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Summary

Chapter 1 gives a brief introduction to statistical process control (SPC) and provides
definitions as well as background information regarding the research conducted in this mini-
dissertation. This will aid in familiarizing the reader with concepts and terminology that are helpful

to the following chapters.

We begin Chapter 2 with a literature review of traditional methods to design Shewhart-type
attributes charts and their disadvantages. It is well known that with variables data, for Case K, under
the assumption of normality, a Shewhart X chart with 3-sigma limits yields an in-control (IC)
average run-length (ARL) equal to 370.4. However, for attributes control charts the choice of the
charting constant k = 3 does not guarantee an IC ARL equal to 370.4 due to the discrete nature of
the charts, as well as the fact that when the process parameters are small, the normal approximations
to the binomial distribution and the Poisson distribution do not necessarily hold or hold well. In
fact, attributes control charts with k = 3 often result in false alarm rates (FAR) values that are
significantly different from the advertised nominal value, and this, in turn, raises questions about
the efficiency of these charts. We then propose new and improved control limits for the Shewhart-
type p, np, c, u charts for parameters known (Case K). It will be shown that this method yields
control limits that result in IC run-length properties, such as the FAR and the standard deviation of
the run-length (SDRL), that are either the same or much closer to the nominal values compared to
the two traditional methods. Moreover, this method can be formulated such that it yields the same

or better ARL-unbiased control limits compared to the traditional methods.

In Chapter 3, we provide a comprehensive literature review and bibliography of synthetic
control charts for both univariate and multivariate cases. We consider variables (both parametric
and nonparametric) control charts and attributes control charts in this review. Synthetic control
charts were proposed in Wu and Spedding (2000a) and in the early 2000’s there were few outputs
on this topic. However, recently there is a lot of interest among researchers in this topic. Thus, there
is a need for a review study, as review studies typically spark a number of new research ideas.
Moreover, SAS® programs to calculate the chart parameters and the ARL values of the synthetic
chart are given. In addition, we give a comparison study to compare the performance of the
synthetic chart, the Shewhart X chart, the 2-of-2 KL chart and the 2-of-3 KL chart.
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In Chapter 4 we illustrate that synthetic Shewhart-type attributes charts suffer from similar
disadvantages as the non-synthetic counterparts discussed in Chapter 2. That is, synthetic attributes
charts with k = 3 often result in FAR values that are significantly different from the advertised
nominal value. Hence, we similarly propose new and improved control limits for the synthetic
Shewhart-type p, np, c, u charts for parameters known (Case K). Furthermore, we show that this
method yields control limits that result in IC run-length properties, such as the FAR and the SDRL,
that are either the same or much closer to the nominal values compared to the two traditional
methods. Moreover, this method can be formulated such that it yields the same or better ARL-
unbiased control limits compared to the traditional methods.

Finally, Chapter 5 wraps up this mini-dissertation with a summary of the research carried out

and offers concluding remarks concerning unanswered questions and / or future research ideas.
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Chapter 1

Introduction

1.1 Statistical process control and monitoring

Statistical process control and monitoring is an application of a collection of statistical
techniques which allows high quality products to be produced. Montgomery (2013, pp. 6-7) defines
quality as fitness for use and that it is inversely proportional to variability. This means that, to
improve the quality of a process or a product, we need to reduce the variability thereof. Moreover,
Montgomery (2013, p. 35) states that effective quality improvement can be instrumental in
increasing productivity and reducing cost. Furthermore, Montgomery (2013, p. 207) lists the
following seven major statistical process control (SPC) problem solving tools that are used to assist

in reducing variability and eliminating waste:

histogram or stem-and-leaf plot,

e check sheet,

e Pareto chart,

e cause-and-effect diagram,

e defect concentration diagram,

e scatter diagram, and

e control chart.

Among the SPC tools, control charts are undeniably the most widely used for identifying

changes in processes. Control charts are mainly used to distinguish between chance causes of

variation and assignable causes of variation, with the Shewhart charts being the primary tools for
this purpose.
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1.2 The control chart

A control chart typically is a two dimensional graphic consisting of the values of a plotting
(charting) statistic plotted on the vertical axis against time or subgroup number on the horizontal
axis along with the associated control limits. The charting statistic and the control limits are
calculated from the data which can be individual or subgroups (samples) of observations, collected
sequentially over time. A typical two-sided Shewhart-type control chart (Walter A. Shewhart

developed the statistical control chart concept in 1924) is shown in Figure 1.1.
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Figure 1.1. A two-sided Shewhart-type control chart

From Figure 1.1 it can be seen that a control chart usually has a center line (CL) and two
horizontal lines, one on each side of the CL. The line above the CL is called the upper control limit
(UCL) whereas the line below the CL is called the lower control limit (LCL). These three lines are
placed on the control chart to aid the user in making an informed and objective decision whether a
process is in-control (IC) or out-of-control (OOC). Note that, in some cases the UCL and LCL are
not symmetric around the CL, see for example, Wu and Wang (2007). Thus, moving forward we
will not mention the CL again, we only concentrate on the two important limits i.e. UCL and LCL.
When a charting statistic plots on or outside either of the control limits it is said that a signal has
been observed and the process is declared OOC (in Figure 1.1, a process would be thought to be

OOC at times 5, 7 and 11). The corresponding event is called a signalling event. On the contrary,
2
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when the charting statistic randomly plots between the upper and the lower control limits the
process is thought to be IC and hence no signal is observed on the control chart. The corresponding
event is called a non-signalling event. Montgomery (2013, p. 197) stated that control charts are

popular in industries and listed five reasons for their popularity. They are:

e proven technique for improving productivity
o effective in defect prevention

e prevent unnecessary process adjustment

e provide diagnostic information

e provide information about process capability.

1.3 Chance and Assignable causes

Montgomery (2013, p. 189) stated that in any process, a certain amount of variability always
exist and this natural variability is called common or chance causes. A process operating under
chance cause of variation is said to be IC. However, in some cases, the source of variability is not
part of the chance cause pattern. In such a situation, it is said that a process is operating in the
presence of assignable causes of variation and that the process is OOC. The aim of using a control
chart is to recognise and eliminate assignable causes in a process. In SPC, the pattern of chance
causes is usually assumed to follow some parametric distribution (such as the normal distribution
for the X chart, see Chapter 6 in Montgomery (2013)). The charting statistic and the control limits
depend on this assumption and as such the properties of these control charts are ‘exact’ only if this

assumption is satisfied.

1.4 VVariables and Attributes data

In statistical process control and monitoring application, data can be continuous or discrete.
Quality characteristics that can be expressed in terms of a numerical measurement are called
“variables” and the data collected on variables are called “variables data”, see Montgomery (2013,

p. 234). Examples include dimensions such as length or width, temperature, volume etc.
However, quality characteristics that cannot be measured on a numerical scale, for example,

the quality of paint on a glass container for a liquid product, are called “attributes” and the

corresponding the data collected are called “attributes data” see Montgomery (2013, p. 297). To
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examine attributes data, we classify them into one of the two categories called conforming and
nonconforming, depending on whether the container meets the requirements on one or more quality
characteristics. Examples include the number of errors or mistakes made in completing a loan

application, the number of medical errors made in a hospital, etc., see Montgomery (2013, p. 297).

1.5 Run-length distribution

“The number of rational subgroups to be collected or the number of charting statistics to be
plotted on a control chart before the first OOC signal is observed is the run-length of a chart”, see
Human and Graham (2007). The run-length is a random variable, denoted usually by N, with a
mean and variance. The most widely used chart performance metric is the mean of the run-length,
referred to as the average run-length (ARL). However, since the run-length distribution is
significantly right-skewed, researchers have advocated using other, more representative, measures
for the assessment of chart performance. These include the standard deviation of the run-length
(SDRL) and other percentiles of the run-length, more specifically, the median run-length (MRL),
which provides additional and more meaningful information about the in-control and out-of-control
performances of control charts, not given by the ARL. Some researchers such as Gan (1994),
Chakraborti (2007) and Khoo et al. (2011) have advocated the use of percentiles, such as the
median, for assessment of chart performance. The run-length distribution and the characteristics of

the run-length distribution can be obtained using four methods, namely

I.  The exact approach (for Shewhart and some Shewhart-type charts)
ii.  The Markov chain approach
iii.  The integral equation approach

iv.  The computer simulations (the Monte Carlo) approach

For a detailed account of these methods, see Graham (2013, pp. 16 - 22). In this essay the
exact approach is used which is based on a finite homogenous Markov chain; this approach is used
to evaluate the run-length distribution and the characteristics of the run-length distribution of

various types of control charts.
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1.6 Types of control charts

There are three popular types of control charting techniques: the Shewhart chart, the
cumulative sum (CUSUM) chart and the exponentially weighted moving average (EWMA) chart.
Relative advantages and disadvantages of these charts are well documented in the literature. See, for
example, Chapters 6, 7 and 9 in Montgomery (2013). We describe some of the charts in more detail
in each of the three sections that follow.

1.6.1 Shewhart-type control charts

Shewhart-type charts are the most popular charts in practice because of their simplicity, ease
of application, and the fact that these versatile charts are quite efficient in detecting moderate to
large shifts. To describe the Shewhart chart in more detail, assume that X;;, X;5, ..., X;, denote a
random sample (i.e. measurements on some quality characteristic) of size n > 1 form the process at
time i = 1,2,3,... . Let W be a sample statistic that measures some quality characteristic of interest,
and suppose that the mean of W is u,, the variance is o3, and the standard deviation of ay,,. Then

the control limits and CL are given by

UCL = uy + koy,
CL = uy (1.2)
LCL = uy — koy,

where k > 0 is the charting constant which is a design parameter that determines the ‘distance’ of
the control limits from the CL expressed in standard deviation units. When a charting statistic plots
on or outside either of the control limits it is said that a signal has been observed and the process is

declared OOC. Typically, a search for assignable causes is then started.

1.6.2 CUSUM-type control charts

While the Shewhart-type charts are widely known and most often used in practice because
of their simplicity and global performance, other classes of charts, such as the CUSUM charts, are
useful and sometimes more naturally appropriate in the process control environment in view of the
sequential nature of data collection. Since the introduction of CUSUM charts by Page (1954), many
researchers have examined these charts from different perspectives, see, for example, Brook and

Evans (1972), Hawkins (1987, 1993) and, more recently, Abbasi et al. (2012). A comprehensive
5
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description of the construction of CUSUM control charts is discussed in Hawkins and Olwell
(1998). These charts, typically based on the cumulative sums of a charting statistic, obtained as data
accumulate over time, are known to be more efficient for detecting certain types of shifts in the
process; typically shifts of small magnitude. The normal theory CUSUM chart for the mean is
typically based on the cumulative sum of the deviations of the individual observations (or the

subgroup means) from the specified target mean.

To describe the CUSUM chart in more detail, assume that X;;, X;», X;3, ..., X;n denote a
sample (subgroup) of size n > 1 on the process output at each sampling instance i for i = 1,2,... .
A statistic

Y = Y (X, Xiz, Xizy oo s Xin) (1.2)

is constructed using the data in the it" sample, i = 1,2,... . The statistic in Equation (1.2) is referred
to as the basic (pivot) statistic; see Bakir (2011).

For a CUSUM chart, the deviations from the target value (say, 6,) of the parameter are
accumulated in the upward and downward directions separately, using two different statistics: one

for the upward shift and the other for the downward shift.
For the upper one-sided CUSUM chart we use

Ct =max[0,9; — k + C,] for i=1,23... (1.3)

to detect positive deviations from the target value with starting value C§ = 0 and the so-called
reference value k > 0. A signalling event occurs for the first i such that C;" > h, where h > 0 is the

decision interval. For the lower one-sided CUSUM we use
C; =min[0,¢; + k+ C_,] for i=123... (1.4)

or

¢ = max[0, —k —; + C;,] for i=1,23.. (1.5)

and is used to detect negative deviation from the target value with starting value C; = C; = 0.

Here a signalling event occurs for the first i such that C; < —h (if Expression (1.4) is used) or
6
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Ci‘* > h (if Expression (1.5) is used). The design parameters k and h are chosen so that the chart
has a specified nominal ARL, denoted ARL, (or a specified nominal MRL, denoted MRL) and is
capable of detecting a shift, specially a small shift, as soon as possible. The first step in this
direction is to choose k. For the parametric CUSUM chart for the normal mean, the choice of k has
been discussed by Montgomery (2013, p. 422). After choosing k, the next step is to find the
decision interval h, in conjunction with the chosen k, so that a specified ARL, (or MRL,) is attained.
Note, however, for a discrete random variable the chances are that A cannot always be found such
that the specified ARLy (or MRLy) is attained exactly and hence using a conservative approach, h is
found so that the attained IC ARL (or IC MRL) is less than or equal to the specified ARL, (or MRLy).

1.6.3 EWMA-type control charts

The EWMA charts also take advantage of the sequentially (time ordered) accumulating
nature of the data arising in a typical SPC environment and are known to be efficient in detecting
smaller shifts but are easier to set up and operate than the CUSUM charts (see e.g. Montgomery
(2013, p. 433). The literature on EWMA charts is enormous and continues to grow at a substantial
pace (see e.g. the overview by Ruggeri et al. (2007) and the references therein). To describe the
EWMA chart in more detail, assume that X;;, X;», X;3, ..., Xin denote a sample (subgroup) of size
n > 1 on the process output at each sampling point i for i = 1,2,... . The charting statistic for the
EWMA control chart is defined as

Zi = Alpl + (1 - A)Zi—l for i = 1,2,3 (16)

where 0 < A < 1 is a constant called the smoothing parameter and ; is the pivot statistic defined
in Equation (1.2). The starting value Z, is typically taken to be the target value, i.e. Z, = 8,. The

expected value and variance of Z; are given by
E(Z;) = 6, (1.7)
and
A .
VAR(Z;) = o (m) (1-1-21%) (1.8)

respectively, where g, denotes the known process standard deviation. The exact control limits and

the center line of the EWMA control chart are given by
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UCL = E(Z;) + L X STDEV(Z;) = 6, + Lao\/<2/1j) (1—(1—2)2)

CL = E(Z,) = 6, (1.9)

A :
LCL =E(Z;) — L xSTDEV(Z,) = 6 — Lao\/<m) (1—(1-2)2)
where L > 0 is a charting constant. The steady-state control limits (which are typically used when
the EWMA chart has been running for several time periods so that the term (1 — (1 — 2)?!) in (1.9)

approaches unity) are given by

A
UCL = 60 +LO'O (m)

and (1.10)

LCL = 60 - LO'O (m)

The two-sided EWMA chart is constructed by plotting Z; against the sample number i (or
time). If the charting statistic Z; falls between the two control limits, that is, LCL < Z; < UCL, the
process is considered to be IC. If the charting statistic Z; falls on or outside one of the control limits,
that is Z; < LCL or Z; = UCL, the process is considered to be OOC and a search for assignable

causes is necessary.

The two-sided EWMA can be modified to form a one-sided statistic in much the same way a
CUSUM can be made into a one-sided statistic. For example, an upper one-sided EWMA is given
by Z;" = max[0,, AY; + (1 — 1)Z;_,] for i =1, 2, 3,... with starting value z¢ = 8, where 8, is the
IC process target value. If the charting statistic Z; plots on or above the UCL the process is

considered to be OOC and a search for assignable causes is necessary.

The design parameters L and A are chosen so that the chart has a specified nominal ARL, (or
MRL,) and is capable of detecting a shift, specially a small shift, as soon as possible. Montgomery

(2013, p. 436) states that “The optimal design procedure would consist of specifying the desired in-
8
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control and out-of-control average run-lengths and the magnitude of the process shift that is
anticipated, and then to select the combination of A and L that provide the desired ARL
performance.” The EWMA chart is designed by specifying 4 and L so that a specified ARL, (or
MRL,) is achieved. The constant 2 (0 < A < 1) is the smoothing parameter (1 = 1 yields the well-
known Shewhart chart) and is selected depending on the magnitude of the shift to be detected (see
Table 1.1) while the constant L > 0 is the distance of the control limits from the CL (the larger the
value of L, the wider the control limits and vice versa) and is selected in combination with the value
of the smoothing parameter A. With regard to the implementation of the EWMA chart, the first step

is to choose A. The recommendation is as follows ((see Montgomery (2013, p. 436)):

Table 1.1. Choice of the smoothing parameter 1

Magnitude of the shift of interest | Choice of 4
Small 0.05
Moderate 0.10
Large 0.20

After A is chosen, the second step involves choosing L, so that a desired ARLy (or MRLy) is

attained.

1.7 Phase | and Phase 11

In practice, SPC is generally divided into two phases (or stages) i.e. Phase | (also called the
retrospective phase) and Phase Il (also called the prospective or monitoring phase), see
Montgomery (2013, p. 206). The analysis of historical or preliminary data, in order to establish that
a process is IC, generally comes under what is referred to as Phase I. A process that operates at or
around a desirable level or specified target with no assignable causes of variation is said to be in
statistical control, or simply in-control. In Phase I, the focus is on understanding the process
variability, assessing the stability of the process, investigating process improvement ideas, trying to
bring the process IC by locating and eliminating any assignable causes of variability and providing
estimates of the IC parameters so that effective process monitoring can begin in Phase Il. A
considerable amount of knowledge about a process can result from the analysis of Phase | data and
control charts play a crucial role in Phase I. They help in diagnosing source(s) of assignable causes
and their removal. The process of establishing control may be iterative and the control limits in this
phase are usually viewed as trial limits. Once statistical control is established, the parameters are
estimated and control limits are finalized based on IC data (also called reference data). Once this is

ascertained, SPC moves to the next phase, called Phase Il, where the control limits and / or the
9
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estimators obtained in Phase | are used for process monitoring based on new incoming samples of
data.

When the underlying parameters of the process distribution are known or specified, this is
referred to as the ‘standard(s) known’ case and is denoted Case K. In contrast, if the distribution’s
parameters are unknown and need to be estimated, it is typically done in Phase I, with IC data. This
situation is referred to as the ‘standard(s) unknown’ case and is denoted Case U. One of the main
differences between the two phases is the fact that the false alarm rate (FAR) (or the IC ARL or the
IC MRL) is typically used to construct and evaluate Phase Il control charts, whereas the false alarm
probability (FAP) is used to construct and evaluate Phase | control charts. The FAP is the
probability of at least one false alarm out of the comparison of all the charting statistics to the
control limits simultaneously, whereas the FAR is the probability of a single false alarm involving
only a single comparison of a charting statistic to the control limits. Various authors have studied

the Phase | problem; see the review by Chakraborti et al. (2009).

1.8 Attributes control charts

Attributes control charts have been widely used to monitor discrete data in manufacturing
and in service industries (i.e. non-manufacturing) processes (Montgomery (2013, p. 298)). Although
an attributes chart is not as efficient as a variables control chart in finding root problems and
solutions, it is an economical tool to collect and analyze some process characteristics before
continuous charts can be applied (see Aebtarm and Bouguila, 2011). In addition, according to
Aebtarm and Bouguila (2011), attributes control charts are more practical in many cases, for
example, monitoring the number of survival patients per year is more practical than monitoring how

long a patient can survive which uses a variables control chart.

Among the attributes charts, the Shewhart-type charts are the most popular. There are four
major Shewhart-type attributes charts, namely the p chart, the np chart, the ¢ chart and the u chart,
see Montgomery (2013, Chapter 7) and a review by Woodall (1997). The p chart monitors the
fraction nonconforming in a sample, whereas the np chart monitors the number of nonconforming
items in a sample. The ¢ chart monitors the number of nonconformities in a single inspection unit,
whereas the u chart monitors the average number of nonconformities per inspection unit. Note that
the designs of the latter four charts are very similar, that is, they both fit into the same statistical

structure in which only the distributions assumed for each chart differ. The p chart and the np chart
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are based on the normal approximation to the binomial distribution, whereas the ¢ chart and the u

chart are based on the normal approximation to the Poisson distribution.
1.9 Traditional methods to design attributes charts

In this section, we briefly summarize the traditional Shewhart-type k-sigma limits (k-SL)
method and the conventional probability limits (CPL) method for Case K. To this end, first let p, be
the known IC proportion nonconforming and c, be the known IC number of nonconformities in an
inspection unit.

1.9.1. k-sigma limits for the p and c charts

The control limits of the p and ¢ charts using the k-SL method are given by

1 —
UCL,/LCL, = po + k /M (L.11)

UCL./LCL, = ¢y + k\[co (1.12)

and

respectively.
1.9.2. Conventional probability limits for the p and ¢ charts

The control limits of the p and the ¢ charts using the CPL method are computed as follows.

For the p chart, we need to find LCL,, and UCL,, such that

LCL , . . .
S () p /(1 - pom <P and B ()P —pm T 2 1M (19

respectively. For the c chart, we need to find LCL. and UCL, such that

[LCLc] e 0cy/ _ FAR, © e C0cy/ _ FARg
Zj:o T s— and Zj:[UCLC] i =1 2 (1.14)
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respectively, with [x] the largest integer not exceeding x.

1.10 Synthetic control charts

Wu and Spedding (2000a) originally proposed and defined a synthetic chart as the
integration of the operation of a Shewhart chart and a conforming run-length (CRL) chart.
However, Scariano and Calzada (2009) proposed a generalised synthetic chart (GSC) procedure so
that a synthetic chart is now defined as the integration of some control charting procedure and a
CRL chart, that is, a synthetic chart consists of two “sub-charts”, one, a basic (or a standard or a
classical) chart for the parameter of interest and a second, a CRL chart. Unlike the basic chart, a
signal is not based on a single charting statistic falling beyond the control limits. Instead, when any
sample produces a value beyond the control limits of a basic chart, then the control procedure is

judged pending its effect on the CRL chart.

The conforming run-length (CRL) chart

The CRL chart was proposed by Bourke (1991) and is defined as the number of inspected
units between two consecutive nonconforming units, inclusive of the nonconforming unit at the end.
In most cases, we are interest in detection of process deterioration, hence the CRL chart only has a
LCL, denoted by H. The run-length of the CRL chart follows a geometric distribution with cdf
Fore(®) =1— (1 —p)t, for t =1, 2,... and p is the probability that a sample is nonconforming.
Consider Figure 1.2, the white and black dots denote the conforming and nonconforming units,
respectively. Suppose that the process starts at t = 0, the CRL chart corresponding to Figure 1.1 has
the following plotting/charting statistics: CRL, =5, CRL, =2 and CRL; = 4. The idea behind the
CRL chart is that the CRL will change if the probability of obtaining a nonconforming item or
probability of a plotting statistic plotting beyond the control limits increases/decreases. An OOC
signal for the CRL chart is given when CRL < H. For further discussion on the CRL chart, see
Bourke (1991).

12
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CRL, =5 —>|CRL2 =2 |+—CRL3:4—;
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< Conforming unit

@ Nonconforming unit

Figure 1.2: A conforming run-length chart

1.11 Research objectives

We now summarize the research questions in each of the following chapters (i.e. Chapters 2,
3, 4 and 5). In Chapters 2 and 4 we focus on proposing new and improved control limits for the
Shewhart-type p, np, c, u charts and the corresponding synthetic p, np, ¢, u charts, respectively.
Woodall and Montgomery (1999) stated that literature review papers are very important as they
spark new research ideas. Motivated by this, we present a review of the literature on the synthetic
control charts for univariate and multivariate data in Chapter 3. Chapter 5 provides a summary and

offers some future research ideas.

1.11.1 Chapter 2

In Chapter 2 we focus on proposing new and improved control limits for the Shewhart-type
p, np, c, u charts. It is well known that with variables data, for Case K, under the assumption of
normality, a Shewhart X chart with 3-sigma limits yields an IC ARL equal to 370.4. However, for
attributes control charts the choice of the charting constant k = 3 does not guarantee an IC ARL
equal to 370.4 due to the discrete nature of the charts (see Castagliola and Wu (2012)), as well as
the fact that when the process parameters are small, the normal approximations to the binomial and
Poisson distributions do not necessarily hold or hold well (see Montgomery (2013, p. 101)). In fact,
attributes control charts with k =3 often result in FAR values called attained false alarm rate
(AFAR) values that are significantly different from the advertised nominal value, and this, in turn,

raises questions about the efficiency of these charts; see Szarka and Woodall (2011).

The traditional methods are generally known to have poor IC run-length properties when the
process parameters, n and/or p, are small. According to the recommendations in the literature,

when np,(1 — py) > 5 (i.e. when the central limit theorem approximation is good for the binomial
13
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distribution), these methods should yield attained run-length properties that are closer to their
nominal values. However, it has been shown that this is not the case; see, for example, Chakraborti
and Human (2006), Wu and Wang (2007) and Castagliola and Wu (2012).

For illustration (note that more detail will be given in Chapter 2), suppose that FAR, =
0.0027, n =100 and p, = 0.2 so that np,(1 — p,) = 20 > 5. Consequently, we expect that the 3-
SL and CPL methods would result in an AFAR close to FAR,. However, the 3-sigma limits method
yields AFAR = 0.00399, which is 47.60% higher than the nominal value of 0.0027. On the other
hand, the conventional probability method yields AFAR = 0.00159, which is 41.03% lower than the
nominal value of 0.0027. It is clear for this example that these traditional control charts yield AFAR
values that are significantly different than the nominal values, see also Chakraborti and Human
(2006), Wu and Wang (2007) and Castagliola and Wu (2012) for further confirmation. In this
example, the 3-SL method chart signals more often than expected when the process is IC and the
CPL method chart signals much less often than what is nominally expected, which also seems

undesirable. A similar situation was observed for the c chart.

Thus, in Chapter 2, we offer a solution to this problem by considering a new and improved
method of chart design to design the p, np, c, u charts for Case K. It will be shown that this method
yields control limits that result in IC run-length properties, such as the AFAR and the attained IC
standard deviation of the run-length (ASDRL,), that are either the same or much closer to the
nominal values compared to the two traditional methods. Moreover, this method can be formulated

such that it yields a good OOC performance.

1.11.2 Chapter 3

In Chapter 3, we provide a comprehensive literature review and bibliography of synthetic
control charts for both univariate and multivariate data. We consider variables (both parametric and
nonparametric) control charts and attributes control charts in this review. Ever since this chart was
proposed in Wu and Spedding (2000a), there have been over 60 papers on this topic. Moreover, this
review sparked a number of new research ideas and these are given in Chapter 5. In addition, a
comparison study is conducted to investigate the performance of four variables control charts

(synthetic chart, Shewhart X chart, 2-of-2 KL chart and 2-of-3 KL) to monitor the process mean.
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1.11.3 Chapter 4

In Chapter 4, we focus on proposing new and improved control limits for the synthetic p,
np, ¢, u charts. It is well known that with variables data, for Case K, under the assumption of
normality, a Shewhart X chart with 3-sigma limits yields an IC ARL equal to 370.4 (see Wu and
Spedding (2000a)). However, for attributes control charts the choice of the charting constant k = 3
does not guarantee an IC ARL equal to 370.4 due to the discrete nature of the charts (see Castagliola
et al. (2013)), as well as the fact that when the process parameters are small, the normal
approximations to the binomial and Poisson distributions do not necessarily hold or hold well (see
Montgomery (2013, p. 101)).

The traditional methods are generally known to have poor IC run-length properties when the
process parameters, n and/or p, are small. According to the recommendations in the literature,
when np,(1 — py) > 5 (i.e. when the central limit theorem approximation is good for the binomial
distribution), these methods should yield attained run-length properties that are closer to their
nominal values. However, it has been shown that this is not the case; see, see Castagliola et al.
(2013).

For example (note that more detail will be given in Chapter 4), suppose that the nominal
FAR (FAR,) is equal to 0.0027, n = 100 and p, = 0.2 so that np,(1 — p,) = 20 > 5. Consequently,
we expect that the 3-SL and CPL methods will result in AFAR values close to the FAR,. Suppose
that H = 2, the 3-SL method yields AFAR = 0.00209 which is 22.58% lower than the nominal value
of 0.0027. On the other hand, the CPL method yields AFAR = 0.00112 which is 58.46% lower than
the nominal value of 0.0027. In this example, it is clear that the traditional control charts yield
AFAR values that are significantly different from the FAR,, since for both methods, the charts will
signal less often than what is nominally expected, especially for the CPL method. A similar

situation was observed for the synthetic ¢ chart.

Thus, in Chapter 4 we offer a solution to this problem by considering a new and improved
method of chart design to design the synthetic p, np, ¢, u charts for Case K. It will be shown that
this method vyields control limits that result in IC run-length properties, such as the AFAR and the
ASDRL,, that are either the same or much closer to the nominal values compared to the two
traditional methods. Moreover, this method can be formulated such that it yields a good OOC

performance.
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1.12 Appendix 1: Distributions considered in this study

A list of the distributions considered in this study is given below along with general

formulae to calculate their means and variances.

Probability density or

Mean

Variance

—co<a<b<ow

Distribution -
massfunction
Standard Normal flx) =
X~N(0,1) L i 0 1
X € (—00, OO) Ee 2
Binomial f(x) =
X~bi(n,p) 2\ x np np(1-p)
x€{0,12,..,n} (,,) p*(1—p)
Poisson flx) =
X~Poi(c) R c c
x€{0,1,2,..} -
Geometric f(x) = 1 1-p
X~Poi(c) = 2
x€{1,2, ..} 1-p)*'p p p
Student’s t flx) = v_iz forv > 2
X~t(v) .
X € (—o0,00) r() (1+ ﬁ)—(%) 0 o for v = 2
v > 0 denotes the degrees of freedom | vvr(3) v else undefined
Gamma —
x) =
X~GAM(a, B) Fe) 2
x € [0,) oy e~B ap ap
a>0andp >0 T(a)p“
Logistic flx) =
X~Logistic(e, 2
X e%—oo,(oo)ﬁ) _ etk a %ﬁz
—o<a<owandf >0 B(1+e~C-a)/B)*
Laplace or fx) = a 2[3?
Double Exponential .
X~DE(a, f) L7
x € (—00, ) 2p
—o<ag<ooandf >0
Uniform distribution Flx) = — atb (b-a)?
X~U(a,b) b-a 2 12
X € [a,b]

Contaminated or Mixture Normal

Since the formulae for the Contaminated or Mixture

Normal distribution is too lengthy to fit into this table, a

discussion follows below.
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Contaminated or Mixture Normal distribution

The Contaminated Normal (CN) distribution (also referred to as the Mixture Normal

distribution), is a linear combination of two normal random variables:

(1 —&)N(uy, 07) + eN(py, 03),

where 0 < ¢ < 1 denotes the level of contamination. If X~(1 — &)N (uy, 02) + eN(uy, 0%) then the
pdf is given by

f(x) = = &)p(uy,01) + ez, 5)

where ¢(u, o) is the pdf of a normal distribution with mean u and variance 2. The expected value

and variance of the CN distribution are given by
EX) =1 —&)py + eu,
and
VAR(X) = (1 — &) (U2 + 02) + e(ud + 02) — (1 — )y + e11)"

respectively.
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Chapter 2

Modified improved probability limits (MIPL) design for the
Shewhart-type attributes charts

2.1 Introduction

Attributes control charts were introduced in Section 1.8. There are four major Shewhart-
type attributes charts, namely the p chart, the np chart, the ¢ chart and the u chart. In this chapter,
we focus on the p chart and the ¢ chart which monitors the proportion of honconforming items in
a sample and the number of nonconformities in an inspection unit, respectively. Note that when

the sample size is fixed, the p chart is equivalent to the np chart (Woodall, 1997).

