
An economic viability study of crop revenue insurance for the South African 
maize market: a statistical copula approach

by 

TATENDA TINASHE MUTUNGIRA 

Submitted in partial fulfillment of the requirements of the degree:

MCom (Agricultural Economics) 

in the 

Department of Agricultural Economics, Extension and Rural Development 

Faculty of Economics and Management Sciences 

University of Pretoria 

Pretoria 

September 2020 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  



ii | P a g e  
 

DECLARATION 

I, Tatenda Tinashe Mutungira hereby declare that this dissertation that I submit for the 

Master of Commerce degree in Agricultural Economics to the University of Pretoria 

has not previously been submitted by me or any other person for degree purposes at 

any other tertiary institution.  

 

Signature: ……………………………………………………………… 

Date: …………………………………………………………………… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



iii | P a g e  
 

DEDICATION 
 

I dedicate this dissertation to my maternal- and late paternal-grandmother for their 

words of wisdom, support and encouragement, and the emphasis they placed on the 

value of education throughout my life. 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



iv | P a g e  
 

ACKNOWLEDGEMENTS 
 

First and foremost, I would like to express my deep gratitude to my supervisors, Dr M. 

Gouse and Prof. C. Beyers who have guided, mentored and supported me through 

this difficult journey. To both supervisors, I thank you for your patience and the effort 

you placed in me, and for continuously asking the difficult questions for I am only 

seeing the results of it at the end of my study.  

I am indebted to the Bureau for Food and Agricultural Policy (BFAP) for the financial 

support provided to me over the years, without them I would not have been able to 

conduct this study.  

 

I would like to pay special regards to Prof. B. Goodwin from North Carolina State 

University and Prof. D. Vedenov from Texas A&M University for their invaluable 

insights and guidance on the methodology applied. 

 

I want to show my gratitude to industry experts from Munich Re, Munich Re Corporate 

Solutions, Santam, and Landbank Insurance Company for providing me with 

information, data, and invaluable insights. A special mention to J. Drewes, M. Dladla, 

J. Lishman and B. Krüger for their great enthusiasm in this research topic and 

willingness to always help. A big thank you to experts from ABSA, AgriSeker, Garrun 

Group insurance Brokers, Land Bank, Mvunonala Holdings, Nedbank and Standard 

Bank, for their willingness to participate in my interviews, provision of information, as 

well as guidance on the research topic. 

To colleagues from the Department of Agricultural Economics and BFAP, I owe a great 

debt of gratitude for the assistance, guidance, and counselling afforded to me over the 

years. I would like to especially mention and thank, D. Scheepers, Dr A. van der 

Wyver, D. van der Westhuizen and Prof. F. Meyer for continuously creating the time 

to assist with this research throughout the study. To Dr M. Louw, Prof. C. Machethe 

and Dr M. van der Merwe, thank you for your constant support and concern,  all the 

advice and guidance, while always maintaining the pressure on the completion of the 

masters. 

To my friends, I owe a great amount of gratitude to Dr S. Makgai for her attention to 

detail while critiquing, always asking “why?” and always availing her expertise and 

guidance. To J. Huppert, I greatly appreciate your effort and time in constantly 

reviewing this research and asking the difficult questions. To Dr C. Gandidzawa, V. 

Gxotiwe, M. Moobi, R. Ngwenya, M. Zikalala, D. Moyo, and L. Mdlopane, I thank you 

dearly for the constant words of support especially in the darkest hours when the end 

seemed like a mirage. 

To mum and dad, thank you for your support, prayers, and encouragement, and 

always asking “…again when is the graduation…”. To my brothers and sisters, I told 

you I would finish! 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



v | P a g e  
 

 

ABSTRACT 

 

AN ECONOMIC VIABILITY STUDY OF CROP REVENUE INSURANCE FOR THE 

SOUTH AFRICAN MAIZE MARKET: A STATISTICAL COPULA APPROACH 

By 

Tatenda Tinashe Mutungira 

 

Degree: MCom (Agricultural Economics) 

Department: Agricultural Economics, Extension and Rural Development 

Supervisor: Doctor M Gouse 

Co-Supervisor: Professor C Beyers 

Word count: 45 800 

 

The purpose of this dissertation is to conduct a viability study of a revenue-based crop 

insurance product, focussing on the white maize market in South Africa. 

 

It has been established that multi-peril crop insurance (MPCI) schemes in South Africa 

have made losses in almost half of the 14 years between 2005 – 2018, hence the need 

for an alternative offering. Recent research has shown that when compared to MPCI, 

a revenue-based product is more viable and affordable to offer in the absence of 

government support, premised on an inverse relationship between the yield and prices 

of crops, that permits for a relatively stable expected revenue, referred to as a “natural 

hedge”. 

 

A statistical copula approach was applied to establish the dependence relationship 

between white maize yields and prices in this research. Copulas have been 

established as a superior dependence modelling technique because their approach 

moves away from the normal model assumption as depicted by the Pearson 

correlation relied on by insurers. Copulas are flexible modelling instruments that permit 

the use of different statistical distributions in the marginals of the variables which is 

favourable because evidence exists suggesting that yield distributions are not normally 

distributed contrary to the insurers modelling approach. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



vi | P a g e  
 

Alternative statistical distribution models were therefore fit to the variables to get a 

better representation of their marginal distributions. The marginal distributions produce 

cumulative distribution (CDF) values used in the copula fitting procedures. From the 

established copula dependence structure, a Monte Carlo simulation produced CDF 

values that were converted back to price and yield variates for use in comparing yield- 

and revenue-based crop insurance policies. The two insurance products were 

compared on the premium rates achieved at identical insurance coverage levels while 

the former is ultimately determined by the expected loss outcomes. The premium rate 

achieved represents the affordability of the product while the expected loss outcome 

resembles the level of risk from insuring a product. 

 

Findings were that an inverse relationship exists between the variables from the three 

selected maize producing districts namely, Bloemfontein, Vryburg and Delmas. The 

best-fitting copula models were achieved from a combination of alternative marginal 

distributions for both variables, as well as alternatives to the Gaussian copula. 

Revenue-based crop insurance policies achieved lower insurance premium rates than 

yield-based insurance policies for Bloemfontein and Vryburg, but not Delmas. The 

study recommends that insures consider production region modelling and insurance 

products. 
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GLOSSARY 
 

Administrative costs: Refers to all the costs associated with providing and delivering 

a crop insurance product. 

Coverage level: The portion of production or revenue that is insured, usually 

expressed as a parentage.  

De-risking: Taking steps to reduce the amount of risk assumed. 

Expected price: This is a representative harvest price of a commodity during planting 

leading to harvesting time as traded by the futures contract. 

Harvest price: This is taken as the average daily prices for the harvesting month of 

the futures price.  

Indemnity payment: The amount of money the insured receives from the insurer if 

the realised yield/revenue is below the coverage level value  

Loss ratio: These are the indemnities paid as a percentage of premiums paid by 

producers. 

Moral hazard: A situation when a party alters their risk knowing that a third party will 

bear the costs associated with their behaviour 

Premium: The purchase price of an insurance policy. 

Premium subsidy: This is a benefit usually from the government that reduces the 

premium paid by farmers. 

Re-insurance: A process of insurers taking an insurance policy on the risk they have 

underwritten.  

Skewness: This speaks to the shape of a distribution of the dataset, on whether it is 

symmetrical, or has tails to the left or right. 

Single-peril crop insurance: This is a crop insurance product that covers a single 

risk. 

Multi-peril crop insurance: This is a crop insurance product that covers numerous 

risk in one policy.
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CHAPTER 1 

 

1.1 INTRODUCTION 

 

The multi-peril crop insurance (MPCI) offering is struggling in the South African 

market. According to industry experts from Santam, Munich Re, Munich Re Corporate 

Solutions, and the Land Bank Insurance Company, MPCI is a loss-making business 

in South Africa (SA). Literature suggests that this is also the case for MPCI products 

internationally (Smith and Glauber, 2012; RMA, 2017, 2019). The SA market has 

experienced loss ratios above 100% in nearly half of the time, spanning over 14 years 

between 2005 - 2018 while the loses tend to be massive when they do occur (SAIA, 

2016; Munich Re, 2018).  

 

In the cropping seasons of 2004/05, 2005/06 and 2007/08, Munich Re stopped 

supporting MPCI in SA because of the continuous losses experienced, largely due to 

adverse weather conditions. At that time, the organisation felt that the insurers it 

backed in the SA MPCI market were not charging premium rates that were reflective 

of the risk (drought) faced, which was exacerbating the company’s losses. According 

to role-players, amendments to the premium rates charged for MPCI saw the return 

of Munich Re to backing the product once again in the 2008/09 season (Munich Re, 

2018).  

 

Drought risk is the main cause of the poor performance of MPCI in SA. Due to the 

inherent nature of droughts, they tend to cover a large geographic area, negatively 

affecting a large area of crop, while often spanning over multiple seasons. Historically, 

SA experiences drought years that tend to be consecutive (shown in Figures 2.6 to 

2.8, p.43 to 44). Because of this, historically MPCI products have been limited to 20% 

of the SA crop insurer’s book of business, and this has been a long-standing 

agreement between the country’s reinsurers and the insurers. This agreement was 

reached to satisfy what the reinsurers deemed an acceptable risk exposure for the 

backing of MPCI in SA while stemming out the potential systemic risk that this scheme 

could bring to the crop insurance industry.  

 

Internationally, the majority of MPCI schemes receive government support whereas in 

SA this is not the case (Oliver Mahul and Stutley, 2010). A 2008 World Bank survey 
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study showed that in the absence of premium rate subsidies, loss ratios exceeded 

100% for 6 of the 8 high-income nations surveyed (Smith and Gaubler, 2012). For 

example, while relying on 2017 season’s data for the United States of America (US), 

if the premium subsidy is left out of the loss ratio calculation, the ratio deteriorates to 

144% from 53% (RMA, 2017). This means that in the absence of a premium subsidy 

support, for every US$1.00 collected in premium, US$1.44 would be paid out in 

indemnity payments by the insurer. To provide some context of an idyllic situation, 

according to Nieuwoudt (2000), a 95% loss-ratio is the minimum threshold to break-

even in a crop insurance business. At this threshold, the MPCI scheme would at least 

be able to meet its insurance obligations since for every US$1.00 collected in 

premiums, US$0.95 is available to cover indemnity payments. 

 

Due to the substantial drought risk, SA insurers have historically retained only a small 

amount of the insurance business risk they have assumed in the market and ceding 

the bulk of their MPCI book of business to re-insurers. The Land Bank Insurance 

Company typically retains 30% and cedes 70%. This means when the insurance 

company makes a profit on the MPCI product, which they have rarely done over the 

last 10 years, the bulk of the profit goes to the re-insurer, adding to the unprofitability 

situation of this offering.  

 

In May 2019, the insurer Swiss Re Corporate Solutions pulled out of the SA crop 

insurance market. Reasons for their departure have not officially been confirmed but 

the dismal performance of their MPCI book is a likely contributing factor. It does not 

come as a surprise that some reinsurers have expressed their dissatisfaction with the 

SA government’s stance of non-intervention in the sector, hinting at a possible 

withdrawal from the market if the government does not intervene with support 

measures.  

 

1.2 PROBLEM STATEMENT 

 

In comparison to single-peril crop insurance products, MPCI is significantly more 

expensive. MPCI is costly for two key reasons: Firstly, it is a comprehensive risk cover, 

that even includes the systemic type of weather risks. Secondly, MPCI schemes suffer 

from large administrative costs in their operations. Thus, MPCI is plagued by a 
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combination of large losses due to systemic drought risk occurrences as well as high 

costs incurred to curb moral hazardous behaviour to the scheme.  

 

From consultations with farmers, agricultural specialists, bankers and crop insurance 

professionals, the consensus is that SA farmers’ perception of MPCI is that the product 

is too expensive. As a result, the farmers are reluctant and selective on taking out an 

MPCI policy. Consequently, uptake of MPCI fluctuates according to the season and 

financial position of the farmers. For instance, during the La Nina phase of high rainfall 

in 2009/10 and 2010/11 seasons, there was a low uptake of MPCI. However, during 

the El Niño drought phase of 2014/15 and 2015/16, demand for MPCI was high. This 

situation of variable crop insurance uptake is not ideal for insurers as they depend on 

the better seasons to make profits and build capital reserves that can then contribute 

towards indemnity payments in the bad seasons. To stem out variable insurance 

uptake and reduce their risk, Santam withheld MPCI policies for new clients during the 

El Niño phase but gave preference to their regular clients.  

 

Furthermore, according to parties to the matter, MPCI is not structured correctly in SA. 

The idea of crop insurance is to leave a farmer in the same position as he/she was in 

before an adverse occurrence, at least in terms of production cost expenditures. 

However, the sentiment is that the pricing of MPCI is not aligned to the inherent risk 

for two main reasons. Firstly, historic yields are being overstated at the farm level to 

maximise potential indemnity payments. Secondly, the brokerage network benefits 

from having inflated production values because this leads to higher commissions 

received.  

 

Despite the perceptions of SA farmers and some insurers that MPCI is expensive, the 

reality for the insurers is that the product is not profitable. The sentiment from the other 

insurers and reinsurers is that MPCI is under-priced in the market. Evidence from the 

underwriting experience shows loss-ratios exceeding 100% in almost half of the cases 

over fourteen years (2005 - 2018). Due to the poor financial performance of MPCI, 

there is a risk of insurers and re-insurers halting their support for these schemes in 

SA. As of May 2019 last year, Swiss Re Corporate Solutions is an insurer that withdrew 

from the SA agricultural sector largely due to losses incurred in the market. Throughout 

this research between 2015 – 2020, reinsurers backing MPCI in SA have been de-
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risking from this product i.e. reducing their MPCI reinsurance support. This has 

resulted in an increase in the cost of insurance for two reasons: Firstly, because 

insurers have fewer options to spread their MPCI book of business risk, and secondly, 

insurers must limit the supply of crop insurance policies. From the laws of supply and 

demand, a reduction in supply causes prices to increase, ceteris paribus. An increase 

in the MPCI costs will negatively impact crop production of farmers without adequate 

land collateral because this insurance is an important collateral component to 

accessing production finance from banks.  

 

In 2014 the Department of Agriculture Forestry and Fisheries (DAFF) initiated research 

to understand global best practices for a potential Public-Private Partnership (PPP) 

with insurance industries. This came after the South African Insurance Association 

(SAIA) and other role players in the sector approached the SA government for a state-

supported crop insurance scheme. The research was conducted in partnership with a 

specialist agricultural consultancy and the short-term insurance industry’s project 

team, producing a proposal document for DAFF and Treasury. However, by 2020, 

there was still no response to the report or progress on establishing a PPP. According 

to the unpublished 2016 report it was established that due to a reduced amount of 

MPCI coverage in the market, SA banks at times are unable to disburse approved 

production loans for a lack of drought cover from the client (LBIC, 2016). A lack of crop 

insurance or finance can inhibit the risk appetite of producers to growing crops more 

susceptible to certain risks such a drought. An example of this situation would be an 

SA farmer substituting maize production with sunflowers because of the latter’s higher 

drought tolerance but historically a lower gross margin. According to Hazell (1992) that 

is the exact opposite of what a crop insurance product can and should do for the 

producer. Assuming a farmer is profit maximising while knowing that he/she is covered 

from adverse occurrences beyond his control, then this producer’s rational decision 

would lead him to produce the most profitable crop.  

 

In ideal production financing activities, crop insurance is an important risk mitigation 

instrument to potential loan defaults for banks from credit provided to clients without 

the necessary land collateral. Therefore crop insurance makes it easier for banks to 

disburse production loans, as well as broadening their lending book to incorporate the 

smaller high-risk farmers (Hazell, 1992; Skees and Price, 2000). Without crop 
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insurance policies, specifically MPCI, banks will end up with loan portfolios dominated 

by only large farmers that would typically have a stronger balance sheet. However, 

according to some of SA’s top banks operating in agriculture namely ABSA, Standard 

Bank and Nedbank, as well as other role-players (personal communication), MPCI is 

so expensive that most commercial farmers avoid it while high drought risk areas are 

not covered by MPCI policies. According to bankers, in their experience, a farmer 

looking for an MPCI policy is often a bad farmer, looking to benefit from insurance 

indemnity payments. In discussions, a case was mentioned where an insurance broker 

stopped offering crop insurance products because it negatively affected their primary 

agriculture insurance business portfolio (as a result of bad blood from when a farmer’s 

claim had been denied due to what the insurer’s assessors deemed bad farming 

practices, resulting in the farmer cancelling his/her other policies with the broker). 

Given this situation, some of the banks no longer favour MPCI as collateral because 

if an insurer can prove bad farming practices, no claim can be made and therefore 

there is no guarantee of security. 

 

The SA insurance sector needs a solution to the unsustainability problem of the 

prevailing MPCI product. This study investigates the viability of a crop revenue 

insurance (CRI) product as an alternative while utilising alternative methods to 

modelling crop insurance policies. In modelling crop insurance products, the global 

insurance industry standards assume normality in both the yield and price risk 

marginals, as well as the dependence relationship of these two variables, despite 

ample evidence suggesting better and improved ways of modelling these risks. 

Currently, SA insurers are pricing yield insurance policies based on historical loss 

experiences and not on a particular risk modelling technique.  

 

With a better performing crop insurance product in terms of a more stable expected 

loss experience for the insurers, the SA government could be more inclined to support 

the offering. At present, the SA government does not support any crop insurance 

schemes whereas MPCI is rarely offered in the absence of government support 

mechanisms in the rest of the world (Mahul and Stutley, 2010).  

 

1.3 PROPOSED CONTRIBUTION 
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In this study, CRI is proposed as an alternative to MPCI, focussing on the largest grain 

crop in SA which is white maize. A statistical copula approach is applied to establish 

the dependence relationship between white maize yields and the associated 

commodity price for three magisterial districts of SA. This dependence relationship is 

important for the viability and pricing of the different crop insurance products, while the 

latter is a metric used in comparing affordability. The statistical copula approach is 

deemed as a superior method to establishing dependence relationships that has 

recently gained prominence in the field of agricultural economics (Goodwin and Mahul, 

2004; Goodwin, 2015) and are a shift from the common Pearson correlation measure. 

 

This study will consider different marginal distribution models for the variables price 

and yield of white maize for use in the copula fitting procedures by the Elliptical and 

Archimedean copula families. The initial step establishes the superior fitting 

distribution model that best mimics the behaviour of the variables, to produce the 

required cumulative distribution function (CDF) values for the copula fitting 

procedures.  

 

The crop insurance products are compared through the following 3 Cases that 

represent the progression in crop insurance risk modelling techniques: 

• Case 1 - Approach maintains normality in both marginal distribution models 

and dependence structure (the Gaussian copula) when modelling crop 

insurance risks. 

• Case 2 – Approach uses a combination of alternative marginal distributions 

models in modelling crop insurance risks while maintaining normality in the 

dependence structure (the Gaussian copula). 

• Case 3 – Approach uses a combination of alternative marginal distribution 

models and different copulas in modelling crop insurance risks.  

 

The initial approach of Case 1 is the ‘benchmark model’ because that is the prevailing 

crop insurance industry approach. The second approach, Case 2, limits dependence 

modelling to the Gaussian copula but permits the use of alternative marginal 

distributions to assess their effect on dependence. Case 2 therefore represents the 
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improvement in marginal distribution modelling techniques which ultimately represents 

the behaviour of the yield and price variables.  The third approach, Case 3, allows for 

a combination of alternative marginal distributions and alternative copula approaches 

in the dependence modelling to establish the overall superior copula method. Case 3 

therefore represents a combination of improvements in marginal distribution modelling 

techniques, as well as an improvement in the dependence relationship modelling.  

 

Findings by Ahmed and Serra (2015) show that given identical insurance coverage 

levels, the premiums rates of CRI were lower than those of yield-based crop insurance. 

The reasoning behind this finding is that, as yields fall, prices rise for agricultural 

products and vice versa, thereby permitting a stable expected revenue for the farmer. 

This inverse relationship between price and yield is crucial if a CRI product is to 

succeed because that is how the ‘natural hedge’ is formed (Meuwissen, Huirne and 

Skees, 2003; Tejeda and Goodwin, 2008; Goodwin, 2015) and is the basis for a stable 

insured variable (revenue). The term ‘natural hedge’ refers to a situation of a stable 

insurable variable, ‘revenue’ made possible when there is an inverse relationship 

between crop yields and their respective prices.  

 

The following hypotheses will be investigated: 

 

Hypothesis 1: There is an inverse relationship between the price and the yield of 

white maize in SA. 

 

Hypothesis 2: Premium rates realised for a revenue-based crop insurance product 

are lower than those from a yield-based product. 

 

Hypothesis 3: Alternative risk modelling approaches in the marginal distributions of 

the variables as well as in establishing dependence relationships produces a better 

fitting crop insurance model. 

 

Considering Hypothesis 1, stability in the insured variable suggests a reduced financial 

risk for the insurer in terms of fewer chances of making indemnity payments and the 

reduced size of them thereof, as evident from the lower expected losses of CRI when 

compared to yield-based crop insurance reported by Ahmed and Serra (2015). From 
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Hypothesis 2, if premiums charged for CRI insurance in SA could be lower than those 

of yield-based products, it would become relatively more affordable for farmers to take 

up crop insurance. From hypothesis 3, if alternative crop insurance risk modelling 

techniques give a better fitting crop insurance model, this should prompt insurance 

companies to improve their modelling techniques if they were not already using these 

techniques. 

 

1.4 OBJECTIVES 

 

This research has three main objectives.  

• Firstly, to establish whether there is an inverse relationship between SA white 

maize yield and price data, and if this is indeed the case, assess whether the 

‘natural hedge’ holds.  

• Secondly, to compare the expected losses and premium rates realised from the 

two insurance schemes (MPCI and CRI) to make a call on the affordability of 

the products. Affordability is determined by a comparison of premium rates 

realised by the two products at identical insurance coverage levels. 

• Thirdly, to assess what the effects of different marginal distribution and 

dependence risk modelling techniques have on the actuarially fair insurance 

premium rates achieved, separately and in combination (representing the 

progression in crop insurance risk modelling techniques). This will require 

comparing Case 2 results to Case 1, the ‘benchmark model’ as well as 

comparing Case 3 to Case 1. 

