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ABSTRACT 
The Average Least Dimension (ALD) of surfacing aggregates is required for the determination of 
the quantity of a bituminous product to be sprayed in the case of normal road surface treatments. 
The ALD is also needed for the calculation of the spread rate of surfacing aggregates. Method 
TMH1-B18(a), which is based on measuring the least dimension of an aggregate is the reference 
method for the determination of the ALD in South Africa. The accuracy of the measured ALD 
method depends on the sampling process, the sample size, measuring equipment, the interpretation 
of the least dimension, and the fraction of the sample not measured. The computational method 
TMH1-B18T(b), currently in use, is inaccurate and also does not take full account of the nature of 
the particle size distribution which has an effect on the estimated measured ALD. The 
computational method developed, as discussed in this paper, was designed to reduce the error 
between ALD measured and ALD computed by introducing more factors which will have a 
significant decreasing effect on the estimated measured ALD error. 
 
 
Introduction 
 
A reliable computational method for the determination of the ALD must comply to the following:  
(1) the variables must be obtainable from the normal tests required for bituminous surfacing and (2) 
the sample size must be of such an order that the sampling effects on the accuracy are reduced to 
the minimum. 
 
The computational ALD method, currently in use, is not powerful enough to give a reliable estimate 
of the measured ALD. This method is over-simplified regarding the description of the distribution 
of the aggregates. Besides the inadequate formulation of the relationship, the nomogram given in 
TMH1, is awfully distorted (badly constructed). 
 
A nomogram is a handy method when it comes to the application side of a relationship but it can be 
very difficult to handle when more variables are introduced or when the numeric scales are no 
longer linear. In the designing process of the new computational method, as discussed in this paper, 
the factors and principles involved in the determination of the ALD received all the attention. The 
construction or designing of a nomogram was not considered important seeing that computers and 
calculators are readily available nowadays. 
 



 

 

Measured ALD method 
 
The measured ALD method is described in TMH1-B18(a). 
 
Definition 
The least dimension of an aggregate particle is the smallest perpendicular distance between two 
parallel plates through which the particle will just pass. The average least dimension is the 
arithmetic mean of all the measured least dimensions of the aggregate particles measured. 
 
There is a very important instruction mentioned in this method which has a significant effect on the 
measured ALD if not adhered to, and states, that the fraction passing the sieve aperture size half the 
nominal size (the smallest sieve aperture size through which 85% of the aggregates will pass) must 
not be measured. According to some historic data it would seem that this instruction was not always 
consistently adhered to. 
 
Shortcomings 
The measured ALD method is not free of errors. There are several areas where the reliability of the 
measured ALD can be significantly effected. The following exercises highlight three of the major 
areas where errors occur daily. 
 
• The incautious sampling and preparation procedures have a diminishing effect on the 

reliability of the measured ALD. Even under good controlled sampling and preparation 
actions the variation can still be high. The following results were obtained from samples (30 
kg) taken at nine different randomly selected sample sites from a stockpile which was 
constructed very carefully during its construction. From each sample a gradation as well as a 
measured ALD was carried out. The test data is tabulated as follows:  

 

Sample < 19,0 
mm 

< 13,2 
mm 

< 9,5 
mm 

< 6,7 
mm 

< 4,75 
mm 

Flakiness 
Index    
(%) 

 ALD 
measured 

(mm) 

Site 1 100 99 59 15 5 21,3 5,74 
Site 2 100 99 55 11 3 19,2 5,99 
Site 3 100 99 39 9 4 14,6 6,42 
Site 4 100 99 57 9 2 19,5 5,57 
Site 5 100 99 57 16 5 19,8 5,91 
Site 6  100 63 13 3 23,5 5,48 
Site 7  100 47 8 3 15,7 6,14 
Site 8  100 56 11 3 24,8 5,39 
Site 9  100 62 18 6 22,7 5,52 

      Mean 5,83 
      Error 1,73* 

*     At a confidence level of 95%. 
 

According to the analysis of the stockpile site samples the measured ALD error is of the order 
of 1,7 mm. It means that the actual measured ALD of a fairly controlled constructed stockpile 
can be any value within the range of the measured ALD  ±  1,7 mm. 
 