For a thorough account of the attributes control chart literature, see Woodall (1997). More
recently, Szarka and Woodall (2011) gave a related literature review on the Bernoulli processes,
with a section discussing the relevance of the p chart in a monitoring environment. Wu and Wang
(2007) gave a brief discussion of the np chart using the conventional probability limits (CPL)
method. Aebtarm and Bouguila (2011) presented an empirical comparison of eleven different
methods to design a c¢ control chart. Recently, Castagliola and Wu (2012) discussed the np and
the ¢ charts using the Shewhart k-sigma limits (k-SL) method when the charting parameter k is
different from the typical industry value of 3. The latter authors extended on the work done in
Braun (1999) and Chakraborti and Human (2006, 2008).

Shewhart control charts are generally recommended if a quick detection of a “large” shift
is needed. It is well known that with variables data for Case K, under the assumption of
normality, a Shewhart X chart with 3-SL yields an IC ARL equal to 370.4. However, for attributes
control charts the choice of the charting constant k = 3 does not guarantee an IC ARL equal to
370.4 due to the discrete nature of the charts, as well as the fact that when the process parameters

are small, the normal approximation to the binomial and Poisson distributions does not
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necessarily hold or hold well. In fact, attributes control charts with k = 3 often result in AFAR
values that are significantly different from the advertised nominal values, and this, in turn, raises

questions about the efficiency of these charts, see Szarka and Woodall (2011).

The concept of an “improved probability limits (IPL)” chart design was proposed by
Zhang et al. (2004) to design charts that have attained FAR values closer to the nominal FAR
value and applied it to the geometric control chart. In this chapter we refine and modify this
method and apply it to design what are called the modified improved probability limits (MIPL) p
and ¢ charts that result in better attained FAR values. In addition, these new and improved charts
can be formulated such that they have the same or better OOC performance than the two
traditional methods (i.e. k-SL and CPL).

The rest of the chapter is structured as follows. The run-length properties used for
evaluating the statistical performance of the control charts are discussed in Section 2.2. This is
followed by a discussion of the MIPL method for the p chart in Section 2.3 and the
corresponding discussion for the ¢ chart in Section 2.5; in each section, a review of the traditional
methods is done. In Sections 2.4 and 2.6 examples and empirical comparisons among the three
methods are done for the p and c charts, respectively, providing an insight concerning the choice

of the best method. Concluding remarks are given in Section 2.7.

2.2 Properties of Shewhart-type attributes charts

Suppose that both the fraction nonconforming (p) or the average number of
nonconformities (c) per inspection unit of an IC process are known (or specified), and are
denoted by p, and c,, respectively. The formulas for the control limits are presented and
discussed in Sections 2.3 and 2.5, respectively. Once the control limits are calculated,
independent random samples (subgroups) or inspection units are typically taken at equally spaced
intervals and a charting statistic, which is the proportion nonconforming (for the p chart) or the
number of nonconformities (for the c chart), is plotted on the chart for the i®* subgroup or
inspection unit, for i = 1,2, ... . If the charting statistic plots between the LCL and the UCL, the

process is declared IC, otherwise, the process is declared OOC and it is said that a signal has been
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observed. The run-length distribution is characterized by the probability of a no signal, denoted
by B, which is a function of p and n (for the p chart) and a function of ¢ (for the c chart). The
probability of a signal is given by 1 — £ and the probability of a signal when the process is IC,
thatis 1 — B,, is the FAR.

Since, in Case K, the charting statistics are iid random variables and the control chart
limits are known constants, it is well known that the run-length of a Shewhart-type chart follows

a geometric distribution with parameter (1 — ). Hence the run-length pmf and cdf are given by

fe() =BT = B) (2.1)
and
frr() =B (1 - pB) (2.2)
respectively, for r =1,2,... . The average and the standard deviation of the run-length
distribution are given by
ARL = — (2.3)
=13 :
and
VB
=" 2.4
SDRL = - Z (2.4)

respectively. These quantities are used as chart performance measures.

The FAR is typically used to design a chart in Case K. By design one finds control limits
for a given nominal FAR value, denoted by FAR,, a number such as 0.0027. Equivalently, since
the ARL is the reciprocal of the FAR in Case K, one can also design the chart for a nominal IC

ARL value such as 370.4. While this is fine for variables control charts, the actual or the attained
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FAR (and the ARL) of attributes charts may not necessarily be equal to the nominal value, due to
the discreteness of the distributions of the charting statistics. Thus we distinguish between the
nominal and the attained values. We denote the attained FAR by AFAR, which is the probability
that a specific control chart with a specific set of control limits (and chart design parameters),

gives an OOC signal, when the process is in fact IC. That is,

AFAR = P(Signal for a chart with a given pair of control limits| IC) = 1 — f3,. (2.5)

The problem simply is that, with the attributes charts based on normal approximation, the
AFAR can be substantially different from the FAR,,. The closer the AFAR value is to the FAR,,
the better that chart is (or the chart design). The corresponding nominal ARL and SDRL values are
denoted by ARL, and SDRL,, respectively, and the attained IC ARL (= 1/ AFAR) and the attained
SDRL are denoted by AARL, and ASDRL,, respectively. However, when the process is OOC we
denote these as AARL, and ASDRL,, respectively. Other characteristics of the run-length

distribution can be calculated from the pmf or the cdf of the run-length distribution.

The calculations in this chapter were done using Microsoft® Excel functions and the

graphs were constructed using Minitab®. See Appendix 2A for an illustration of the calculations.

21

© University of Pretoria



2.3 Statistical design of the p chart

Let Y;4,...,Y;,, i =12,.. and n>1 be a sample of independent random variables
Y; = ¥j-1Y;j ~BIN(p) where p is the proportion nonconforming units (when p =p,, the
process is IC). Let LCL, and UCL,, denote the lower and upper control limits of the p chart,
respectively. Montgomery (2013, p. 315) defined S, the probability of no signal (or the Type Il

error probability), as a function of n and p:

B(p,n) = P(nLCL, < Y; <nUCL,|p) 0<p<1
= P(Y; < nUCL,|p) — P(Y; < nLCL,|p)
(P n
(j) p/(1-p)" ifnLCL, < 0
_ ) i=0
=94 » a (2.6)
Z ( .)p’(l -p)" - z ( .)pf(l —p)"7/  ifnLCL, >0
L =Y i \]
Jj=0 j=0

The control limit constants, a and b, are related to the lower and upper control limits,
respectively, and are defined in Section 2.3.1. Note that 8, = 8(po, n), denotes the probability of

no signal when the process is IC. Further, note that the probability of a signal equals

1—B(p,n) = P(Y; = nUCL,|p) + P(Y; < nLCL,|p) (2.63)

and hence for a given set of control limits,

1 — B(po,n) = P(Y; = nUCLy|p,) + P(Y; < nLCL,|py) = AFAR. (2.6b)
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2.3.1 Traditional methods for designing a p chart

In this section we briefly summarize the traditional k-SL method and the CPL method for
Case K.

k-sigma limits

The control limits for the k-SL method are as given in Equation (1.11). So that, for k-SL

method, the control limit constants, a and b, are given by

min{[nUCLp], n} ifnUCLp is not an integer

a = [nLCL,] and b = { @7)

min{nUCLp — 1,n} ifnUCLp is an integer

respectively, with [x] the largest integer not exceeding x. These values of a and b are adopted
from Chakraborti and Human (2006).

Conventional probability limits

For the CPL method, the control limits are computed as follows. For the LCL,, using

Equation (1.13) we find the largest positive integer a = [nLCLp] that makes the left tail

probability, P,(Y; < alp,), to be at most equal to %. Thus,

FAR,

9o (") o (1= po)n <2 (2.8)

Following this we have that LCL,, = % If a <0, it means that LCL,, < 0 and then we assume that

the LCL, does not exist since the proportion nonconforming is never negative. This arises when n

and/or p, is small. In such a situation LCL,, is said to be not applicable (NA).
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For the UCL,, also using Equation (1.13), we find the smallest positive integer b =

[nUCL,] — 1 that makes the right tail probability, B.(Y; = b + 1|p,), to be at least equal to

1-— %. Thus,

FARg

"o () P! (L= po)™ T 2122 (2.9)

Following this we have that UCL, = %. In the event that the LCL, is not applicable, for

Equation (2.9) we find b = nUCL, — 1 so that

P.(Y; > b+ 1|py) = 1 — FAR,. (2.10)

Problem associated with the traditional methods

As briefly shown in Section 1.11.1, both of the traditional methods have a poor IC run-
length properties (especially) when the process parameters, n and/or p, are small. Now, we show
in detail the example discussed in that section, where FAR, = 0.0027, n = 100 and p, = 0.2. For
the 3-SL method using Equations (1.11) and (2.7), we find a =8 and b = 31 so that Equation
(2.6b) yields AFAR = 0.00399, which is 47.60% higher than the nominal value of 0.0027. On the
other hand, for the CPL method using Equations (2.8) and (2.9), respectively, we find a = 8 and
b = 33, so that from Equation (2.6b) we obtain AFAR = 0.00159, which is 41.03% lower than the
nominal value of 0.0027. The corresponding AARL, values are 250.63 and 628.93, respectively.
It is clear for this example that these traditional control charts yield AFAR and AARL, values that
are significantly different than the nominal values. In this example, the 3-SL method chart signals
more often than expected when the process is IC and the CPL method chart signals much less

often than what is nominally expected, which also seems undesirable.

In the next section, we offer a solution to this problem by considering a new method of
chart design called the modified improved probability limits (MIPL), which is an adaptation and
a modification of the IPL method proposed by Zhang et al. (2004) for a geometric chart. It will be

shown that this method yields control limits that result in IC run-length properties, such as the
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AFAR and the ASDRL,, that are either the same or much closer to the nominal values compared
to the two traditional methods. Moreover, the MIPL method can be formulated such that it yields

a good OOC performance. Firstly we consider the p chart.
2.3.2 Modified improved probability limits (MIPL) for the p chart

In Zhang et al. (2004), the IPL method was used for the geometric control chart so that
AFAR = FAR, (we call this an anti-conservative approach for the probability limits design).
Here we modify and refine their method so that it takes into account both the conservative (i.e.
AFAR < FAR,) and the anti-conservative approach to designing probability limits. This way we
obtain charts with an AFAR that are much closer to the FAR,. Firstly we generate some set A,
with all values of a = [nLCL,] satisfying some condition that will be discussed below. Then for
each a € A, we find the pair (a, b;) that results in AFAR < FAR, and another pair (a, b,) that
results in AFAR > FAR,. Hence, to this end, we let S(a, b;|n, p,) for i = 1,2 denote a set of
control limit constants generated from set A, for some given n and p,. Next, let S; denote a
subset of S with control limit constants that yield an AFAR(a, b;|n, po) < FAR, and similarly let
S, denote a subset of S with control limit constants that yield an AFAR(a, b,|n,py) = FAR,. In
this case, it is easy to see that S; U S, = S. Then proceed with the following steps as in Zhang et
al. (2004).

Step 1: Generate set A.
Leta = [nLCLp] € A ={NA,0,1, ..., L, } Where L, is equal to the largest integer such that

Lmax

> (7) po/ (1 = po)™/ < FAR, (211)

j=0

holds, for some specified n, FAR, and p,. Recall that “NA” stands for not applicable which
implies that LCL, <0. Unlike Equation (2.8) for the CPL method, we take the left tail to be at

FAR,
-

least FAR, rather than
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Step 2: For each a € A, find the corresponding integer values of b such that

P (Y; < alpy) + B.(Y; = b + 1|py) = AFAR(a,b|n,p,) € S (2.12)

i.e. for each a € A in Step 1, we find (a, b;) € S; for i = 1,2. Thus, in total we obtain 2 x

(Lmax + 2) pairs of control limit constants.

Step 3: For each pair (a, b;) in Step 2 we compute the percentage relative deviation from the
FAR, defined by

AFAR(a, bi|n,py) — FAR,
D=1 2.13
00 % ( FAR, ) (2.13)
Step 4: Choose the pair (a*, b*) € S such that
AFAR(a, b*|n, po) = P05 {AFAR (a, bi|n, po)) (2.14)

i.e. we choose the pair (a*, b*) that result in the minimum absolute deviation of AFAR from the
FAR,. The MIPL for the p chart are given by LCL,, = a*/n and UCL,, = (b* + 1) /n.

To picture the MIPL procedure, assume that set G contains all possible pairs of control
limit constants (a, b) where a and b are integers with a < b and a € A (for the MIPL method),
for some given n and p,. Some of these pairs will yield AFAR values much closer to the FAR,
and others will yield AFAR values that differ significantly from the FAR,. Note that the control
limit constants of all three methods (i.e. k-SL, CPL and MIPL) will be in set G. Furthermore, let
S C G as defined in Equation (2.12). That is, for each a, we find the corresponding two values of
b (i.e. b, and b,) such that the resulting AFAR will either be at most equal or at least equal to the
target FAR,, respectively. Then, consequently the four step procedure for the MIPL method
results in the pair (a*, b*), which is as close as possible to the FAR,, that is, a local 1C optimal

pair in set S and subsequently, this pair will be the global optimal pair also in set G.
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Remark 1: MIPL for the np chart

Since the p chart is equivalent to the np chart when the sample size is fixed, and in this
essay we assume fixed sample size (FSS) scheme, then it follows that the corresponding MIPL

for the np chart are given by LCL,, = a® and UCLy,, = b* + 1.

In the next section, we consider a numerical example and a comparative study for the

three methods considered here.

2.4 lllustrations and performance comparisons of the p chart methods

Firstly we illustrate the three methods using an example. Following this, we do an
empirical comparison among the three methods by looking at different combinations of n and p,.
Furthermore, we show that the MIPL method can be formulated such that it yields similar or

better nearly ARL-unbiased control limits compared to the traditional methods.

2.4.1 Example

Example 2.1. Assume that a manufacturing production process must operate at a
proportion nonconforming (fallout) of 20% and that n = 100 and FAR, = 0.0027.

Chart Designs

The traditional charts for this example are constructed and illustrated in Sections 1.11.1
and 2.3.1 and are displayed in Table 2.2. For the MIPL method, the calculations are as follows.
From Step 1, the value of L,,,, that satisfies Equation (2.11) is equal to 9, so that A =
{NA, 0,1, ...,9}. For each a € A, we find the corresponding b; such that the AFAR(a, b;|100,0.2)
of these pairs is an element of S (see Step 2). Table 2.1 shows all the possible pairs of control
limit constants in set S (with subsets S; and S,, as defined earlier), the AFAR and the percentage

relative deviation from the FAR, for each pair (calculated in Step 3). Then using Step 4, we see
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that in Table 2.1, (a*, b*) = (9, 34) are the optimal values for the control limits constants of the
MIPL method when the process is IC, with an AFAR that is only 1.12% lower than 0.0027. This
Is indicated by the use of grey shading in Table 2.1.

Table 2.1: All possible pairs of control limits constants in set S for the p chart using the
MIPL method for n =100, p, = 0.2 and FAR, = 0.0027

Set S; Set S,
a=nLCL, | b, =nUCL, — 1 AFAR D] a =nLCL, | b, =nUCL, —1 | AFAR D]
NA 32 0.00155 | 42.58% NA 31 0.00313 | 15.91%
0 32 0.00155 | 42.58% 0 31 0.00313 | 15.91%
1 32 0.00155 | 42.58% 1 31 0.00313 | 15.91%
2 32 0.00155 | 42.57% 2 31 0.00313 | 15.92%
3 32 0.00155 | 42.55% 3 31 0.00313 | 15.94%
4 32 0.00155 | 42.44% 4 31 0.00313 | 16.05%
5 32 0.00157 | 41.88% 5 31 0.00315 | 16.61%
6 32 0.00163 | 39.69% 6 31 0.00321 | 18.80%
7 32 0.00183 | 32.32% 7 31 0.00341 | 26.17%
8 32 0.00241 | 10.89% 8 31 0.00399 | 47.60%
9 34 0.00267 | 1.12% 9 33 0.00307 | 13.72%

Table 2.2 summarizes the three methods along with the AFAR values, the percentage

relative deviation from the FAR,, for each pair and the AARL, and ASDRL, values, respectively.

Table 2.2: Comparison among the three methods for the p chart constants for n = 100, p, = 0.2
and FAR, = 0.0027

Method (a,b) | AFAR |D| | AARLy, | ASDRL,
3-sigma limits (8,31) | 0.00399 | 47.60% | 250.93 250.43
Conventional probability limits (8,33) | 0.00159 | 41.03% | 628.03 627.53
Modified improved probability limits (9,34) | 0.00267 | 1.12% | 374.58 374.08

It is clear that, for this example, the MIPL method results in control limits with AARL,

and ASDRL, values that are almost close to the target nominal value of approximately 370.

2.4.2 Empirical comparison of the p chart methods

In Example 2.1, we showed that the MIPL method yields a better AFAR and a better

AARL, compared to the 3-SL and CPL methods for n = 100 and p, = 0.2. We now investigate

whether this is true for other combinations of n and p, values. Firstly, consider the comparison
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between the 3-SL, the CPL and the MIPL methods in Figures 2.1 (a) and (b). For a fixed sample
of size 50 and varying the IC proportion nonconforming from 0.01 to 0.50 in increments of 0.01,
we find that the 3-SL method results in an extremely large number of false alarms when the
proportion nonconforming is very small and stabilizes as the proportion nonconforming
increases. For the CPL method, the resulting FARs are always less than or equal to FAR,,
however, the resulting ASDRL, is undesirable, since it is mostly much higher than the nominal
value of approximately 370. Although, for small values of p,, the MIPL method results in high
fluctuations from the nominal values, but as p, increases, it yields AFAR and ASDRL,, values that

are much closer to the nominal values compared to the traditional methods.
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(a) The fluctuation occurrence of the AFAR for a FAR, = 0.0027
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(b) The fluctuation occurrence of the ASDRL, for a SDRL, of approximately 370
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Figure 2.1: Comparison of the behavior of the run-length characteristics among the three designs
of the p chart when the process is IC for n = 50 and varying p, = 0.01(0.01)0.50
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Furthermore, for a fixed p, =0.2 and varying the sample size, the AFAR behavior is

shown in Figure 2.2. For the 3-SL method, there are extremely high fluctuations in the AFAR

compared to the other methods. Although the CPL method is conservative, it is seen that it results

in high ASDRL, values (see Figure 2.1 (b)). For very small sample sizes, the MIPL method has

high fluctuations from the nominal value (not as bad as the 3-SL method) but once the sample

size is greater than 25 the fluctuations tend to be closer to the target value of 0.0027 than the

traditional methods. This pattern indicates that, as the sample size increases, the MIPL method

will result in AFAR and ASDRL, values that are closer to target nominal values faster than the

two traditional methods. Similar patterns were observed when investigating other combinations

of n and p,.

3-SL

CPL

MIPL

0.010 A

0.008 |

0.006 A

0.004 |

Attained false alarm rate

0.002 4

0.000 1

0 25 50 75
Sample size

0

0.0027

Figure 2.2: Comparison of the behavior of the AFAR among three designs of the p chart when
the process is IC for p, = 0.2 and varying n = 1(1)75
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In Table 2.3 we investigate more combinations of n and p, and we find that, for all
different combinations under consideration, the MIPL method either yields the same or better
AFAR values with respect to the target FAR, = 0.0027. For example, for n = 500 and p, = 0.05,
the control limits of the MIPL method yield an AFAR = 0.00270 whereas the 3-SL and the CPL
methods yield an AFAR of 0.00316 and 0.00201, respectively. However, when n = 20 and p, =
0.2, all three methods yield an AFAR of 0.00259, in this case all three methods yield the same
control limits. For n =5 and p, = 0.4 or 0.5, all three methods yield an AFAR of zero and

consequently the AARL, and the ASDRL, approach infinity (i.e. does not exist).

Therefore, from the discussion above we see that Equation (2.14) ensures that the MIPL
method yields AFAR and ASDRL, values that are the same or much closer to the nominal values

compared the two traditional methods.
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Table 2.3: Comparison of the AFAR values and the corresponding percentage relative deviation (in brackets) from the nominal value
of 0.0027 for the 3-SL, CPL and MIPL methods of the p chart in rows 1, 2 and 3, respectively, for different combinations of n and p,

n\p, 0.01 0.02 0.05 0.1 0.2 0.25 03 0.4 05
Il 0.04901 (1715.18%) 0.00384 (42.31%) 0.02259 (736.76%) | 0.00856 (217.04%) | 0.00672 (148.89%) | 0.00098 (63.83%) | 0.00243 (10.00%) 00) 00)
5 I 0.00098 (63.70%) 0.00008 (97.13%) 0.00116 (57.11%) | 0.00046 (82.96%) | 0.00032 (88.15%) | 0.00098 (63.83%) | 0.00243 (10.00%) 00) 0()
0.00098 (63.70%) 0.00384 (42.31%) 0.00116 (57.11%) | 0.00046 (82.96%) | 0.00032 (88.15%) | 0.00098 (63.83%) | 0.00243 (10.00%) 0() 0()
| 0.00427 (58.01%) 0.01618 (499.17%) 0.0115 (326.06%) | 0.01280 (373.90%) | 0.00637 (13.59%) | 0.00351 (29.84%) | 0.00159 (41.10%) | 0.00168 (37.86%) | 0.00195 (27.66%)
10 [l 0.00011 (95.78%) 0.00086 (68.00%) 0.00103 (61.91%) | 0.00163(39.45%) | 0.00086 (67.99%) | 0.00042 (84.60%) | 0.00159 (41.10%) | 0.00168 (37.86%) | 0.00195 (27.66%)
0.00427 (58.01%) 0.00086 (68.00%) 0.00103 (61.91%) | 0.00163 (39.45%) | 0.00086 (67.99%) | 0.00351 (29.84%) | 0.00159 (41.10%) | 0.00168 (37.86%) | 0.00195 (27.66%)
I 0.01686 (524.42%) 0.00707 (161.80%) | 0.01590 (488.95%) | 0.00239 (11.63%) 0.00259 (3.90%) | 0.00394 (46.01%) | 0.00128 (52.63%) | 0.00214 (20.90%) |  0.00258 (4.56%)
20 [l 0.00100 (62.83%) 0.00060 (77.79%) 0.00257 (4.67%) 0.00239 (11.63%) 0.00259 (3.90%) | 0.00094 (65.36%) | 0.00208 (23.08%) | 0.00084 (68.85%) | 0.00258 (4.56%)
0.00100 (62.83%) 0.00060 (77.79%) 0.00257 (4.67%) 0.00239 (11.63%) 0.00259 (3.90%) | 0.00394 (46.01%) | 0.00208 (23.08%) | 0.00214 (20.90%) | 0.00258 (4.56%)
0.03615 (1238.81%) | 0.02172 (704.36%) 0.00328 (21.57%) | 0.00778 (188.28%) | 0.00311 (15.22%) | 0.00293 (8.45%) | 0.00244 (9.74%) | 0.00117 (56.68%) | 0.00143 (47.00%)
30 [l 0.00022 (91.76%) 0.00030 (88.88%) 0.00057 (78.76%) | 0.00202(25.19%) | 0.00214 (20.75%) | 0.00100 (63.05%) | 0.00094 (65.24%) | 0.00117 (56.68%) | 0.00143 (47.00%)
0.00332 (22.88%) 0.00289 (7.17%) 0.00328 (21.57%) | 0.00202 (25.19%) | 0.00214 (20.75%) | 0.00278 (3.09%) | 0.00274 (1.46%) | 0.00285 (5.71%) 0.00264 (2.18%)
I 0.00750 (177.68%) 0.00824 (205.22%) 0.00339 (25.63%) | 0.00506 (87.52%) | 0.00307 (13.67%) | 0.00185 (31.39%) | 0.00302 (11.75%) | 0.00182 (32.73%) | 0.00222 (17.72%)
40 Il 0.00069 (74.61%) 0.00118 (56.47%) 0.00071 (73.65%) | 0.00147 (45.57%) | 0.00112 (58.37%) | 0.00159 (41.18%) | 0.00145 (46.23%) | 0.00182 (32.73%) | 0.00222 (17.72%)
I 0.00069 (74.61%) 0.00118 (56.47%) 0.00339 (25.63%) | 0.00147 (45.57%) 0.00245 (9.14%) | 0.00272 (0.89%) | 0.00264 (2.18%) | 0.00246 (9.04%) | 0.00222 (17.72%)
0.01382 (411.75%) 0.01776 (557.71%) 0.00319 (18.09%) | 0.00322 (19.26%) 0.00270 (0.14%) | 0.00312 (15.41%) | 0.00309 (14.53%) | 0.00213 (21.07%) |  0.00260 (3.62%)
50 I 0.00160 (40.88%) 0.00048 (82.29%) 0.00076 (72.00%) | 0.00100 (62.79%) | 0.00222 (17.86%) | 0.00151 (43.91%) | 0.00166 (38.67%) | 0.00128 (52.72%) | 0.00260 (3.62%)
0.00160 (40.88%) 0.00321 (18.88%) 0.00319 (18.09%) | 0.00322 (19.26%) 0.00270 (0.14%) | 0.00270(0.18%) | 0.00261(3.35%) | 0.00272 (0.61%) 0.00260 (3.62%)
I 0.00692 (156.30%) 0.00397 (47.09%) 0.00412 (52.53%) 0.00271 (0.51%) 0.00247 (8.49%) | 0.00356 (31.93%) | 0.00236 (12.73%) | 0.00297 (10.06%) | 0.00244 (9.47%)
75 (Il 0.00097 (64.23%) 0.00077 (71.32%) 0.00123 (54.35%) | 0.00138 (49.01%) | 0.00217 (19.67%) | 0.00116 (57.02%) | 0.00142 (47.44%) | 0.00201 (25.53%) | 0.00244 (9.47%)
0.00097 (64.23%) 0.00397 (47.09%) 0.00412 (52.53%) 0.00271 (0.51%) 0.00247 (8.49%) | 0.00302 (11.84%) | 0.00248 (8.24%) | 0.00269 (0.51%) 0.00270 (0.08%)
0.01837 (580.52%) 0.00406 (50.45%) 0.00427 (58.30%) | 0.00490 (81.57%) | 0.00399 (47.60%) | 0.00377 (39.76%) | 0.00308 (14.20%) | 0.00290 (7.04%) | 0.00352 (30.28%)
100 [f| 0.00053 (80.20%) 0.00093 (65.48%) 0.00146 (45.76%) | 0.00113 (58.18%) | 0.00159 (41.03%) | 0.00171 (36.52%) | 0.00205 (23.90%) | 0.00207 (23.30%) | 0.00179 (33.71%)
0.00343 (27.12%) 0.00406 (50.45%) 0.00146 (45.76%) 0.00275 (1.94%) 0.00267 (1.12%) | 0.00275(1.7%) | 0.00270 (0.00%) | 0.00260 (3.53%) 0.00265 (1.71%)
0.00421 (55.97%) 0.00341 (26.19%) 0.00360 (33.45%) | 0.00205 (24.11%) | 0.00307 (13.70%) | 0.00251 (7.01%) | 0.00319 (18.16%) | 0.00341 (26.22%) | 0.00241 (10.91%)
150 (il 0.00085 (68.58%) 0.00095 (64.93%) 0.00100 (63.08%) | 0.00145 (46.12%) | 0.00203 (24.72%) | 0.00173 (35.88%) | 0.00232 (14.16%) | 0.00196 (27.56%) | 0.00241 (10.91%)
0.00421 (55.97%) 0.00341 (26.19%) 0.00189 (29.83%) 0.00283 (4.68%) 0.00263 (2.59%) | 0.00251(7.01%) | 0.00264 (2.18%) | 0.00267 (1.29%) 0.00274 (1.54%)
0.00430 (59.09%) 0.00748 (177.01%) 0.00270 (0.01%) 0.00340 (25.96%) | 0.00352(30.28%) | 0.00249 (7.86%) | 0.00257 (5.00%) | 0.00300 (11.03%) | 0.00228 (15.58%)
200 [l 0.00101 (62.50%) 0.00253 (6.27%) 0.00156 (42.08%) | 0.00127 (52.99%) | 0.00189 (30.10%) | 0.00182 (32.70%) | 0.00194 (28.27%) | 0.00237 (12.21%) | 0.00228 (15.58%)
0.00430 (59.09%) 0.00253 (6.27%) 0.00270 (0.01%) 0.00292 (8.00%) 0.00274 (1.43%) | 0.00268 (0.82%) | 0.00268 (0.68%) | 0.00272 (0.68%) 0.00284 (5.28%)
0.00521 (92.89%) 0.00317 (17.31%) 0.00316 (17.07%) | 0.00233 (13.86%) | 0.00305 (12.79%) | 0.00230 (14.73%) | 0.00289 (7.05%) | 0.00297 (10.14%) | 0.00270 (0.12%)
500 || 0.00065 (76.06%) 0.00107 (60.53%) 0.00201 (25.66%) | 0.00215(20.51%) | 0.00207 (23.23%) | 0.00230 (14.98%) | 0.00244 (9.52%) | 0.00220 (18.58%) | 0.00270 (0.12%)
0.00190 (29.61%) 0.00269 (0.37%) 0.00270 (0.04%) 0.00271 (0.40%) 000271 (0.24%) | 0.00270 (0.08%) | 0.00269 (0.25%) | 0.00273 (1.17%) 0.00270 (0.12%)
0.00440 (62.91%) 0.00319 (18.33%) 0.00272 (0.82%) 0.00291 (7.88%) 0.00301 (11.36%) | 0.00239 (11.44%) | 0.00279 (3.38%) | 0.00252 (6.75%) | 0.00242 (10.47%)
750 [l 0.00127 (53.03%) 0.00154 (42.91%) 0.00189 (30.15%) | 0.00185 (31.42%) | 0.00220 (18.37%) | 0.00239 (11.57%) | 0.00244 (9.80%) | 0.00252 (6.75%) | 0.00242 (10.47%)
0.00238 (11.83%) 0.00268 (0.85%) 0.00272 (0.82%) 0.00278 (3.02%) 0.00268 (0.61%) | 0.00272(0.85%) | 0.00270(0.13%) | 0.00269 (0.19%) 0.00271 (0.19%)
0.00333 (23.39%) 0.00266 (1.46%) 0.00305 (12.94%) 0.00270 (0.05%) 0.00303 (12.17%) | 0.00243 (9.87%) | 0.00267 (1.03%) | 0.00267 (1.13%) 0.00265 (2.02%)
1000 [f| 0.00113 (58.11%) 0.00204 (24.48%) 0.00228 (15.44%) 0.00261 (3.28%) 0.00232 (14.09%) | 0.00243 (9.95%) | 0.00238 (12.03%) | 0.00240 (11.05%) | 0.00265 (2.02%)
0.00270 (0.18%) 0.00266 (1.46%) 0.00272 (0.82%) 0.00270 (0.05%) 0.00270 (0.02%) | 0.00269 (0.40%) | 0.00271 (0.329%) | 0.00270 (0.10%) 0.00270 (0.07%)
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2.4.3 Performance

Next we investigate the performance of the p chart using these three methods when the
process has a sustained shift from the IC value. It is generally known that when the process is IC,
the AARL, of a control chart should be large (preferably close to the ARL,) and when the process
is OOC, the AARL; should be small. To study the OOC performance we use an ARL-curve (it
shows an ARL for any possible value that parameter p can shift to (see Acosta-Mejia (1999))).
For example, in Example 2.1 the control limit constants (9, 34) resulted in an AFAR and an
AARL, much closer to FAR, and ARL,, respectively. However, assuming that only sustained
shifts with increments of 0.01 are of interest, this pair is not optimal in detecting small process
deterioration, since the maximum of the ARL curve is not equal to AARL, (where p, = 0.2). That
is, for some values of p (# p,) AARL, > AARL,. Control charts with this property were defined
in Pignatiello et al. (1995) as ARL-biased charts. Acosta-Mejia (1999) showed that for the p
chart, it is not always possible to obtain exact unbiasedness (because of the discrete nature of the

plotting statistics).