 

1.5  DISSERTATION OUTLINE 

 

In Chapter 2, the concept of crop insurance is introduced and the factors that 

contribute to the success or failure of the insurance products are explained. The 

different types of crop insurance products are introduced. An international overview of 

the state of crop insurance is given and then narrowed down to the SA case. Chapter 

3 focusses on the research methodology that incorporates alternative marginal 

distribution modelling of the variables white maize yields and their prices, for use in 

the copula fitting procedure. Chapter 4 is the application were the variables price and 

white maize yields go through numerous transformations that lead to stationarity and 
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suitability for the copula fitting procedures. Chapter 5 implements a Monte Carlo 

simulation to produce variates of expected prices and white maize yields that are 

necessary for comparing yield and revenue crop insurance products. Chapter 6 

summarises and elaborates on the research findings. 
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CHAPTER 2 

CROP INSURANCE MARKET: A GLOBAL OVERVIEW 

 

2.1 INTRODUCTION 

 

In this chapter, the concept and theory of crop insurance are introduced. A brief history 

of crop insurance is given to provide a basic understanding of where it started, what it 

has been used for, and how the products are evolving. Principles of insurability are 

discussed to understand the factors that lead to the success or failure of a crop 

insurance product.  Factors leading to the failure of crop insurance are then discussed 

in-depth. A high-level summary is provided on the different but key crop insurance 

products on the global market, specifically their functioning and how they differ. A 

global overview of the recent trends that have occurred in the world’s crop insurance 

sector is given, covering premiums collected, liability covered, and government 

intervention. An overview of SA’s crop insurance sector is then presented with a focus 

on its history and current state. 

 

2.2 CROP INSURANCE INTRODUCTION 

 

Insurance is a way of transferring one’s own risk to another for a fee called a premium. 

The party that assumes this risk is called the insurer. The insurer must satisfy in terms 

of the insurance agreement, in the event of an unexpected development that is 

stipulated in the insurance policy has occurred and achieved the minimum threshold 

that warrants an indemnity payment. It is important to understand what constitutes an 

insurable risk, hence the following seven key principles of insurability1 are listed below 

(SchemeServe, 2014):  

1. There should be numerous similar risks – insurance is primarily based on 

pooling risks together, therefore, having more units of an insurable risk permits 

insurers to have a large enough scale permitting for expected losses to 

approximate actual losses. 

2. There must be a definable loss – referring to the ease in identifying a loss i.e. 

when it occurred and how it occurred. 

 
1 SchemeServe took these principles from the book titled “Principles of Insurance” written by Mehr and 
Camack in 1976. These discussed seven principles are still relevant in 2020. 
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3. Losses should normally occur by accident – meaning the event leading to a 

loss must not be intentionally influenced by the insured or benefactor of the 

indemnity payment. 

4. Losses ought to be meaningful – the value of the insured item must be 

significant enough to warrant the need for insurance. 

5. Premiums must be affordable – meaning premiums charged must be 

reasonable when considering the value of what is being insured and the value 

of expected indemnity payment. 

6. The loss should be calculable – meaning the insurer must be able to accurately 

calculate losses incurred. 

7. The liability should be limited – this means insurers need to limit their uptake of 

systemic type of risks. e.g. hurricane insurance. 

 

Crop insurance has been used to stabilise crop production as well as the income of 

farmers, safeguard and stimulate investment in the agricultural sector, and aide 

farmers in accessing finance (Binswanger, 1986; Sherrick et al., 2004; Roberts, 2005; 

Stutley, 2011). A crop hail insurance product was the first known and used crop 

insurance policy recorded from Germany in 1733 (Mahul and Stutley, 2010). The 

emergence of livestock insurance followed in the 1830s, initially in Germany, followed 

by Sweden and then Switzerland by 1900 (Smith and Glauber, 2012). Thus, crop 

insurance has existed for over 200 years in some parts of the world. Towards the end 

of the 19th century, crop insurance had been introduced to several European countries, 

the United States of America (US), Canada as well as Argentina (Mahul and Stutley, 

2010).  

 

Initial crop insurance policies were limited to single-peril product schemes such as hail, 

excessive rain, wind, or frost, offered by small mutual companies (Mahul and Stutley, 

2010). These single-peril products lend themselves to easy administration from an 

insurer’s point of view. Firstly, the damage is observed, making it easy to measure and 

assess losses.  Over the years, insurers have developed accurate ways of calculating 

the damage experienced, hence Kang's (2007) comment that singe-peril crop 

insurance schemes lend themselves to robust premium rate calculations. Secondly, 

single-peril crop insurance products face little to no moral hazard risk because 

participants in these insurance schemes cannot create an event that warrants an 
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indemnity payment (e.g. a hail or frost event) or influence the level of damage incurred. 

Therefore, it becomes less costly to administer these schemes because the insurer 

only incurs assessment costs in the event of the peril. Therefore, the characteristics 

of localised damage that is easily identifiable and measured, make the product 

affordable and sustainable for the insurer to offer. The adverse selection problem is 

catered for in this case since areas prone to hail events are identifiable. These areas 

will have a higher demand for that specific insurance type, which means insurers can 

factor into the premium rate the hail risk per region seeing that these locations have 

an observable loss history.  

 

From 1899 to 1920, there are records of private companies offering MPCI in the US. 

MPCI, as the name suggests, is an insurance policy that is not limited to a single peril 

but can cover multiple risks, hence the term ‘multi-risk’. This product insures against 

both quantitative and qualitative losses to the crop. Quantitative losses can be 

measured and quantified physically whereas qualitative losses can only be assessed 

in the harvested crop, as the latter looks to the extent in compromised quality of the 

crop that reduces its market value (lower price). The first MPCI policy was written in 

1899 for the Realty Revenue Guaranty Company of Minneapolis for its entire wheat 

crop, at a time when crop insurance coverage was limited to hail and fire. However, 

the company offering MPCI in 1899 subsequently cancelled this offering after a year 

(Gardner and Kramer, 1986). These were the early signs of complications that come 

with an MPCI scheme at a time when they were solely in the hands of private 

companies. In 1917, there were further attempts to offering MPCI policies by three 

joint-stock fire insurance companies in North Dakota, South Dakota and Montana 

(Valgren, 1922). In this setting, MPCI again failed due to a severe drought and 

because of the insurance companies’ inability to spread their risk, as well as covering 

themselves against considerable loss. In 1920, another attempt was made at offering 

MPCI by two fire insurance companies but with a slight variation whereby the insurer 

guarantees both yield and price, so essentially insuring the producer’s income 

(Valgren, 1922). Again, the offering failed but this time due to a larger than expected 

drop in crop prices resulting in massive losses for the insurers.  

 

2.3 WHY CROP INSURANCE FAILS 
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To understand why crop insurance fails as a product and fails to emerge as a purely 

private sector offering, it is key to relook at some of the principles of insurability 

(covered in section 2.2). Summarised below is what Odening and Shen (2014) 

consider the foundations for an insurable risk at a reasonable cost:  

• Many individual risks that are independent of each other. 

• Loss amounts should not be enormous. 

• Stationarity in the loss distributions. 

• Ability to estimate loss distributions for estimated heterogeneous 

policyholders. 

• Insurers can control for cost of moral hazard. 

 

The above list is in line with suggestions and findings from literature as to why crop 

insurance fails, particularly for MPCI and can be summed into four elements: 

• human factors (moral hazard and adverse selection) 

• systemic weather risk 

•  lack of reinsurance, and  

• administrative costs  (Miranda and Glauber, 1997; Ozaki et al., 2008). 

The listed elements above are justification for government intervention in this sector 

around the world. 

 

Table 2.1 provides a summarised version of examples from the principal elements that 

contribute to the failure of crop insurance in the world and shall be discussed in greater 

detail in the coming subsections.  
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Table 2. 1: Key elements contributing to crop insurance failure 

Elements Examples 

Systemic weather Drought risk – The 2015 and 2016 El Niño drought seasons in 

SA. Two provinces contributing 60% of SA’s maize harvest 

endured severe drought during the planting and crop development 

phase limiting the area planted to 1.9 million hectares which 

constitute two-thirds of the previous season’s area (USDA, 2016).  

Reinsurance Lack of Reinsurance – Between 1899 - 1922, a lack of 

reinsurance support for MPCI in the US was a significant 

contributor to the failure of the product’s policies (Valgren, 1922; 

Gardner and Kramer, 1986). 

Human element Adverse selection – Due to a superior knowledge of their 

production curves by US producers and ranchers, this attributed to 

a low insurance uptake despite premium subsidies offered to 

contribute to an expected indemnity payment that was on average 

double the value of premium rate between 1980 - 1993 (Glauber, 

2004). 

Human element Moral hazard – US wheat farmers from Kansas who took up crop 

insurance policies were found to use fewer production inputs 

whereas those using inputs more intensively, were less inclined to 

purchasing crop insurance (Smith and Goodwin, 1996). 

Administrative 

costs 

Using a ratio of administrative costs to the non-subsidised 

premium paid (A/P= administrative cost/premium paid), Japan and 

the Philippines realised a ratio greater than 1 (Mamhot and 

Bangsal, 2012). This means these country’s premium collected 

cannot even cover the administrative costs of their crop insurance 

programs. 

 

2.3.1 Systemic Weather Elements 

 

Southern Africa is getting warmer, characterised by minimum temperatures that are 

increasing faster than the maximum temperatures, while drought periods are 

becoming longer and harsher (Kusangaya et al., 2014). Kruger and Sekele (2013) 

support this finding while stating that southern Africa is experiencing more high-

temperature extremes than lower temperature extremes. Droughts, floods and 

extreme temperatures are all systemic weather risks and SA is mainly prone to the 
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first (drought) (Nieuwoudt, 2000; Baudoin et al., 2017). Common to these risks is the 

extensive geographic spread upon occurrence, affecting numerous farmers in a single 

period.  

 

Figure 2. 1: Southern African Seasonal Rainfall Rank and Standard 

Precipitation Index (SPI) 

Source: USDA  (2016) 

Notes: The seasonal rainfall rank and standard precipitation index are from the period of October 

2015 to March 2016. 

 

Figure 2.1 illustrates the extent of the 2015/16 El Niño drought that spread over three 

provinces in SA during the crop planting phase and eventually spread to the entire 

southern African region by the crop development phase. Drought is disruptive if not 

destructive to the development of a maize plant. In SA, the period from planting maize 

seed to the first emergence requires ideally warm (20℃  and 30℃ are optimal) and 

moist conditions (60% of soil capacity) for germination to occur after 6 to 10 days, 

however, dry conditions prolong this process by up to two weeks or more (ARC, 2003).  

Throughout the growth phase of a maize plant, every millimetre of rain consumed by 

the plant results in roughly 10 – 16 kg of grain while a yield of 3.15 t/ha requires 350mm 

to 450mm rain per annum, depending on the distribution of rainfall (ARC, 2003). 

Furthermore, moisture requirements are highest 2 weeks before and 2 weeks after 
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pollination (roughly between 57 – 93 days after planting) and as the pollination process 

significantly influences grain production, this period is crucial (Pannar, 2020). From 

the drought implications shown in Figure 2.1, it is clearer to imagine what some of the 

yield implications will be in the respective regions under rainfed agriculture, taking into 

consideration that implications on yield is significant especially at the 9 to 12 leaf stage 

of the plant (approximately 56 days after emergence) (Pannar, 2020). In 2015/16 the 

Free State (FS) province was the drought epicentre, experiencing the driest spell 

during the planting window, followed by KwaZulu Natal (KZN) and then North West 

(NW) that was ranked second driest. As a result of the drought, the number of acres 

planted were reduced significantly (refer to Table 2.1 p.14), while typically 60% of the 

maize harvest comes from two of the hardest hit provinces, namely NW and FS 

(USDA, 2016). 

 

Systemic and widespread weather perils make farm-level risk strongly correlated 

within an insured pool of the insurer’s book of policies (products), thus defeating the 

insurer’s intent of spreading loss risk across an insured portfolio.  From  Figure 2.1 

above, the drought covered the whole of SA, thus making it difficult for the insurer 

offering MPCI to spread the risk of drought across multiple local policyholders. 

Furthermore, systemic weather risk defies most of the listed principles of insurability 

(from section 2.2). This is why the crop insurance industry has a significantly higher 

risk per unit of premium when compared to other lines of insurance, such as property 

liability or business insurers (Nieuwoudt, 2000). Supporting this claim, while measuring 

systemic risk in agriculture, Miranda and Gaubler’s (1997) stochastic model produced 

results of a US insurer’s portfolios being twenty to fifty times riskier than they otherwise 

would be if crop-yield losses were independent across farms.  

 

Looking to the future and considering the climate change impact on US agricultural 

production, Tack et al. (2018) predict that rising temperatures will reduce average 

yields of maize, therefore increasing yield risk on average, resulting in higher premium 

rates charged. From their conservative 1 ℃  variation scenario, the annual subsidy 

paid would increase by 22% (a total of US$1.5 billion). From China, while investigating 

spatial dependence of weather events on agriculture, Okhrin et al. (2013) found that 

temperature has a more profound effect on crop production than precipitation, 
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supporting findings of Lobell and Burke (2008) on the role of temperature change in 

crop yield variability.  

 

The discussed adverse implications of drought and extreme temperatures on farming 

activities are reasons why agricultural insurance is unique to the other conventional 

lines of insurance offered such as property or life insurance policies. The weather’s 

systemic nature and related catastrophic events make a strong argument for 

government support in the crop insurance sector. The argument is that private insurers 

alone cannot afford the massive losses associated with a systemic weather 

occurrence, which is strongly correlated in their insured pools and defies the principles 

of insurability.  

 

2.3.2 The Reinsurance Element 

 

The main condition for a successful MPCI offering is significant reinsurance or 

government support. Therefore the absence of reinsurance can be taken as a market 

failure for an insurance market, especially in the absence of government support to an 

MPCI offering or catastrophic risk (Skees and Price, 2000).  Reinsurance is an 

exclusive type of insurance devoted to the primary insurer, known as the cedant, and 

is special for its redistributive role of the risk within an insurance sector. The concept 

of reinsurance is supposed to enable risk to be spread throughout the world following 

the principles of insurability and by doing so make undiversifiable risk diversifiable.  

When the risk is re-distributed on behalf of the primary insurer, a stable loss can be 

experienced. Therefore, reinsurance increases the primary insurers business capacity 

to issue more insurance policies.  

 

However, reinsurance is limited for crop insurance schemes mainly due to systemic 

weather risks were catastrophic losses have always been greater than premiums 

collected (Pomareda, 1986). There are also suggestions that government 

interventions such as subsidised or free catastrophic insurance or reinsurance, have 

led to reduced interest and/or even undermined the emergence of private sector 

offerings (Miranda and Glauber, 1997). In addition to this, Skees and Price (2000) 

have included the availability of sophisticated methods of underwriting and 

understanding risk in the developed countries as a deterrence to the emergence of 
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private sector reinsurance offerings. For example, countries with developed financial 

capital markets can use risk-linked securities2 to transfer risk or rely on the use of 

alternative risk transfer (ART)3 markets. While considering reinsurance, a downside is 

that it was meant to address diversifiable risk and not systemic risk, therefore is prone 

to suffer the same fate as primary insurers, hence the doubt in its ability to fully protect 

the primary insurer (Miranda and Gaubler, 1997).  

   

The functioning of reinsurance is stipulated contractually between reinsurer and 

insurer which differs by country. Catastrophic losses are typically part of a special 

arrangement where the reinsurance company can limit the extent of a loss it can take 

and where government support exists, the latter can absorb the rest (Pomareda, 1986; 

Skees and Price, 2000). For example, in the US, when indemnities reach five times 

the size of premiums, the government absorbs all losses4. 

 

The first MPCI schemes offered by private companies failed due to considerable 

losses, suggesting a market failure due to systemic risk and a lack of reinsurance 

capacity (Valgren, 1922). Currently, in SA, reinsurers are de-risking from MPCI due to 

the systemic drought risk experienced thereby reducing the reinsurance capacity for 

this product. This trend in SA is likely to have an adverse effect on the future of MPCI 

products and as a result on crop production and lending habits of the banks (Valgren, 

1922; Goodwin, 2015). 

 

Other benefits from the reinsurers include their underwriting guidance, gained from the 

experience of operating with diverse clients and markets, granting them valuable 

knowledge to provide financial counselling (Harrison, 2010; Bednarczyk, 2014). 

Ultimately, reinsurance guarantees the viability of the primary insurers business.   

 

 
2 An example of risk-linked securities are catastrophe bonds (CAT) defined by the IRMI (2020) as a 
derivative debt investment vehicle issued by insurers and reinsurers designed to raise investor capital 
to cover catastrophic loss events.  
3 Alternative risk transfer markets as explained by the (IRMI, 2020a), refer to a marketplace in which 
non-traditional risk transfer approaches (as compared to commercial insurance) can be arranged. 
4 Taken from the 2020 Standard Reinsurance Agreement between the Federal Crop Insurance 
Corporation and an insurance company. Refer to the USDA website from the link: 
https://www.rma.usda.gov/-/media/RMAweb/Regulations/Appendix-2020/20sra.ashx?la=en 
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2.3.3 The Human Elements 

 

Adverse selection and moral hazard are two significant human-based impediments to 

a viable private sector MPCI offering and both are a result of information asymmetry 

between the insured and insurers. 

 

Adverse selection occurs when the insured has more information on their risk than the 

insurer and insurance will only be taken up when the value in premium paid is 

perceived less than the expected benefit in indemnity payments. In this case, there is 

information asymmetry on farm-level yield data whereby the producer has better 

knowledge of his/her production practices that influence the yield outcome. The insurer 

would have to incur a significant amount of costs to attain all the relevant and accurate 

farm-level yield data of a potential policyholder, which would result in higher premium 

rate costs. A rise in the premium rate reduces participation rates and shrinks the 

insured pool, which inherently increases the effect of adverse selection.  

 

A good example of adverse selection inhibiting crop insurance uptake is from the US, 

between the years 1980s and 1990s were producers and ranchers instead utilised 

other risk-mitigating strategies (refer to Table 2.1 p.14) (Glauber, 2004). Therefore 

these producers and ranchers had superior knowledge of their production curves and 

what the insurers perceived as a low premium rate due to the subsidies provided, was 

not the case. Given this scenario, there is a risk of the insurer remaining with an 

insured pool concentrated by higher risk producers who perceive the expected 

indemnity as greater than the premium paid hence opting for a crop insurance policy. 

This scenario is exacerbated by the insurers' approach of using aggregate yield data 

(e.g. provincial level) in the estimation of individual yields and rates (Knight and Coble, 

1997) confirming Binswanger's (1986) recommendation for the importance of localised 

data. However, a counter-argument by Meuwissen, Huirne and Skees (2003) find it 

acceptable to use aggregated data if it is correlated with individual farmer yields in the 

specific area where it is not practical to get all individual farmer’s yields, while that 

information is also highly susceptible to manipulation by producers. 

 

Moral hazard is the second human element impediment to a purely private sector 

MPCI offering. Farmers can alter their farming behaviour to increase the chances of 
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an indemnity payment received, as evident from the wheat farmers in Kansas (refer 

Table 2.1 p.14) (Smith and Goodwin, 1996). Ramaswami (1993) agrees with this 

finding, stating that insurance reduces the marginal productivity of inputs because any 

increase in output, lowers the expected indemnity payment, leading to a reduced input 

use and therefore a lower average output. These behaviours follow conventional 

wisdom and the fact that generally, farmers wait until the last minute to take up a crop 

insurance policy to gather as much information as possible on the season (Smith and 

Goodwin, 1996).  

 

Around the world, insurers have planting windows for perennial crops that producers 

must adhere to for eligibility to participate in an insurance scheme.  This limits adverse 

selection by producers who would only opt for an insurance policy when it is apparent 

that a larger than usual potential loss is looming (Skees and Price, 2000). Efforts to 

minimise moral hazard behaviour in crop insurance include offering a reduced 

coverage level but the downside is the risk reduction effect it has on taking out an 

insurance policy.  Other types of crop insurance schemes exist such as index-based 

products that do not suffer from the moral hazard problems (discussed in section 2.4.2) 

are possible alternatives because actions needed to reduce moral hazard and adverse 

selection have significant cost implications on the insurer and these will be explained 

next. 

 

2.3.4 The Administrative Cost Element 

 

The last impediment to a purely private sector MPCI offering is the high administrative 

costs associated with the product. The costs incurred are largely in monitoring to 

prevent moral hazard behaviour and attaining accurate information to limit adverse 

selection. This information was described as an ‘investment’ by Binswanger (1986) 

because it has a cost to attain it and has value since the information on the 

policyholders’ production curves or production activities would limit information 

asymmetry. 

 

An MPCI offering is costly from an administrative point of view because it is intensive 

in its implementation as well as monitoring. Firstly, insurers need to look at each policy 

for underwriting. Secondly, there is a need for skilled agronomists to assess historical 
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farming practices before a policy is issued, as well as monitoring in-season farming 

activities. Therefore, before a policy can be issued, insurers need to obtain historical 

farm-level yield data from the farmer, soil analysis reports and the maps of the fields 

to be insured. Furthermore, there is in-season monitoring to ascertain the sufficiency 

of input application regimes (i.e. spray programmes, seed, and fertiliser applications). 

In SA, insurance companies send out assessors three to four times during key stages 

of a season to each insured field as part of their monitoring effort. For example, 

assessors must verify plant population at emergence, which is key in determining 

whether inputs were correctly and sufficiently applied during planting, and that would 

permit for achieving the expected yield, indicated in the insurance policy. If an 

occurrence has damaged the crop or could later affect the crop yield come harvest 

time, an assessor is required to verify this event while two assessors are required 

during harvesting to conclude a loss-adjustment. Furthermore, loss-adjustments are 

frequent under MPCI because crop yields often differ even in small local areas, thus 

making a further requirement for actuarial data and the respective crop insurance 

policy to be written at the lowest local level that is economically possible (Binswanger, 

1986). Just and Weninger (1999) supported this view, finding that aggregating yield 

data resulted in an emphasis on region-wide variation while less attention went to 

farm-level variation. Beyond production level monitoring, the Unites States Federal 

Crop Insurance Program (USFCIP) employs data mining techniques to identify 

irregular claim outcomes for an investigation to curb moral hazard behaviour (Rejesus 

et al., 2004). 

 

One SA insurer further identified marketing costs associated with attracting and 

retaining clients as another significant administrative cost driver. This is because an 

Underwriting Management Agency (UMA) is writing crop insurance policies that are 

being underwritten by this insurer. Therefore, policies governing the crop insurance 

sector do not permit UMAs to market and sell insurance policies directly to the farmers 

due to a potential conflict of interest, since they are acting on behalf of an insurer. 

Other marketing costs are associated with the use of intermediaries which is the 

traditional way of distributing insurance, through for example agents and brokers (IAIS, 

2018). When an insurance company does not have an agent system to sell its 

insurance policies, they rely on brokers who are not loyal to a specific company but 

are constantly looking for the best deals in the market to maximise on commission 
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earned. This is a reason why some insurers must spend a lot on marketing their 

products to pull clients towards their products. Furthermore, because MPCI is 

inherently an expensive product means that there is a reluctance towards its uptake, 

and Pomareda (1986) found aggressive marketing strategies to be justified especially 

in the absence of government subsidy support to this scheme. 

