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Abstract

The forward-looking nature of option prices provides an appealing way to extract
risk measures. In this paper, we extract forecast densities from option prices that can
be used in forecasting risk measures. More specifically, we extract a real-world return
density forecast, implied from option prices, using the recovery theorem. In addition, we
backtest and compare the predictive power of this real-world return density forecast with
a risk-neutral return density forecast, implied from option prices, and a simple historical
simulation approach. In an empirical study, using the South African FTSE/JSE Top
40 index, we found that the extracted real-world density forecasts, using the recovery
theorem, yield satisfying forecasts of risk measures.
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1 Introduction

John Maynard Keynes said that “successful investing is anticipating the anticipations of oth-
ers”. In essence, financial derivative securities are forward-looking and essentially embed
information about investors’ beliefs about the distribution of asset returns (see e.g., Christof-
fersen et al., 2013; Hollstein et al., 2019; Dillschneider and Maurer, 2019). Investors, policy
makers, and risk managers therefore look at market variables (or derivations thereof) aim-
ing to gauge forecasts of economic variables or sentiment (or changes thereof) (see Bliss and
Panigirtzoglou, 2004).

Financial derivative securities are frequently used to infer information. The prime example
is the VIX index, which is derived from the prices of equity index options traded on the
Chicago Board of Options Exchange (CBOE). This index reflects the market’s view of 30-
day index volatility and is used as a risk-sentiment gauge by investors. Bollerslev et al.
(2009) showed that the difference between the VIX and the realised volatility on the S&P500
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index carries significant explanatory power for future returns. Moreover, the VIX index is
calculated using a model-free approach, illustrating the effectiveness of model-free approaches
in the literature (see e.g., CBOE, 2009; Christoffersen et al., 2013). A more recent innovation
by the CBOE is the SKEW index, which reflects the index option market’s perceptions of
so-called tail risk (see e.g., CBOE, 2011; Christoffersen et al., 2013).

The ability to accurately forecast future asset prices is an important and frequently studied
problem in financial economics (see e.g., Bollerslev et al., 2009; Crisóstomo and Couso, 2018).
The recent global financial crisis highlighted this problem, where many conventional financial
theories were unable to realistically forecast risk measures. Recent studies have shown that
option-implied moments, such as the VIX and SKEW, have predictive power for the realised
variance (see e.g., Hollstein et al., 2019).

Forecasts of the option-implied return density can provide risk managers with more infor-
mation than forecasts of the moments alone (see Barone-Adesi, 2016). Such measures of risk
include Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), which are two popular
measures of risk used by financial practitioners and regulators, which is related to a quantile
of the return distribution. More specifically, VaR is a single value summarising the potential
loss of a financial asset (or portfolio). In percentage terms this corresponds to the α-th per-
centile of the asset return distribution and CVaR is a measure of tail-risk, which measures
“how bad things could get” (see e.g., McNeil et al., 2005). That is,

V aR(1−α) = F−1(α) (1.1)

and CVaR for the discrete case is defined as

CVaR(1−α) = E[R|R ≤ VaR(1−α)], (1.2)

where 1− α is the confidence level, F (R) the return forecasted cumulative distribution func-
tion, and R = ST /S0 the random variable representing the asset return from time zero to
time T .

Many traditional strategies of measuring VaR rely on a parametric return density, such
as the normal density, and past (historical) data to make market assumptions (see e.g., Mc-
Neil et al., 2005). In practice, financial returns exhibit skewness and kurtosis that are not
captured in the normal assumption framework (see e.g., Cont, 2001). Consequently, this has
rekindled great interest in fat-tail distributions (see e.g., Hull and White, 1998b). In contrast
to using historical data, one can also make use of market quoted option prices to extract a
forward-looking risk-neutral return density forecast (see e.g., Barone-Adesi, 2016; Breeden
and Litzenberger, 1978). The purported forward-looking nature of option prices makes it
conceptually better suited for forecasting than a historical scheme, especially during stressed
economic environments.

In particular, historical simulation and risk-neutral methods are the most widely used
methods in financial risk management, where most financial institutions prefer to use his-
torical simulations to manage risk (see Pérignon and Smith, 2010). However, Christoffersen
et al. (2013) and Crisóstomo and Couso (2018) found that methods based on option-implied
information generally outperformed historical-based estimates. Similarly, Shackleton et al.
(2010) compared the real-world option-implied densities to that of historical densities, where
they found that the real-world option-implied forecasts for two- and four-week horizons were
superior to that of the historical forecasts. The transformation from risk-neutral to real-world
return densities have been studied in several papers (see e.g., Bakshi et al., 2003; Bliss and
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Panigirtzoglou, 2004; Shackleton et al., 2010; Ross, 2015). More specifically, the recovery
theorem, proposed by Ross (2015), is a model-free method that extracts a real-world return
density forecast from option prices.

The aim of this paper is to (i) extract, backtest, and compare the real-world return
density forecast model using the recovery theorem to various historical and risk-neutral density
forecast models found in the literature; and (ii) backtest the tail of the return density forecast
models for risk management purposes and show that one can extract reliable risk measures
using option-implied data and the recovery theorem. Moreover, research into the forecasting
ability of real-world return densities are scarce in the literature. Furthermore, it is likely that
the entire return density forecast may be misspecified, but performs better in certain regions
of the density, such as the tail, which is often more valuable to risk managers (see Berkowitz,
2001).

The remainder of this paper is structured as follows. Section 2 establishes methods for
building return density forecast models. More specifically, we will construct two return density
forecast models by historical simulation, three risk-neutral return density forecast models
implied from option prices, and two real-world return density forecast models implied from
option prices using the recovery theorem. Section 3 studies some commonly used backtesting
approaches found in the literature. Section 4 analyses the forecasts in an empirical study
using the South African FTSE/JSE Top 40 (Top40) index. In addition, the performance of
the real-world return density forecast method will be backtested and benchmarked, using the
Top40 index, against the two historical simulated return density forecast methods and the
three risk-neutral return density forecast models, with a specific focus on risk management.

2 Extracting return densities

In principle, a good forecast density should coincide with the true return density of the asset
or portfolio under study (see Knüppel, 2015). In this section, we describe some methods
available for extracting the return density. More specifically, we discuss two historical simu-
lation methods for extracting the return density forecast and five option-implied methods for
extracting the return density forecast.

2.1 Historical simulation

Many securities have return distributions with so-called fat tails. Moreover, Cont (2001) pre-
sented some statistical stylized facts, which emerged in empirical studies of most asset returns.
Furthermore, he showed that it is particularly difficult to reproduce many of these properties
with a parametric model, requiring at least four parameters in the return distribution (i.e.,
a location parameter, scale parameter, a parameter describing the decay of the tails, and an
asymmetry parameter to allow different behaviours between the tails). This occurrence has
persuaded many risk managers to use historical simulation, rather than using a parametric
model building approach, to extract the return density.

Historical simulation involves creating a database of the daily/weekly/monthly change
in the asset over a period of time. For example, suppose that we have recorded 100 days
of daily returns and we are interested in the 5th percentile of the daily return density (i.e.,
VaR(0.95)). This would correspond to the 5th worst change out of the 100 days of asset value
returns. This method will be referred to as the historical simulation method in this paper.
The first drawback in using past data for simulation is that the forecast density will be slow to
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react to market shifts. Therefore, Hull and White (1998a) incorporated a volatility updating
approach to adjust the historical database using the following exponential weighted moving
average (EWMA) model:

σ2
t = ασ2

t−1 + (1− α)R2
t−1 (2.1)

with α = 0.94. Hence, suppose we are estimating the return density at time N − 1 for time
N . Let:

Rt : be the historical return on day t for the period covered by the historical sample (t < N)

σ̂2
t : be the historical EWMA estimate of the variance of the return for period t forecasted

at the end of period t− 1

σ̂2
N : is the EWMA estimate of the variance for period N . This estimate is made at the end

of period N − 1.

