. 

The above function is maximised to obtain the maximum likelihood estimates of the parameters.  

 

David Collett (2003) gives the following rationale for the likelihood above - consider the probability 

that the 𝑖 th individual dies at some time 𝑡(𝑗), conditional on 𝑡(𝑗) being one of the observed ordered 

set of 𝑟 death times, 𝑡(1), 𝑡(2),⋯ , 𝑡(𝑟). If the vector of explanatory variables or risk profile for the 

individual who dies at 𝑡(𝑗)is denoted by 𝒙𝑗, this probability is  

𝑃(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑤𝑖𝑡ℎ 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝒙𝑗 𝑑𝑖𝑒𝑠 𝑎𝑡 𝑡(𝑗)| 𝑜𝑛𝑒 𝑑𝑒𝑎𝑡ℎ 𝑎𝑡 𝑡(𝑗))  

Using the definition of conditional probability: 

𝑃(𝐴|𝐵) =
𝑃(𝐴 𝑎𝑛𝑑 𝐵)

𝑃(𝐵)
. 

One can write: 

𝑃(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑤𝑖𝑡ℎ 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝒙𝑗 𝑑𝑖𝑒𝑠 𝑎𝑡 𝑡(𝑗)| 𝑜𝑛𝑒 𝑑𝑒𝑎𝑡ℎ 𝑎𝑡 𝑡(𝑗)) =  

𝑃(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑤𝑖𝑡ℎ 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝒙𝑗 𝑑𝑖𝑒𝑠 𝑎𝑡 𝑡(𝑗) )

𝑃(𝑜𝑛𝑒 𝑑𝑒𝑎𝑡ℎ 𝑎𝑡 𝑡(𝑗))
.  

Since the death times are assumed to be independent of one another, the denominator in this 

quantity can be replaced by the sum of the probabilities of death at time 𝑡(𝑗) over all individuals 

who are at risk of death at that time (i.e. the risk set). If these individuals are indexed by 𝑙, and the 

corresponding risk set at time 𝑡(𝑗) by 𝑅(𝑡(𝑗)), the expression becomes: 
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𝑃(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑤𝑖𝑡ℎ 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝒙𝑗 𝑑𝑖𝑒𝑠 𝑎𝑡 𝑡(𝑗) )

∑ 𝑃(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑙 𝑑𝑖𝑒𝑠 𝑎𝑡 𝑡(𝑗))𝑙𝜖𝑅(𝑡(𝑖))
. 

The probabilities of death at time 𝑡(𝑗) in the above expression are now replaced by probabilities 

of death in the interval (𝑡(𝑗), 𝑡(𝑗) + 𝛿𝑡) and dividing both the numerator and the denominator by 

𝛿𝑡 the following result is obtained: 

𝑃(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑤𝑖𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝒙𝑗 𝑑𝑖𝑒𝑠 𝑖𝑛 (𝑡(𝑗), 𝑡(𝑗) + 𝛿𝑡) )/𝛿𝑡

∑ 𝑃(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑙 𝑑𝑖𝑒𝑠 𝑖𝑛 (𝑡(𝑗), 𝑡(𝑗) + 𝛿𝑡))𝑙𝜖𝑅(𝑡(𝑖)) /𝛿𝑡
. 

Letting 𝛿𝑡 → 0, the ratio of the corresponding hazards of death at time 𝑡(𝑗) is obtained: 

𝐻𝑎𝑧𝑎𝑟𝑑 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ 𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑤𝑖𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝒙𝑗 𝑎𝑡 𝑡(𝑗)

∑ {𝐻𝑎𝑧𝑎𝑟𝑑 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ 𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑙 𝑎𝑡 𝑡(𝑗)}𝑙𝜖𝑅(𝑡(𝑖))
. 

If the 𝑖 th individual dies at time 𝑡(𝑗), then the hazard function in the numerator of this expression 

can be written as ℎ𝑖(𝑡(𝑗)) and similarly the denominator is the sum of the hazards of death at time 

𝑡(𝑗)over all individuals who are at risk of death at this time i.e. the sum of the values ℎ𝑖(𝑡(𝑗)) over 

all individuals in the risk set 𝑅(𝑡(𝑗)) at time 𝑡(𝑗). Consequently the conditional probability becomes: 

ℎ𝑖(𝑡(𝑗))

∑ {ℎ𝑖(𝑡(𝑗))}𝑙𝜖𝑅(𝑡(𝑖))
. 

Substituting the Proportional Hazards Model into the above: 

ℎ𝑖(𝑡(𝑗))

∑ {ℎ𝑖(𝑡(𝑗))}𝑙𝜖𝑅(𝑡(𝑖))
=

𝑒𝑥𝑗
𝑇𝛽ℎ0(𝑡)

∑ {𝑒𝑥𝑙
𝑇𝛽ℎ0(𝑡)}𝑙𝜖𝑅(𝑡(𝑖))

 

                                   =
𝑒𝑥𝑗

𝑇𝛽

∑ {𝑒𝑥𝑙
𝑇𝛽}𝑙𝜖𝑅(𝑡(𝑖))

. 

Taking the product over these conditional probabilities over the r death times gives the likelihood 

function. 

To illustrate the structure of the partial likelihood, an example from Modelling of Survival Data will 

be used. 

Consider a sample consisting of 5 individuals, numbered 1 to 5 with survival data as illustrated in 

the figure below: 
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Figure 4 Survival Times of Five Individuals 

The observed survival times of individuals 2 and 5 will be taken to be right censored, and the three 

ordered death times are denoted by 𝑡(1) < 𝑡(2) < 𝑡(3), so that 𝑡(1) is the death time of individual 

3, 𝑡(2) is that of individual 1 and 𝑡(3) that of individual 4. 

The risk set at each of the three ordered death times then consists of the individuals who are alive 

and uncensored just before each death time. Therefore, 𝑅(𝑡(1)) contains all 5 individuals, 𝑅(𝑡(2)) 

contains individuals 1,2 and 4 and 𝑅(𝑡(3)) has only one individual.  

 

Let 𝜑(𝑖) = 𝑒𝑥𝑗
𝑇𝛽 for i = 1,2,…,5 for the risk score of the 𝑖𝑡ℎ individual. 

The partial likelihood function over the three death times is then: 

𝜑(3)

𝜑(1) + 𝜑(2) + 𝜑(3) + 𝜑(4) + 𝜑(5)
×

𝜑(1)

𝜑(1) + 𝜑(2) + 𝜑(4)
×

𝜑(4)

𝜑(4)
. 

 

This likelihood function is not a true likelihood function in the traditional definition of likelihood 

as it does not make direct use of the actual censored and uncensored survival times. For this 

reason, it is referred to as a partial likelihood.  

 

3.2.4. Dealing with Ties in the Data 
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It is assumed that the data in a survival analysis is continuous, however in practice survival times 

are often rounded to the nearest day or month and censoring and death can occur at the same 

time. Because of this it is possible to encounter ties in the data. The example on Multiple 

Myelonoma for instance has tied survival times.  

The likelihood function developed in the previous section assumes no ties in the survival times. 

Several approaches has been put forward to deal with tied times. The appropriate likelihood 

function in the presence of tied observations was developed by Kalbfleisch and Prentice (2002) 

but has a very complicated form and is computationally very taxing, especially when there are 

many tied times.  

Several approximations to the partial likelihood have been developed that are easier to compute 

and to understand. Two of these will be discussed in this section. 

Let 𝑺𝒋be the vector of sums of each of the 𝑝 covariates for those individuals who die at the 𝑗 th 

death time 𝑡(𝑗) 𝑗 = 1,2, … , 𝑟 

If there are 𝑑𝑗 deaths at 𝑡(𝑗), the ℎth element of 𝑺𝒋 is 𝑠𝑘𝑗 − ∑ 𝑥ℎ𝑗𝑘
𝑑𝑗

𝑘=1  where 𝑥ℎ𝑗𝑘is the value of 

the ℎth explanatory variable h = 1,2,…,p for the 𝑘th of the 𝑑𝑗 individuals, 𝑘 = 1,2,… , 𝑑𝑗  who die at 

the 𝑗th death time 𝑗 = 1,2,… , 𝑟. 

The simplest approximation was given by Breslow (1974) who proposed the approximate 

likelihood: 

∏
𝑒(𝑆𝑗

𝑇𝛽)

{∑ 𝑒(𝑋𝑙
𝑇𝛽)}𝑙𝜖𝑅(𝑡(𝑗))

𝑑𝑗

𝑟

𝑗=1

. 

This likelihood function is easy to compute and reasonable accurate when the number of tied 

observations at a given death time is not too large. For this reason, this method is usually the 

default procedure for handling tied survival times in statistical software procedures. When there 

are no ties in the survival times, the above approximation reduces to the original partial likelihood 

function. 

 

3.2.5. Confidence Intervals and Hypothesis testing for 𝛃 
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In order to assess the contribution of the parameters estimated for a proportional hazards model, 

it is necessary to develop tests of hypotheses for the parameters and their associated confidence 

intervals.  

It is important to revisit some of the quantities derived and used in the calculation of the maximum 

likelihood estimates. Consider the setting where 𝑛 observations have been observed and are used 

to estimate the values of 𝑝  unknown parameters: 𝜷 = [𝛽1, 𝛽2, … , 𝛽𝑝]  with corresponding 𝜷 

function as described in the previous section, 𝐿(𝜷). 

The values of 𝜷 that maximise the maximum 𝐿(𝜷) are found by solving the system of 𝑝 equations 

simultaneously: 

𝑑𝑙𝑜𝑔𝐿(𝜷)

𝑑𝛽𝑗
= 0, for 𝑗 = 1,2,… , 𝑝 

Let the values of 𝜷 that maximise 𝐿(𝜷) be denoted by �̂� = [�̂�1, �̂�2, … , �̂�𝑝] so that  

max(𝐿(𝜷)) = 𝐿(�̂�). 

The efficient score for 𝛽𝑗, 𝑗 = 1,2,… , 𝑝 is:  

𝑢(𝛽𝑗) =
𝑑𝑙𝑜𝑔𝐿(𝜷)

𝑑𝛽𝑗
. 

When the efficient scores are stacked to for the 𝑝-component vector, this is: 

𝒖(𝜷), and the vector of maximum likelihood estimates can then be expressed as: 

𝒖(�̂�) = 𝟎. 

Denote the Hessian Matrix, or 𝑝 𝑥 𝑝 matrix of second order partial derivatives of the log-likelihood 

function by 𝑯(𝜷)  with the (𝑖, 𝑗)𝑡ℎ  element: 

𝑯(𝜷)𝒊𝒋 =
𝜕2𝑙𝑜𝑔𝐿(𝜷)

𝜕𝛽𝑖𝛽𝑗
. 

The information matrix is obtained from the relationship: 

𝑰(𝜷) = −𝑯(𝜷). 

The (𝑖, 𝑗)𝑡ℎ element of the corresponding expected information matrix is given by: 
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−𝐸 [
𝜕2𝑙𝑜𝑔𝐿(𝜷)

𝜕𝛽𝑖𝛽𝑗
]. 

To construct tests of hypothesis for �̂�, it is first necessary to derive the variance of these estimates , 

𝑣𝑎𝑟(�̂�) . The inverse of the observed information matrix, evaluated at �̂� can be used for a 

reasonable approximation of the 𝑝 𝑥 𝑝 variance-covariance matrix: 

𝑣𝑎𝑟(�̂�) ≈  𝑰−𝟏(�̂�). 

It follows that the square roots of the diagonal elements will yield the standard errors for �̂�: 

𝑆𝐸(𝛽𝑗) =  √𝐼−1(�̂�)
𝑗𝑗

. 

The Likelihood Ratio Test to test the null hypothesis of 𝐻0(�̂�) = 𝟎 has test statistic: 

2{𝑙𝑜𝑔𝐿(�̂�) − 𝑙𝑜𝑔𝐿(𝟎)}. 

The Wald Test has associated test statistic: 

�̂�′𝑰(�̂�)�̂�. 

The Score Test statistic is based on: 

𝒖′(𝟎)𝑰−𝟏(𝟎)𝒖(𝟎). 

Under the null hypothesis: 𝐻0(�̂�) = 𝟎  , each of the above test statistics has a chi-squared 

distribution with 𝑝 degrees of freedom. 

 

3.2.6. Example of Fitting the Proportional Hazards Model 

 

The Cox Proportional Hazards model is fitted to the multiple Myelonoma data using the phreg 

procedure in SAS. The Breslow method for handling ties is employed. 

The independent variables in the examples are given below: 

 Age – the patient’s age in years 

 Sex – 0 = Male, 1 = Female 

 Bun – the levels of blood urea nitrogen 
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 Ca – serum calcium 

 HB – Hemoglobin 

 PCells – Percentage of plasma cells in the bone marrow 

 Protein – an indicator variable to denote whether or not Bence-Jones protein was present 

in the urine. (0 = present, 1 = absent) 

The proportional hazards model for the 𝑖 th individual is then: 

ℎ𝑖(𝑡) = 𝑒𝛽1𝐴𝑔𝑒𝑖+𝛽2𝑆𝑒𝑥𝑖+𝛽3𝐵𝑢𝑛𝑖+𝛽4𝐶𝑎𝑖+𝛽5𝐻𝐵𝑖+𝛽6𝑃𝐶𝑒𝑙𝑙𝑠𝑖+𝛽7𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑖ℎ0(𝑡). 

The Baseline hazard function is the hazard function for an individual for whom the values of all 

seven of these variables are zero i.e. a male ages zero, with zero values of Bun, Ca, HB and Pcells 

and no Bence-Jones protein. Because this is difficult to interpret, it would have been possible to 

recode age as age – 60, which would correspond then to a male who is aged 60 and has zero values 

for the other independent variables. Though this facilitates interpretation, it has no effect on the 

explanatory variables and will not affect inference.  
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The estimates in the below tables are obtained after fitting the model: 

Table 7 SAS Output on Fitting the Proportional Hazards Model to the Example Data 

Analysis of Maximum Likelihood Estimates 

Parameter DF Parameter Standard Chi-
Square 

Pr > ChiSq Hazard Label 

Estimate Error Ratio 

age 1 -0.0195 0.0280 0.4838 0.4867 0.9810 Age 

sex 1 -0.2399 0.4045 0.3518 0.5531 0.7870 Sex 

bun 1 0.0208 0.0059 12.2690 0.0005 1.0210 Bun 

ca 1 0.0207 0.1325 0.0243 0.8761 1.0210 Ca 

hb 1 -0.1329 0.0691 3.6971 0.0545 0.8760 HB 

pcells 1 -0.0010 0.0066 0.0238 0.8774 0.9990 Pcells 

protein 1 -0.6276 0.4269 2.1608 0.1416 0.5340 Protein 

 

From the above, it can be seen that many of the estimates are close to zero and have high p-values. 

In fact, only bun and hb have a p-value smaller than 0.1 (or 10%). 

However, from this output, one cannot conclude that these two variables will be the only two 

predictors. Like normal linear regression, proportional hazards are sensitive to correlation in the 

set of independent variables. To arrive at the best fit, several models need to be fitted and the 

output compared and evaluated to determine whether the models make intuitive and statistical 

sense. 

 

3.2.7. Model Selection 

 

As in the case of linear regression, the set of available independent variables needs to be evaluated 

to find the optimal set that best fits the data and makes the most sense in the application area. 

Fortunately, many of the selection procedures available to regression can also be applied to 

survival modelling and will be discussed in this section. 

It is important to have a summary statistic to evaluate and compare different models fitted to the 

data. Since the likelihood function summarises the information contained in the data about the 

unknown parameters, it makes sense to start with this function and develop a metric from here. 

The likelihood function, when substituting the values of the estimating parameters gives a 
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description of the model fit and since the objective of the likelihood is to obtain the parameter set 

that maximises the likelihood function: the larger the value, the better. In this fashion, different 

models can be compared.  

However, in practice it is convenient to use  −2𝑙𝑜𝑔�̂� , where L̂  is the value of the likelihood 

function when substituting a particular set of parameter estimates. When using −2𝑙𝑜𝑔�̂� , the 

lower the value, the better. −2𝑙𝑜𝑔�̂�  will also always be positive. This value can be used to 

compare the different outputs of the selection procedures discussed below.  

In addition to −2𝑙𝑜𝑔�̂�, one can also look at a closely related quantity, 2𝑘 − 2𝑙𝑜𝑔�̂�  where 𝑘 is the 

number of parameters in the model. This quantity is known as the Akaike Information Criterion or 

AIC. The AIC deals with the trade-off between goodness-of-fit and number of parameters 

(complexity) of the model i.e. a model with too many parameters can overfit the data. As with 

−2𝑙𝑜𝑔�̂�, the preferred model is the model with the lowest value of AIC.  

Other criteria such as the Bayesian Information Criterion can also be used to compare different 

models, but will not form part of the scope of this essay. 

 Forward Selection 

In forward selection the algorithm starts with building one variable regressions for each variable 

in the set of independent variables. The first model selected is the one with the smallest value of 

−2𝑙𝑜𝑔�̂� . This variable is then kept and a two variable model is constructed for each of the 

remaining p - 1 independent variables. The two variable model with the smallest value−2𝑙𝑜𝑔�̂� is 

then again selected. The algorithm then carries on adding variables in this fashion until the 

difference in −2𝑙𝑜𝑔�̂� does not change below a pre-specified value. This is called a stopping value.  

 Backward Elimination 

In the case of backward elimination, the algorithm starts with all independent variables included 

in the model. It will then remove each of the p independent variables and exclude the variable 

that decreases −2𝑙𝑜𝑔�̂� by the smallest amount. The algorithm will proceed in this fashion again 

until no significant change occurs anymore in −2𝑙𝑜𝑔�̂�. 

 Stepwise Selection 

The Stepwise selection algorithm is very similar to Forward Selection except that a variable that 

was included in a previous step can be excluded in a future step. In this fashion, stepwise selection 

will identify a subset of the independent variables that gives the smallest value of −2𝑙𝑜𝑔�̂�. 
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The disadvantage of these selection procedures is that it will typically lead to a specific subset in 

the data which may or may not make sense to the application area. These procedures also are not 

necessarily immune to correlation in the data and the analyst will have to evaluate and assess the 

output obtained. 

 

3.2.8. Example using Selection Procedures 

 

The previous output of the Proportional Hazards model fitted to the Multiple Myelonoma data 

suggested that not all seven independent variables are necessary in the modelling of the hazard 

of death. The stepwise selection procedure was applied and the results below obtained. 

Table 8 SAS Output on Fitting the Proportional Hazards Model to the Example Data using Stepwise Selection 

Analysis of Maximum Likelihood Estimates 

Parameter DF Parameter Standard Chi-Square Pr > ChiSq Hazard Label 

Estimate Error Ratio 

bun 1 0.0185 0.0057 10.6209 0.0011 1.0190 Bun 

hb 1 -0.1316 0.0621 4.4921 0.0341 0.8770 HB 

 

From the above output it can be seen that only Bun and HB were selected in the stepwise selection 

procedure. Bun was entered in step one followed by HB in step two. The process then terminated 

meaning that the inclusion of any of the remaining independent variables could not yield a better 

model fit.  

Both these variables are significant at the 5% level of significance. This threshold value could have 

been set to another value if required.  
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3.2.9. Interpretation of the Parameter Estimates 

 

When a proportional hazards model is fitted, the coefficients of the explanatory variables in the 

model can be interpreted as the logarithms of the ratio of the hazard of death to the baseline 

hazard.  

Consider the univariate model: 

ℎ𝑖(𝑡) = 𝑒𝛽𝑋𝑖ℎ0(𝑡).  

which gives the hazard of death for individual 𝑖 in the dataset. Suppose that another individual in 

the dataset has the observed value 𝑋𝑖 + 1 for the independent variable 𝑋. The ratio of these to 

observations to one another will yield the following: 

𝑒𝛽𝑋+1

𝑒𝛽𝑋
= 𝑒𝛽 . 

Therefore �̂� is the estimated change in the logarithm of the hazard ratio when the value of 𝑋 is 

increased by one unit.  

Using a similar argument, the estimated change in log-hazard ratios when a value of 𝑋 is increased 

by 𝑟 units will be 𝑟�̂�, and the corresponding estimate of the hazard ratio is 𝑒𝑟�̂�. 

Returning to the example of Multiple Myelonoma, the parameter estimate for Bun is 0.0185 with 

the corresponding hazard ratio 1.0190. This means that a unit increase in the value of Bun will 

result in a 0.0185 change in the log of the hazard ratio, or 1.0190 on the hazard ratio itself.  