 

Further adding onto the administrative costs, it was identified that there is inadequate 

historical data on loss costs due to perils such as drought and floods, which has been 

established as the reason why the actuarially fair premium rate cannot be achieved 

(Coble and Barnett, 2013)5. As a result, insurers have reacted by adding to the 

premium rate what is called/termed a ‘load’, catering for a lack of information or 

uncertainty as follows: An ‘ambiguity load’, that creates a buffer for a lack of 

information on the expected loss calculation. A ‘reserve load’ as a contingency fund 

that could pay towards unforeseen losses or reinsurance. An ‘administrative cost load’ 

to cover administrative costs and profit margins that permits a competitive rate of 

return on equity. Therefore these ‘loads’ have also pushed administrative costs further 

up. 

 

2.4 CROP INSURANCE PRODUCTS 

 

Turrioz (2009) classified crop insurance products according to how the indemnity 

payment is determined. The three main groups are indemnity-based, index-based and 

a combination of yield and price measurement-based products that shall be explained 

below. 

 

2.4.1 Indemnity-Based Products  

 

These products are established on the actual loss incurred during the crop production 

cycle. There are two types of indemnity-based products termed the classical crop 

insurance products by Roberts (2005) and are popularly known as the ‘traditional crop 

 
5 According to Coble and Barnett (2013) when the basic conditions for insurability are adhered to, the 
process of establishing a premium rate for a homogeneous pool of insurable risk begins by defining: 
E(Loss Cost) = E (indemnity/liability). The regular approach entails use of historical experience data to 
accurately estimate the loss cost. Where there is enough historical experience data available to 
estimate the expected loss cost, the actuarially fair premium rate is equal to the expected loss cost.  
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insurance’ products. Generally, these products fall under single/named peril or MPCI 

products, described in Table 2.2.  

 

Table 2. 2: Indemnity-based products explained 

Product Description 

‘Damaged-

based’ 

Based on the measure of damage to the crop. 

e.g. A crop hail insurance product.  

For an additional premium, this insurance policy can be extended to include 

frost, fire, and transit risk. 

‘Yield-

based’ 

Centred on the crop yield-loss outcome during harvesting.  

e.g. A MPCI product stipulates numerous risks with the potential to reduce 

the expected yield and/or crop quality such as uncontrollable diseases or 

insect infections, floods, drought, frost etc. 

 

To participate in these indemnity-based insurance schemes, some of the key items an 

SA farmer must produce are highlighted in Table 2.3 below. 

 

Table 2. 3: Crop insurance policy contract Items 

Key item Description 

Production 

history 

Termed the Long-Term Average Yield (LTAY) is calculated over five 

previous seasons. 

Field maps GPS referenced maps of all fields with their names and land numbers.  

Soil analysis Copies of soil analysis reports not older than two years that are GPS 

referenced to the respective fields. 

Area Provide the number of hectares planted. 

 

The LTAY represents the producer’s expected yield and is important because the 

indemnity payment is derived from it. Only a portion of production can be insured, 

depending on where you are and by the insurance company, coverage ranges 

between 30% - 80% of the LTAY. In SA, the country’s largest crop insurer offers 

coverages between 45% - 65%.  
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For a producer to take out the crop insurance policy, he/she must decide on the 

following6: 

• The cover he/she would like. Therefore, must choose the Insured Yield (i.e.t/ha) 

and the Insured Production (t/ha × ha = total production (T))   

• The cover choices desired. This entails choosing an Insured Price (R/t) of the 

crop and coverage level (proportion of total production or yield e.g.45-80%). 

 

The above two pieces of information lead to the Sum Insured value, calculated as, 

total production (T) × Insured Price(R/t) ×  coverage(%). 

Usually, the price chosen is one that best represents the harvest time price but during 

the planting period when an insurance policy is purchased by a producer. 

 

From discussions with insurers in SA, common practice allows farmers to increase the 

initial insured price per ton during the cover period (provided no loss has occurred) but 

cannot lower it and this is permitted only within a specified time frame. Commonly 

found is that farmers choose to start at a low insured price then incrementally raise it 

accordingly as the market price direction becomes more apparent. This is a strategy 

used by producers to manage premium rates paid as there would be no need for a 

high insured value when the market indicators are not showing signs of negative price 

or yield risk. 

 

In the case of a loss due to an insured peril, the following procedure leads to an 

indemnity payment depending on crop insurance type: 

• Crop hail – the assessor determines the level of yield loss due to a hail 

occurrence and multiplies it by the Insured Prices(R/t).  

• MPCI - the insurer takes the difference in the actual and the insured yield and 

multiplies it by the insured price (R/t) at harvest. 

 

2.4.2 Index-Based Insurance Products  

 

 
6 Insights from an interview with a crop insurance specialist from Santam in February 2017. 
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Index-based products have an indemnity payment that is dependent on an index value 

derived from factors that are strongly correlated to the loss of the crop such as rainfall, 

temperature, wind speed or regional yield (Iturrioz, 2009).  

  

Index-based products thrive from a cost structure perspective and ease of participation 

in the schemes over the traditional type of products. Firstly, the incentive to monitor 

participants in these schemes to limit moral hazardous behaviour is non-existent 

because a loss-adjustment is dependent on an index. Also, an index eliminates the 

need for farm-level assessments. These first two points on monitoring are significant 

cost drivers in the traditional crop insurance programs that an index-based product 

eliminates. Secondly, index-based crop insurance products do not require farm level 

LTAY data for participation in the insurance schemes unlike MPCI or revenue-based 

insurance products (Kang, 2007). Therefore this ease of participation into these index-

based crop insurance schemes lends them as flexible alternatives in markets without 

the traditional crop insurance offerings. This makes index-based products attractive 

for the first time and/or emerging farmers that would not have LTAY data required in 

the other crop insurance schemes.  

 

The main disadvantage associated with index-based crop insurance products is that 

they do not lower the risk of all participants to the program due to basis risk. Using a 

yield-index offering as an example, basis risk is a situation when despite experiencing 

yield loss at a farm-level, the area yield-loss index does not reach the minimum 

threshold that warrants an indemnity payment. 

 

2.4.3 Revenue Based Insurance Products  

 

A revenue-based crop insurance product insures the revenue stream of the farmer. 

Therefore, a CRI policy protects the farmer from fluctuations in revenue due to 

changes in price or yield, or a combination of the two (both price and yield declining).  

 

The relationship between price and yield forms the foundation of this product, such 

that when production increases, prices of the product will decrease. Vice versa, when 

production decreases, the price of the product should increase, therefore the 

assumption is of an inverse relationship hence this research’s Hypothesis 1 (covered 
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in section 1.3) (Meuwissen, Huirne and Skees, 2003; Ahmed and Serra, 2015). Thus, 

farmers face a joint risk from crop yields and crop prices. An inverse relationship 

between the variables price and yield makes revenue less variable when compared to 

the two individual insurable risks. Therefore, the product moves away from the typical 

approach of insuring these two joint risks (yield and price) separately and instead 

insure for them jointly through a revenue insurance product. This means farmers will 

insure their gross revenue, which is a function of the price received for a given unit of 

crop harvested multiplied by the total yield produced. Whereas before, farmers would 

insure the price of produce separately by forward selling or hedging on the futures 

market in conjunction with insuring the actual crop production/yield. Therefore 

financially, revenue insurance as a product is favourable because the producer is 

taking out a single crop insurance policy that caters for both price and yield risk as 

one, instead of insuring the two variables separately.  

 

2.4.3.1 A Background to Revenue-Based Crop Insurance 

 

Recent market liberalisation trends are linked to increased commodity price volatility 

contributing to the push factor of the emergence of revenue-based crop insurance 

products (Meuwissen, Huirne and Skees, 2003; Kang, 2007; Chung, 2012). Given a 

scenario of an increase in commodity price volatility, a farmer can experience a low 

gross revenue even when production is high, thereby threatening their income and the 

viability of their farming operation. Outside the US and Canada, foreign competition as 

a result of market liberalisation is reducing the domestic acreage of production in 

South Korea whereas European farmers are feeling the pressure of external 

competitive forces on production and prices, thereby threatening the viability of their 

domestic farming operations (Meuwissen, Huirne and Skees, 2003; Chung, 2012). 

The threat on the gross revenue of the farmer resulted in a need for a new type of 

insurance product that goes beyond ensuring production or commodity prices and that 

product was a revenue-based crop insurance offering.  

 

The US and Canada have the largest and longest-running successful revenue 

programs in the world, making the two nations good benchmark examples. Their 

revenue stabilising insurance products were established in the early 1990s. Figures 
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2.1 and 2.2 below present a timeline of the progression of revenue-based products 

that have evolved towards whole-farm revenue products. 

 

 
Figure 2. 2: Timeline of revenue-based crop insurance products in Canada 

Source: Turvey et al. (1997) 

 

 
Figure 2. 3: Timeline of revenue-based crop insurance products in the US 

Source: Kang (2007) 

 

Canada has two main revenue-based products whereas the US has four, illustrated in 

Figures 2.1 and 2.2 respectively. Turvey et al. (1997) provided a detailed breakdown 

of Canada’s revenue-based programs summarised as follows: Firstly, GRIP is a 

revenue insurance product that pays indemnities when market revenue falls short of 

the target revenue. If a shortfall occurs, the deficit is covered by the federal and 

provincial governments by the 65% and 35% portion, respectively. Secondly, NISA, 

on the other hand, is a product that provides income stabilisation utilising individual 

farmer accounts which encourage farmers to set aside money in high-income years 

for use in bad years while the government matches the funds set aside by the 

producers up to $250 000 per farm.  

 

The US’s initial revenue products namely, CRC, IP and RA paid indemnities when 

realised revenue was less than the revenue guarantee. Distinguishing features from 

Canada’s GRIP is that the three US programs utilised the farmer’s actual production 
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history and prices as provided on the futures exchange to establish revenue. Price 

used is a key distinguishing feature to the US’s revenue-based products and the 

differentiation is given in Table 2.4 below (further differentiation in Appendix A, Table 

A1).  

 

Table 2. 4: Comparison of the initial revenue-based insurance products in the 

US  

Feature Crop revenue 

coverage 

Income protection Revenue assurance 

Basic for 

insurance 

guarantee 

Higher of: 
1) APH yield * Base 
2) APH yield * 

Harvest price 
NB. APH is Actual 

Production History 

Insurance guarantee 

increases when the 

Harvest price exceeds 

the Base price 

APH yield * 

Projected price 

APH yield * Projected 
Harvest price 
 

Harvest price option 

increases the guarantee 

when the Harvest price 

exceeds the Projected 

Harvest price 

Source: Kang (2007) 

 

From Table 2.4, IP is the only programme that does not incorporate potential benefits 

from seasonal changes in commodity prices. The price increase benefit from the CRC 

program has its limits per crop, for example, US$1.50 per bushel of maize (Kang, 

2007). In the RA programme, the insured receives the full benefit in the event the fall 

harvest price is greater than the projected harvest price. 

 

The US’s GRIP program will pay an indemnity when the county revenue is less than 

the trigger revenue. Therefore, this is an index type of revenue product that utilises 

futures prices and county crop yields to establish expected and actual county revenue. 

In this program, producers are free to choose revenue protection above the expected 

revenue within a specified range published in the actuarial documents of the crop 

insurance policy (FCIC, 1998, 1999).  
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The AGR program allowed the producer to ensure gross revenue from all farm 

commodities including animal products and aquaculture, making it a whole-farm 

revenue product. An indemnity is paid when the adjusted gross revenue for the year 

is less than the insured portion of the AGR liability.  

 

Revenue-based crop insurance products have evolved from when they were first 

introduced. Currently (2020), the US’s Risk Management Agency (RMA) is offering 

four revenue-based insurance plans namely, Revenue Protection (RP), Actual 

Revenue History (ARH), Area Risk Protection Insurance and Whole-Farm Revenue 

Protection (WFRP)7.  

 

Table 2. 5: Comparison of four revenue-based insurance products in the US  

Feature Revenue 
Protection 
(RP) 

Actual 
Revenue 
History (ARH) 

Area Risk 
Protection 

Whole-Farm 
Revenue 
Protection 
(WFRP) 

Basic for 

insurance 

guarantee 

Higher of: 

1) APH 
*Projected 
Price 

2) APH * 
harvest 
price 

Historical 

producer 

revenues. 

Average county 

revenues for 

specified crop 

Revenue of the 

entire farming 

operation 

Source: Shields (2015) 

 

Table 2.5 illustrates the uniqueness of each of these revenue-based crop insurance 

products. ARH ensures the producer’s historical revenue whereas ARP allows 

producers to ensure a portion of the county’s revenue making it an index type of 

product. The latter used to be the Group Risk Income Protection (GRIP) program 

(Shields, 2015). WFRP as the name suggests ensures the entire farm's revenue 

stream from both animal and crop production. RP ensures the producer’s revenue 

stream from a single commodity by selecting a portion of desired historical yields and 

a combination of a projected price and harvest price from the futures exchange, with 

the higher of the two prices used for the final insurance protection. There is a variation 

to the RP plan where one can purchase a policy known as Revenue Protection with 

 
7 Insurance Plans being offered in the U.S. from the USDA Risk Management Agency  website, see 
https://www.rma.usda.gov/Policy-and-Procedure/Insurance-Plans 
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Harvest Price Exclusion (RP-HPE) which means the producer opts out from benefiting 

from potential price upswings at harvest time. Similarly, one can get an ARP with 

Harvest Price Exclusion. 

 

2.4.3.2 Benefits of Revenue-Based Insurance Products 

 

In a Spanish study by Ahmed and Serra (2014), an inverse relationship between price 

and yield was observed, and for the same coverage levels, revenue insurance 

premium rates were lower than those from traditional yield-based crop insurance 

products. Supporting Ahmed and Serra’s findings is Meuwissen, Ruud and Skees 

(1999), who state that given a negative correlation between prices and yields of crops, 

revenue insurance premiums are supposed to be more affordable than those of stand-

alone yield insurance products. From the US’s experience with the Revenue 

Programme (RP), it was found that the offering can minimise revenue variability by up 

to a third in maize, soybean and wheat production, as well as increasing average per 

acre revenues (Motamed et al., 2018). 

 

Given the assumption of reduced premium rates from the introduction of a revenue-

based insurance product over the traditional yield-based products, SA could stand to 

benefit from the following 

• Greater participation rates - as insurance becomes relatively more affordable, 

demand for insurance should go up, ceteris paribus. 

• Increased reinsurance capacity – with increased participation rates, it becomes 

relatively less risky for reinsurers to support the primary-insurers assuming the 

insured pool is pulling the ‘good’ farmers as well (following from section 1.2 

arguments of adverse selection).  

• Increased production – it becomes relatively more affordable for producers to 

assume a greater production risk. 

• Lower prices of produce - as production increases, supply is growing which 

should result in reduced commodity prices, ceteris paribus. 

The above four benefits could undo the vicious cycle that SA is currently experiencing 

(covered in section 2.6).  
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Benefits to a revenue-based crop insurance product can further be extended to welfare 

gains. Chung (2012) investigated welfare effects from the introduction of CRI in Korea. 

The results showed producer and consumer welfare increased with the introduction of 

CRI. While maintaining the 50% premium subsidy that exists for yield-based crop 

insurance, the net benefit of a CRI on society was quantified at 5.1 billion won whereas 

for crop yield insurance it was 1.7 billion won for the five main crops. 

 

Chung's (2012) research supports earlier findings by Hennessy, Babcock and Hayes 

(1997) who investigated the efficiencies of different types of revenue insurance 

products over the prevailing US farmer support program of 1990. A key finding from 

Hennessy, Babcock and Hayes (1997) is that an equal level of financial gains could 

be provided to the farmer at a quarter of the cost of the deficiency payments by a farm-

level revenue insurance product providing 75% coverage, for maize and soybean. In 

other words, consumer and producer welfare are highest under CRI as opposed to the 

government’s 1990-deficiency payment scheme.  

 

Additionally, Mahul and Wright's (2003) theoretical work seeking the ideal model of a 

revenue-based product, found that revenue insurance performed so well that the 

market would do away with yield-based insurance and hedging instruments. It was 

found optimal for a producer facing multiple sources of risk on their gross revenue to 

purchase a single insurance product with the ability to cover all the risks 

simultaneously i.e. revenue insurance. Optimality was found in that, it is more 

affordable to go for revenue insurance as opposed to taking out an insurance policy 

to cover crop or yield in conjunction with some hedging instrument to cover for price 

variations (Mahul and Wright, 2003).  

 

Furthermore, Mahul and Wright (2003) elaborate on how a whole-farm revenue 

insurance product would be cheaper for the farmer than taking out individual revenue 

policies to cover for different crops, which is exactly what Stokes, Nayda and English 

(1997) and Goodwin and Hungerford (2014) found. Hennessy, Babcock and Hayes 

(1997) are in support of this too, since they found it more beneficial in terms of 

efficiencies when the revenue insurance is taken per portfolio as opposed to per crop, 

which is supported in Chung's (2012) findings. 
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While weighing out different insurance schemes, Meuwissen et al. (2007) spoke of 

products that move away from the traditional insurance offerings to ensuring different 

components of income as more desirable to the farmers. In their conclusion, revenue 

insurance came out as the most suitable form of aggregated income insurance to start 

pilot trials on, specifically if used on area yields of field crops and prices derived from 

the futures or spot markets which is what this study aims to do (Meuwissen, Huirne 

and Hardaker, 1999; Meuwissen et al., 2007).  

 

2.4.3.3 Downside to Revenue Insurance 

 

While considering a farm level revenue-based crop insurance policy, Meuwissen, 

Huirne and Skees, (2003) indicated that this product suffers from information 

asymmetries associated with a heavy dependence on historic farm-level reports to 

determine guaranteed revenue. This means the LTAY or a lack of it can skew the 

expected revenue of the farmer that is ultimately used to calculate their coverage 

amount. However, this disadvantage is only relevant if the policies are based on farm-

level yield data as opposed to an aggregated regional yield approach. 

 

It is not realistic to expect the insurers to observe each policy holder’s yields and 

prices. For this reason, Mahul and Wright (2003) delved into a scenario of designing 

an optimal insurance policy using estimators of individual yields and prices. This 

means those yield estimators used are based on aggregates of a geographic location 

which recalling from Meuwissen, Huirne and Skees (2003) was an appropriate 

approach while also relying on price indexes from the relevant agricultural commodity 

futures markets. 

 

Outside of the data problems, there are modelling complexities that come with 

designing revenue-based crop insurance products. These types of insurance products 

incorporate two risks namely yield and price risk of a commodity into one policy, hence 

special emphasis needs to be placed on modelling this dependence relationship. One 

of the key complexities is in deciding on which modelling techniques to pursue in 

determining the dependence. Another complexity is how to incorporate the modelling 

of the individual risks, price and yield separately, and then combining them into the 

dependence modelling exercise. Furthermore, there is a complexity in deciding on the 
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approach to determining goodness-of-fit (GOF) to risk models (covered in section 

3.4.3). For instance, deciding on generic GOF statistics for statistical model versus 

hypothesis testing-based tests. Moreover, the actual risk modelling techniques can be 

computationally intensive requiring special skills and expertise (covered in section 

3.4). 

 

2.5 GLOBAL TRENDS IN AGRICULTURAL INSURANCE 

 

In 2019, the global agricultural insurance market is estimated to have exceeded 

US$33 billion in premium volume and growing at a rate of 5% per annum (AXA XL, 

2019). There has been tremendous growth in the global agricultural insurance 

premium volume in the last two decades spanning from 2007 (Iturrioz, 2009; Schwarz, 

2014; AXA XL, 2018).  In 2017 the global agricultural insurance market reached an 

estimated US$30 billion in gross premiums written (AXA XL, 2018), a 99% growth from 

the 2007 World Bank’s survey results (Mahul and Stutley, 2010). There are a few key 

contributing factors to this upward trend but Barnett (2014) emphasised a larger sum 

insured value due to higher commodity prices and to a smaller extent increased market 

penetration. Findings from Italy back Barnett’s argument whereby growth in insured 

value is not being driven by more insured hectares or farmers but by other factors, in 

this case, greater uptake of multi-risk contracts (Santeramo, 2018). Iturrioz (2009) 

agreed with Barnett and put forward his three main contributing factors to this situation: 

Firstly, the growth of agricultural production. Secondly, the growth in the value of 

assets used in agricultural production. Thirdly, a combination of increased government 

support and the development of new markets for agricultural insurance where the 

former is a significant factor in Brazil, India, and China’s case.  

 

For the recent upward trend in global agricultural insurance premiums volume, three 

nations have been identified as the key drivers to this growth namely, Brazil, China, 

and India. These nations have experienced exceptional growth in their agricultural 

insurance markets. According to AXA XL (2018), Brazil’s agricultural insurance 

premium volume grew to US$1.1 billion in 2017, a 1 146% growth from 2006 levels; 

India’s agricultural premium volume grew by 288% within a year to reach US$3.3 

billion in 2017 and China’s grew by 926% to reach US$7 billion in 2017 from 2006 
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levels. Figure 2.48 below illustrates the changes in premiums collected for the three 

nations along with the US and the aggregated world premium volume. Between the 

years 2007 and 2017, India had the largest growth of 2 103%, followed by China with 

926% while Brazil and the US had a much smaller growth of 29% and 19% 

respectively. Over these ten years, China and Brazil have moved to become the 

second and third largest agricultural insurance markets in the world respectively (AXA 

XL, 2018). 

 

 

Figure 2. 4: Trends in the agricultural premium volume - 2007 vs 2017 

Source: Mahul and Stutley (2010), AXA XL (2018) and RMA (2017) 

Notes: Statistics compiled by combining data from the above three sources 

 

The other notable trend is in crop insurance use and uptake. There is a gravitation 

towards comprehensive risk cover from the insurance risk management options 

available. For instance in Italy, single-peril products held 92% of crop insurance market 

share in 2004 whereas 10 years later,  pluri-risk9 and multi-risk contracts dominated 

 
8 Figure 2.4 uses three data sets: The 2007 values are sourced from the World Bank’s survey work on 
global agricultural insurance that seemed to have inflated numbers when compared to AXA XL's (2018) 
numbers that were used in compiling the 2017 values for Brazil, China, India and World. The 2017 US 
figures come from (RMA, 2017). 
9 Pluri-risk refers to crop insurance policies in Italy ensuring farmers for three or more climatic perils, 
which do not have to be mutually exclusive (Santeramo, 2018) 
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with 73.2% and 26.8% market share respectively (Santeramo, 2018). This trend was 

experienced in the US far back, for instance, MPCI dominated the USFCIP’s market 

share in 1996 when revenue-based crop insurance was introduced but in 2020 the 

latter accounts for above 75% of the total liability and 80% of premiums received 

(RMA, 2017). The move to revenue-based products is suggestive of the importance 

placed on income variability by farmers because of commodity price fluctuations.  