In the Hull and White (1998a) volatility updating approach, the original historical return
data, Rt, is adjusted by multiplying the historical return data by the ratio of the current
volatility to the volatility at the time of the observation, that is,

R∗t = Rt
σ̂N
σ̂t
. (2.2)

This method will be referred to as the historical-HW method for the remainder of this paper.
The second drawback with historical simulation methods is that there may not be enough
data available in the market to form a historical database, especially for new securities.

Since historical simulation requires a large database of past returns, which possibly consists
of returns when the market was in a different economic environment, we next consider using
a forward-looking approach to extract the return density forecast.

2.2 Risk-neutral densities

This method uses option prices to extract the return density function. Christoffersen et al.
(2013) provided a description of situations when option-implied forecasts are likely to be most
useful, such as, when the option market is highly liquid.

2.2.1 Model free risk-neutral density

Breeden and Litzenberger (1978) showed that the implied risk-neutral return density of a
security can be extracted from a set of European-style option prices. For example, the value
of a European call option at time t = 0, under the option-implied risk-neutral density of the
underlying asset, f(ST ), with expiration date T and strike x is calculated as follows:

C(T, x) = e−rTE[(ST − x)+] = e−rT
∫ ∞
x

(ST − x)f(ST )dST . (2.3)

The cumulative distribution function (CDF), denoted by F (x), can be obtained by taking the
first order partial derivative of C(T, x) with respect to the strike x, i.e.,

∂C(T, x)

∂x
= −e−rT [1− F (x)] . (2.4)
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Rearranging (2.4), yields an expression for the implied risk-neutral CDF,

F (x) = 1 + erT
∂C(T, x)

∂x
. (2.5)

Thereafter, the conditional probability density function (PDF) is obtained by taking the
partial derivative of (2.5) with respect to x, as follows:

f(x) = erT
∂2C(T, x)

∂x2
. (2.6)

In practice, a continuum of traded strikes is not directly observed in the markets, especially
in South Africa where option price data are sparse and noisy. Therefore, in this paper, we
implemented the so-called stochastic volatility inspired (SVI) model to extract a dense implied
volatility surface, which is then used to compute a dense set of call option prices across the
full strike range for each expiry date (see Flint and Maré, 2017). This return PDF will be
referred to as the risk-neutral density (RND) forecast model for the remainder of this paper.

2.2.2 Stochastic volatility models

In this section, we consider two stochastic volatility models to extract the risk-neutral return
density, namely the Heston (1993) model and Bates (1996) model. The risk-neutral dynamics
for the Heston model is given by:

dSt = rStdt+
√
VtStdW

(1)
t (2.7)

dVt = κ(θ − Vt)dt+ ν
√
VtdW

(2)
t , (2.8)

where the parameter r represents the risk-free rate, κ models the speed of mean reversion of
the variance, θ the long term variance, ν to volatility of variance, ρ the correlation between

the two driving Brownian motions W
(1)
t and W

(2)
t , S0 the spot rate, and V0 the spot variance.

It is well-known that adding jumps to the spot price process could improve the agree-
ment between theoretical and observed option prices, especially in stressed markets (see e.g.,
Crisóstomo and Couso, 2018). Therefore, the Bates model is simply an extension of the Hes-
ton model with independent jumps added to the security price dynamics in (2.7), giving the
following risk-neutral dynamics:

dSt = rStdt+
√
VtStdW

(1)
t + (Y − 1)StdNt (2.9)

dVt = κ(θ − Vt)dt+ ν
√
VtdW

(2)
t , (2.10)

where Nt is a Poisson process, which models the number of jumps with intensity λ > 0 and
Y is the jump size distribution, which in this case is a log-normal distribution.

Heston (1993) and Bakshi and Madan (2000) provided analytical expressions for the char-
acteristic function of log(ST ), which is then used to obtain the cumulative distribution function
and risk-neutral density function of ST , denoted by F (x) and f(x) respectively, for positive
values of x (see e.g., Shackleton et al., 2010):

F (x) =
1

2
− 1

π

∫ ∞
0

Re

[
exp(−iu log(x))ψ(u)

iu

]
du (2.11)

f(x) =
1

πx

∫ ∞
0

Re [exp(−iu log(x))ψ(u)] du, (2.12)
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where ψ(u) = E [exp(iu log(ST ))] denotes the characteristic function of log(ST ).
In the next section, we transform the option-implied information to a real-world distri-

bution. Shackleton et al. (2010) found in an empirical study that the real-world distribution
improved forecasting performance for two- and four-week horizons.

2.3 Real-world densities using the recovery theorem

Real-world probabilities differ from risk-neutral probabilities in that investors require a pre-
mium that compensates them for carrying risk. The transformation from risk-neutral to
real-world densities rely on assumptions (see e.g., Bliss and Panigirtzoglou, 2004; Shackleton
et al., 2010; Ross, 2015; Dillschneider and Maurer, 2019). Moreover, Ross (2015) proposed a
model-free method to recover the real-world transition matrix from a Markovian state vari-
able S, under a particular set of assumptions, using market-based derivative prices. These
assumptions are: (i) the transition state prices are strictly positive, (ii) the transition state
prices are time-homogeneous, and (iii) the pricing kernel is transition independent. Firstly,
he used the method proposed by Breeden and Litzenberger (1978) (see also Section 2.2.1) to
construct a n×m state price matrix, S, by taking the second derivative with respect to the
strike of a European call option at each tenor, t, i.e.,

S(t, x) = ert
∂2C(t, x)

∂X2
, t = 1, . . . ,m. (2.13)

Numerically approximating (2.13) yields the forward-looking state price function for each
tenor. Secondly, he constructs a n× n one period ahead irreducible time-homogeneous state
transition probability matrix:

Pi,j = Pr(St+1 = j|St = i), t = 1, . . . ,m− 1, (2.14)

where the elements of P can easily be estimated by solving the following system of equations:

S>t+1 = S>t P, t = 1, 2, . . . ,m− 1. (2.15)

Intuitively, Pi,j denotes the contingent price of a security that pays out one unit of currency
if the security moves from state i to state j in one period, which is known as the contingent
forward prices of a security. If one denotes A = S>i,j , where 1 ≤ i ≤ n and 1 ≤ j ≤ m − 1,

and B = S>i,j+1, then (2.15) can be rewritten as an ordinary least squares (OLS) problem, as
follows:

P = arg min
P

‖AP −B‖22 (2.16)

subject to S1 = Pi0 (2.17)

Pi,j ≥ 0 (i, j = 1, . . . , n), (2.18)

where ‖ · ‖2 denotes the Euclidean norm. Since S1 is the one period ahead state price vector
and P is a one period state transition matrix, we have by definition a constraint (2.17), where
i0 is the current state (normally defined at the centre row of the transition matrix P , i.e.,
i0 = (n+ 1)/2). After estimating P , using standard optimisation techniques, we can extract
the real-world return distribution, f , from P . The transition kernel, ψ in Ross’s framework
is defined as the ratio price per unit of probability, i.e.,

ψi,j =
Pi,j
fi,j

. (2.19)
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Equation (2.19) is commonly recognised as the Radon-Nikodym derivative. Intuitively, Ross
(2015) solves the two unknown quantities in (2.19) by assuming that the pricing kernel is
transition independent and by using the Perron-Frobenius theorem to extract a unique posi-
tive eigenvector and eigenvalue. Thereafter, the elements of f can be calculated. We refer the
interested reader to Ross (2015) for a more detailed representation of the recovery theorem
and to Flint and Maré (2017) for details on a practical implementation.