 

3.2.10. Estimating the Hazard and Survival Functions 

 

So far, only the estimation of the 𝛽  coefficients in the linear component of the proportional 

hazards model has been discussed. This is all that is necessary to draw inferences about the set of 

independent variables in the modelling of the hazard function. Once a suitable model has been 

identified, it is possible to estimate the hazard function, the baseline hazard and the associated 

survival function.  
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After estimation of the 𝛽 coefficients, the fitted model is.  

ℎ̂𝑖(𝑡) = 𝑒𝒙𝑖.�̂�ℎ̂0(𝑡). 

The next step is to determine ℎ̂0(𝑡), the baseline hazard. 

 

3.2.10.1. Estimating the Baseline Hazard  

 

Kalbfleisch and Prentice (1973) provided an estimate of the baseline hazard, using maximum 

likelihood which is discussed in this section. The derivation of this estimate is quite complex and 

will not be included here.  

Suppose there are 𝑟 distinct ordered death times denoted by 𝑡(1) < 𝑡(2) < ⋯𝑡(𝑟) and there are 

𝑑𝑗deaths and 𝑛𝑗individuals at risk at time 𝑡(𝑗). 

The estimate of the baseline hazard function at time 𝑡(𝑗) is then given by: 

ĥ0( 𝑡(𝑗)) = 1 − ξj.  

where ξj is the solution to the equation: 

∑
𝑒𝑥(𝑙)

𝑇 �̂�

1 − 𝜉𝑗𝑒
𝑥(𝑙)

𝑇 �̂�
𝑙𝜖𝐷( 𝑡(𝑗))

 = ∑ 𝑒𝑥(𝑙)
𝑇 �̂� ,

𝑙𝜖𝑅( 𝑡(𝑗))

 

for 𝑗 = 1,2,… , 𝑟  

Where  

 D( 𝑡(𝑗)) is the set of all individuals who die at the 𝑗𝑡ℎ ordered death time. 

 R( 𝑡(𝑗)) is the set of all 𝑛𝑗 individuals who are at risk at time 𝑡(𝑗) . 

In the particular case where there are no tied death times, the left hand side of the equation will 

be a single term and the equation solved to give: 

𝜉𝑗 = [1 −
𝑒𝑥(𝑗)

𝑇 �̂�

∑  𝑒𝑥(𝑙)
𝑇 �̂�

𝑙𝜖𝑅( 𝑡(𝑗))

]

𝑒
𝑥(𝑗)
𝑇 �̂�

. 
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Using the results arrived at so far, the hazard function can now be estimated given the vector of 

explanatory variables 𝑋. 

ℎ̂𝑖(𝑡) = 𝑒𝒙𝑖.�̂�ℎ̂0(𝑡). 

Integrating on both sides yields the following: 

∫ ℎ̂𝑖(𝑢)𝑑𝑢
𝑡

0

= 𝑒𝒙𝑖.�̂� ∫ ℎ̂0(𝑢)
𝑡

0

𝑑𝑢. 

So that the cumulative hazard function for the 𝑖 th individual is given by: 

�̂�𝑖(𝑡) = 𝑒𝒙𝑖.�̂��̂�0(𝑡).  

and therefore the estimated survival function: 

�̂�𝑖(𝑡) = �̂�0(𝑡)
𝑒𝒙𝑖.�̂� ,  

for 𝑡(𝑘) ≤ 𝑡 < 𝑡(𝑘+1), 𝑘 = 1,2, … 𝑟. 

 

3.2.10.2. Model Validation 

 

3.2.10.2.1. Introduction 

 

Like in the case of normal linear regression, the fitted proportional hazards models need to be 

validated to check whether the model fit is good. The use of diagnostic procedures is strongly 

advised in a survival analysis. Because methods used to assess the quality of a model fit have to 

cope with the occurrence of censored survival times, this adds an additional layer of complexity 

to the available diagnostic procedure. The following questions can typically be asked: 

 Does the fitted model accurately describe the hazard of death?  

 Do the parameter estimates make sense and can they be explained?  

 Is the model missing possible trends in the data and if so, what are these trends and what 

can be done to account for them? 

In this section, several types of residuals and residual analysis will be explained as well as their 

unique advantages and disadvantages. A method for checking whether trends exist in the 
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independent variable set and possible transformation of the independent variables will also be 

discussed.  

For the whole section, the assumption will be made that the survival times of n individuals are 

available, that there are r deaths of these n individuals and that n - r individuals are right censored. 

Assume further that a Cox Regression has been fitted to the survival times and that the linear 

component of the model contains 𝑝 explanatory variables 𝑋1, 𝑋2,⋯ , 𝑋𝑝. The fitted model for the 

𝑖 th individual is then, 𝑖 = 1,2,… , 𝑛: 

ℎ̂𝑖(𝑡) = 𝑒𝒙𝑖.�̂�ℎ̂0(𝑡).  

where 

 𝒙𝑖.�̂� = �̂�1𝑥𝑖1 + �̂�2𝑥𝑖2 + ⋯+ �̂�𝑝𝑥𝑖𝑝.  

is the fitted linear component of the model, and ℎ̂0(𝑡) is the estimated baseline hazard function.  

 

3.2.10.2.2. Cox-Snell Residuals 

 

The most widely used residual in the analysis of survival data is the Cox-Snell residual. These 

residuals have the name “Cox-Snell” as it is a particular definition of residuals given by Cox and 

Snell (1968). 

The Cox Snell residual for the 𝑖 th observation is given by  

𝑟𝑐𝑖 = 𝑒𝒙𝑖.�̂��̂�0(𝑡𝑖) , where �̂�0(𝑡𝑖) is an estimate of the baseline cumulative hazard function at time 

𝑡𝑖 - the observed survival time of that individual.  

Note that the Cox-Snell residual is the value of  

�̂�𝑖(𝑡𝑖) = 𝑒𝒙𝑖.�̂��̂�0(𝑡𝑖) 

            = −𝑙𝑜𝑔�̂�𝑖(𝑡𝑖).   

where �̂�𝑖(𝑡𝑖) and �̂�𝑖(𝑡𝑖) are the estimated values of the cumulative hazard and survival functions 

for the 𝑖 th individual at time 𝑡𝑖 
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The Cox-Snell residuals have the interesting property that they follow an Exponential distribution 

with a unit mean. The proof of this property follows from Theorem 6.3.2 in (Bain and Engelhardt 

1992) on page 198 and is given below: 

Let 𝑋 be a continuous random variable with pdf 𝑓𝑋 . 

Then the density of the random variable 𝑌 = 𝑔(𝑋) is given by: 

𝑓𝑦(𝑦) =
𝑓𝑥(𝑔

−1(𝑦))

|
𝑑𝑦
𝑑𝑥|

. 

Using this result, let 𝑇 be the random variable associated with the survival time of an individual, 

and 𝑆(𝑡) the associated survival function. Consider the transformation 𝑌 = −𝑙𝑜𝑔(𝑆(𝑇)) where 

𝑔(𝑌) =  −𝑙𝑜𝑔(𝑆(𝑇))  

∴ 𝑒−𝑌 =  𝑆(𝑇)  

∴ 𝑔−1(𝑌) = 𝑇 = 𝑆−1(𝑒−𝑌), 

and 

𝑑𝑦

𝑑𝑡
=

𝑑{−𝑙𝑜𝑔(𝑆(𝑇))}

𝑑𝑡
 =

𝑓𝑇(𝑡)

𝑆(𝑡)
. 

Therefore 

𝑓𝑦(𝑦) = 𝑓𝑥(𝑔
−1(𝑦))/|

𝑑𝑦

𝑑𝑥
| becomes 

𝑓𝑦(𝑦) =
𝑓𝑇{𝑆−1(𝑒−𝑦)}

𝑓𝑇(𝑆−1(𝑒−𝑦))

𝑆(𝑆−1(𝑒−𝑦))

= 𝑒−𝑦.  

This is the density function of an Exponential distribution with unit mean or 𝐸𝑋𝑃(1). 

From the results above, one can assume that the Cox-Snell residuals 𝑟𝑐𝑖  will behave as 

observations from a 𝐸𝑋𝑃(1) distribution, if the fitted model is correct.  

If the observed survival time is right censored, then the corresponding residual is also right 

censored. The residuals will therefore be a censored sample from a 𝐸𝑋𝑃(1) distribution and a test 

of this assumption provides insight into model adequacy.  
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Because of the above, the Cox-Snell residuals will not exhibit the same properties as normal 

residuals from a linear regression i.e. have mean zero and a normal distribution. They will not be 

symmetrically distributed and will never be negative. They will also have a skew distribution with 

a mean and variance of one.  
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4. CHAPTER 4 – A Background on Smoothers and Additive Models 

 

4.1.  Smoothers and Smoothing 

 

4.1.1. Introduction 

 

A smoother is a tool used for describing and summarising data. The name smoother derives from 

the fact that a smoother produces an estimate of the variable that is less variable than the variable 

itself, hence the name smoother.  

The moving average is an example of a widely used smoother, and works by averaging points in a 

neighbourhood of a given size. It is easy to understand and helps the analyst spot trends in the 

data.  

An important property of a smoother is that it is not parametric – there are no rigid assumptions 

of the form of the dependence of the mean of 𝑌 on 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑝) 

Where one is only applying a smoother to the data points (𝑥𝑖, 𝑦𝑖), the term scatterplot smoother 

is used.  

As mentioned earlier, smoothers are mainly used for description. Smoothers aid the analyst by 

enhancing the visual appearance of the scatter plot of 𝑋 on 𝑌, hence making it easier to spot 

trends. Secondly, smoothers are used to estimate the dependence of the mean of 𝑌  on the 

predictors. This fact leads to their use in additive and generalised additive models.  

A smoother can be easily written in the form: 

�̂� = 𝑆𝒚 where �̂� is the produced smooth of the observed vector 𝒚 and S is a 𝑛 𝑥 𝑛  smoother 

matrix. 

Two broad categories of smoothers exist – linear and non-linear smoothers. In simple terms for a 

linear smoother the above smoothing matrix 𝑆  does not depend on 𝒚. A more mathematical 

definition will be given in a subsequent section. 
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Examples of linear smoothers are running means, cubic splines, locally weighted running lines and 

even the least squares line. The running median is an example of a non-linear smoother for which 

a smoothing matrix cannot be constructed.  

The level of smoothing / amount of smoothing that a smoother does is controlled by its smoothing 

parameter. Usually these are the degrees of freedom (in the case of cubic and regression splines) 

or span. Span is denoted by 𝑤 and can be interpreted as a proportion of points of the data sample 

used to compute the smooth i.e. for 𝑤 between 0 and 1 so that [𝑤𝑛] is an integer. When 𝑤 = 1, 

every smooth will include all of the available points and with 𝑤 = 0 the opposite. 

The question of how to select the smoothing parameter has no straight forward answer and many 

techniques have been put forward to deal with the issue. Most common is cross-validation, 

however in many cases the analyst will have to make a decision based on their knowledge of the 

subject and the nature of the data. Also if some data driven technique is used to select a smoothing 

parameter or generate a test, then the smoother also becomes non-linear. 

 

4.1.2. Neighbourhoods 

 

As a simplistic definition, a smoother works by averaging 𝑌-values of observations having predictor 

values close to a target value. The points to use for the calculated average or smoother depend 

on the neighbourhood, a subset of 𝑥𝑖’s, close to 𝑥𝑖 for which the corresponding 𝑦𝑖’s are used in 

the smooth. 

Intuitively, neighbourhoods can be selected in two ways – by taking the 𝑟 nearest points to 𝑥 

(regardless of which side they are on), or by taking 𝑘 points to the left and 𝑘 points to the right of 

𝑥. This latter is called a symmetric nearest neighbourhood whereas the prior is called the nearest 

neighbour. In the case of a symmetric neighbourhood, when there are not exactly 𝑘 -points on a 

side available, as many points as possible are selected. 

The size of the neighbourhood is typically expressed in terms of an adjustable smoothing 

parameter. As expected, choosing neighbourhoods of small size will result in estimates with low 

bias but high variance, whereas a larger neighbourhood will yield estimates with high bias but low 

variance. This is known as the bias-variance trade-off, and must always be kept in mind when 

choosing the smoothing parameter. 
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The indices for points belonging to 𝑥  in a symmetric nearest neighbourhood are denoted by: 

𝑁𝑠(𝑥𝑖) with a formal definition given by: 

𝑁𝑠(𝑥𝑖) = {max (𝑖 −
𝑤𝑛 − 1

2
, 1) ,⋯ , 𝑖 − 1, 𝑖, 1 + 1,⋯ ,min(𝑖 +

𝑤𝑛 − 1

2
, 𝑛)}. 

 

4.1.3. Moving Average / Running-mean and Running Line Smoothers 

 

The moving average or running mean is a widely used smoother, and often used in time-series 

analysis, especially when the data is evenly spaced. It has several drawbacks – just as averages are 

very sensitive to influential data points, just so is the running mean. This can lead to smooths that 

look wiggly or erratic. Apart from this, the running line also tends to flatten out near the endpoints 

of the data, and as a direct result of this, it can be severely biased.   

The running mean can be defined as: 

𝑆(𝑥𝑖) = 𝑎𝑣𝑒(𝑦𝑖)𝑗𝜖𝑁𝑠(𝑥𝑖). 

Smoother matrix is given below for a running mean with smoother with 𝑤 = 0.5 and n=10 

𝑆 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

3

1

3

1

3
0 0 0 0 0 0 0

1

4

1

4

1

4

1

4
0 0 0 0 0 0

1

5

1

5

1

5

1

5

1

5
0 0 0 0 0

0
1

5

1

5

1

5

1

5

1

5
0 0 0 0

0 0
1

5

1

5

1

5

1

5

1

5
0 0 0

0 0 0
1

5

1

5

1

5

1

5

1

5
0 0

0 0 0 0
1

5

1

5

1

5

1

5

1

5
0

0 0 0 0 0
1

5

1

5

1

5

1

5

1

5

0 0 0 0 0 0
1

4

1

4

1

4

1

4

0 0 0 0 0 0 0
1

3

1

3

1

3]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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Because of the running mean’s sensitivity to outlying data points and bias on the end points of the 

data, the running line was proposed. The running line smoother computes the least squares line 

instead of a mean for each neighbourhood.  

The running line smoother can be defined as: 

𝑆(𝑥0) = �̂�(𝑥0) + �̂�(𝑥0)𝑥0. 

Where �̂�(𝑥0) and �̂�(𝑥0) are the least squared estimates of the regression lines fitted locally at 𝑥0, 

(i.e. of the data points in 𝑁𝑠(𝑥𝑖)). 

The running line fit is dominated in the interior by the mean and at the endpoints by the slope. 

The parameter 𝑘 (number of points to the left and right of 𝑥0) controls the appearance of the line 

– for large values of 𝑘 , the line is smooth, whereas small values of 𝑘  produces jagged and 

discontinuous curves. As mentioned earlier, large values of 𝑘  will also yield large bias in the 

estimates, but low variance, whereas small values will do the inverse.  

The running line smooth computes in 𝑜(𝑁) operations and is easy to implement and to interpret.  

One way of improving the appearance of the running line smooth is to compute a weighted least 

squares fit within each neighbourhood, by weighting points close to 𝑥0 higher than points further 

away from 𝑥0. This idea is explored further in the next section.  

The running-line smoother is also zero outside of the diagonal bands, with the non-zero elements 

of the 𝑖 th element given by: 

𝑠𝑖𝑗 =
1

𝑛𝑖
+

(𝑥𝑖 − 𝑥�̅�)(𝑥𝑗 − 𝑥�̅�)

∑ (𝑥𝑘 − 𝑥�̅�)
2

𝑘∈𝑁𝑠(𝑥𝑖)
. 

where 𝑛𝑖 denotes the number of datapoints in 𝑁𝑠(𝑥𝑖), j subscripts these points and 𝑥�̅� represents 

their mean. 
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4.1.4. Kernel Smoothers 

 

A Kernel Smoother is another type of popular statistical technique for estimating the value of a 

real valued function, when the parameters of this model are unknown. Again the estimated 

function is smooth, and the level of smoothness is set by a single parameter. 

The kernel defines an explicit set of weights used in the calculation of the estimate. These weights 

are a function of the distance of the observation point 𝑥0  to the target point  𝑥𝑗  and usually 

decrease as one moves further away from 𝑥0. 

The weight given to the 𝑗𝑡ℎ point, used for computing the estimate at 𝑥0 is given by: 

𝑆0𝑗 =
𝑐𝑜

𝜆
𝑑(|

𝑥0−𝑥𝑗

𝜆
|), 

where 𝑑(𝑡) is an even decreasing function in |𝑡| and 𝜆 is the window-width or bandwidth. The 

constant 𝑐𝑜is usually chosen so that the weights sum to unity, although this may not always be the 

case. 

The kernel smoother matrix has elements; 

𝑠𝑖𝑗 = 𝑐𝑖𝑑𝜆(𝑥𝑖 , 𝑥𝑗) where 𝑐𝑖 is chosen so that the rows sum to unity (equivalent to above) 

Several popular kernels used in smoothing include: 

 The Epanechnikov Kernel 

𝑑(𝑡) =  {3 4(1 − 𝑡2), 𝑓𝑜𝑟 |𝑡| ≤ 1⁄

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

which minimises the asymptotic mean squared error. 

 The Minimum Variance Kernel 

𝑑(𝑡) =  {3 8(3 − 5𝑡2), 𝑓𝑜𝑟 |𝑡| ≤ 1⁄

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

 which minimises the asymptotic variance of the estimate.  
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 The Gaussian Kernel, where 𝑑 is the standard Gaussian density 

The idea behind using a kernel estimate is as follows. For each point in the data, 𝑥0, calculate the 

kernel weights as defined above and apply to the data to obtain the estimate at 𝑥0. Typically, this 

action can be described by the Nadaraya-Watson kernel weighted average model: 

𝑠(𝑥0) =  
∑ 𝑑(

𝑥0−𝑥𝑖
𝜆

)𝑦𝑖
𝑛
𝑖=1

∑ 𝑑(
𝑥0−𝑥𝑖

𝜆
)𝑛

𝑖=1

.       (2.4.1) 

The fitted values of the kernel smoother are continuous, and as mentioned, the smoothness of 

the function is determined by the bandwidth parameter, 𝜆 . For 𝑘  -nearest neighbours, the 

neighbourhood size 𝑘 is equal to 𝜆.  

From here, is it can readily be seen that the running line and moving average smooths can be 

expressed as kernel smooths. When this is possible, the term equivalent kernel is used and gives 

one a basis for comparing different smooths on common ground. 

The moving average, using nearest neighbours and a kernel terminology, can be expressed as 

follows: 

Let : 

𝑑(𝑡) =  {
1 𝑚               𝑓𝑜𝑟 |𝑡| ≤ 1⁄

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝑚 is the number of points in the neighbourhood. Substituting the above into (2.4.1) yields 

the moving average smoother.  

As expected, the running line smoother can also be expressed in terms of its equivalent kernel.  

For the running line smoother, or alternatively, Local Linear Regression, the estimate is given by: 

𝑠(𝑥0) = �̂�(𝑥0) + �̂�(𝑥0)𝑥0. 

Where �̂�(𝑥0) and �̂�(𝑥0) are the values that minimise: 

∑𝑆0𝑖(𝑦𝑖 − 𝛼(𝑥0) − 𝛽(𝑥0)𝑥𝑖)
2.

𝑛

𝑖=1

 

Let 𝑏(𝑥)𝑇 = (1, 𝑥), and B the N x 2 regression matrix with 𝑖𝑡ℎ row equal to 𝑏(𝑥𝑖) , and 𝑊(𝑥0) the 

𝑁𝑥𝑁 diagonal matrix with 𝑖 th diagonal element 𝑆0𝑖 then: 
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𝑠(𝑥0) =𝑏(𝑥0)
𝑇(𝐵𝑇 𝑊(𝑥0)𝐵)−1𝐵𝑇𝑊(𝑥0)𝑦.  

These weights combine the weighting kernel as the least squared operations. 

 

4.1.5. Regression Splines 

 

A spline is a smooth polynomial function that is piecewise defined, i.e. it is made up of different 

polynomial of degree 𝑛 and the first 𝑛 − 1 derivatives at the points where they are joined. These 

locations / points of where the functions meet are called knots.  

The term “spline” derives from a flexible piece of metal used to draw curved lines. 

The number of knots 𝑘, as well as their position are all parameters in this procedure.  

Important in the arena of splines is the concept of B-Splines or Basis splines. The splines have 

minimal support with respect to a given degree, smoothness and domain definition – any spline 

function of some degree 𝑛 can be written as a linear combination of B-splines of that 𝑛 degree.  

For a given set of knots, the B-spline is unique which is why they are called basis splines. They are 

important and useful in that any spline function of degree 𝑘  on a given set of knots can be 

expressed as a linear combination of the B-splines.  