 

Other countries on record having revenue programs at the time of the World Bank 

survey include Iran and Sweden (Mahul and Stutley, 2010). More recently, evidence 

exists showing more countries implementing revenue programs namely, Hungary, 

Italy, Spain, UK, and SA, were the last two nations introduced their programs in 2018 

(Meuwissen, de Mey and van Asseldonk, 2018). Market statistics and uptake to these 

newer programs are not yet available, while this is not the UK’s first attempt at such a 

product. The UK’s initial attempt towards a revenue product was in 1998 but was 

cancelled after one season due to poor uptake, apparently as a result of farmers’ lack 

of knowledge on ‘derivative’ type of contracts, utilising futures markets (Meuwissen, 

Huirne and Skees, 2003).   

 

2.5.1 Government Intervention in Crop Insurance Markets 

 

A key component of the crop insurance sector in both the better performing and 

growing markets as judged by the amount of premium collected is the level of 

government support offered to these schemes (OECD, 2011; Wang et al., 2011, 2015; 

Bardaji et al., 2016; Arias et al., 2018; AXA XL, 2018; Santeramo, 2018). Taking a 

point from the reasons why crop insurance markets fail and why there are no purely 

private sector MPCI or any other crop insurance programs emerging, it can be said 

that government support is crucial in overcoming these obstacles. MPCI is rarely 

provided in the absence of government support  (Mahul and Stutley, 2010). Thus, the 

support provided to insurance programs ranges from the provision of subsidies, 

government-backed reinsurance, underwriting support, along with lost adjustment 

support, all to be explained below.  
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The premium subsidy is the most common form of government intervention in these 

programs as established from the 65 nations surveyed shown in Figure 2.5 (Mahul 

and Stutley, 2010). 

 

Figure 2. 5: Availability of premium subsidy support 

Source: Mahul and Stutley (2010) 

 

A subsidy is defined as a benefit given to an individual, business or institution, usually 

by the government. In most cases, it comes as a cash payment or a tax reduction.  

The purpose of a premium subsidy is to make crop insurance affordable for the farmers 

and assist with increasing insurance penetration. A premium subsidy intervention is 

considered a superior alternative to the ad hoc disaster payments that are typically 

used to assist farmers in the event of weather-related disasters. Firstly, Barnett (2014) 

found premium subsidies to be equitable because they provide the same level of 

support regardless of farm location and personal risk-reducing measures implemented 

by the producer. Secondly, premium subsidies require the farmers to have a stake in 

the insured risk thereby encouraging them to tackle risk more responsibly because 

they must absorb a portion of the cost. 

 

The US has the largest subsidised crop insurance program in the world that is being 

funded by the Federal Crop Insurance Corporation (FCIC) and is popularly referred to 

as the USFCIP. In 2017, the USFCIP had US$106.10 billion in insurance liability, with 

a total premium of US$10.07 billion backed by US$6.36 billion in premium subsidies 
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– the burden on the taxpayer (RMA, 2017). From these 2017 figures, in the absence 

of premium rate subsidies, the loss ratio of the USFCIP would increase from 53% to 

144% which would be an unprofitable position for the insurers10. Therefore, the 

premium subsidy is ensuring the availability and affordability of crop insurance in the 

USFCIP. On average, the MPCI premium subsidy in the USFCIP was 62% in 2017 

(RMA, 2017). Canada’s AgriInsurance Program provides an MPCI premium subsidy 

of approximately 60% (OECD, 2011; Canada.ca, 2020). Other examples of MPCI 

premium subsidy support by percentages include 46% in Austria, 60-80% in China, 

65% in France, 64% in Italy, 50% in Luxembourg and 65% in Spain (Bielza, Garrido 

and Sumpsi, 2004; Wang et al., 2011; Santeramo and Ramsey, 2017).  

 

Governments also intervene in the crop insurance markets through the provision of 

administrative support to the schemes, as well as covering some of the operating 

expenses incurred by insurers. Barnett (2014) referred to this type of support as an 

indirect premium subsidy because the insurers get reimbursed by the governments 

when they incur these costs, and this is the current practice in the USFCIP. Examples 

of these costs include marketing, underwriting, sales and delivery, management, data 

collection and processing, legal services and claims adjustment cost, all of which tend 

to be high in MPCI schemes (some explained in section 2.3.4) (Coble and Barnett, 

2013; Barnett, 2014). Another example is from Canada where the federal and 

provincial governments each pay 50% of the administrative costs (Atwood, Shaik and 

Watts, 2002).  

 

When China implemented this multi-layered and multi-channelled approach towards 

subsidies on insurance premiums and the administrative costs support for its insurers 

in 2007, the result was tremendous growth in the crop insurance program.  Total 

premiums collected in 2009 reached RMB 13.4 billion Yuan, a 1 578% increase from 

2006 levels to realising a total insured amount of RMB 381 billion Yuan (Wang et al., 

2011). The government support to the Chinese crop insurance program reached RMB 

 
10 Recall, according to Nieuwoudt (2000) a 95% loss-ratio is the ideal break-even point for insurance 
operations.  
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15.8 billion Yuan11 in 2016, a value seven times that of 2007 levels which meant more 

than 70% of premiums were subsidised (Wang et al., 2015).  

 

Other notable cases of the rapid growth in agricultural insurance premiums 

underwritten include Brazil and India (refer to Figure 2.4, p.34). The growth in Brazil’s 

agricultural insurance market is largely attributed to the significant amount of premium 

subsidy support given through the Government Premium Subsidies Program (PSR) 

(Arias et al., 2018). Between the years 2010 - 2015, premium support averaged 44% 

of premium volume, reaching values as high as R$1.2 billion from R$8.6million in 

2005. India experienced incredible growth in just a year after receiving a 45% premium 

subsidy to reaching US$3.3billion in premium volume in 2017, up from the previous 

season’s US$850 million (AXA XL, 2018).  

 

Furthermore, some governments provide reinsurance support in partial or in full to 

make it a public reinsurance scheme. The US’s federal government (USDA/RMA) 

through its Public-Private Partnership (PPP) initiatives shares losses with insurers as 

stipulated in the Standard Reinsurance Agreement (SRA) contract. On the other hand, 

Canada’s federal and provincial government share the reinsurance burden of their 

crop insurance schemes. As reiterated in the literature and earlier discussions, private 

sector reinsurance cannot sustain the systemic weather risk covered by MPCI 

schemes, which is, therefore, the justification for public reinsurance. Without being 

limited to the agricultural sector, further arguments put forward is that the reinsurance 

sector is by far smaller than the insurance sector.  In 2010, the value of assets of a 

top primary insurer (Axa) alone, was larger than 10 of the world’s biggest reinsurers12 

combined while the market capitalization of two leading insurers (Axa and Allianz) was 

bigger than the entire reinsurance sector (IAIS, 2011).  

 

This section has presented a view on the world’s crop insurance products, and some 

of the global statistics and recent trends in the crop insurance market, the following 

section will focus on SA. 

 
11 Figure sourced from a Reuters article titled ‘China issues new guidelines on agricultural insurance 
subsidies’. Refer to the article’s link: https://www.reuters.com/article/china-agriculture-insurance/china-
issues-new-guidelines-on-agricultural-insurance-subsidies-idUSL4N1FG1OP 
12 Munich Re, Swiss Re, Berkshire, Hannower Re, Lloyds, Scor, RGA, Partner Re, Transatlantic, 
Everest Re 
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2.6 AGRICULTURAL CROP INSURANCE IN SOUTH AFRICA 

 

2.6.1 History of Insurance  

 

In 1979, SA introduced a crop insurance product catering to drought risk. This product 

was supported by a 25% government premium subsidy and was offered by Sentra-

oes and CUAS (previously AA Mutual Agricultural Services). According to Nieuwoudt 

(2000), the demise of this crop insurance scheme was attributed to mainly three 

factors: Firstly, the premium subsidy support offered was insufficient. Secondly, the 

scaling down on the premium subsidy support negatively affected the viability of the 

program. Thirdly, there was a low uptake of crop insurance because the government 

provided ad hoc drought assistance to farmers which indirectly disincentivised crop 

insurance uptake in the market.  

 

Twenty years later The Risk Management Pilot Program was developed in 1999 with 

mainly two objectives: The first of educating farmers of the five basic risks in farming. 

The second was to support the establishment of a robust insurance provider system 

that produces products tailored for SA’s agricultural sector. This program was 

developed by the Agricultural Committee of the United States of America - Republic 

of South Africa (US–RSA) Bi-National Commission through USDA funding. This 

program was needed due to the market liberalisation trends that SA was experiencing 

because of the ending of apartheid-era trade sanctions. Before the market 

liberalisation, government support mechanisms in agriculture were administered by 

the commodity boards that after 1997 were no longer available as a safety net to the 

farmers. This marked the period as the first steps towards a purely private sector type 

of safety net for farmers in SA utilising crop insurance products. 

 

2.6.2 South African Crop Insurance  

 

SA has up to nineteen agricultural insurance companies but only four are offering crop 

insurance13. The SA agricultural crop insurance market is therefore an oligopoly. The 

 
13 Conclusion reached from consultations with insurance companies, crop insurance brokers and 
bankers. The list of nineteen agricultural insurance companies was provided by the South African 
Insurance Association. 
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four role players are, Santam, Land Bank Insurance Company, Mutual & Federal and 

lastly Bryte Insurance Company Limited which is a relatively new player that entered 

the SA market in 2017.  From discussions with industry role players, Santam is the 

market leader that had an estimated 50% market share in 2019, followed by Land 

Bank Insurance company with 20-30%, then Bryte and Mutual & Federal both with an 

estimated 5-10%. These four are private limited companies offering three types of crop 

insurance products, namely single-peril, MPCI and a revenue-based product. The 

latter is a recent addition to the market, introduced in 2018 by Bryte while being offered 

through an Underwriting Management Agency (UMA) called Impact. Land Bank 

Insurance Company also offers its crop insurance products through a UMA call 

AgriSeker. These SA insurers are using a mixture of local and international 

reinsurance companies. 

 

It is estimated that 30% of SA’s dryland crops are insured and this is small (Weise, 

2017) when compared to the USFCIP that in 2006 had up to 80% of planted hectares 

for the key crops insured (Dismukes and Durst, 2006). However, when considering 

SA’s agricultural crop insurance penetration rate, 2018 achieved values of 5% which 

is greater than the 2.3% average of the high-income nations identified by Mahul and 

Stutley (2010) (Munich Re, 2018; stats sa, 2018). However, the 14-year historic 

average of SA’s crop insurance penetration rates is 2%, which is lower than the high-

income nation’s levels. 

  

Approximately one-fifth of SA’s total summer grain area is covered under MPCI14. Over 

11 years beginning with the seasons 2004/05 to 2014/15, the average area covered 

by MPCI and hail insurance in SA are 0.6 million ha and 1 466 million ha per year 

respectively, with a corresponding average risk exposure of R4 349 million and 

R15 450 million (SAIA, 2016; Munich Re, 2018). In 2017, Santam, the largest 

agricultural insurer in SA, held a total risk exposure of R2 500 million for MPCI for an 

estimated 0.40 – 0.50 million ha of the summer crop. At that time, Santam held more 

than 50% of the MPCI market share15.  

 

 
14 Information received in a consultation with an insurance specialist from Santam. 
15 Information received in a consultation with an insurance specialist from Santam.  
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From the crop insurance underwritten in SA, MPCI is capped at 20% of the market 

share while the rest is distributed between the single peril products. This percentage 

represents the risk threshold that the industry can sustain in the event of a total loss. 

Anything greater than 20% market share for MPCI could jeopardise the viability of the 

overall crop insurance industry and therefore is reflective of the magnitude of risk and 

liability it carries in the agricultural sector. To give a perspective of the numbers, for 

the 2017/18 season, the total premium received for MPCI was R120 million for a total 

sum insured value R1 577 million (Munich Re, 2018). Pomareda (1986) states that 

international experience showed that indemnities should be approximately 15% of 

coverage and that an insurers pure risk part of the premium only should at least be as 

high. However, when the calculation was run for SA’s MPCI market, the insurers pure 

risk part of premium came to 6% which is therefore not sustainable according to 

Pomerada’s research16.   

 

2.6.3 The Role of MPCI 

 

Currently (2020) crop insurance demand is largely driven by the credit providers 

(banks) who want their investment, the ‘input cost’ to be secured thereby reducing the 

financial risk that comes with lending to farming enterprises. For lower-middle and low-

income countries, it is usually compulsory for borrowers of agricultural loans to have 

an agricultural insurance policy (Mahul and Stutley, 2010).  

 

In the past, insurers in SA offered ‘input cost insurance’ because the farmer’s land is 

not adequate cover (collateral) for the banks. Often the land does not belong to the 

farmer, or it is already heavily mortgaged, or the land is leased. For many of the new 

farmers, the land belongs to the government (land reform farms)17 therefore those 

producing on the land cannot use it as collateral. As an alternative, banks can still 

provide financial support by taking a cession on the crop income. This means upon 

the farmer selling his/her crop, the bank is paid first and then the producer. Given the 

cession on the crop, the condition of the loan facility is an insurance policy, specifically 

 
16 This answer was an average calculation of nine years’ time series data running from 2004/05 – 
2014/15 seasons supplied by Munich Re.  
17 Proactive Land Acquisition Strategy (PLAS) has been active since 2006 in the Department Of Land 
Affairs as the state’s land acquisition model for land redistribution purposes in South Africa (Department 
Of Land Affairs, 2006). The state acquires the land therefore becoming the owner and holds the title to 
the land but leases out to the previously disadvantaged people .  
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MPCI to cover for drought and hail implications, along with adequate hedging (price 

risk mitigation). In the absence of an MPCI policy and in the event the crop fails for 

any reason, the cession on the crop is worthless because there will be no crop to sell 

hence the insurance requirement. Thus, when the financial institutions are funding the 

farmer’s production activities, an insurance policy for the crop becomes the collateral 

condition to the risk exposure of the financial institution where there is lack of land 

collateral or inadequate collateral. However, the approaches to production financing 

of the top four banks namely ABSA, Standard Bank, Nedbank and Landbank differ 

when considering the relationship between MPCI and production finance. Some prefer 

to loan against tangible collateral whereas others are willing to take a cession on either 

the crop or insurance policy or a combination of the two.  

  

MPCI is, therefore, an important product for unlocking production finance in the SA 

agricultural sector particularly for producers who lack the land collateral, as well as a 

production risk mitigation tool. In case a peril strikes, a farmer with an MPCI policy, 

would at least have his input costs covered by the indemnity payment. However, the 

extent of that cover towards the input cost will depend on the insurance coverage level 

chosen. Therefore, MPCI allows the farmer to stay in business and plant the following 

season after the event of a peril. This product is crucial for both producers and 

financiers because it provides drought cover, which is a prevalent risk in the country. 

SA weather is characterised by wet and dry spell patterns that tend to be successive 

in years, particularly the dry ones.  

 

Figures 2.6 to 2.8 provide evidence of suggestive consecutive drought periods over 

20 years for the dryland (rainfed) maize production districts, Bloemfontein, Vryburg 

and Delmas. The rainfall data is taken for the key maize production months of October 

to March. From the graphs, it is evident that Delmas experiences a much more stable 

rainfall pattern when compared to the other regions over the 10 years starting from 

2010/11 season. When the seasonal rainfall deviated below the mean for these 

districts, it tended to be successive, particularly for Bloemfontein and Vryburg. These 

deviations in rainfall are the reason why insurers want the LTAY of a client before an 

MPCI policy is underwritten. The LTAY is a good indication of the farm’s expected 

yield that would otherwise be distorted had a short-term average yield been utilised 

due to the erratic rainfalls shown in Figures 2.7 to 2.9. 
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Figure 2. 6: Seasonal total rainfall expressed as the deviation (mm) from the 

mean for Bloemfontein  

Source: Huffman et al. (2019) 

 

 

Figure 2. 7: Seasonal total rainfall expressed as the deviation (mm) from the 

mean for Vryburg  

Source: Huffman et al. (2019) 
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Figure 2. 8: Seasonal total rainfall expressed as the deviation (mm) from the 

mean for Delmas  

Source: Huffman et al. (2019) 

 

The systemic risk prevalent in agriculture, particularly drought (e.g. recent 2014/15 El 

Niño season) is a big problem for SA farming and the crop insurance industry as 

witnessed over the past 20 years (2000 - 2020). Because of drought, the insurer must 

have adequate money reserves readily available to make large indemnity payments 

in a single period due to the potential geographic spread of this risk. According to 

Santam, MPCI requires a minimum of six times the value of premiums received in 

capital reserves which is large. On the other hand, hail insurance requires just a 

proportion of the premium amount in capital reserves because it takes into 

consideration hail frequency and location of occurrence which is usually localised and 

occurs sporadically (Roberts, 2005). This means that a hail occurrence between 

farmers in a geographically diverse insurance pool will not necessarily be correlated, 

thereby minimising the losses incurred in that insured pool. From the 10-year average 

industry data available (2004/05 - 2014/15), the capital reserves needed for MPCI 

would be just over R24 000 million whereas for hail insurance it is less than R15 000 

million (SAIA, 2016; Munich Re, 2018). The capital reserve requirement for MPCI is a 

significantly higher burden on the insurers, especially when considering that this 

product is capped at just 20% of the market share. 
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The risk of a drought occurrence and the implications of it thereof is why insurers will 

not offer MPCI policies in the drought-prone regions of SA such as the North West and 

parts of the Free State province such as Bloemfontein. Therefore, there is a lack of 

comprehensive yield cover in these regions yet there is still dryland maize cultivation 

occurring. Farmers in these dryer regions have managed to stay in business by 

emphasising cultivation methods that maximise on keeping moisture in the ground and 

reducing soil erosion. These practices include zero tillage and utilising no-till planters 

among other soil preparation methods. The result of this innovation from the farmers 

along with good farming practices has reduced demand for MPCI in these dryer areas. 

As a result, a few of the bankers and crop insurance specialists interviewed mentioned 

that a producer seeking an MPCI policy, from their experiences, is usually a bad client 

looking for an indemnity payment. Therefore, this goes back to the adverse selection 

and moral hazard problem discussed in section 2.3.3. Also, MPCI is struggling in SA 

because the better farmers are the ones moving away from the product while these 

are exactly the clients insurers need more of in their insured pool to reduce the adverse 

selection problem. 

 

2.6.4 A Call for Intervention 

 

Due to the systemic drought risk in SA, stakeholders in the agricultural sector, 

particularly the insurers, have been pushing for government intervention in the form of 

subsidies on premiums or as a reinsurer of last resort. In these spheres, the argument 

for government support is justified. To this end, the South African Insurance 

Association (SAIA) the representative body of the short-term insurance industry 

approached the government for a state-supported insurance scheme in 2014. The 

Department of Agriculture Forestry and Fisheries (DAFF) took the initiative to explore 

this possibility. DAFF tasked a specialist agricultural consultancy to discover what the 

global benchmark for state intervention in crop insurance is to recommend an 

appropriate solution. A proposal document was developed between DAFF, the hired 

consultants, and the short-term insurance industry team. Unfortunately, the project 

has been in dormancy since 2014 when DAFF and treasury were supposed to publish 

the final document defining a potential state-supported insurance scheme.  However, 

as of the end of 2018, there were efforts to revive these discussions by the government 
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with SAIA and other respective role players in the industry. In October 2020, the matter 

was still unresolved.  

 

There are some suggestions for a government-backed agricultural insurer like the 

South African Special Risks Insurance Association (SASRIA), which is now self-

sufficient, specialising in risks that private insurance companies would shun (Weise, 

2017). In other words, this insurer would specialise in disaster relief arising from 

catastrophic risk or systemic type of risks such as droughts and floods. Other 

suggestions are pushing for Public-Private Partnerships (PPPs) to jointly fund for 

catastrophic or systemic risk cover. Munich Re is a big advocate for a PPP approach 

as it has successfully applied similar products in the US, Brazil, Turkey, Spain and 

Sudan (Drewes, 2011). 

 

 

Figure 2. 9: Loss Ratios – MPCI vs Hail 

Source: Munich Re (2018) 

 

Simply put, no producers, insurers, reinsurers, or a group of reinsurers can afford to 

cover the magnitude of liability that comes with catastrophic or systemic events on 

their own. Figure 2.9 above illustrates the loss ratios experienced in SA over 14 years. 
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In extreme cases, the crop insurance sector experienced loss ratios greater than 400% 

(2006/07) for MPCI and 145% (2010/11) for hail. The average loss ratio for MPCI is 

110% which means for every R1 collected in premiums, insurers are making an 

indemnity payment of R1.10 which is clearly a loss-making product. Over the past 10 

years, Santam experienced a loss ratio worse than the sector’s average at 126%. On 

the other hand, the hail insurance product in SA is profitable with an average loss ratio 

achieved of 80% over the 14 years. The insurers stay in business by subsiding MPCI 

losses from profits accrued in the better performing hail insurance policies.  

 

 

Figure 2. 10: MPCI premium volume, claims and loss ratios 

Source: (Munich Re, 2018) 

 

Figure 2.11 illustrates the premium volume against the losses incurred for MPCI over 

a 14-yer period. The season 2012/13 had the largest recorded loss of R830 million 

versus the premium of R329 million.  

 

Given the performance of MPCI in SA over the years, the reasons why insurers have 

remained in that market vary. From consultations with role players, some are staying 

for the sake of supporting food security. Others are more optimistic that government 

support in the sector is near and hence want to use their presence during bad times 

as a bargaining tool for favourable business terms in the future. The most realistic 

reason given was that MPCI is a marketing tool to get farmers to take up the other 
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lines of insurance business as well as other financial services offered by the insurers. 

Other lines of insurance include life insurance and other non-life insurance products 

such as asset and motor vehicle insurance. 

 

It has been established that the perception towards MPCI in SA is that it is expensive. 

According to industry sources, the prices charged are determined by the liability taken, 

and as such the premium income needed to pay for potential losses and any additional 

‘loads’ covering for information gaps (discussed in section 2.3.4). Furthermore, as 

fewer farmers are willing or able to take up crop insurance, mentioned previously, this 

pushes premiums up, making the product more expensive for farmers,  resulting in a 

‘vicious cycle’ that pushes premiums up as the insurance pool gets smaller. In fact, 

larger farmers who possess strong balance sheets tend to not take out MPCI policies 

and this does not help the efforts to grow the insured pool in SA. Insurers are struggling 

with varying insurance uptakes depending on the type of season (refer to section 1.2 

discussing El Nina and La Niño). Therefore, there is the anti-selection problem 

whereby insurers experience very low uptake in good years and higher uptake in bad 

years also referred to as ‘inter-temporal’ adverse selection (Goodwin and Mahul, 

2004). For these reasons, as already mentioned, Santam has become selective on 

who receives an MPCI policy, whiles other insurers and reinsurers have become more 

careful about the level of risk they assume. A suggestion to curb this varying uptake 

is for a multi-year insurance contract suggested by an insurance specialist, however, 

this is not in the market yet. 