However, accurately estimating P has proven to be difficult in the literature (see e.g.,
Kiriu and Hibiki, 2019; Sanford, 2018; Van Appel and Maré, 2018). Kiriu and Hibiki (2019)
proposed a regularisation method with prior information to stabilise the estimation of P .
For the prior information, P̄ , they suggest that Pi,j should be similar to Pi+k,j+k for all
k ≤ min(n− i, n− j). Furthermore, they estimated P , using a problem specific error function
in an attempt to balance the relative gain in the objective function from each term in the
regularised optimisation problem, as follows:

P = arg min
P≥0

‖AP −B‖22 + ζ
∥∥P − P̄∥∥2

2
(2.20)

= arg min
P≥0

yfit(ζ) + ζyreg(ζ) (2.21)

subject to (2.17) and (2.18), (2.22)

where,

P̄ =



i0∑
k=1

Sk,1 Si0+1,1 · · · Sn−1,1 Sn,1 0 · · · 0 0

...
... · · ·

...
...

... · · ·
...

...
2∑

k=1

Sk,1 S3,1 · · · Si0,1 Si0+1,1 Si0+2,1 · · · Sn,1 0

S1,1 S2,1 · · · Si0−1,1 Si0,1 Si0+1,1 · · · Sn−1,1 Sn,1

0 S1,1 · · · Si0−2,1 Si0−1,1 Si0,1 · · · Sn−2,1

n∑
k=n−1

Sk,1

...
... · · ·

...
...

... · · ·
...

...

0 0 · · · 0 S1,1 S2,1 · · · Si0−1,1

n∑
k=i0

Sk,1



(2.23)

and ζ can be chosen by minimising the problem specific function:

h(ζ) =
yfit(ζ)− yfit(0)

yfit(∞)− yfit(0)
+
yreg(ζ)− yreg(∞)

yreg(0)− yreg(∞)
. (2.24)

The real-world return distribution, extracted using (2.20) in the recovery theorem, will be
referred to as the RWD model for the remainder of this paper.

Next, Sanford (2018) extended (2.15) to a multivariate regression model by assuming that
contingent state prices are solely defined by state levels but conditioned on the volatility.
That is,

S>t+1 = S>t P + σ
(IV)
t β, t = 1, 2, . . . ,m− 1, (2.25)

where σ
(IV)
t is the implied volatility state at time t as it is the best representation of the

market’s future volatility state and β is the volatility transition matrix. In order to stabilise
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the estimation of P , Van Appel and Maré (2018) extended the optimisation problem above
by adding the regularisation of prior information, as such,

P = arg min
P,β

∥∥∥AP + σ(IV)β −B
∥∥∥2

2
+ ζ‖P − P̄‖22, (2.26)

subject to (2.17), (2.18) andβ ≥ 0, (2.27)

where P̄ is given in (2.23). The real-world return distribution, extracted using (2.26) in the
recovery theorem, will be referred to as the RWD-M model for the remainder of this paper.

3 Verification of the density forecasts

The aim of this section is to introduce methods to verify the accuracy of the return density
forecast models introduced in Section 2. In practice, it is highly unlikely that an optimal
model will exist as the true distribution may be too complicated to be represented by a
simple mathematical model, or might not be adequately represented over all economic periods.
Therefore, each model can only be considered an approximation of the truth. In order to assess
whether (i) the real-world return density forecast models approximate the truth better than
the simple historical simulation or risk-neutral models; and (ii) under which circumstances
it can approximate the truth better, we introduce some commonly used forecast evaluation
tests found in the literature, with a specific application to risk management.

Interval forecasts such as VaR are based on the inverse distribution function,

ȳt = F−1(α), (3.1)

where, for example, α = 0.05 for the VaR(0.95). Christoffersen (1998) asserted that the interval
should be exceeded α% of the time and the violations should be uncorrelated across time.
Combining these properties, the hit function

It =

{
1 if violation accurs
0 otherwise

(3.2)

should be an independent and identically distributed (i.i.d.) Bernoulli sequence with param-
eter α. In a VaR setting, the Bernoulli variable rarely takes on the value 1, requiring a large
number of sample observations to test the density forecast. In contrast, Rosenblatt (1952)
proposed a transformation of the observed realisations into a series of i.i.d. random variables
as follows:

xt =

∫ yt

−∞
f̂t(u)du = F̂t(yt), (3.3)

where yt is the ex-post return realisation and f̂(·) is the ex-ante return density forecast1. More
specifically, he showed that xt is i.i.d. uniform on (0, 1). This procedure, also commonly
known as the probability integral transform (PIT), allows for a wider variety of tests to
be conducted. Furthermore, this result is valid irrespective of the underlying distribution of
returns, yt, and remains valid even when the forecast model, F̂ (·), changes over time. A series

1Since the RND, RWD and RWD-M are recovered on a discrete grid, where the future realised returns are
not likely to fall on one of the state grid points, we linearly interpolate the recovered CDF’s to obtain xt (see
Jackwerth and Menner, 2017).
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of forecast evaluation tests using graphical displays were proposed by Diebold and Mariano
(1995). In contrast, Berkowitz (2001) proposed a series of likelihood ratio (LR) tests for
model evaluation by generating a sequence zt = Φ−1(xt) for the given model, where Φ−1(·)
denotes the inverse cumulative standard normal distribution function. Then, by definition,
zt should be independent across variables with standard normal distribution. This second
transformation allows for convenient tests that are associated with the Gaussian likelihood
function. In particular, Berkowitz (2001) jointly assesses the mean (µ), variance (σ2), and
serial correlation (ρ) by testing the null hypothesis that zt are i.i.d. N(0, 1) distributed against
the following first-order autoregressive model with mean and variance other than (0, 1):

zt − µ = ρ(zt−1 − µ) + εt. (3.4)

The log-likelihood function of (3.4) is often seen in statistics and is reproduced below for
convenience (see Berkowitz, 2001):

`(µ, σ2, ρ|z) = −1

2
log(2π)− 1

2
log

(
σ2

1− ρ2

)
− (z1 − µ/(1− ρ))2

2σ2/(1− ρ2)

− T − 1

2
log(2π)− T − 1

2
log(σ2)−

T∑
t=2

[
(zt − µ− ρzt−1)2

2σ2

]
, (3.5)

where σ2 is the variance of εt.
Firstly, Berkowitz (2001) uses (3.5) to test for independence by considering the following

LR test statistic:
LRind = −2(`(µ̂, σ̂2, 0)− `(µ̂, σ̂2, ρ̂)). (3.6)

Under the null hypothesis, (3.6) is distributed χ2(1). More specifically, this test statistic is a
measure of the degree to which the data supports a non-zero persistent parameter. Secondly,
he also tests the null hypothesis that not only are the observations independent, but also have
mean and variance equal to 0 and 1 respectively, using the following LR test statistic:

LR = −2(`(0, 1, 0)− `(µ̂, σ̂2, ρ̂)). (3.7)

Under the null hypothesis, (3.7) is distributed χ2(3). For multi-step-ahead forecasts, practi-
tioners use the following test statistic instead (see Knüppel, 2015):

LRMS = −2(`(0,
√

1− ρ̂2, 0)− `(µ̂, σ̂2, ρ̂)), (3.8)

which is distributed χ2(2). More specifically, multi-step-ahead forecasts are complicated with
serial correlation of the outcomes with respect to the density forecast. That is, for example,
if the true return turns out to be higher than our one-month forecast from today, then it is
likely that the true one-month return for the next week’s forecast will also be higher than
the forecasted return. Therefore, (3.8) is particularly useful for density forecast evaluation
for practitioners.