Our aim in this section is to construct control charts that are nearly ARL-unbiased using

the MIPL method, hence we proceed as follows.

Step 1: Let p* be the value of the proportion nonconforming corresponding to the peak of the
ARL curve, so that ARL(a, b;|n, p™) is the value of the peak of the curve, with (a, b;) € S defined
in Equation (2.12). In addition, ARL(a, b;|n, py) is the AARL, when p = p,, for some i = 1,2.
Then construct the ARL curve for each (a, b;) € S for some given increment shift of size §.

Step 2: For each pair (a, b;) in Step 1, we compute

q= ARL(a, bilnt p*) - ARL(Q, bilnl pO) (215)

Note that g = 0 if the p chart has ARL-unbiased control limit constants.
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Step 3: Choose the pair (a®, b*) € S such that

(@bIES ApT(a, by, D). (2.16)

min|q|

ARL(a*, b*|n,p) =

i.e. we choose the pair (a”, b*) that result in the smallest value of g. Thus the nearly ARL-
unbiased MIPL for the p chart are given by LCL, = a*/n and UCL, = (b* + 1)/n. Note that, if
there is more than one pair that satisfies Equation (2.16), then we must choose the pair that
results in an AARL, closest to the ARL,.

To illustrate this, we use Example 2.1 to construct a p chart that results in nearly ARL-
unbiased control limits. Taking the pairs (a, b;) in S that are given in Table 2.1 as the control
limit constants, we construct the ARL curves as shown in Figures 2.3 (a) and (b). Figure 2.3 (a)
shows all the control limit constants in set S; and Figure 2.3 (b) shows all the control limit
constants in set S,. Note that the pairs (0, 31) and (0, 32) were not plotted as the resulting ARL
values (y-axis) are excessively high. It is evident that most of the control limit constants in set S
have undesirable OOC values in addition to having a poor IC performance. The pair (8, 32)
results in g = 0 (see Equation (2.15)); hence this pair results in an ARL-unbiased design for the p

chart.
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(@) ARL curves for control limit constants in set S; from Table 1
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(b) ARL curves for control limit constants in set S, from Table 1

Altained average run-length
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Figure 2.3: ARL curves of the control limit constants generated by the MIPL methods with p, = 0.2 and n = 100
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In Figure 2.4, we plot the competing traditional methods’ ARL curves along with the
nearly ARL-unbiased MIPL pair (8, 32) and deduce that the 3-SL method yields ARL-biased
control limits. The CPL method has ARL-unbiased control limits, but the AARL, = 628.03 is
much higher than the expected value of 370.4 and, lastly, the ARL-unbiased MIPL method results
in AARL, = 415.66 (much closer to 370.4 than 628.03). Therefore, if the OOC performance of
the p chart is also important, the practitioner may consider taking into account Equation (2.16)

rather than Equation (2.14).
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Proportion nonconforming

Figure 2.4: ARL curves for all three methods with p, = 0.2 and n = 100

Simulations indicate that when the parameters n and p are both small, the nearly ARL-
unbiased MIPL method does not result in nearly ARL-unbiased control limits, however, this
method never performs any worse than the 3-SL and CPL methods. In fact, for very small p,
values, all three methods require a high value of n for the chart to be efficient, but, in most cases,
the nearly ARL-unbiased MIPL method yields better performance than its competitors because
the set S provides more options for the optimal pair (a” b*) compared to 3-SL and CPL

methods, which have only one option for the pairs (a, b).
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Remark 2: Nearly ARL-unbiased control limits for the np chart

It follows similarly (from Remark 1) that the nearly ARL-unbiased control limits for the

np chart are given by LCL,, = a® and UCL,,, = b* + 1.

2.5 Statistical design of the ¢ chart

Let Y;4,...,Yn, i =12,.. and n>1 be a sample of independent random variables
Y; = X5, Y, ~POI(c) where cis the number of nonconformities (when ¢ = ¢, the process is
IC). Let LCL, and UCL, denote the lower and upper control limits of the c¢ chart, respectively.
Montgomery (2013, p. 331) defined S, the probability of no signal (or the Type Il error

probability), as a function of c:

B(c) =P(LCL. <Y; < UCL|c) 0<c<o
= P(Y; < UCL.|c) — P(Y; < LCL,|c)

—Cn.j —C,J
=Ze.c _Ze_c_ (2.16)
! !

Jj=0 Jj=0

The control limit constants d and f are related to the lower and upper control limits,
respectively, and are defined in Section 2.5.1. Note that 8, = B(c,), denotes the probability of no

signal when the process is IC. Further, note that the probability of a signal equals

1—-B(c) =P(; = UCL.|c) + P(Y; < LCL.|c) (2.17a)

and
1—B(co) = P(Y; = UCL.|cy) + P(Y; < LCL.|co) = AFAR. (2.17b)
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2.5.1 Traditional methods for designing the ¢ chart
k-sigma limits

The control limits for the k-SL method are given by Equation (1.12). So that, for the k-SL

method, the control limit constants, d and f are given by

[UCL.] ifUCL, isnotan integer

d=[LCL]and f = { UCL,—1 ifUCL, is an integer ’

(2.18)
respectively.
Conventional probability limits

For the CPL method, the control limits are computed as follows. For the LCL., using

Equation (1.14) we find the largest integer d = [LCL.] that makes the left tail probability,

F2R Thus

P (Y; < dlco), to be at most equal to —

a e o MRy (2.19)

j! 2

Following this we have that LCL, = d. If d <0, it means that LCL,. < 0 then we assume that the
LCL, does not exist since the number of nonconformities is never negative. For Case K, this
arises when ¢, is small, for instance, for the 3-SL this happens when ¢, <9 (see Chakraborti and
Human (2008)). In such a situation, LCL, is said to be not applicable (NA).

For the UCL,, again using Equation (1.14) we find the smallest integer f = [UCL.] — 1

that makes the right tail probability, B-(Y; = f + 1|c,), to be at least equal to 1 — FAZR‘), i.e.
. e~C0cy) FAR
Yitre—, S>1-— (2.20)
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Following this, UCL. = f + 1. In the event that LCL, is not applicable, for Equation (2.20) we
find f so that

P.(Y; > f +1|c,) = 1 — FAR,, (2.21)

Problem associated with the traditional methods

According to the recommendations in the literature, when the normal approximation to
the Poisson distribution is satisfied (i.e. central limit theorem), these methods should yield
attained run-length properties that are close to the nominal values. However, it has been shown
that this is not the case; see, for example, Chakraborti and Human (2008) and Castagliola and Wu
(2012). For illustration, suppose that FAR, = 0.0027 and ¢, = 20. According to Montgomery
(2013, p. 101) the normal approximation is satisfied since c, = 15, thus we would expect that the
3-SL and CPL methods result in an AFAR much closer to the FAR,. However, for the 3-SL
method using Equations (1.12) and (2.18), we find d =6 and f = 33 so that Equation (2.17b)
yields AFAR = 0.00294 which is 9.02% higher than the nominal value of 0.0027. On the other
hand, for the CPL method using Equations (2.19) and (2.20) we find a =7 and b = 35 so that
Equation (2.17b) yields AFAR = 0.00158 which is 41.40% lower than the nominal value of
0.0027. The corresponding AARL, values are 339.72 and 632.01, respectively. It is clear for this
example that these traditional control charts yield AFAR and AARL, that are significantly
different from the nominal values. In this example, the 3-SL method chart signals a bit more
often than expected when the process is IC and the CPL method chart signals much less often
than what is nominally expected, which also seems undesirable.

In the next section, we similarly offer a solution to this problem by considering a MIPL

method for the ¢ chart.
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2.5.2 Modified improved probability limits (MIPL) for the ¢ chart

Similar to the MIPL method for the p chart, we first generate set A. Further, we let
S(d, filco) for i = 1,2 denote a set of control limit constants generated from set A, for some
given c,. Next, let S; denote a subset of S with control limits that yield an AFAR(d, fi|cy) <
FAR, and similarly let S, denote a subset of S with control limits that yield an AFAR(d, f|cy) =
FAR,. Then proceed with the following steps as in Zhang et al. (2004).

Step 1: Generate set A.
Letd = [LCL.] € A ={NA, 0,1, 2, ..., Ly,ax } Where L., is equal to the largest integer such that

Lmax .
e_COC ]
E - ° < FAR, (2.22)
=

holds, for some FAR, and c,. “NA” stands for not applicable, it implies that LCL, < 0. Note the
difference between Equations (2.19) and (2.22).

Step 2: For each d € A, we find the corresponding values of f such that,

P,(Y; < dlcy) + B-(Y; = f + 1|c,) = AFAR(d, f|co) € S (2.23)

i.e. for each d € A in Step 1, we find (d, f;) € S; for i = 1,2. Thus, in total we obtain 2 x

(Lyax + 2) pairs of control limit constants.

Step 3: For each pair (d, f;) in Step 2 we compute the percentage relative deviation from the
FAR, defined by

AFAR(d, fi|co) — FARO) (2.24)

D =100 x (
FAR,

Step 4: Choose the pair (d*, f*) € S such that
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AFAR(d", f*|co) = “PO% AFAR(d, fi|co). (2.25)

min|D|

I.e. we choose the pair (d*, f*) that result in the minimum absolute deviation of AFAR from the
FAR,. The MIPL for the c chart are given by LCL, = d* and UCL, = f* + 1.

Similarly to the MIPL procedure of the p chart in Section 2.3.2, the four step procedure
for the MIPL method of the ¢ chart results in the pair (d*, f*), which is as close as possible to the
target FAR,, that is, a local IC optimal pair in set S and subsequently, this pair will be the global

optimal pair also in set G.

Remark 3: MIPL for the u chart

Similarly, the corresponding MIPL for the u chart can be formulated by assuming that

Y; j~POI(u) where u is the OOC average number of nonconformities per inspection unit, by
defining Y; =1 i=1Y;;. For example, the Shewhart u chart control limits are given in
n :

Montgomery (2013, p. 324) and using u, instead of c, in Equations (2.19) and (2.20) yield the
corresponding CPL method.

In the next section, we consider a numerical example and a comparative study for the

three methods of the ¢ chart considered here.
2.6 lllustration and performance comparison of the ¢ chart methods

Firstly we illustrate the three methods using an example. Following this, an empirical
comparison between the three methods is done by considering different values of the parameter
co. Furthermore, we show that the MIPL method can be formulated such that it yields similar or

better nearly ARL-unbiased control limits compared to the traditional methods.
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2.6.1 Example

Example 2.2. Assume that a manufacturing process produces inspection units that
normally have 20 defects with FAR, = 0.0027.

Chart Designs

The traditional charts for this example have been found in Section 2.5.1 and are displayed
in Table 2.5. For the MIPL method, the calculations are as follows. From Step 1, the value of
L.qx that satisfies Equation (2.22) is 8, so that A = {NA, 0,1, ...,.8}. For each d € A, we find the
corresponding f; such that AFAR(d, f;|20) of these pairs is an element of S (see Step 2). Table
2.4 shows all possible pairs of control limit constants in set S (with subsets S; and S,), the AFAR
and the percentage relative deviation from the FAR, for each pair (calculated in Step 3). Then
using Step 4, we see that in Table 2.4, the pair (d*, f*) = (4, 33) are the optimal pair of control
limits of the MIPL method when the process is IC, with an AFAR that is 0.20% higher than the
0.0027. This is indicated by the use of grey shading in Table 2.4.

Table 2.4: All possible pairs of control limit constants in set S for the ¢ chart using the MIPL

method
Set S; Set S,
d=LCL, f=UCL. —1 AFAR D] d=LCL, f=UCL, —1 AFAR D]
NA 33 0.00269 0.43% NA 32 0.00473 | 75.09%
0 33 0.00269 0.43% 0 32 0.00473 | 75.09%
1 33 0.00269 0.43% 1 32 0.00473 | 75.09%
2 33 0.00269 0.41% 2 32 0.00473 | 75.11%
3 33 0.00269 0.31% 3 32 0.00473 | 75.21%
4 34 0.00151 | 44.22% 4 33 0.00271 | 0.20%
5 34 0.00156 | 42.19% 5 33 0.00276 2.24%
6 34 0.00174 | 35.40% 6 33 0.00294 | 9.02%
7 34 0.00227 | 16.01% 7 33 0.00347 | 28.41%
8 36 0.00251 7.03% 8 35 0.00289 7.07%

Table 2.5 summarizes the three charting methods (control limits) along with the AFAR
and the percentage relative deviation from the FAR, for each pair, AARL, and ASDRL, values,

respectively.
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Table 2.5: Comparison among the three methods of the ¢ chart for a FAR, = 0.0027 and ¢, = 20

Method (d,f) | AFAR |D| AARL, | ASDRL,
3-sigma limits (6,33) | 0.00294 | 9.02% 339.72 339.22
Conventional probability limits (7,35) | 0.00158 | 41.40% 632.01 631.51
Modified improved probability limits (4,33) | 0.00271 | 0.20% 369.63 369.13

It is clear that, for this example, the MIPL method results in control limit constants with
much improved AARL, and ASDRL, values compared to the traditional 3-SL and CPL methods.
For this example, ¢, = 20, the control limits (d, f) = (4, 33) are the only values that ensure that

we get as close as possible to the nominal ARL and SDRL values.

2.6.2 Empirical comparison of the ¢ chart methods

In Example 2.2, we showed that the MIPL method yields better AFAR and AARL, values
when compared to the 3-SL and CPL methods for ¢, = 20. We now investigate whether this is
true for other values of c,. In Figures 2.5 (a) and (b), the AFAR and ASDRL, values for small ¢,
are not close to their respective nominal values, that is, when the normal approximation to the
Poisson distribution is not satisfied the performance of the c chart is severely degraded
(especially for 3-SL). However, as the process parameter increases, the AFAR and ASDRL,
values fluctuate more or less around the nominal values for the MIPL method. Whereas, the 3-SL
method results in relatively higher false alarms for most of the process parameters and the CPL
method has very high values for the ASDRL, (which is undesirable when the process is IC).
Thus, in Figure 2.5, we see that the MIPL approach would be a preferred method to design the ¢

chart when the process is IC.
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(a) The fluctuation occurrence of the AFAR for a FAR, = 0.0027
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(b) The fluctuation occurrence of the ASDRL, for a SDRL, of approximately 370
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Figure 2.5: Comparison of the behavior of the run-length characteristics among three methods of
the ¢ chart when process is IC
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2.6.2 Performance

Next we investigate the performance of the c¢ chart using these three methods when the
process has a sustained shift from the IC value. For example, in Example 2.2, the pair (4, 33)
resulted in AFAR and AARL, values much closer to FAR, and ARL, for the MIPL method,
however, assuming that only sustained shifts with increments of 1 are of interest, this pair will
not be optimal in detecting process improvement, since the maximum of the ARL curve for this
pair is not equal to the AARL, (where ¢, = 20), see Figure 2.6 (b). From Figures 2.6 (a) and (b) it
can be seen that there is a pair such that for all shifts, AARL, < AARL,. For the c chart, it is not
always possible to obtain exact unbiasedness (because of the discrete nature of the Poisson
distribution).

Thus, if the objective is to construct a ¢ chart such that it has nearly ARL-unbiased control

limits, we need to proceed as follows.
Step 1: Let c* be the value of the proportion nonconforming corresponding to the peak of the
ARL curve, so that ARL(d, f;|c*) is the value of the peak of the curve, with (d, f;) € S defined in
Equation (2.23). In addition, ARL(d, f;|cy) is the AARL, when ¢ = ¢y, for i =1,2. Then
construct the ARL curve for each (d, f;) € S for some given increment shift of size §.
Step 2: For each pair (d, f;) in Step 1, we compute

q = ARL(d, f;|c*) — ARL(d, f;|co). (2.26)

Note that g = 0 if the ¢ chart has ARL-unbiased control limit constants.

Step 3: Choose the pair (d¥, f#) € S such that

ARL(d*, f*|c) = PO ARL(d, fi| ) (2.27)

min|q|
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i.e. we choose the pair (d*, f*) that result in the smallest value of q. Thus the nearly ARL-
unbiased MIPL for the ¢ chart are given by LCL. = d* and UCL. = f* + 1. Note that, if there is
more than one pair that satisfies Equation (2.27), then we must chose the pair that results in an
AARL, closest to the ARL,.

To illustrate this, we use Example 2.2 to construct a ¢ chart that will result in nearly ARL-
unbiased control limits. Taking the pairs (d, f) in S that are given in Table 2.4 as the control
limits, we construct the ARL curves shown in Figures 2.6 (a) and (b). It is evident that most of the
control limits in set S have undesirable OOC performance in addition to having poor IC
performance. The ¢ chart using MIPL method with control limits (4, 33) is not ARL-unbiased,

however the ¢ chart with the pair (8, 35) results in g = 0.
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(@) ARL curves for control limit constants in set S; from Table 2.3
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(b) ARL curves for control limit constants in set S, from Table 3

Allained average run-length
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Figure 2.6: ARL curve for the control limit constants generated by the MIPL method for ¢, = 20

© University of Pretoria




In Figure 2.7, we plot the competing traditional methods’ ARL curves along with the
nearly ARL-unbiased MIPL pair (8, 35) and deduce that the 3-SL method is ARL-biased.
Furthermore, the CPL method has ARL-unbiased control limits but the AARL, = 632.01 is much
higher than the expected value of 370.4 and the ARL-unbiased method results in ARL-unbiased
control limits with an AARL, equal to 345.91 (much closer to 370.4 than 632.01). Therefore, if
the OOC performance of the ¢ chart is also importance, the practitioner may consider taking into

account Equation (2.27) rather than Equation (2.25).
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Figure 2.7: ARL curves for all three methods for ¢, =20

Simulations indicate that when the parameter c, is small, the nearly ARL-unbiased MIPL
method does not result in ARL-unbiased control limits, however, this method never performs
worse than the 3-SL and CPL methods. In addition, we observed that as ¢, increases, the OOC
MIPL method vyields better performance than its competitors because the set S provides more
options for the optimal pair (d*, f#) compared to 3-SL and CPL methods, which have only one

option for the limits (d, f).
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2.7 Concluding Remarks

In this chapter, we proposed an MIPL method to design the p and ¢ control charts for Case
K and compared the results with the traditional methods (i.e. 3-SL and CPL). The MIPL method
ensures that, when the process is IC, the p and the c charts always have attained FAR and SDRL
values that are either the same as, or much closer to the nominal values compared to the
traditional methods. Furthermore, it was shown that the MIPL approach can be formulated such
that the p and ¢ charts have similar or better nearly ARL-unbiased control limits compared to
using traditional methods. The key component of the MIPL method is the fact that it creates a set
of control limits that a practitioner can use to choose the best possible pair of control limits to
design a p or ¢ control chart. For very small sample sizes and/or process parameters, the MIPL
method yields similar (and in some cases, better) results as the traditional methods, however as
the sample size and/or process parameters increase, the MIPL method either performs similar to
or outperforms the traditional methods.

52

© University of Pretoria



2.8 Appendix 2A: Microsoft® Excel calculations

We illustrate how the results in Example 2.1 were calculated.

3-sigma limits

The 3-sigma limits calculations in Table 2.2 were calculated as follows. The formula sheet is given by,

A B|C D E F G H
1 ¢ =INTEBSHED)
2- b =IFBYE-INTREYMININT(SBSHEO} LB MININT(SBSE9)B)
3
4 Check if b 15 an integer
5 —
6k 3
7
8 [CL =3BS2-B6*SQRT(SB52*(1-3B52)3BS3)
9 [CL =3B52+B6*SQRT(3BS2%(1-SB52)5BS3)
10
1
12
13
14
15
16 D)
17 =ABS((F14-0.0027/0.0027)
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and the corresponding value sheet is given by

A B C D E F G H

1 a 8.0

2 b KINI]

3

a4 Check if b is an integer

5 —

6 k 3

7

8 LCL 0.08000

9 LcL 0.32000

10

11

12

13

14

15

16 (D
17 47 60%%

Conventional probability limits

The conventional probability limits calculations in Table 2.2 were calculated as follows.

The formula sheet is given by,
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A B
1 =n [100
2 [ p [02
3
4 g=LcL| Left Tail
5 [0 =BINOMDIST(A3,5BS1,5B52, TRUE)
6 |1 =BINOMDIST(A6,5BS1,5B52, TRUE)
7 2 =BINOMDIST(A7,5BS1,5B52, TRUE)
8 |3 =BINOMDIST(AS%,5BS1,5B52, TRUE)
9 |4 =BINOMDIST(A9 $BS1,5B52, TRUE)
10 |5 =BINOMDIST(A10,5BS1,5B52, TRUE)
116 =BINOMDIST(A11,5BS1,5B52, TRUE)
12 |7 =BINOMDIST(A12,5BS1,5B52, TRUE)
13 8 =BINOMDIST(A13,5B51,5B52, TRUE)
14 9 =BINOMDIST(A14,5B$1,5B52, TRUE)
15 10  =BINOMDIST(A15,5B$1,5B52. TRUE)
16 11  =BINOMDIST(A16,5B$1,5B52. TRUE)
17 12  =BINOMDIST(A17,5BS1,5B52. TRUE)
18 13  =BINOMDIST(A18,5BS1,5B52. TRUE)
19 14  =BINOMDIST(A19,5BS1,5BS2. TRUE)
20 15  =BINOMDIST(A20,SBS1,5BS2.TRUE)
21 16  =BINOMDIST(A21,5SBS1,5BS2.TRUE)
22 17  =BINOMDIST(A22 $B$1,5BS2. TRUE)
23 18 =BINOMDIST(A23 $B$1,5BS2. TRUE)
24 19  =BINOMDIST(A24 $B$1,5BS2. TRUE)
25 20  =BINOMDIST(A25,5B$1,5B52. TRUE)
26 21  =BINOMDIST(A26,5B$1,5B52. TRUE)
27 |22  =BINOMDIST(A27,5B$1,5B52. TRUE)
28 23  =BINOMDIST(A28,5BS1,5B52. TRUE)
29 24  =BINOMDIST(A29 SBS1,5BS2. TRUE)
30 25  =BINOMDIST(A30,SBS1,5BS2. TRUE)
3126  =BINOMDIST(A31,SBS1,5BS2.TRUE)
3227  =BINOMDIST(A32,SBS1,5BS2. TRUE)
33 28  =BINOMDIST(A33 5B$1,5B52. TRUE)
34 20 =BINOMDIST(A34 5B$1,5BS2. TRUE)
35 30  =BINOMDIST(A355B$1,5B52. TRUE)
36 31  =BINOMDIST(A36,5B$1,5B52. TRUE)
37 32  =BINOMDIST(A37,5B$1,5B52. TRUE)
38 33  =BINOMDIST(A38,5BS1,5B52. TRUE)
39 34  =BINOMDIST(A39,SBS1,5B52. TRUE)

and the corresponding value sheet is given by

D E
upper lower

0.00135  0.00135
b=UCL-1 | Right Tail
0 =1-BINOMDIST(D3,5B51,SBS2.TRUE)
1 =1-BINOMDIST(D6,5BS1,SBS2. TRUE)
2 =1-BINOMDIST(D7,5BS$1,SB52. TRUE)
3 =1-BINOMDIST(DS,SBS$1,SBS2. TRUE)
4 =1-BINOMDIST(D9,5B51,5BS2. TRUE)
5 =1-BINOMDIST(D10,5B51.SB52, TRUE)
6 =1-BINOMDIST(D11,5B51.SB52, TRUE)
7 =1-BINOMDIST(D12,5B51.SB52, TRUE)
8 =1-BINOMDIST(D13,5B51.SB52, TRUE)
9 =1-BINOMDIST(D14,5B51.SB52, TRUE)
10 =1-BINOMDIST(D15,5B51.SB52, TRUE)
11 =1-BINOMDIST(D16,5B51.SB52, TRUE)
12 =1-BINOMDIST(D17,5B51.5B52, TRUE)
13 =1-BINOMDIST(D18,5B51.SB52, TRUE)
14 =1-BINOMDIST(D19,5B51,SB52, TRUE)
15 =1-BINOMDIST(D20,5B51.SB52, TRUE)
16 =1-BINOMDIST(D21,5B51,SB52, TRUE)
17 =1-BINOMDIST(D22 5B51.5B52, TRUE)
18 =1-BINOMDIST(D23,5B51.SB52, TRUE)
19 =1-BINOMDIST(D24,5B51.SB52, TRUE)
20 =1-BINOMDIST(D25,5B51.5B52, TRUE)
21 =1-BINOMDIST(D26,5B51.SB52, TRUE)
22 =1-BINOMDIST(D27,5B51.SB52, TRUE)
23 =1-BINOMDIST(D28,5B51.5B52, TRUE)
24 =1-BINOMDIST(D29,5B51,5B52, TRUE)
25 =1-BINOMDIST(D30,5B51.SB52, TRUE)
26 =1-BINOMDIST(D31,5B51.5B52, TRUE)
27 =1-BINOMDIST(D32,5B51,5B52, TRUE)
28 =1-BINOMDIST(D33,5B51.5B52, TRUE)
29 =1-BINOMDIST(D34,5B51.SB52, TRUE)
30 =1-BINOMDIST(D35,5B51.SB52, TRUE)
31 =1-BINOMDIST(D36,5B51.SB52, TRUE)
3 =1-BINOMDIST(D37,5B51.SB52, TRUE)
33 =1-BINOMDIST(D38,5B51,5B52, TRUE)
3 =1-BINOMDIST(D39,5B51.5B52, TRUE)
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A B C D

1 n 100 upper
2 p 02 0.00133
3

4 | g=LCL | Left Tail |  p=UCL1 |
5 0 0.00000 0
& 1 0.00000 1
7 2 0.00000 2
a8 3 0.00000 3
9 4 0.00000 4
10 3 0.00002 5
11 6 0.00008 6
12| 7 0.00028 7
13 8 0.00086 8
14| o 0.00233 9
15 10 0.00570 10
16 11 0.01257 11
17| 12 0.02333 12
18 13 0.04691 13
19 14 0.08044 14
20 15 0.12851 15
21 16 0.19234 16
2 17 027119 17
23| 18 036209 18
24 19 0.46016 19
25 20 0.55046 20
26 2 0.63403 21
27 2 0.73893 n
28 23 0.81001 23
29 A 0.86865 24
30 25 091252 25
31 26 0.94417 26
32 27 0.96385 27
3 28 0.97993 28
4 20 0.98875 29
35 30 099304 30
36 31 0.09687 3
37 3R 0.99845 3
38 33 0.99926 33
33 3 0.99966 M
40 35 099985 35
41 36 099994 36

E F
lower
000135

Right Tail |

1.00000

100000
100000
1.00000
1.00000

0.99908

P(No-Signal)

099902

099841

0.0015¢

6238.03

099972
099914
0.99767
0.99430
093743
0.97467
093309
091956
087149
0.830766
0.72881
0.63791
0.53534
0.44034
034397
026107
0.183%02
0.13133
0.08748
0.05383
0.03413
0.02002
0.01123
0.00606
0.00313
0.00133
0.00074
0.00034
0.00015
0.00006

Modified improved probability limits

The following formula and value sheets show how to calculate the value of L,,,, for the

MIPL method in Example 2.1.
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A B

1]

2 n 100

3 p 02

4

5

6 a=LCL Left Tail |
70 =BINOMDIST(A7 5B52,5B53, TRUE)
8 |1 =BINOMDIST(AS 5B52.5B53, TRUE)
9 2 =BINOMDIST(A2,5B52,5B53, TRUE)
10 3 =BINOMDIST(A10,5B52,5B53, TRUE)
11 4 =BINOMDIST(A11,5B52,5B53, TRUE)
12 5 =BINOMDIST(A12,5B52.5B53, TRUE)
13 6 =BINOMDIST(A13,5B52.5B53, TRUE)
14 7 =BINOMDIST(A14,5B52.5B53, TRUE)
15 8 =BINOMDIST(A15,5B52,5B53, TRUE)
16 9 =BINOMDIST(A16,5B52.5B53, TRUE)
17 |10 =BINOMDIST(A17,5B52,5B53, TRUE)
18 11 =BINOMDIST(A18,5B52.5B53, TRUE)
19 12 =BINOMDIST(A192,5B52.5B53, TRUE)
20 13 =BINOMDIST(A20,5B52.5B53, TRUE)
21 14 =BINOMDIST(A21,5B52.5B53, TRUE)
22 15 =BINOMDIST(A22 5B52.5B53, TRUE)
23 16 =BINOMDIST(A23 $B52.5B53, TRUE)
24 17 =BINOMDIST(A24,5B52.5B53, TRUE)
25 18 =BINOMDIST(A25 5B52.5B53, TRUE)
26 19 =BINOMDIST(A26,5B52.5B53, TRUE)
27 20 =BINOMDIST(A27 5B52.5B53, TRUE)
28 21 =BINOMDIST(A28 5B52.5B53, TRUE)
29 12 =BINOMDIST(A29 5B52.5B53, TRUE)
30 23 =BINOMDIST(A30,5B52.5B53, TRUE)
31 M4 =BINOMDIST(A31,5B52.5B53, TRUE)
32 25 =BINOMDIST(A32,5B52.5B53, TRUE)
33 26 =BINOMDIST(A33,5B52.5B53, TRUE)
34 27 =BINOMDIST(A34,5B52.5B53, TRUE)
35 28 =BINOMDIST(A335,5B52,5B53, TRUE)
36 20 =BINOMDIST(A36,5B52,5B53, TRUE)
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1]
2 n 100
3 P 02
4
5
6  a=L€L |  LefiTail |
7 0 0.0000000
8 1 0.0000000
9 2 0.0000001
10 3 0.0000006
11 4 0.0000037
12 5 0.0000187
13 6 0.0000730
14 7 0.0002770
15 8 0.0008554
16 9 0.0023336
17 10 0.0036964
18 11 0.0125749
19 12 0.0253288
20 13 0.0460122
21 14 0.0804437
22 15 0.1285055
23 16 0.1923376
24 17 02711890
25 18 0.3620871
26 19 0.4601614
27| 20 0.5504616
22| 2 06540332
29 2 0.7389328
3 23 0.8109128
31| o 0.9636463
32| 25 09125246
33 26 0.9441673
34 2 0.9638434
35 28 0.9799793
36 29 0.9887510
37 30 0.9939407
338 3 0.9968703
39 0 09934496
40| 33 0.9992631

The rest of the steps follow as discussed in Example 2.1.

Similar calculations were done for the ¢ chart in Example 2.2.
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Chapter 3

Synthetic quality control charts: An overview

3.1 Introduction

In the literature, many control charts have been proposed. Among the most popular
are the Shewhart charts, the CUSUM charts and the EWMA charts. Various adaptations and
generalizations of these basic charts have been considered, for example, the variable
sampling interval (VSI), the variable sample size (VSS) and the double sampling (DS) charts.
In this review chapter, our focus will be on a class of charts called the synthetic charts.