The space of all cubic splines with a specified sequence of 𝐾 breakpoints or knots and associated 

continuity conditions can be generated from a single set of basis functions i.e. the spline function 

is written as a linear combination of the basis elements.  

To illustrate this notion, consider the space of simple cubic polynomials – a suitable basis is given 

by {1, 𝑥, 𝑥2, 𝑥3}.   

Any polynomial function in 𝑥 can then be written as 

𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3. 

If a single knot is added at 𝑥 = 𝑤1 and the basis function (𝑥 − 𝑤1)+
3  is included where ()+denotes 

the positive part, a suitable basis will then be: 

{1, 𝑥, 𝑥2, 𝑥3, (𝑥 − 𝑤1)+
3 },  

and one can verify that the polynomial function: 
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𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3 + 𝛼4(𝑥 − 𝑤1)+
3 ,  

satisfies the conditions for a cubic spline with the given knot.  

Proceeding in this fashion, terms are added for each knot and the space will become 𝐾 + 4 

dimensional when 𝐾 such knots are included.  

For the B-splines, each 𝑑𝑡ℎ degree B-spline basis function is nonzero between at most 𝑑 + 2 knots. 

B-splines are less intuitive, but computationally attractive thanks to this local nature.  

A spline function (𝑥) , can be written as a linear combination of these basis functions: 

𝑠(𝑥) = ∑ 𝛼𝑗𝛽𝑗
𝐾+𝑑+1
𝑗=1 (𝑥),  

where 𝑑 is the degree of the spline, 𝐾 is the number of knots, and 𝛽𝑗(𝑥), 𝑗 = 1,2,⋯ ,𝐾 + 𝑑 + 1, 

are the 𝑑𝑡ℎ degree B-spline basis elements for the specified 𝐾 knots. 

The covariate 𝑋 is “expanded” into a set of new variables – the evaluated B-spline basis elements 

for the specified 𝐾 knots and the unknown coefficients 𝛼1, … , 𝛼𝑝 can be estimated by using partial 

likelihood methods that are used for the standard proportional hazards model. 

The standard errors of the variance-covariance matrix can be used to obtain estimates of the 

standard errors.  

The use of regression splines is attractive because no special software is needed once the 

breakpoints or knots have been selected. The disadvantage is that the analyst will always be 

required to select these points.  

From clinical trials data, Hastie and Tibshirani (1990) found that typically no more than three or 

four knots are required to accurately describe the underlying relationship between the 

independent variable and the effect thereof on the dependent variable.  

If there are no prior reasons for placing knots at specific locations, a good strategy is to place them 

at the quartiles. 

Figures 5 below shows the log hazard ratio for the independent variable age, with 3 knots placed 

at the quartiles. Refer to section 6.2.5.4 for the complete model. The placement of the knots 

allows the analyst to capture the non-linear trend of age in the data, where a normal linear fit 

would not have been able to. 
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Figure 5 Log Hazard Ratio for Age 

 

4.1.6. Cubic Smoothing Splines 

 

The Cubic Smoothing Spline is not constructed explicitly like those considered so far – instead it 

arises as a solution to an optimisation problem. 

Consider the following, among all functions 𝑔 with two continuous derivates, find the one that 

minimises the penalised residual sum of squares. 

∑ (𝑦𝑖 − 𝑔(𝑥𝑖))
2 + 𝜆 ∫ [𝑔(𝑧)]2𝑑𝑧.

∞

−∞
𝑛
𝑖=1      (4.1.6) 

where 𝜆 is a fixed constant.  

Buja and Andreas (1989) show that the solution 𝑔(𝑥𝑖) is a cubic spline with knots at each of the 

unique data points 𝑥𝑖. The two terms making up this function can be interpreted as follows: 

o ∑ (𝑦𝑖 − 𝑔(𝑥𝑖))
2𝑛

𝑖=1 measures the closeness to the data 

o 𝜆 ∫ [𝑔(𝑧)]2𝑑𝑧
∞

−∞
 measures the amount of smoothing done 

The constant 𝜆 controls the amount of smoothing i.e. when 𝜆 = 0 the solution is any interpolating 

problem whereas if 𝜆 = +∞ the solution is the least squared line.  

It has been shown that the smoothing spline is a linear smoother and that a smoother matrix can 

be written down. The following is taken from Green and Yandell (1985). Let 

ℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1, for 𝑖 = 1,⋯ , 𝑛 − 1 
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∆ is a tri-diagonal (𝑛 − 2) x 𝑛 with  

 ∆𝑖𝑖=
1

ℎ𝑖
. 

 ∆𝑖,𝑖+1= −(
1

ℎ𝑖
+

1

ℎ𝑖+1
). 

 ∆𝑖,𝑖+2= (
1

ℎ𝑖+1
). 

𝐶 is a symmetric tri-diagonal matrix of order 𝑛 − 2 with 

 𝐶𝑖−1,𝑖 = 𝐶𝑖,𝑖−1 =
ℎ𝑖

6
. 

 𝐶𝑖𝑖 =
ℎ𝑖+ℎ𝑖+1

3
. 

Then if �̂�𝑖 = 𝑔(𝑥𝑖) it can be shown that solving (4.1.6) is the same as minimising 

||𝐲 − �̂�||
2
+ 𝜆�̂�𝐭K�̂�. 

where K = ∆𝑡C−1∆ with solution to �̂� = S𝐲  where S is given by: 

S = (𝐼 + λK)−1. 

This important result will be referred to again in section 5.1.2 in deriving the backfitting algorithm 

for the additive Cox proportional hazards model. 

The optimisation problem can be argued and interpreted intuitively – if one isolates a region of 

the curve, say 𝑥 then if the data density is high in that region the first part will dominate, whereas 

if the data is spare, the interpolating function will be almost linear and the penalty term will 

dominate. 

The cubic spline operator takes 𝑂(𝑛) operations to compute, thanks to the banded nature of its 

matrix. 
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4.2. Additive Models 

 

4.2.1. Introduction 

 

Linear regression analysis has been, and still is a very popular and powerful technique used in 

many industries and by many practitioners. The multiple regression model enables the analyst to 

describe the relationship between a dependent variable and several independent variables and is 

easy to compute, interpret and use. Selection criteria such as forward stepwise regression or 

backward elimination with the advent of faster computers has made it an even more powerful 

technique in that one can now identify the most predictive variables from a large dataset without 

much effort. The regression model given all its advantages and widespread use however has 

several limitations. These limitations lead one to the field of additive models and ultimately 

generalised additive models. 

In this chapter, the linear regression model is reviewed and the additive model introduced. Further 

exploration of inference, parameter estimation and general theory of additive models is also 

explained in detail. 

 

4.2.2. Review of Multiple Linear Regression 

 

Given a sample of n observations of a response / dependent variable 𝑌  and 𝑘 independent / 

design vectors 𝑿𝑖 , the objective is to model the dependence of the response variable on the 

independent variables or predictors. In matrix notation, this can be denoted as follows: 

Response variable 𝒀 = [𝑦1, 𝑦2,…,𝑦𝑛]
𝑇
. 

Independent variables 𝑿𝑖 = [𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑛𝑝]
𝑇

for 𝑖 = 1,2, … , 𝑛 

The multiple linear regression model describes the dependence between 𝑌 and 𝑋 by means of the 

following relationship: 
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𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑝𝑋𝑝 + 𝜀.     (4.2.2.1) 

Where 𝐸[𝜀] = 0  and 𝑣𝑎𝑟(𝜀) = 𝜎2  The errors are assumed to be independent and normally 

distributed. 

The regression model assumes that the relationship between the dependent and independent 

variables is linear. This assumption makes the model extremely useful and convenient because: 

 The data is described in a simple manner. 

 The contribution of each independent variable towards the prediction of 𝑌 is summarised by 

its coefficient. 

 A simple equation is obtained with which future predictions can be made. 

The multiple regression model can be generalised in several ways – amongst others, surface 

smoothers provide a reasonable generalisation. 

A surface smoother “non-parametric” regression model takes the following form: 

𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑝) + 𝜀,       (4.2.2.2) 

where f is a pre-specified smoothing function.  

A challenge with surface smoothers is choosing the shape of the kernel or neighbourhood that 

defines local in 𝑘 dimensions. An even more serious problem for all surface smoothers has to do 

with the same localness in higher dimensions – neighbourhoods with a fixed number of points 

become less local as the dimensions increase (Friedman and Stuetzle 1981). Simply illustrated, if 

data in one dimension is considered, and span of 𝑘 can be selected to capture a specific number 

of data points. When working in higher dimensions, the span increases as the number of 

dimensions increase in order to capture the same amount of data point. This leads to 

neighbourhoods becoming large and adversely affects the variance and reliability of obtained 

estimates. This problem is called the Curse of Dimensionality. In addition to the above, these 

models are also very difficult to interpret, and usefulness therefore is under question. The 

important characteristic of regression models which makes them easy to interpret is the fact that 

they are additive in the predictors. 

Several multivariate techniques have been devised to surmount the curse of dimensionality and 

interpretability, one of which is to use generalise the surface smoother to be additive in its 

smoothing components. This leads one to consider additive models.  
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4.2.3. Additive Models 

 

Like the multiple regression model, an additive model decomposes the surface smoother 

described in the previous sections as follows: 

𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑝) + 𝜀 becomes 

𝑌 = 𝛼 + 𝑓1𝑋1 + 𝑓2𝑋2 + ⋯+ 𝑓𝑋𝑝 + 𝜀,   

or  

𝐸[𝑌] = 𝛼 + 𝑓1𝑋1 + 𝑓2𝑋2 + ⋯+ 𝑓𝑋𝑝,     (4.2.3.1) 

where 𝐸[𝜀] = 0 and 𝑣𝑎𝑟(𝜀) = 𝜎2 as before. 

The 𝑓′𝑠 are arbitrary univariate functions – one for each predictor. The above model, (4.2.3.1) 

retains the attractive feature of regression models in that it is additive in the predictor variables 

and therefore the interpretation and assessment of the model is made easier.  

The additive model is a special case of the Projection Pursuit Regression, proposed by Stuetzle and 

Friedman (1981), as well as Alternating Conditional Expectation, by Breiman and Friedman (1985). 

The additive model is able to sidestep all of the challenges listed in the previous section 

surrounding smoothers in higher dimensions, at the cost of approximation terms in using an 

additive function to model the p-dimensional surface. 

Implicit in 4.2.3.1 is the assumption that 𝐸[𝑓𝑖𝑋𝑖] = 0 for all 𝑖, to prevent free constants in any of 

the component functions and facilitate calculation and interpretation. 

A very important interpretative feature of 4.2.3.1 that is retained from the linear regression model 

is the fact that the variation of the fitted response surface, holding all but one predictor constant 

does not depend on the other predictors. This means that each of the 𝑘 functions can be examined 

separately to assess their contribution towards the predictability of the response. This also means 

that the additive model provides one with a very handy data exploratory tool. 

The fitted functions in additive models play the same role as the coefficients in linear regression. 

All of the challenges and pitfalls when fitting a regression model to data are also present in additive 
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models, e.g. insignificant functions must be dropped from the model and it is suggested that a 

model be fitted in a stepwise fashion, much like linear regression.  

 

4.2.4. Fitting Additive Models 

 

The backfitting algorithm, proposed by Friedman and Stuetzle (1981), is the most popular method 

for fitting additive models to data. It is a general algorithm, able to handle any type of smoothing 

functions used, however, it is iterative which may make the estimation computationally taxing. 

The backfitting algorithm is derived using conditional expectation. Suppose the additive model  

𝑌 = 𝛼 + 𝑓1𝑋1 + 𝑓2𝑋2 + ⋯+ 𝑓𝑋𝑝 + 𝜀  

is correct. 

By taking expectations of both side of the equation, it can be seen that: 

𝐸[𝑌] = 𝐸[𝛼 + 𝑓1𝑋1 + 𝑓2𝑋2 + ⋯+ 𝑓𝑋𝑝 + 𝜀] 

𝐸[𝑌] = 𝐸[𝛼 + 𝑓1𝑋1 + 𝑓2𝑋2 + ⋯+ 𝑓𝑋𝑝] since 𝐸[𝜀] = 0. 

By conditioning on only one of the 𝑋’s, the following is obtained: 

𝐸[𝑌|𝑋𝑘 = 𝑥𝑘] = 𝐸[𝛼 + 𝑓1(𝑋1) + 𝑓2(𝑋2) + ⋯+ 𝑓𝑝(𝑋𝑝)|𝑋𝑘 = 𝑥𝑘] 

            = 𝐸[𝛼 + 𝑓1(𝑋1) + 𝑓2(𝑋2) + ⋯+ 𝑓𝑝(𝑋𝑝)|𝑋𝑘 = 𝑥𝑘] + 𝑓𝑘(𝑋𝑘). 

Therefore: 

𝑓𝑘(𝑋𝑘) = 𝐸[𝑌 − 𝛼 − ∑ 𝑓𝑗(𝑋𝑗)
𝑝
𝑗≠𝑘 |𝑋𝑘 = 𝑥𝑘].    (4.2.4.1) 

This suggests an iterative algorithm for computing all of the unknown functions.  

Therefore, if the current estimates of the model are 𝑓�̂�, 𝑘 = 1,… , 𝑝  then 𝑓�̂�  is updated by 

smoothing the partial residuals 𝑟𝑖𝑗 = 𝑦𝑖 − ∑ 𝑓�̂�(𝑥𝑖𝑗).𝑘≠𝑗  

This is written in terms of the data as an arbitrary scatterplot smoother 𝑆 below. 

 The Backfitting Algorithm 
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1. Initialise 𝛼 = 𝑎𝑣𝑒(𝑦𝑖), 𝑓𝑗 = 𝑓𝑗
𝑜, 𝑗 = 1,… , 𝑝 

2. Cycle , 𝑗 = 1,… , 𝑝, 1,… , 𝑝 

3. 𝑓𝑗 = 𝑆𝑗(𝒚 − 𝛼 − ∑ 𝒇𝒌|𝒙𝑗)𝑘≠𝑗 . 

This is continued until the individual functions do not change. 

As in the case of linear regression, here it is also desirable to fit all the smoothing functions at once, 

and therefore the individual smoothing steps make sense. Whenever one function 𝑗 is adjusted, 

the effects of all other functions are removed from y. Therefore one can say this partial residual is 

smoothed against 𝑥𝑗.  
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4.3. Generalised Additive Models 

 

4.3.1. Introduction 

 

In the previous chapter, the additive model was introduced as a means to, amongst others; deal 

with the curse of dimensionality. Additive models can be extended to generalised additive models 

– very similar to the notion of extending standard linear models to generalised linear models. As 

in the case of generalised linear models, the predictors are assumed to be linear in the parameters, 

however the link between predictor and responses as well as the distribution of the responses can 

be quite general. A common example of this type of model which is extensively used is the logistic 

regression model. This model has been applied in credit scoring, propensity modelling as well as 

social sciences as it is easy to use and interpret and yields invaluable insight about the underlying 

data structures.  

In logistic regression, the response variable is assumed to have a Bernoulli distribution with 𝜇 =

𝑃(𝑌 = 1|𝑋1, … , 𝑋𝑝) and 𝜇 is linked to the predictors via ln (
𝜇

1−𝜇
) = 𝛼 + ∑ 𝑋𝑗𝐵𝑗 .𝑗  

The family of generalised linear models provides a convenient framework for studying the 

common structure of such models and there is a unified convenient way for their estimation. 

To illustrate the concept of a generalised additive model, consider the logistic regression model 

given above: 

ln (
𝜇

1 − 𝜇
) = 𝛼 + ∑𝑋𝑗𝐵𝑗

𝑗

. 

The additive extension of this model will then be: 

ln (
𝜇

1 − 𝜇
) = 𝛼 + ∑𝑓𝑗(𝑋𝑗)

𝑗

. 

The linear form 𝛼 + ∑ 𝑋𝑗𝐵𝑗𝑗  is simply replaced by the additive form, 𝛼 + ∑ 𝑓𝑗(𝑋𝑗).𝑗  
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4.3.2. Review of Generalised Linear Models 

 

The Generalised Linear Model, introduced by John Nelder and Robert Wedderburn (Nelder,J.A. 

and Wedderburn R, 1972) as a means to unify several other statistical models (such as logistic, 

linear and Poisson regression) under one framework, in its most common form is given by: 

g(μ) = 𝜂 = 𝛼 + ∑ 𝑋𝑗𝐵𝑗𝑗 ,  

where 

μ = E[Y|X1, … , Xp].       (4.3.2.1) 

and g(. ) is called link function, which links the systematic component  to the random component 

and 𝑌 (the response) is assumed to have a density function that belongs to the exponential family 

which can be written in the below form:  

𝜌𝑌(𝑦; 𝜃; 𝜙) = exp {
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
} + 𝑐(𝑦, 𝜙). 

The parameter 𝜃 is called the natural parameter, and 𝜙 is the dispersion parameter and is the 

random component of the model.  

The expectation of Y, denoted by μ is linked to the covariates by the link function: 

 g(μ) = 𝜂 , where 𝜂 = 𝛼 + ∑ 𝑋𝑗𝐵𝑗𝑗  g(μ) = 𝜂  and 𝜂  is the systematic component which is also 

known as the linear predictor.  

It is easy to prove that the mean is related to the natural parameter 𝜃 by μ = 𝑏′(𝜃). Very often, 

the obvious link for any given 𝜌𝑌is the canonical link in which 𝜃 =  𝜂. 

 

4.3.3. Fisher Scoring of Generalised Linear Models 

 

Suppose that the random and systematic components, as well as the link function have been 

specified. Given a vector of 𝑛  observations of a dependent variable 𝑌  and 𝑝  corresponding 

independent predictor vectors (X1,..,Xp), the maximum likelihood is defined by the score equations: 
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∑ 𝑥𝑖𝑗(
𝜕𝜇𝑖

𝜕𝜂𝑖

𝑛
𝑖=1 )𝑉𝑖

−1(𝑦𝑖 − 𝜇𝑖) = 0,             𝑗 = 0,2, …𝑝   (4.3.3.1) 

where 

𝑉𝑖 = 𝑣𝑎𝑟(𝑌𝑖). 

In order to solve these equations, a Newton-Raphson algorithm using the expected rather than 

observed information matrix is used. This method is the standard practice for this setting and is 

called the Fisher scoring procedure.  

An equivalent procedure described in their book, Generalized Additive Models (Hastie and 

Tibshinari 1990) that is easier to use for this type of problem is called adjusted dependent variable 

regression and is a form of iteratively reweighted least squared (IRLS). 

Given a vector of coefficients, 𝜷0, with its corresponding linear predictor: 𝜼0, and fitted values: 

𝝁0, the adjusted dependent variable is constructed. 

𝑧𝑖 = 𝜂𝑖
𝑜 + (𝑦𝑖 − 𝜇𝑖

0) (
𝜕𝜂𝑖

𝜕𝜇𝑖
). 

Define weights as 𝑤𝑖
−1 =   (

𝜕𝜂𝑖

𝜕𝜇𝑖
)𝑉𝑖

0, where 𝑉𝑖
0is the variance of Y at 𝜇𝑖

0 

Proceed by regressing 𝑧𝑖  on xi with weights 𝑤𝑖  to obtain a new estimate for 𝜷  and then 

compute a new 𝜼  and 𝝁.  

This process is repeated until the change in deviance, 𝑫(𝒚; 𝝁) = 2{𝑙(𝝁𝑚𝑎𝑥; 𝒚) − 𝑙(𝝁; 𝒚)} is model 

a preset threshold. This procedure is equivalent to the Fisher scoring procedure.  
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5. CHAPTER 5 –Additive Modelling for Survival Times 

 

5.1.1. Introduction 

 

In the previous chapter, the additive model and generalised additive models were introduced 

conceptually. The extension of the widely known logistic regression model to the context of 

generalised additive models was touched on. In this section, the extension of the Cox Proportional 

Hazards model in this regard will be discussed.  

The following notation will be used –  

 Survival data of the form (𝑦1, 𝑥
1, 𝛿1),⋯ , (𝑦𝑛, 𝑥𝑛, 𝛿𝑛) where 

 𝑦𝑖  is the survival time or consored time 

 𝛿𝑖  is 0 where an observation is censored and unity otherwise 

 𝑥𝑖 is the vector consisting of 𝑝 predictors for the 𝑖 th individual 

 Distinct failure times are given by: 𝑡(1) < 𝑡(2) < ⋯𝑡(𝑘) with there being 𝑑(𝑖) deaths or 

failures at time 𝑡(𝑖) 

Recall the Proportional Hazards model is given by: 

𝜆𝑖(𝑡|𝑿) = 𝜆0(𝑡)𝑒
∑ 𝛽𝑗𝑋𝑗𝑗 .  

where 𝜆𝑖(𝑡|𝑿) is the hazard at time t given predictor values 𝑿 = (𝑋1, … , 𝑋𝑝)  and 𝜆0(𝑡)  an 

arbitrary baseline function. 