It must be noted that a density forecast model may be falsely rejected as it does not
forecast well for particular regions of the distribution. It is possible that a forecast model
performs poorly in forecasting expected returns, but performs better in predicting a certain
region of the distribution, such as the tail of the distribution. Thirdly, cognisant of this,
Berkowitz (2001) introduced a LR test that intentionally ignores model failures in the interior
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of the distribution and compares the lower tail of the foretasted density with the observed
density by truncating any observed values that fall outside the tail area. Let this cut-off point
be VaR = Φ−1(α). The new variable of interest, z∗t , is then defined as:

z∗t =

{
VaR if zt ≥ VaR
zt if zt < VaR.

(3.9)

The log-likelihood function for the lower tail is given as (see Berkowitz, 2001):

`(µ, σ|z∗) =
∑

z∗t<VaR

(
−1

2
log
(
2πσ2

)
− 1

2σ2
(z∗t − µ)2

)

+
∑

z∗t =VaR

log

(
1− Φ

(
VaR− µ

σ

))
, (3.10)

where the first two terms represent the usual Gaussian likelihood of losses and the third term
is a normalisation factor arising from the truncation. As before a LR test is constructed with
null hypothesis µ = 0 and σ2 = 1 against the unrestricted alternative with mean and variance
other than 0 and 1 respectively, i.e.,

LRtail = −2(`(0, 1)− `(µ̂, σ̂2)). (3.11)

Under the null hypothesis that the model is correct, the test statistic is distributed χ2(2). In
addition, Berkowitz (2001) showed, by using a Monte Carlo simulation, that these LR tests
are powerful, even for samples containing only as few as 100 observations.

In summary, a well-specified model should simultaneously pass as many statistical back-
tests as possible. Therefore, in Appendix A, we briefly list additional backtests, which form
part of the MATLAB Risk Management Toolbox (2018).

4 Application

In this section, we used weekly Top40 option trade data and the Top40 index prices to
construct weekly one-month return density forecasts for the Top40 index over the period 05
September 2005 to 15 January 2018, giving us a total of 646 weekly one-month return density
forecasts. The Top40 index is particularly useful as the underlying risky asset, as it is a key
risk factor in the economy and is amongst the most liquid traded derivative contracts in the
South African market. In particular, Carr and Madan (2000) showed that a major financial
market index, such as the Top40 index, could be used as a proxy to price options on individual
stocks that are illiquid. This makes the Top40 index an important market factor to illustrate
the accuracy of forecast models. The number of weeks that a return density forecast was
made for each subset of the time series considered in this study is shown in Table 1.
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Table 1: Real market data

Panel A: Monthly one-Month returns
Time Period Label Number of weeks (N)

Sep 2005 - Jan 2018 Full-period 130

Panel B: Weekly one-Month returns
Time Period Label Number of weeks (N)

Sep 2005 - Dec 2007 Pre-crisis 122
Jan 2008 - Dec 2009 Crisis 104
Jan 2010 - Jan 2018 Post-crisis 420
Sep 2005 - Jan 2018 Full-period 646

The extracted density forecast models in this study are: (i) historical simulation, (ii)
historical simulation with volatility updating, (iii) model-free RND extracted from option
prices, (iv) RND extracted using the Heston model, (v) RND extracted using the Bates
model, (vi) RWD using the recovery theorem with (2.20), and (vii) RWD-M using the recovery
theorem with (2.26).

For the historical simulation methods we used a five-year historical period and for the
historical-HW approach we used the EWMA model with α = 0.94 for the volatility updating
process (see Hull and White, 1998a). For the risk-neutral densities (RND, Heston and Bates),
we extracted a 50-150% moneyness range for the risk-neutral return density forecasts. Simi-
larly, for the real-world forecast densities we constructed a 51×51 one-month ahead transition
probability matrix, P , spanning a 50-150% moneyness range. Recall, the one-month ahead
forecast from today’s state will correspond to the centre row of f . The performance of these
density forecasts are evaluated using the verification tests discussed in Section 3.

In testing the consistency between the ex-ante return density scheme and the observed
return realisation, we firstly, used Rosenblatt’s PIT to transform the realisation of returns to
a series of i.i.d. uniform random variables. Thereafter, we made the second transformation,
proposed by Berkowitz (2001), to a realisation of i.i.d. standard normal random variables. The
empirical CDF versus the standard normal CDF for each method during the global financial
crisis is shown in Figure 4.1, where it can be seen that the random variable zt deviates from
the standard normal distribution for both historical simulation methods.

In addition, the Kolmogorov-Smirnov (KS) normality test and Jacque-Bera (JB) test
is carried out to test for normality of zt for each time period considered in this study. The
results of these tests are shown in Table 2. More specifically, Panel A shows the normality test
results for the monthly one-month return density forecast and Panel B shows the normality
test results for the weekly one-month return density forecast. The JB test assesses whether the
random variable, zt, has skewness and kurtosis matching the normal distribution, which is not
assessed in Berkowitz’s likelihood ratio tests. Considering the density forecasting methods,
it is only the Historical-HW method and the RWD-M method that passed the KS and JB
normality tests, at a 5% significance level, for all time periods considered in this study.
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Figure 4.1: Crisis Period (Jan 2008 - Dec 2009): Empirical CDF and Normal CDF.
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Table 2: Goodness-of-fit: Normality tests

Kolmogorov-Smirnov (KS) normality test
Panel A: Monthly Panel B: Weekly

p-values shown
Method Full-period Pre-crisis Crisis Post-crisis Full-period
Historical 0.685 0.365 0.004 0.136 0.323
Historical HW 0.853 0.119 0.050 0.680 0.667
RND 0.132 0.000 0.420 0.000 0.000
Heston 0.243 0.001 0.609 0.000 0.000
Bates 0.456 0.030 0.709 0.001 0.000
RWD 0.817 0.011 0.732 0.074 0.002
RWD-M 0.897 0.071 0.534 0.358 0.058

Jarque-Bera (JB) normality test
Panel A: Monthly Panel B: Weekly

p-values shown
Method Full-period Pre-crisis Crisis Post-crisis Full-period
Historical 0.500 0.172 0.372 0.397 0.500
Historical HW 0.500 0.107 0.426 0.286 0.496
RND 0.222 0.053 0.056 0.500 0.336
Heston 0.232 0.002 0.075 0.500 0.002
Bates 0.456 0.135 0.247 0.500 0.139
RWD 0.226 0.069 0.062 0.470 0.081
RWD-M 0.239 0.202 0.050 0.357 0.082

The results for Berkowitz’s tests for the entire distribution is shown in Table 3. Since we
are evaluating our density forecasts for more than one period ahead in Panel B, the evaluation
is complicated by serial correlation of the outcomes with respect to the density forecast.
Therefore, the density forecast evaluation in Panel B will be more distorted by the serial
correlation of the outcomes than the density forecasts in Panel A. Due to the serial correlation,
the LRMS yielded the most accurate test results, where the historical-HW obtained acceptable
density forecasts, at a 5% level of significance, for all time periods considered in this study.
Interestingly the option-implied models (RND, Heston, Bates, RWD, and RWD-M) provided
superior density forecasts during the global financial crisis, at a 5% level of significance, to the
ordinary historical simulation method, which is a direct consequence of using forward-looking
information rather than a historical database.