 

From a discussion with a crop production cost subject matter expert, in high-risk 

production areas of Mpumalanga and KwaZulu-Natal, a hail policy for soybean can 

vary between 12% - 25% of the gross production cost18. A hail policy in fact, and from 

literature, is the least expensive crop insurance when compared to MPCI thus giving 

some context towards the farmer’s perception and sentiment towards the affordability 

of MPCI. Experts in the crop insurance sector estimated that MPCI policies would be 

double19 that of hail. Farmers in SA are already dealing with other cost pressures such 

as rising fuel and fertiliser prices, along with increased costs of electricity just to 

 
18 Discussion with a subject matter expert working for the Bureau for Food and Agricultural Policy 
(BFAP). 
19 According to an industry expert who is a former banker with ABSA and Nedbank. 
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mention a few. There is evidence from farmers in Tzaneen in the Limpopo province 

ditching crop insurance to minimise their input costs20. Instead, these farmers are 

focusing on other forms of risk reduction measures at the farm level such as 

consolidating farm business to grow and gain economies of scale (den Hartigh, 2016). 

Also, the occurrence of self-insurance is growing in popularity in SA according to 

industry sources, whereby farmers choose to cover any potential losses using their 

resources such as savings (den Hartigh, 2016). Industry sources have also confirmed 

that farmers are willing to take chances with their crop by not insuring it and reserving 

insurance for their assets such as vehicles and machinery (den Hartigh, 2016).  

  

Overall, MPCI is a crucial element in farming operations. The cost of this offering is a 

sign of the risk it assumes along with the cost structure associated with the product. 

SA needs an alternative offering that is just as good if not superior. Currently, the 

expensive MPCI product is geared towards commercial farmers who have the capacity 

and scale to justify using this product. The downside is that emerging farmers simply 

cannot afford it, and they are exactly the producers who need this insurance product 

as the majority of emerging farmers do not own their land and cannot offer land as 

collateral for production credit. A superior product to MPCI could motivate the 

intervention from the government that is currently lacking to boost both commercial 

and emerging farmers.  

 

2.7 CONCLUSION 
 

This chapter covered in detail the technical requirements necessary to achieve a 

successful crop insurance offering, as well as reasons why crop insurance fails in the 

market. While focussing on why crop insurance fails, particularly MPCI, the reasons 

were summed into four elements namely, systemic weather, reinsurance, human 

factors, and administrative costs. The key findings from this chapter were that SA’s 

MPCI offering is struggling mainly due to the systemic drought risks that the country 

faces. Furthermore, the rest of the world subsidies MPCI because of the complexities 

arising from the elements contributing to this product’s failure. However, the SA 

government does not subsidise MPCI in the market, leaving the private insurers to 

 
20 As said by subject matter expert from Naude Garrun Brokers in Tzaneen. 
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come up with their solutions, which in this case means taking profits from their better-

performing products to subsides MPCI losses.  It is important to understand these key 

points of this chapter because the following chapters (Chapter 4 and 5) dive into the 

literature review of the alternative methods and approaches pursued by this research 

in modelling crop insurance products. Specifically, the alternative modelling 

approaches could aid in reducing some of the impacts from the elements contributing 

to the failure of crop insurance while simultaneously promoting the elements for a 

successful crop insurance offering. 
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CHAPTER 3 
 

MARGINAL DISTRIBUTION AND COPULA MODEL FITTING TO CROP DATA 

 

3.1 INTRODUCTION 

 

In this chapter, a literature review is provided on the data and methodology to be 

applied in this research. The literature is presented in the order that the methodology 

will be executed. Firstly, is an introduction of the data with an emphasis placed on data 

structure requirements for any modelling and analytical work to begin. Therefore, a 

key point being achieving stationarity in the data and how that has been done in 

previous studies through various transformations to the data. Secondly, the literature 

covers bivariate marginal distribution modelling. An elaborate discussion is given on 

the importance of marginal distribution model choices for the variables yield and prices 

of South African white maize to compare crop insurance products. The pros and cons 

of the different marginal distribution models are provided as relevant to the data needs 

of this research while examples of uses and findings from other studies are also 

presented. Thirdly the literature review covers the use of statistical copulas. Copulas 

are introduced and explanations given as to why they are the chosen method of 

determining dependence relationships of South African white maize yield and price 

data. The theory of copulas is given and is further narrowed down between the 

Elliptical and Archimedian copula families.  An emphasis is placed on the application 

of the relevant copulas in this research, hence numerous examples are given of the 

different possible dependence structures per copula model. Lastly is a discussion on 

the different goodness-of-fit (GOF) criteria to be used in evaluating the marginal 

distribution and copula models fit on the data. The progression of these criteria over 

the years is provided with examples from literature. 

 

3.2 SA MAIZE PRODUCTION 

 

Maize is an essential staple food source in SA, as well as a key ingredient in the animal 

stock feed diet. Traditionally, white maize is mainly used for human consumption 

whereas yellow maize for stock feed. On average, SA consumes roughly 39.8% of its 

maize production in the manufacturing of animal feed, 37.4% on food, while 17.4% 

goes to exports, and the remaining 4.8% to the production of starch and glucose 

(BFAP, 2015). SA has three distinct rainfed maize production regions namely, the 
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Western regions (covering North West (NW) and Free State (FS) provinces), the 

Eastern regions (covering Gauteng (GP), some of FS and Mpumalanga (MP) 

provinces) and lastly the Kwazulu-Natal region (Haarhoff, Kotzé and Swanepoel, 

2020). Figure 3.1 below illustrates the key maize producing provinces used in this 

study from the Western and Eastern production regions while indicating the respective 

magisterial districts to be analysed.  

 

 

Figure 3. 1: Map of SA’s key maize producing provinces 

Source:  Shapefiles provided PULA21 

 

Figure 3.2 below illustrates a 27-year timeline of SA’s maize production and key 

trends. There is a downward trend in the area planted from approximately 3.2 million 

ha in the 1990/91 season to roughly 2.7 million ha in the 2016/17 season. Over the 

same period, the average maize yields have increased from 2.4 t/ha to 6.37 t/ha and 

this is typical of crop yields due to technological advancements in varieties, as well as 

production methods (Duarte et al., 2018). For the last 27 years, an estimated 89% of 

SA’s maize production is situated in three provinces namely, FS, NW and MP, planting 

37%, 33% and 19% respectively (GrainSA, 2020). Over the same 27 years, SA’s 

 
21 PULA Strategic Resource Management (Pty) Ltd is a South African company that has a GIS division 
with functions of master data management, data collection and collation, spatial analysis and spatial 
mapping and reporting. Their website is: https://www.pula.co.za/index.html 
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average hectares planted to maize is 2.9 million hectares annually while 59% of that 

is white maize production and the remaining 41% is yellow maize. From the given 

historical hectares planted to maize production, SA has harvested on average 10 

million metric tonnes (tons) of maize annually and 60% of that is white maize. Listing 

the provinces by the top producer and their contributions to white maize production 

over the stated years, it is FS (41%), NW (33%) and MP (15%), while the remaining 

provinces contribute an aggregate amount of 11%. 

 

 

Figure 3. 2: SA’s Historical Maize Area Planted, Production and Yield 

Source: (GrainSA, 2020) 

 

In this study, two variables namely white maize yield and price are investigated. The 

white maize yield data for the application is estimated by the Crop Estimates 

Committee (CEC) of the Department of Agriculture, Forestry and Fisheries (DAFF). 

The respective white maize prices for SA are sourced from the South African Futures 

Exchange (SAFEX). This study focuses on one key dryland maize producing 

magisterial districts from each of the key provinces namely, FS, MP, and NW.  
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3.2.1 White Maize Yield 

 

For the 2017 crop season, SA planted 3.0 million ha of maize, producing 17.5 million 

tons of harvest (CEC, 2017). From the total area planted, 55% of it went to commercial 

white maize, producing 10.0 million metric tons. To estimate these cropping statistics, 

the CEC progresses through eight production forecasts to determine the final area 

planted and production (tons harvested) (CEC, 2019). The combination of total 

production and area planted is used to calculate the maize yields achieved. By 

determining the yield calculation over the area planted and not area harvested, the 

CEC addresses Tejeda and Goodwin (2008) concerns of maintaining a realistic view 

of the impact of the post-planting condition on crop yields.  

 

The data in metric tons per hectare (t/ha) is restricted to dryland cultivation over the 

years 2004 - 2017 to capture the impact of natural weather elements on maize 

production and ultimately yields by district (CEC, 2018). Table 3.1 below illustrates the 

district level white maize yield data as established by the CEC while Figure 3.3 

presents the graph of this data. The district-level data is available for the years 2004 - 

2017 providing a total of 14 observations (per district).  

 

Table 3. 1: District Level White Maize Yield Data 

Year  Bloemfontein  Delmas  Vryburg 

2004 1.21 3.4 1.89 

2005 2.91 6.01 1.88 

2006 4.16 7.66 1.68 

2007 1.03 2.17 1.87 

2008 3.29 6.93 3.34 

2009 4.01 6.16 3.37 

2010 4.99 5.96 3.65 

2011 3.62 5.81 3.95 

2012 3.97 6.58 2.29 

2013 2.60 5.55 1.69 

2014 3.46 5.30 4.86 

2015 2.22 5.29 2.58 

2016 0.65 4.52 2.10 

2017 0.95 7.68 4.35 

Notes: The yield data is expressed in metric tonnes per hectare (t/ha) 
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Figure 3. 3: District Level White Maize Yield Data 
 

It is observed from Figure 3.3 that the districts’ yields at times follow a similar trend but 

are not always in sync, with Bloemfontein and Vryburg, the dryer and more drought-

prone regions seemingly more correlated. Notably, Delmas does not always follow the 

trend of the other two districts, especially in the years of 2008 - 2011 and 2013 - 2014 

and was shown in Chapter 2, Figures 2.7 to 2.9, this district receives a relatively higher 

rainfall. The more recent significant drought years are seen from the dips in the graphs 

over the years 2013, 2015 and 2016 which is the year SA experienced the lowest 

amount of rainfall since 1904 (BFAP, 2016). 

 

When analysing time-series data, stationarity in the variables is a prerequisite to avoid 

producing spurious results. For crop yield data, removing the trend component is a 

fundamental step leading to stationarity. The process of removing the trend produces 

yield residual values that tend to be trend stationary and are typically used as a 

representative sample of the yield data (Just and Weninger, 1999; Zhu, Ghosh and 

Goodwin, 2008). There are numerous ways of transforming the data to achieve 

stationarity, but it commonly involves some type of regression analysis to produce 

yield residual values.  For instance, Goodwin and Hungerford (2014) utilised the local 
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regression (LOESS) procedure to represent the trend of their maize and soybean yield 

data. On the other hand, Deng, Barnett and Vedenov (2007) utilised the log-linear 

trend equation for the cotton and soybean yield data. 

 

3.2.2 White Maize Prices 

 

To compare CRI policies, the sources of maize prices must hold characteristics of a 

free and unbiased price discovery mechanism that is determined by purely market 

forces of supply and demand (Tejeda and Goodwin, 2008; Goodwin and Hungerford, 

2014; Cole and Gibson, 2010; and Marković, Veselinović and Kokot, 2016). SAFEX is 

a futures exchange market, a subsidiary of the JSE Limited (Johannesburg Stock 

Exchange) where agricultural derivatives are traded in SA, hence making it the site of 

price discovery and the data source. In practice, commercial farmers use futures 

prices for guidance on the potential maize harvest prices before planting commences 

to make a production decision (Zhu, Ghosh and Goodwin, 2008). Therefore, in maize 

production, price returns in SA are calculated over a season that overlaps between 

years since harvesting commences in the following year from planting. Table 3.2 

introduces and explains the different maize price concepts used on SAFEX to assist 

in understanding the price analysis to come. The concepts to be explained include 

what a futures price is, the established prices during harvesting and what an in-season 

price change represent. 
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Table 3. 2: Key Concepts on Type of Prices 

Type of Price Definition 

Expected Harvest 

Price (𝑷𝑬𝑯) 

This is a daily futures price of maize for a maize contract that 

expires at harvest time, which is the July contract for this study. 

The month of July is representative of the prime harvesting period 

for dryland maize produced in SA 

Average Expected 

Harvest Price 

(𝑷𝑨𝑬𝑯) 

A calculation of average daily prices of the July white maize futures 

contract as traded over the three months of October, November, 

and December of the previous year. These three months are 

representative of the ideal planting window for dryland maize 

production in SA, the maize is harvested in July the following year.  

Average July 

Harvest Price 

(𝑷𝑨𝑱𝑯) 

A calculation of the average daily prices of the July white maize 

futures contract as traded in July. Recalling that July is 

representative of the prime harvesting period for dryland maize 

produced in SA and thus illustrates the maize price fluctuations in 

a season as influenced by the bulk of the maize being supplied at 

the close of that season. 

Price Change 

(𝑷𝑪) 

Calculated as 𝑃𝐶 = 𝑃𝐴𝐽𝐻 - 𝑃𝐴𝐸𝐻. This calculation illustrates seasonal 

maize price fluctuations as influenced by a combination of maize 

stocks in the country together with weather expectations (thus 

𝑃𝐴𝐸𝐻) and the actual amount of maize supplied during the 

harvesting time (thus 𝑃𝐴𝐽𝐻).  

 

Table 3.3 below illustrates the different price variables used to get the price changes 

variables. Already stated in the previous section on yield data, stationarity is a 

requirement when analysing time-series data. Similarly, the price data intended for 

analysis needs to be stationary. This study uses price changes data which is 

equivalent to price returns data that tends to be stationary (Omran and McKenzie, 

1999; Ho and Wan, 2002). 
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Table 3. 3: White Maize Futures Prices 

Year 𝑷𝑨𝑬𝑯 𝑷𝑨𝑱𝑯 

2004 987.26 881.27 

2005 1002.70 600.50 

2006 761.51 1397.43 

2007 1182.34 1654.60 

2008 1464.71 2019.69 

2009 2000.94 1342.00 

2010 1499.87 1103.87 

2011 1365.67 1771.71 

2012 1822.46 2484.35 

2013 2219.68 2258.50 

2014 2056.63 1705.39 

2015 1934.78 3184.28 

2016 2871.95 4522.00 

2017 2754.00 1835.69 

 

3.3 BIVARIATE DISTRIBUTION MODELLING OF CROP DATA 

 

3.3.1 Distribution Options for Marginals 

 

The choice of distribution imposed on the data is important for two reasons: Firstly, the 

distribution is used to generate cumulative distribution function (CDF) values for the 

copula fitting procedure. Secondly, the estimators of the distribution give a 

representation of the marginal distribution used in a Monte Carlo simulation to produce 

variates of yield and prices for insurance comparison purposes. 

 

There are numerous studies with the view that crop yields are normally distributed and 

probably an equal amount disputing this. Atwood, Shaik and Watts (2002) consistently 

rejected normality in the US maize yields. When assuming normality, the crop 

insurance premiums were significantly under-pricing policies when compared to the 

empirical distribution (For example Illinois was charging only 66% of the actual 

empirical rate). On the other hand, Sherrick et al. (2004) did not explicitly test for 

normality but explored alternative distributions in modelling US maize and soybean 

yields and their resultant impact on crop insurance policy pricing. Firstly, the data was 

negatively skewed and had a sample kurtosis of 3.72, implying fat tails. This raised 
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questions about the relevance of using the normal distribution that is suited for 

symmetric distributions and not ideal for fatter tails in the distributions. Similarly, the 

relevance of the lognormal distribution becomes questionable since it is more suitable 

for right-skewed distributions. The findings were that the Weibull and beta distributions 

were better at characterising the crop yield distributions when compared to the normal 

and lognormal. Secondly and key is that expected pay-outs for the yield insurance 

policies modelled by the Weibull and beta distribution were significantly higher than 

those of the normal and logistic models (which is also a symmetric distribution). These 

findings by Sherrick, et al. (2004) could mean that the crop insurance policies are 

being under-priced by the current modelling techniques. It has been found that the 

assumption about a distribution for a dataset is complex (especially due to data 

scarcity and heterogeneity of various data types) and the resultant effects of 

misspecification in this regard. For these reasons, Ramirez, Misra and Field (2003)  

employed a comprehensive approach in establishing the distribution of maize and 

soybean yields in the US. Their findings were that the crop yields are not normally 

distributed and are skewed to the left, reaffirming some of the discussed findings. 

Other earlier studies to have presented negative skewness in crop data include 

Gallagher (1987) for soybeans in the US as well as Day (1965) for oats but the latter 

also found positive skewness in maize and cotton in the US.  

 

In a prominent study exploring the distribution that characterises crop yield data, Just 

and Weninger (1999) failed to reject normality. Instead, the authors highlighted the 

following three key problems found in the typical research approach to yield 

distributions that nullify evidence against normality:  

• Misspecification of the non-random components of yield distributions.  

• Misreporting of statistical significance.  

• Use of aggregate time-series data to represent farm-level yield distributions. 

 

There is no consensus on the distribution of choice that best represents crop yields. 

Some studies have found positive skewness in yield data while others have found it to 

be negative.  It is known that the Risk Management Agency (RMA) assumes normality 

in the crop yield distributions (Goodwin, 2015). It is also known that SA crop insurers 

are pricing their policies by experience therefore it is unknown whether this approach 
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takes into consideration any of the possible distribution models. However, what is clear 

from the literature is that the choice of distribution chosen to represent either yield or 

price risk has a material effect on the pricing of the risk and the presumed yield loss 

calculation. Accurate modelling of agricultural yield is therefore of paramount 

importance because the distribution that is derived from it represents the producer’s 

loss probability and therefore is the insurable risk of the producer (Ozaki, Goodwin 

and Shirota, 2008). Therefore this study will unpack some of the views on the choice 

of distributions but with the goal of finding appropriate alternatives to the normal 

distribution were applicable to compare their implications in the comparison results of 

yield and revenue crop insurance products.  

 

3.3.2 Application Examples 

 

Some examples will be presented of models that have been utilised in the modelling 

of yield and price distributions to compare crop insurance policies, while also providing 

the context of these models’ relevance. Sherrick, et al. (2004) while considering 

different distributions’ accommodations towards skewness in crop yields, graphically 

illustrates that the lognormal can accommodate positive skewness, while the Weibull 

and beta are more flexible and can accommodate negative and positive skewness. It 

was also established that the beta distribution can accommodate a broader range of 

kurtosis than lognormal and Weibull. Goodwin and Hungerford (2014) also used the 

Weibull and the gamma distribution on crop yields and acknowledged their ability to 

cater to the negative skewness. From this same study, the gamma distribution was a 

better fit on the white maize yield data while the lognormal distribution was used for 

the price data. Another study that considered negative skewness is Tejeda and 

Goodwin (2008) who relied on the beta distribution.  

 

The choice of distribution for prices is less contentious due to Black and Scholes' 

(1973) formula for valuing options that gained prominence as the market tool for 

pricing stocks. From their work, they identified the distribution of stock prices as 

following a lognormal distribution hence the reliance on it together with the normal 

distribution when modelling futures markets price data. However, Goodwin (2015) 

does caution against reliance on the lognormal distribution particularly in the tails of 

the distribution that tend to deviate from what would be implied by this preferred 
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distribution. There have been other alternative distributions in characterising crop 

prices, Tejeda and Goodwin (2008) used Burr type XII distributions and compared 

them to those of normal and lognormal distributions. The Burr type XII distribution was 

chosen for its ability to better model ‘higher moments’ recognised in price data hence 

improved characterisation of skewness and kurtosis. Ahmed and Serra (2014) instead 

first-differenced their data and then used ARIMA and ARIMA-GARCH models for 

yields and price, respectively. 

 

3.4 THE STATISTICAL COPULA APPROACH 

 

This research is using statistical copulas in the dependence analysis of the two 

variables white maize yields and their prices, to compare crop insurance policies. The 

theory of copulas and options on their application processes will be covered in the 

following sections. It is important to stress that the emphasis of this section is on the 

application of the copulas in this research as related to their properties and qualities, 

and less on the mathematical/statistical development of their theory. 

 

3.4.1 Introduction to Copulas 
 

Copula functions have been used extensively in measuring non-linear dependence 

structures (Durante and Sempi, 2010; Ghosh, Woodard and Vedenov, 2011; Goodwin 

and Hungerford, 2014; Goodwin, 2015). Copulas functions are therefore flexible tools 

to model dependence relationships because they not only can model nonlinear 

dependence structures between variables but are also able to accommodate different 

families of distribution models in their marginals. This flexibility comes from their ability 

to separate the marginal behaviour and the dependence structure from a joint 

distribution function. The RMA assumes linear (Pearson) correlation between price 

and yield risk for crops, yet evidence exists suggesting that these risks are not always 

normally distributed (Black and Scholes, 1973; Atwood, Shaik and Watts, 2002; 

Ramirez, Misra and Field, 2003; Sherrick, Zanini, et al., 2004; Ozaki, Goodwin and 

Shirota, 2008). Furthermore, the linear correlation is very limited because it is mostly 

applicable to elliptical distributions, meaning those that follow the normal distribution 

and other generalisations/mixtures of it thereof such as the t-distribution (Schmidt, 

2006). Thus, an over-reliance on correlation comes with some shortcomings. For 

instance, a correlation parameter of zero does not necessarily mean the two variables 
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are independent, only if the variables follow elliptical distributions otherwise their 

relationship is just not explained by this specific dependence measure.  Another 

shortcoming from correlation is that the measure is severely undermined by outliers 

(Staudt, 2010). This is a significant downside when considering that the spatial 

correlation of crop yields is significantly stronger in times of extreme weather 

conditions (Ozaki, Goodwin and Shirota, 2008; Goodwin and Hungerford, 2014) while 

price data is characterised by skewed distributions (Tejeda and Goodwin, 2008; 

Goodwin, 2015). Therefore, the copula approach to establishing dependence between 

variables thrives from its flexibility and being a less restrictive model that 

accommodates many types of dependencies. In this chapter, different copula families 

to be used and their functions are introduced, where the focus of this study is on a 

bivariate case.  