Wu and Spedding (2000a) originally defined a synthetic chart as the integration of a
Shewhart chart and a conforming run-length (CRL) chart, see Section 1.10. Following this,
Scariano and Calzada (2009) proposed a more general approach referred to as the generalized
synthetic chart (GSC) procedure. For the GSC procedure, a synthetic chart is defined as the
integration of some control charting procedure and a CRL chart. That is, a GSC consists of
two sub-charts, one, a basic (or a classical) chart for the parameter of interest and a second, a
CRL chart. However, unlike a classical chart, a signal is not based on a single charting
statistic falling beyond the control limits. Instead, when any sample produces a value beyond
the control limits of a classical chart, called a sub-chart of a synthetic chart, that sample is
marked as nonconforming and the control procedure moves to the second sub-chart, the CRL
chart, and a signal is obtained depending on the outcome of the CRL chart. Since Wu and
Spedding (2000a) proposed the concept of a synthetic control chart to monitor the mean for
normally distributed data, there have been a number of authors who contributed to this topic.
Most, if not all, articles that discuss the concept of synthetic charts will be reviewed in this
chapter. Several types of synthetic charts have been considered in the literature, with a large
number of these based on the second sub-chart being the CRL chart. However, there are other
synthetic-type charts where the second sub-chart is not a CRL chart but is either (i) a
cumulative quantity count chart to monitor the time until the ™ event (denoted CQC-r); (ii) a
cumulative count conforming chart to monitor the number of inspected items until the

occurrence of r defects (denoted CCC-r); (iii) a group conforming run-length (these are
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denoted by GCRL). In Table 3.1 we classify the synthetic chart based on the CRL sub-chart
into variables (parametric and nonparametric) and attributes (parametric) control charts,
respectively, for the univariate and multivariate cases, and are reviewed in Sections 3.3 and

3.4, respectively.

Table 3.1: Summary of the synthetic charts that are based on the CRL sub-chart

Data Synthetic chart Quality characteristic
dimensionality for
Mean
Variation
Variables: Mean and Variation
Parametric Coefficient of variation
L Mean time between events
Univariate - - P 5
Economic and economic-statistical designs
Variables: Location
Nonparametric Variation
Attributes: Fraction/number nonconforming
Parametric Average/actual number of nonconformities
Mean
Variables: Variation
Parametric Mean and Variation
Multivariate _ Economic and economic-statistical designs
Variables: .
. Location
Nonparametric
Attnbute_s: Fraction/number nonconforming
Parametric

While there are a vast number of articles based on parametric synthetic control charts
for variables data, not much work has been done on parametric synthetic charts based on
attributes data and nonparametric synthetic charts. In SPC there are a number of authors that
have compiled literature reviews to summarize what has been done in a specific area; for
example, (i) Woodall (1997) provided a broad review for parametric attributes charts; (ii)
Cheng and Thaga (2006) and more recently McCracken and Chakraborti (2013) reviewed
charts that jointly monitor the mean and variation; (iii) Jensen et al. (2006) and more recently
Psarakis et al. (2013) investigated the effects of parameter estimation; (iv) Chakraborti et al.
(2001), Chakraborti and Graham (2007) and Chakraborti et al. (2011) reviewed
nonparametric charts. For synthetic charts, only Khoo (2014) did a literature review for the

univariate parametric variables synthetic charts to monitor the mean and those to monitor the
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variation. In this chapter, we provide a more comprehensive review of the synthetic charts

following the outline in Table 3.1 as well as discussing other synthetic-type charts.

The rest of the chapter is structured as follows. In Section 3.2, the basic characteristics
of the synthetic chart are discussed with an emphasis on the synthetic chart for the mean.
Then in Sections 3.3 and 3.4, a review of the literature is done according to the structure
outlined in Table 3.1. In Section 3.5, we briefly discuss other available synthetic-type charts
in the literature, where the second sub-chart is not a CRL. Finally in Section 3.6, we give
some concluding remarks with the summary of future research ideas given later in Chapter 5.
In addition, some proofs of the equations that are used in this chapter are shown in Appendix
3A. In Appendix 3B, SAS® programs to calculate the run-length properties of the synthetic
chart are given. A comparison study among four variables control charts is done in Appendix
3C and finally, the corresponding SAS® programs for the 2-of-2 KL and 2-of-3 KL charts are
given in Appendix 3D.

3.2 Operation and run-length characteristics of the synthetic chart for the mean

As noted earlier, Wu and Spedding (2000a) proposed the first synthetic chart for the
mean of variables data which is a combination of two sub-charts, the Shewhart X chart and a
CRL chart. Assuming that the observations X;;’s follow a normal N (u, a?) distribution,
where u, and o are the specified IC mean and variance, respectively, the Shewhart X chart
is the most commonly used and familiar control chart to monitor the mean. Two cases are
generally considered. First, where the parameters p, and o2 are known or specified, called
the standards known case (i.e. Case K) and second, where the parameters are
unknown/unspecified (i.e. Case U) and need to be estimated from a Phase | reference sample.

Most synthetic charts are proposed for Case K but some work is available for Case U.

Moreover, Davis and Woodall (2002) showed that the run-length (RL) distribution of
the synthetic chart must be obtained under two scenarios called the zero-state and the steady-
state mode, respectively. In the zero-state mode, it is assumed that there is a nonconforming
sample at time zero. This is known as a head-start feature and Davis and Woodall (2002)
showed that it is this assumption that made the synthetic chart of Wu and Spedding (2000)
seem more powerful than several popular competing charts. Zero-state is an important point,

61

© University of Pretoria



because when it is ruled-out, as Davis and Woodall (2002) showed, the average run-length
(ARL) performance of the synthetic chart declines. On the other hand, in the steady-state
mode, one assumes that the process starts and stays IC for a long time (i.e. the effect of a
head-start feature has disappeared) and then a process shift occurs at some ‘random time’. As
will be discussed below, one may obtain significantly different performance results for the
synthetic chart depending on what mode of analysis is assumed. We describe these in the

sequel.

3.2.1 Parameters known (Case K)

The operation of the synthetic chart to monitor the mean in Case K for both the zero-
state and the steady-state modes is as follows.

Step 1.  Determine the LCL of the CRL sub-chart (i.e. H > 0) and the distance of the control
limits from the center line (i.e. k > 0).

Step 2.  Compute the control limits of the X sub-chart, i.e. UCLg/LCLg = uo + kj—%.

Step 3.  Take a random sample of size n at each inspection time point and compute X;.

Step4. If LCLg < X; < UCLyg, the sample is declared conforming and the control flow returns
to Step 3. Otherwise, the control flow proceeds to Step 5.

Step 5.  Calculate the number of X samples between the present and the last nonconforming
sample. This is the plotting statistic of the CRL chart, denoted by CRL;.

Step6. If CRL; > H, the process is declared IC and the control flow returns to Step 3.
Otherwise, an OOC signal is generated and the control flow proceeds to Step 7.

Step 7. Find and remove assignable cause(s). Then return to Step 3.

The algorithm to determine the optimal values of k and H is discussed below for the
zero-state and the steady-state, respectively. To illustrate the above, consider the X sub-chart
shown in Figure 1 for certain values of k, u, and o,. Based on the X sub-chart, there are
nonconforming samples at times, 5, 7 and 11, respectively. We determine the CRL plotting
statistics between two nonconforming samples, first between times 0 and 5 (assuming a
signal at time 0): CRL, =5, then between times 6 and 7: CRL, = 2 and finally between times
8 and 11: CRL; =4; see Figure 2. Now, assume that H =3 (we show later how H is

determined), the synthetic X chart signals once, at time 7.
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Performance properties of a control chart are typically assessed in terms of its RL
distribution and the associated characteristics, such as the average (mean), median,
percentiles, etc. Davis and Woodall (2002) noted that the synthetic chart is the same as a 2-of-
(H+1) runs-rule chart with a head-start feature. Consequently, they suggest using the Markov
chain (MC) approach discussed in Champ and Woodall (1987) for the runs-rule chart which
allows calculation of the entire run-length distribution along with associated characteristics

such as the mean (ARL), the SDRL, percentiles, the cdf, etc.

20
15 ’\\./A UCL=13
w10 /1’\ CL=10
5 LCL=3
04
o 1 2 3 4 5 6 7 8 9 10 11
Time
Figure 3.1: A two-sided Shewhart X control chart
CRL, = 5 —>| CRLy = 2 ‘a—CRLa g
o o o O e o e O O O e
t=20
© Conforming unit
@® Nonconforming unit
Figure 3.2: A CRL sub-chart
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Davis and Woodall (2002) showed that the synthetic chart for the mean can be
represented as a runs-rules chart and used an absorbing Markov chain to model the synthetic
chart. Let = 1 — P(X; € (LCL,UCL)) (i.e. 8 is the probability that the first sub-chart, say,
the k-sigma Shewhart chart for the mean, will mark a sample as nonconforming, that is, the
corresponding X; plots on or outside the control limits. The probability 8 can be calculated
exactly under the assumption of normality both in the IC and OOC cases. Then the elements
of the transition probability matrix (TPM) of the Markov chain, for any general value of H
are constructed as follows. For the matrix Qs +1,5+1), the first row contains 1 — 6 in the first
column and @ in the second column; the last row contains 1 — @ in the first column; in all
other rows, the entry above the diagonal is 1 — 6 and in all other locations, the entry is zero.

Thus, the TPM of the synthetic chart is given by

Qu+iu+yy | Tw+LD

Piions2) = . - - (3.1)
0 (LH+1) | 1(1.1)

where Q(;41,1+1) 1S the matrix of transient probabilities given by

1-60 6 0 0 0
0 0 1-96 0 0
0 0 0 0 0

Q: . .
0 0 0 - 0 1-0
L1—-6 0 0 -0 0

with 1y 44,1y @ vector that satisfies r = 1 — Q1 and a vector 14,4 qy is given by (1,1, DT,

0 = (0,0, ...,0)".

Using the seven steps “direct approach”, Wu and Spedding (2000a) showed that the
ARL is given by (see Proof 3.4 in Appendix 3A)

1
ARL = A== oh (3.2)
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where 6 = 1 — P[X; € (LCL,UCL)] = 1 — ®(k — 6vn) + ®(—k — §5vn). However, other
RL characteristics like the cdf, pdf and SDRL were not provided by Wu and Spedding
(2000a). We will discuss these later.

Equivalence of the synthetic chart and runs-rule chart with a head-start feature

Davis and Woodall (2002) noted that the synthetic chart for the mean is equivalent to the 2-
of-(H + 1) runs rules chart with a head-start feature (which means assuming there was a
signal at time zero). To show the equivalence of the two control charts, let H =3 and then
follow the approach given by Davis and Woodall (2002) for a 2-of-4 chart. Suppose that each
observed sample is classified as either “0” for conforming or “1” for nonconforming. Then
the sequence 0101 would indicate that the second and the fourth samples are nonconforming.
Let & = P(Next sample will be nonconforming), then according to Champ and Woodall
(1987) the following transition probability matrix would govern the 2-of-4 control chart’s

Markov chain.

0000 0001 0010 0100 | Signal
0000 1-96 0 0 0 | 0
0001 0 0 1-6 0 | 0
0010 0 0 0 1-6 | 0
0100 1-96 0 0 0 | 0
Signal 0 0 0 0 | 1

For example, assume that the Markov chain is in state “0001”, then the next sample could
either be “0” or “1”. Thus, if we focus on the last four samples, the next transition could
either be “0010” or “0011”. That is, the probability to go to state “0010” is 1 — &, whereas
the probability to go to state “0011” is 6. The rest of the Markov chain transitions can be
explained similarly. Thus, taking “0001” as the initial state (assuming that the first sample
plots outside the control limits i.e. with the head-start feature), then for this 2-of-4 runs-rule
chart the average time for the Markov chain to eventually reach an absorbing state (i.e. gives
an OOC signal) is the same as the ARL that results from Equation (3.2).
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e Zero-state mode

Run-length characteristics

Using known formulas (see Fu and Lou (2003, Chapter 5)) the zero-state run-length

pmf and cdf can be obtained as

fra() =q"Q"'r (3.3)

Fpo(r)=1- qTer (3.4)

respectively, for r = 1,2,... . Note that qy.1,1) is the vector of initial probabilities associated
with the transient states and since the second row of Q corresponds to the initial state of the
Markov chain then qx.1,1) is equal to (0,1,0, ...,0)T. Furthermore, the zero-state ARL and

SDRL are equal to

ARL =qT(1- Q)1 (3.5)

SDRL = /2q"(1 — Q)~2Q1 — ARL? + ARL (3.6)

respectively. Using direct methods, Scariano and Calzada (2009) and Calzada and Scariano
(2013b) showed that the ARL and SDRL of the synthetic chart can equivalently be written as

1

ARL = sa—a—-om

(3.7)

1
2—6 9z 2 Z{{=1 I(1-6)-1 (3.8)

SORL= T —a—omezt T a-a-emne

respectively. Note that Expression (3.7) is the same as that first given in Wu and Spedding
(2000). The advantage of (3.7) and (3.8) are that they can be calculated directly without
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involving a matrix inversion. However, the advantage of the MC approach of course is that

the entire run-length distribution is available.
Algorithm to determine H and k

The optimal values k and H are needed to implement the synthetic chart. In short, we
determine the values of k and H that minimizes the OOC ARL, say ARL;(6,p), for a mean
shift of a given magnitude expressed in units of the process standard deviation, &, =
|ty — uol/ oo, While ensuring that the IC ARL is equal to some given nominal value denoted
by ARL,. Wu and Spedding (2000b) formulated the following optimization model to

calculate the optimal values (and hence design the synthetic X chart) for the zero-state:

1

Minimize: ARL; (8op) = % X Tacen

where 8 = 0(8ope) = 1 — [@(k — SoprVn) — P(—k — Soprv/n)].

1

Under the constraint: ok = T 2o hE

= ARL,.

Note that it is possible to write A= ":/;”:' then 8 = 6(A) =1— [P(k—A) — P(—k — A)]

0

as in Scariano and Calzada (2013a) but this was not done in Wu and Spedding (2000a). We
follow the method done in Wu and Spedding (2000a).

Here is how the algorithm is implemented:
Stepl.  Specify u,o,n,8 and ARL,.
Step 2.  Initialize H as 1 and find the corresponding k by solving the constraint function for

the given ARL,.
Step 3. Calculate 6(8,p) and ARLl((SOpt) from the current k and H for the specified value of

Sopt-
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Step4.  For H > 1, compare ARL, (8,,) value for the current value of H with that of H — 1.
If ARL, (50pt) has been reduced, increase H by one and go back to step 3 and continue
iterating until increasing H no longer reduces ARLl(Sopt), then go to the next step.

Step 5. Take the k and H values corresponding to the lowest value of ARL1(6opt) as the

optimal values for the synthetic chart.
Example

In Table 2, we illustrate this algorithm for &,,. = 0.75 and deduce that the optimal values are

k =2.3218 and H =7 (see the boldfaced values in Table 2) for ARL, equal to 370.4. The

Microsoft® Excel algorithm used to construct Table 3.2 is given in Appendix 3B.

Table 3.2: Values of the ARL; (8,,) for different k and H combinations when &, = 0.75
for n =5 with ARL, = 370.4

k  ARL,(0.75)
1.9435  6.40581
2.0848  5.16177
21640  4.72298
22188  4.52441
22604  4.43126
22939  4.39349
23218  4.38795
2.3458  4.40237
23667  4.42966
23852 4.46542

Boo~Nwooh~wNrkXx
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e Steady-state mode

Run-length characteristics

The run-length distribution of the Shewhart charts can be computed analytically,
whereas the run-length distribution of other more advanced charts such as adaptive, EWMA,
CUSUM and synthetic charts have to be approximated numerically since their closed form
expressions cannot be obtained (see Khoo et al. (2011, 2012)). Thus, to address this problem,
authors in most cases use the Markov chain. The zero-state Markov chain has already been

discussed in the previous section and here we discuss the steady-state mode.

Champ (1992) simplified the procedure for computing the cyclical steady-state
probability vector, denoted by s, which is explained as follows:

First s is computed by solving b = PTh subject to 17b = 1, where P is the transition
probability matrix with absorbing states in Equation (3.1). Then s = (17z) 1z where z is a
vector of length H + 1 given by

z=(G-QNu

whereu = (1 0 0..0)T and

Note that s is called the steady-state vector that consists of the percentage of time, over many
samples, that the Markov chain representing the synthetic control chart will be in each

transient state, conditioned on “no signal”.
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Thus, in the steady-state mode, the run-length pmf, cdf, ARL and SDRL are

respectively given by

fra() =s"Q"'r (3.9)
Fre(r) =1-57Q"1 (3.10)
ARL=s"T(1-Q)™1 (3.11)
SDRL = /2sT(1— Q)~2Q1 — ARL? + ARL (3.12)

Algorithm to determine H and k

Similar to the zero-state mode, we determine the values of k and H that minimizes

ARL1(8,p), While ensuring that the IC ARL is equal to ARL,. That is,
Minimize: ARL; (8,,c) = sT(I— Q)™*1
where 8 = 0(8ope) = 1 — [®(k — SoprVn) — P(—k — Soprvn)].
Under the constraint: s”(I1 — Q)1 = ARL,
when 8 = 6(5 = 0).

Then we follow similar steps as in the zero-state mode above.
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Example

Consider Table 3, we illustrate how to obtain the optimal values of H and k for the
steady-state synthetic chart for §,,. = 0.75. We see that the optimal values are k = 2.2714
and H = 6 (see the boldfaced values in Table 3) for ARL, equal to 370.4. The SAS® program

to illustrate the construction of Table 3.3 is given in Appendix 3B.

Table 3.3: Values of the ARLl((SOpt) for different k and H combinations when §,,. = 0.75
for n =5 with ARL, = 370.4

k  ARL,(0.75)
1.9328  8.06444
2.0706  7.01799
21472 6.67147
21997  6.52295
2.2395  6.46037
22714  6.44211
2.2978  6.44829
2.3204  6.47155
2.3401  6.50589
2.3575  6.54747

Boovwo uohs~wNnrkx
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3.2.2 Parameters unknown (Case U)

For Case U, the unknown parameters u, and g, are estimated from an IC Phase |
dataset composed of m subgroups each of n observations. Assuming independence between

and within samples, a commonly used estimator for y, is given by

m
. _12)?
llo—m' i
=1

and a biased estimator &, for g, is

Gy = ﬁz Z(XU- - %)

i=1j=1

Hence, in Case U, the control limits LCL and UCL are random variables. Khoo et al. (2008,
2009), Zhang et al. (2011) and Castagliola et al. (2013) have studied the effect of parameter
estimation for the synthetic charts. Thus, the conditional probability that in Phase II, an X
sub-chart marks the ith sample as nonconforming, given the Phase | parameter estimates, is
(see Zhang et al. (2011))

6. =1—P[X; € (LCL,UCL)|4y, 6] (3.13)

o (\/ﬁ(ﬁo—#o) _ k\/ﬁﬁo 6\/5) @ (_\/ﬁ(ﬁo—lio) _ k\/ﬁao + 5\/%)
g 0o

0o 0o 0

0o 0o

CI>(u|O,\/%) and fy(vim,n) = 2vf, (vz

m®-D and .
2 m(n-1)

be the random variables with pdf fy(ulm) =

m(n-1) 2n
2 "mmn-1)

), respectively, where f, is pdf of a

2n

gamma distribution with parameters Using this estimate of 6 and

following Case K, one calculates first the conditional and then the unconditional RL
distribution. Associated run-length distribution characteristics follow from these in a straight

forward manner.
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e Zero-state mode

Run-length characteristics

By replacing 6 in Equation (3.1) by 6. in Equation (3.13), then the conditional pmf
and cdf are given by

fr@) =q"Q " 'r (3.14)

Fri(r)=1-q"Q"1 (3.19)

respectively. Whereas the unconditional pdf and cdf of the RL are given by

fan(r) = f j (@’ QD) fy (ulm) fy (vlm, m)dvd (3.16)
—o0 0
Fan(r) = 1— j j (@7 Q1) fy (ulm) fy (wlm, n)dvdu (3.17)
—oo0 0

respectively, see Zhang et al. (2011). Similarly, while the conditional ARL and SDRL are
given by

ARL =qT(1- Q)1 (3.18)

SDRL = /2q"(1 — Q)~2Q1 — ARL? + ARL (3.19)

respectively, the unconditional ARL (denoted by UARL) and the unconditional SDRL
(denoted USDRL) are given by

UARL = j f(qT(l - Q™) fy(ulm) fy wlm, n)dvdu (3.20)
—00 0
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USDRL = f f \/ZqT(I —Q)2Q1 — ARL? + ARL fy(ulm)f,(vim,n)dvdu (3.21)
—00 0

respectively.
Algorithm to determine H and k

For the zero-state Case U, we need to determine the values of k and H that minimizes
the OOC UARL, say UARL1(8pt), for a mean shift of §,,, while ensuring that the IC UARL

is equal to some given nominal value denoted by ARL,. That is, the optimization model to
calculate the optimal values for the zero-state for Case U:

Minimize: UARLy (8opc) = [, [."(q" (1 — Q)711) fy (ulm) fyy (v|m, n)dvdu

where 0 = 0, (8,p0) = P (YLt Y000 _ ) 4 @ (— EokD) g V00 ),
0

(1) Op 0
Under the constraint: [~ [ "(q" (1 — Q)~*1) fy (ulm)fy, (vIm, n)dvdu = ARL,
when 6, = 6.(5 = 0).

Then we follow similar steps as in the zero-state mode for Case K above. An illustration is
given in Zhang et al. (2011) to determine these optimal values.
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e Steady-state mode

Run-length characteristics

Using the steady-state vector, s, it is easy to see that the conditional pmf and cdf are

given by
fra(@) =s"Q'r
Fr(r) =1-5"Q"1

respectively. Whereas the unconditional pdf and cdf of the RL are given by

fro(r) = jj(STQT_lr)fu(ulm)fv(vlm,n)dvdu

—00 0

Fro(r) = 1 - f f (s"Q"1) fy (ulm) fy (wlm, n)dvdu
—OOO

respectively. Similarly, while the conditional ARL and SDRL are given by

ARL =sT(1- Q)1

SDRL = /2sT(1— Q)~2Q1 — ARL? + ARL

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

respectively, the unconditional ARL (denoted by UARL) and the unconditional SDRL

(denoted USDRL) are given by

UARL f f(sT(l - Q) 11) fy (ulm) fy (v|m, n)dvdu
—00 0

© University of Pretoria

(3.28)

75



USDRL = f f V2sT(1—Q)~2Q1 — ARIL? + ARL fy(ulm)f, (v|m,n)dvdu (3.29)
— 00 0

respectively.
Algorithm to determine H and k

For the steady-state Case U, we need to determine the values of k and H that
minimizes the OOC UARL, say UARL1(8,), for a mean shift of a given magnitude &,
while ensuring that the IC UARL is equal to some given nominal value denoted by ARL,.

That is, the optimization model for Case U:

Minimize: UARL, (8ope) = [ [, (8T (1 = Q1) fy (ulm) fiy (v|m, n)dvdu

where 0 = 0, (8,p0) = P (TLEHD W00 _ ) 4 @ (— LEok) g V00 ),
0

o0 o 0
Under the constraint: [~ [ *(s"(1 — Q)~1) fy (ulm)fy (vIm,n)dvdu = ARL,
when 6, = 6.(5 = 0).
Then we follow similar steps as in the zero-state mode for Case K above.

In the following Sections 3.3 and 3.4 we use the structure in Table 3.1 to review the work

done for the synthetic charts for both univariate and multivariate cases.
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3.3 Univariate synthetic charts
3.3.1 Parametric variables charts

A nice review for univariate synthetic charts to monitor the mean and those to monitor
the variance is done in Khoo (2014). Papers already reviewed by Khoo (2014) will not be

discussed but will only be mentioned briefly.
Mean

Synthetic charts to monitor the mean for skewed population were proposed in Khoo et
al. (2008) and Castagliola and Khoo (2009), see the review by Khoo (2014). Moreover, Khoo
(2014) reviewed the double sampling scheme proposed in Khoo et al. (2011a).

Aparisi and de Luna (2009b) formulated an optimization algorithm for no detection of
shifts in a region of acceptable shifts (i.e. IC region) and at the same time, being able to
detect shifts considered important (i.e. OOC region). When both the IC and OOC regions are
considered, the synthetic X chart seems to be the worst option whereas the side-sensitive
synthetic X chart (proposed in Davis and Woodall (2002)) is the best option in steady-state
mode. Moreover, if the practitioner has no historical data to estimate §, the Taguchi loss
function given in Aparisi and Garcia-Diaz (2007) can be used to determine the shift region of

6 to be detected and those which are not to be detected.

A synthetic chart for individual observation is an integration of the operation of the X
chart and the CRL chart. Hence, Wu et al. (2010) proposed a Syn-X chart, which is a
combined scheme of the synthetic X chart and the X chart. The first part of the scheme is
more sensitive to small shifts, whereas the second part is more sensitive to large shifts. The
Syn-X chart gives an OOC signal when either the charting statistic y > UCLy (i.e. UCL of
the X chart) or CRL < H. Two indexes called the average extra quadratic loss (AEQL i.e.
which is the weighted average ARL across the mean shift range) and the average ratio of ARL
(ARARL) were used as objective functions to measure the overall performance. That is,

[Om 52 ARL(S) d&

1
AEQL = — [

6max
7
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and

ARARL = = [Omx _ARLO) _ g5

Smax * 0 ARLg,, +(8)

respectively, where the mean shift range 0< § < &, Where 6., 1S the maximum possible
mean shift. With respect to both these performance measures, it was shown that across the
entire mean shift range, the Syn-X chart produces smaller OOC ARL values at more shift
points or at a larger degree compared with the X chart and the synthetic X chart. Furthermore,
they formulated new non-Markov chain method to derive the zero-state and steady-state ARL
for the synthetic X chart and the Syn-X chart.

Zhang et al. (2011) investigated the effect of parameter estimation for the synthetic X
chart. They compared the performance of the synthetic X chart in Case U with that in Case K.
They showed that the unconditional run-length properties (i.e. ARL, SDRL, cdf) in Case U
can be significantly different from those in Case K (especially when the number of Phase |
samples is small), making it inappropriate to using the optimal parameters k and H
corresponding to Case K in Case U. Moreover, they showed that in Case U, new optimal
parameters (H', k") for some given m, n and § values must be calculated so that the resulting
ARL is as close as possible to the ARL of Case K. For example, when n =5 and § = 0.2, the
optimal values of k and H for Case K are 1.1966 and 60, respectively, so that the
corresponding ARL, =127.8 and SDRL, =167.2. Using the same k and H in Case U
scenario (with m = 10), these results in UARL,; = 801.9 and USDRL; = 880.0, whereas the
alternative parameters, k' = 1.1449 and H' =98 results in UARL, = 217.2 and USDRL, =
256.1, for this example, these values are as close as possible to the values in Case K. In
addition, tables were constructed to show how many Phase | samples are required in practice
for the synthetic X chart to have similar IC run-length distribution in both Case K and Case
u.

Gan (1994) and other authors have argued that the interpretation of the run-length
based on the ARL can be misleading and complicated, since the shape of the run-length

distribution changes with the mean shift. Instead, the median run-length (MRL) provides a
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more meaningful interpretation of the run-length for the IC and OOC performance of the
charts. Hence, given the pair (H, k), the 100y (0 < y < 1) percentage points of the run-length
distribution corresponding to desired values of n and § can be determined as the value m,

such that
Pr(RL<m, —1)<y (3.30a)
Pr(RL < my) >y (3.30b)

If y = 0.5 in Equations (3.30a) and (3.30b), then m, 5 is called the median run-length (MRL).
Thus Khoo et al. (2012) proposed a synthetic X chart based on the percentage points of the
run-length with more emphasis on the MRL under zero-state and steady-state modes. For both
states (i.e. zero and steady) it was observed that the difference between the values of the ARL
and the MRL is large when the process is IC, but it reduces as the shift increases.
Furthermore, as with the ARL, the OOC MRL of the synthetic X chart is always greater than
that of the EWMA chart, unless the shift is very large.

The performance of the X chart is based on the assumption that the mean and the
standard deviation have been estimated from a homogenous retrospective samples. However,
Zhang et al. (2009) showed that the X chart suffers from wide variation from the expected IC
ARL values, or else becomes insensitive to changes in the process mean. Hence Zhang et al.
(2009) proposed a t and an EWMA-t charts that do not require estimation of the standard
deviation from retrospective samples and possesses desirable robustness properties against
changes in the standard deviation. Thus, Calzada and Scariano (2013a) used the GSC
approach to propose the synthetic version of the t chart and the EWMA-t chart to monitor the
process mean using the zero-state mode. The authors used two different methods to evaluate
the synthetic charts i.e. the ARL,(&) based on a single specified shift value and the expected
value of the OOC ARL (i.e. E[ARL,]) over a range of shifts (see Castagliola et al. (2011)).
Castagliola et al. (2011) noted that specifying a & of interest beforehand is often too
restrictive because the quality practitioner may not have historical knowledge of the process,
or because shifts are not deterministic but follow some unknown distribution, i.e. it is based
on E[ARL,] over the support f,(a) (i.e. the pdf of &) rather than one specific value of §.

With respect to the zero-state ARL performance, the synthetic EWMA-t chart is better for
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small shifts, however, for large shifts (i.e. § > 1.5), the synthetic t chart is the best.
Moreover, the synthetic EWMA-t and synthetic t charts have somewhat larger SDRL values
for small shifts when the process is IC. However, the OOC SDRL values decrease sharply for
medium shifts, so that it is always less or equal to the OOC SDRL values of the non-synthetic
counterparts. In terms of the E[ARL, ], the synthetic EWMA-t chart is optimal for small shifts
whereas, synthetic t chart is optimal for large shifts. Lastly, Calzada and Scariano (2013a)
noted that the synthetic EWMA-t chart is not as efficient as the synthetic EWMA-X chart but
the latter suffer from lack of robustness to estimation and changes in the process standard

deviation.
Variation

A synthetic chart to monitor a sample range and a sample standard deviation based on
the zero-state mode were proposed by Chen and Huang (2005) and Huang and Chen (2005),
respectively. These latter two papers were reviewed in Khoo (2013). To further enhance the
detection of shifts in variation, Rajmanya and Ghute (2013a, b) proposed a synthetic D chart
based on the Downton’s estimator under normal and non-normal data to monitor increases in

the standard deviation using the zero-state mode. The Downton’s estimator is given by

Wr w1
D= 2 U=+ 0)%o
j=1

which is an unbiased estimator of ¢ for normally distributed quality characteristics and X ;
corresponds to the order statistics of the observed data for j = 1,2, ..., n. When the underlying
process distribution is normal, it was observed that the synthetic D chart produce significant
ARL improvement in comparison to the R, S, D and synthetic R charts. Moreover, the
performance of the synthetic D chart is similar to that of the synthetic S chart, however, for
the Weibull, double exponential and gamma distributions, the synthetic D chart consistently
produced smaller ARL, values than that of the synthetic S chart for the entire range of shifts

in the standard deviation.
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Joint mean and variation

In some situations, it is necessary to monitor assignable causes attributed to both the
mean from p, to uy = poy + 80, where § # 0 and/or shift in the standard deviation from o,
to o; = to, Where t # 1, i.e. assignable causes that shift the process mean, increase the
variance, or both. Hence, Costa and Rahim (2006) proposed a synthetic chart based on the
non-central chi-square (NCS) statistic to jointly monitor the mean and variance using the
zero-state mode. The authors stated that it is operationally simpler and more effective than

the joint X and R chart. In addition, a process is monitored using only one chart instead of

looking at two charts, separately. Let e; = X; — u, and define, §;, =d if ¢, >0 or, -d
otherwise, then the NCS charting statistic is given by

n

T; = Z(Xij — to + §;00)?

j=1

where =1,2,.. . When d =0, T;/(yo,)? is distributed as a non-central chi-square
distribution with n degrees of freedom and a non-centrality parameter A = n§2/y2. Finally, it
was shown that the synthetic NCS chart with d > 0 is superior to the joint X and R chart in

terms of the ability to detect any kind of process disturbance.