Models, which do not perform well in forecasting the entire return density, may perform
better in forecasting the tail of the return density. Since risk managers are often more con-
cerned about protection against extreme losses (i.e., the lower tail of the return density), the
Berkowitz tail test is carried out for the VaR(0.95) and VaR(0.90). In particular, we failed
to use the Berkowitz tail test for the VaR(0.99) as we obtained no realised barrier hits for
the option-implied densities over the sample period. This may be a direct consequence that
options are often used for protection against large losses that may cause the option-implied
densities to have a longer lower tail than what is normally expected by the spot market. The
Berkowitz tail verification test results for the VaR(0.95) and VaR(0.90) forecasts are shown in
Table 4.

The RWD-M model provided an acceptable fit, at a 5% level of significance, for the
VaR(0.95) and the VaR(0.90) forecasts for all time periods considered in this study, where the
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historical-HW model provided acceptable VaR forecasts for all time periods, with exception to
the VaR(0.95) forecast during the global financial crisis. The RND, Heston, and Bates models
performed poorly during the post crisis and full period. Furthermore, the historical-HW and
RWD-M are the more stable preforming models in this paper, outperforming the ordinary
historical simulation, RND, Heston, Bates and RWD models for the Berkowitz tail test. In
addition, the results for several backtests using the MATLAB Risk Management Toolbox
(2018) are shown in Appendix A (see Tables 6 and 7).

In Figure 4.2a, the weekly historical Top40 index prices is shown and in Figure 4.2b the
weekly one-month VaR(0.95) forecasts calculated for the Historical-HW, Heston, and RWD-M
models are shown. It can be seen that during the financial crisis option-implied methods were
quicker to react to market shifts than historical methods; thus making the option-implied
methods more favourable during stressed economic times.

For comparison of shorter term VaR estimates, we also applied the commonly used square-
root scaling law to the option-implied one-month VaR to obtain a one-week VaR forecast. This
is done by multiplying the option-implied one-month VaR forecast by 1/

√
5 (see e.g., McNeil

et al., 2005). Furthermore, we also obtained the weekly one-week VaR forecast using the two
historical simulation methods. We have chosen to use the one-week VaR measures as we used
weekly option prices in our dataset, making it easy to compare. The backtest results for the
scaled weekly one-week VaR(0.95) for the option-implied models, and the VaR(0.95) for the
historical models using a weekly return database is shown in Appendix A (see Table 8). The
results obtained are similar to that of the one-month VaR results where the return density
forecasts obtained using option prices yielded better results than the historical simulation
methods during the global financial crisis. In addition, the results for the weekly one-week
VaR(0.90) is shown in Appendix A (see Table 9).

In Figure 4.2c, the weekly one-month CVaR(0.95) forecasts for the methods considered in
this paper are shown. The option-implied CVaR forecasts were mostly above the historical
CVaR forecasts. This indicates that the option-implied densities allocate more probability to
significant losses than the historical densities. In addition, the option-implied CVaR estimates
showed a significant increase over the global financial crisis period, whereas the historical
methods lagged behind. Furthermore, the option-implied CVaR estimates also displayed an
increase in CVaR during the period 2015-2017 when the index plateaued, indicating higher
market uncertainty during the period, which was not captured by the historical simulation
methods.

A challenging task for risk managers is to put in place the appropriate level of capital to
cover unexpected losses. Unexpected loss is a measure of operational risk and is defined to
be the difference between VaR and expected loss. In short, this is the required capital that a
financial institution should have to cover unexpected losses corresponding to a desired confi-
dence level. Figure 4.3 shows the evolution of the weekly one-month forecast of unexpected
losses per Top40 index share for a 95% confidence level. Similar to the CVaR forecast, the
option-implied models yielded larger unexpected loss forecasts than the historical methods.
This will require financial institutions to carry more capital to cover unexpected losses under
the option-implied models.
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Table 3: Goodness of Fit: Berkowitz forecast density test

Panel A: Monthly one-month returns
p-values shown in parenthesis

Method Berkowitz
µ̂ σ̂2 ρ̂ LRind LR LRMS

Monthly (Sep 2005 - Jan 2018)
Historical -0.09 1.13 -0.19 4.79 (0.0286) 7.26 (0.0639) 2.94 (0.2290)
Historical HW -0.04 1.16 -0.20 5.19 (0.0227) 7.58 (0.0556) 2.56 (0.2774)
RND 0.17 0.71 -0.23 7.09 (0.0078) 14.44 (0.0024) 9.26 (0.0097)
Heston 0.06 0.62 -0.22 6.30 (0.0121) 16.93 (0.0007) 10.95 (0.0042)
Bates 0.07 0.70 -0.25 8.26 (0.0041) 13.61 (0.0035) 5.90 (0.0524)
RWD 0.02 0.72 -0.23 7.16 (0.0075) 11.28 (0.0103) 4.32 (0.1155)
RWD-M -0.01 0.76 -0.24 7.48 (0.0062) 10.05 (0.0181) 2.76 (0.2517)

Panel B: Weekly one-month returns
p-values shown in parenthesis

Method Berkowitz
µ̂ σ̂2 ρ̂ LRind LR LRMS

Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical 0.01 0.53 0.68 103.02 (0.0000) 74.63 (0.0000) 0.05 (0.9764)
Historical HW 0.03 0.61 0.65 88.99 (0.0000) 67.35 (0.0000) 0.37 (0.8316)
RND 0.11 0.39 0.60 75.35 (0.0000) 75.52 (0.0000) 15.31 (0.0005)
Heston 0.08 0.45 0.59 66.79 (0.0000) 63.25 (0.0000) 8.85 (0.0120)
Bates 0.08 0.61 0.59 68.57 (0.0000) 57.72 (0.0000) 1.53 (0.4644)
RWD 0.05 0.40 0.59 66.25 (0.0000) 66.56 (0.0000) 13.13 (0.0014)
RWD-M 0.04 0.42 0.59 64.52 (0.0000) 62.50 (0.0000) 10.40 (0.0055)

Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical -0.08 1.00 0.66 83.53 (0.0000) 85.95 (0.0000) 21.76 (0.0000)
Historical HW -0.08 0.43 0.73 130.43 (0.0000) 88.20 (0.0000) 1.96 (0.3738)
RND 0.00 0.30 0.76 146.88 (0.0000) 95.57 (0.0000) 4.98 (0.0827)
Heston -0.01 0.33 0.75 140.88 (0.0000) 91.34 (0.0000) 3.17 (0.2049)
Bates -0.01 0.37 0.73 124.36 (0.0000) 83.49 (0.0000) 2.45 (0.2939)
RWD -0.01 0.40 0.71 105.54 (0.0000) 74.60 (0.0000) 2.32 (0.3123)
RWD-M -0.01 0.57 0.64 73.09 (0.0000) 55.15 (0.0000) 0.05 (0.9735)

Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical -0.02 0.42 0.68 364.77 (0.0000) 273.44 (0.0000) 10.54 (0.0051)
Historical HW 0.00 0.59 0.67 339.99 (0.0000) 249.78 (0.0000) 1.02 (0.5992)
RND 0.05 0.34 0.71 436.95 (0.0000) 332.16 (0.0000) 31.33 (0.0000)
Heston 0.01 0.24 0.70 406.65 (0.0000) 375.84 (0.0000) 91.26 (0.0000)
Bates 0.01 0.27 0.70 399.90 (0.0000) 349.15 (0.0000) 68.70 (0.0000)
RWD 0.01 0.36 0.69 371.23 (0.0000) 293.54 (0.0000) 27.16 (0.0000)
RWD-M 0.00 0.44 0.66 320.34 (0.0000) 250.96 (0.0000) 12.78 (0.0017)

Weekly one-Month returns: Sep 2005 - Jan 2018
Historical -0.02 0.54 0.68 552.41 (0.0000) 400.04 (0.0000) 0.43 (0.8084)
Historical HW -0.01 0.57 0.68 553.86 (0.0000) 400.98 (0.0000) 1.11 (0.5738)
RND 0.05 0.34 0.70 650.03 (0.0000) 499.45 (0.0000) 47.43 (0.0000)
Heston 0.02 0.30 0.69 592.50 (0.0000) 506.51 (0.0000) 85.62 (0.0000)
Bates 0.02 0.36 0.68 534.42 (0.0000) 437.88 (0.0000) 49.42 (0.0000)
RWD 0.02 0.38 0.68 542.34 (0.0000) 433.59 (0.0000) 39.15 (0.0000)
RWD-M 0.01 0.46 0.65 460.81 (0.0000) 365.88 (0.0000) 17.76 (0.0001)
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Table 4: Goodness-of-fit analysis: Berkowitz tail test

Panel A: Monthly one-month returns: Berkowitz tail
p-values shown in parenthesis

Method VaR(0.95) VaR(0.90)

µ̂ σ̂2 LRtail µ̂ σ̂2 LRtail

Monthly (Sep 2005 - Jan 2018)
Historical -0.73 0.38 2.74 (0.2547) -0.06 1.20 1.94 (0.3791)
Historical HW -0.31 0.75 0.46 (0.7963) 0.14 1.42 1.37 (0.5047)
RND -1.23 0.04 8.21 (0.0165) -0.30 0.41 4.64 (0.0984)
Heston -0.77 0.24 2.93 (0.2309) 0.13 0.84 2.59 (0.2733)
Bates -1.02 0.13 5.26 (0.0719) 0.00 0.69 2.99 (0.2239)
RWD -0.81 0.24 3.16 (0.2064) -0.20 0.62 1.27 (0.5298)
RWD-M -0.65 0.38 1.78 (0.4099) 0.15 1.02 0.77 (0.6815)

Panel B: Weekly one-month returns: Berkowitz tail
p-values shown in parenthesis

Method VaR(0.95) VaR(0.90)

µ̂ σ̂2 LRtail µ̂ σ̂2 LRtail

Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical -0.81 0.23 1.36 (0.5064) 0.14 1.31 0.53 (0.7687)
Historical HW 0.15 1.19 1.34 (0.5115) 0.40 1.70 1.33 (0.5132)
RND -0.46 0.36 3.15 (0.2075) 0.45 1.00 5.97 (0.0506)
Heston 0.48 1.50 0.41 (0.8152) 1.56 2.99 5.75 (0.0564)
Bates 0.59 1.65 0.57 (0.7520) 1.60 3.06 5.97 (0.0505)
RWD 0.10 0.79 2.14 (0.3427) 0.96 1.68 5.79 (0.0553)
RWD-M -0.42 0.44 1.81 (0.4045) 0.83 1.48 5.79 (0.0553)

Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical -0.56 1.15 18.38 (0.0001) -0.31 1.54 18.38 (0.0001)
Historical HW -0.81 0.49 7.73 (0.0210) -0.16 1.15 2.92 (0.2317)
RND -0.38 0.58 0.42 (0.8089) -0.15 0.75 0.29 (0.8653)
Heston -0.22 0.83 0.19 (0.9102) 0.34 1.44 0.48 (0.7854)
Bates -0.43 0.60 0.50 (0.7773) 0.00 0.99 0.01 (0.9956)
RWD -0.20 0.85 0.18 (0.9163) -0.15 0.91 0.30 (0.8600)
RWD-M -0.16 0.99 0.65 (0.7216) 0.04 1.23 0.62 (0.7312)

Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical -0.54 0.37 6.78 (0.0337) 0.25 0.58 4.85 (0.0883)
Historical HW 0.06 0.98 0.50 (0.7795) -0.19 0.76 1.09 (0.5793)
RND -0.41 0.26 27.28 (0.0000) -0.07 0.41 37.31 (0.0000)
Heston -0.68 0.16 28.39 (0.0000) 0.07 0.45 44.81 (0.0000)
Bates -0.47 0.23 27.14 (0.0000) -0.31 0.29 33.97 (0.0000)
RWD -0.54 0.27 17.29 (0.0002) -0.28 0.41 16.22 (0.0003)
RWD-M -0.33 0.53 4.37 (0.1123) -0.08 0.72 3.97 (0.1376)

Weekly one-Month returns: Sep 2005 - Jan 2018
Historical -0.17 0.92 1.81 (0.4040) 0.01 1.12 1.40 (0.4954)
Historical HW -0.21 0.85 1.52 (0.4674) -0.07 1.00 1.04 (0.5943)
RND -0.15 0.50 22.26 (0.0000) 0.16 0.70 33.66 (0.0000)
Heston 0.44 1.07 13.71 (0.0011) 0.94 1.55 36.09 (0.0000)
Bates 0.39 1.02 13.90 (0.0010) 0.08 0.81 11.51 (0.0032)
RWD -0.09 0.62 12.44 (0.0020) -0.02 0.70 12.98 (0.0015)
RWD-M -0.23 0.66 3.24 (0.1984) 0.09 0.93 4.22 (0.1212)
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Figure 4.2: Comparison of the weekly Top40 index price with the forecasted weekly one-month
VaR(0.95), and CVaR(0.95).
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Figure 4.3: Weekly one-month forecasts of unexpected losses

In Table 5 the mean Sharpe ratio2 and volatility is shown for each time period considered
in this study. We notice that the real-world forward-looking Sharpe ratio is more sensitive
and showed a considerable drop during the financial crisis period, where the other methods
did not.