The generalised additive model extension, as given by Hastie and Tibshinari (1986) of this will then 

be : 

𝜆𝑖(𝑡|𝑿) = 𝜆0(𝑡)𝑒
∑ 𝑓𝑗(𝑋𝑗)𝑗 .  

where 𝑓 is an arbitrary, unspecified smooth function.  

The effect of each covariate or independent variable on the log hazard is additive and is 

represented by a smooth and possibly non-linear function. The transformations, 𝑓, are not chosen 

by the analyst before applying the model, but rather are estimated flexibly from the data.  

In rare cases, all of the covariate transformations will be smooth, nonlinear functions. Typically 

some categorical variables are also included in the model and the levels included as dummy / 
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indicator binary variables. Other variables such as for example, “age” can be modeled nonlinearly 

although if a linear fit is sufficient it will usually be preferred for simplicity.  

An important advantage of the above model is that it alleviates the need to categorise a 

continuous variable (e.g. exponential, quadratic etc.) in order to discover the nature of its effect.  

The above generalisation comes with its own unique set of challenges and questions such as: 

 How to estimate the likelihood  

 Which smoother function to use 

 How to validate the selected smoother function 

 Model Validation 

 

In this section, these points will be addressed and discussed in turn, starting with the original work 

of Hastie and Tibshirani and also looking into what other researchers have done. 

 

5.1.2. Estimation 

 

In their book, Generalized Additive Models, Hastie and Tibshirani (1990) outline the steps 

necessary to estimate and fit the Cox Additive Proportional Hazards model.  

To estimate the original Cox Proportional Hazards model, partial likelihood is the most popular 

method used. Where the baseline hazard, 𝜆0 , assumes a parametric form, the full sampling 

distribution and the likelihood can be written down.  

However, as in the case of using a partial likelihood in the original setting, the baseline does not 

feature at all and is estimated using the results of the partial likelihood. 

The partial likelihood, derived in section 3.2.3, and using Peto’s approximation of ties, is given by: 

𝐿(𝜷) = ∏
𝑒

(∑ 𝜷𝑇𝒙𝑗
𝑗∈𝐷𝑟

)

{∑ 𝑒(𝜷𝑇𝒙𝑗)}𝑗∈𝑅𝑟

𝐷𝑟
.𝑅∈𝐷   

where 

 D is the set of indices of the failures 

 𝑅𝑟is the set of indices of the individuals at risk at time 𝑡𝑟 −  0 
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 𝐷𝑟 is the set of indices of failures at time 𝑡𝑟 

Each term in this product reflects the conditional probability of a failure at an observed failure 

time 𝑡𝑟, given that all the individuals that are still in the study and at risk at time 𝑡𝑟. 

The generalised additive proportional hazards model given by: 

𝜆𝑖(𝑡|𝑿) = 𝜆0(𝑡)𝑒
∑ 𝑓𝑗(𝑋𝑗)𝑗 .  

which can also be written as: 

𝜆𝑖(𝑡|𝑿) = 𝜆0(𝑡)𝑒
𝜂(𝑿).  

where 

 𝜂(𝑿) = ∑ f𝑗(X𝑗).𝑗        (5.1.2.1) 

 Let 𝜂𝑖 = 𝜂(𝒙𝑖) and 𝜼 = (𝜂1,⋯ , 𝜂𝑛)𝑇 . 

The partial likelihood for (5.2) is then: 

𝐿(𝑓1, 𝑓2,⋯ , 𝑓𝑝) = ∏
𝑒(∑ 𝜂𝑗𝑗∈𝐷𝑟 )

{∑ 𝑒(𝜂𝑗)}𝑗∈𝑅𝑟

𝑑𝑟
.

𝑅∈𝐷

 

The above likelihood is not the sum of 𝑛 independent terms, as is the case for a likelihood of a 

distribution from the exponential family of distributions and therefore the Hessian matrix (the 

matrix of second order partial derivatives) is not diagonal. This adds a layer of complexity to the 

computation of this likelihood because the “local scoring” estimation method for 𝑓𝑗 (.) is not 

directly applicable.  

Hastie and Tibshinari (1990) proposed a method to deal with this challenge. Following their train 

of thought, “Local Likelihood” is a means to overcome this hurdle.  

In order to estimate the 𝑓𝑗, the challenge can be rewritten as an optimization problem: 

Let: 

 𝑄𝑖be the space of functions with square integrable second derivates on Ω𝑖, the domain of 

the 𝑖𝑡ℎ predictor. 

 𝑙(𝜼) = 𝑙𝑜𝑔𝑃𝐿(𝜼) 
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The objective is to find 𝑓1𝜖𝑄1, 𝑓2𝜖𝑄2,⋯ , 𝑓𝑝𝜖𝑄𝑝that will maximise: 

𝑗(𝜼) = 𝑙(𝜼) −
1

2
∑ 𝜆𝑖

𝑝
1 ∫ 𝑓𝑖

′′(𝑠)2𝑑𝑠
∞

−∞
.     (5.1.2.2) 

In the above equation, 𝜆𝑖 ≥ 0 (𝑖 = 1,2,⋯ , 𝑝) are smoothing parameters.  

 𝑙(𝜼) measures closeness to the data 

 
1

2
∑ 𝜆𝑖

𝑝
1 ∫ 𝑓𝑖

′′(𝑠)2𝑑𝑠
∞

−∞
 measures the curvature of the fitted functions 

The arguments and results of (Buja and Hastie et al. 1989), establish the existence of a unique 

solution for the above, given that certain conditions are met. To summarise: the log partial 

likelihood function is concave and these results imply that if the log partial likelihood has a unique 

solution (up to a constant shift) the space of linear functions, then a unique maximum (up to a 

constant shift) will exist for 5.1.2.2.  

Given that a unique solution exists, it can be seen that this solution must be a cubic spline for each 

of the 𝑖 smoothing functions.  

For any functions, 𝛾𝑖(𝑥), let 𝑓𝑖(𝑥) be the cubic spline that agrees with 𝛾𝑖(𝑥) at 𝑥𝑖1, ⋯ , 𝑥𝑖𝑛. Then 

𝑗(𝜼) cannot be decreased by substitution of 𝑓𝑖(𝑥) for 𝛾𝑖(𝑥)., as the first term, 𝑙(𝜼), does not 

change and the second term, −
1

2
∑ 𝜆𝑖

𝑝
1 ∫ 𝑓𝑖

′′(𝑠)2𝑑𝑠
∞

−∞
, is maximised by the interpolating cubic 

spline that goes through the points, 𝑥𝑖1,⋯ , 𝑥𝑖𝑛. 

This potential infinite dimensional problem can be transformed to a finite dimensional problem 

by selecting a suitable choice of basis for the cubic splines. Considering the evaluation of the cubic 

splines, 𝑓𝑖(𝑥), at the data points 𝑥𝑖1,⋯ , 𝑥𝑖𝑛, one arrives at a convenient basis and enables one to 

rewrite 5.3 as: 

𝑗(𝜼) = 𝑙(𝜼) −
1

2
∑𝜆𝑖

𝑝

1

∫ 𝑓𝑖
′′(𝑠)2𝑑𝑠

∞

−∞

 

         = 𝑙(𝜼) −
1

2
∑ 𝜆𝑖

𝑝
1 𝐟𝑖

𝑇𝐊𝑖𝐟𝑖 ,  

where 

 𝐊𝑖are symmetric penalty matrices  

 𝐟𝑖  represents the values of the 𝑖𝑡ℎ cubic spline evaluated at the data points 𝑥𝑖1, ⋯ , 𝑥𝑖𝑛 
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Hastie and Tibshirani (1990) continue to derive a Newton- Raphson algorithm for maximising 𝑗(𝜼) 

over 𝐟1,𝐟2,⋯ , 𝐟𝑝. 

Let 𝐮 =
𝑑𝑙

𝑑𝜼
 and 𝐀 = −

𝑑2𝑙

𝑑𝜼𝜼𝑻, then it can be shown that the Newton – Raphson step to go from 

𝐟1
𝑜𝑙𝑑 , 𝐟2

𝑜𝑙𝑑 ,⋯ , 𝐟𝑝
𝑜𝑙𝑑 to 𝐟1

𝑛𝑒𝑤 , 𝐟2
𝑛𝑒𝑤,⋯ , 𝐟𝑝

𝑛𝑒𝑤 is 

 

[

𝐀 + 𝜆1𝐊1 𝐀 ⋯
𝐀 𝐀 + 𝜆2𝐊2 …
⋮ ⋮ ⋱

𝐀
𝐀
⋮

𝐀                𝐀  … 𝐀 + 𝜆𝑝𝐊𝑝

]

[
 
 
 
 
𝐟1
𝑛𝑒𝑤 − 𝐟1

𝑜𝑙𝑑

𝐟2
𝑛𝑒𝑤 − 𝐟2

𝑜𝑙𝑑

⋮
𝐟𝑝
𝑛𝑒𝑤 − 𝐟𝑝

𝑜𝑙𝑑
]
 
 
 
 

=

[
 
 
 
 
𝐮 − 𝜆1𝐊1𝐟1

𝑜𝑙𝑑

𝐮 − 𝜆2𝐊2𝐟2
𝑜𝑙𝑑

⋮
𝐮 − 𝜆𝑝𝐊𝑝𝐟𝑝

𝑜𝑙𝑑
]
 
 
 
 

.     (5.1.2.3) 

The above is an 𝑛𝑝  x 𝑛𝑝  system of equations, which would ordinarily require 𝑂({𝑛𝑝}3) 

computations. Following Hastie and Tibshirani’s arguments, this can be reduced to 𝑂(𝑝𝑛)  by 

leveraging of the special structure in 5.1.2.3.  

Let 𝒛 = 𝜼𝑜𝑙𝑑 + 𝐀−𝟏𝐮 and 𝑺𝒋 = (𝐀 + 𝜆𝑗𝐊𝑗)
−𝟏𝐀, then 5.1.2.3 can be rewritten as: 

[

𝐈 𝑺𝟏 ⋯
𝑺𝟐 𝐈 …
⋮ ⋮ ⋱

𝑺𝟏

𝑺𝟐

⋮
 𝑺𝒑 𝑺𝒑 ⋯ 𝐈

]

[
 
 
 
𝐟1
𝑛𝑒𝑤

𝐟2
𝑛𝑒𝑤

⋮
𝐟𝑝
𝑛𝑒𝑤

]
 
 
 
=[

𝑺𝟏𝒛
𝑺𝟐𝒛
⋮

𝑺𝒑𝒛

]. 

In order to solve this system of equations, one can cycle through the predictors, solving for each 

one in sequence all the while leaving the others fixed, and replacing the current value of a function 

by its newly updated value at each step. By proceeding in this fashion, the above can be rewritten 

as: 

[
 
 
 
𝐟1
𝑛𝑒𝑤

𝐟2
𝑛𝑒𝑤

⋮
𝐟𝑝
𝑛𝑒𝑤]

 
 
 
=  

[
 
 
 
𝑺𝟏(𝒛 − ∑ 𝐟1

𝑛𝑒𝑤)𝑗≠1

𝑺𝟏(𝒛 − ∑ 𝐟1
𝑛𝑒𝑤)𝑗≠1

⋮
𝑺𝟏(𝒛 − ∑ 𝐟1

𝑛𝑒𝑤)𝑗≠1 ]
 
 
 

.      (5.1.2.4) 

This iterative procedure is known as the “Gauss-Seidel” procedure for solving linear equations. It 

is also know more familiarly in this context as “Backfitting”.  

The overall Newton-Raphson procedure is a nested algorithm consisting of an inner loop that 

cycles through 5.1.2.4 updating each function in turn until convergence, and then an outer loop 

that recalculates 𝜼, 𝒛 and 𝐀. 
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The matrix 𝐀 is not diagonal, as it would be for the exponential family and hence 𝐒 calculates a 

weighted cublic spline smooth and the algorithm needs 𝑂(𝑛3) operations in order to apply 𝐒. This 

latter trait makes the procedure computationally expensive to apply except for very small datasets. 

In order to achieve the speed of 𝑂(𝑛), the off diagonal elements of 𝐀 to zero and denote the 

resulting matrix by 𝐀∗. 

Hastie and Tibshirani justify this by arguing that firstly the algorithm converges using 𝐀∗, and that 

it is clear from 5.1.2.3 that the solution it produces are solutions to the original problem.  

This is because the matrix  - a 

[

𝐀 + 𝜆1𝐊1 𝐀 ⋯
𝐀 𝐀 + 𝜆2𝐊2 …
⋮ ⋮ ⋱

𝐀
𝐀
⋮

𝐀                𝐀  … 𝐀 + 𝜆𝑝𝐊𝑝

]. 

is nonsingular with 𝐀 = 𝐀∗and thus convergence imply that the score 𝐮 − 𝜆𝑖𝐊𝑖𝐟𝑖 = 0 for all 𝑖. 

Secondly, on average, the off diagonal elements are smaller than the diagonal elements by some 

order of magnitude. In particular, if there is no censoring then one can show that the diagonal 

elements of 𝐀 average approximately 2, while the non-diagonal elements average approximately 

1

𝑛
 and therefore the Newton-Raphson procedure that makes use of 𝐀∗ should not be very different 

from the true Newton-Raphson procedure. 

 

5.1.2.1. Further details on the computation 

 

In this section, further details on the computation of 
∂2𝑙

∂𝜂𝑖
 and 

∂𝑙

∂𝜂𝑖
 required for 𝐀∗   and 𝐮  are 

discussed. 

Let 𝐶𝑖 = {𝑘: 𝑖 ∈ 𝑅𝑘} (the risk set that contains individual i) and 𝐶𝑖𝑖′ = {𝑘: 𝑖, 𝑖′ ∈ 𝑅𝑘} (the risk set 

containing individuals i and i’. Then,  

𝜕𝑙

𝜕𝜂𝑖
= 𝛿𝑖 − 𝑒𝜂𝑖 ∑

𝑑𝑘

∑ 𝑒𝜂𝑖𝑗𝜖𝑅𝑘𝑘𝜖𝐶𝑖

. 

𝜕2𝑙

𝜕𝜂𝑖
2 = −𝑒𝜂𝑖 ∑

𝑑𝑘

∑ 𝑒𝜂𝑖𝑗𝜖𝑅𝑘𝑘𝜖𝐶𝑖

+ 𝑒2𝜂𝑖 ∑
𝑑𝑘

(∑ 𝑒𝜂𝑖𝑗𝜖𝑅𝑘
)2

.

𝑘𝜖𝐶𝑖
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𝜕2𝑙

𝜕𝜂𝑖𝜂𝑖′
= −𝑒𝜂𝑖𝑒𝜂𝑖′ ∑

𝑑𝑘

(∑ 𝑒𝜂𝑖𝑗𝜖𝑅𝑘
)
2

𝑘𝜖𝐶𝑖𝑖′

 (𝑖 ≠ 𝑖′). 

Hastie and Tibshirani observe that there is a close relationship between the quantity 
𝜕𝑙

𝜕𝜂𝑖
 and the 

generalised residuals for the proportional hazards model that is discussed below: 

The generalised residual is given by: 

�̂�𝑖 = Λ̂(ti) 𝑒
𝜂𝑖,  

 where  

Λ̂(ti) = ∑
𝑑𝑘

∑ 𝑒𝜂𝑖𝑗𝜖𝑅𝑘𝑘𝜖𝐶𝑖

. 

Hence 
𝜕𝑙

𝜕𝜂𝑖
= 𝛿𝑖 − �̂�𝑖  and therefore if there is no censoring, �̂�𝑖 and  

𝜕𝑙

𝜕𝜂𝑖
 will be equivalent. When 

there is censoring present, they are not quite the same, depending on whether one makes use of 

the practice of adding one or 𝑙𝑛2 to the residuals that correspond to censored observations.  

The partial residual is not useful for assessing the fit of a model, but can add insight whether a 

covariate has been misspecified.  

 

5.1.3. Inference and Smoothing Parameter Selection 

 

Fitting a proportional additive model is a survival analysis also has a new set of challenges – the 

question is asked of how to select the parameters and then also, once one arrives at a model, how 

can that model be validated. Development and specification of a metric to measure fit can be 

arrived at using intuitive arguments. 

Let the deviance for model �̂� be given by: 

𝑑𝑒𝑣(𝒚, �̂�) = −2[𝑙(�̂�) − 𝑙(�̂�𝒎𝒂𝒙)],  

where �̂�𝒎𝒂𝒙  is the parameter value that maximises 𝑙(�̂�) over all 𝑙(�̂�)  i.e. the saturated model.  

For ease of illustration, the single predictor case is considered first. Let the true values of 𝜼, 𝐮  and 

𝐀 be given by 𝜼𝟎 , 𝐮𝟎  and 𝐀𝟎 .; 
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Going back to the below expression discussed earlier: 

𝑗(𝜼) = 𝑙(𝜼) −
1

2
∑ 𝜆𝑖

𝑝
1 𝐟𝑖

𝑇𝐊𝑖𝐟𝑖 ,  

and expanding 𝑗(�̂�) around 𝜼𝟎 and using the fact that 𝐮𝟎= 0, Hastie and Tibshirani show that: 

�̂� − 𝜼𝟎 ≈ (𝐀𝟎 + 𝜆𝐊)−1(𝐮𝟎 − 𝜆𝐊𝜼𝟎). 

Substituting 𝐀 for 𝐀𝟎 in the above expression, one obtains:  

�̂� − 𝜼𝟎 ≈ (𝐀𝟎 + 𝜆𝐊)−1(𝐮𝟎 − 𝜆𝐊𝜼𝟎). 

�̂� ≈ 𝐒𝐳𝟎 where = (𝐀 + 𝜆𝐊)−𝟏𝐀 . As was shown previously, and this is the smoother matrix for a 

cubic spline. 𝐳𝟎 is the “true” adjusted dependent variable 𝜼𝟎 + 𝐀𝟎
−𝟏𝐮𝟎.  

The variance of 𝐮𝟎, Var(𝐮𝟎) ≈ 𝐀 and therefore Var(𝐳𝟎) ≈ 𝐀−𝟏 and also  

Var(�̂�) ≈ 𝐒𝐀−𝟏𝐒𝐓.  

This quantity can be used to construct piecewise confidence bands for �̂�. 

 

5.1.4. Degrees of Freedom 

 

According to Hastie and Tibshirani (1987), the effective number of parameters in the model, or 

degrees of freedom of a model, �̂�, is defined by: 

𝑑𝑓(�̂�) = 𝑛 − 𝐸[𝑑𝑒𝑣(𝜼𝒎𝒂𝒙, �̂�)]. 

Hastie and Tibshirani (1987) further show, using a standard Taylor series argument: 

𝑑𝑒𝑣(𝜼𝒎𝒂𝒙, �̂�) ≈ 𝐮𝐓𝐀−𝟏𝐮 ≈ (𝐳𝟎 − �̂�)𝐓𝐀(𝐳𝟎 − �̂�). 

The expected value of this value is approximately: 𝑛 − 𝑡𝑟𝑎𝑐𝑒(2S − STASA−1), 

and therefore the degrees of freedom: 

𝑑𝑓(�̂�) ≈ 𝑡𝑟𝑎𝑐𝑒(2𝐒 − 𝐒T𝐀𝐒A−1). 

This can be further simplified by using the form of 𝐒 for cubic splines to obtain 

𝑑𝑓(�̂�) = 𝑡𝑟𝑎𝑐𝑒(2𝐒 − 𝐒2). 
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This quantity can be useful as a rough guide to assessing the significance of model terms. Empirical 

evidence from past research shows that this quantity has an approximate chi-squared distribution 

with 𝑑𝑓 degrees of freedom.  

For all of the calculations above dealing with the variance and the degrees of freedom, the 

diagonal matrix approximation 𝐀∗ , is used in place of 𝐀 to make computations easier.  

 

5.1.5. Selecting a Smoothing Parameter 

 

The smoothing parameter is often selected subjectively by the analyst, or in line with an intuitive 

or expected notion, however it is sometimes useful to look at methods for automatic selection 

and to validate or inform selection choices.  

Global cross-validation is an approach to parameter validation that can easily be used. Here, one 

works through all the points in the dataset, computing the entire estimation procedure 𝑛 times 

and each time leaving out one point it the dataset. Obviously this is not ideal for bigger datasets 

and the procedure will be computationally expensive.  

Note however that the choice of the smoothing parameter is dependent on the smoothing 

parameters for the other terms in the model.  