In the following exercise one of the above mentioned 30 kg samples (Site 9) was divided into 
one kilogram portions. Ten of these portions were selected randomly. After the gradations 
were carried out, the portions were further divided into four sub-portions, large enough for a 



 

 

measured ALD (number of aggregate particles varied between 250 and 350). The results are 
as follows: 
 

Sample < 19,0 
mm 

< 13,2 
mm 

< 9,5 
mm 

< 6,7 
mm 

< 4,75 
mm 

Flakiness 
Index     
(%) 

Mean 
ALD 

measured 
(mm) 

Portion 1  100 64 18 6 25,4 5,41 
Portion 2 100 99 63 17 6 23,0 5,36 
Portion 3  100 62 17 6 22,1 5,41 
Portion 4  100 61 17 6 29,0 5,56 
Portion 5 100 99 60 17 6 23,3 6,07 
Portion 6  100 65 20 6 19,3 5,41 
Portion 7 100 99 63 18 6 22,9 5,42 
Portion 8 100 99 62 17 6 18,9 5,37 
Portion 9 100 99 58 17 6 20,7 5,64 
Portion 10  100 65 18 6 22,1 5,52 

      Mean 5,52 
      Error 1,01 

 
The ALD variation within a sample according to this exercise varied between 5,36 and 6,07 
mm  ( a range of  0,71 mm ).  Regarding sample preparation under good controlled conditions 
the measured ALD error is about 1,01 mm. 

 
• Secondly, the instruction mentioned earlier, regarding the discarding of the fraction of 

aggregates not to be measured, has a significant effect on the reliability of the measured ALD, 
if not applied correctly. Take for example the following case where the difference in gradation 
of the two samples is insignificant. In the case of sample A and according to the above 
mentioned rule the aggregates passing the 6,7 mm sieve must not be measured while in the 
case of sample B the aggregates passing the 6,7 mm sieve and retained on the 4,75 mm sieve 
must be measured. 

 

Sample < 19,0 
mm 

< 13,2 
mm 

< 9,5 
mm 

< 6,7 
mm 

< 4,75 
mm 

Flakiness 
Index (%) 

Mean 
ALD 

measured 
(mm) 

A 100 85 55 10 0 20.0 6,502 
B 100 86 55 10 0 20.0 5,722 

 
According to the results the difference between the two ALDs is about 0,8 mm (14%)  which 
is a significant difference. 

 
• The instruction, viz. “ by means of a riffler, divide out a representative sample of such a size 

as to give at least 200 aggregate particles of each of the fractions to be tested “ is sometimes 
wrongly applied. Some operators measure only the first 200 aggregate particles and discard 
the rest. For obvious reasons the error in the measured ALD due to this negligence is 
unpredictable and therefore renders the ALD completely unreliable. 

 
 



 

 

The computational ALD method currently used 
 
This method is a computational method where the ALD of the aggregates is calculated by using the 
gradation and flakiness index data. The method is intended to be used as a quick assessment or 
controlling method to find the ALD. 
 
In this computational method the median is the only variable which describes the particle size 
distribution of the aggregates. The median on its own cannot fully reflects the characteristics of the 
particle size distribution. Hence more information is required besides the median.  
 
The nomogram, given in the TMH1-B18(b)T method, is a metricated and reconstructed version of 
the original imperial scaled nomogram which appeared in a document published by Shell (Surface 
Dressing – 1963). The interval markings of the scales of the nomogram are not so good. In Figure 
1a, which is a copy of the above mentioned nomogram, one can clearly see how distorted the 
interval markings of the scales of the nomogram are. Figure 1b is an example of how badly the 
Median-scale intervals are marked ( 14,8 to 16,6 ). An example of the ALD scale ( 8,1 to 10,2) is 
given in Figure 1c and an example of the Flakiness Index scale ( 43 to 52 ) is given in Figure 1d. 
 
In practice this method became very popular and attractive due to the speed of determination of the 
ALD. This method is no longer seen as a controlling method and is used more and more as the basis 
to determine the spray rates of bituminous products. For this reason it is imperative to find a new 
computational method which will produce a more accurate estimated value for the measured ALD. 
 
New computational ALD method 
 
It will be desirable to have a computational method where the ALD can be calculated fairly accurate 
and that the variables, required in the relationship, is obtainable from the normal test methods used 
for surfacing aggregate.  
 
ALD measured 
As stated before the measured ALD is the average least dimension and it is obtained by determining 
the arithmetic mean of the least dimension of all the aggregates, measured with a calliper 
(comparator table). The ALD is therefore a certain type of mean which describes the central 
tendency of the distribution of least dimension of the aggregates. It depends mainly on the particle 
size distribution of the aggregates as well as the shape of the particles. 
 