Chen and Huang (2006) proposed a synthetic MAX chart for normally distributed

data. The charting statistic is based on the M = max{|U|,V} where U = f_/”\/% and V =
0

o1 {F ((n—lZ)SZ)}. Based on the zero-state ARL, the synthetic MAX chart was shown to be

%9

more effective than the MAX chart and the joint X and S charts. The variable sampling
interval (VSI) scheme was applied to the synthetic MAX chart and the authors showed that it
is more efficient than the fixed sampling interval (FSI) scheme. Costa et al. (2008) further
proposed a two-stage testing procedure, where, in the first stage, one item of the sample is
inspected and if its value is close to the target value of the process mean (e.g. if [X;; — uol <
wa,, With w a design parameter of the chart) then this terminates testing, otherwise the
process goes to the second stage. In the second stage, the remaining items are inspected and a
NCS statistic is computed taking into account all items of the sample. For this chart the NCS
statistic is given by
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T; = Z(Zij +¢&)?
=

where i = 1,2,..., with Z;; = (X;; — uo)/ 0o. Note that when [Z;;| >w and T; > k the i
sample is classified as nonconforming. Thus, with two-stage sampling, any sample has a
probability given by Pr[(|X; — uol < way) N (T; > k)] to be classified as nonconforming.
Moreover, the two-stage synthetic NCS chart is insensitive to decreases in the variance,

except when it is followed by large shift in the mean.

Lee and Khoo (2013) proposed a synthetic mean square error (MSE) chart using the
zero-state mode. Assume that T is the target value of the mean, then MSE charting statistic is

given by

n(fl — T)z

MSE; = S + —

2
and it follows a non-central chi-square distribution ﬁ x2(1) with n degrees of freedom and

non-central parameter A = n[”%T] They showed that the synthetic MSE chart performs

better than the joint X and R chart, NCS chart and synthetic NCS chart for a wide variety of
shifts. Furthermore, the synthetic MSE chart always performs better than the MSE chart for
all the considered shifts. In addition, for large shifts in the mean, the synthetic MSE chart
consistently gives smaller ARL; compared to EWMA semi-circle chart (except for some

cases where shift in the mean are small).
Coefficient of variation

Given that X;;~N(uo, 0% = w?u§) where w =9/, =aw, is the population
coefficient of variation (CV), a is the shift parameter and w, is its IC target value. Let
W; = X;/o; denote the charting statistic of the CV chart for Case K. Calzada and Scariano
(2013b) proposed a synthetic chart to monitor increases in w using the zero-state mode. They

followed the same approach as in Calzada and Scariano (2013a) to evaluate the run-length
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characteristics with respect to a single specified § (ARL;(6)) and using the E[ARL,] over a
range of shifts. When the process is IC, the SDRL of the synthetic CV chart is typically larger
than that of the CV chart. However, the SDRL; and the ARL; of the synthetic CV chart
significantly decrease for some shift §, thereafter. With respect to both the ARL; and
E[ARL,], the EWMA chart has better performance for small shifts of size a < 1.5, whereas

for large shifts, the synthetic CV chart has a better performance.
Mean time-between events

Scariano and Calzada (2003) proposed a synthetic exponential chart; see the review
by Khoo (2013). More recently, Yen et al. (2013) proposed three synthetic-type control charts
to increase the sensitivity of the mean time between events (TBE) chart of a homogenous
Poisson process. In this section, we only review the chart based on the integration of the
operation of a lower one-sided Erlang’s (time until the r™ event in a Poisson process) chart to
monitor decreases in the mean TBE and the CRL chart. Using average number of observation
to signal (ANOS), the authors showed that for the zero-state, the synthetic Erlang (r = 4)
chart outperforms the exponential- EWMA chart for all shifts. Whereas for the steady-state,
the synthetic Erlang (r =5) chart is more efficient than the exponential-EWMA chart in
detecting small to moderate shifts. For large shifts, the synthetic exponential chart and the

synthetic Erlang (r = 2) chart perform better than the other charts.
Economic and economic-statistical designs

Yeong et al. (2012) proposed the first economic model for a synthetic chart. The
authors formulated an algorithm to find the optimal parameters of the synthetic X chart which
minimizes the net sum of all costs involved, so that the chart can be operated at the
economically optimal level by using the approximation of the cost function in Chung (1990).
It always assumes that a process starts IC and the time until the assignable cause occurs is
assumed to be exponential distributed with parameter ¢. The cost function of this chart has
14 input parameters, however the only input parameters that have significant effects on the
cost function are ¢, &, the quality cost per hour when the process is IC and OOC, and the cost
per unit sampled. Sensitivity analysis was done by these authors, and it was further

investigated in Yeong and Khoo (2013); both these papers stressed that sometimes it is not

83

© University of Pretoria



feasible to operate the chart at the economically optimal point, hence in such a case; there are
alternative parameters which can be chosen from these values that will incur minimal
increase in the cost. Yeong et al. (2013a) proposed economic and economic-statistical designs
under different quality loss functions and investigated the effect of misspecification of the
type of the loss function, the Taguchi loss function and risk aversion coefficient of the loss
function where it was shown that the penalty cost results in cases where there are larger
values of § and longer expected time to sample and interpret one unit. Also the cost function

for the synthetic X chart compares favourably with that of the X chart and EWMA chart.
3.3.2 Nonparametric variables charts

A control chart is called nonparametric (NP) if its IC run-length distribution is the
same for every continuous distribution (see e.g. Chakraborti et al. (2001)). To our knowledge,
so far, only two NP synthetic control charts for Case K have been proposed in the literature,
i.e. (i) based on the sign test (see Khilare and Shirke (2010)) and (ii) based on the signed-rank
test (see Pawar and Shirke (2010)).

Operation and optimal values of the NP synthetic chart

To this end, let X; be some unknown continuous distribution with the i™ observation

in the j™ sample. The operation of the NP synthetic chart is similar to that in Section 3.2. The

optimal pair UCL* (i.e. the UCL of the classical NP sub-chart) and H are calculated as

1
1-(1-6)H

follows. Let the IC ARL of the synthetic chart be given by ARL(0)= % X and

suppose that the desired nominal IC ARL is ARL, and the subgroup size is n. Then we
compute the ARL(0) values for all possible values of the UCL* and H = 1,2,... and choose the
pair UCL* and H for which the ARL(0) is closer to ARL,. Khilare and Shirke (2010) as well

as Pawar and Shirke (2010) illustrate how to calculate these optimal values.
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Location

For an ordinary sign chart, define

1 if Xij > po
sign(X; — po) =4 0 if Xij = po
—1 ifXi; <uo

so that the sign statistic for the ith sample is given by SN; = ¥7_, sign(X;; — 1o). Khilare
and Shirke (2010) proposed a synthetic sign chart and they compared the zero-state ARL
performance of this chart with the sign chart and the X chart under normal, double
exponential and Cauchy distributed data. They observed that the synthetic sign chart has a
greater detection power for shifts in the median than the sign chart and the X chart. In
addition, they observed that the improvement in the ARL is more significant for small to

moderate shifts, however, for large shifts, the ARL performance declines.

For an ordinary signed-rank (SR) chart, define

1 if Xy > 9
P = X7y sign (Xi; — 99 Ry, wheresign (X;; —9,) ={ 0 if Xi; =
—1 ifXy <9

and R = 14+ X7y I(Ixie — 9ol < |xij — 9]) with I(x < y) = 1, if x < y and 0 otherwise,
where 9, is target median. Pawar and Shirke (2010) proposed a synthetic SR chart and they
compared the zero-state ARL performance of then chart with the 1-of-1 SR chart, the 2-of-2
runs-rule SR chart (see Chakraborti and Eryilmaz (2007)) and the X chart, under three
continuous and symmetric (i.e. normal, double exponential and Cauchy) distributions. They
observed that the synthetic SR chart has a greater detection power for all upwards shifts in the
process medians than the 1-of-1 chart, 2-of-2 chart and the X chart. In addition, the zero-state
ARL performance for different quartiles of the run-length distribution indicated that the

synthetic SR chart had shorter interquartile ranges for all the three distributions under study.
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Variation

Khilare and Shirke (2012) proposed a NP synthetic sign chart to monitor the process
variation for both zero-state and steady-state modes. The charting statistics are given by
Ui = Z;l=1 Uij’ Wlth

1 leL] < Ql oer-j > Q3
Uij = 0 lel] = Ql Oer-j = Q3
~1 ifQy < X;; < Qs

where @, and Q, are the 1% and 3" quartiles, respectively. They observed that the synthetic
sign chart has greater detection power for shifts in the variation than the S2 and the sign
charts for all the distributions under consideration, namely the normal, double exponential
and gamma. However, the superiority of the synthetic sign chart is limited to the zero-state,
since in the steady-state, the ARL performance declines. Furthermore, the authors proposed a
NP side-sensitive synthetic control chart to monitor variation based on quartiles and they
observed that side-sensitive synthetic chart performs better than the synthetic sign chart for

all distributions that were considered.
3.3.3 Parametric attributes charts

Attributes control charts are needed in situations when data consist of qualitative
information, as variables control chart cannot be used. For illustration of the operation of the
attributes synthetic chart, see Chapter 4.

Fraction/number nonconforming and average/actual number of nonconformities

Hence Wu et al. (2001) presented the design, operation and zero-state average time to
signal (ATS) performance for the synthetic np chart. In addition, Wu and Yeo (2001)
provided the description of the algorithm that can be used to obtain optimal chart parameters
UCLy, and H of the synthetic np chart that minimizes the OOC ATS for some given shift,
denoted by ATS(ps), for the input parameters p, (IC fraction nonconforming), ps (OOC

fraction nonconforming) and t (i.e. the actual IC ATS), while ensuring that ATS(py) = 7.
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Furthermore, Wu et al. (2001) showed that the synthetic np chart performs better than the
CRL chart and the np chart, also for some shifts, the ATS(ps) of the synthetic chart is 50%
lower than that of the np chart. However, Bourke (2008) showed that the apparent superior
performance reported in Wu et al. (2001) is due to a limited choice of circumstances for
making comparisons. Bourke (2008) showed that in the zero-state mode, the geometric
CUSUM chart (see Bourke (1991)) outperforms the synthetic np chart. In addition, the RL,
(moving sums of successive pairs of CRLs; see Bourke (1991)) is somewhat inferior to the
synthetic np chart when the ATS(p,) is set at a relatively high value of 10000, however,
when the ATS(p,) is lowered to 5000, the RL;, performs better than the synthetic np chart. In
the steady-state mode, the advantage of the synthetic np chart over the np chart is at most
3%, which is not significant enough to adopt the more complicated synthetic chart. Finally,
the geometric CUSUM and the RL, charts always perform better than the synthetic np chart

in steady-state mode.

Following Wu et al. (2010), Haridy et al. (2012) proposed a combined scheme of the
synthetic np chart and the np chart. In addition, they adopted the non-Markov chain
approach to calculating the steady-state ATS(ps) of the chart. The authors used the index

WAATS (weighted average ATS(ps) produced across a range of fraction nonconforming, ps,

Po < Ps < pmax) given by

81’71(1?6
1
WAATS = ——— Z ps X ATS (ps)
Smax -1 5=2

to measure the overall performance of the combined scheme chart and they showed that the
combined scheme is more effective than the np chart and the synthetic np chart by 73% and
13%, respectively, in terms of the WAATS.

Castagliola et al. (2013) studied the effect of parameter estimation for synthetic
attributes charts. An algorithm in Section 3.2 was used to obtain the optimal parameters k and
H for shifts of sizes § = 0.25, 0.75 and 1.5 for small, medium and large shifts, respectively.
Then, using these parameters and the normal approximation to the binomial and Poisson
distributions, respectively, they evaluated the run-length properties of the synthetic p, np, ¢

and u charts using the Markov chain approach for both Case K and Case U. Note that this is
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an attributes charts version of what was done in Zhang et al. (2011) for the synthetic X chart.
Firstly, the authors showed that the IC ARL and the IC SDRL can be significantly different to
the corresponding nominal values for both Case U and Case K, more especially when the
number of Phase | samples (m) is small in Case U. Thus, it seemed inappropriate to use the
optimal values of k and H for Case K in the Case U scenario. Hence they suggested
alternative chart parameters k' (+ k) and H' (+ H) which takes m, n and § as given, then
computes the alternative parameters such that the IC ARL value corresponding to Case U is as
close as possible to the IC ARL value for Case K. In addition, they gave an indication of how
many Phase | samples are required for a chart in Case U to have a similar IC performance to
that of Case K. More recently, Chong et al. (2014) proposed a DS scheme for the synthetic

np chart.
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3.4 Multivariate synthetic charts

In many applications the data are multivariate and need to be monitored on p
variables. Let the data vectors X;, where j = 1,2,...,n be a random sample from a p-variate
distribution with mean p and variance X. These vectors represent measurements on p process
characteristics or variables. Multivariate control charts have been developed in the literature
to enable joint monitoring of more than one quality characteristic simultaneously, instead of
using separate classical charts for each of the quality characteristics. See Bersimis et al.
(2007) for a review of multivariate control charts. Synthetic version of some of these charts
have been developed. Note that the operation and the algorithm to obtain the optimal design
parameters k and H are similar as those for the synthetic X chart, however, in this case § is
called the Mahalanobis distance used to measure a change in the process mean vector.
Assume that X denotes a (p x 1) vector of sample means, X, denotes a (p X p) known IC
covariance matrix and p, denotes a (p X 1) known IC mean vector. A multivariate version of
the synthetic X chart was first proposed by Ghute and Shirke (2008b) and it is an integration
of the operation of (Hotelling’s) T2 sub-chart and the CRL sub-chart. The charting statistic of
synthetic T2 chart is given by

T? =n(X — po) T (X — Ho).

The sample statistics are plotted against an upper control limit, UCL = y2(p). That is,
when the process is IC, T2 has a central chi-square distribution with p degrees of freedom.
However, when the process is thought to be OOC then T2 has a non-central chi-square

distribution with a non-central parameter equal to A2 = n(u — o) 251 (u — po) = né2.
3.4.1 Parametric variables charts
Mean

Ghute and Shirke (2008b) observed that the synthetic T2 chart consistently
outperforms the T2 chart and the T2 with runs-rules chart for the entire range of shifts in the
process mean vector. Also, for large samples sizes and large shifts, the performance of the

synthetic T2 chart and the Hotelling’s T2 chart are similar. Note, Ghute and Shirke (2008b)
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only evaluated the ARL for zero-state mode and only considered large shifts. Aparisi and de
Luna (2009a) considered both the zero-state and steady-state cases as well as small shifts.
Similar to univariate synthetic charts, the zero-state ARL performance is shown to be always
better than that of the steady-state. Furthermore, for very small shifts, the synthetic T2 chart
cannot compete with the multivariate EWMA (MEWMA) chart, the VSS-T2 chart and the
DS-T2 chart.

In Aparisi and de Luna (2007), a special synthetic T2 control chart was proposed,
such that it does not detect small shifts in the acceptable region (i.e. IC region) but ensures a
good performance in detecting moderate and large shifts (i.e. OOC region). The chart entails
specifying two objective functions i.e. first to maximize the ARL in the IC region and the
second to minimize the ARL in the OOC region. The authors demonstrated that it is possible
to formulate a zero-state multi-objective optimization using a generic algorithm to find the
Pareto-optimal front of non-dominated solutions for the optimization problem, so that only
moderate and large shifts can be detected quickly. Following the univariate synthetic
weighted standard deviation (WSD) method coined by Khoo et al. (2008), same authors
proposed a synthetic T2 chart based on the WSD method aimed to improve the sensitivity of
the T2 chart in monitoring (known and unknown) multivariate skewed distributions in 2009,
using the zero-state mode. Note that when the underlying process distribution is symmetric,
the synthetic WSD-T?2 chart reduces to a synthetic T2 chart proposed in Ghute and Shirke
(2008b). For both Case K and Case U, the authors noted that when the process is IC, the
synthetic WSD-T?2 chart gives lower FARs compared to the WSD-T? chart, the T2chart and
the WSD-EWMA chart when the underlying process is skewed. Furthermore, for OOC cases,
it has the highest mean shift detection rates among all the charts for skewed populations,
when moderate and large shifts are of interest based on various values of the skewness. For
multivariate charts, Khoo et al. (2011b) proposed a synthetic T2 chart based on the
percentage points of the run-length with more emphasis on the MRL (this is the multivariate
version of work done in Khoo et al. (2012)). It was shown that the zero-state MRL
performance surpasses that of the steady-state. Furthermore, the zero-state mode synthetic T2
chart outperforms the MEWMA chart when § > 1. For steady-state, the OOC MRL values of
the synthetic T2 chart are greater than that of the MEWMA chart, unless the shift is large. For

small shifts (in both states), the T2 chart was observed to have the worst performance.
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Lee (2012) used the GSC procedure to propose a synthetic MEWMA chart using the

zero-state mode. The charting statistic is given by
T? =Z;'%;Z,

where Xz = (i)ZX, with Zy an identity matrix and Z; = rX; + (1 — r)X;_, with Z, a zero
vector and X; is a vector of p quality characteristics observed at j™ sample. The authors show
that the synthetic MEWMA chart is always faster than the MEWMA chart and the synthetic
T2 chart in detecting shifts, as well as the T2 chart (when the sample size is small). However,
for very large n, the synthetic MEWMA chart has a better performance than the T2 chart for
small and moderate shifts. Lee et al. (2013) further used the GSC procedure to propose a
synthetic multivariate CUSUM (MCUSUM) chart for detecting shifts in the mean vector
using the zero-state mode. Let Z, be the standardized sample mean, that is, independently

normal, each with p different quality components of interest. The charting statistic is given

by
T, =[S, 27*S.]"/?

with

k
S, = {(St—l +Z— Woz) (1 - C_t> if C: >k

0 otherwise

where C; = {(See1 + Zp — Hoz) 27 (Se_1 + Z — poz)}Y/? where k >0 is the reference
value and X, is the covariance matrix in correlation form. The authors noted that, in practice,
it is impossible to specify the exact size of the shift in the mean vector, hence; they proposed
an index to evaluate the overall performance of the chart over a range of pre-specified shifts

i.e. the average ratio of steady-state ARL (ASARL) which is given by

h
1 SARL of compared chart at §;
h+ 14 . SARL of MCUSUMgy ¢, chart at §;

=

ASARL =

where h is the number of steady-state ARL (SARL) for the control chart and §; = 6; +

%(62 — 671), Where [§;, 6,] is the pre-specified shift range. Thus, with respect to the ASARL,
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the synthetic MCUSUM chart performs better than the MCUSUM, the synthetic T2 and the
T2 charts in detecting a specified range of shifts. Also, it performs slightly better than the

synthetic MEWMA chart in detecting moderate to large shifts.

The methods reviewed so far for the multivariate synthetic charts were for fixed
sampling scheme (FSS) scheme. The first VSS scheme was proposed by Khoo et al. (2013)
namely a synthetic T2 chart based on the DS method using the zero-state mode. The synthetic
DS chart operation is more complicated since a sample is classified as conforming or
nonconforming depending on the information given by not only the first sample, but the joint
information on the first and second sample. In addition, the DS synthetic chart requires
calculation of six parameters for some given &, whereas the FSS synthetic chart requires only
two (H and k). Furthermore, the authors observed that the synthetic DS-T? chart performs
better than the DS-T? chart for almost all shifts based on the ARL; and the ANOS,.
Moreover, the MEWMA chart only outperforms the synthetic DS-T? chart for small shifts of

size § <0.5.
Variation
Ghute and Shirke (2008a) proposed a synthetic |S| chart to monitor shifts in the

covariance matrix of bivariate and multivariate processes. This chart is based on the use of

the determinant of the sample covariance matrix called the generalised variance, i.e.

NES

1 _ .
;Z;(Xi - DX - D)

The (zero-state) ARL performance is based on the determinant ratio (DR) of the IC and OOC
covariance matrix i.e. DR = |Z,|/|Z,|, where a value equal to one implies the process is IC,
however, when DR > 1 or DR < 1, the dispersion variable is thought to have increased or
decreased, respectively. For the bivariate case, the authors observed that the synthetic |S]|
chart outperforms the |S| chart, the adaptive sample size |S| chart and the bivariate EWMA
chart. For the multivariate case, the synthetic chart consistently produces smaller ARL;
values than the multivariate |S| chart. Note that Lee and Khoo (2013) applied the VSI scheme

to the synthetic |S| chart. In Machado et al. (2009a) a synthetic VMAX chart, to monitor the
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covariance matrix of two correlated quality characteristics, say X and Y, is proposed,
assuming that the underlying process is a bivariate normal distribution with the analysis done
for both zero-state and steady-state. The points plotted on this chart correspond to the

maximum of the values of the two variances i.e. VMAX = max(Sz, Sy). The IC and OOC

covariance matrix are given by
OF  Oyy a.a.0y a.b.oy,
20 = 2 and 21 = 2 |
Oxy Oy a.b.oy, b.b.oy

respectively. They observed that the synthetic VMAX chart is more efficient than the |S]|
chart. In addition, it has a similar performance to that of the VMAX chart, except for
situations where H is small and the assignable cause(s) affects only one variable (i.e. a = ¢ &
b=1ora=1&b=c).

Joint mean and variation

Ghute and Shirke (2007) proposed the use of the combined scheme involving
simultaneous use of the synthetic T2 and the synthetic |S| chart for normally distributed data.
It was found that, as the mean shifts and/or the variability in the covariance matrix increases,
the zero-state ARL performance comparison indicated that the combined synthetic scheme
performs better than the combined T2 and |S| chart for the entire range of shifts in the
process parameters. Machado et al. (2009b) used the concept of VMAX, introduced in
Machado et al. (2009a), to propose a synthetic MVMAX chart to jointly monitor the mean
vector and covariance matrix of a bivariate process. Consider the two correlated variables
(X, Y) with sample means (X, Y) and sample variances (SZ, S7). Then the charting statistic of
this chart is given by V = max{|Z,|, |Z,|, W, W,}, where Z, = \/ﬁ()?—yx)/ax, Zy, =
Vn(Y — ) /oy, Wy = kS, /o, and W, = kS, /a,. The parameter k is required to attend the
imposed condition that during the IC period, the four statistics have the same probability to
exceed the UCL of the MVMAX sub-chart. The authors showed that the synthetic MVMAX
chart is faster than the NCS chart and the joint T2 and |S| chart except when the correlation
between X and Y is high. Moreover, the authors noted that the higher the correlation the

better the performance of joint T2 and |S| chart.
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Economic and economic-statistical designs

Yeong et al. (2014a) proposed an economic design and an economic-statistical design
for the synthetic 72 chart. An algorithm to find the optimal parameters of the synthetic T2
chart, which minimizes the net sum of all the costs involved, was derived so that the chart can
be operated at an economically optimal level. For this chart the cost function consists of 15
input parameters and the p quality characteristics follow a multivariate normal distribution
with mean vector pu and covariance matrix X. The assignable cause is assumed to be
exponential distributed with parameter ¢. The authors observed that the synthetic T2 chart
yields lower minimum cost than the T2 chart for all examples, under both economic and
economic-statistical designs. Furthermore, the economically optimal design for the T2 chart
results in weaker statistical performance compared to the synthetic T2 chart. Furthermore,
they showed that the optimal parameters are quite robust to changes in the input parameters,
except p and &, thus care should be taken when approximating these. Moreover, the synthetic
T2 chart outperforms the MEWMA chart, except for small § and when a long time is
required to sample and interpret one unit. The multivariate version of the work discussed in
Yeong et al. (2013) and Yeong and Khoo (2013) has been done in Yeong et al. (2014b) and
Yeong et al. (2014c), respectively.

3.4.2 Nonparametric variables charts
Location

Bennett (1964) proposed a NP bivariate SR statistic which is computed for each

variate in X; = (X1, X,;) using n observations in a sample. Let T; and T, be the two signed-

rank statistics corresponding to two variables. For the i variate, define the signed-rank

statistic
T, = X7, C(X;)) R(X;y) fori=1,2

where
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1 if X;;>0
c(xy) = { g
(X)) 0 otherwise
and R(X;;) is the rank of |X;;| among |Xy;|, |Xpl, ..., |Xnil. Let E(Tilp = po) = v; for

i = 1,2. Then, the Bennett’s SR statistic is given by
W= (T -v)B (T -v)

Bll ﬁlZ
321 ﬁ22

the vector T. When u = p,, the statistic W is asymptotically y2(2) distributed. The chart
indicates that a process has shifted when W > UCL*. Thus, Ghute and Shirke (2012)

where, T = (Ty,T,)', v = (v, v,) and B = ( ) is the variance-covariance matrix of

developed a control chart based on the integration of the operation of the bivariate SR chart
and a CRL chart. They observed that the ARL,(8) of the bivariate synthetic SR chart is
smaller than that of the T2 chart for small shifts in the location, whereas for large shifts the
performance of the bivariate synthetic SR chart is equivalent to that of the T2 chart. Under a
heavy tail bivariate double exponential distribution, the bivariate synthetic SR chart is
uniformly better than the T2 chart. However, when the data is normal, then the two charts

have an equivalent performance.
3.4.3 Parametric attributes charts
Fraction/number nonconforming

In multi-attribute process, a product has different types of defects. A single multi-
attribute chart can be used to monitor the number of nonconforming units found in a sample
of size n with respect to the g attributes (or defect types). In this case, a unit is classified as
nonconforming if any of the g types of defects is found. Haridy et al. (2013) used the multi-
attribute np chart design discussed in Jolayemi (1999) to propose a multi-attribute synthetic
np chart and a combined scheme of the multi-attribute synthetic np chart and multi-attribute
np chart (i.e. a multi-attribute version of the scheme in Haridy et al. (2012)). They used the
index AND (average number of defectives produced across a range of fraction

nonconforming, ps, Po < Ps < Pmax) 0iven by
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(Smax
1
AND = ——— Z ps X ATS(ps)
Smax -1 5=2

to measure the overall performance of the control chart. They observed that the combined
scheme is more effective than multi-attributes np chart and synthetic np chart by 83% and

27%, respectively, in terms of AND.
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3.5 Other synthetic-type charts

All the synthetic charts reviewed to this point were based on the second sub-chart
being the CRL. However, other synthetic-type charts with a different second sub-chart have
been proposed in the literature. To our knowledge, three such other synthetic-type charts exist
and these have a second sub-chart called the GCRL, CQC-r and CCC-r based on the
geometric, gamma and negative binomial distributions, respectively. Consider the GCRL
sub-chart; this chart is similar to the CRL sub-chart, except in the decision making procedure.
The GCRL gives an OOC signal when the first CRL charting statistic is less or equal to H or
any two consecutive CRL charting statistics are both less than or equal to H for the first time.
That is, when CRL; < H or CRL; <H & CRL;,; <H for i =23,..., then the process is
considered OOC. Suppose that defects in a process occur according to a Poisson distribution
with parameter ¢ per unit quantity of product. Then the number of units required to observe
exactly r (= 2) defects has an Erlang or gamma distribution. Hence the chart to monitor TBE
until the »™ event in a Poisson process is called the CQC-r (see Fang et al. (2013)). The
CCC-r chart is based on the quality characteristic to monitor the cumulative count of items

inspected until observing r (= 2) nonconforming items (see Mishima et al. (2002)).

Fang et al. (2013) proposed a synthetic exponential chart and a synthetic Erlang chart
by integrating the operation of an exponential chart and an Erlang chart, respectively, with a
GCRL chart. These synthetic charts were shown to perform better than their non-synthetic
counterparts in detecting mean shifts of all sizes for both zero-state and steady-state modes.
Kusukawa and Ohta (2005) proposed a synthetic confirmation sample (CS) chart for a high
yield process by integrating the operation of the CS (proposed in Steiner (1999)) and the
CQC-r chart. Two additional synthetic charts for high yield processes with a CCC-r sub-
chart were proposed in Mishima et al. (2002) and in Kusukawa et al. (2008) with a CS sub-
chart and an EWMA sub-chart, respectively. All three of these latter synthetic charts were

shown to have better performance than their non-synthetic counterparts.
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3.6 Concluding remarks

In this chapter, the synthetic charts for variables (parametric and nonparametric) and
attributes (parametric) for univariate and multivariate data were reviewed. It is worth noting
that a significantly large part of this review is based on variables synthetic charts whereas
synthetic charts based on discrete and nonparametric distribution is little. For synthetic charts,
it is important for a practitioner to indicate (clearly) whether zero-state or steady-state
analysis was used to evaluate the run-length distribution since significantly different
performance results are obtained depending on what state is assumed. For most comparisons
done using the zero-state, the synthetic chart outperformed the non-synthetic counterparts for
various shifts. This is because of the implicit head-start feature given to this method, which
gave it a large overall zero-state advantage. When ruled out, the run-length performance
deteriorates. Therefore, care needs to be taken when making conclusions about the

performance of a synthetic control chart.
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3.7 Appendices

3.7.1 Appendix 3A: Proofs of Equations

The proofs of the results and equations given in Chapter 3 are provided in this

appendix.

Proof 3.1 - Equation (3.1)

Note that the proof for Equation (3.1) follows directly from the example illustrating

the equivalence of the runs-rules chart and the synthetic chart; see Davis and Woodall (2002).

Proof 3.2 - Equation (3.3 & 3.4)

Kritzinger (2011, p. 213) showed, using the methodology in Fu et al. (2002), that

P(RL=7)=3Q"'(1- Q1

where € is the initial vector associated with TPM. Thus taking € = q” yields

PRL=71)=fp, (M =3Q'1-Q1=q'Q'r

as given in Equation (3.3). Moreover, Kritzinger (2011, p. 220) showed that

P(RL<7)=1-%Q'1.

Similarly, it follows that Equation (3.4) is given by

P(RL S T‘) - FRL(T) - 1 - qTer.

© University of Pretoria

(A3.1)

(A3.2)

(A3.3)

(A3.4)
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Proof 3.3 - Equation (3.5 & 3.6)

Fu and Lou (2003, p. 73) proved that the first moment is given by §(I — Q)~11. Thus
taking & = q7 yields

ARL=¢01-Q 1= q"0-Q 11 (A3.5)
as given in Equation (3.5). Furthermore, Kritzinger (2011, pp. 215-216) derived the second

moment using the method in Fu and Lou (2003, Chapter 5) and showed that the standard

deviation of the run-length is equal to

SDRL =/qT(A+ QI - Q)21 — (q"(1— Q)~'1)Z. (A3.6)

However, in Latouche and Ramaswani (1999) Equation (A3.9) is given by

SDRL = /2q"(1— Q)~2Q1 — (ARL)? + ARL. (A3.7)

Hence, our aim here is to show that Equations (A3.6) and (A3.7) are the same. Accordingly,

we use the moment generating function in Fu et al. (2002):
M) =(et—1)q"(I—e'Q) 11+ 1. (A3.8)

Hence, without showing the calculations, we follow the steps in Kritzinger (2011, p. 215),

with the first moment being equal to

E(RL) = M'(0) = e°q"(1— e°Q) 1 + (2@ —e%)q"(1- e°Q)72Q1
=qT(1-Q) 1. (A3.9)
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Following this, the second moment is equal to

E(RL?) = M"(0) = e°q"(1—e°Q) 1 + e*©q"(1-¢°Q)2Q1
+(2e2® — ) qT (1 - e°Q)72Q1

+2(e3 — 200y g (1 -
=q"I1-Q '1+4q"0-Q7?Q1+4q"(1-Q)~%Q1.

e’Q)*Q%1.
(A3.10)

Equation (A3.6)

Equation (A3.7)

Var(RL) = E(RL?) — E(RL)?
=q"1-Q "1+q"(1-Q)2Q1+q"(1-Q2Q1
—(q"(1-Q)11)?
=q"0I+(1-QQ+(1-Q'QU-Q 1
- (q"(1-Q)1'1)?
=q"(1-Q+Q+QU-Q'1-Q™"1
- (q"(1-Q)1'1)?
=q"I+QUI-Q*1-(¢"(1-Q'1)%

~ SDRL =/q"(1+ QI — Q)21 — (¢"(1 — Q)~'1)2

Var(RL) = E(RL?*) — E(RL)?