Hastie and Tibshirani in their example determined a smoothing value for the continuous variables 

of the model that results in a moderate amount of smoothing, (approx. 4 degrees of freedom for 

continuous variables). Hastie and Tibshirani then carried out a backwards stepwise selection, 

testing and validating at each step whether the fit for each independent variable can be simplified 

from a smooth fit to a linear one or omitted in its entirety from the model. To quantify these, 

−2𝑙𝑜𝑔𝑃𝐿 is used as a measure of fit. 

 

5.1.6. Tests of Hypothesis 

 

If a Proportional Hazards model has been specified, it is important to assess the contribution of 

the independent covariate effects and their significance. Should a value not be significant, it can 

be safely excluded from the model. 
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Consider the example where all effects are “linear” i.e no smoothers have been applied, except 

for a single covariate. The model would then have the following form for the hazard ratio. 

Recall that in the proportional Hazards model, the hazard ratio is parameterised by: 

log[𝜆(𝑡|𝒙, 𝑧)/𝜆0(𝑡)] = 𝑿𝜷 + ℎ(𝑧),     (5.1.6.1) 

where 𝜆0(𝑡) is as an unspecified baseline hazard function, and the unknown function ℎ gives the 

effect.  

Let 𝐵1(𝑧),⋯ , 𝐵𝑚+4(𝑧) be the cubic B-spline basis and parameterise ℎ by  

ℎ(𝑧) = 𝜃0𝑧 + ∑ 𝜃𝑘𝐵𝑘(𝑧).
𝑚+2
𝑘=1        (5.1.6.2) 

The full model with the theta parameters can be estimated using the traditional test for hypothesis 

– in this case the above parameterisation of the function ℎ is treated as a transformation of the 

original variable.  

It is also possible to add a penalised term to the likelihood and develop test of hypothesis from 

there. The results from “Spline-Based Tests in Survival Analysis" by R Gray (1994) are given below. 

In his article, Robert Gray (1994) examines a method for testing hypothesis on covariate effects / 

independent variables in a proportional hazards model. The approach is to formulate a flexible 

parametric alternative using fixed knot splines, together with penalty functions that will penalise 

noisy alternatives more than smooth ones so that the power of the tests are focused towards 

more smooth alternatives. 

The test statistics are the analogs of the ordinary likelihood based statistics, but computed from a 

penalised likelihood formed by subtracting the penalty function from the ordinary log-likelihood.  

Robert Gray explains that methods for formal inference in the setting of additive proportional 

hazards models using splines have not been well developed. Also, an additional complexity is the 

calculation of the full information matrix; however useful approximations have been given and 

discussed earlier in this section.  

Robert Gray’s approach to developing a test of hypothesis is to model the effect of an independent 

variable / covariate with a moderate number of knots and the use penalty functions in the 

estimation as would be done for non-parametric smoothing splines. Hastie and Tibshirani (1990) 

refer to this approach as “generalised ridge regression”. 
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 Tests for the Covariate Effects 

Recall that in the proportional Hazards model, the hazard ratio is parameterised by: 

log[𝜆(𝑡|𝒙, 𝑧)/𝜆0(𝑡)] = 𝑿𝜷 + ℎ(𝑧).     (5.1.6.1) 

where 𝜆0(𝑡) is an unspecified baseline hazard function, and the unknown function ℎ gives the 

effect of 𝑧 on the outcome.  

Two hypotheses are of interest here on the unknown function ℎ: 

1. ℎ = 0. 

This is the hypothesis of no effect - the function ℎ has no contribution 

2. ℎ = 𝜃0𝑧, where 𝜃0 is some unknown parameter. 

This is the hypothesis that ℎ is linear and as such no value is gained by using a smooth function to 

gauge its effect. 

Consider 𝑚 knots’ locations that are specified. Robert Gray indicates that in his experience based 

on numerical results, the exact number and locations of the knots are not important so long as the 

number is large enough (“often as few as 10 should be sufficient”) and they should be reasonable 

spread out. To ensure that an equal amount of data is present between the knots is also an 

approach recommended by Hastie and Tibshirani where they advocate placing the knots at the 

three quartiles. 

Let 𝐵1(𝑧),⋯ , 𝐵𝑚+4(𝑧) be the cubic B-spline basis and parameterize ℎ by  

ℎ(𝑧) = 𝜃0𝑧 + ∑ 𝜃𝑘𝐵𝑘(𝑧).
𝑚+2
𝑘=1        (5.1.6.2) 

There are only 𝑚 + 2 of the B-spline terms that are used in this expression because the space of 

the cubic b-splines includes a constant and linear functions – the constant is absorbed in the 

underlying / baseline hazard and the linear terms is specified on its own in the equation above.  

Let  

𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑚+2)
𝑇  

and 

𝜼 = (𝜃0, 𝜃1, 𝜃2, … , 𝜃𝑚+2)
1 = (𝜃0,𝜽

𝑇)𝑇 . 
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The two above hypothesis that are of interest for the unknown function become ℎ: 

Two hypotheses are of interest here on the unknown function ℎ: 

1. 𝜽 = 𝟎. 

This is the hypothesis of no effect- the function ℎ has no contribution 

2. 𝜼 = 𝟎.  

In order to define the test statistic: define the ordinary log partial likelihood 𝐿(𝜷, 𝜼) for the model 

5.1.6.1 above, where the smooth function ℎ is parameterised by  5.1.6.2. 

Robert Grey suggests that to focus more power towards the smoother alternatives, a penalty 

function can be subtracted from 𝐿(𝜷, 𝜼). The standard penalty function for the use with cubic 

splines is: 

1

2
𝛼 ∫[ℎ′′(𝑢)]2𝑑𝑢,   

where 𝛼 is a smoothing parameter that controls the degree of smoothing used. It is also possible 

to use other penalty functions, however in the context of splines, the above is very popular and 

preferred.  

Robert Grey continues by observing that only the parameters in 𝜽 appear in this penalty and also 

that this penalty function is quadratic in the parameters and can therefore be rewritten as: 

1

2
𝛼 𝜽′𝐏𝜽 =

1

2
𝛼 𝜼′𝐏∗𝜼. 

In this quadratic form, the matrix P is positive-definite and is only a function of the knot locations.  

The matrix P* is a (m+3) x (m+3) with the first row and column populated by zero, and P in the 

remainder of the matrix.  

It is now possible to re-write the penalised likelihood as: 

𝐿𝑝(𝜷, 𝜼) = 𝐿(𝜷, 𝜼) −
1

2
𝛼 𝜽′𝐏𝜽. 

Let the values of the parameters that maximise the penalised likelihood, 𝐿𝑝(𝜷, 𝜼) be given by 

(�̂�, �̂�). 
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For the hypothesis 𝜼 = 𝟎 :  

Let �̂�𝟎𝒍  be the maximum partial likelihood estimator for 𝜷 when 𝜼 = 𝟎. Let the standard partial 

likelihood score vector be denoted by 𝑆(𝜷, 𝜼) = (𝑆𝛽
′ (𝜷, 𝜼), 𝑆𝜂

′ (𝜷, 𝜼))′. Let 𝐈 be the information 

matrix from the unpenalised partial likelihood, with subscripts denoting the submatrices i.e 𝐈𝜼𝜼 

for the derivatives with respect to 𝜼. 

Note that 
𝜕𝐿𝑝(𝜷𝟎,𝜼)

𝜕𝜼
 = 𝑆𝜂(�̂�𝟎, 𝜼)  and that the negative of the 𝜼𝜼 portion of the information matrix 

of the penalised likelihood is 𝐈𝜼𝜼 + 𝛼𝐏∗  and the other components simply the corresponding 

components of 𝐈. 

Robert Gray gives three different test statistics: 

1. A Penalised quadratic score statistic 

Qs = 𝐒𝛈
′ (�̂�𝟎, 𝟎)(𝐈𝜼𝜼|𝜷 + 𝛼𝐏∗)−𝟏𝑺𝜼(�̂�𝟎, 𝟎).  

where  

𝐈𝜼𝜼|𝜷 = 𝐈𝜼𝜼 − 𝐈𝜼𝜷𝐈𝛃𝛃
−𝟏𝐈𝜷𝜼. 

2. A likelihood ratio statistic 

Ql = 2[𝐿𝑝(�̂�, �̂�) − 𝐿𝑝(𝜷𝟎, 𝜼)]. 

3. A Wald-type test statistic 

Qw = �̂�′(𝐈𝜼𝜼|𝜷 + 𝛼𝐏∗)�̂�. 

For each of the above, the test statistic will reject for large values of the statistic. The Likelihood 

ratio statistic is similar to the deviance statistics discussed in an earlier section and in Hastie and 

Tibshirani (1990). 

To construct an hypothesis that the effect is linear, in other words: 𝜽 = 𝟎, is done in exactly the 

same way, except with 𝜃0 included with 𝜷 instead of 𝜼. It is possible to consider more general 

forms of ℎ, but that will not be considered here. 

To obtain the approximate distributions of the test statistics, Robert Grey only considers the case 

where the number of knots as well as the number of parameters is held fixed as the sample size 

increases. Where the knots are assumed to remain fixed, it is further assumed that the usual 
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conditions are satisfied so that standard asymptotic expansions will hold for the unpenalised 

partial likelihood. – Anderson and Gill (1982). 

Then under the null hypothesis, the statistics Qs ,  Ql  and Qw  all have the same asymptotic 

distribution which is that of  

∑𝜆𝑗𝑍𝑗
2, 

where the 𝑍𝑗  are independent standard normal random variables and the 𝜆𝑗 are the eigenvalues 

of the matrix 

lim𝐈
(𝜼𝜼|𝜷)(𝐈

(𝜼𝜼|𝜷)
+𝛼𝐏∗)

−𝟏. 

Robert Gray references the works of Imhof (1961) and Davies (1973, 1980) for their development 

of methods for the distribution of a linear combination of chi-squares based on inverting the 

characteristic function. In his own simulations and examples, Robert Gray used eigenvalues 

derived from the data for the power of the tests.  

Asymptotically the excepted value under the hull hypothesis of any of the three statistics is: 

∑𝜆𝑗 = trace(lim𝐈𝜼𝜼|𝜷(𝐈𝜼𝜼|𝜷 + 𝛼𝐏∗)
−𝟏

). 

For unpenalised likelihood, this would be the degrees of freedom of the test. This definition for 

degrees of freedom also correlated to that of Hastie and Tibshirani. 

In the above approach, the value of 𝛼 is not specified directly. Rather, a value for the degree of 

freedom is specified and the corresponding value of 𝛼 is used. This approach relies heavily on the 

data analyst specifying an appropriate number for the degrees of freedom (how much smoothness 

is required) and then being able to translate that into a value for 𝛼, given the suitability of the data. 

Where the sample size is small, a few degrees of freedom can be specified. Other methods such 

as cross-validation can be useful but it is not clear if such a method would lead to best tests. Also 

insightful is Robert Gray’s recommendation to have the number of knots specified for the spline 

must be twice as large as the degrees of freedom.  
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5.1.7. A Specific Application of a Mixed Model 

 

In their article: A semiparametric multilevel survival model, Zang and Steele (2004), proposed a 

semiparametric multilevel survival for clustered duration data. The investigation concerned the 

first birth intervals (time from marriage to first child) of women in Bangladesh. 

The model that was proposed is an example of a mixed model – where some of the predictors are 

not transformed and the remainder is modelled using B-splines. 

The proposed model takes the form: 

ℎ(𝑡|𝑍𝑖 , 𝑋𝑖) = ℎ0(𝑡)𝑒
𝑍𝑖𝛽+𝑓(𝑋𝑖),      (5.1.7.1) 

where 𝑍𝑖 = [𝑋1, 𝑋2, … , 𝑋𝑝] - a matrix of observed variables for 𝑝 independent covariates, with 𝛽 

a 𝑝-valued vector of associated parameter estimates, and 𝑓(𝑋𝑖)is an unknown smooth function, 

applied to an independent variable not contained in 𝑍𝑖  . 

The above model is a special case of the Generalised Additive Model. 

Common candidates for 𝑓(. ) are splines and local polynomials. Note that when a B-spline is used 

where the variable is effectively transformed into its b-spline, no special considerations need to 

be taken to compute the likelihood and the method in section 3.2.3 can be used. 

However, working from first principles to estimate the likelihood for the model 5.1.7.1 starting 

with the method of partial likelihood (Cox, 1972) and with Peto’s (1972) approximation to ties, the 

partial likelihood can be explicitly written as: 

∑{∑ (𝑍𝑖𝛽 + 𝑓(𝑋𝑖) − log [∑ 𝑒𝑍𝑖𝛽+𝑓(𝑋𝑖)

𝑘∈𝑅𝑙

])

𝑗∈𝐷𝑙

} .

𝐿

𝑙=1

 

where 𝐷𝑙 is the number of events at time 𝑡(𝑙) and the associated set of indices for individuals at 

risk at time 𝑡(𝑙) is 𝑅𝑙 . 

Zang and Steele explain that there are many ways of dealing with the non-linear component of 

the above partial likelihood and they took the local linear approach because of its “design-adaptive 

and automatic boundary correction”, quoting Fan and Gijbels (1996). Their approach to the 

smooth function is to use a Kernel function. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



86 
 

From Taylor’s expansion, for any 𝑥 one can write: 

𝑓(𝑋) ≈ 𝑓(𝑥) + 𝑓′(𝑥)(𝑋 − 𝑥) = 𝑎 + 𝑏(𝑋 − 𝑥)  

when X is close to x. 

When combining the above Taylor expansion with the above partial likelihood function, one 

obtains: 

∑ {∑ 𝐾ℎ(𝑋𝑗 − 𝑥)(𝑍𝑖𝛽 + 𝑎 + 𝑏(𝑋𝑗 − 𝑥) −𝑗∈𝐷𝑙

𝐿
𝑙=1

log[∑ 𝑒𝑍𝑖𝛽+𝑎+𝑏(𝑋𝑘−𝑥)𝐾ℎ(𝑋𝑘−𝑥)
𝑘∈𝐷𝑙

])}, 

where  

𝐾ℎ =
𝐾(./ℎ)

ℎ
⁄ ,  

and 𝐾(. ) is a Kernel function. 

In the above expression, 𝑎  cancels and an estimator for 𝑓(𝑥)  cannot be obtained directly. 

However, the derivative of 𝑓(𝑥) can be estimated.  

Let �̂�(𝑥) and �̂�(𝑥) maximise the above expression. Let the estimator for 𝑓′(𝑥) be taken as �̂�(𝑥), 

which in turn can be used to develop an estimator for 𝑓(𝑥) by: 

𝑓(𝑥) = ∫ 𝑓′(𝑢)
𝑥

𝑐

𝑑𝑢 = ∫ �̂�(𝑢)
𝑥

𝑐

𝑑𝑢. 

Set 𝑐 = 0 for convenience. An estimator for 𝛽 can be obtained as follows: 

Let 𝑋(1) < 𝑋(2) < ⋯ < 𝑋(𝑚) be the distinct values of 𝑋1, 𝑋2, … , 𝑋𝑛. 

On the basis of 𝑋(𝑘), the estimator for �̂�(𝑋(𝑘)), 𝑘 = 1,… ,𝑚 is obtained. 

The estimator for 𝛽 is taken as the average of �̂�(𝑋(𝑘)): 

�̂� =
1

𝑚
∑ �̂�(𝑋(𝑘))

𝑚

𝑘=1

. 

Zang and Steele state that this estimator is based entirely on the information that is provided by 

the semi-parametric structure which makes the estimate more efficient. 
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They also indicate that though the base-line hazard is viewed as a nuisance parameter, it can be 

estimated using a method such as Breslow’s estimator (Breslow, 1972, 1974) after an estimation 

of 𝛽 and 𝑓 have been obtained.  

Using Breslow’s estimator, the estimate of the base-line hazard function ℎ0(. ) at time 𝑡(𝑙), 𝑙 =

1,… , 𝐿  is given by: 

ℎ̂0(𝑡(𝑙)) = [∑ 𝑒𝑍𝑘�̂�+�̂�(𝑋𝑘)

𝑘∈𝑅𝑙

]

−1

. 

By smoothing ℎ̂0(𝑡(𝑙)) against 𝑡(𝑙) i.e. by viewing (𝑡(𝑙), ℎ̂0(𝑡(𝑙))) , 𝑙 = 1,… , 𝐿, as a sample from the 

model: 

𝑦 = ℎ0(𝑡) + 𝜀, 

and making use of the local linear technique, it follows that the estimator for ℎ̂0(𝑡)  can be 

obtained by: 

ℎ̂0(𝑡) = (1,0)(𝐓TW𝐓)−1𝐓TW�̂�0, 

where 

𝐓 = (

1 𝑡(1) − 𝑡

⋮ ⋮
1 𝑡(𝐿) − 𝑡

) 

�̂�𝟎 = (

ℎ̂0(𝑡(1)) 

⋮
ℎ̂0(𝑡(𝐿)) 

), 

and 

𝑤 = 𝑑𝑖𝑎𝑔{𝐾ℎ(𝑡(1) − 𝑡),… , 𝐾ℎ(𝑡(𝐿) − 𝑡)}. 

 

The natural estimator for the cumulative base-line hazard 

Λ0(t) = ∫ ℎ0(𝑢)
t

0
𝑑𝑢,   

is  
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Λ̂0(t) = ∫ ℎ̂0(𝑢)
t

0

𝑑𝑢. 

In practice, the approximation  

Λ̂0(t) = ∑ ℎ̂0(𝑡(𝑙))𝑡(𝑙)≤𝑡 ,  

is used. 
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6. CHAPTER 6 –An Application of Additive Modelling for Survival Times 

 

6.1. Introduction 

 

In this section, the classic and additive Proportional Hazards models will be applied to 

Telecommunications / Network data. The results will be interpreted and analysed for insights and 

to determine if tools can be developed to aid in customer lifetime modelling. 

The aim of the analysis is to study the survival of postpaid customers – which consist of Top Up 

and Contract packages. The relationship with the customer ends when the customer disconnects 

from the network. 

Looking only at data for 2013, the following figures have been observed for a major 

Telecommunications network in South Africa (referred to as “The Network”). 

Every month sees on average 30 000 subscribers who disconnect from and effectively end their 

relationship with the Network. The average value of a postpaid subscriber is R279 per month. This 

translates to a financial loss of approximately R8.5 million per month, not taking into consideration 

the future value of the subscriber. 

Table 9 Number of Disconnected Subscribers per Month 

Month Number of Disconnects Value 

Jan-13 30429  R      8 459 262.00  

Feb-13 24803  R      6 895 234.00  

Mar-13 32876  R      9 139 528.00  

Apr-13 32151  R      8 937 978.00  

May-13 35147  R      9 770 866.00  

Jun-13 32088  R      8 920 464.00  

Jul-13 36529  R    10 155 062.00  

Aug-13 36313  R    10 095 014.00  

Sep-13 39926  R    11 099 428.00  

Oct-13 38008  R    10 566 224.00  

Nov-13 23848  R      6 629 744.00  

Dec-13 19115  R      5 313 970.00  

   

Total 381233  R  105 982 774.00  
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The aim of the network is to mine the subscriber usage data and develop insights, 

recommendations and potentially predictive tools that will aid the network in securing a future 

relationship with the subscriber.  

The value is also evident from the above table in the financial losses that the network could 

possibly prevent. 

It is expected that the Proportional Hazards models, when applied to usage data will yield insights 

in behaviour that will be of value to the Network. 

 

6.2. Data preparation 

 

6.2.1. Data received 

 

The original dataset received for the analysis contained 6 865 877 records. The unique identifier 

is subs_id000 and there were 3 701 754 unique values of this field.  

The dataset can be divided into two parts namely a performance component and a movement 

component. The performance component contains behavioral historic performance of the 

subscribers, specifically: 

 Val – the monthly value 

 Voice – the monthly value for voice 

 SMS – the monthly value for SMS 

 Data – the monthly value for data 

 Duration – the monthly call duration 

 SMS_events – the total number of SMS events in the month 

 MB – the total megabytes used for data in the month 

The above characteristics are available for October 2012 up to and including September 2013. 

The dataset also contains static fields such as:  

 price plan 

 payment method 
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 service provider  

 business consumer class  

 sales region  

 sales channel  

 sales town 

The rows of the performance component are sometimes duplicated if a subscriber had more than 

one movement in the time window October 2012 – September 2013. 

Movements include –  

 Connections 

 Port-ins 

 Conversions 

 Migrations 

 Disconnections 

 Port-outs 

 SP-changes 

For every movement, there is detail on the price plan, payment method, service provider to and 

from as well as the movement date. 

Since it is possible for a subscriber to have multiple movements, the joining of the movements 

component to the performance component caused rows in performance to be duplicated – this is 

the reason that there are fewer unique sub_id000 than total rows in the table. 