  

3.4.2 The Copula Families and Functions 

 

A copula is a multivariate distribution function defined on the unit interval [0,1] from 

the unit d-cube interval [0, 1]𝑑 with cumulative distribution function (CDF), 

 𝐶(𝐹1(𝑥1),… , 𝐹𝑑  (𝑥𝑑)) (1) 

 

and probability density function (PDF), 

 𝑐(𝐹1(𝑥1),… , 𝐹𝑑 (𝑥𝑑))𝑓1(𝑥1)𝑓2(𝑥2)⋯ 𝑓𝑑  (𝑥𝑑), (2) 

 

where  

 
𝑐(𝐹1(𝑥1),… , 𝐹𝑑  (𝑥𝑑)) =  

𝜕𝑑𝐶(𝐹1(𝑥1),… , 𝐹𝑑  (𝑥𝑑))

𝜕𝐹1(𝑥1)𝜕𝐹2(𝑥2)⋯𝜕𝐹𝑑(𝑥𝑑)
 (3) 

 

for  𝐹𝑖(𝑥𝑖) and 𝑓𝑖(𝑥𝑖) as the CDF and PDF respectively, of the marginal distributions 

for 𝑖 = 1,2, … , 𝑑. The CDFs of the marginal distributions are uniformly distributed, i.e. 

𝐹𝑖(𝑥𝑖)~𝑈𝑛𝑖𝑓(0,1) (See special functions in Appendix C). This study makes use of CDF, 

𝐹𝑖(𝑥𝑖), from assumed continuous marginal distributions. 

 

The following conditions must hold (Haugh, 2016) for a valid copula function 𝐶(·): 

• 𝐶(𝑢1, … , 𝑢𝑑) is non-decreasing in each component, 𝑢𝑖 ,   𝑖 = 1,   2, … , 𝑑,   0 <

𝑢𝑖 < 1 
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• 𝑇ℎ𝑒 𝑖𝑡ℎ marginal distribution is obtained by setting 𝑢𝑗 = 1 for 𝑗 ≠ 𝑖 and since it 

is uniformly distributed  𝐶(1, … , 𝑢𝑖, 1, … , 1) =  𝑢𝑖 . 

• For 𝑎𝑖  ≤  𝑏𝑖 , 𝑃(𝑈1 ∈ [𝑎1, 𝑏1], … , 𝑈𝑑  ∈  [𝑎𝑑 , 𝑏𝑑] ) must be non-negative. This 

implies the rectangle inequality, 

 
∑…

2

𝑖1=1

 ∑(−1)𝑖1+⋯+𝑖𝑑

2

𝑖𝑑=1

𝐶(𝑢1,𝑖1 , … , 𝑢𝑑,𝑖𝑑  , )  ≥ 0, (4) 

 

where 𝑢𝑗,1 = 𝑎𝑗 and 𝑢𝑗,2 = 𝑏𝑗. 

Sklar’s Theorem states that for every joint CDF 𝐹(·),  there exists a copula, 𝐶(·): [0, 1]𝑑 

→ [0,1] such that, for all random variables,  

 𝐹(𝑥1 , … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑑 (𝑥𝑑)), (5) 

 

where 𝐹1(·),…,𝐹𝑑(·) are the respective marginal CDFs for random variables 𝑋1 , … , 𝑋𝑑. 

 

Using the Probability Integral Transformation (Bain and Engelhardt, 1992),  

observations (𝑥1 , … , 𝑥𝑑)  of random variables (𝑋1 , … , 𝑋𝑑) with marginals 

𝐹1(𝑥1),… , 𝐹𝑑  (𝑥𝑑) respectively, can be generated via the following transformation, 

 

{
 
 

 
 𝑥1 = 𝐹𝑋1

[−1]
 (·)

𝑥2 = 𝐹𝑋2
[−1] (·)

⋮

𝑥𝑑 = 𝐹𝑋𝑑
[−1]

 (·)

 (6) 

      

The above is of importance to this research to simulate yield and price distributions for 

comparing potential crop insurance products based on dependence structures as 

established by the copulas.  

 

Conversely, by defining 𝐶 in terms of 𝐹 and its margins (refer to equation (5)), the 

copula function is extracted from the multi-variate distribution function according to 

equation (6) and in this way, this research intends on simulating univariate variables 

via copulas: 

 𝐶(𝑢1, … , 𝑢𝑑 ) = 𝐹 (𝐹1
← (𝑢1),… , 𝐹𝑑

← (𝑢𝑑)). (7) 

 

Because 𝐹1, …, 𝐹𝑑 are assumed to be continuous distribution functions in this study 

given by equation (5), indicating that the joint distribution function of 
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(𝐹1(𝑋1),… , 𝐹𝑑  (𝑋𝑑)) is a copula, denoted by 𝐶(∙) and hence the identity in equation (5) 

and through the following argument  𝑥𝑖 = 𝐹𝑖
← (𝑢𝑖), 0 ≤ 𝑢𝑖  ≤ 1, 𝑖 = 1, … , 𝑑, results in 

equation (7) (McNeil, Frey and Embrechts, 2005).  

 

There are numerous copulas but the most common in literature belong to the Elliptical 

and Archimedean copula families to be considered for this study (McNeil, Frey and 

Embrechts, 2005; Schmidt, 2006; Tejeda and Goodwin, 2008). This study restricts 

itself to mainly five copulas22; Figure 3.4 below lists the copulas used and distinguishes 

them by their copula family.  

 

Figure 3. 4: Example Copula Families 
 

Each copula has key features of how it models dependence differentiating it from the 

rest. Before getting into these features, the Frechet-Hoeffding bounds must be 

introduced. The Frechet-Hoeffding bounds define the boundaries that all copulas are 

restricted to and are given by the following inequality (Cherubini, Luciano and 

Vecchiato, 2004): 

 𝐦𝐚𝐱{𝒖 + 𝒗 − 𝟏, 𝟎} ≤ 𝑪(𝒖, 𝒗) ≤ 𝐦𝐢𝐧(𝒖, 𝒗) (8) 
 

Therefore, the lower bound is the counter-monotonicity copula given as, 

 𝐶(𝑢, 𝑣) = max{𝑢 + 𝑣 − 1,0}, (9) 

 
22 Other Archimedean copulas include the Joe and Ali-Mikhail-Haq copulas. 
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which is defined in three of the copulas namely, Gaussian, t-copula, and Frank. The 

upper bound is the comotonicity copula given as, 

 𝐶(𝑢, 𝑣) = min(𝑢, 𝑣). (10) 

 

Thus, counter-monotonicity refers to a case of perfect negative dependence whereas 

comonotonicity refers to perfect positive dependence, while the former is restricted to 

a 2-dimensional case. Given this research’s Hypothesis 1, the Frechet-Hoeffding lower 

bounds are of interest and not the upper bounds. 

 

Also, copulas can have the ability to measure tail dependence. Tail dependence looks 

at concordance in the tails of the joint distribution function for a given set of random 

variables (Cherubini, Luciano and Vecchiato, 2004). Simply put, tail dependence is the 

probability that a random variable Y takes an extreme value given that another random 

variable X has also taken an extreme value. Therefore, this type of dependence is 

found in the upper (right corner) and lower (left corner) tails of the distribution denoted 

by 𝜆𝑢 and 𝜆𝑙 respectively. Schmidt (2006) defined upper and lower tail dependence for 

random variables (rvs) as follows:  

For rvs  𝑋1 and 𝑋2 with CDFs 𝐹𝑖 , 𝑖 = 1,2  the coefficient of upper tail dependence is 

defined by  

 𝜆𝑢 = lim
𝑞↗1

𝑃(𝑋2 > 𝐹2
⟵(𝑞)|𝑋1 > 𝐹2

⟵(𝑞)), (11) 

 
provided that the limit exists and 𝜆𝑢 ∈ [0,1]. The coefficient of lower tail dependence 

is defined analogously by  

 𝜆𝑙 = lim
𝑞↘0

𝑃(𝑋2 > 𝐹2
⟵(𝑞)|𝑋1 ≤ 𝐹2

⟵(𝑞)). (12) 

 

If 𝜆𝑢 > 0, it is said that 𝑋1 and 𝑋2 have upper tail dependence, while for 𝜆𝑢 = 0 it is said 

that they are asymptotically independent in the upper tail and analogously for 𝜆𝑙. 

 

The sections to follow will introduce the copula families, providing their denotations 

and dependence parameters. Copula examples will be presented with theoretical 

values to illustrate the effect on dependence as well as the Frechet-Hoeffding bounds. 

These examples will utilise scatterplots and contour plots to give a visual 
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representation of the dependence structures. For the remainder of this study, a 

bivariate case is maintained (i.e., 𝑑 = 2). 

 

3.2.2.1 Elliptical Copulas 

 

The Gaussian (also known as the Normal) and the t-copula (also known as the 

Student’s t) belong to the Elliptical copula family that this study will focus on.  

 

Table 3. 4: Properties of bivariate elliptical copulas 

Copula name Parameter range Kendall’s Tau (𝝉) Tail dependence 

Gaussian 𝜌 ∈ (−1,1) 2

𝜋
arcsin(𝜌) 

0 

t-copula 𝜌 ∈ (−1,1), 𝑣 > 2 2

𝜋
arcsin(𝜌) 

2𝑡𝑣+1(−√𝑣 + 1√
1 − 𝜌

1 + 𝜌
  ) 

Source: Brechmann and Schepsmeier (2013) 

 

From Table 3.4 above, 𝜌 is the copula parameter representing the dependence 

structure and ranges between perfect negative (-1) and perfect positive (+1) 

dependencies. Also, the table provides the equation converting the copula parameter 

to Kendall’s Tau (𝜏) as well as the tail dependence equation for the t-copula.  

 

3.2.2.1.1 Gaussian copula 

 

The Gaussian copula is restricted to radial symmetry. The following is an expression 

of a two-dimensional Gaussian copula: 

 𝐶𝜌
𝐺𝑎(𝑢1 , 𝑢2) =  𝛷𝛴  ( 𝛷

−1 (𝑢1),   𝛷
−1 (𝑢2) ),  (13) 

where ∑ represents a  2 × 2 covariance matrix of  (
1 𝜌
𝜌 1

), 𝛷 represents CDF of a 

standard normal distribution, while 𝛷𝛴 represents a CDF of a bivariate normal 

distribution with zero mean and covariance matrix ∑. From Table 3.4 above, 𝜌 is the 

copula parameter representing the dependence structure between the variables and 

is specific to that copula. The dependence structure of the Gaussian copula ranges 

between 𝜌 =  −1 and 𝜌 =  1, resulting in the counter-monotonic and comonotonic 

copula. Figure 3.5 and 3.6 illustrate the counter-monotonic, independence and 

comonotonic copula when 𝜌 = −1, 𝜌 = 0.1 and 𝜌 = 0.8, respectively. Therefore, this 
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copula accommodates negative and positive dependence structures as shown by the 

contour and scatterplots. The contour plots in Figure 3.5 below illustrate radial 

symmetry and that the PDF peaks at its centre, the latter is also shown in Figure 3.6. 

 

Figure 3. 5: Scatter and contour plots from three Gaussian copula parameters  

Notes: The figures are from a bivariate random sample of size 1 000 simulated from Gaussian copulas 

with dependence parameters of 𝝉 = −𝟎. 𝟗, 𝝉 = 𝟎. 𝟏 𝐚𝐧𝐝 𝝉 = 𝟎. 𝟗, respectively which is equivalent to the 

copula parameters of 𝝆 = −𝟎. 𝟖, 𝝆 = 𝟎. 𝟏 and 𝝆 = 𝟎. 𝟖, respectively23. 

 
23  Refer to Remark 1 (p.68) for the reason why Kendall’s Tau, 𝜏 is used to express the dependence 
structures of the copulas in the graphs.  
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Figure 3. 6: Copula density plots from three Gaussian copula parameters  

Notes: The figures are from a bivariate random sample of size 1 000 simulated from Gaussian copulas 

with dependence parameters of 𝝉 = −𝟎. 𝟗, 𝝉 = 𝟎. 𝟏 𝐚𝐧𝐝 𝝉 = 𝟎. 𝟗, respectively which is equivalent to the 

copula parameters of 𝝆 = −𝟎. 𝟖, 𝝆 = 𝟎. 𝟏 and 𝝆 = 𝟎. 𝟖, respectively. 

 

In this study, the Gaussian copula function coupled with normal (yield) and normal 

(price) marginal distributions is referred to as the ‘benchmark model’, according to 

literature, the common actuarial practices rely on it for crop insurance risk modelling 

(Goodwin and Hungerford, 2014; Goodwin, 2015). Thus, because the benchmark 

model maintains basic assumptions of constant dependence structures between 

random variables yield and price therefore it is a Gaussian model. Evidence backing 

this Gaussian model assumption comes from Iman and Conover’s (IC) procedure 

which is known to dominate dependence modelling in agricultural insurance 

(Mildenhall, 2005). Basically, to establish a Pearson correlation parameter between 

variables that do not follow a normal distribution model, the IC procedure, therefore, 

reorders the sample to have the same rank order to the distribution of interest, which 

is the normal distribution (Mildenhall, 2005). Therefore, the IC procedure essentially 

relies on algorithms that convert samples of distributions that do not follow the normal 

distribution model to establish a Pearson correlation structure. When the IC procedure 
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is based on normal scores, which simply means that the reference distributions are 

normally distributed it is equivalent to the Gaussian copula hence why it is taken as 

the benchmark model (Mildenhall, 2005).  

 

Remark 1 

 

The figures illustrating copulas dependencies have the dependence parameter 

expressed as Kendall’s Tau, 𝜏 because the Elliptical copula parameter 𝜌 is only 

meaningful in its copula family, while 𝜏, can be expressed in terms of copulas by the 

equation in Table 3.4. Therefore 𝜌 = −1, 𝜌 = 0.1 and 𝜌 = 0.8 is equivalent to 𝜏 =

 −0.9, 𝜏 =  0.1 and 𝜏 =  0.9, respectively. By expressing Kendall’s 𝜏  in terms of 

copulas, it becomes possible to compare different copulas (and their families) 

dependence parameters and their respective parameter ranges.  

 

3.2.2.1.2 t copula 

 

The t-copula, like the Gaussian, is restricted to radial symmetry but can model upper 

and lower tail dependence. The following is an expression of the t-copula:  

 𝐶𝑣,𝜌 
𝑡 (𝑢1 , 𝑢2) =  𝑡𝑣,∑  ( 𝑡𝑣

−1 (𝑢1), 𝑡𝑣
−1 (𝑢2) ), (14) 

 

where ∑ is a correlation matrix, 𝑡𝑣 is the CDF of the one dimensional 𝑡𝑣 distribution 

and 𝑡𝑣,∑ is the CDF of the bivariate 𝑡𝑣,∑ distribution. The dependence structure of the 

t-copula is the same as the Gaussian’s that ranges between  𝜌 =  −1 and 𝜌 =  1. Just 

like in the Gaussian case, Figure 3.7 illustrates the counter-monotonic, independence 

and comonotonic copulas when 𝜏 =  −0.9, 𝜏 =  0.1 and 𝜏 =  0.9, respectively. The 

contour plots in Figure 3.7 below illustrate radial symmetry and that the PDF peaks at 

its centre, the latter is also shown in Figure 3.8 below. However, the t-copula is 

differentiated from the Gaussian in the tails of its distributions that have a longer reach 

as shown in the scatter and contour plots, as well as the density plots at the same 

dependence structure.  
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Figure 3. 7: Scatter and contour plots from three t-copula parameters  

Notes: The figures are from a bivariate random sample of size 1 000 simulated from t-copulas with 

dependence parameters of 𝝉 = −𝟎. 𝟗, 𝝉 = 𝟎. 𝟏 𝐚𝐧𝐝 𝝉 = 𝟎. 𝟗, respectively, which is equivalent to the 

copula parameters of 𝝆 = −𝟎. 𝟖, 𝝆 = 𝟎. 𝟏 and 𝝆 = 𝟎. 𝟖, respectively. 
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Figure 3. 8: Copula density plot from three t-copula parameters  

Notes: The figures are from a bivariate random sample of size 1 000 simulated from t-copulas with 

dependence parameters of 𝝉 = −𝟎. 𝟗, 𝝉 = 𝟎. 𝟏 𝒂𝒏𝒅 𝝉 = 𝟎. 𝟗, respectively, which is equivalent to the 

copula parameters of 𝝆 = −𝟎. 𝟖, 𝝆 = 𝟎. 𝟏 and 𝝆 = 𝟎. 𝟖, respectively.  

 

In summary of the Elliptical copula family, Figure 3.9 illustrates tail dependency as the 

key feature differentiating the Gaussian and t-copula from their surface plots. 
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Figure 3. 9: Contour plots from the Gaussian and t-copulas for two parameters  

Notes: The dependence parameters are 𝝉 = −𝟎. 𝟗 𝐚𝐧𝐝 𝝉 = 𝟎. 𝟗, respectively which is equivalent to the 

copula parameters of  𝝆 = − 𝟎. 𝟖 (left column) and 𝝆 =  𝟎. 𝟖) (right column). 

 
From Figure 3.9 above, given a scenario of counter-monotonic and comonotonic 

copulas shown in the left and right columns, respectively, it is demonstrated that the t-

copula has a sharper reach in the tails of the distributions given an identical 

dependence structure with the Gaussian copula.  

 

3.3.2.2 Archimedean Copulas 

 

The Archimedean copula family unlike the Elliptical family can model asymmetric 

dependencies. The three main copulas are Frank, Clayton and Gumbel that will be 

investigated further. Table 3.5 below presents a summary of the denotation and 

properties of the Archimedean copula family.  

 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



73 | P a g e  
 

Table 3. 5: Denotation and properties of bivariate Archimedean copulas 

Copula name Generator 
function 

Parameter 
range 

Kendall’s Tau 
(τ) 

Tail dependence 
(lower, upper) 

Frank −log [
𝑒𝜃𝑡−1

𝑒−𝜃−1
]  𝜃 ∈ ℝ\{0} 1 −

4

𝜃
+ 4

𝐷1(𝜃)

𝜃
 (0,0) 

Clayton 1

𝜃
(𝑡−𝜃 − 1) 𝜃 > 0 𝜃

𝜃 + 2
 (2

−
1
𝜃, 0) 

Gumbel (− log 𝑡)𝜃 𝜃 ≥ 0 1 −
1

𝜃
 (0, 2 − 2

1
𝜃) 

Source: Brechmann and Schepsmeier (2013) 

 

From Table 3.5, it is evident that the copula parameter ranges are unique to each 

copula. The Frank copula can accommodate negative and positive dependence 

structures whereas the Clayton and Gumbel are restricted to positive dependence. 

Also, the Clayton copula can model lower tail dependence whereas the Gumbel can 

model upper and lower tail dependence. 

 

Remark 2 

 

Further reiterating the importance of Kendall’s 𝜏 while using the Archimedean copula 

family, Table 3.5 above shows that 𝜃 is the copula parameter representing the 

dependence structure between the variables while each copula has a distinct 

parameter range. The dependence implied by each copula is not easily comparable 

with another, apart from the Elliptical family with an identical copula parameter range, 

𝜌 ∈ (−1,1), for the Gaussian and t-copula. Thus to make these copula parameters 

speak to one another and to enable researchers to compare apples with apples, 

literature has the implied copula dependence measures expressed in Kendall’s 𝜏 

(Brechmann and Schepsmeier, 2013). Kendall’s rank correlation is a non-parametric 

measure of dependence between variables that is defined at the copula level, making 

it invariant under monotonic transformations (Embrechts, McNeil and Strauman, 

2002). Furthermore, Kendall’s rank correlation unlike Pearson’s can measure 

nonlinear dependencies between two variables. Kendall’s coefficient of dependence 

therefore ranges between -1 and 1,  reflecting perfect negative and positive 

dependence, respectively. The R statistical software has a ‘CDVine’ Package created 

by Brechmann and Schepsmeier (2013) with the functions BiCopPar2Tau and 

BiCopTau2Par that enable programmers to link a copula parameter to Kendall’s 𝜏 and 

vice versa. The ‘VineCopula’ package is an extension of the CDVine package that 

links the copula parameter to the Kendall’s 𝜏 and vice versa as well (Stoeber et al., 
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2019). However, for the purposes of this study, the BiCopSelect function from the 

VineCopula package is used to fit the copulas to the data. This function produces both 

copula parameters and the associated Kendall’s 𝜏 as output. 

 

3.3.2.2.1 Frank copula  

 

The Frank copula is represented by the expression: 

 𝐶𝜃
𝐹𝑟  (𝑢1, 𝑢2) = -

1

𝜃
 ln(1 + 

(𝑒−𝜃𝑢1−1).(𝑒−𝜃𝑢1−1)

𝑒−𝜃−1
) ln(1 +

(𝑒−𝜃𝑢1−1).(𝑒−𝜃𝑢1−1)

𝑒−𝜃−1
) , (15) 

 

for 𝜃 ∈ ℝ \{0}. The Frechet-Hoeffding lower and upper bounds are reached when 𝜃 →

−∞ and 𝜃 → ∞ respectively. The Frank copula is unique to the rest of the Archimedean 

family because it has a radial symmetry shown in Figure 3.10 below and captures both 

positive and negative dependencies just like the Gaussian. The similarities between 

Gaussian and Frank is the reason why Tejeda and Goodwin (2008) compared the two 

modelling approaches. When compared to the t copula, the Frank copula cannot 

model tail dependence therefore it is more restricted in this regard. Figure 3.10 below 

illustrates the counter-monotonic, weak independence and comonotonic properties 

were 𝜏 =  −0.9, 𝜏 =  0.1 and 𝜏 =  0.9, respectively. The contour plots in Figure 3.10 

below illustrate radial symmetry and that the PDF peaks at its centre, the latter is also 

shown in Figure 3.11 below. 
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Figure 3. 10: Scatter and contour plot from three Frank copulas parameters 

Notes: The figures are from a bivariate random sample of size 1 000 simulated from Frank copulas with 

dependence parameters of 𝝉 = −𝟎. 𝟗, 𝝉 = 𝟎. 𝟏 𝒂𝒏𝒅 𝝉 = 𝟎. 𝟗, respectively, which is equivalent to the 

copula parameters of 𝜽 = −𝟎. 𝟖, 𝜽 = 𝟎. 𝟏 and 𝜽 = 𝟎. 𝟖, respectively. 
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Figure 3. 11: Copula density plots from three Frank copula parameters  

Notes: The figures are from a bivariate random sample of size 1 000 simulated from Frank copulas with 

dependence parameters of 𝝉 = −𝟎. 𝟗, 𝝉 = 𝟎. 𝟏 𝒂𝒏𝒅 𝝉 = 𝟎. 𝟗, respectively, which is equivalent to the 

copula parameters of 𝜽 = −𝟎. 𝟖, 𝜽 = 𝟎. 𝟏 and 𝜽 = 𝟎. 𝟖, respectively. 