Prelude 
The median and the arithmetic mean of a symmetrical normal distribution are equal while in the 
case of asymmetrical distributions they are different. Therefore if the median and the arithmetic 
mean (measured ALD) of the least dimension distribution is plotted out graphically then all the 
points on a straight line (mean equals median) will represent a symmetrical distri-bution. Any other 
point deviating from the straight line will reflect asymmetrical distributions. Asymmetrical 
distributions consisting of more fine than coarse particles are pointed out by the points lying below 
the straight line. In the cases where the coarse particles are dominating the finer particles the 
corresponding points will lie above the straight line. 



 

 
 

Figure 1a 

Figure 1b 

Figure 1c 

Figure 1d 



 

 

The graph on figure 2 illustrates the relationship between the median and the mean of the least 
dimension distributions obtained from 186 different samples. According to the graph it is clear that 
the degree of symmetry of the particle size ditribution has an effect on the measured ALD because 
all the points do not lie on the straight line. The points are slightly dispersed which means that the 
particles of all the samples are not singular in size. Besides the fact that asymmetrical distributions 
do exist the correlation between the median and the mean (ALD) least dimension is nevertheless 
very good (0,996). For all practical purposes the mean of the least dimension measurements can be 
replaced by the median of the least dimensions. 
 
Before a relationship can be formulated it is important to establish whether there exist a relation 
between the median of the least dimension distribution and the median obtained from the gradation. 
The graph of figure 3 demonstrates the degree of correlation between the median of the least 
dimensions and the median of the gradation. 
 
The correlation is fairly good seeing that the median of the least dimensions is obtained by means of 
a comparator table (one dimensional measurement) while the median of the gradation is obtained by 
means of a set of sieves (square aperture). Hence the two median determination methods measure 
dimensional properties of the particles differently and this is the reason for the scattering of the 
points. To reduce this dispersion significantly it is important to bring in more variables which are 
related to the characteristic of the particle size distribution to the formulation process. The basic 
relation between the median of the least dimension measurements and the median of the gradation 
will therefore forms the basis of the formulation of the computational ALD model. New variables 
must be incorporated in the formulation process to reduce the dispersion of the points which is 
mainly caused by the nature of the particle size distribution and the shape of the aggregate particles. 
 
It is not possible to eliminate the above mentioned scattering completely. The reason being that 
there are still other factors which have an effect on the relationship but are considered unimportant. 
For example the flakiness index on its own is not strong enough to describe the shape of the 
aggregate in full. The aim of this formulation is to strive for an error of the order that is obtainable 
for the measured ALD. 
 
Theoretical model 
According to the definitions of the measured ALD and the median of the gradation we can start off 
by stating that the ALD is directly proportional to the central tendency of the particle size 
distribution, shape and type of distribution of the particles. 
 
Axiomatically the statement is formulated as follows: 
 

                                                                  PM o∝ALD                                                    eq. 1 

 

The Euclidean space M describes the central tendency of the particle size distribution of the 
particles. It contains the optimal median value for a singular and symmetrical particle size 
distribution and does not take into account the shape and the nature of the size distribution of the 
particles. On the other hand the space P contains the elements that describes the shape of the 
particles and the nature of the size distribution of the particles. The mathematical operator between 
the two spaces transform the space P functionally into a scalar.   
 
The next step is to convert eq. 1  into a real relationship. To do that the important elements of each 
set must first be identified and defined before the conversion can be made. 



 

 

 Mean Least Dimension (ALD) vs Median Least Dimension
(Measured aggregate least dimension)

 Median Least Dimensions (mm)
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Median Gradation vs Median Least Dimension
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The two variables, viz. the gradation median value and the fraction not measured are the basic 
elements of the set M. 
 
Median (Me) 
The median of the gradation is that sieve size through which 50% of the aggregates will pass. It is 
obtained by the accumulation of sieve fractions and with sieves having prescribed square apertures. 
This median value is also a certain type of mean. It is different from the median least dimension, 
because it describes the central tendency of the square aperture (sieve size) through which 50% of 
the particles will pass. While the median least dimension is the value where 50% of the least 
dimension of the particles is less than the median value. As in the case of the median least 
dimension, the median of the gradation also depends on the particle size distribution and the shape 
of the aggregates. 
 