Table 5: Additional risk measures

Sharpe Ratio
Panel A: Monthly Panel B: Weekly

Method Full-period Pre-crisis Crisis Post-crisis Full-period
Historical 0.519 0.675 0.678 0.436 0.520
Historical HW 0.529 0.628 1.009 0.389 0.534
RND -0.147 -0.110 -0.098 -0.168 -0.146
Heston -0.137 -0.119 -0.103 -0.149 -0.136
Bates -0.130 -0.110 -0.105 -0.142 -0.130
RWD 0.271 0.420 0.006 0.309 0.281
RWD-M 0.405 0.628 -0.040 0.504 0.440

Volatility
Panel A: Monthly Panel B: Weekly

Method Full-period Pre-crisis Crisis Post-crisis Full-period
Historical 0.183 0.191 0.209 0.175 0.183
Historical HW 0.169 0.183 0.291 0.137 0.170
RND 0.222 0.239 0.328 0.194 0.224
Heston 0.231 0.228 0.315 0.212 0.232
Bates 0.230 0.231 0.309 0.213 0.232
RWD 0.221 0.237 0.311 0.198 0.223
RWD-M 0.203 0.221 0.299 0.179 0.206

2The Sharpe ratio is calculated as the ratio of excess asset return above the risk-free rate to the standard
deviation of the returns. The Sharpe ratio is a measure of risk-adjusted return and indicates how well the
return of an asset compensates the investor for the risk taken.
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5 Conclusion

In this study, we implemented seven methods for extracting the return density forecasts for
the South African Top40 index with application to risk management. More specifically, two of
these methods extracted the return density forecast using historical simulation, three meth-
ods extracted the risk-neutral return density forecast from option prices, and two methods
used the recovery theorem proposed by Ross (2015) to extract the real-world return density
forecast.

These methods were backtested and their performances over multiple time-periods were
compared. Using a series of likelihood ratio tests, proposed by Berkowitz (2001), we found
that no model proved to be reliable in extracting the entire return density forecast in all
tests, where only the Historical-HW model proved to be reliable in extracting the entire
return density forecast when Berkowitz’s test was relaxed for serial correlation. However, it
is näıve to expect that one can accurately extract the entire true market return density using
a simple statistical model. A more realistic expectation is that only a specific region of the
return density forecast is accurately extracted. Since risk managers are often more concerned
with experiencing extreme losses, we used the Berkowitz tail test and other commonly used
VaR backtests found in the literature to test whether the tail of the extracted real-world
return density forecasts provided us with a more reliable VaR forecast than the historical
simulation and risk-neutral VaR forecast.

In our study using the Top40 index, we found that the option-implied methods provided
information about the potential losses in the Top40 index. More specifically, the extracted
densities using option prices yielded superior VaR measures to the historical methods during
the global financial crisis. Although the historical methods are well suited during normal
economic periods, the real-world density forecasts can be an effective alternative during crisis
periods. In addition, the RWD-M yielded more stable VaR forecasts over all time periods than
the risk-neutral densities, making the recovery theorem useful in forecasting VaR. Moreover,
using the option-implied densities will lead to overestimating the required risk capital during
normal market conditions. Therefore, further research in optimally mixing the information
obtained from risk-neutral, real-world and historical methods to obtain better risk forecasts
can be valuable.
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A Additional VaR backtesting results

In this section, we give a short description of the VaR backtests that is part of the MATLAB
Risk Management Toolbox (2018).

• The traffic light (TL) test classifies the number of failures into three zones, namely,
green, yellow, and red using a binomial distribution, F (x|n, p) (see Basle Committee of
Banking Supervision, 2011). In particular, the test computes the cumulative probability
of observing up to x failures in n trails, with p = α and three zones:
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– Green: F (x|n, p) ≤ 0.95

– Yellow: 0.95 < F (x|n, p) ≤ 0.9999

– Red: F (x|n, p) > 0.9999.

This test is often used as a preliminary VaR accuracy check.

• The binomial (Bin) distribution test is an extension of Christoffersen (1998) Bernoulli
test. It states that if It are i.i.d Bernoulli with parameter p, then the total number
of failures, x, follows a binomial distribution with mean and variance equal to np and
np(1 − p) respectively. Under the null hypothesis, H0 : p = α, the test statistic is
approximated by

z =
x− np√
np(1− p)

, (A.1)

which has a standard normal distribution.

• The proportion of failures (POF) test is a LR test proposed by Kupiec (1995). More
specifically, the POF test determines whether the proportion of failures (i.e., number
of failures divided by number of observations) denoted as p̂ is consistent with the VaR
confidence level. Under the null hypothesis, H0 : p = α, the LR test statistics is:

LRPOF = −2 log
[
(1− p)n−xpx

]
+ 2 log

[
(1− p̂)n−x(p̂)x

]
∼ χ2(1). (A.2)

• The time until first failure (TUFF) test, proposed by Kupiec (1995), is a LR test that
measures the time until the first failure. Under the null hypothesis, H0 : p = 1/v, where
v is the time until the first failure in the sample, the LR test statistic is

LRTUFF = −2 log

[
p(1− p)v−1

p̂(1− p̂)v−1

]
∼ χ2(1). (A.3)

The TUFF test is mostly used as a preliminary test to the POF test. Furthermore, it
only considers the number of failures but not the time dynamics of the failures. The
test also has been shown to have a low power in identifying poor VaR models.

• The conditional coverage independence (CCI) test, also known as the Markov test,
assesses whether the probability of VaR failure for any given period is dependent on the
outcome of the previous period (see Christoffersen, 1998). Using the indicator value in
(3.2) and let Ni,j , i = 0, 1, j = 0, 1 be the number of periods in which state j occurred
after state i occurred. Then let π0 be the conditional probability of having a failure at
time t, given that there was no failure at time t− 1. Similarly, let π1 be the conditional
probability of having a failure at time t, given that there was a failure at time t − 1.
Under H0 : π0 = π1, the LR test statistic is given as:

LRCCI = −2 log
[
(1− π)N00+N01πN01+N11

]
+ 2 log

[
(1− π0)N00πN01

0 (1− π1)N10πN11
1

]
∼ χ2(1), (A.4)

where π = π0 + π1.
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• The conditional coverage (CC) mixed test is a combination of the CCI test and the
POF test. The CC test assesses whether the failures are independent and whether the
correct failure rate is obtained (see Christoffersen, 1998). The LR test statistic is

LRCC = LRCCI + LRPOF ∼ χ2(2). (A.5)

A VaR model must therefore satisfy both independence and the correct failure rate in
this test, making this test appealing to practitioners.

• The time between failures independence (TBTI) test proposed by Haas (2001) is an
extension of Kupiec’s time until first failure (TUFF) test by not only testing the time
until the first failure, but also the time between all failures. Under the null hypothesis,
that failures are independent from each other, the LR test statistic is

LRTBFI =
x∑
i=2

[
−2 log

(
p(1− p)vi−1

p̂(1− p̂)vi−1

)]
− 2 log

[
p(1− p)v−1

p̂(1− p̂)v−1

]
∼ χ2(x), (A.6)

where vi denotes the duration between the ith and (i−1)th failure, v the time until the
first failure and x the number of failures in the sample.

• The time between failures (TBF) likelihood ratio test, introduces by Haas (2001), is a
mixed LR test. Under the null hypothesis, that the correct failure rate is obtained and
that the failures are independent, the test statistic is

LRTBF = LRPOF + LRTBFI. (A.7)

This test statistics is χ2(x + 1) distributed, where x is the number of failures. The
advantage to this test is that it is robust, since it identifies problems in dependencies
and the number of failures.