=q"0I-Q "1+4q"0-Q%Q1+q"(1-Q)2Q1
—(q"1-Q)'1)?

=@"I-Q7%Q1+4q"1-Q)%Q1)
-@"AI-Q'D*+ @ aI-Q 1)

=2q"(1-Q)"%2Q1 — (ARL)? + ARL

«~ SDRL = /2q"(1— Q)=2Q1 — (ARL)? + ARL

Therefore Equations (A3.6) and (A3.7) are the same.

Proof 3.4 - Equations 3.7 & 3.8

Scariano and Calzada (2009) proposed alternative formulas to represent Equations

(3.5) and (3.6). These formulas are preferred by authors in the literature because the ARL and

the SDRL can be calculated without involving a matrix inversion.

Let B (&) denote the probability that an X sub-chart will not mark a sample as nonconforming

on the first subsequent sample after a shift in the process mean from u, to u, + 6o, with

5 # 0. The detection power of the X sub-chart is given by 8 =1 —£(5). Calzada and

Scariano (2001) noted that since the X and the CRL sub-charts work in tandem to signal an

OOC status, we then need proceed as follows in order to calculate the ARL and the SDRL:

Let Y; denote the number of samples observed until the i"" nonconforming sample mean is

signalled from the X sub-chart. Let Y, =0, it follows that (Y; —Y,) follows a geometric
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distribution with parameter 6. Define Y,, Ys,... similarly and note that the increments (Y; —
Yy), (Y2 = Y;), (Y3 —Y,),... are mutually independent, each having a geometric distribution

with parameter 8 and an expected value of
1
E(Vi —Y) =74 (A3.11)

As defined in Section 1.10, N denotes the first index for which a signal is given in the CRL
sub-chart with LCL denoted by H. That is, N~ geo(P[Y; — Y, < H] ) =geo(1 — (1 — §)#).

The first and second moments of N are given by

1

S T=a—er

(A3.12)

and

s 2=(1—(1—0))  1+(1-06)"
= Ta ey T a-a-on? A1

Moreover, let M denote the run-length variable of some basic sub-chart. The run-length is
known to have a geometric distribution with a probability of marking a sample as
nonconforming given by 6. Thus, the pmf, first and second moments of the random variable

M are given by

P(M=w)=0(1-06)"1 (A3.14)
1
EM) = 3 (A3.15)
2—0
E(M?) = g (A3.16)
respectively. Note,
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P[(Y; =Y-1) =w] =P[M = w] (A3.17)

P[(Y, = Y-1)] = E[M] (A3.18)

PI(Y, — Y,-1)%] = E[M?]. (A3.19)

Since the synthetic chart signal at the first index, say |, for which Y, —Y,_; < H, the

increments Y; —Y;_; and N are not mutually independent. Thus the conditional pmf of

Yi1 — Y; given N = [l is used to find the average and standard deviation of the run-length.

")

The ARL of the synthetic chart is given by

Z(Y o)

ARL = E(Yy) = E(E[Y;IN =1]) = (

=E<(N—1)E(N [;wxp(M w)>+E(N)>< zwxP(M w)]
= E(N) wXP(M=w)|+E(N) X wXP(M = W)]
2, Z
— E(N) x wap(M=w)
— E(N) x E(M)

Therefore from Equations (A3.12) and (A3.15) it follows that

1

1
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The SDRL of the synthetic chart is calculated as follows.

Var(Yy) = E[Var(Y;|N = D] + Var[E(Y;|N = )]

-1
Var (Z(Yi ~Yii) + (= V)N = l)

i=1

=F + Var

-1
E (Z(Yi —Yie) + (¥, = V)N = l)]

= Var[¥, — Yo|M > H] x E(N — 1) + Var[Yy — Yy_1|M < H] + E2[Y, — Y,|M > H] X Var(N — 1)

_ ) _EWV) 5 B EZ(N) ~ B i )
_ {—E(N = WX P(M = w) = s (W;Hw x P(M = w)> }E(N 1) + E(N) WZ1W x P(M = W)}

w=H+1

2

— B E2(N — 1)

w=H+1

+ﬂ{ z WxP(Mzw)} E(N) x E(N — 1)

H
ZWXP(MZW)
w=1

2 0o 2 H 2 3
=E(N)XE(M2)_ E“(N) < Z WXP(M=W)> —EZ(N){ZWXP(M=W)} n E°(N)

i wXxP(M = W)}Z

E(N B 1) w=H+1 w=1 EZ(N B 1) w=H+1
00 2 H 2
= E(N) x E(M?) + E2(N) {( Z w X P(M = w)> - <Z w X P(M = w)) }

= E(N) x E(M?) + E2(N)E(M) {E(M) -2 Z w X P(M = w)}.

w=1
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Hence, using Equations (A3.12) to (A3.16) it follows that

Varth) = (7= (11— ) (77)+ (= (11— e)H)z (5) {% - WZIW o0 Q)W_l}

H
2—0 1 1 1 B
:92(1‘<1—9>”>+<1—<1—9>H>2X‘(E)X<5_ZH;WX“—9> >}

_ 2—9 1 1 2 H 1 ew_l
TeIa-a-0n (1-(1-0)M2 |92 ;WX( — w1t

Therefore, the SDRL is given by

2-6 1 1 < »
SDRL= 92(1—(1—9)H)+<1—<1—9)H)2X{ﬁ—zwzlwx(1—0)W } (A3.21)
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3.7.2 Appendix 3B: SAS® programs

Optimal search algorithm to determine k and H

(1) Zero-state mode

In Table 3.2, we illustrate this algorithm for § =0.75, n = 5 and ARL, equal to 370.4 is

easily done using Microsoft® Excel:

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Specifyu =0,0 =1,n =5,8 =0.75.
Assume on the previous iteration H =1 and we obtained ARL;(0.75) = 6.40581.
Now, take H = 2.

Find k by solving
1 1
20(—k) 1= [1=20(=K)]?
The corresponding value of k when H = 2 is 2.085 (using the Solver tool on
Microsoft® Excel).

First calculate 6 =6(0.75) = 1 — [®(2.085 — 0.75V5) — &(—2.085 —

= 370.4

1
1-(1-6)2

Since ARL,(0.75) is equal to 6.40581 when H =1 and when H =2 it is equal to
5.16177, then according to the algorithm we go back to Step 3. We continue with

0.75V5)] and ARL,(0.75) = 7 X =5.16177.

these iterations until increasing H no longer decreases the corresponding ARL,(0.75).

In a situation, we then proceed to Step 6.
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(ii) Steady-state mode

proc iml;

ARL 0=370.4;
mu=0; stdev=l;
shift=0; n=1;

do H=1 to 10;

Q=J (H+1,H+1,0);

al=J(1,4,99999);

one=J (H+1,1,1);

initial vec= J(H+1 1,0);

initial vec[ 1=1; *head-start feature;
G=J (H+1,H+1,0);

G[ll]_ ; [ 1] 2/

do j=2 to H+1;

G[3,31=1;

end;

u=J (H+1,1,0);

ull,1]=1;

I=I(H+1);

*print G, u, I, initial vec;

do k=1 to 3 by 0.0001;
theta=1l-cdf ("Normal",k-shift*sqgrt (n),mu, stdev) +cdf ("Normal", -k-

shift*sqgrt (n),mu, stdev);
Q[1l,1]=1-theta;
Q[1l,2]=theta;
Q[H+1,1]=1-theta;
do jj=2 to H;
Q[Jj,jj+1l]l=1-theta;
end;
inv=inv (I-Q) ;

al=inv (G- (Q) 7) *u;

s=inv ((one) *gl) *qgl;

*print G, u, I, Q, inv, one, s;

ARL vec=inv*one;

ARL=s *ARL vec;*Using Markov chain (see Fu and Lou (2003));
diff=abs (ARL-ARL 0);

a=k| |theta| |ARL| |diff;

al=al//a;

k  theta ARL diff=al([2:nrow(al),];

call sort(k theta ARL diff, {4});

optimal K=k theta ARL diff[1,1];
ICARL=k theta ARL diff[1,3],
end;

’

print H optimal K ICARL;
end;
run;

quit;
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e Zero-state ARL calculation

A direct calculation using Equation (3.2) in Microsoft® Excel is much easier to use.

e Steady-state ARL calculation

We use the following SAS® program to calculate the ARL values:

proc iml;

H=6;

k=2.2714; n=5;

ARL 0=370.4;

mu=0; stdev=1l; shift=0.75;
al=J(1,2,99999);

*do shift=0 to 3 by .1;
Q=J(H+1,H+1,0);
one=J(H+1,1,1);

initial vec=J(H+1,1,0);
initial vec[2]=1; *head-start feature;
G=J (H+1,H+1,0);

G[1,]=1; G[1,1]=2;

do j=2 to H+1;

G[J,31=1;

end;

u=J(H+1,1,0);

ull,1]1=1;

I=I(H+1);

theta=1l-cdf ("Normal",k-shift*sqgrt (n),mu, stdev) +cdf ("Normal", -k-
shift*sqgrt(n),mu, stdev) ;

Q[1l,1]=1-theta;

Q[1,2]=theta;

Q[H+1,1]=1-theta;

do jj=2 to H;

Ql3J,Jjtl]l=1-theta;

end;

inv=inv (I-Q) ;

al=inv (G- (Q) ") *u;

s=inv ( (one) " *qgl) *ql;

ARL vec=inv*one;

ARL=s *ARL vec;*Using Markov chain (see Fu and Lou (2003));
a=shift| |ARL;

al=al//a;

shift  ARL=al[2:nrow(al),];
*end;

print shift ARL;

run; S

quit;
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3.7.3 Appendix 3C: Comparison of four variables charts to monitor the process mean
Introduction

There is a vast number of control charts that have been proposed in the literature to
monitor the process mean. In this section, we compare the performance of four different types
of control charts to monitor the process mean for variables data. The four control charts are
(i) the Shewhart X chart, (ii) the synthetic chart (see Wu and Spedding (2000)), (iii) the 2-of-2
KL runs-rule chart (see Klein (2000)), and (iv) the 2-of-3 KL runs-rule chart (see Klein
(2000)). In this comparison, it is assumed that the quality characteristics are normally

distributed with a known mean u, and a known standard deviation a.
Markov chain approach

The transition probability matrix (TPM) of the Markov chain for any general (integer)
value of M > 0 are given by

Q(M,M) | Tw,1
Puryiminy = T (A3.22)
0wy | lan

where Q) Is the matrix of transient probabilities, the vector r( ) satisfies r =1 — Q1
with 11y = (11 .. 1) and 0 = (00 ... 0)". Fu and Lou (2003, p. 73) proved that the
first moment of the run-length is given by (I — Q)~'1, where & is the initial probability

vector, that is,
ARL=§1-Q) 11 (A3.23)

Furthermore, it can be shown that the second moment using the method in Fu and Lou (2003,

Chapter 5) that the standard deviation of the run-length is equal to

SDRL = J§¢1+ Q)1 - Q)21 — (§(1— Q)~'1)2. (A3.24)
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Shewhart X chart

The upper and lower control limits of the Shewhart X chart are given by UCLg/

LCLy =y0ik3—%. Since it is customary to use k =3, so that three-sigma limits are

employed (see Montgomery (2013, p. 236)), thus we use this value to implement the X chart.
The ARL is given by

1

ARL =1~ ®(k — 6vn) + ©(—k — 6vn)

(A3.25)

where § = @ denotes the value of the shift in the process mean, where u; is the OOC
0

mean.
Synthetic chart

In Table A3.1 we give the optimal values of H and k using the algorithm in Wu and
Spedding (2000) for the zero-state and steady-state modes. Davis and Woodall (2002, see p.
202 & p. 204) showed that using the same optimal values of H and k in the zero-state and in
the steady-state modes one obtains significantly different performance results for the
synthetic chart, implying that results depend on which mode of analysis is assumed.
Moreover, in Table A3.1 we see that the values of k in zero-state and steady-state are
different, with the steady-state values of k being lower than those in zero-state. Thus, it is our
opinion that Davis and Woodall (2002, see p. 202) used approximately correct values for k in
their Table 1, however, in their Table 2 (see Davis and Woodall (2002, p. 204)) the values of
k are incorrect. This is further supported by the fact that in Davis and Woodall (2002, p.
204)’s Table 2, all the values of the IC ARL are much higher than 370.4. The correct values
of k for the steady-state mode are given here in Table A3.1 obtained using a SAS® program
given in the Appendix 3B.
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Table A3.1: Optimal values of H and k with the corresponding values of in-control ARL for
the zero-state and steady-state modes for a nominal ARL of 370.4

H Zero-state Steady-state
k IC ARL k IC ARL

1 1.9435 370.4 1.9328 370.3
2 2.0848 370.4 2.0706 370.4
3 2.1640 370.4 2.1472 370.5
4 2.2188 370.4 2.1997 370.3
5 2.2604 370.4 2.2395 370.4
6 2.2939 370.4 2.2714 370.4
7 2.3218 370.4 2.2978 370.3
8 2.3458 370.4 2.3204 370.3
9 2.3667 370.4 2.3401 370.4
10 2.3852 370.4 2.3575 370.5
20 2.5032 370.4 2.4666 370.4
30 2.5690 370.4 2.5261 370.4
40 2.6142 370.4 2.5663 370.4
50 2.6483 370.4 2.5963 370.4

2-of-2 KL runs-rule chart

The 2-of-2 KL runs-rule chart was proposed in Klein (2000) where a control chart
gives an OOC signal when either two successive points plot above an UCL, or two successive
points plot below a LCL. Splitting a control chart into three regions i.e. one above the UCL
(upper region), one below the LCL (lower region) and one between the control limits (center
region). Denote the corresponding probability of a point falling in each region as pU, pL and

p, respectively. Thus using the Markov chain approach, the transient states matrix is given by

p pU plL

p pU O

Note state {1} (column 1) in the above matrix indicate no points beyond either of the control
limits, state {2} (column 2) a point above UCL and state {3} (column 3) a point below LCL.
Klein (2000) showed that the optimal value of k is equal to 1.781419. The above probabilities

are given by pU =1 — ®(k — §vn), pL =1—-®(—k —6vn) and p = 1 — pU — pL. The
ARL is given by Expression (2) with k = 1.781419and § = (100 ... 0).
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2-0f-3 KL runs-rule chart

The 2-of-3 KL runs-rule chart was proposed in Klein (2000) where a control chart
gives an OOC signal when either two of three successive points plot above an UCL, or two of
three successive points plot below a LCL. Similarly, using the Markov chain approach, the

transient states matrix is given by

'p pU pL 0 0 0 0 7
0 0 0 pL p 0 O
0O 0 0 0 0 p pU
Q=0 0 0 0 0 p O |
p 0 pL 0 0 0O O
p puU 0 0 0 0O O
L0 0 0 O 0 p O

Note state {1} (column 1) in the above matrix indicate two successive points between the
control limits, state {2} (column 2) a first point between control limits and the second point
above UCL, state {3} (column 3) a first point between control limits and the second point
above LCL, state {4} (column 4) a first point above the UCL and the second below the LCL,
state {5} (column 5) a first point above the UCL and the second between control limits, state
{6} (column 6) a first point above the LCL and the second between control limits, state {7}
(column 7) a first point above the LCL and the second point above the UCL. Klein (2000)
showed that the optimal value of k is equal to 1.930701. The ARL is given by Expression (2)
with k = 1.930701and & = (100... 0).

Discussion

In Table A3.2 we observe that the 2-of-3 KL chart performs better than all the other
charts for small shifts of size § <0.6. Moreover, the 2-of-3 KL chart always performs
equally as or better than the 2-of-2 KL chart and equally as or better than the Shewhart X
chart except when § > 2.7. The 2-of-2 KL chart better than the Shewhart X chart and the
zero-state synthetic chart when & < 0.4. Also the Shewhart X chart performs equally as the
zero-state synthetic chart when § = 5. Finally, for moderate to large shifts (i.e. § > 0.6), the

zero-state synthetic chart performs better than all the other charts. In addition, as the shift
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increase from medium to large, the optimal values of H decrease from a large value to a small
value.

However, in Table A3.3, the 2-0f-3 KL chart performs better than all the other charts
for small to medium shifts of size § < 1.7 (that is, a large degree of shifts compared to zero-
state). Similarly, the 2-of-2 KL chart also now performs better than the Shewhart X chart and
the steady-state synthetic chart for a larger degree of shifts than in zero-state (i.e. § < 1.3).
Moreover, the Shewhart X chart performs better than the all the other charts for shifts of size
6 equal to 4 and 5. Finally, for the steady-state, the synthetic chart only performs better than
the other charts for shifts of size 1.7 < § < 3.

With respect to the deterioration in the performance of the synthetic chart from the
zero-state to steady-state mode, this was originally observed by Davis and Woodall (2002)
and has been well documented by a number of authors in the literature. Moreover, it goes
without say that the 2-of-3 KL chart performs well for small shifts and this chart is
recommended if such shifts are of interest. Whereas, for moderate to large shift the synthetic

chart yields better results than the competing charts discussed here.
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Table A3.2: Comparison of the ARL values for the zero-state synthetic chart (for various values of H and k), 3¢ X chart, 2-of-2 KL chart and the
2-0f-3 KL chart

H 1 2 3 4 5 6 7 8 9 10 20 30 40 50 30 | yotokl | 2003 KL
k| 1.9435 | 2.0848 | 2.1640 | 2.2188 | 2.0604 | 2.2939 | 2.3218 | 2.3458 | 2.3667 | 2.3852 | 25032 | 2.5690 | 2.6142 | 2.6483 | limits
0 | 3704 3704 3704 3704 3704 3704 3704 3704 3704 3704 3704 3704 3704 3704 3704 3704 372.7
04 | 3542 3523 3513 3505 3500 3495 3491 3488 3485 3483 3469 3461 3457 3454 3529 3420 341.6
02 | 3115 3053 3018 2995 2977 2963 2051 2041 2933 2925 2881 2860 2848 2841 3084 2767 2716
03 | 2554 2451 2395 2357 2329 2307 2289 2274 2261 2250 2185 2156 2140 2131 2531  207.1 199.5
04 | 1989 1863 1797 1753 1721 1696 167.6 1659 1645 1633 1565 1537 1523 1516 2001  150.3 142.3
05 | 1498 1369 1303 1261 1230 1206 1188 1172 1159 1148 1090 1068 1059 1056 1552 1085 101.4
0.6 | 1107 989 930 893 866 847 831 8.8 808 799 754 740 736 737 1197 78.9 73.0
07 | 812 711 662 631 610 594 582 572 564 557 526 | 518 519 523 923 58.2 53.4
08 | 597 512 473 449 432 420 411 404 398 393 373 | 371 374 380 716 436 30.8
09 | 441 373 341 323 310 301 2904 289 285 282 | 270 272  27.7 284 558 333 302
1 329 274 250 236 226 220 215 211 209 206 204 204 211 218 439 25.8 23.4
11 | 248 205 186 175 168 163 160 158 156 155 | 153 @ 158 165 172 348 203 18.4
12 | 190 155 141 132 127 124 122 120 119 | 118 120 125 132 138 278 163 14.8
13 | 147 119 108 102 98 96 95 94 93 | 93 96 102 108 114 224 132 12.0
14 | 116 94 85 80 78 76 75 14 74 | 74 78 84 90 95 182 109 10.0
15 | 92 74 68 64 62 61 61 | 61 61 61 65 71 76 80 150 9.2 8.4
Shift | 16 | 75 60 55 52 51 | 50 50 50 50 51 56 60 64 68 124 7.8 7.2
17 | 61 49 45 43 43 | 42 42 42 43 43 48 52 55 58 103 6.7 6.2
18 | 51 41 38 37 | 36 36 36 36 37 37 42 45 48 50 87 5.9 5.4
19 | 43 35 32 31 31 31 31 32 32 33 37 40 42 44 74 5.2 4.8
2 37 30 28 27 27 28 28 28 29 29 33 35 37 39 63 4.6 43
21 | 32 26 25 | 24 24 25 25 25 26 26 29 31 33 34 54 4.2 3.9
22 | 28 23 22 22 22 22 22 23 23 24 26 28 29 31 47 338 3.6
23 | 24 21 20 20 20 20 21 21 21 21 24 25 27 27 41l 35 33
24 | 22 19 | 18 18 18 19 19 19 20 20 22 23 24 25 36 3.2 31
25 | 20 17 | 17 17 17 17 18 18 18 18 20 21 22 23 32 3.0 2.9
26 | 18 16 16 16 16 16 16 L7 17 17 19 20 20 21 29 2.8 2.8
27 | 17 15 15 15 15 15 15 16 16 16 17 18 19 19 26 2.7 2.6
28 | 15 14 14 14 14 14 15 15 15 15 16 17 17 18 24 2.6 25
29 | 14 | 13 13 13 14 14 14 14 14 14 15 16 16 17 22 25 2.4
3 14 13 13 13 13 13 13 13 14 14 14 15 15 16 20 24 2.4
4 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 2.0 2.0
5 10 10 10 10 10 10 10 10 10 10 10 10 10 10 [ 10 2.0 2.0
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Table A3.3: Comparison of the ARL values for the steady-state synthetic chart (for various values of H and k), 30 X chart, 2-of-2 KL chart and
2-0f-3 KL chart

10

20

30

40

50

H 30
k 1.9328 | 2.0706 | 2.1472 | 2.1997 | 2.2395 | 2.2714 | 2.2978 | 2.3204 | 2.3401 | 2.3575 | 2.4666 | 2.5261 | 2.5663 | 2.5963 | [imits 2-0f-2 KL | 2-0f-3 KL
0 3703 3704 3705 3703 3704 3704 3703 3704 3704 3705 3704 3704 3704 3704 3704 3704 372.7
0.1 3547 3532 3523 3516 3512 3509 3506 3504 350.2 350.1 3493 3489 3487 3487 352.9 342.0 341.6
0.2 3132 3079 3051 3032 3018 3009 3000 299.3 2988 2984 2958 2949 2945  294.4 308.4 276.7 271.6
0.3 2585 2497 2452 2421 2401 2385 2372 2362 2354 2347 2311 2299 2295 2295 253.1 207.1 199.5
0.4 2032 1924 1870 1836 1812 1795 1780 1769 1761 1753 1717 1707 1706 1707 200.1 150.3 142.3
0.5 1547 1437 1384 1351 1328 1312 1299 1289 1282 1275 1246 1240 1242 1246 155.2 108.5 101.4
0.6 1158 1057 101.0 982 96.3 94.9 93.9 93.1 92.5 92.0 90.0 89.8 90.2 90.7 119.7 78.9 73.0
0.7 86.2 77.6 73.7 71.4 69.8 68.8 68.0 67.4 67.0 66.6 65.4 65.5 66.1 66.8 92.3 58.2 53.4
0.8 64.3 57.2 54.0 52.2 51.1 50.3 49.7 49.3 49.0 48.8 48.1 485 49.2 49.9 71.6 43.6 39.8
0.9 48.3 425 40.1 38.7 37.9 37.3 36.9 36.6 36.4 36.3 36.0 36.6 37.3 38.0 55.8 33.3 30.2
1 36.7 32.1 30.2 29.2 28.5 28.1 27.8 27.6 27.5 27.4 275 28.1 28.8 29.5 439 25.8 23.4
1.1 28.2 24.5 23.1 22.3 21.8 215 21.4 21.2 21.2 211 21.4 22.0 22.7 23.4 34.8 20.3 18.4
1.2 22.0 19.0 17.9 17.3 17.0 16.8 16.7 16.6 16.6 16.5 16.9 17.6 18.3 18.9 27.8 16.3 14.8
1.3 17.3 15.0 14.1 13.7 135 13.3 13.2 13.2 13.2 13.2 13.7 14.3 15.0 15.6 22.4 13.2 12.0
1.4 13.9 12.0 11.3 11.0 10.8 10.8 10.7 10.7 10.7 10.7 11.2 11.9 12.5 13.0 18.2 10.9 10.0
15 11.3 9.8 9.2 9.0 8.9 8.8 8.8 8.8 8.8 8.8 9.4 10.0 10.5 11.0 15.0 9.2 8.4
Shift | 1.6 9.3 8.1 7.6 7.5 7.4 7.3 7.3 7.4 7.4 7.4 8.0 8.5 9.0 9.4 124 7.8 7.2
1.7 7.7 6.7 6.4 6.3 6.2 6.2 6.2 6.2 6.3 6.3 6.9 7.4 7.8 8.1 10.3 6.7 6.2
1.8 6.5 5.7 5.5 5.4 5.3 5.3 5.3 5.4 5.4 55 6.0 6.4 6.8 7.0 8.7 5.9 5.4
1.9 5.6 49 47 4.6 46 46 47 47 47 4.8 5.3 5.6 5.9 6.2 7.4 5.2 4.8
2 48 43 4.1 41 41 41 41 4.2 42 42 4.7 5.0 5.3 5.4 6.3 4.6 4.3
2.1 4.2 3.8 3.6 3.6 36 36 3.7 3.7 3.8 3.8 4.2 45 4.7 4.8 5.4 4.2 3.9
2.2 3.8 34 3.3 3.2 3.3 3.3 3.3 34 34 35 3.8 4.0 4.2 43 47 3.8 3.6
2.3 34 3.0 2.9 2.9 3.0 3.0 3.0 31 3.1 32 35 37 38 3.9 4.1 35 3.3
2.4 3.0 2.8 2.7 2.7 2.7 2.8 2.8 2.8 2.9 2.9 3.2 3.3 35 3.6 3.6 3.2 3.1
25 2.8 25 25 25 25 2.6 2.6 2.6 2.7 2.7 2.9 3.1 3.2 3.2 3.2 3.0 2.9
2.6 2.6 2.3 2.3 2.3 2.4 2.4 2.4 25 2.5 25 2.7 2.8 2.9 3.0 2.9 2.8 2.8
2.7 2.4 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.4 25 2.6 2.7 2.8 2.6 2.7 2.6
2.8 2.2 2.1 2.1 2.1 2.1 2.1 2.2 2.2 2.2 2.2 24 2.5 25 2.6 2.4 2.6 25
2.9 2.1 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.1 2.1 2.2 2.3 2.4 2.4 2.2 2.5 2.4
3 2.0 1.9 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.1 2.2 2.2 2.3 2.0 2.4 2.4
4 1.6 15 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.2 2.0 2.0
5 1.5 15 1.5 15 15 15 15 15 15 15 15 15 15 15 1.0 2.0 2.0
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Conclusion

In this section, we compared four variables control charts (the Shewhart X chart, the 2-of-
2 KL chart, the 2-of-3 KL chart and the synthetic chart) to monitor the process mean. It was
observed that the 2-of-3 KL performs better than all the other charts for very small shifts and the
2-0f-2 KL chart also performs better than the other charts for small shifts, except the 2-of-3 KL
chart which always perform better than or equally to 2-of-2 KL chart. Further, we observed that
the zero-state synthetic chart has a better performance than the steady-state chart. Moreover, both
the zero-state and steady-state synthetic chart have better performance for moderate to large
shifts. Also, the findings here, invalidate the findings in Wu and Spedding (2000, Figure 1) that

the synthetic chart always perform better than the runs-rule chart.

A topic that would interesting to pursue is to investigate the performance comparison
between the 2-of-3 KL runs-rule chart and the EWMA and CUSUM charts that Davis and
Woodall (2002) show perform better than the synthetic chart.
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3.7.4 Appendix 3D: SAS® programs for the runs-rule charts

(i) 2-of-2 KL ARL values

proc iml;

k=1.781419;

mu=0; stdev=1l; n=1;

al=J(1,4,99999);

do shift=0 to 3 by .1;

pL=CDF ("Normal",-k-shift*sqgrt (n),mu, stdev) ;

pU=1-CDF ("Normal", k-shift*sqgrt (n),mu, stdev) ;

p=1-pU-pL;

ARL1=1/(1-p- (pU/ (1+pU) ) - (pL/ (1+pL))) ; *see Eqg. (Al) on p.430 in Klein (2000);
*¥====================Markov Chain Approach====================%;

4

1,2

3! 2]=pU;
1,3]=pL
Q[2,3]=pL;

I=I(3);

inv=inv (I-Q) ;

one=J(3,1,1);

initial vec={1 0 0};

ARL vec=inv*one;

ARL2=initial vec*ARL vec; *Using Markov chain (see Fu and Lou (2003));
****************************************************************;
M2=initial vec* (I+Q)* (ginv ((I-Q)**2)) *one;

* Calculating the standard deviation;

SDRL=sqgrt (M2- ( (ARL2) **2)) ;

a=shift| |ARL1| |ARL2]| | SDRL;

al=al//a;

shift  ARL=al[2:nrow(al),];

end;

*print Q, I, inv, one;

print shift ARL [label = 'Shift ARL1 ARL2 SDRL' format=.1l];
run;

quit;
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(i) 2-0f-3 KL ARL values

proc iml;

k=1.930701;

mu=0; stdev=l; n=1;

al=J(1,3,99999);

do shift=0 to 3 by .1;

pL=CDF ("Normal",-k-shift*sqgrt (n),mu, stdev) ;
pU=1-CDF ("Normal", k-shift*sqrt (n),mu, stdev) ;
p=1-pU-pL;

Q=J(7,7,0);

Q[1,1]=p; QI[5,1]1=p; QI[6,1]1=p; QI[2,5]=p; Q[7,5]=p; Q[3,6]=p; Q[4,6]=p;
Q[1,2]=pU; Q[6,2]=pU; QI[3,7]=pU;

Q[1,3]=pL; QI[2,4]=pL; Q[5,3]=pL;

I=1(7);

inv=inv (I-Q) ;

one=J(7,1,1);

initial vec={1 0 0 0 0 O O};

ARL vec=inv*one;
ARL=initial vec*ARL vec;*Using Markov chain (see Fu and Lou (2003));
M2=initial vec* (I+Q)* (ginv ((I-Q)**2)) *one;

* Calculating the standard deviation;
SDRL=sqgrt (M2- ( (ARL) **2)) ;

a=shift| |ARL| | SDRL;

al=al//a;

shift  ARL=al[2:nrow(al),];

end;

print shift  ARL [label = 'Shift ARL  SDRL' format=.1l];
run;

quit;
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Chapter 4

Modified improved probability limits (MIPL) design for the
synthetic Shewhart-type attributes charts

4.1 Introduction

There have been improvements in the field of SPC in developing more efficient designs
for attribute control charts. For a thorough account of attributes control charts, see Woodall
(1997) and more recently Szarka and Woodall (2011). In this chapter, we focus on uni-attribute
control charts; for multiattribute charts see the review given by Topalidou and Psarakis (2009).
Wu et al. (2001) introduced a synthetic control chart for attributes data, more specifically, the
synthetic np chart which is a combination of a Shewhart np chart and the CRL chart. The reader
is referred to Section 1.10 on a discussion of the synthetic chart and the CRL chart. Recall that, in
designing a synthetic chart, it is assumed that a CRL sub-chart only has a LCL denoted by H.
Also recall that (see Section 3.2) there are two methods that are widely used to compute the run-
length characteristics of a synthetic charts, i.e. the seven steps “direct” approach given in Wu and
Spedding (2000a) and the Markov chain approach proposed in Davis and Woodall (2002).
However, recently Wu et al. (2010) and Haridy et al. (2012) presented a non-Markov chain
approach to evaluate the run-length properties of a synthetic X chart and a synthetic np chart,

respectively.