 

3.3.2.2.2 Clayton copula  

 

The Clayton copula’s closed-form expression is given as follows:  

 𝐶𝜃
𝐶𝑙  (𝑢1, 𝑢2) = (𝑢1

−𝜃 + 𝑢2
−𝜃 −  1) − 

1

𝜃  , (16) 

where 𝜃 𝜖 [0,∞) . 

As 𝜃 → 0 this results in the independence copula whereas 𝜃 → ∞ produces the 

comonotonicity copula. The Clayton copula exhibits greater dependence of the lower 

tail captured by 𝜃 > 0 but due to parameter restrictions, this copula cannot model 

negative dependence in this current form (elaborated on under Remark 3 p.81). This 

copula, therefore, ranges between independence and positive co-dependency shown 

in Figure 3.12 below. As the copula moves away from the independence copula when 

𝜏 = 0.1, the contour plot is near radial symmetry but with evidence of lower tail 

dependence also shown in the scatterplot by a concentration of dots.  As Kendall’s 𝜏  

approaches the comonotonic copula, the contour plot is shown in Figure 3.12 below 
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becomes more pear-shaped showing significant lower tail dependence that is 

represented by the concentrated dots in the scatterplots and represented by the PDF 

in  Figure 3.13.  

 

Figure 3. 12: Scatter and contour plot from three Clayton copula parameters 

Notes: The figures are from a bivariate random sample of size 1 000 simulated from Clayton copulas 

with dependence parameters of 𝝉 = 𝟎. 𝟏, 𝝉 = 𝟎. 𝟓 𝒂𝒏𝒅 𝝉 = 𝟎. 𝟖, respectively, equivalent to the copula 

parameters of 𝜽 = 𝟎. 𝟏, 𝜽 = 𝟎. 𝟓 and 𝜽 = 𝟎. 𝟖 respectively. 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



78 | P a g e  
 

 

Figure 3. 13: Copula density plot from three Clayton copula parameters 

Notes: The figures are from a bivariate random sample of size 1 000 simulated from Clayton copulas 

with dependence parameters of 𝝉 = 𝟎. 𝟏, 𝝉 = 𝟎. 𝟓 𝒂𝒏𝒅 𝝉 = 𝟎. 𝟖, respectively, equivalent to the copula 

parameters of 𝜽 = 𝟎. 𝟏, 𝜽 = 𝟎. 𝟓 and 𝜽 = 𝟎. 𝟖, respectively. 

 
3.3.2.2.3 Gumbel copula 

 

The Gumbel copula is expressed as follows: 

 
𝐶𝜃
𝐺𝑢 (𝑢1, 𝑢2) = exp[– ((−𝑙𝑛 𝑢1)

𝜃 + (−𝑙𝑛 𝑢2)
𝜃)

1

𝜃, (17) 

 

where 𝜃 𝜖 [1,∞).   

 

𝜃 = 1 produces the independence copula whereas 𝜃 → ∞, results in the 

comonotonicity copula.  Therefore, this copula ranges between independence and 

positive co-dependency as shown in Figure 3.14 below. As the copula moves away 

from the independence copula shown by 𝜏 = 0.1, the contour plot is near radial 

symmetry but with evidence of upper tail dependence. As 𝜏 approaches the 

comonotonic copula (𝜏 = 0.8), the contour plot is a narrower pear-shaped showing a 
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weaker lower tail dependency and a strong upper tail dependence, also represented 

by the PDF in Figure 3.15 below.   

 

Figure 3. 14: Scatter and contour plot from three Gumbel copula parameters  

Notes: The figures are from a bivariate random sample of size 1 000 simulated from Gumbel copulas 

with dependence parameters of  𝝉 = 𝟎. 𝟏, 𝝉 = 𝟎. 𝟓 𝒂𝒏𝒅 𝝉 = 𝟎. 𝟖, respectively which is equivalent to the 

copula parameters of 𝜽 = 𝟎. 𝟏, 𝜽 = 𝟎. 𝟓 and 𝜽 = 𝟎. 𝟖, respectively.  
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Figure 3. 15: Copula density plot from three Gumbel copula parameters 

Notes: The figures are from a bivariate random sample of size 1 000 simulated from Gumbel copulas 

with dependence parameters of  𝝉 = 𝟎. 𝟏, 𝝉 = 𝟎. 𝟓 𝒂𝒏𝒅 𝝉 = 𝟎. 𝟖, respectively which is equivalent to the 

copula parameters of 𝜽 = 𝟎. 𝟏, 𝜽 = 𝟎. 𝟓 and 𝜽 = 𝟎. 𝟖, respectively.  

 

In summary of the Archimedean copula family, Figure 3.16 below illustrates the key 

distinguishing features between the copulas using a comonotonic copula example. 

 

Figure 3. 16: Contour plots for a Frank, Clayton, and Gaussian copula  

Notes: The three copulas have an identical dependence parameter of 𝝉 = 𝟎. 𝟖 which is equivalent to 

the copula parameter of 𝜽 =  𝟎. 𝟖. 

 

From Figure 3.16, the Frank copula is restricted to a central tendency with no tail 

dependency clearly shown by its contour plot. The Clayton copula’s contour plot shows 
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a strong lower tail dependency whereas the Gumbel has a strong upper tail 

dependence and a weaker lower tail dependence. 

 

Remark 3 

 

From the Clayton and Gumbel copula descriptions provided, it has been established 

why these copulas cannot capture negative dependence in their natural form. 

However, these two copulas can be rotated 90 and 270 degrees to enable them to 

model negative dependence, hence the names, for example, rotated 90 degrees 

Clayton copula or rotated 270 degrees Gumbel copula (Brechmann and Schepsmeier, 

2013). Rotating copulas is desirable to exploit some of the key features for example 

of the Gumbel’s tail dependence modelling capabilities that are otherwise restricted 

from being utilised in modelling negative dependences when in their natural form. The 

following are distribution functions of the rotated copulas and their respective 

equations explaining the effect of rotating a copula on dependence measured 

(Brechmann and Schepsmeier, 2013): 

 𝐶90(𝑢𝑖, 𝑣𝑖) = 𝑣𝑖 − 𝐶(1 − 𝑢𝑖, 𝑣𝑖), (18) 

 

 𝐶180(𝑢𝑖, 𝑣𝑖) = 𝑢𝑖 +  𝑣𝑖 − 1 − 𝐶(1 − 𝑢𝑖 , 1 − 𝑣𝑖), (19) 

 

 𝐶270(𝑢𝑖, 𝑣𝑖) = 𝑢𝑖 − 𝐶(𝑢𝑖, 1 − 𝑣𝑖), (20) 

 

where 𝑢𝑖 = ℙ(𝑦1𝑖 = 1) and 𝑣𝑖 = ℙ(𝑦2𝑖 = 1). 

 

Figure 3.17 below therefore utilises contour plots to illustrate the effect on dependence 

modelled by rotating Archimedean copulas.   
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Figure 3. 17: Contour plots from a rotated Clayton copula 

Notes: The Clayton copula is rotated 0, 90, 180 and 270 degrees and is modelled by standard normal 

margins with dependence parameters of 𝝉 = 𝟎. 𝟓 and 𝝉 = −𝟎. 𝟓. A rotated Gumbel copula follows the 

same rationale. 

 
From Figure 3.17, when rotated 0 and 180 degrees, the Clayton copula can model 

positive dependence structures whereas, at 90 and 270 degrees, negative 

dependence structures are accommodated. 

 

3.4.3 Goodness-of-fit Criteria 

 

There are different approaches to determining the Goodness-of-fit (GOF) of copula 

models that are continuously evolving while literature has not presented a consensus 

on a standard approach. This research has looked closely at similar studies that have 

implemented copula approaches to dependence modelling for an application in crop 

insurance risk modelling. The progression in the GOF approaches has moved from 

simply establishing whether a statistical model fits a dataset to being accompanied by 

hypothesis tests assessing whether a specific copula model is appropriate for the 

dataset. 
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From the earlier simpler approaches to determining GOF for copulas, three methods 

have come as common namely, use of the loglikelihood value, the Akaike Information 

Criterion (AIC) and the Bayesian Information Criterion of Schwarz (BIC)/Schwarz 

Bayesian criteria (SBC) (Tejeda and Goodwin, 2008; Zhu, Ghosh and Goodwin, 2008; 

Goodwin and Hungerford, 2014; Ahmed and Serra, 2015). From other finance and risk 

studies, Dias and Embrechts (2004), and Palaro and Hotta (2006) are also authors 

who have relied on the AIC as a GOF measure. 

 

To add context on the application of copulas and common matrices of determining 

GOF, literature studies included the following: in a viability study of a revenue-based 

crop insurance product for Spain, Ahmed and Serra (2015) firstly relied on the 

loglikelihood values to narrow down their copula choices for further analysis. A larger 

loglikelihood value represents a better model fit. Zhu, Ghosh and Goodwin (2008) 

while designing whole farm insurance contracts relied on the typical AIC and  BIC 

model selection methods in establishing the best fitting copula model. These two 

criteria were supported by the loglikelihood values of each copula. Tejeda and 

Goodwin (2008) analysed crop prices and yields using copulas to compare revenue-

based crop insurance products by different modelling approaches followed in both 

marginal distributions and dependence. The two authors compared the performance 

of copula models based on loglikelihood and AIC values obtained.  Goodwin and 

Hungerford (2014) applied copula methods in evaluating the degree to which weather 

and natural disaster risk tend to be systemic and state-dependent, and the implications 

they have on crop insurance and reinsurance contracts in the US. In determining the 

GOF of the copula models, the loglikelihood, AIC and  SBC were utilised, along with 

the Vuong test for non-nested models. 

 

Further context to the application of the simpler GOF tests outside of crop insurance 

studies comes from Dias and Embrechts (2004). The two utilised copulas to analyse 

the dependence structure of two-dimensional high-frequency data of foreign exchange 

spot rates for the US Dollar quoted against Germany and Japan’s currencies. They 

relied on copulas to analyse conditional dependencies, as well as investigating the 

existence of change-points and explored structural changes in dependencies. The AIC 

method was used to rank copula models.  On other hand, Palaro and Hotta (2006) 

made use of copulas in the estimation of Value at Risk (VaR) of a portfolio composed 
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of two assets namely the Nasdaq and S&P500 stock indices. They too relied on the 

AIC criterion in choosing a copula model for estimating VaR. 

 

Before this study explores other GOF approaches to copula applications, Fang, 

Madsen and Liu (2014) presented a good feasibility study on the application of the AIC 

in choosing an appropriate copula model. A key assumption is that given the true 

copula exists among the models being applied, the one with the smaller AIC value is 

supposed to be the true copula or otherwise the best one from the alternatives present. 

This is because the AIC measures the relative GOF of a statistical model.  A downside 

is that the AIC method does not conduct a formal test of GOF on whether the copula 

is appropriate for the situation.  However, the AIC method remains relevant when used 

under the stated assumptions in comparing different copula models fit thus allowing 

for distinguishing the best performing model. When the AIC method was compared to 

an alternative multiplier GOF test method, it emerged superior in ease of use and 

quickness of producing results. Further benefits highlighted accrued as a result of high 

computational costs associated with Cramer-von-Mises (CvM) test statistic particularly 

from a parametric bootstrapped-based GOF test, as well as the limitations associated 

with a larger sample size when relying on the latter approach (Kojadinovic and Yan, 

2011; Fang, Madsen and Liu, 2014). Fang, Madsen and Liu (2014) explored the 

multiplier GOF test method as an alternative to the Kolmogorov-Smirnov (KS) and 

CvM tests as suggested by Kojadinovic and Yan (2011) who also explored it as an 

alternative. 

 

Other approaches that moved away from the common approaches to establishing the 

better fitting copula model include the application of the Chen and Fen (2006) model 

selection by Ahmed and Serra (2015) that permitted the ranking of copulas while the 

goodness of fit was determined by the KS and CvM tests. From the latter tests, this is 

evidence of the momentum gained in the need and use for GOF tests that incorporate 

hypothesis tests to determine whether a copula is appropriate for the data. Studies by 

Christian Genest have gained prominence in alternative methods of GOF for copulas 

including Genest and Favre (2007) that provided two approaches, an informal method 

and a formal one. The informal approach is typical when establishing whether a 

dataset follows an assumed model by simulating values from the known theoretical 

models and superimposing values from a given dataset in a scatterplot. By doing so 
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one can see whether the empirical dataset follows the same path as the theoretical 

model. However, this method must be used with caution as shown by Genest and 

Favre (2007) that when the empirical dataset is small, it can be difficult to distinguish 

whether the theoretical model simulated values that reproduce the same dependence 

structure of the empirical data. The formal approach to establishing a GOF entails 

using bootstrapping techniques to compute a CvM and KS test statistics and using the 

p-values to decide on the appropriate model. This is an improvement to earlier 

methods by Weng and Wells in 2000 for Archimedean copulas that had a major 

downside in their approach that relied on a bootstrapping techniques that were 

ineffective hence their failure to produce p-values. Hence as a solution the authors 

recommended choosing a model according to the smallest value established of the 

CvM statistic.  

 

Formal GOF tests for copula models and the studies on them thereof is continuously 

evolving. For instance, Genest, Quessy and Rémillard (2006) provide an alternative 

method to computing p-values for different GOF test statistics based on a non-

truncated version of Kendall’s process whereby Wang and Well’s (2000) approach had 

used truncated versions. Genest and Remillard (2008) provide key assumptions 

necessary for a parametric bootstrap approach to give appropriate estimates of p-

values for GOF tests for multivariate distributions and copulas based on the CvM test 

statistic. Genest, Rémillard and Beaudoin (2009) use large Monte Carlo simulations 

to assess implications of sample size and strength of dependence on the level and 

power of blanket GOF tests for copula models. Genest et al. (2011) propose a GOF 

testing method for parametric extreme-value copulas that is based on a CvM test 

statistic. From this method, a parametric bootstrap procedure is used to estimate the 

test statistic while Monte Carlo simulations are used to assess the power of the test. 

These examples prove that the loglikelihood, AIC and BIC approach to GOF 

assessments can now be easily supported by an array of formal tests that incorporate 

the p-value in hypothesis testing. 

 

3.5 CONCLUSION 

 

In this chapter, there are three key points to consider going forward. The first is the 

choice of marginal distribution model used in modelling the data, and the second is 
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the model used in determining the dependence relationship between white maize yield 

and price for use in comparing crop insurance products. The third key point is the 

goodness-of-fit parameters used in determining which of these models best suits the 

data in this research. The first two key points are important because they influence the 

pricing of the insurable risk, as well as the presumed yield loss calculation. It has been 

established in the literature provided that the choice of marginal distribution model and 

the choice of model used to represent dependence relationships have in some cases 

under-priced or over-priced insurable risks as well as resulted in over-paid or under-

paid indemnities. The third key point is therefore important in minimising the chances 

of picking models that will misrepresent the insurable risks which is crucial if the market 

is to have a viable and sustainable crop insurance product. The following chapters will 

provide the methodology used in applying the different models, followed by the results 

from the application showing a comparison of MPCI and CRI.   
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CHAPTER 4 

 

METHODOLOGY  

 

4.1 INTRODUCTION 

 

The methodology to be implemented has seven key steps that are summarised in 

Figure 4.1 below while the study’s analytical results are presented in Chapter 5.  

 

Figure 4. 1: Methodology Summary 
 

• The first step transforms the raw SA white maize yield and price data into 

logged first differenced yield and logged price changes data, respectively.  

• The second step highlights the stationarity requirement of the data before 

modelling can be done. Both datasets will go through further transformations 

and processes to achieve stationarity. Specifically, the logged, first differenced 

white maize yield data is put through a deterministic log-linear detrending 

technique to produce yield residual values that are typically trend stationary. 

The price data is turned into logged price changes data which is also typically 

stationary. This is achieved by taking the difference between the logged 

average expected harvest and logged average harvesting contract prices of 

white maize. Formal tests for stationarity are run utilising the Augmented-

Dickey Fuller (ADF) and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests. 
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• In step three different families of distributions are fit onto the two stationary 

datasets. Before these distributions are imposed on the data, the datasets 

again go through different processes and transformations to accommodate all 

the distributions. The logged price changes and yield residuals data are 

translated upwards, while the latter is also parameterised to the range  0 < 𝑥 <

1 and then the distributions are fit. Different GOF tests are used to assess the 

fit of the different distributions on the data. GOF tests used are the AIC and BIC 

criterion, the KS and CvM test statistics, and the maximum loglikelihood values. 

• Step four entails generating CDF values from each distribution model that was 

fit on the datasets.  

• Step five fits different copulas to the generated CDF values to establish the 

dependence relationship between the two variables, yield and prices. To 

determine the GOF of the copulas to the data, the AIC, BIC and loglikelihood 

values are used, as well as incorporating hypothesis testing while relying on the 

p-values from the KS and CvM tests. 

• Step six utilises the copula dependence structure established between the 

variables as well as the specified marginal distributions in a Monte Carlo 

simulation to produce 100 000 variates of price and yield CDF values for use in 

comparing different crop insurance products.  

• Finally, step seven goes through numerous processes and transformation to 

get the 100 000 variates of price and yield CDF values back to an expected 

white maize yield and an average July harvest price for use in calculating 

expected losses and actuarially fair crop insurance premium rates for yield and 

revenue insurance products (MPCI and CRI respectively). 

 

4.2 THE DATA MODELLING APPROACH 

 

4.2.1 Modelling Maize Data 

 

For the analysis of the white maize yield data, stationarity is a requirement covered in 

Step 2 of the methodology summary (refer to Figure 4.1). The following (Procedure 1) 

is implemented to transform the data to achieve stationarity:  

 

Procedure 1 
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1. Transform the variable 𝑌𝑖𝑒𝑙𝑑𝑠 to log(𝑦𝑖𝑒𝑙𝑑𝑠) e.g. 𝑙𝑛(𝑦𝐵𝑙𝑜𝑒𝑚𝑓𝑜𝑛𝑡𝑒𝑖𝑛). 

2. Transform logged yields to the first difference (resulting in one less row of 

observations), 

𝑙𝑛(𝑦𝑖𝑒𝑙𝑑𝑠)𝑡 − 𝑙𝑛(𝑦𝑖𝑒𝑙𝑑𝑠)𝑡−1, where 𝑡 is time in years. 

3. Produce yield residual values from the following deterministic log-linear trend 

equations produced using excels Regression function: 

 𝑙𝑛(𝑦𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡) =  𝛽0 + 𝛽1𝑡 + 𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡 (21) 

 

where 𝛽𝑖 (𝑖 = 0, 1) are the regression coefficients and 𝑒𝑗 are residual errors for 

the specific districts. 

4. Conduct an ADF and KPSS stationarity test on the yield residual values 

obtained.  

 

For the white maize yield residuals, five distributions are considered, namely the 

normal, lognormal, Weibull, beta and gamma distribution models. The choice of these 

distributions follows from discussions in section 3.1 where the goal is finding an 

appropriate alternative to the normal distribution if it exists and to assess the 

performance thereof of these alternative distributions models when comparing crop 

insurance policies.   

 

For the distribution model fitting, the yield residuals data is transformed, covered in 

Step 3 of the methodology summary (refer to Figure 4.1, p.87). To accommodate the 

necessary domain and support the values of all distributions, a translation by a factor 

of 2 units is imposed, followed by a parameterising process. Refer to Remark 4 (on 

p.90) which vividly explains the purpose of translating and parameterising the yield 

residuals. The following (Procedure 2) is implemented to transform the data to fit 

different distribution models on the variables:  

 

Procedure 2 

1. Translate the yield residuals by a factor of 2 (i.e. 𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡 + 2) 

2. Transform the yield residuals such that the variables are strictly in the range 

[0,1] for the years 2004 to 2016 that is the time periods 𝑡 =  1, … , 13. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



90 | P a g e  
 

Therefore, the parameterizing factor is given by,  

 
Transformation factor (𝑧) =  

1

∑(𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡+2)
. 

(22) 

 

    The equation for the transformed yield residuals  in the range [0,1] is given 

as, 

 
𝑣𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =

𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡

𝑧
, 

(23) 

 

where 𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡 are residual errors for the specific districts and 𝑧 is the  

             transformation factor as given in equation (22). 

3. Fit the distributions to the transformed yield residual variables. 

4. Generate CDF values from the specified marginal distributions. 

 

Remark 4 

 

From the methodology summary (refer to Figure 4.1, p.87), step 3 covers the 

distribution fitting process. Procedure 2 above includes the process of translating the 

yield residuals by a factor of 2 units followed by parameterising the values between 0 

and 1 bounds. Translating the yield residuals simply adds 2 to the yield residuals 

values to ensure that all of the variables become positive while maintaining the shape 

of their graph which in this case has the effect of shifting it upwards by 2 units. The 

initial process of translating is done to get rid of negative values since, for example, 

the lognormal and gamma distributions cannot model them because they are more 

suited for positive skewness. Figure 4.2 below illustrates that the yield residuals values 

currently fall between negative and positive values. Parameterizing the values simply 

scales down the data so that it is restricted between 0 and 1 bounds while also 

maintaining the shape of the initial values’ figure. Parameterizing the yield residuals 

between 0 and 1 is done to accommodate the beta distribution that is restricted to this 

domain.  
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Figure 4. 2: Graph of yield residuals for the districts – Bloemfontein, Delmas and 

Vryburg 

 

In Chapter 5 covering the application and results, Table 5.3 (on p.102) will illustrate 

the different yield residuals values, some positive and some negative which is also 

shown in Figure 4.2 above. Figure 5.1 (on p.101) is then given as evidence illustrating 

that the different transformations do not alter the shape of the graph. It should be noted 

that all these transformations will be undone (by Procedure 6 in section 4.4.) to get 

back to the original state of yield values to compare crop insurance products. 

  

4.2.2 Modelling Price Data 

 

For the analysis of the price data, stationarity is a requirement covered in Step 2 of the 

methodology summary (refer to Figure 4.1, p.87).  The following (Procedure 3) is 

implemented to transform the data for purposes of achieving stationarity:  

 

Procedure 3 

 

1. Transform the variable 𝑃𝐴𝐸𝐻 to 𝑙𝑛(𝑃𝐴𝐸𝐻) and 𝑃𝐴𝐽𝐻 to 𝑙𝑛(𝑃𝐴𝐽𝐻). 

2. Calculate logged price changes as 𝑙𝑛(𝑃𝐴𝐽𝐻) − 𝑙𝑛(𝑃𝐴𝐸𝐻). 
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3. Conduct an ADF and KPSS test for stationarity on 𝑙𝑛(𝑃𝐴𝐽𝐻) − 𝑙𝑛(𝑃𝐴𝐸𝐻). 

 

For the logged price changes data, two distributions are considered, namely the 

normal and lognormal models. The choice of these distributions follows discussions in 

section 3.1 were the goal is finding an appropriate alternative to the normal distribution 

and to assess its performance in the comparison of crop insurance policies.  