 

6.2.2. Data Manipulation Steps 

 

6.2.2.1. Introduction 

 

The below data manipulation steps describe how the original data received was analysed and 

manipulated to arrive at a dataset that: 

 Displays Postpaid Customers who were active on the network as at 1 January 2013 and 

that were, 
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 At risk of disconnecting from the network to a Top Up package in the analysis window of 

1 January 2013 – December 2013 

 

6.2.2.2. Steps 

 

The performance component was isolated from the original dataset. Rows were deduplicated on 

subs_id000 – in total 3 164 123 rows deleted from 6 865 877 so that the new table displays 

performance with 113 variables for 3 701 754 subscribers. 

The movements component was isolated from the original dataset and since the aim of the 

analysis has only subscribers who disconnected, the movement table was not required. 

The physical date of disconnection was available and was used to create the fields: 

 BGI – which is binary with 0 when a subscriber has disconnected and 1 when a subscriber 

is still active on the network 

 The customer lifetime  

The following characteristics were constructed for analysis and inclusion in the model: 

 Tenure in months – the total tenure of the customer as at 1 January 2013 

 Time to upgrade – the number of months until the subscriber can upgrade from 1 January 

2013 

 Usage Characteristics: 

o Age – then subscriber age in years as at 1 January 2013 

o ave_val as the average value for October 2012 to December 2012  

o ave_voice as the voice value for October 2012 to December 2012 

o ave_sms as the average SMS value for October 2012 to December 2012  

o ave_data as the average data for October 2012 to December 2012  

o ave_dur as the average duration for October 2012 to December 2012 

o ave_smsevents as the average SMS events for October 2012 to December 2012 

o ave_mb as the average megabytes for October 2012 to December 2012 

For the above usage characteristics, missing values were recoded to zero. 
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 Lifetime: 

o Lifetime in days from 1 January 2013 to disconnection date or 15 December 2013 

if no movement occurred 

Two records with shifted values were removed. 

Subscribers who connected onto the network after 1 January 2013 were also removed – there 

were 46 757 such subscribers. 

Subscribers who disconnected from the network before 1 January 2013 were excluded – there 

were 394 475 such subscribers. 

The final working dataset had 3 260 520 rows. 

 

6.2.3. Exploratory Analysis 

 

6.2.3.1. Introduction 

 

Crowley, Leblanc, Gentleman and Salmon (1995) in their article discuss several exploratory 

methods that can be used when conducting a survival analysis. This is because despite a lot of 

research in the field of survival analytics, a lot of the practice and application still retains a “black 

box” flavour.  

Crowley, Leblanc, Gentleman and Salmon introduce several tools that can be used as exploratory 

tools to get started with a survival analysis. These include Box plots, running median plots and 

non-parametric estimation of the Cox regression function. 

Two aspects of survival analysis are responsible for the lack of use of exploratory methods in a 

survival analysis: 

1. Censoring – for some individuals only partial information will be available 

2. The Cox Proportional Hazards Model does not lend itself easily to visual 

representations on displays of data i.e. in a linear regression, one can easily plot the 

dependent variable against the independent variable to gain an understanding of the 

nature of the relationship between the two variables. 
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The purpose of the methods introduced is to describe the relationship between response and 

covariate – in effect using the data to derive some idea of the relationship that exists as opposed 

to test hypothesis that certain relationships hold. 

For this practical, some of these methods will be used and is described in this section. 

 

6.2.3.2. Exploratory data analysis 

 

The following independent variables are considered in the survival analysis: 

 Tenure in months  

 Time to upgrade  

 Age ave_val  

 ave_voice  

 ave_sms  

 ave_data  

 ave_dur  

 ave_smsevents  

 ave_mb  

 

Dependent variables: 

 Survival time – the length in days from 1 January 2013  

 BGI – a binary variable to indicate whether the disconnected or remained active in the 

time analysis time window. 
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Disconnect distribution 

The distribution of disconnects is displayed below: 

 

Table 10 Number of Disconnected Subscribers per Month 

Month Number of 
Disconnects 

Jan-13 30429 

Feb-13 24803 

Mar-13 32876 

Apr-13 32151 

May-13 35147 

Jun-13 32088 

Jul-13 36529 

Aug-13 36313 

Sep-13 39926 

Oct-13 38008 

Nov-13 23848 

Dec-13 19115 

  

Total 381233 

 

Distribution Analysis 

Summary statistics were created for the independent variables to gain insight into their 

distributions: 

Table 11 Summary Statistics of Independent Variables 

Variable Mean Std Dev N Miss Lower 
Quartile 

Median Upper 
Quartile 

ave_val 278.4399 649.7297 0 8.0104 123.6 314.5565 

ave_voice 217.9485 474.356 0 0 87.25333 256.555 

ave_sms 26.75826 136.6045 0 0 5.0502 26.4898 

ave_data 33.73314 354.7175 0 0 0 0.038 

ave_dur 13655.12 27808.06 0 1058.33 5822.33 14817.33 

ave_smsevents 67.0828 190.5567 0 0.666667 17.33333 68.66667 

ave_mb 58984.54 541807.7 0 0 0 127.498 

AGE 44.49936 12.0853 77 35 43 52 

time_to_upgrade_months 18.88122 16.71181 370157 15 22 29 

Tenure_months 77.89524 53.59374 0 31 67 113 
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The average value of a subscriber is R278, with voice R217 for voice, R26 for SMS and R33 for data. 

Average duration is 13655 seconds with 67 SMS sent and 58 984 megabytes of data consumed.  

The postpaid subscriber has an average tenure of 78 months and is 44 years old. The 77 missing 

values for AGE were replaced with the average value of this characteristic so that their records will 

not be excluded from the regression. 

The positive values of time to upgrade in months were binarised to also be included in the model 

as it does not make intuitive sense to impute the missing values with the average value.  

 

Correlation: 

The Pearson Correlation was calculated for the independent and dependent variables. Notable 

pairs of variables to be mindful of include: 

 Ave Val and Ave Data 

 Ave Val and Ave Dur 

 Ave Voice and Ave Duration 

 Ave SMS and Ave SMS Events 

 Ave data and Ave MB 

Table 12 Correlation of Independent Variables 

 

The pairs highlighted above make intuitive sense as for example, average data usage in revenue 

and physical megabytes consumed will be related. The same holds for Voice and Duration. Since 

the packages are mostly for telephony and data, value and average duration and data will have a 

relationship. 

Tenure 

months

time to 

upgrade 

months

ave val ave voice ave sms ave data ave dur
ave 

smsevents
ave mb AGE BGI lifetime

Tenure months 1 0.11508 0.09258 0.08855 0.05748 0.02903 0.18266 0.14136 0.04288 0.23051 0.17889 0.15294

time to upgrade months 0.11508 1 0.10133 0.10081 0.05989 0.02979 0.12476 0.10352 0.03198 -0.02111 0.1489 0.14407

ave val 0.09258 0.10133 1 0.80821 0.36211 0.61143 0.65961 0.36256 0.33851 -0.00158 0.01954 -0.0009

ave voice 0.08855 0.10081 0.80821 1 0.17335 0.07635 0.74353 0.27748 0.05643 0.00066 0.01666 -0.00465

ave sms 0.05748 0.05989 0.36211 0.17335 1 0.04635 0.1678 0.5037 0.0331 0.00656 0.02476 0.01743

ave data 0.02903 0.02979 0.61143 0.07635 0.04635 1 0.14928 0.09905 0.53183 -0.0063 0.00398 -0.00213

ave dur 0.18266 0.12476 0.65961 0.74353 0.1678 0.14928 1 0.39028 0.15836 0.01842 0.04355 0.0222

ave smsevents 0.14136 0.10352 0.36256 0.27748 0.5037 0.09905 0.39028 1 0.10666 0.01332 0.0572 0.04361

ave mb 0.04288 0.03198 0.33851 0.05643 0.0331 0.53183 0.15836 0.10666 1 -0.01529 0.01097 0.00835

AGE 0.23051 -0.02111 -0.00158 0.00066 0.00656 -0.0063 0.01842 0.01332 -0.01529 1 0.10405 0.09565

BGI 0.17889 0.1489 0.01954 0.01666 0.02476 0.00398 0.04355 0.0572 0.01097 0.10405 1 0.85739

lifetime 0.15294 0.14407 -0.0009 -0.00465 0.01743 -0.00213 0.0222 0.04361 0.00835 0.09565 0.85739 1
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Dependence analysis: 

The Independent variables were analysed to determine whether there was an upfront difference 

in the distributions of the independent variables with regards to subscriber who had and who did 

not have a movement in the time window January 2013 – December 2013. 

The independent variables were reformatted into intervals based on the quartiles and the 

disconnect percentage in each interval calculated. This is done to understand how disconnection 

may be related to the independent variables. The results are displayed graphically below. 

From the below graphs, it appears that subscribers who disconnect will have: 

 a shorter tenure on the network 

 a shorter time to upgrade 

 Lower value 

 The same voice, data, SMS and data usage 

 a younger age 

 

 

Figure 6 Disconnection and Size Distribution for Average Value 
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Figure 7  Disconnection and Size Distribution for Average Voice 

 

Figure 8  Disconnection and Size Distribution for Average Data 
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Figure 9  Disconnection and Size Distribution for Average Duration 

 

Figure 10  Disconnection and Size Distribution for Average SMS Events 
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Figure 11  Disconnection and Size Distribution for Average Megabytes 

For the usage characteristics; average value, average voice, average data, average duration, 

average SMS events and average megabytes, low values are associated with a higher 

disconnection rate that generally decreases as the value of the characteristic increases. This makes 

intuitive sense as one expects subscribers who are more ‘active’ to have a lower likelihood of 

disconnecting. 

 

Figure 12  Disconnection and Size Distribution for Age 

Looking at subscriber age, younger subscribers have a higher disconnection percentage than older 

subscribers – this also makes intuitive sense as one expects younger subscribers to be more 

‘volatile’ and they may be less loyal towards the brand. 
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Figure 13  Disconnection and Size Distribution for Time to Upgrade 

When analysing the time to upgrade a negative value (upgrade date is in the past and overdue) 

has a low disconnection percentage – this can be the case of subscribers who are loyal to the brand 

and will upgrade when they need to.  

Upgrading is also an opportunity for a subscriber to terminate their relationship with the network 

and therefore a decreasing rate of disconnect percentage as time to upgrade increases makes 

sense – the closer the upgrade date to today, the higher the chance that subscribers are looking 

to other deals and may not stay with the network. 

 

Figure 14 Disconnection and Size Distribution for Tenure 
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Lastly, the customer tenure shows that the longer a subscriber has been with the Network, the 

higher the chance that they will remain with the network.  

 

6.2.4. Classic Proportional Hazards Modelling 

 

6.2.4.1. Introduction 

 

The Cox proportional Hazards model was fitted to the data and the results discussed in this section.  

A Stepwise regression was run to determine which variables would be predictive in determining 

the hazard of disconnecting from the network.  

Thereafter, results were analysed to determine whether they make intuitive and business sense, 

are interpretable and valid. 

 

6.2.4.2. Modelling Strategy and Results 

 

A Stepwise regression on the independent variable set yielded the following results – all variables 

are available to be selected and entered into the model. As mentioned earlier, the time to upgrade 

characteristics had been transformed into dummy variables and another indicator variable, 

payment_method_dummy to indicate whether a subscriber is a “Top Up” or a “Contract” 

subscriber was created. At onset, it is believed that the behavioural characteristics between these 

two levels of payment method will be different.  
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The selection results from the stepwise are given in the table below: 

Table 13 Stepwise Selection 

Summary of Stepwise Selection 

Step Effect DF Number Score Wald Pr > 
ChiSq 

Effect 

Entered Removed In Chi-
Square 

Chi-
Square 

Label 

1 upgrade_months_02  1 1 240739  <.0001 [0,8] (-5.42R,6.25%) 

2 upgrade_months_05  1 2 41350.4  <.0001 (28,33] 
(7.14R,15.67%) 

3 AGE  1 3 41304.8  <.0001   

4 upgrade_months_06  1 4 31248.7  <.0001 (33, HIGH] 
(58.8R,7.82%) 

5 upgrade_months_03  1 5 14742.6  <.0001 (8,22] (1.3R,32.74%) 

6 upgrade_months_04  1 6 36119.3  <.0001 (22,28] 
(1.33R,19.57%) 

7 upgrade_months_01  1 7 3546.9  <.0001 [-998,-1] (-
1.43R,6.49%) 

8 ave_smsevents  1 8 2762.85  <.0001   

9 ave_val  1 9 3942.25  <.0001   

10 payment_method_dummy  1 10 1173.24  <.0001   

11 ave_data  1 11 1042.61  <.0001   

12 ave_sms   1 12 148.977   <.0001   

 

The time to upgrade dummy variables were selected in the first two steps. After selecting Age, all 

of the remaining time to upgrade levels were selected. Of the usage characteristics, only average 

sms events, value, data and SMS made it into the model. Finally, the payment method indicator is 

also featured. 

The time until a subscriber upgrades makes intuitive sense as many subscribers have the 

opportunity to change to another deal very easily.  

Age also makes intuitive sense as the longer a older subscriber exhibit lower disconnection rates 

than younger, more ‘volatile’ subscribers.  

The Maximum Likelihood Estimates for the above model are given below: 
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Table 14 MLE for Stepwise Selection 

Analysis of Maximum Likelihood Estimates 

Parameter DF Parameter Standard Chi-Square Pr > ChiSq Hazard Label 

Estimate Error Ratio 

AGE 1 -0.02703 0.000153 31117.5 <.0001 0.973   

ave_val 1 0.0000832 1.18E-06 4943.2 <.0001 1   

ave_sms 1 0.0000343 4.79E-06 51.3272 <.0001 1   

ave_data 1 -0.0000429 1.94E-06 486.556 <.0001 1   

ave_smsevents 1 -0.0015 2.21E-05 4645.29 <.0001 0.998   

payment_method_dummy 1 -0.11803 0.00352 1126.76 <.0001 0.889   

upgrade_months_01 1 -0.32467 0.00676 2305.98 <.0001 0.723 [-998,-1] (-1.43R,6.49%) 

upgrade_months_02 1 0.80643 0.00482 28013.1 <.0001 2.24 [0,8] (-5.42R,6.25%) 

upgrade_months_03 1 -0.92395 0.00466 39276.7 <.0001 0.397 (8,22] (1.3R,32.74%) 

upgrade_months_04 1 -0.96517 0.00541 31848.9 <.0001 0.381 (22,28] (1.33R,19.57%) 

upgrade_months_05 1 -2.63705 0.01098 57703.7 <.0001 0.072 (28,33] (7.14R,15.67%) 

upgrade_months_06 1 -4.63383 0.04197 12191.3 <.0001 0.01 (33, HIGH] (58.8R,7.82%) 

 

The parameter estimates are all very small with small associated standard errors for the usage 

characteristics. Their Hazard ratios are also close to one.  

Looking at the time to upgrade, an interesting trend in parameter estimates is noted: 

For a negative time to upgrade the estimate is negative – and then negative again and decreasing 

for values of 8 and higher. 

The -2LogL of the model is 10841247. 10792750 

The negative estimates of the parameter indicate that this parameter will decrease the hazard, 

whereas a positive will increase the hazard. Looking at the time to upgrade for the interval 0 to 8 

months, the estimate is 0.80643, meaning that the hazard will be much higher for these values of 

time to upgrade than for the remainder of the interval. 

This is visually represented below by the survival function which is nearly flat for the twelve month 

analysis window. 
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Figure 15 Survival Function for Disconnections 

 

The reference values of the independent variables are given below – these are the average values 

of each variable and are used in the baseline hazard to compare against. 

Table 15 Values for Reference Setting 

AGE 44.4994 

ave_val 278.44 

ave_sms 26.7583 

ave_data 33.7331 

payment_method_dummy 0.46896 

upgrade_months_recoded_01 0.06602 

upgrade_months_recoded_02 0.06249 

upgrade_months_recoded_03 0.32726 

upgrade_months_recoded_04 0.19568 

upgrade_months_recoded_05 0.15679 

upgrade_months_recoded_06 0.07824 
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6.2.5. Proportional Hazards Modelling using Cubic Spline functions 

 

6.2.5.1. Introduction 

 

In the previous sections, the Classic / Popular Cox proportional hazards model was fitted to the 

data and yielded useful results. 

In this section, some transformations of the independent variable set using cubic spline functions 

will be explored and discussed. 

 

6.2.5.2. Background 

 

Heinzl and Kaider (1997) in their article “Gaining more flexibility in the Cox proportional hazards 

regression models with cubic splice functions” discuss the use of cubic spline functions in the Cox 

regression model as well as how to apply such transformations using SAS.  

The use of cubic splines makes the Cox regression model more flexible and is easy to apply and 

interpret. With the use of other smoothers such as running medians, the usefulness of developing 

a predictive tool would have been restricted, however in this case a predictive tool can be 

developed using procedures and software that are available to most organisations. 

Cubic spline functions were used by Durrleman and Simon (1989) to investigate and detect 

possible non-linear independent variable and lifetime relationships in the Cox model. They can 

also be used to detect possible time dependence in the covariates. 

Despite their appeal and interesting features in the analysis and exploration of data, the cubic 

splines have not enjoyed a lot of attention because of their rather bulky formulas.  

Heinzl and Kaider provide a useful SAS programming macro that: 

 Uses “put” statements to generate SAS code to apply cubic splines in the Cox model (PROC 

PHREG) 

 Prepares the results for plotting (PROC IML) 
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 Plots the results (PROC GPLOT) 

The user obtains an executable SAS program. 

 

6.2.5.3. The RCS Macro 

 

The purpose of the RCS macro is to overcome the hurdle of having to code the large mathematical 

expressions associated with cubic splines and to produce a program that will contain the formulas 

and that can be edited by the user thereafter in line with their requirements.   

The Macro can be used to test or analyse: 

1. The non-linear functional relationships of continuous independent variables 

2. Interactions of covariates with time 

3. Interactions of binary time-dependent independent variables over time 

The Macro requires the following inputs to execute: 

 TITLE – The title of the analysis 

 DATA- The name of the SAS data set that will be used in the analysis 

 DIRDATA – The location of the input directory where the dataset can be found 

 PROGRAM – The name of the SAS file that will be generated from the macro that will 

contain the PHREG, IML and GPLOT statements to run the analysis 

 TIME – The name of the variable associated with survival time 

 STATUS – The name of the variable that indicates whether the observation is censored or 

not. Censored observations are coded as zero and failures otherwise 

 COV1 – COV20 – The names of up to 20 independent variables to may be included in the 

analysis. These variables need to be specified in consecutive order 

 WHAT1 – WHAT20 – These statements tell the RCS macro what to do with the 

corresponding covariate i.e.  

o WHATn = 0 – to model a non-linear effect with cubic splines 

o WHATn = 1 – to assess an interaction of a covariate with time 

o WHATn = 2 – to model the interaction of a binary time dependent variable over 

time 

o Otherwise – to model the independent variable as a normal variable in the model 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



108 
 

 KNOTS1 – KNOTS20 – the location of knots if the nth covariate is to be modelled using 

splines. The number of knots will look for the associated action to execute in the 

corresponding WHATn statement 

 Graph – to produce graphics for the relative hazard ratio function or the log relative hazard 

function or both 

 TIMEUNIT – the time unit label of the X-axis 

 

6.2.5.4. Modelling Strategy and Results 

 

From the previous section, the following variables were selected from the stepwise regression for 

inclusion in the model: 

Continuous variables: 

 Age 

 Ave_val 

 Ave_sms 

 Ave_data 

 Ave_smsevents 

 

Dummy / indicator variables: 

 payment_method dummy 

 Upgrade_months_recoded_01 (for time to upgrade -998 – 0) 

 Upgrade_months_recoded_02 (for time to upgrade 0 - 8) 

 Upgrade_months_recoded_03 (for time to upgrade 9 - 22) 

 Upgrade_months_recoded_04 (for time to upgrade 23 - 28) 

 Upgrade_months_recoded_05 (for time to upgrade 28 - 33) 

 Upgrade_months_recoded_06 (for time to upgrade 34 or more) 

 

Using the RCS macro, the continuous variables can be tested for non-linearity i.e. testing the null 

hypothesis that the contribution of the variable into the model can be modeled using a linear 
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effect, and the variables can be transformed and added to the model as splines. The contribution 

and significance of the splines can also be tested. 

The linear variable of time to upgrade will also be tested with splines and the dummy variables 

removed to see if the model fit can be improved. 