The concept of synthetic charts was introduced in Wu and Spedding (2000a) to monitor a
shift in the mean. Since then, there have been a number of authors that have made significant
contributions to this concept. For attributes charts, (i) Wu et al. (2001) proposed a synthetic
version of the np chart, (ii) Bourke (2008) implemented the Markov chain approach given in
Davis and Woodall (2002) to re-evaluate the performance of the synthetic np chart in detecting
increases in fraction nonconforming, (iii) Castagliola et al. (2013) investigated the effect of
parameter estimation for the synthetic p, np, ¢ and u charts and more recently, (iv) Chong et al.

(2014) studied the synthetic np chart with double sampling scheme.
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In this chapter, we propose a modified improved probability limits (MIPL) method for the
synthetic p, np, ¢ and u charts. It should be noted that we remark on the design of the synthetic
np and u charts and focus on the synthetic p and c¢ charts. The concept of an improved
probability limits (IPL) chart design was originally proposed by Zhang et al. (2004) for a
standard geometric sub-chart. In this work, we modify and refine this approach and apply it to
design what are called the MIPL synthetic p, np, ¢ and u charts that result in better AFAR values.
In addition, these new and improved charts can be formulated such that they have the same or
better OOC performance than the two traditional methods (i.e. k-sigma limits (k-SL) and
conventional probability limits (CPL)). Therefore, the aim of this chapter is to extend on the

contributions of Castagliola et al. (2013) in the case where parameters are known (Case K).

The rest of the chapter is structured as follows. The run-length properties used for
evaluating the statistical performance of the methods for the synthetic p and c charts are
discussed in Section 4.2. A discussion of the MIPL method for the synthetic p chart is given in
Section 4.3 and the corresponding discussion for the synthetic ¢ chart is done in Section 4.5; a
review for the k-SL and CPL methods are given at the beginning of the respective sections. In
Sections 4.4 and 4.6 examples and empirical comparisons among the three methods are done,
providing an insight concerning the optimal design for the synthetic p and ¢ charts, respectively.

Concluding remarks are given in Section 4.7.
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4.2 Properties of synthetic p and c control charts

Let (LCL,,UCL,) and (LCL., UCL,) denote a pair of control limits (i.e. lower and upper)
of the p sub-chart and the c¢ sub-chart, respectively. In Section 3.2, we illustrated how the
synthetic chart operates; discussed the two states under which the analysis of the run-length is
done. Moreover, we demonstrated the equivalence of the synthetic control chart and the runs-
rules chart with a head-start feature that motivated Davis and Woodall (2002) to formulate the
Markov chain approach. Then, using the Markov chain approach, we presented and discussed the
run-length properties. Furthermore, we showed and demonstrated the algorithm to choose the

optimal values of k and H.

To this end, we assume that both the IC proportion nonconforming (p,) and the IC

number of nonconformities (c,) are known or specified.
Run-length characteristics
The transition probability matrix that governs the Markov chain approach is given by

Equation (3.2). So that the zero-state pmf and cdf are given by Equations (3.3) and (3.4),

respectively. The simplified expression form of the zero-state ARL and SDRL are given by

1
ARL = gd—a=on (4.1)
and
1 H -1
| 2-e gm2nLia-e) s
SR [ama—emer T a-a-emny o
121

© University of Pretoria



respectively. When the process is IC, the FAR is typically used to design a chart in Case K. For
attributes charts, the AFAR of a particular chart (given by a set of control limits) may not
necessarily be equal to the nominal value due to the discrete nature of distribution of the charting

statistics. Thus,
AFAR = P(Signal from a specific pair of control limits |IC) = 8(1 — (1 — §)¥). (4.3)

The design of a control chart depends on the AFAR value, the closer the AFAR is to the
nominal value (denoted by FAR,), the better the chart is (or the chart design is). The nominal
values of ARL and SDRL are denoted by ARL, and SDRL,, whereas the actual (or attained)
values are denoted by AARL, and ASDRL,, respectively. However, when the process is OOC, we
denote these as AARL, and ASDRL,, respectively.

Algorithm for the optimal values of (H, k)

The algorithm for the chart parameters (k and H) has already been discussed in Section
3.2.1. Furthermore, consider Table 4.1, we show the values of AARL,(5) for different
combinations of k and H when § is equal to 0.25, 0.75 and 1.5; and identify the pair of k and H
that yields the smallest AARL, (&) for a sample of size 5, where u =0 and ¢ = 1. The resulting
optimal values are (H, k) = (47, 2.639), (7, 2.322) and (2, 2.085), respectively, where the values
in grey shading refer to the smallest AARL, ().
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Table 4.1: Values of the AARL, for different (H, k) combinations when § = 0.25, 0.75 and 1.5

for n =5 with ARL, = 370.4

H k AARL,(025)] H k  AARL;(075)] H k  AARL,(15)
1 1943 125.46682 1 1.943 6.40581 1 1943  1.17936
2 2085 113.14676 2 2.085 5.16177 2 2085  1.12554
3 2164 106.92154 3 2.164 4.72298 3 2164  1.13433
4 2219  102.94004 4 2.219 452441 4 2219 114725
5 2260 100.10235 5 2.260 4.43126 5 2260  1.15886
6 2294  97.94800 6 2.294 4.39349

7 2322 96.24345 7 2.322 4.38795

8 2346  94.85472 8 2.346 4.40237

9 2367  93.69865 9 2.367 4.42966

10 2.385  92.72005 10 2.385 4.46542

11 2402  91.88075

12 2417  91.15327

13 2431  90.51726

14 2443  89.95722

15 2455  89.46115

16 2466  89.01955

17 2476  88.62479

18 2486  88.27066

19 2495  87.95208

20 2503  87.66477

21 2511  87.40517

22 2519  87.17025

23 2526  86.95743

24 2533  86.76448

25 2540  86.58947

26 2546  86.43074

27 2552  86.28681

28 2558  86.15640

29 2564  86.03836

30 2569  85.93168

31 2574  85.83545

32 2579  85.74888

33 2584 8567124

34 2589  85.60187

35 2593 8554019

36 2598  85.48566

37 2602  85.43779

38 2606  85.39615

39 2610  85.36033

40 2614  85.32997

41 2618  85.30472

42 2622  85.28427

43 2625  85.26835

44 2629  85.25667

45 2632  85.24901

46 2.636  85.24512

47 2639  85.24482

48 2.642  85.24789

49 2645  85.25416

50 2.648  85.26346
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Castagliola et al. (2013) implemented a search algorithm for (H, k) (similar to what is
done in Table 4.1) for the synthetic X chart with three distinct shifts of interest i.e. small (§ =
0.25), moderate (6 =0.75) and large (6 =1.5) given ARL, = 370.4. Assuming a normal
approximation to both the binomial and Poisson distributions, the synthetic p, np, ¢ and u charts,
that are expected to be optimal in detecting small, medium and large shifts, have the pairs (H, k)
as given in Table 4.1. In this chapter, we follow the same approach as in Castagliola et al. (2013),
since our objective is to improve the performance of the charts discussed therein. Therefore,
constructing probability limits from the k-sigma limits, the nominal tail probability of the p or ¢

sub-charts is given by

T=2x(1-ok). (4.4)

So that the pairs (H, k) = (47, 2.639), (7, 2.322) and (2, 2.085) may equivalently be written as
(H,t) = (47, 0.008315), (7, 0.020233) and (2, 0.037069), respectively.

Due to the discrete nature of the assumed distributions, these parameters (H,t) do not
guarantee an AARL, exactly equal to the nominal value of 370.4. Thus, our aim is to adopt (H, 7)
and formulate a better method that ensures that, given the discrete nature of the binomial and
Poisson distributions, we obtain an AFAR that is as close as possible to the nominal values of the

synthetic p and c charts and, when the process is OOC, it has nearly ARL-unbiased control limits.

Therefore, from this point onwards, we assume that the run-length properties are
evaluated under the assumption of a zero-state mode. The steady-state performance will be

reported elsewhere.
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4.3 Statistical design of the synthetic p chart

LetY;,,..,Y;, fori =1,2,..and n > 1 be a sample of independent random variables with
Y; = ¥j-1Y;j ~BIN(p) where p is the proportion nonconforming units (when p = p,, the

process is IC). The probability 6 that the p sub-chart will mark a sample as nonconforming is

0 = P(Y; < nLCL,|p) + P(Y; = nUCL,|p) 0<p<1

(& n

Z (j)pj(l —p)" ifnLCL, < 0

j=0

=1-3"7, . 45)
n . . n . .

z(.)p’(l—p)”"—Z(.)pf(l—p)"—J ifnLCL, >0

\j=0 J j=0 J

The control limit constants, a and b, are related to the LCL and UCL, respectively, and are
defined in Section 4.3.1.

4.3.1 Traditional methods of the synthetic p chart

In this section, we briefly summarize the traditional k-SL and CPL methods for Case K.

k-sigma limits

The control limits of the p sub-chart for the k-SL method are given in Section 1.9.1,
Equation (1.11).

Conventional probability limits
The control limits of the p sub-chart for the CPL method are similar those given in Section

1.9.2, Equation (1.13), however the nominal tail area is different (see Equation (4.4)). Thus, for

the synthetic p chart, the control limits are computed as follows. For the LCL,, using we find the

125
© University of Pretoria



largest positive integer a = nLCL, that makes the left tail probability, P,(Y; < alp,), to be at

most equal to % ie.

j=0 (;l) po’ (1 = p)"~ < % (4.6)

Following this, LCL, = % If a <O, it means that LCL, <0 and then we assume that the LCL,

does not exist since the proportion nonconforming is never negative. This arises when n and/or
Do is small. In such a situation LCL,, is said to be not applicable (NA). For the UCL,, we find the
smallest positive integer b = nUCL,, — 1 that makes the right tail probability P.(Y; = b + 1|p,),

to be at least equal to 1 — % ie.

"o (1) P/ (L= o) 212 4.7)

Following this, UCL,, = %. In the event that LCL, is not applicable, for Equation (4.7) we find

b =nUCL,—1sothat P.(Y; = b+ 1|py) =1 —1.
Problems associated with traditional methods

As highlighted in Section 1.11.3, the traditional methods reviewed above have poor IC
run-length characteristics, more so when n and/or p, are small. According to the
recommendations in the literature, when np,(1 — p,) >5 (i.e. when the central limit theorem
approximation is good for the binomial distribution), these methods should yield attained run-
length properties that are closer to their nominal values. For example, suppose that FAR, =
0.0027, n = 100 and p, = 0.2 so that np,(1 — py) = 20 > 5. Consequently, we expect that the
3-SL and CPL methods will result in AFAR values close to the FAR,. Suppose that H = 2 (see
Table 4.1), for the 3-SL method, using Equations (1.11) and (4.5), we have a = 11 and b = 28 so
that, from Equation (4.3), we obtain AFAR = 0.00209 which is 22.58% lower than the nominal
value of 0.0027. On the other hand, for the CPL method, using Equations (4.6) and (4.7), we have
a =11 and b =29 so that, from Equation (4.3), we obtain AFAR =0.00112 which is 58.46%
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lower than the nominal value of 0.0027. The corresponding AARL, values are 478.41 and 891.56,
respectively. From this example it is clear that these traditional control charts yield AFAR values
that are significantly different from the FAR,, since for both methods, the charts will signal less

often than what is nominally expected, especially for the CPL method.

In the next section we offer a solution to this problem by considering a chart design
method called the MIPL. It will be shown that this method yields control limits that result in
AFAR and ASDRL, values that are the same or much closer to the nominal values compared to
the two traditional methods. Moreover, we show that the MIPL method can be formulated such
that it yields similar or better nearly ARL-unbiased control limits compared to the two traditional

methods. First we consider the synthetic p chart.

4.3.2 Modified improved probability limits (MIPL) for the synthetic p chart

In Zhang et al. (2004), the IPL method for the geometric (sub-) chart was constructed such
that the AFAR > FAR, (we call this an anti-conservative approach for the probability limits
design). Here we modify and refine their method so that it takes into account both the
conservative (i.e. AFAR < FAR,) and the anti-conservative approach to designing probability
limits (sub-) charts. Firstly, we generate set A, with all the values of a = nLCL,, satisfying some
condition that will be discussed below. Then for each a € A, we find the pair (a, b,) that yields a
6 < t and similarly we find the pair (a, b,) that yields a 8 > t. Hence, to this end, we let
T(a, b;|n, py) for i = 1,2 denote a set of control limit constants generated from set A, for some
given p,. Next, we let T; denote a subset of T with control limit constants that yield
AFAR(a, bi|n,py) < FAR, and similarly let T, denote a subset of T with control limit constants
that yield AFAR(a, b,|n,py) = FAR,. In this case, it is easy to see that T, UT, = T. Then

proceed with the following steps.
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Step 1: Generate set A.
Leta = [nLCL,] € A = {NA,0,1, ..., Lygy} Where Ly, ., is equal to the largest integer such that

e_COCOj
2 s @9

holds, for some n, p, and 7 (as calculated in Equation (4.4)). Recall that “NA” stands for not

applicable which implies that LCL. < 0. Note the difference between Equations (4.8) and (4.6).

Step 2: For each a € A, we find the two corresponding integer values of b such that
P(Y;<alcy) +P(Y;=b+1|cy) =0 €T. (4.9)

i.e. for each a € A in Step 1, we find (a,b;) € T; for i =1, 2. Thus, in total we obtain 2x

(Lymax + 2) pairs of control limit constants.

Step 3: For each pair (a, b;) in Step 2, we compute the AFAR, for some pre-calculated value of
H using Equation (4.9) and then calculate the percentage relative deviation from the target FAR,
defined by

) :
Step 4: Choose the pair (a*,b*) € T such that
AFAR(a",b*, H|n,po) = 25" AFAR(a, by, HIn, po) (4.11)

i.e. we choose the pair (a*, b*) that result in the minimum absolute deviation of AFAR from the
FAR,. The MIPL for the synthetic p chart are given by LCL, = a*/nand UCL,, = (b* + 1) /n.
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To picture the MIPL procedure, assume that set H contains all possible pairs of control
limit constants (a, b) where a and b are integers with a < b and a € A (for the MIPL method)
for some given p,. Some of these pairs will yield AFAR values much closer to FAR, and others
will yield AFAR values that differ significantly from FAR,. Note that the control limit constants
of all three methods (i.e. k-SL, CPL and MIPL) will be in set H. Furthermore, we let T € H (see
Equation (4.9)). That is, for each d, we find the corresponding two values of b (i.e. b; and b;)
such that the resulting AFAR will either be at least equal to or at most equal to the target FAR,,
respectively. Then, consequently the four step procedure for the MIPL method results in the pair
(a*,b™), which is as close as possible to the FAR,, that is, a local IC optimal pair in set T and,

subsequently, this pair will be the global optimal pair also in set H.

Remark 1: Since the synthetic p chart is equivalent to the synthetic np chart when the sample
size is fixed (see Castagliola et al. (2013)) it follows that the corresponding MIPL for the
synthetic np chart are given by LCLy,, = a* and UCL,,, = b* + 1. Recall that in this study we

assume the FSS scheme and, consequently, the sample size is fixed.

In the next section, we give a numerical example and do an overall comparative study for

the three methods considered here.

4.4 lllustrations and performance comparison of the synthetic p chart methods

We first give an illustrative example for all three methods and then we do an overall

comparative performance study to see which method outperforms the rest.
441 Example
Example 4.1. Assume that a manufacturing production process operates at a proportion

nonconforming (fallout) of 20% and that n = 100; with FAR, = 0.0027. In addition, we are
interested in detection of large shifts (i.e. § = 1.5), hence H =2 and k = 2.085 (see Table 4.1).
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Chart Designs

The traditional charts for this example are constructed and illustrated in Section 4.3.1 and

are displayed in Table 4.3. For the MIPL method, the calculations are as follows. From Step 1,
the value of L,,,, that satisfies Equation (4.8) is equal to 12, so that A = {NA,0,1, ..., 12}. For
each a € A, we find the corresponding b; such that the AFAR(a, b;, H|100,0.2) of these pairs is an

element of T (see Step 2). Table 4.2 shows all the possible pairs of control limit constants in set T

(with subsets T, and T, as defined earlier), the AFAR and the percentage relative deviation from

the FAR, for each pair (calculated in Step 3). Then, using Step 4, the optimal values for the

control limits constants of the MIPL method, when the process is IC, are obtained using Table
4.2 and are given by (a*, b*) = (12, 29) with an AFAR that is only 2.71% lower than 0.0027. This

Is indicated by the use of grey shading in Table 4.2.

Table 4.2: All pairs of control limits constants in set T for the synthetic p chart using the MIPL

method for n = 100, p, = 0.2, T = 0.037069 and FAR, = 0.0027

Set T4 SetT,
a=nLCL, | b=nUCL, -1 0 AFAR |D| a=nLCL, | b=nUCL,—1 0 AFAR |D|
NA 27 0.03415 | 0.00229 | 15.08% NA 26 0.05583 0.00606 124.46%
0 27 0.03415 | 0.00229 | 15.08% 0 26 0.05583 0.00606 124.46%
1 27 0.03415 | 0.00229 | 15.08% 1 26 0.05583 0.00606 124.46%
2 27 0.03415 | 0.00229 | 15.08% 2 26 0.05583 0.00606 124.46%
3 27 0.03415 | 0.00229 | 15.08% 3 26 0.05583 0.00606 124.46%
4 27 0.03416 | 0.00229 | 15.06% 4 26 0.05584 0.00606 124.49%
5 27 0.03417 | 0.00230 | 14.99% 5 26 0.05585 0.00606 124.61%
6 27 0.03423 | 0.00230 | 14.70% 6 26 0.05591 0.00608 125.08%
7 27 0.03443 | 0.00233 | 13.71% 7 26 0.05611 0.00612 126.66%
8 27 0.03501 | 0.00241 | 10.81% 8 26 0.05669 0.00624 131.29%
9 27 0.03649 | 0.00261 3.19% 9 26 0.05817 0.00657 143.33%
10 28 0.02572 | 0.00131 | 51.64% 10 27 0.03985 0.00311 15.28%
11 28 0.03260 | 0.00209 | 22.58% 11 27 0.04673 0.00426 57.95%
12 29 0.03658 | 0.00263 2.71% 12 28 0.04535 0.00402 48.88%

Table 4.3 summarizes the three charting methods along with the AFAR values and the

percentage relative deviation from the FAR, for each pair, the AARL, and the ASDRL, values,

respectively.
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Table 4.3: Comparison among three methods of the synthetic p chart for n = 100, p, = 0.2 and

FAR, = 0.0027
Method (a,b) | AFAR |D| AARL, ASDRL,
k-sigma limits (11,28) | 0.00209 | 22.58% 478.41 506.29
Conventional probability limits (11,29) | 0.00112 | 58.46% 891.56 930.68
Modified improved probability limits | (12,29) | 0.00263 | 2.71% 380.67 405.23

It is clear that, for this example, the MIPL method results in control limits with AARL,

and ASDRL, values that are almost close to the corresponding nominal values.

4.4.2 Empirical comparison of the synthetic p chart methods

In this section we perform an empirical comparative study for the three methods of the
synthetic p chart (discussed in this Sections 4.3) assuming that the FAR, = 0.0027 (or,
equivalently, ARL, = 370.4). In Figures 4.1 to 4.3 we present the graphical plots of the AFAR
and the corresponding ASDRL,, values for the synthetic p chart for the following pairs (H,k) =
(47, 2.639), (7, 2.322) and (2, 2.085). Firstly, for these pairs, we notice that, as the AFAR values
converge to the FAR, = 0.0027, the corresponding ASDRL, values converge to approximately
457, 413 and 394, respectively. Note that this is in contrast to the ordinary p chart, where the
ASDRL, values would have been expected to be approximately 370. Furthermore, for these pairs,
the AFAR and the ASDRL, values, which result from the k-SL method, are significantly different
(i.e. high fluctuations) from the nominal values. The control limits of the CPL method yield
values of the AFAR (ASDRL,) that are all lower than or equal to FAR, (greater than or equal to
SDRL,). The MIPL method does not perform well when the IC proportion nonconforming is
small, but as the IC process parameter increases, the AFAR and the ASDRL, values seem to

fluctuate around the nominal values.
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(a) The fluctuation occurrence of the AFAR for a FAR, = 0.0027

Altained false alarm rate
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(b) The fluctuation occurrence of the ASDRL, fora SDRL, = 457
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Figure 4.1: Comparison of the run-length characteristics among three methods of the synthetic p
chart when the process is IC for n = 50 and varying p, = 0.01(0.01)0.50 for (H = 47, k = 2.639)
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(a) The fluctuation occurrence of the AFAR for a FAR, = 0.0027

Altained false alarm rate
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(b) The fluctuation occurrence of the ASDRL,, fora SDRL, = 413
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Figure 4.2: Comparison of the run-length characteristics among three methods of the synthetic p
chart when the process is IC for n = 50 and varying p, = 0.01(0.01)0.50 for (H =7, k = 2.322)
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(a) The fluctuation occurrence of the AFAR for a FAR, = 0.0027
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(b) The fluctuation occurrence of the ASDRL, fora SDRL, = 394
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Figure 4.3: Comparison of the run-length characteristics among three methods of the synthetic p
chart when the process is IC for n = 50 and varying p, = 0.01(0.01)0.50 for (H = 2, k = 2.085)
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In Figure 4.4, we fix p, at 0.25 and the following can be observed. When the sample size
is very small all the methods have undesirable values for the AFAR and the ASDRL,. However,
for all three pairs of (H, k), it can be seen that, as the sample size increases, the AFAR values of
the MIPL method tends towards the nominal value of 0.0027. This pattern (which is also
observed for other combinations of n and p,) indicates that, as the sample size increases, the
MIPL method results in AFAR values that tend towards the nominal value much faster than the
two traditional methods. Note that the AFAR values of the k-SL method tend towards the FAR,
as a slower rate and the CPL method has been seen to be unreliable since it results in excessively
high ASDRL, values (see Figures 4.1 to 4.3). Therefore, the MIPL method for the synthetic p
chart results in better AFAR and ASDRL, values compared to the k-SL and CPL methods.

(a) The fluctuation occurrence of the AFAR for (H = 47 and k = 2.639)
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(b) The fluctuation occurrence of the AFAR for (H =7 and k = 2.322)
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(c) The fluctuation occurrence of the AFAR for (H = 2 and k = 2.085)
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Figure 4.4: Comparison of the AFAR values for the method of the synthetic p chart when the
process is IC for p, = 0.25 and varying n = 1(1)50
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Therefore, Equation (4.11) ensures that the MIPL method yields AFAR and ASDRL,
values that are the same or much closer to the nominal values compared to the traditional
methods. Although the MIPL method results in better AFAR and ASDRL, values for the synthetic
p chart; the most important function of a control chart is quick detection of a sustained process
shift. Hence in the next section we illustrate how we can use the MIPL method to construct a

synthetic p chart with better OOC performance than the two traditional methods.

4.43 Performance

It is generally known that, when the process is IC, the AARL, of a control chart should be
large (preferably close to ARL,) and when the process is OOC, the AARL, should be small. To
study the OOC performance we use ARL curves (it shows an ARL for any possible value that
parameter p can shift to (see Acosta-Mejia (1999))). For example, in Example 4.1 the control
limit constants (12, 29) resulted in AFAR and/or AARL, values much closer to FAR, and/or ARL,
for the MIPL method, however, assuming that only sustained shifts with increments of 0.01 are
of interest, this pair is not optimal in detecting small process deterioration, since the maximum of
the ARL curve is not equal to AARL, (where p, =0.2). That is, for some values of p (# p,)
AARL, > AARL,. Control charts with this property were defined in Pignatiello et al. (1995) as
ARL-biased charts. Acosta-Mejia (1999) showed that for the p chart, it is not always possible to
obtain exact unbiasedness (because of the discrete nature of the charting statistics). Our aim is to

construct control charts that are nearly ARL-unbiased using the MIPL method.

Step 1: We first let p* be the value of the proportion nonconforming corresponding to the peak of
the ARL curve, so that ARL(a, b;, H|n, p*) is the value of the peak of the curve, with (a,b;) €T
defined in Equation (4.17). In addition, ARL(a, b;, H|n, p,) is the AARL, when p = p,, for some
i =1,2.
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Step 2: For each pair (a, b;) in Step 1, we compute
q = ARL(CI,, bi;HIn; p*) _ARL(a' bi!Hln!pO)' (412)
Note that g = 0 if the synthetic p chart has ARL-unbiased control limit constants.

Step 3: Choose the pair (a®, b*) € T such that

(a,bl-)eT

i.e. we choose the pair (a®, b*) that result in the smallest value of q. Thus the nearly ARL-

unbiased MIPL for the synthetic p chart are given by LCL,, = a*/n and UCL,, = (b* + 1)/n.

To illustrate this, we use Example 4.1 to construct a synthetic p chart that will result in
nearly ARL-unbiased control limits. Taking the pairs (a, b) in T that are given in Table 4.3 as the
control limit constants, we construct the ARL curves (see Figures 4.5 (a) and (b)). It is evident
that most of the control limit constants in set T have undesirable OOC values in addition to
having a poor IC performance. The pairs (11, 28) and (12, 28) result in g =0 (see Equation
(4.15)), with an AARL, equal to 478.41 and 248.77, respectively. It seems more rational to
choose the pair (11, 28) than (12, 28) since its AARL, is much closer to ARL,. Note that, when
taking into account both the 1IC and OOC performance, the pair (12, 29) would be preferred over

the latter two pairs which are exactly unbiased (see Figure 4.5).
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(a) ARL curves for control limits in set Ty
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(b) ARL curves for control limits in set T,
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Figure 4.5: ARL curves of the control limits generated by the MIPL method for p, = 0.2 and n = 100 with (H = 2, k = 2.085)
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In Figure 4.6, we plot the competing traditional methods’ ARL curves along with the
nearly ARL-unbiased MIPL pair (11, 28) and deduce that the k-SL method is ARL-unbiased with

AARL, = 478.41. Furthermore, although the CPL method has ARL-unbiased control limits, the

AARL, = 891.56 is much higher than 370.4. In this example, the k-SL and MIPL methods yield

the same OOC performance, since they have the same control limits.

k-SL
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Figure 4.6: ARL curves for the three methods of the synthetic p chart with p, = 0.2 and n = 100

Simulations indicate that when the process parameters n and p, are both small, all three

methods do not have a good OOC performance. In fact, for very small values of p, all three

methods require a high value of n for the chart to be efficient. However, in most cases, the nearly

ARL-unbiased MIPL method outperforms its competitors because the set T provides more options

for the optimal pair (a®, b*) compared to 3-SL and CPL methods, which only have one option

for (a, b).
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Remark 2: Nearly ARL-unbiased control limits for the np chart

It follows similarly that the nearly ARL-unbiased control limits for the synthetic np chart

are given by LCL,,, = a* and UCL,,,, = b* + 1.

4.5 Statistical design of the synthetic ¢ chart

Let Y;4,...,Yin, i =1,2,..and n =1 be a sample of independent random variables with
Y; = X5, Y, ~POI(c) where c is the number of nonconformities (when ¢ = co, the process is

IC). The probability that the ¢ sub-chart will mark an inspection unit as nonconforming is

0 = P(Y; < LCL.|c) + P(Y; = UCL.|c) 0<c<ow
2 e_CCj 4 e_ccj
=1 +z m —Z : (4.14)
. J: J!
Jj=0 ]=0

4.5.1 Traditional methods for the synthetic ¢ chart
k-sigma limits

The control limits of the ¢ sub-chart for the Shewhart k-SL method is given in Section
1.9.1, see Equation (1.12).

Conventional probability limits

For the CPL method, the control limits are computed as follows. For the LCL,., we find the
largest integer d = [LCL,] that makes the left tail probability, P,(Y; < d|c,), to be at most equal

to % Thus,
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_CO CO T
z <5 (4.15)

j=0

So that LCL, = d. Similarly, for the UCL,. we find the smallest integer f that makes the right tail
probability B.(Y; = f + 1|c,), to be at least equal to 1 — % Thus,

o e~Cocy) T
). T (4.16)
j=f+1

In the event that LCL, is not applicable, for Equation (4.16) we find f so that
B(Y;=f+1lcy) =1—1.

Problem associated with the traditional methods

As indicated in Section 1.11.3, the traditional methods reviewed above have poor IC run-
length properties, more especially when ¢, is small. However, when the normal approximation to
the Poisson distribution is satisfied (i.e. ¢, =15 see Montgomery (2013, p. 101)), one would
expect that these methods should yield attained run-length properties that are close to the nominal
values. For illustration, suppose that FAR, = 0.0027, ¢, = 16 and H = 2. For the 3-SL method,
using Equations (1.12) and (4.14) we have d =7 and f = 24 so that from Equation (4.3), yields
AFAR = 0.00205 which is 23.90% lower than the nominal value of 0.0027. On the other hand, for
the CPL method using (4.15) and (4.16) we have a =7 and b = 25 so that from Equation (4.3)
AFAR = 0.00106 which is 60.87% lower than the nominal value of 0.0027. The corresponding
AARL, values are 486.66 and 946.47, respectively, and it is clear that these control charts are

highly problematic for practical use, since the IC ARL is not close to the nominal value of 370.4.

In the next section, we offer a solution to this problem by considering a chart design
called the MIPL. It will be shown that this method yields control limits that result in the AFAR

and the ASDRL,, either the same as or much closer to the nominal values compared to the two
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traditional methods. Moreover, the MIPL method can be formulated such that it yields similar or

better nearly ARL-unbiased control limits compared to the traditional methods.
4.5.2 Modified improved probability limits (MIPL) for the synthetic ¢ chart

Similar to the MIPL method for the synthetic p chart, we first generate set A. Further, we
let T(d, f;|co) for i = 1,2 denote a set of control limit constants generated from set A, for some
given cy. Next, let T; denote a subset of T with control limits that yield an AFAR(d, fi|cy) <
FAR, and similarly let T, denote a subset of T with control limits that yield an AFAR(d, f5|cy) =
FAR,. Then proceed with the following steps as in Zhang et al. (2004).

Step 1: Find all possible pairs of integers (d, f) in set T.
Letd = LCL, € A = {NA,0,1, ..., Lyqx } Where L., 1S equal to the largest integer such that

Lmax .

e_COCOJ
Z ST (4.17)

j=0

holds, for some 7 and ¢,. “NA” stands for not applicable which implies that LCL,. < 0.

Step 2: For each d € A, we find the corresponding integer value of f such that,

i.e. for each d € A in Step 1, we find (d,f;) € T; for i = 1,2. Thus, in total we obtain 2 x

(Lyax + 2) pairs of control limit constants.

Step 3: Then for each pair (d, f;) in Step 2, we compute the AFAR for some pre-calculated value

of H and then calculate the percentage relative deviation from the target FAR, defined by
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D = 100 x ( FAR, ) (4.19)
Step 4: Choose the pair (d*, f*) € T such that
* * d, i

AFAR(d",f*, Hlco) = ] AFAR(d, fi, H|co) (4.20)

i.e. we choose the pair (d*, f*) that result in the minimum absolute deviation of AFAR from the
FAR,. The MIPL for the synthetic c chart are given by LCL, = d* and UCL, = f* + 1.

Similarly to the MIPL procedure of the synthetic p chart in Section 4.3.2, the four step
procedure for the MIPL method of the synthetic ¢ chart results in the pair (d*, f*), which is as
close as possible to the target FAR,, that is, a local 1C optimal pair in set T and subsequently, this

pair will be the global optimal pair also in set T

Remark 3: MIPL for the u chart

Similarly, the corresponding MIPL for the synthetic u chart can be formulated by

assuming that Y; i~POI(u) where u is the OOC average number of nonconformities per
inspection unit, by defining Y; =% i=1Y;; (see Castagliola et al. (2013)). For example, the

Shewhart u sub-chart control limits are given in Montgomery (2013, p. 324) and using u, instead

of ¢, in Equations (4.15) and (4.16) yield the corresponding CPL method.