Using the MATLAB Risk Management Toolbox (2018), we show the backtest results obtained
for the monthly one-month VaR(0.95) and VaR(0.90) in Tables 6 and 7, respectively. In addition,
Table 9 shows the weekly one-week VaR(0.90).
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Table 6: Goodness-of-fit: One-month VaR(0.95) backtests

Panel A: Monthly one-month returns

Method TL Bin POF TUFF CC CCI TBF TBFI

Monthly (Sep 2005 - Jan 2018)
Historical green accept accept accept reject reject reject reject
Historical HW green accept accept accept accept accept accept accept
RND green reject reject accept reject accept reject accept
Heston green accept accept accept accept accept accept accept
Bates green accept accept accept accept accept accept accept
RWD green accept accept accept accept accept accept accept
RWD-M green accept accept accept accept accept accept accept

Panel B: Weekly one-month returns

Method TL Bin POF TUFF CC CCI TBF TBFI

Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical green accept accept accept reject reject reject reject
Historical HW green accept accept accept accept reject reject reject
RND green reject reject accept reject accept reject accept
Heston green accept accept accept reject reject reject reject
Bates green accept accept accept reject reject reject reject
RWD green accept accept accept accept accept accept accept
RWD-M green accept reject accept accept accept accept accept

Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical yellow reject reject accept reject reject reject reject
Historical HW yellow accept accept accept reject reject reject reject
RND green accept accept accept reject reject reject reject
Heston green accept accept accept reject reject reject reject
Bates green accept accept accept reject reject reject reject
RWD green accept accept accept reject reject reject reject
RWD-M green accept accept accept reject reject reject reject

Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical green accept accept accept reject reject reject reject
Historical HW green accept accept accept reject reject reject reject
RND green reject reject reject reject accept reject reject
Heston green reject reject reject reject accept reject reject
Bates green reject reject accept reject accept reject reject
RWD green reject reject accept reject accept reject reject
RWD-M green reject reject accept reject accept reject accept

Weekly one-Month returns: Sep 2005 - Jan 2018
Historical green accept accept accept reject reject reject reject
Historical HW green accept accept accept reject reject reject reject
RND green reject reject accept reject reject reject reject
Heston green reject reject accept reject reject reject reject
Bates green reject reject accept reject reject reject reject
RWD green reject reject accept reject reject reject reject
RWD-M green reject reject accept reject reject reject reject
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Table 7: Goodness-of-fit: One-month VaR(0.90) backtests

Panel A: Monthly one-month returns

Method TL Bin POF TUFF CC CCI TBF TBFI

Monthly (Sep 2005 - Jan 2018)
Historical green accept accept accept accept accept reject reject
Historical HW green accept accept accept accept accept accept accept
RND green reject reject accept accept accept accept accept
Heston green accept accept accept accept accept accept accept
Bates green accept accept accept accept accept accept accept
RWD green accept accept accept accept accept accept accept
RWD-M green accept accept accept accept accept accept accept

Panel B: Weekly one-month returns

Method TL Bin POF TUFF CC CCI TBF TBFI

Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical green accept accept accept reject reject reject reject
Historical HW green accept accept accept reject reject reject reject
RND green reject reject accept reject reject reject reject
Heston green accept reject accept reject reject reject reject
Bates green accept reject accept reject reject reject reject
RWD green reject reject accept reject reject reject reject
RWD-M green reject reject accept reject reject reject reject

Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical yellow reject reject accept reject reject reject reject
Historical HW green accept accept accept reject reject reject reject
RND green accept accept accept reject reject reject reject
Heston green accept accept accept reject reject reject reject
Bates green accept accept accept reject reject reject reject
RWD green accept accept accept reject reject reject reject
RWD-M green accept accept accept reject reject reject reject

Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical green reject reject accept reject reject reject reject
Historical HW green accept accept accept reject reject reject reject
RND green reject reject reject reject reject reject reject
Heston green reject reject reject reject reject reject reject
Bates green reject reject reject reject reject reject reject
RWD green reject reject reject reject reject reject reject
RWD-M green reject reject accept reject reject reject reject

Weekly one-Month returns: Sep 2005 - Jan 2018
Historical green reject reject accept reject reject reject reject
Historical HW green accept accept accept reject reject reject reject
RND green reject reject accept reject reject reject reject
Heston green reject reject accept reject reject reject reject
Bates green reject reject accept reject reject reject reject
RWD green reject reject accept reject reject reject reject
RWD-M green reject reject accept reject reject reject reject
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Table 8: Goodness-of-fit: Weekly one-week VaR(0.95) backtests

Method TL Bin POF TUFF CC CCI TBF TBFI

Weekly one-week returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical green accept accept accept accept accept accept accept
Historical HW green accept accept accept accept accept accept accept
RND green accept accept accept accept accept accept accept
Heston green accept accept accept accept accept accept accept
Bates green accept accept accept accept accept accept accept
RWD green accept accept accept accept accept accept accept
RWD-M green accept accept accept accept accept accept accept

Weekly one-week returns: Jan 2008 - Dec 2009 (Crisis)
Historical yellow reject reject reject accept accept reject reject
Historical HW green accept accept reject accept accept reject reject
RND green accept accept accept accept accept accept accept
Heston green accept accept accept accept accept accept accept
Bates green accept accept accept accept accept accept accept
RWD green accept accept accept accept accept accept accept
RWD-M green accept accept accept accept accept accept accept

Weekly one-week returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical green reject reject accept reject accept reject accept
Historical HW green accept accept accept accept accept accept accept
RND green reject reject accept reject accept reject reject
Heston green reject reject accept reject accept reject reject
Bates green reject reject accept reject accept reject reject
RWD green reject reject accept reject accept reject accept
RWD-M green reject reject accept reject accept accept accept

Weekly one-week returns: Sep 2005 - Jan 2018
Historical green accept accept accept accept accept reject reject
Historical HW green accept accept accept accept accept accept reject
RND green reject reject accept reject accept reject reject
Heston green reject reject accept reject accept reject reject
Bates green reject reject accept reject accept reject reject
RWD green reject reject accept reject accept reject accept
RWD-M green reject reject accept reject accept accept accept
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Table 9: Goodness-of-fit: Weekly one-week VaR(0.90) backtests

Method TL Bin POF TUFF CC CCI TBF TBFI

Weekly one-week returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical green accept accept accept accept accept accept accept
Historical HW green accept accept accept accept accept accept accept
RND green accept reject accept accept accept accept accept
Heston green accept accept accept accept accept accept accept
Bates green accept accept accept accept accept accept accept
RWD green accept reject accept accept accept accept accept
RWD-M green accept accept accept accept accept accept accept

Weekly one-week returns: Jan 2008 - Dec 2009 (Crisis)
Historical yellow reject reject reject reject reject reject reject
Historical HW green accept accept reject accept accept accept accept
RND green accept accept accept accept accept accept accept
Heston green accept accept reject accept accept accept accept
Bates green accept accept reject accept accept accept accept
RWD green accept accept accept accept accept accept accept
RWD-M green accept accept accept accept accept accept accept

Weekly one-week returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical green accept accept accept accept accept reject reject
Historical HW green accept accept accept accept accept accept accept
RND green reject reject accept reject accept reject reject
Heston green reject reject accept reject accept reject reject
Bates green reject reject accept reject accept reject reject
RWD green reject reject accept reject accept reject reject
RWD-M accept accept accept accept accept accept accept accept

Weekly one-week returns: Sep 2005 - Jan 2018
Historical green accept accept accept reject reject reject reject
Historical HW green accept accept accept accept accept accept reject
RND green reject reject accept reject accept reject reject
Heston green reject reject accept reject accept reject reject
Bates green reject reject accept reject accept reject reject
RWD green reject reject accept reject accept reject accept
RWD-M green reject reject accept accept accept accept accept
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