Heinzl and Kaider advise that knots can be placed using the percentiles of the distribution of the 

independent variable. Most common strategies include placing knots at these percentiles: 

 {5,50,95} 

 {5,25,75,95} 

 {5,25,50,75,95} 

 

for 3,4, or 5 knots. Empirical evidence suggests that 3 – 5 knots normally suffice and that knots 

must be placed at the quantiles, near but not at the extremes and roughly uniform over the 

quantiles. 

The percentiles for the independent variables were calculated and are displayed in the table below: 

Table 16 Percentiles of Continuous Variables 

 Percentile 

Variable 5th  25th  50th  75th  95th  

AGE 26 35 43 52 66 

ave_val 0 8.01 123.6 314.56 1025.22 

ave_sms 0 0 5.05 26.49 114.65 

ave_data 0 0 0 0.038 92.95 

ave_smsevents 0 0.67 17.33 68.67 281.33 

 

From the above table, it appears that AGE can be modeled using 5 knots, ave_val, 

ave_sms,ave_sms_events using 3 knots and ave_data using 2 knots.  

For ave_data, because there are only two knots due to the skewness of the distribution, the linear 

effect of the model will be used instead. 

The results of applying this strategy are displayed and presented below. 

The value of -2logL is 10792750 for this model – lower than what is observed for the classic model. 
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Table 17 MLE for Cox Model with Cubic Splines 

Analysis of Maximum Likelihood Estimates 

Parameter DF Parameter Standard Chi-
Square 

Pr > ChiSq Hazard 95% 
Hazard 
Ratio 
Confidence 

  Label 

AGE 1 -0.0433 0.000813 2837.6974 <.0001 0.958 0.956 0.96  

Age_Spline__1_1 1 -0.0000602 3.93E-06 235.0776 <.0001 1 1 1  

Age_Spline__1_2 1 0.0003673 1.28E-05 828.705 <.0001 1 1 1  

Age_Spline__1_3 1 -0.0006016 1.52E-05 1566.0381 <.0001 0.999 0.999 1  

ave_val 1 0.00147 3.95E-05 1385.6991 <.0001 1.001 1.001 1  

Ave_val_spline__2_1 1 -1.30E-08 3.73E-10 1225.0306 <.0001 1 1 1  

ave_sms 1 -0.00247 0.00128 3.7301 0.0534 0.998 0.995 1  

Ave_sms_spline__3_1 1 0.0000217 4.78E-06 20.6804 <.0001 1 1 1  

ave_data 1 -0.0000448 1.78E-06 632.8868 <.0001 1 1 1  

Ave_data_spline__5_1 1 -1.86E-06 2.26E-07 67.8014 <.0001 1 1 1  

ave_smsevents 1 -0.16503 0.00183 8122.7437 <.0001 0.848 0.845 0.85  

ave_smsevents_spine__6_1 1 0.00485 6.24E-05 6046.0397 <.0001 1.005 1.005 1.01  

ave_smsevents_spline__6_2 1 -0.00505 0.000065 6028.9947 <.0001 0.995 0.995 1  

ave_smsevents_spline__6_3 1 0.0001977 2.67E-06 5483.5057 <.0001 1 1 1  

payment_method_dummy 1 -0.15496 0.00369 1765.7674 <.0001 0.856 0.85 0.86  

upgrade_months_01 1 -0.46158 0.00685 4540.8756 <.0001 0.63 0.622 0.64 [-998,-1] (-
1.43R,6.45%) 

upgrade_months_02 1 0.80872 0.00485 27812.773 <.0001 2.245 2.224 2.27 [0,8] (-
5.42R,6.25%) 

upgrade_months_03 1 -0.76186 0.00478 25400.361 <.0001 0.467 0.462 0.47 (8,22] 
(1.3R,32.74%) 

upgrade_months_04 1 -0.92024 0.00544 28649.135 <.0001 0.398 0.394 0.4 (22,28] 
(1.33R,19.57%) 

upgrade_months_05 1 -2.5972 0.01099 55843.218 <.0001 0.074 0.073 0.08 (28,33] 
(7.14R,15.67%) 

upgrade_months_06 1 -4.44377 0.04202 11182.546 <.0001 0.012 0.011 0.01 (33, HIGH] 
(58.8R,7.82%) 

 

The Maximum Likelihood estimates are given in the above table. For the characteristic AGE, the 

variables Age_spline_1_1 to Age_spline_1_3 are the associated cubic splines, as are 

ave_val_spline_2_1 for ave_val, ave_sms_spline_3_1 for ave_sms and ave_data_spline_5_1 for 

average data and ave_smsevents_6_1 to ave_smsevents_6_3 for average_smsevents. 

The linear effect for ave_sms is not significant. 

The log hazard ratio plotted against each of the continuous variables that have been transformed 

are given below.  
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Figure 16 Log Hazard Ratio for Age 

Looking at the log hazard ratio for Age, a distinct non-linear trend can be observed. The log hazard 

ratios are decreasing up to Age = 50 where after it is flat and increases again and then again 

decreases after about 53 and dipping below zero at 58. This indicates that though the hazard 

decreases with Age, it only really decreases the hazard function after age 58. 

 

 

Figure 17 Log Hazard Ratio for Average Value 

When analysing the average value of a consumer against the log hazard ratio show a weak linear 

trend that can be better approximated by the non-linear functions. This is not a trend one expects 

to see as higher values are associated with a higher log hazard rates. However, this is balanced by 

the other effects in the model which show a more intuitive trend. 
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Figure 18 Log Hazard Ratio for Average SMS 

The higher the value of average SMS, the higher the log hazard ratio - the standard error bands 

also fan out close to zero and after 13 for this characteristic. Again, as with average value – this 

trend in the average value generated from SMS is not what one expects, however since this 

characteristic is correlated to average value (is one of the constituting factors of average value), 

the trend is expected. 

 

 

Figure 19 Log Hazard Ratio for Average Data 

The log-hazard ratio for the average value from data for a subscriber shows a distinct (almost linear) 

decreasing trend – the higher one’s data value, the lower the log hazard ratio. In general the log 

hazard rations of this variable are very small. The observed trend makes intuitive sense, as it shows 

that the higher data values bring down the hazard of a subscriber disconnecting from the network. 

As a result, average data is modelled linearly. 
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Figure 20 Log Hazard Ratio for Average SMS 

As in the case of average data, the average sms value for a subscriber also shows that higher sms 

values will be associated with lower log hazard ratios. 

 

 

Figure 21 Log Hazard Ratio for Average SMS Events 

The physical number of SMS’s that are sent – the average sms events shows a clear non-linear 

trend that is sharply decreasing for low values, then increases and decreases gradually again as 

the values of the characteristic grows. 
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The above trend indicates that higher values of usage will decrease the hazard of leaving the 

network, but only gradually after a certain level. The breakpoint at about 16 average events is a 

clear differentiator of behavior. 

 

6.2.5.5. Final Model 

 

Taking the results from the previous sections into consideration, a stepwise procedure is 

performed on the variables as well as their transformed counterparts to arrive at a final model to 

describe the data and that can be used as a predictive tool. All effects were reselected, except for 

_6_2 – the second spline function of average sms events.The maximum likelihood estimates of the 

model are given in the table below: 

Table 18 MLE of Stepwise Regression 

Analysis of Maximum Likelihood Estimates 

Parameter DF Parameter Standard Chi-
Square 

Pr > ChiSq Hazard 95% 
Hazard 
Ratio 
Confidence 

  Label 

AGE 1 -0.04318 0.000813 2822.6488 <.0001 0.958 0.956 0.96  

Age_Spline__1_1 1 -0.000064 3.93E-06 265.0235 <.0001 1 1 1  

Age_Spline__1_2 1 0.0003815 1.28E-05 894.1581 <.0001 1 1 1  

Age_Spline__1_3 1 -0.0006199 1.52E-05 1661.3997 <.0001 0.999 0.999 1  

ave_val 1 0.0004333 3.74E-05 134.0574 <.0001 1 1 1  

Ave_val_spline__2_1 1 -3.26E-09 3.53E-10 85.3796 <.0001 1 1 1  

ave_sms 1 -0.05286 0.00109 2359.1949 <.0001 0.949 0.946 0.95  

Ave_sms_spline__3_1 1 0.0002286 4.00E-06 3271.3998 <.0001 1 1 1  

ave_data 1 -0.0000463 1.73E-06 716.9735 <.0001 1 1 1  

Ave_data_spline__5_1 1 -0.0000115 1.95E-07 3460.9395 <.0001 1 1 1  

ave_smsevents 1 -0.02655 0.000378 4943.4386 <.0001 0.974 0.973 0.98  

ave_smsevents_spline__6_1 1 7.03E-06 1.31E-07 2891.4279 <.0001 1 1 1  

ave_smsevents_spline__6_3 1 -9.37E-06 1.77E-07 2787.8717 <.0001 1 1 1  

payment_method_dummy 1 -0.16299 0.00369 1946.7637 <.0001 0.85 0.843 0.86  

upgrade_months_01 1 -0.42283 0.00683 3828.5374 <.0001 0.655 0.646 0.66 [-998,-1] (-
1.43R,6.49%) 

upgrade_months_02 1 0.82051 0.00485 28675.163 <.0001 2.272 2.25 2.29 [0,8] (-
5.42R,6.25%) 

upgrade_months_03 1 -0.77168 0.00477 26132.265 <.0001 0.462 0.458 0.47 (8,22] 
(1.3R,32.74%) 

upgrade_months_04 1 -0.91372 0.00544 28219.64 <.0001 0.401 0.397 0.41 (22,28] 
(1.33R,19.57%) 

upgrade_months_05 1 -2.58985 0.01099 55518.294 <.0001 0.075 0.073 0.08 (28,33] 
(7.14R,15.67%) 
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upgrade_months_06 1 -4.45168 0.04205 11205.537 <.0001 0.012 0.011 0.01 (33, HIGH] 
(58.8R,7.82%) 

 

The reference set of covariates for is given in the following table. 

Table 19 Reference set of Covariates for Plotting 

Reference Set of Covariates for Plotting 

AGE 44.49936 

ave_val 278.4399 

ave_sms 26.75826 

ave_data 33.73314 

ave_smsevents 67.0828 

payment_method_dummy 0.468962 

upgrade_months_01 0.066021 

upgrade_months_02 0.062489 

upgrade_months_03 0.327256 

upgrade_months_04 0.19568 

upgrade_months_05 0.156788 

upgrade_months_06 0.07824 

Age_Spline__1_1 13659 

Age_Spline__1_2 4669.247 

Age_Spline__1_3 1253.45 

Ave_val_spline__2_1 20451931 

Ave_sms_spline__3_1 8667.562 

Ave_data_spline__5_1 55544 

ave_smsevents_spline__6_1 1840393 

ave_smsevents_spline__6_3 1236709 

 

The SAS code used to transform the cubic splines and to estimate the final parameters is given in 

the appendix. Using the code and the parameter estimates above, the risk score can be calculated 

for each individual and then the baseline hazard over each time period that has been observed in 

the dataset. 
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6.2.5.6. Discussion 

 

The results from the previous section show that a better model fit can be obtained when using 

non-linear effects in the Cox-proportional hazards model. 

Though the model was fitted at a global level, the results displayed show interesting patterns of 

customer behavior that can help the Network to better understand its customers in terms of their 

behavior. 

The cubic splines that are utilized in the modelling strategy can easily be implemented using an 

automated decisioning system and the hazard ratios, and survival probabilities estimated at a 

subscriber level. 

The classic Cox Proportional Hazards model also shows a lot of value in terms of ease of 

implementation and use for the Network. Because of the ease of use of the cubic splines and the 

lift the model displayed when using these characteristics, it is advised that the cubic splines model 

be used when considering implementation. 
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7. Chapter 7 – Conclusion 

 

The classic Cox Proportional Hazards model can be used a tool to gain insight into customer 

behavior with regards to disconnecting from the Network.  

 

Both the classic model and well as the more generalised model using splines, are easy to use, to 

interpret and can be used to set a survival probability and a hazard ratio at subscriber level. These 

latter quantities are useful metrics that can be used to segment customers into a retention 

strategy i.e. customers that show a short expected lifetime / high hazard from disconnecting from 

the network can be campaigned and an appropriate incentive offered to convince the subscribers 

to remain with the Network. 

 

Given these quantities, the expected future lifetime per subscriber and per payment method can 

be calculated and used for budgetary purposes. As alluded to earlier, the targets of CVM 

departments are often related to disconnection percentages, and when combined with a likely to 

disconnect score, reasonable and stretch targets can be set and the executive strategies of the 

network applied accordingly. This makes these models and strategies incredibly powerful tools. 

 

Though both of the models are easy to use, especially given tools such as the RCS macro, the classic 

model remains the most widely known and easiest to understand. In terms of a modelling strategy, 

using indicator variables where a different hazard rate is expected will make the classic model 

easier to implement and to explain than the cubic splines model e.g. the time to upgrade for a 

subscriber. Where trends are known, dummy variables can be constructed to model these 

intervals and these will be easier to implement and to present to the business than a cubic spline 

function. 

 

However, since the proportional hazards model does not lend itself easily to visual representations 

when exploring the data, the cubic splines model does a better job of uncovering trends that might 

be hidden in the data. The splines can be specified without a lot of subjective input from the 

analyst and executed using most available software packages. 

 

The trends that are uncovered from the splines modelling can be used to suggest possible 

transformations of the independent variable set, just as in the case of GAM’s. 
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More importantly is the ease of use, and though many sophisticated techniques have been put 

forward to automatically detect trends and fit models, these models are in most cases very difficult 

to implement. Both the classic and Cox model using splines can be repeated and represents a fair 

blend of automatic detection and ease of use. 

 

The final models have been made available to the Network and a survival probability, baseline 

hazard and hazard rate supplied per subscriber. These metrics will be used to set budgets, and set 

strategies for retaining postpaid customers. These metrics were also calculated at store and 

regional level to understand if there are perhaps more prominent demographic factors that 

demand the Network’s attention e.g. infrastructure problems that may cause inadequate support 

of postpaid subscribers. 

 

Using these tools, the Network is armed with insight to input into better CVM strategies and in 

general a better understanding of its customers and how to ensure they remain with the network. 
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9. APPENDIX – Multiple Myelonoma Data Set 

 

1. Multiple Myelonoma  

 

The data in the table below, obtained from Krall, Uthoff and Hartley (1975) , relate to 48 patients aged 

between 50 and 80 years. Not all of the patients had died by the time the study was completed and 

so their survival time will be right censored.  

Censored times are coded with 0 being censored, and 1 not censored and the patient having died from 

multiple myelonoma.  

At the time of diagnosis, the values of a number of explanatory variables were recorded for each 

patient. These are 

 Age – the patient’s age in years 

 Gender – 1 = Male, 2 = Female 

 Bun – the levels of blood urea nitrogen 

 Ca – serum calcium 

 HB – Hemoglobin 

 PCells – Percentage of plasma cells in the bone marrow 

 Protein – an indicator variable to denote whether or not Bence-jones protein was present in 

the urine.  

 

Patient number Survival Time Status Age Sex Bun Ca HB Pcells Protein 

1 13 1 66 1 25 10 14.6 18 1 

2 52 0 66 1 13 11 12 100 0 

3 6 1 53 2 15 13 11.4 33 1 

4 40 1 69 1 10 10 10.2 30 1 

5 10 1 65 1 20 10 13.2 66 0 

6 7 0 57 2 12 8 9.9 45 0 

7 66 1 52 1 21 10 12.8 11 1 

8 10 0 60 1 41 9 14 70 1 

9 10 1 70 1 37 12 7.5 47 0 

10 14 1 70 1 40 11 10.6 27 0 
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11 16 1 68 1 39 10 11.2 41 0 

12 4 1 50 2 172 9 10.1 46 1 

13 65 1 59 1 28 9 6.6 66 0 

14 5 1 60 1 13 10 9.7 25 0 

15 11 0 66 2 25 9 8.8 23 0 

16 10 1 51 2 12 9 9.6 80 0 

17 15 0 55 1 14 9 13 8 0 

18 5 1 67 2 26 8 10.4 49 0 

19 76 0 60 1 12 12 14 9 0 

20 56 0 66 1 18 11 12.5 90 0 

21 88 1 63 1 21 9 14 42 1 

22 24 1 67 1 10 10 12.4 44 0 

23 51 1 60 2 10 10 10.1 45 1 

24 4 1 74 1 48 9 6.5 54 0 

25 40 0 72 1 57 9 12.8 28 1 

26 8 1 55 1 53 12 8.2 55 0 

27 18 1 51 1 12 15 14.4 100 0 

28 5 1 70 2 130 8 10.2 23 0 

29 16 1 53 1 17 9 10 28 0 

30 50 1 74 1 37 13 7.7 11 1 

31 40 1 70 2 14 9 5 22 0 

32 1 1 67 1 165 10 9.4 90 0 

33 36 1 63 1 40 9 11 16 1 

34 5 1 77 1 23 8 9 29 0 

35 10 1 61 1 13 10 14 19 0 

36 91 1 58 2 27 11 11 26 1 

37 18 0 69 2 21 10 10.8 33 0 

38 1 1 57 1 20 9 5.1 100 1 

39 18 0 59 2 21 10 13 100 0 

40 6 1 61 2 11 10 5.1 100 0 

41 1 1 75 1 56 12 11.3 18 0 

42 23 1 56 2 20 9 14.6 3 0 

43 15 1 62 2 21 10 8.8 5 0 

44 18 1 60 2 18 9 7.5 85 1 

45 12 0 71 2 46 9 4.9 62 0 

46 12 1 60 2 6 10 5.5 25 0 

47 19 1 65 2 28 8 7.5 8 0 

48 3 0 59 1 90 10 10.2 6 1 
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10. APPENDIX - SAS CODE 

 
 
LIBNAME __DATA  'C:\Users\xxx\Documents\xx\Studies\MSC\Network Survival Model\SAVE\';  
  
TITLE ' NETWORK DATASET ';  
  
PROC PHREG DATA=__DATA.Network_survival_model_rcs COVOUT OUTEST=__RCS; 
  
 MODEL LIFETIME*CENSOR1(0) =  AGE  Age_Spline__1_1  Age_Spline__1_2  Age_Spline__1_3  AVE_VAL  
 Ave_val_spline__2_1  AVE_SMS  Ave_sms_spline__3_1  AVE_DATA  AVE_SMS  Ave_dataAve_data__5_1  
AVE_SMSEVENTS  
 ave_smsevents__6_1  ave_smsevents__6_2  ave_smsevents__6_3  payment_method_dummy  
upgrade_months_recoded_01  
 upgrade_months_recoded_02  upgrade_months_recoded_03  
 upgrade_months_recoded_04  upgrade_months_recoded_05  
 upgrade_months_recoded_06  /RL;  
  
 ********** spline modelling of fixed covariate AGE;  
 ********** with 5 knots located at;  
 ********** 26 35 43 52 66;  
 Age_Spline__1_1=((AGE-26)**3)*(AGE>26)  
     -((AGE-52)**3)*(AGE>52)  
     *(66-26)/(66-52)  
     +((AGE-66)**3)*(AGE>66)  
     *(52-26)/(66-52);  
 Age_Spline__1_2=((AGE-35)**3)*(AGE>35)  
     -((AGE-52)**3)*(AGE>52)  
     *(66-35)/(66-52)  
     +((AGE-66)**3)*(AGE>66)  
     *(52-35)/(66-52);  
 Age_Spline__1_3=((AGE-43)**3)*(AGE>43)  
     -((AGE-52)**3)*(AGE>52)  
     *(66-43)/(66-52)  
     +((AGE-66)**3)*(AGE>66)  
     *(52-43)/(66-52);  
  
 ********** spline modelling of fixed covariate AVE_VAL;  
 ********** with 3 knots located at;  
 ********** 8.01 123.6 314.56;  
 Ave_val_spline__2_1=((AVE_VAL-8.01)**3)*(AVE_VAL>8.01)  
     -((AVE_VAL-123.6)**3)*(AVE_VAL>123.6)  
     *(314.56-8.01)/(314.56-123.6)  
     +((AVE_VAL-314.56)**3)*(AVE_VAL>314.56)  
     *(123.6-8.01)/(314.56-123.6);  
  
 ********** spline modelling of fixed covariate AVE_SMS;  
 ********** with 3 knots located at;  
 ********** 0    5.05    26.49;  
 Ave_sms_spline__3_1=((AVE_SMS-0)**3)*(AVE_SMS>0)  
     -((AVE_SMS-5.05)**3)*(AVE_SMS>5.05)  
     *(26.49-0)/(26.49-5.05)  
     +((AVE_SMS-26.49)**3)*(AVE_SMS>26.49)  
     *(5.05-0)/(26.49-5.05);  
  