In the next section, we consider a numerical example and comparative study for the three

methods considered here.
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4.6 Illustrations and performance comparison of the synthetic ¢ chart methods

Firstly we illustrate the three methods using an example. Following this, an empirical
comparison between the three methods are done by considering different values of the parameter
co- Furthermore, we show that the MIPL method can be formulated such that it yields similar or

better nearly ARL-unbiased control limits compared to the traditional methods.

4.6.1 Example

Example 4.2. Assume that it is known that an inspection unit typically has 16 defects (i.e.
co = 16) given FAR, = 0.0027. In addition, assume that we are interested in detection of large
shifts, hence H = 2 and k = 2.085 (see Table 4.1).

Chart Designs

The traditional charts for this example have been found in Section 4.5.1 and are displayed
in Table 4.5. For the MIPL method, the calculations are as follows. From Step 1, the value of
Lnax that satisfies Equation (4.17) is equal to 8, so that A ={NAJ0,1,...,8}. For each d =
[LCL.] € A, we find the corresponding f such that the AFAR(d, f, H|16) of these pairs is an
element of T (see Step 2). Table 4.4 shows all the possible pairs of control limits in set T (with
subsets T; and T, as defined earlier), the AFAR and the percentage relative deviation from the
FAR, for each pair (calculated in Step 3). Then using Step 4, the optimal values for the control
limits of the MIPL method when the process is IC, are obtained using Table 4.4 and are given by
(s ") = (4, 23) with an AFAR that is only 0.01% lower than 0.0027, see the grey shading in
Table 4.4.
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Table 4.4: All pairs of control limits constants in set T for the synthetic ¢ chart using the MIPL
method for ¢, = 16, T = 0.037069 and FAR, = 0.0027

SetTq SetT,
=LCL. | f=UCL.—1 0 AFAR D] d=LCL, | f=UCL. -1 0 AFAR D]

NA 23 0.03669 | 0.00264 2.14% NA 22 0.05824 | 0.00659 | 143.94%
0 23 0.03669 | 0.00264 2.14% 0 22 0.05824 | 0.00659 | 143.94%
1 23 0.03669 | 0.00264 2.13% 1 22 0.05824 | 0.00659 | 143.96%
2 23 0.03670 | 0.00264 2.05% 2 22 0.05826 | 0.00659 | 144.08%
3 23 0.03678 | 0.00266 1.64% 3 22 0.05833 | 0.00661 | 144.71%
4 24 0.02272 | 0.00102 | 62.21% 4 23 0.03709 | 0.00270 0.01%
5 24 0.02370 | 0.00111 | 58.89% 5 23 0.03807 | 0.00284 5.31%
6 24 0.02632 | 0.00137 | 49.36% 6 23 0.04069 | 0.00324 20.16%
7 24 0.03232 | 0.00205 | 23.90% 7 23 0.04669 | 0.00426 57.68%
8 25 0.03511 | 0.00242 | 10.31% 8 24 0.04430 | 0.00384 42.17%

Table 4.5 summarizes the three charting methods (control limits) along with the AFAR

and the percentage relative deviation from the FAR, for each pair, AARL, and ASDRL, values,

respectively.

Table 4.5: Comparison among the three methods of the synthetic ¢ chart with ¢, = 16

Method d,f) AFAR |D| AARL, ASDRL,
k-sigma limits (7,24) 0.00205 | 23.90% 486.66 514.80
Conventional probability limits (7,25) 0.00106 | 60.87% 946.47 986.87
Modified improved probability limits (4,23) 0.00270 0.01% 370.40 394.59

It is clear that, for this example, the MIPL method results in control limits with much

improved IC run-length characteristics compared to the traditional 3-SL and CPL methods. For

this example, the control limits (d, f) = (4, 23) are the only values that ensure that we get as

close as possible to the nominal ARL and SDRL values.

4.6.2 Empirical comparison of the synthetic ¢ chart methods

Similarly, as in the case of the synthetic p chart, we notice that as the AFAR values

converges to the FAR,, the ASDRL, values converges to approximately 457, 413 and 394 when

H =47, 7 and 2, respectively. In addition, when the parameter c, is very small, all the above

methods are adversely affected, because the normal approximation to the Poisson distribution is

violated. From Figure 4.7 to 4.9, it can be seen that although when ¢, is small, the MIPL method
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has high fluctuations in relation to the nominal values, but, as ¢, increases it has much better IC
performance (in terms of AFAR and ASDRL,) compared to the traditional methods. Therefore,
the MIPL method would be a preferred method to design a synthetic ¢ chart than the traditional
methods. Thus, it is evident from Figures 4.7 to 4.9 that Equation (4.20) ensures that the MIPL
method is guaranteed to either have the same or a better IC performance when compared to the

two traditional methods.
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(a) The fluctuation occurrence of the AFAR for a FAR, = 0.0027

Altained false alarm rate

k-SL CPL MIPL

0.012 4

0.010 4

0.008 |

0.006 A

0.004 A

0.002 A

0.000 A

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 30

In-control number of nonconformities

0.0027

(b) The fluctuation occurrence of the ASDRL, fora SDRL, = 457
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Figure 4.7: Comparison of the run-length characteristics among three methods of the synthetic ¢

chart when the process is IC for (H =47, k = 2.639)
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(a) The fluctuation occurrence of the AFAR for a FAR, = 0.0027
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Figure 4.8: Comparison of the run-length characteristics among three methods of the synthetic ¢
chart when the process is IC for (H =7, k = 2.322)
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(a) The fluctuation occurrence of the AFAR for a FAR, = 0.0027
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Figure 4.9: Comparison of the run-length characteristics among three methods of the synthetic ¢

chart when the process is IC for (H = 2, k = 2.085)
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4.6.3 Performance

Unlike Section 4.6.2, if the objective is to construct the synthetic ¢ chart such that it has

nearly ARL-unbiased control limits, we need to proceed as follows.
Step 1: Let c* be the value of the number of nonconformities corresponding to the peak of the
ARL curve, so that ARL(d, f;, H|c™) is the value of the peak of the curve, with (d, f;) € S defined

in Equation (23). In addition, ARL(d, f;, H|c,) is the AARL, when ¢ = ¢y, for i = 1,2. Then

construct the ARL curve for each (d, f;) € S for some given increment shift of size §.
Step 2: For each pair (d, f;) in Step 1, we compute

q = ARL(d, f;,H|c*) — ARL(d, f;, H|co) (4.21)

Note that g = 0 if the ¢ chart has ARL-unbiased control limit constants.

Step 3: Choose the pair (d*, f#) € S such that

ARL(d*, f* H|c) = ““fP°5 ARL(d, f,, H|c) (4.22)

min|q|

i.e. we choose the pair (d*, f#) that result in the smallest value of g. Thus the nearly ARL-
unbiased MIPL for the c chart are given by LCL. = d* and UCL. = f* + 1. Note that, if there is
more than one pair that satisfies Equation (4.22), then we must chose the pair that results in
AARL, closer to ARL,.
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To illustrate this, we use Example 4.2 to construct a synthetic ¢ chart that will result in
nearly ARL-unbiased control limits. Taking the pairs (d, f;) in T that are given in Table 4.5 as the
control limit constants, we construct the ARL curves (see Figures 4.10 (a) and (b)). It is evident
that most of the control limits in set T have undesirable OOC values in addition to having a poor
IC performance. By using the criteria in Equation (4.22), the pairs (8, 25) and (8, 24) result in
q =0, with an AARL, equal to 412.95 and 260.52, respectively. The pair (8, 25) has an AARL,

that is much closer to ARL,.

In Figure 4.11, we plot all three competing ARL curves for the synthetic ¢ chart and we
deduce the k-SL method is ARL-biased. Furthermore, the CPL method has ARL-unbiased control
limits but the AARL, = 946.47 is very large (relative to 370.4). For this example, the MIPL
method results in a better OOC design compared to the two traditional methods. We observed a

similar behavior for other examples that were considered.

When the normal approximation to the Poisson distribution is not satisfied, the
performance of the synthetic ¢ chart is severely degraded. Once L,,,, iS a positive integer, the
MIPL method is more likely to yield better OOC performance because set T has more options for

the optimal pair (d*, f#) compared to the k-SL and CPL methods that have only one option for
(d, f).
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(a) ARL curves for control limits in set T;
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(b) ARL curves for control limits in set T,
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Figure 4.10: ARL curves of the control limits generated by the MIPL method for ¢, = 16 with (H = 2, k = 2.085)
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Figure 4.11: ARL curves for the three methods of the synthetic ¢ chart when ¢, = 16

4.7 Concluding Remarks

In this chapter, we proposed an MIPL method for the synthetic p and c¢ charts (and
remarked on the synthetic np and u charts). The aim of this chapter was to investigate whether
the MIPL method has a better IC and OOC performance compared to the k-SL and CPL
methods. From this comparison, we draw the following conclusions. Firstly, when the parameters
(n, py) and ¢, for the respective charts are small, all three methods do not have good IC and OOC
performance. However, as the parameters increase, the IC run-length properties (e.g. AFAR and
AARLy,) of the MIPL method fluctuate more or less around the nominal values. Whereas, the k-
SL and CPL methods have poor IC run-length characteristics even in cases when the parameters
are large. Secondly, the MIPL method is more likely to have better OOC performance than the k-
SL and CPL method because it creates a set of control limit constants that a practitioner can use
to choose the best possible pair of control limits to design a synthetic p or ¢ chart. Lastly, the
MIPL method is time-consuming to implement compared to the k-SL and CPL methods,

however, the improvement in IC and OOC performance of the control chart makes it worthwhile.
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4.8 Appendix 4A: Microsoft® Excel calculations

We illustrate how the results in Example 4.1 were calculated.

3-sigma limits

The 3-sigma limits calculations in Table 2.2 were calculated as follows. The formula sheet is given by,

Al s [c[o] E [ F ] G [
o =INT(SBS3E8)
p 02 b =IF(B3*E9=INT(B3<E9) MININT(SBS3E9)-1 B3) MIN(INT(SBS3*E9).B3))

n 100
Check UCL Integer ar NOT

LCL =SBS2-B15*SQRT(SBS2#(1-SBS2)SES3)
UCL =SBS2<B15*3QRT(SBS2#(1-SBS2)SES3)

k 2083
For Summation in the SDRL formula— used to caleulate the b cogffient For Summation i the SDRL formula
SUM: =SUM(E20:E21) [
=[2-H4)((1-(1-H4Y(G11))*(H4"2))
H=2
1 =D20*(1-SH34)(D20-1) b
2 =D21*1-5H34)(D21-1) =(1/{H4"2))-25E1T)

=(1{1-Hey(G11)y2

0 S 8 5 5 1 5 G 2 B o oo e e o
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and the corresponding value sheet is given by

Al B |cC]| D | E | F | G | u |
a 11
p 02 b 28.0000000
n 100
Check UCL Inteier or NOT
ICL 0.11660
oL 028340

RIBRRBEEGE6E B R EB | o w

E 2083
For Summation in the SDRL formula— used to calculate the b cogffient For Summation in the SDRL formula

SUM: 2.934809834 a

28376.444381
H=

1 1 B
2 1934809834 9333604079

c
0.004112363
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Conventional probability limits

The conventional probability limits calculations in Table 2.2 were calculated as follows. The formula sheet is given by,

A B E G [
1 k 2.085
2 n J100 Nowe Tail Area alpha/2
3 7 |02 0.037069 =D312 alpha =2%(1-NORM § DIST(H1,TRUE))
a
5
6 a=LCL] Lefe Tail [ Right Tail [ a | |
7 0 =BINOMDIST(A7,5B52,5B53,TRUE) 0 =1-BINOMDIST(D7,5B52,5853, TRUE) 11 |22 |
8 1 =BINOMDIST(A8,5E52,5B53, TRUE) 1 =1-BINOMDIST(D#,5852,58%3, TRUE)
9 |2 =BINOMDIST(AS,5E52,5B$3, TRUE) 2 =1-BINOMDIST(DS,5552,58%3, TRUE)
10 |3 =BINOMDIST(A10.5B52,5BS3,TRUE) 3 =1-BINOMDIST(D10,5B52,5B%3, TRUE)
11 |4 =BINOMDIST(A11,5B52,5B53,TRUE) 4 =1-BINOMDIST(D11,5852,58%3, TRUE) [ 1-Theta [ |
12 |5 =BINOMDIST(A12,5B52,5B53,TRUE) 5 =1-BINOMDIST(D12,5B52,58%3, TRUE) |=IF(67<0 BINOMDIST(H7,5552,5553, TRUE) BINOMDIS T(H7,$B52,$B53, TRUE)-BINOMDIST(G7,5B52,5B83, TRUE)) [=1-G12 |
13 6 =BINOMDIST(A13,5B52,3B53,TRUE) 6 =1-BINOMDIST(D13,5852,58%3, TRUE)
14 |7 =BINOMDIST(A14,5B52,5B53, TRUE) 7 =1-BINOMDIST(D14,5B52,58%3, TRUE) [ H |
158 =BINOMDIST(A15,5B52,5B53,TRUE) 8 =1-BINOMDIST(D15,5B52,5B%3, TRUE) 2 |
16 |9 =BINOMDIST(A16,5B52,5B53,TRUE) 9 =1-BINOMDIST(D16,5852,58%3, TRUE)
17 |10  =BINOMDIST(A17,5B%2,58%3, TRUE) 10 =1-BINOMDIST(D17,5B52,58%3, TRUE)
18 11  =BINOMDIST(A18,5B%2,58%3, TRUE) 11 =1-BINOMDIST(D18,5852,58%3, TRUE)
19 12  =BINOMDIST(A19,5B%2,58%3, TRUE) 12 =1-BINOMDIST(D19,5852,58%3, TRUE)
20 13  =BINOMDIST(A20,5B52,5B53, TRUE) 13 =1-BINOMDIST(D20,5B52,5B53, TRUE)
21 14  =BINOMDIST(A21,5B%2,58%3, TRUE) 14 =1-BINOMDIST(D21,5852,58%3, TRUE)
22 15  =BINOMDIST(A22,5B%2,58%3, TRUE) 15 =1-BINOMDIST(D22,5B52,58%3, TRUE)
23 16  =BINOMDIST(A23,5B%2,5B%3, TRUE) 16 =1-BINOMDIST(D23,5B%2,5B%3, TRUE)
2417  =BINOMDIST(A24,5B52,58%3, TRUE) 17 =1-BINOMDIST(D24,5852,58%3, TRUE)
2518  =BINOMDIST(A25,5B%2,58%3, TRUE) 18 =1-BINOMDIST(D25,5852,58%3, TRUE)
26 19  =BINOMDIST(A26,5B52,58%3, TRUE) 19 =1-BINOMDIST(D26,5852,58%3, TRUE)
27 20  =BINOMDIST(A27.5B52,5B53.TRUE) 20 =1-BINOMDIST(D27,5852,58%3, TRUE)
28 21  =BINOMDIST(A28,$B$2,5BS$3,TRUE) 21 =1-BINOMDIST(D28,5B52,58%3, TRUE)
29 22  -BINOMDIST(A29,5B$2,5B$3,TRUE) 12 =1-BINOMDIST(D29,5B52,58%3, TRUE)
30 23  =BINOMDIST(A30,5B$2,5B$3,TRUE) 123 =1-BINOMDIST(D30,5852,58%3, TRUE)
312 =BINOMDIST(A31,5B52,5B53,TRUE) 24 =1-BINOMDIST(D31,5852,58%3, TRUE)
32 25  =BINOMDIST(A32,5B52,5B$3.TRUE) 25 =1-BINOMDIST(D32,5B52,58%3, TRUE)
33 26  =BINOMDIST(A33,5BS2,5BS3.TRUE}) 26 =1-BINOMDIST(D33,5B52,5853, TRUE)
34 27  =BINOMDIST(A34,5B52,5853.TRUE) 27 =1-BINOMDIST(D34,5852,58%3, TRUE)
35 28  =BINOMDIST(A355B52,5853.TRUE) 28 =1-BINOMDIST(D35,5852,58%3, TRUE)
36 28  =BINOMDIST(A365B$2.5BS3.TRUE) 29 =1-BINOMDIST(D36,5B52,5B%3, TRUE)
37 30  =BINOMDIST(A37.5B52,5BS3.TRUE) 30 =1-BINOMDIST(D37,5852,58%3, TRUE)
38 31  =BINOMDIST(A38,5B$2,5B%3,TRUE) 31 =1-BINOMDIST(D38,5852,58%3, TRUE)
39 32  =BINOMDIST(A39,5B$2,5B%3,TRUE) 32 =1-BINOMDIST(D39,5852,58%3, TRUE)
40 |33  =BINOMDIST(A40.3BS2,3BS3.TRUE) 33 =1-BINOMDIST(D40,5B52,58%3, TRUE)
41 |34  =BINOMDIST(A413ES$2,SES3.TRUE) 34 =1-BINOMDIST(D41,5B52,58%3, TRUE)
42 |35  =BINOMDIST(A42,3BS2,3BS3.TRUE) 35 =1-BINOMDIST(D42,5B52,58%3, TRUE)
43 36  =BINOMDIST(A43.3BS2,3BS3.TRUE) 36 =1-BINOMDIST(D43,5852,58%3, TRUE)

and the corresponding value sheet is given by
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A B D E
1
2 " 100 Nom. Tail Area alpha/2
3 p 02 0.037069 0018535
a4
5
6 o=LCL| Left Tail | b=UCL1 | RightTail
7.0 0.000000 0 1.000000
8| 1 0.000000 1 1.000000
9| 12 0.000000 2 1.000000
10| 3 0.000001 3 0.999999
1| 4 0.000004 4 0.999996
12| 5 0.000019 5 0.999981
13| 6 0.000078 6 0.999922
14| 7 0.000277 7 0.999723
15| 8 0.000855 8 0.999145
16 9 0.002334 9 0.997666
17 10 0.003696 10 0.994304
18| 1 0.012575 11 0.987425
13| 0.025329 12 0974671
20| 13 0.046912 13 0.953088
21 14 0.080444 14 0919536
22| 15 0.128506 15 0371494
23| 16 0.192338 16 0.807662
24| 17 0271189 17 0.728811
25| 18 0.362087 18 0637913
26 19 0.460161 19 0539839
27| 20 0559462 20 0440538
28| 21 0.654033 21 0.343967
23 2 0738933 22 0261067
30| 23 0.810913 23 0.189087
31 0.868647 24 0.131333
32| 15 0912525 25 0087475
33| 26 0.944167 26 0.055833
34| 27 0963848 27 0034152
35| 28 0979980 28 0.020020
36 20 0988751 29 0011249
37| 30 0.993941 30 0.006039

G H | J K L
k 2083
alpha 0.037069

a b
11 20

1-Theta Theta

097613 0.02382 AFAR Syn | ARL Syn | SDRL-Syn

0.00112 801 56 093068

H Di=>| 38.46%
2
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Modified improved probability limits

The following formula and value sheets show how to calculate the value of L,,,, for the
MIPL method in Example 4.1.

A B
1
2 n 100
3 P 02
4
5
6 a=LCL Left Tail
7 0 =BINOMDIST(A7 5B52,5B53.TRUE)
8 |1 =BINOMDIST(A8,5B52,5B53.TRUE)
9 |2 =BINOMDIST( 4% 5B52.5B53.TRUE)
10 |3 =BINOMMDIST(AL10,5B52.5B53, TRUE)
11 |4 =BINOMMDIST(ALLSES2.5B53. TRUE)
12 |5 =BINOMMDIST(AL2,5B52.5B53, TRUE)
13 6 =BINOMDIST(AL3 5B52.5B53, TRUE)
14 |7 =BINOMMDIST(Al14 5B52.5B53, TRUE)
15 |8 =BINOMDIST(A15,5B52.5B53, TRUE)
16 & =BINOMDIST(A16,5B52.5B53, TRUE)
17 |10 =BINOMMDIST(ALT SBE52.5B53, TRUE)
18 11 =BINOMDIST(ALS,5E52.5B53, TRUE)
19 |12 =BINOMMDIST(A19 5E52.5B53, TRUE)
20 (13 =BINOMMDIST(A20,5B52.5B53, TRUE)
21 |14 =BINOMMDIST(A21,5B52.5B53, TRUE)
22 |13 =BINOMMDIST(A22 5B52.5B53, TRUE)
23 |16 =BINOMMDIST(A23 5B52.5B53, TRUE)
24 (17 =BINOMMDIST(A24 5B52.5B53, TRUE)
25 |18 =BINOMMDIST(A25,5B52.5B53, TRUE)
26 |19 =BINOMMDIST(A26,5B52.5B53, TRUE)
27 |20 =BINOMDIST(A27 5B52.5B53, TRUE)
28 21 =BINOMMDIST(A28,5B52.5B53, TRUE)
29 |22 =BINOMMDIST(A20 5B52.5B53. TRUE)
30 (23 =BINOMMDIST(A30,5B52.5B53, TRUE)
31 24 =BINOMDIST(431,5B52,5B53. TRUE)
32 |23 =BINOMDIST( 432 $B52,5B53. TRUE)
33 26 =BINOMDIST(433,5B52,5B53. TRUE)
34 |27 =BINOMDIST( 434 $B52, 5853, TRUE)
35 2% =BINOMDIST(433,5B52,5B53. TRUE)
36 29 =BINOMDIST(436,5B52,5B53. TRUE)
37 30 =BINOMDIST( 437 $B52,5B53. TRUE)
38 31 =BINOMDIST(438,5B52,5653. TRUE)
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1
2 n 100 Nom. Tail Area
3 p 02 0.037069
4

5

6  a=LCL | Left Tail |
7] o 0.000000

g8 1 0.000000

3 2 0.000000

10 3 0.000001

11| 4 0.000004

12| 5 0.000019

13| 6 0.000078

14| 7 0.000277

15 8 0.000855

16 9 0.002334

17| 10 0.005696

18| 11 0.012575

19 1 0.025329

20 13 0.046912
21| 14 0.080444

22| 15 0.128506

23| 16 0.192338

24| 17 0271189

25| 18 0.362087

26 19 0.460161

27| 20 0.559462

28| 21 0.634033

29| n 0.738933

30 0.810913

31| 24 0.868647

32| 23 0.912525

33 26 0.944167

34| 27 0.065848

35| 28 0.070980

36 29 0.088751

37 30 0.093041

38 31 0.996870

The rest of the steps follow as discussed in Example 4.1.

Similar calculations were done for the synthetic ¢ chart in Example 4.2.
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Chapter 5

Summary and Recommendations for future research

In this final chapter, we give a brief summary of the research conducted in this essay

and offer concluding remarks concerning unanswered questions and future research ideas.

In this essay, we focused on statistical process control and monitoring, which is an
application of a collection of statistical techniques which allows high quality products to be
produced. More specifically, we focused on Shewhart-type attributes control charts to
monitor count data, since, in some cases; it is not possible to quantify a quality characteristic
numerically, that is, we can only classify it as either conforming or nonconforming.
Moreover, we reviewed and discussed some recent developments in the area of synthetic

control charts for univariate and multivariate data.
Modified improved probability limits

Our objective was to develop a more efficient method to construct attributes control
charts. We illustrated that designing classical p and c charts, as well as synthetic p and ¢
charts using the k-sigma limits (k-SL) and conventional (equal-tailed) probability limits
(CPL) methods result in control limits with attained false alarm rate values that are
significantly different from the target nominal value. Moreover, the control limits based on
the k-SL and CPL methods are either ARL-biased, or are ARL-unbiased, however the IC ARL
is very large compared to the nominal value. Thus, we offered a solution to this problem by
implementing a new method of chart design called the modified improved probability limits
(MIPL). The MIPL method is an adaptation and a modification of the improved probability
method by Zhang et al. (2004) for a geometric chart. It was shown that the MIPL method
yields control limits that result in AFAR and attained SDRL values that are close to the
nominal values compared to the k-SL and CPL methods. Moreover, the MIPL method can be
formulated such that it yields similar or better nearly-ARL unbiased control limits than the k-
SL and CPL methods. We only considered the case where parameters are known (Case K)

and much more remains to be done. We list a few ideas to pursue in the future.
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I.  The effect of parameter estimation for both the classical and synthetic p and c
charts using the MIPL method needs to be investigated. This problem has been
address by Braun (1999), Chakraborti and Human (2006, 2008), Castagliola and
Wu (2012) and Castagliola et al. (2013) for the k-sigma limits method.

ii.  Borror et al. (1998) showed that the EWMA c chart performs better than the c
chart for small shifts and the corresponding effect of parameter estimation was
investigated by Testik et al. (2006). An investigation towards the MIPL method
for EWMA or CUSUM p, np, c and u charts would be interesting. In addition, the
formulation of the synthetic version of these charts for both Case K and Case U
could be investigated.

iii.  Attributes charts have an asymmetric run-length distribution, also in some cases
there may be problems with the existence of the mean of the run-length
distribution for some charts and the ARL isn’t a robust measure; see, for example,
Chakraborti et al. (2004) and Graham et al. (2012), hence using the median run-
length to assess the performance of the chart rather than an ARL would be an
interesting topic to investigate.

Synthetic control charts

Wu and Spedding (2000a) originally defined a synthetic chart as the integration of the
operation of a Shewhart chart and a conforming run-length (CRL) chart. Following this,
Scariano and Calzada (2009) proposed a more general approach, i.e. a synthetic chart is
defined as the integration of some control charting procedure and a CRL chart. Khoo (2013)
did a literature review for the univariate parametric variables synthetic charts to monitor the
mean and those to monitor the variation. In this essay, we provided a more comprehensive
review of the synthetic charts, by considering variables (parametric and nonparametric) and
attributes synthetic charts for both univariate and multivariate data. A number of important
topics for synthetic charts have already been investigated, however, more work still remains
to be done. In addition to the suggestions for future research given in Khoo (2013), here is a
summary of some topics/questions about synthetic charts that have not yet been addressed or

have only been partially answered.
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Vi.

Zhang et al. (2011) gave a thorough account of the run-length properties for a
synthetic X chart for Case U under the zero-state mode, however, run-length
properties for the synthetic T2 chart for Case U has not yet been explored in detail.
The reader can start by reading Champ et al. (2005) as they provided properties of the
T? chart for Case U.

The effect of parameter estimation for the synthetic X chart using the steady-state
analysis needs to be investigated. In addition, other than the synthetic X chart (in
Zhang et al. (2011)) and the synthetic p, np, ¢ and u charts (in Castagliola et al.
(2013)), the effect of parameter estimation has not been investigated for other

synthetic-type charts.

Huang and Chen (2005) suggested investigating the effect of autocorrelation in
monitoring process dispersion, since many authors typically use the assumption of
independence between the monitored quality characteristics. Note that, Machado et al.
(2009) has investigated this problem for bivariate data, however, more work still

remains to be done.

Huang and Chen (2005) suggested investigation of synthetic charts based on the
moving range for individual observations. While on the subject of individual
observations, one other synthetic chart that may be investigated is one based on the
moving average for both univariate and multivariate processes. See Ghute and Shirke
(2013) for a multivariate Hotelling’s T2 chart based on the moving average.
Combining the operation of this chart and a CRL chart will yield a multivariate

synthetic moving average chart.

Most of the multivariate synthetic charts are based on the assumption of normality.
Thus, robustness of these multivariate charts to non-normality still has to be studied

for both zero-state and steady-state modes.

Generalized synthetic charts (GSC) for Case K under zero-state mode has been

derived in Scariano and Calzada (2009) and has been used by a number of authors in
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Vii.

viii.

Xi.

this essay. However, GSC for Case U under both zero-state and steady-state modes

needs to be formulated.

The individual or combined VSS and VSI schemes are generally known to be more
statistically efficient than FSS and FSI schemes (see Costa (1997)). Synthetic charts
based on the combined scheme have not been investigated and cases when VSS

and/or VSl is applied in parameter estimation.

Economic and economic-statistical designs of the synthetic-type charts (other than
those with X and T2 as sub-charts) have not yet been investigated. For example, the
starting point to study economic design of the multivariate synthetic np chart is given
in Jolayemi (2000) where the economic design of the standard multivariate np chart is
studied.

Khoo et al. (2011) showed that the double sampling synthetic X chart has a
significantly better performance than its FSS counterpart. However, this chart was
proposed for the zero-state mode; hence it would be interesting to study the

performance of this chart under the steady-state mode.

Yen et al. (2013) considered synthetic charts for time-between events when
parameters are known; the effect of parameter estimation for this scenario still needs

to be investigated.

More nonparametric (NP) synthetic charts need to be formulated. As stated earlier,
only synthetic charts based on the sign and signed-rank statistics have been proposed
to date. One could study, for example, a synthetic chart based on a Mann-Whitney
statistic, Mood statistic, precedence or exceedence statistics, Conover’s squared rank
test for variance, etc. Furthermore, a NP synthetic chart to jointly monitor the location
and dispersion can be formulated by integrating the operation of the chart proposed in
Mukherjee and Chakraborti (2012) or Chowdhury et al. (2013) with the CRL chart.
Similarly, multivariate NP synthetic charts can be investigated by using the sub-charts
already proposed in Das (2009), Zou and Tsung (2011) and Li et al. (2013).
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Xii.

Xiil.

NP Shewhart-type charts are generally known to be efficient for the detection of large
shifts. NP schemes with CUSUM or EWMA procedures, to monitor small shifts, were
proposed in Bakir and Reynolds (1979), Amin and Searcy (1991), Amin et al. (1995),
Li et al. (2010) and further studied in Graham et al. (20114, b) for the sign, signed-
rank and Wilcoxon rank-sum tests. These schemes may be integrated with the CRL

chart to develop more efficient NP synthetic charts.

Until now, only a few synthetic-type charts have been proposed to jointly monitor the
mean and variance (for parametric and nonparametric charts). Reviews by Cheng and
Thaga (2006) and McCracken and Chakraborti (2013) give a number of charting
procedures for this purpose whose operation can be integrated with the CRL chart to
investigate whether this will yield charts that can efficiently detect process

disturbances better than the existing methods.

Research outputs

Next we list the research outputs associated with this dissertation. This includes local

conferences where papers have been presented, departmental seminars and papers in

progress.

National conference (presentations)

Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2012). “Improved probability
limits design for attributes data.” The 54" annual conference of the South African
Statistical Association (SASA), Nelson Mandela Metropolitan University (NMMU),
Port Elizabeth, 5 — 9 November 2012.

Shongwe, S.C., Chakraborti, S., Graham, M.A. (2013). “Modified improved
probability limits for the synthetic ¢ chart.” The 55" annual conference of the South
African Statistical Association (SASA), University of Limpopo (UL), Polokwane, 4 —
8 November 2013.
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Departmental seminars (presentations)

Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2012). “Improved probability
limits design for attribute data.” Departmental Seminar, University of Pretoria,
Pretoria, South Africa, Nov 2012.

Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2013). “Modified improved
probability limits design for synthetic ¢ control charts.” Departmental Seminar,
University of Pretoria, Pretoria, South Africa, Nov 2013.

Papers in progress

Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2014). “Modified improved

probability limits for the p and ¢ control charts.”

Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2014). “Modified improved

probability limits for the synthetic p and c control charts.”

Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2014). “Synthetic control charts:

An overview.”

Shongwe, S.C., Chakraborti, S. and Graham, M.A. (2014). “Comparison of four

variables control charts to monitor the process mean.”
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