Fraction not measured (Fr) 
According to TMH1-B18(a) the particles of the fraction passing the sieve, half the nominal size of 
the aggregate, must not be measured. This fraction does have a significant effect on the measured 
ALD if not applied correctly. 
 
Flakiness Index (Fi) 
The flakiness index , carried out according to TMH1-B3, is a rough guide to describe the shape of 
the aggregate. It stands to reason that the flakiness index cannot reflect the full shape characteristic 
of the aggregate which will have an effect on the measured ALD. For practical reasons and for the 
purpose in mind, we’ll suffice for the time being with the flakiness index as a particle shape 
indicator. 
 
The degree of peakiness and the degree of symmetry of the particle size distribution forms an 
integral part of the formulation and, therefore must also form part of the basic elements of set P. 
 
Distribution Peakiness (K) 
The more peaky the particle size distribution (leptokurtic) the more singular the aggregates are in 
size. In other words, the range in sizes will be small and the least dimension of the individual 
particle will be closer to the mean (ALD). When the particle size distribution is flatter than normal 
(platykurtic) the aggregates will not be singular anymore. The range between the smallest and 
largest particle size becomes wider as the distribution becomes flatter. The least dimension of the 
individual particle deviates quite significantly from the average least dimension. The degree of 
peakiness of a particle size distribution is indicated by the K-value which normally varies between 
0,15 and 0,35 for surfacing aggregates. For a fairly singular aggregate this value is 0,263. 
 
Distribution Symmetry (S) 
Only when the aggregates are very singular, will the shape of the particle size distribution be 
symmetrical. As soon as the aggregates becomes non-singular the distribution becomes more 
asymmetrical. In the case of a symmetrical distribution the effect of the median least dimen-sion on 
the average least dimension will be zero, otherwise it will effect it negatively or positively. The 
shape of the particle size distribution is reflected by the S-value which normally varies between –
0,4 and 0,5 . For a symmetrical particle size distribution the S-value is zero. 
 
The relationship 
The statement made above (eq. 1) is converted functionally as follows: 
 

                                     ( ) 


⊗= gCS,K,,iFgfC,rF,eMfeALD                                  eq. 2 



 

 

where ALDe is the estimated measured ALD and Cf and Cg are constants which can only be 
determined from experimental data. 
 
Function f() 
When the fraction not measured (Fr) is greater than zero, the median will be additively  effected. 
When Fr is equal to zero no adjustment is required. It means that when Fr is zero the median is 
unchanged but when Fr is greater than zero the median will be increased. The reason being that the 
particles smaller than half the nominal size are not measured in the measured ALD method in spite 
of the fact that it was included in the gradation used for the determination of the median. 
 
Function g() 
The higher the Flakiness Index, the more flaky the aggregate, which means that as Fi increases from 
zero, the median (Me) will decrease proportionally. When Fi is zero (no flakes) the median will not 
be affected, hence the effect of Fi on Me will therefore be additive. 
 
The K-value (peakiness indicator) is also an additive term. Although the effect on the median (Me) 
is significant, it is not so drastic, as in the case of the Flakiness Index. 
 
Regarding the symmetry of the particle size distribution the S-value will have a greater effect on the 
median as the K-value. Due to the fact that the S-value varies from a negative value through zero to 
a positive value, the term must also be additive. The median will be decreased by the S-value in the 
case where a sample has more finer fractions than is normally expected. In the case where the 
sample has more coarser fractions the median will be increased by the S-value. 
 
 
The equation 
The next step is to put eq. 2  into an equation form. The functional form of eq. 2  is as follows: 
 
                      ( ) ( )S3BK2BiF1B0BrF2AeM1A0AeALD +++∗++=                       eq. 3 

 
where A0 and B0 are constants and A1, A2, B1, B2 and B3 are term coefficients and must be obtained 
from either experimental or historic data. 
 
 
Mathematical process 
To find the constants and coefficients of eq. 3  from a inductive mathematical point of view is not 
so easy, if not impossible. The best way to overcome all the side effects of the influential factors, 
and those not considered in the model, and to establish the type and magnitude of the errors 
involved, is to make use of a stochastic process. 
 