 ********** linear modelling of fixed covariate AVE_DATA;  
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 ********** spline modelling of fixed covariate AVE_SMS;  
 ********** with 3 knots located at;  
 ********** 0.67 17.33 68.67;  
 Ave_data_spline__5_1=((AVE_SMS-0.67)**3)*(AVE_SMS>0.67)  
     -((AVE_SMS-17.33)**3)*(AVE_SMS>17.33)  
     *(68.67-0.67)/(68.67-17.33)  
     +((AVE_SMS-68.67)**3)*(AVE_SMS>68.67)  
     *(17.33-0.67)/(68.67-17.33);  
  
 ********** spline modelling of fixed covariate AVE_SMSEVENTS;  
 ********** with 5 knots located at;  
 ********** 0  0.67 17.33 68.67 281.33;  
 ave_smsevents_spline__6_1=((AVE_SMSEVENTS-0)**3)*(AVE_SMSEVENTS>0)  
     -((AVE_SMSEVENTS-68.67)**3)*(AVE_SMSEVENTS>68.67)  
     *(281.33-0)/(281.33-68.67)  
     +((AVE_SMSEVENTS-281.33)**3)*(AVE_SMSEVENTS>281.33)  
     *(68.67-0)/(281.33-68.67);  
 ave_smsevents_spline__6_2=((AVE_SMSEVENTS-0.67)**3)*(AVE_SMSEVENTS>0.67)  
     -((AVE_SMSEVENTS-68.67)**3)*(AVE_SMSEVENTS>68.67)  
     *(281.33-0.67)/(281.33-68.67)  
     +((AVE_SMSEVENTS-281.33)**3)*(AVE_SMSEVENTS>281.33)  
     *(68.67-0.67)/(281.33-68.67);  
 ave_smsevents_spline__6_3=((AVE_SMSEVENTS-17.33)**3)*(AVE_SMSEVENTS>17.33)  
     -((AVE_SMSEVENTS-68.67)**3)*(AVE_SMSEVENTS>68.67)  
     *(281.33-17.33)/(281.33-68.67)  
     +((AVE_SMSEVENTS-281.33)**3)*(AVE_SMSEVENTS>281.33)  
     *(68.67-17.33)/(281.33-68.67);  
  
 *--------- Testing variable: AGE ---------;  
 EFFECT1: TEST  AGE, Age_Spline__1_1, Age_Spline__1_2, Age_Spline__1_3; 
 NONLIN1: TEST  Age_Spline__1_1, Age_Spline__1_2, Age_Spline__1_3; 
  
 *--------- Testing variable: AVE_VAL ---------;  
 EFFECT2: TEST  AVE_VAL, Ave_val_spline__2_1; 
 NONLIN2: TEST  Ave_val_spline__2_1; 
  
 *--------- Testing variable: AVE_SMS ---------;  
 EFFECT3: TEST  AVE_SMS, Ave_sms_spline__3_1; 
 NONLIN3: TEST  Ave_sms_spline__3_1; 
  
 *--------- Testing variable: AVE_SMS ---------;  
 EFFECT5: TEST  AVE_SMS, Ave_data_spline__5_1; 
 NONLIN5: TEST  Ave_data Ave_data_spline__5_1; 
  
 *--------- Testing variable: AVE_SMSEVENTS ---------;  
 EFFECT6: TEST  AVE_SMSEVENTS, ave_smsevents__spline__6_1, ave_smsevents__spline__6_2, 
ave_smsevents__spline__6_3; 
 NONLIN6: TEST  ave_smsevents__spline__6_1, ave_smsevents__spline__6_2, 
ave_smsevents__spline__6_3; 
 RUN;  
*==================== End of PROC PHREG ====================; 
  
*-------------------- Graph for AGE --------------------; 
PROC IML;  
 NPOINTS=101;   * Number of points to build the graphic; 
 LOWEREND=26;     *Smallest value for X-axis;  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



125 
 

 UPPEREND=66;     *Largest value for X-axis;  
 REF=(26+66)/2;     *Reference value for X-axis;  
 X=T(DO(LOWEREND,UPPEREND,(UPPEREND-LOWEREND)/(NPOINTS-1)));  
 S1=((X-26)##3)#(X>26)  
     -((X-52)##3)#(X>52)  
     #(66-26)/(66-52)  
     +((X-66)##3)#(X>66)  
     #(52-26)/(66-52)  
     -((REF-26)##3)#(REF>26)  
     +((REF-52)##3)#(REF>52)#(66-26)/(66-52)  
     -((REF-66)##3)#(REF>66)#(52-26)/(66-52);  
 S2=((X-35)##3)#(X>35)  
     -((X-52)##3)#(X>52)  
     #(66-35)/(66-52)  
     +((X-66)##3)#(X>66)  
     #(52-35)/(66-52)  
     -((REF-35)##3)#(REF>35)  
     +((REF-52)##3)#(REF>52)#(66-35)/(66-52)  
     -((REF-66)##3)#(REF>66)#(52-35)/(66-52);  
 S3=((X-43)##3)#(X>43)  
     -((X-52)##3)#(X>52)  
     #(66-43)/(66-52)  
     +((X-66)##3)#(X>66)  
     #(52-43)/(66-52)  
     -((REF-43)##3)#(REF>43)  
     +((REF-52)##3)#(REF>52)#(66-43)/(66-52)  
     -((REF-66)##3)#(REF>66)#(52-43)/(66-52);  
 XMAT=(X-REF)||S1||S2||S3; 
 HV={ AGE Age_Spline__1_1 Age_Spline__1_2 Age_Spline__1_3 };  
 USE __RCS;  READ ALL VAR HV INTO C;  
 READ ALL VAR { _NAME_ } INTO HC;  CLOSE __RCS;  
 B=C[1,]` ;  HC=REPEAT(HC,1,NCOL(HV));  
 HV=REPEAT(HV,NROW(HC),1);  
 HV=(upcase(HC)=upcase(HV))[,+];  
 HV=LOC(HV#(1:NROW(C))`);  C=C[HV,];  
 F=XMAT*B; FU=XMAT*C*XMAT`; FREE XMAT; 
 FU=SQRT(VECDIAG(FU));  FO=F+1.96*FU;  FU=F-1.96*FU;  
 Z=J(NROW(F),1,1)//J(NROW(F),1,2)//J(NROW(F),1,3);  
 F=F//FO//FU; FE=EXP(F);  X=REPEAT(X,3,1);  
 CREATE __RCS1 VAR { F FE Z X };  APPEND;  CLOSE __RCS1;  
 QUIT;  
  
 SYMBOL1 C=RED  L=1 I=JOIN WIDTH=5;  
 SYMBOL2 C=BLUE L=2 I=JOIN WIDTH=5;  
 SYMBOL3 C=BLUE L=2 I=JOIN WIDTH=5;  
  
PROC GPLOT DATA=__RCS1;  
 PLOT F*X=Z / VREF=0 LV=3 NOLEGEND;  
 TITLE2 ' AGE ';  
 LABEL X=AGE;  
 LABEL F=LOG HAZARD RATIO;  
RUN;  
  
*-------------------- Graph for AVE_VAL --------------------; 
PROC IML;  
 NPOINTS=101;   * Number of points to build the graphic; 
 LOWEREND=8.01;     *Smallest value for X-axis;  
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 UPPEREND=314.56;     *Largest value for X-axis;  
 REF=(8.01+314.56)/2;     *Reference value for X-axis;  
 X=T(DO(LOWEREND,UPPEREND,(UPPEREND-LOWEREND)/(NPOINTS-1)));  
 S1=((X-8.01)##3)#(X>8.01)  
     -((X-123.6)##3)#(X>123.6)  
     #(314.56-8.01)/(314.56-123.6)  
     +((X-314.56)##3)#(X>314.56)  
     #(123.6-8.01)/(314.56-123.6)  
     -((REF-8.01)##3)#(REF>8.01)  
     +((REF-123.6)##3)#(REF>123.6)#(314.56-8.01)/(314.56-123.6)  
     -((REF-314.56)##3)#(REF>314.56)#(123.6-8.01)/(314.56-123.6);  
 XMAT=(X-REF)||S1; 
 HV={ AVE_VAL Ave_val_spline__2_1 };  
 USE __RCS;  READ ALL VAR HV INTO C;  
 READ ALL VAR { _NAME_ } INTO HC;  CLOSE __RCS;  
 B=C[1,]` ;  HC=REPEAT(HC,1,NCOL(HV));  
 HV=REPEAT(HV,NROW(HC),1);  
 HV=(upcase(HC)=upcase(HV))[,+];  
 HV=LOC(HV#(1:NROW(C))`);  C=C[HV,];  
 F=XMAT*B; FU=XMAT*C*XMAT`; FREE XMAT; 
 FU=SQRT(VECDIAG(FU));  FO=F+1.96*FU;  FU=F-1.96*FU;  
 Z=J(NROW(F),1,1)//J(NROW(F),1,2)//J(NROW(F),1,3);  
 F=F//FO//FU; FE=EXP(F);  X=REPEAT(X,3,1);  
 CREATE __RCS2 VAR { F FE Z X };  APPEND;  CLOSE __RCS2;  
 QUIT;  
  
 SYMBOL1 C=RED  L=1 I=JOIN WIDTH=5;  
 SYMBOL2 C=BLUE L=2 I=JOIN WIDTH=5;  
 SYMBOL3 C=BLUE L=2 I=JOIN WIDTH=5;  
  
PROC GPLOT DATA=__RCS2;  
 PLOT F*X=Z / VREF=0 LV=3 NOLEGEND;  
 TITLE2 ' AVE_VAL ';  
 LABEL X=AVE_VAL;  
 LABEL F=LOG HAZARD RATIO;  
RUN;  
  
*-------------------- Graph for AVE_SMS --------------------; 
PROC IML;  
 NPOINTS=101;   * Number of points to build the graphic; 
 LOWEREND=0;     *Smallest value for X-axis;  
 UPPEREND=26.49;     *Largest value for X-axis;  
 REF=(0+26.49)/2;     *Reference value for X-axis;  
 X=T(DO(LOWEREND,UPPEREND,(UPPEREND-LOWEREND)/(NPOINTS-1)));  
 S1=((X-0)##3)#(X>0)  
     -((X-5.05)##3)#(X>5.05)  
     #(26.49-0)/(26.49-5.05)  
     +((X-26.49)##3)#(X>26.49)  
     #(5.05-0)/(26.49-5.05)  
     -((REF-0)##3)#(REF>0)  
     +((REF-5.05)##3)#(REF>5.05)#(26.49-0)/(26.49-5.05)  
     -((REF-26.49)##3)#(REF>26.49)#(5.05-0)/(26.49-5.05);  
 XMAT=(X-REF)||S1; 
 HV={ AVE_SMS Ave_sms_spline__3_1 };  
 USE __RCS;  READ ALL VAR HV INTO C;  
 READ ALL VAR { _NAME_ } INTO HC;  CLOSE __RCS;  
 B=C[1,]` ;  HC=REPEAT(HC,1,NCOL(HV));  
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 HV=REPEAT(HV,NROW(HC),1);  
 HV=(upcase(HC)=upcase(HV))[,+];  
 HV=LOC(HV#(1:NROW(C))`);  C=C[HV,];  
 F=XMAT*B; FU=XMAT*C*XMAT`; FREE XMAT; 
 FU=SQRT(VECDIAG(FU));  FO=F+1.96*FU;  FU=F-1.96*FU;  
 Z=J(NROW(F),1,1)//J(NROW(F),1,2)//J(NROW(F),1,3);  
 F=F//FO//FU; FE=EXP(F);  X=REPEAT(X,3,1);  
 CREATE __RCS3 VAR { F FE Z X };  APPEND;  CLOSE __RCS3;  
 QUIT;  
  
 SYMBOL1 C=RED  L=1 I=JOIN WIDTH=5;  
 SYMBOL2 C=BLUE L=2 I=JOIN WIDTH=5;  
 SYMBOL3 C=BLUE L=2 I=JOIN WIDTH=5;  
  
PROC GPLOT DATA=__RCS3;  
 PLOT F*X=Z / VREF=0 LV=3 NOLEGEND;  
 TITLE2 ' AVE_SMS ';  
 LABEL X=AVE_SMS;  
 LABEL F=LOG HAZARD RATIO;  
RUN;  
  
*-------------------- Graph for AVE_DATA --------------------; 
PROC IML;  
 NPOINTS=101;   * Number of points to build the graphic; 
 LOWEREND=0;     *Smallest value for X-axis;  
 UPPEREND=0.038;     *Largest value for X-axis;  
 REF=(0+0.038)/2;     *Reference value for X-axis;  
 X=T(DO(LOWEREND,UPPEREND,(UPPEREND-LOWEREND)/(NPOINTS-1)));  
 XMAT=(X-REF); 
 HV={ AVE_DATA };  
 USE __RCS;  READ ALL VAR HV INTO C;  
 READ ALL VAR { _NAME_ } INTO HC;  CLOSE __RCS;  
 B=C[1,]` ;  HC=REPEAT(HC,1,NCOL(HV));  
 HV=REPEAT(HV,NROW(HC),1);  
 HV=(upcase(HC)=upcase(HV))[,+];  
 HV=LOC(HV#(1:NROW(C))`);  C=C[HV,];  
 F=XMAT*B; FU=XMAT*C*XMAT`; FREE XMAT; 
 FU=SQRT(VECDIAG(FU));  FO=F+1.96*FU;  FU=F-1.96*FU;  
 Z=J(NROW(F),1,1)//J(NROW(F),1,2)//J(NROW(F),1,3);  
 F=F//FO//FU; FE=EXP(F);  X=REPEAT(X,3,1);  
 CREATE __RCS4 VAR { F FE Z X };  APPEND;  CLOSE __RCS4;  
 QUIT;  
  
 SYMBOL1 C=RED  L=1 I=JOIN WIDTH=5;  
 SYMBOL2 C=BLUE L=2 I=JOIN WIDTH=5;  
 SYMBOL3 C=BLUE L=2 I=JOIN WIDTH=5;  
  
PROC GPLOT DATA=__RCS4;  
 PLOT F*X=Z / VREF=0 LV=3 NOLEGEND;  
 TITLE2 ' AVE_DATA ';  
 LABEL X=AVE_DATA;  
 LABEL F=LOG HAZARD RATIO;  
RUN;  
  
*-------------------- Graph for AVE_SMS --------------------; 
PROC IML;  
 NPOINTS=101;   * Number of points to build the graphic; 
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 LOWEREND=0.67;     *Smallest value for X-axis;  
 UPPEREND=68.67;     *Largest value for X-axis;  
 REF=(0.67+68.67)/2;     *Reference value for X-axis;  
 X=T(DO(LOWEREND,UPPEREND,(UPPEREND-LOWEREND)/(NPOINTS-1)));  
 S1=((X-0.67)##3)#(X>0.67)  
     -((X-17.33)##3)#(X>17.33)  
     #(68.67-0.67)/(68.67-17.33)  
     +((X-68.67)##3)#(X>68.67)  
     #(17.33-0.67)/(68.67-17.33)  
     -((REF-0.67)##3)#(REF>0.67)  
     +((REF-17.33)##3)#(REF>17.33)#(68.67-0.67)/(68.67-17.33)  
     -((REF-68.67)##3)#(REF>68.67)#(17.33-0.67)/(68.67-17.33);  
 XMAT=(X-REF)||S1; 
 HV={ AVE_SMS Ave_dataAve_data__5_1 };  
 USE __RCS;  READ ALL VAR HV INTO C;  
 READ ALL VAR { _NAME_ } INTO HC;  CLOSE __RCS;  
 B=C[1,]` ;  HC=REPEAT(HC,1,NCOL(HV));  
 HV=REPEAT(HV,NROW(HC),1);  
 HV=(upcase(HC)=upcase(HV))[,+];  
 HV=LOC(HV#(1:NROW(C))`);  C=C[HV,];  
 F=XMAT*B; FU=XMAT*C*XMAT`; FREE XMAT; 
 FU=SQRT(VECDIAG(FU));  FO=F+1.96*FU;  FU=F-1.96*FU;  
 Z=J(NROW(F),1,1)//J(NROW(F),1,2)//J(NROW(F),1,3);  
 F=F//FO//FU; FE=EXP(F);  X=REPEAT(X,3,1);  
 CREATE __RCS5 VAR { F FE Z X };  APPEND;  CLOSE __RCS5;  
 QUIT;  
  
 SYMBOL1 C=RED  L=1 I=JOIN WIDTH=5;  
 SYMBOL2 C=BLUE L=2 I=JOIN WIDTH=5;  
 SYMBOL3 C=BLUE L=2 I=JOIN WIDTH=5;  
  
PROC GPLOT DATA=__RCS5;  
 PLOT F*X=Z / VREF=0 LV=3 NOLEGEND;  
 TITLE2 ' AVE_SMS ';  
 LABEL X=AVE_SMS;  
 LABEL F=LOG HAZARD RATIO;  
RUN;  
  
*-------------------- Graph for AVE_SMSEVENTS --------------------; 
PROC IML;  
 NPOINTS=101;   * Number of points to build the graphic; 
 LOWEREND=0;     *Smallest value for X-axis;  
 UPPEREND=281.33;     *Largest value for X-axis;  
 REF=(0+281.33)/2;     *Reference value for X-axis;  
 X=T(DO(LOWEREND,UPPEREND,(UPPEREND-LOWEREND)/(NPOINTS-1)));  
 S1=((X-0)##3)#(X>0)  
     -((X-68.67)##3)#(X>68.67)  
     #(281.33-0)/(281.33-68.67)  
     +((X-281.33)##3)#(X>281.33)  
     #(68.67-0)/(281.33-68.67)  
     -((REF-0)##3)#(REF>0)  
     +((REF-68.67)##3)#(REF>68.67)#(281.33-0)/(281.33-68.67)  
     -((REF-281.33)##3)#(REF>281.33)#(68.67-0)/(281.33-68.67);  
 S2=((X-0.67)##3)#(X>0.67)  
     -((X-68.67)##3)#(X>68.67)  
     #(281.33-0.67)/(281.33-68.67)  
     +((X-281.33)##3)#(X>281.33)  
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     #(68.67-0.67)/(281.33-68.67)  
     -((REF-0.67)##3)#(REF>0.67)  
     +((REF-68.67)##3)#(REF>68.67)#(281.33-0.67)/(281.33-68.67)  
     -((REF-281.33)##3)#(REF>281.33)#(68.67-0.67)/(281.33-68.67);  
 S3=((X-17.33)##3)#(X>17.33)  
     -((X-68.67)##3)#(X>68.67)  
     #(281.33-17.33)/(281.33-68.67)  
     +((X-281.33)##3)#(X>281.33)  
     #(68.67-17.33)/(281.33-68.67)  
     -((REF-17.33)##3)#(REF>17.33)  
     +((REF-68.67)##3)#(REF>68.67)#(281.33-17.33)/(281.33-68.67)  
     -((REF-281.33)##3)#(REF>281.33)#(68.67-17.33)/(281.33-68.67);  
 XMAT=(X-REF)||S1||S2||S3; 
 HV={ AVE_SMSEVENTS ave_smsevents__6_1 ave_smsevents__6_2 ave_smsevents__6_3 };  
 USE __RCS;  READ ALL VAR HV INTO C;  
 READ ALL VAR { _NAME_ } INTO HC;  CLOSE __RCS;  
 B=C[1,]` ;  HC=REPEAT(HC,1,NCOL(HV));  
 HV=REPEAT(HV,NROW(HC),1);  
 HV=(upcase(HC)=upcase(HV))[,+];  
 HV=LOC(HV#(1:NROW(C))`);  C=C[HV,];  
 F=XMAT*B; FU=XMAT*C*XMAT`; FREE XMAT; 
 FU=SQRT(VECDIAG(FU));  FO=F+1.96*FU;  FU=F-1.96*FU;  
 Z=J(NROW(F),1,1)//J(NROW(F),1,2)//J(NROW(F),1,3);  
 F=F//FO//FU; FE=EXP(F);  X=REPEAT(X,3,1);  
 CREATE __RCS6 VAR { F FE Z X };  APPEND;  CLOSE __RCS6;  
 QUIT;  
  
 SYMBOL1 C=RED  L=1 I=JOIN WIDTH=5;  
 SYMBOL2 C=BLUE L=2 I=JOIN WIDTH=5;  
 SYMBOL3 C=BLUE L=2 I=JOIN WIDTH=5;  
  
PROC GPLOT DATA=__RCS6;  
 PLOT F*X=Z / VREF=0 LV=3 NOLEGEND;  
 TITLE2 ' AVE_SMSEVENTS ';  
 LABEL X=AVE_SMSEVENTS;  
 LABEL F=LOG HAZARD RATIO;  
RUN;  
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