Confidence limits 
The only way to find the true measured ALD is to measure quite a number of samples according to 
TMH1. It is impractical to measure a certain number of samples to establish a good measured ALD 
every time. In this paper a relationship is formulated to determine the ALD from certain gradation 
and shape properties. The ALD obtained from any computa-tional relationship is not the true 
measured ALD, it is an estimated measured ALD, or in short a computed ALD. It must be 
remembered that this estimated ALD is still a variate distributed in some way about the true 
measured ALD. However, an interval, within which the true measured ALD will lie, can be 
established with a certain amount of confidence. A confidence level of 95% was used in the 
formulation process, because of the many variations, deviations and uncertainties that had to be 
dealt with,  it was unnecessary to aim for a higher confidence level. 



 

 

Data 
The data used for the determination of the required constants and term coefficients are not given 
here, but the number of samples involved in the analysis was 504. It consists of information 
obtained from historic data as well as from certain properly designed statistical experiments. 
 
Constants and coefficients 
According to the data used in the analysis the values of the constants and term coefficients of eq. 3  
were calculated as follows: 
 

 A0 =  0,064 402 
 A1 =  0,245 081 
 A2 = -0,014 381 
 B0 =  3,270 825 
 B1 = -0,019 573 
 B2 = -0,149 364 
 B3 =  0,326 787 

 
Reliability 
According to the data used in the determination of the constants and term coefficients,  93,7% of the 
total variation is explained by eq. 3. Hence the variation that cannot be explained is about 6% which 
is due to certain minor factors which were not considered in the analysis or formulation process. 
This means that the variables selected and the type of mathematical model formulated provided the 
results aimed for. 
 
Estimated measured ALD 
The standard error of estimate is 0,522 which means that the confidence interval of the true 
measured ALD can be calculated. 
 
Therefore the estimated measured ALD is as follows: 
 
            ( ) ( ) error++++∗++= S3BK2BiF1B0BrF2AeM1A0AcALD                  eq. 4 

To avoid confusion with the actual ALD measured the estimated measured ALD is designated by 
the symbol ALDc (computed ALD).  The error depends on the critical values of the confi-dence 
interval, the standard error of estimate, and the value of the estimated ALD. The error does not 
change significantly whether the minimum estimated ALD (4,5 mm) or maximum estimated ALD 
(13,0 mm) is used to calculate the error. Hence, to find the error, the estimated ALD in the 
determination of the confidence interval can be replaced by the mean estimated ALD value (9,137 
mm). The error is calculated as 1,027 mm. The final equation for the computed ALD is therefore 
 
           ( ) ( ) 1,027S3BK2BiF1B0BrF2AeM1A0AcALD ±+++∗++=                  eq. 5 

 
 
Computed ALD versus measured ALD 
Figure 4 reflects the distribution of the residuals ( difference between the computed ALD and the 
measured ALD ). From this distribution it is clear that the majority of the residuals are within the 
error range of the measured ALD due to sample preparation. It means that the relationship, as 
defined above, can be used to determine the estimated measured ALD and that the error is well 
within the accuracy limits aimed for. 



 

 

Calculation 
 
From the gradation information, calculate the median value to an accuracy of 0,001 mm as follows: 

( )L10 SLogA =        
LU

L

PP

P
r

P
B

−

−
=          ( ) ( )L10U10 SLogSLogC −=           CBA

r 10Q ⋅+=  

 

For each  r  calculate Qr   

r 1 2 3 4 5 

Pr 10 25 50 75 90 

where 
SL : The first sieve where the material passing is less than Pr  %. 

SU : The first sieve where the material passing is greater than Pr  %. 

PL : Percentage passing SL 

PU : Percentage passing SU 

 
Calculate the particle size distribution parameters 
 

Me     = Q3 

K = ( Q4 – Q2 ) / 2( Q5 – Q1 ) 

S = ( Q5  -  2Q3 + Q1 )  / ( Q5 – Q1 ) 
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Calculate the ALDc  to an accuracy of 0,001 mm  as follows: 
 

 f (Me, Fr)      =  A0 + A1Me + A2Fr   

 g(Fi, K, S)     =  B0 + B1Fi + B2K + B3S 

        ALDc   =   f (Me, Fr) ⋅ g(Fi, K, S) 

 
Conclusions 
 

1. The estimated measured Average Least Dimension (ALDc) as calculated by means of eq. 3  
has an error of approximately 1 mm which is of the same order as that obtained for the ALD 
measured under close controlled conditions. 

2. The sample properties used in the computational method is obtained from a sample size 
approximately four times larger than the sample used for the measured ALD. 

3. The variables required are obtained from  normal testing of surfacing aggregates. 
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