 

For the distribution model fitting, covered in Step 3 of the methodology summary (refer 

to Figure 4.1, p.87) the logged price changes data is transformed. To accommodate 

the necessary domain and support the values of the two distributions, a translation by 

a factor of 2 units is imposed (refer to Remark 4 on p.90 which vividly explains the 

purpose of translating the yield residuals data which is also applicable to the logged 

price changes data). The following (Procedure 4) is implemented to transform the data 

to fit the normal and lognormal distributions models on the 𝑙𝑛(𝑃𝐴𝐽𝐻) − 𝑙𝑛(𝑃𝐴𝐸𝐻) data 

and generating CDF values: 

 

Procedure 4 

 

1. The 𝑙𝑛(𝑃𝐴𝐽𝐻) − 𝑙𝑛(𝑃𝐴𝐸𝐻) data is translated by 2 units to 

 (ln (𝑃𝐴𝐽𝐻) − ln (𝑃𝐴𝐸𝐻)) + 2. (24) 

 

2. Fit the distributions to the transformed 𝑙𝑛(𝑃𝐴𝐽𝐻) − 𝑙𝑛(𝑃𝐴𝐸𝐻) data. 

3. Generate CDF values from: 

a. normal distribution. 

b. lognormal distribution. 

 

Remark 5 

 

From the methodology summary (refer to Figure 4.1, p.87), step 3 covers the 

distribution fitting process. Procedure 4 above includes the process of translating the 

logged price changes data by a factor of 2 units. Translating the price changes values 

simply adds 2 to the logged price change values to ensure that all of the variables 

become positive while maintaining the shape of their graph which in this case has the 

effect of shifting it upwards by 2 units. This process of translating was done to get rid 
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of negative values since the lognormal distribution cannot accommodate them 

whereas we want to model the data with the distribution. Figure 4.3 below illustrates 

that the logged price changes data has some positive and some negative values 

hence the need for transforming these variables as explained previously. 

 

 

Figure 4. 3: Graph of logged price changes data 
 

In Chapter 5 covering the application and results, Table 5.6 (p.105) illustrates the 

different logged price changes values, some positive and some negative which is also 

shown in Figure 4.3 above. Figure 5.9 will therefore be given as evidence illustrating 

that the different transformations do not alter the shape of the graph. It should be noted 

that all these transformations will be undone (by Procedure 6 in section 4.4.) to get 

back to the original state of price values for comparing crop insurance policies. 

 

4.3 COPULA FITTING PROCEDURE 

 

To establish the dependence relationship between SA white maize yield and prices, 

copula functions are fit to the CDF values from the specified marginal distributions. 

The result of this process is that each copula produces a certain dependence structure 

(i.e. a copula parameter and Kendall’s 𝜏), as well as different GOF parameters namely 
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AIC, BIC and loglikelihood values. However, the formal GOF test that incorporates 

hypothesis testing will still need to be done as a separate test. The following 

(Procedure 5) is implemented were different copulas are fit to the data and then the 

formal GOF test for copula models is conducted: 

 

Procedure 5 

 

1. Through the BiCopselect function of the Package ‘VineCopula’ for statistical 

analysis of the R statistical program, different copulas are fit to the CDF values 

from the transformed yield residuals and logged price changes data to establish 

dependence. 

2. Through the gofCopula function from the Package ‘Copula’ and the 

BiCopGofTest function from the Package ‘VineCopula’ of statistical analysis 

belonging to the R statistical program, formal GOF tests of Genest, Rémillard 

and Beaudoin (2009), and Genest, Quessy and Rémillard (2006) are utilised. 

    

The results of the copula procedure are presented in Chapter 5.  

 

Remark 6 

 

In section 3.2.2, it was established that a copula is defined on the unit interval [0,1] 

from the unit d-cube interval [0, 1]𝑑. This is the reason why most copula fitting 

procedures perform a function converting variables of interest into pseudo-

observations i.e. standard uniform margins on the interval [0,1]. However, Procedure 

5 above intentionally does not include that process because this research is fitting 

copulas with CDF values from different distributions which are naturally in the unit 

interval [0,1]. 

 

4.4 COMPARING CROP INSURANCE PRODUCTS 

 

To compare crop insurance products, this research needs to simulate price and yield 

variables to calculate expected losses and premium rates. Therefore from Procedure 

5 above, a certain copula produced a certain dependence parameter and both (copula 

and parameter) are used in a Monte Carlo simulation to produce variates of the yield 
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and price variables that follow the specified marginal distribution models. Essentially 

the Monte Carlo is producing variates that follow a certain distribution model covered 

and established in Procedure 2 and Procedure 3  for yields and prices respectively 

while relying on the copula for the dependence structure that the simulated values 

must follow. The actual steps leading to the comparison of crop insurance products 

therefore follow the process (Procedure 6)  explained below: 

 

Procedure 6 

 

1. The copula and its established dependence structure are used in a Monte 

Carlo simulation to generate 100 000 CDF values from the specified 

marginal distributions. The probability inverse transformation (Bain and 

Engelhardt, 1992) is used to obtain 100 000 random variates (from 

generated CDF values) of the transformed yield residuals,  𝑣𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑗  and 

transformed logged price changes, 𝑣𝑃𝐶𝑗  where, 

 

  𝑣𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑗 =
𝒆𝑫𝒊𝒔𝒕𝒓𝒊𝒄𝒕𝒋

𝑧𝑗
                                (25) 

 

and 

 

  𝑣𝑃𝐶𝑗 = (𝑙𝑛(𝑃𝐴𝐽𝐻) − ln (𝑃𝐴𝐸𝐻)) + 2 , (26) 

 

where 𝑧𝑗 are the transformation factors (see equation (23)), for 𝑗 =

1,… ,100 000 simulated variates. 

 

2. Obtain the original yield residuals and price change values as follows:  

 
𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡 = 𝑣𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑗  ×  

1

∑(𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡+2)
 , 

 
(27) 

 

and 

  𝑃𝐶 = 𝑒
(𝑣𝑃𝐶𝑗

−2 )
, (28) 
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       where  
1

∑(𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡+2)
 is the transformation factor. 

3. The final expected yield and 𝑃𝐴𝐽𝐻𝑡are respectively obtained as follows: 

 𝑦𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡 = 𝑒
(𝛽0+𝛽1𝑡+𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡),  (29) 

 

where 𝛽𝑖 (𝑖 = 0, 1) are the regression coefficients and 𝑒𝑗 are residual errors. 

  𝑃𝐴𝐽𝐻𝑡 = 𝑃𝑐𝑡 + 𝑃𝐴𝐸𝐻𝑡−1 (30) 

 

After undoing the transformations done, the simulation procedure will have produced 

100 000 variates of price changes for the year 2018. Insurers need this value to 

forecast an expected harvesting price (𝑃𝐴𝐽𝐻2018) for the year 2018  to price crop 

insurance policies for the 2017/18 maize season (planted in 2017 and harvested in 

2018). Therefore, at the insurers' disposal during the planting window is the 𝑃𝐴𝐸𝐻2018 

while they can simulate the 𝑃𝑐2018 from the copula dependence structure between the 

historic maize yield and price data. The following is the equation that is used to get the 

𝑃𝐴𝐽𝐻2018: 

𝑃𝑐𝑡 = 𝑃𝐴𝐽𝐻𝑡 − 𝑃𝐴𝐸𝐻𝑡−1
 

𝑃𝑐2018 = 𝑃𝐴𝐽𝐻2018 −  𝑃𝐴𝐸𝐻2017
 

  𝑃𝐴𝐽𝐻2018 = −𝑃𝑐2018 + 𝑃𝐴𝐸𝐻2017 (31) 

 

4. The indemnity payouts for revenue and yield insurance products are 

calculated as follows (Ahmed and Serra, 2015): 

a. Revenue insurance indemnity payout is max [(𝛿𝑗𝑅𝑗
𝑒 − 𝑅𝑗) ,0] 𝑗 =

1,… ,100000, where, 𝑅𝑗 = 𝑌𝑗 ×  𝑃𝐴𝐽𝐻𝑡 is total annual revenue, 𝑅𝑗
𝑒 = 𝐸(𝑅𝑗) 

is the expected revenue and 𝛿𝑗 ∈ (0,1) is the coverage level percentage. 

An indemnity payout of the value (𝛿𝑗𝑅𝑗
𝑒 − 𝑅𝑗  ) is made to the farmer by 

the insurance company when 𝑅𝑗 ≤ 𝛿𝑗𝑅𝑗
𝑒 i.e. when revenue received is 

less than the coverage amount. Thus, the expected revenue loss 

computation is, 

 𝐸𝐿(𝑅𝑗,𝑡) = 𝐸[(𝛿𝑅𝑗,𝑡
𝑒 − 𝑅𝑗,𝑡)𝐼(𝑅𝑗,𝑡 ≤  𝛿𝑅𝑗,𝑡

𝑒 )] (32) 
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b. A yield insurance indemnity payment is max [(𝛿𝑗𝑌𝑗
𝑒 − 𝑌𝑗) ,0] 𝑗 =

1,… ,100000, where, 𝑌𝑗   is the annual white maize yield, 𝑌𝑗
𝑒 = 𝐸(𝑌𝑗) is 

the expected annual yield and 𝛿𝑗 ∈ (0,1) is the coverage level 

percentage. An indemnity payout of the value (𝛿𝑗𝑌𝑗
𝑒 − 𝑌𝑗  ) × 𝑃𝑡

𝑒 is 

made to the farmer by the insurance company when 𝑌𝑗 ≤ 𝛿𝑗𝑌𝑗
𝑒 i.e. 

when the yield harvested is the less than the coverage amount and 

where 𝑃𝑡
𝑒 = 𝐸(𝑃𝐴𝐽𝐻𝑡) is the expected price. Thus, the expected yield 

loss computation is,  

 𝐸𝐿(𝑌𝑗,𝑡) = 𝐸[(𝛿𝑌𝑗,𝑡
𝑒 − 𝑌𝑗,𝑡)𝐼(𝑌𝑗,𝑡 ≤  𝛿𝑌𝑗,𝑡

𝑒 )] × 𝑃𝑡
𝑒 (33) 

 

5. The actuarially fair insurance premium rate for revenue and yield 

insurance policies is calculated as a ratio (Goodwin and Ker, 2008; Ahmed 

and Serra, 2014):  

a.    

 
𝐸𝐿(𝑅𝑗,𝑡)

𝐸(𝛿𝑗,𝑡 𝑅𝑗,𝑡
𝑒 )

 ,  (34) 

 

for a revenue-based crop insurance policy. 

b.  

 
𝐸𝐿(𝑌𝑗,𝑡)

𝐸(𝛿𝑗,𝑡 𝑌𝑗,𝑡
𝑒 )
 ,  (35) 

 

for a yield-based crop insurance policy.  

The actuarially fair premium is an idealised calculation excluding 

administrative and other costs to an insurance scheme. Thus, in theory, 

the actuarially fair premium would equal the expected insured loss or 

put differently the value of expected compensation (Goodwin and 

Mahul, 2004; Coble and Barnett, 2013). By this reasoning, it is 

calculated as an insurance premium rate expressed as a ratio (or %) of 

expected loss to total liability which represents the unit paid in premium 

for each unit of liability covered (Goodwin and Mahul, 2004). 
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Now that a comprehensive description of Procedure 6 has been provided covering 

derivations of expected loss and actuarially fair premium rate calculations, the 

following section looks at the crop insurance comparison results.  

 

4.5 BENCHMARK MODEL AND METHODOLOGY SUMMARY 

 

The approaches to be implemented in modelling the marginal distributions and 

dependence structures of the two risks, yield and prices for SA white maize are 

summarised in Figure 4.4 below.  

 

 

Figure 4. 4: Risk Modelling Techniques Summary 
 

From Figure 4.4, the benchmark model distinguished in yellow consists of the normal 

distribution models fit onto both price and yield variables while the dependence 

relationship is modelled by a Gaussian copula (Goodwin, 2015). Moving further down 

from the benchmark model as shown by the downward-facing arrow, represents the 

progression in risk modelling techniques that have not necessarily been used together. 

While maintaining the Gaussian copula for dependence modelling, alternative models 

to the normal distribution for modelling yield and prices are explored (Atwood, Shaik 

and Watts, 2002; Ramirez, Misra and Field, 2003; Sherrick et al., 2004; Tejeda and 

Goodwin, 2008; Goodwin and Hungerford, 2014; Goodwin, 2015). Thus, this 

represents ‘Case 2’ discussed in section 1.2 with the intent of assessing the 

implications of alternative marginal distribution models on the dependence relationship 

established by the Gaussian. The last approach uses a combination of alternative 

marginal distributions as well as alternative dependence models by including the t-

copula, Frank, Gumbel, and Clayton copulas.  
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4.6 CONCLUSION 

 

In this chapter, the methodology was presented while highlighting it’s seven key steps. 

Steps one and two entailed putting the raw data namely white maize yield and prices 

through various processes and transformations to achieve stationarity; the two steps 

were covered in Procedure 1 and Procedure 3 for the yield and price data, 

respectively. Steps three and four added further transformations to the stationary data 

of yield and prices to accommodate the marginal distribution model fitting procedure 

which is necessary to produce CDF values as represented by a specific distribution 

for the copula procedure, covered by Procedure 2 and Procedure 4 for yields and 

prices respectively. Step 5 entailed fitting the different copula models onto the CDF 

data to establish the dependence relationship between the yield and price of white 

maize in SA and this was covered in Procedure 5 which also highlighted the necessary 

R functions used in the fitting process as well as in establishing the goodness-of-fit 

tests. Step six and seven entailed generating variates of CDF values through a Monte 

Carlos simulation according to the marginal distributions modelled and dependence 

structure established by the copula for purposes of comparing yield and revenue 

insurance products while this was covered in Procedure 6. Furthermore, Procedure 6 

highlighted the necessary process of converting the simulated CDF values back to the 

initial yield and price variables, and importantly, the indemnity and premium rate 

calculation required to compare the different crop insurance products. Lastly in this 

Chapter, a detailed summary is presented highlighting the progression in crop 

insurance risk modelling techniques over the years that was illustrated in Figure 4.4. 

The following Chapter 5 will be presenting the results from executing the seven key 

steps of the methodology as highlighted by Procedures 1 - 6.  
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CHAPTER 5 
 

APPLICATION TO THE COPULA FITTING PROCEDURE 

 

5.1 INTRODUCTION 

 

In this chapter, results from the application of the methodology leading to the copula 

fitting procedure are presented. The methodology was summarised into seven key 

steps of execution, covered by six procedures (refer to Chapter 4). This chapter 

presents results up to step 5 (up to Procedure 5) as follows: 

• Step 1 - results of transforming the yield data by logging, first differencing and 

lastly detrending to produce yield residuals. Results of transforming the price 

data into price changes and logged price changes are presented.  

• Step 2 - results of informal and formal stationarity verification and testing of the 

transformed data.  

• Step 3 - implications of transforming the yield residuals and logged price 

changes data for the distribution model fitting procedure are shown. Results of 

the distribution fitting process are presented.  

• Step 4 - from the different distribution models fit, CDF values are produced and 

presented along with their parameters and goodness-of-fit (GOF) parameters. 

• Step 5 - results of the copula fitting procedure are presented showing 

dependence parameters obtained and GOF parameters. 

 

5.2 DATA TRANSFORMATION 

 

5.2.1 White Maize Yields 

 

The following Tables 5.1 to 5.3 show the transformations that the district level white 

maize yield data goes through, from logging, then first differencing and finally the yield 

residual values produced from the detrending process (covering Procedure 1, from 

Chapter 4).   

 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



101 | P a g e  
 

Table 5. 1: Logged District Level White Maize Yield Data 

Year 𝒍𝒏(𝒚𝑩𝒍𝒐𝒆𝒎𝒇𝒐𝒏𝒕𝒆𝒊𝒏) 𝒍𝒏(𝒚𝑫𝒆𝒍𝒎𝒂𝒔) 𝐥𝐧 (𝒚𝑽𝒓𝒚𝒃𝒖𝒓𝒈) 

2004 0.19 1.22 0.63 

2005 1.07 1.79 0.63 

2006 1.42 2.04 0.52 

2007 0.03 0.77 0.63 

2008 1.19 1.94 1.21 

2009 1.39 1.82 1.21 

2010 1.61 1.79 1.29 

2011 1.29 1.76 1.37 

2012 1.38 1.88 0.83 

2013 0.96 1.71 0.52 

2014 1.24 1.67 1.58 

2015 0.80 1.67 0.95 

2016 -0.44 1.51 0.74 

2017 -0.06 2.04 1.47 

 

Table 5. 2: Logged First Difference District Level White Maize Yield Data 

Year 𝒍𝒏(𝒚𝑩𝒍𝒐𝒆𝒎𝒇𝒐𝒏𝒕𝒆𝒊𝒏)_1 𝒍𝒏(𝒚𝑫𝒆𝒍𝒎𝒂𝒔)_1 𝐥𝐧 (𝒚𝑽𝒓𝒚𝒃𝒖𝒓𝒈)_1 

2004 N/A N/A N/A 

2005 0.88 0.57 0.00 

2006 0.36 0.24 -0.11 

2007 -1.39 -1.26 0.11 

2008 1.16 1.16 0.58 

2009 0.20 -0.12 0.01 

2010 0.22 -0.03 0.08 

2011 -0.32 -0.03 0.08 

2012 0.09 0.12 -0.55 

2013 -0.42 -0.17 -0.30 

2014 0.28 -0.05 1.06 

2015 -0.44 0.00 -0.63 

2016 -1.24 -0.16 -0.21 

2017 0.38 0.53 0.73 
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Table 5. 3: District Level White Maize Yield Residual Values  

Year 𝒆𝑩𝒍𝒐𝒆𝒎𝒇𝒐𝒏𝒕𝒆𝒊𝒏 𝒆𝑫𝒆𝒍𝒎𝒂𝒔 𝒆𝑽𝒓𝒚𝒃𝒖𝒓𝒈 

2005 0.53 0.48 -0.03 

2006 0.07 0.16 -0.15 

2007 -1.62 -1.34 0.07 

2008 0.99 1.09 0.53 

2009 0.10 -0.19 -0.04 

2010 0.18 -0.10 0.02 

2011 -0.30 -0.09 0.02 

2012 0.17 0.07 -0.62 

2013 -0.28 -0.22 -0.38 

2014 0.49 -0.10 0.98 

2015 -0.18 -0.05 -0.72 

2016 -0.91 -0.20 -0.30 

2017 0.77 0.49 0.63 

 

Figure 5.1 below summarises the initial transformation results of the district level white 

maize yield data. From left to right, the first column shows the logged data, the second 

column illustrates the first differencing effect, and the third column is the yield 

residuals. It is evident from the third column of Figure 5.1 constructed from values in 

Table 5.3 that yield residuals have both negative and positive values, hence the need 

for further transformations to accommodate the distribution models that need to be fit 

onto this data (explained in Chapter 4, Procedure 2 and Remark 4 on p.90). 
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Figure 5. 1: District Level Yield Data Transformations 
 

Procedure 1 is therefore necessary for the following two important reasons: Firstly,  it 

removes the trend in the yield data. Secondly, it produces trend stationary yield 

residual values that are commonly used in analysis as a representative sample of the 

yield data (Just and Weninger, 1999).   

 

The deterministic log-linear trend equations for the different district’s yield data are 

established as: 

 𝑦𝐵𝑙𝑜𝑒𝑚𝑓𝑜𝑛𝑡𝑒𝑖𝑛 = 0.41𝑡 − 0.061 + 𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡, (36) 

 𝑦𝐷𝑒𝑙𝑚𝑎𝑠 = 0.0042𝑡 − 0.092 + 𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡, (37) 

 𝑦𝑉𝑟𝑦𝑏𝑢𝑟𝑔 = 0.0062𝑡 − 0.021 + 𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡, (38) 

 

where 𝑡 is time in years. 

 

Figure 5.2 below illustrates the residuals as produced by the log-linear detrending 

equations. Visually, the residuals for Bloemfontein, Delmas and Vryburg suggest a 

trend-stationary time series given the evidence of the series reverting about a constant 

mean of zero.  
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Figure 5. 2: Time Residual Plots 
 

Table 5.4 below presents the results of the ADF and KPSS formal tests for stationarity 

on the yield residuals series for the three districts.  

 

Table 5. 4: Stationarity Testing of Yield Residuals 
 

ADF test (P-value) KPSS test (P-value) 

𝒆𝑩𝒍𝒐𝒆𝒎𝒇𝒐𝒏𝒕𝒆𝒊𝒏 -4.80***(0.010) 0.11*(0.100) 

𝒆𝑫𝒆𝒍𝒎𝒂𝒔 -5.52**(0.013) 0.14*(0.063) 

𝒆𝑽𝒓𝒚𝒃𝒖𝒓𝒈 3.89**(0.049) 0.14*(0.055) 

Notes: Statistical significance levels represented by *, **, and *** for 10%, 5% and 1% respectively.  

 

The ADF test rejects a null hypothesis of a unit-root at a 1% level of significance for 

Bloemfontein and a 5% level of significance for Delmas and Vryburg in favour of the 

alternative trend-stationary hypothesis. However, the KPSS manages to reject the 

trend-stationary null hypothesis in all the districts at a 10% level of significance. The 

inconsistency in the results from the two tests can be attributed to the small yield data 

sample size. Due to the scarcity of low level aggregated yield data at a district level, 

this study was restricted to a limited data points of fourteen variables, while a larger 
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sample that is aggregated at an even lower level would have been preferred for 

analysis. Despite these inconsistencies, the formal ADF test for stationarity allows for 

this research to confidently state that the yield residuals are trend stationary and this 

supports the initial informal stationarity suggestions from Figure 5.2. 

 

5.2.2 White Maize Prices 
 

The following Tables 5.5 to 5.6, and Figure 5.4 show the transformation that the 

different prices for white maize go through, from first getting the price changes 

variable, to logging the data to produce logged price changes (covering Procedure 3, 

from Chapter 4).   

 

Table 5. 5: White Maize Futures Prices 

Year 𝑷𝑨𝑬𝑯 𝑷𝑨𝑱𝑯 𝑷𝑪 

2004 987.26 881.27 -106.00 

2005 1002.70 600.50 -402.20 

2006 761.51 1397.43 635.91 

2007 1182.34 1654.60 472.26 

2008 1464.71 2019.69 554.98 

2009 2000.94 1342.00 -658.94 

2010 1499.87 1103.87 -396.01 

2011 1365.67 1771.71 406.05 

2012 1822.46 2484.35 661.89 

2013 2219.68 2258.50 38.82 

2014 2056.63 1705.39 -351.24 

2015 1934.78 3184.28 1249.50 

2016 2871.95 4522.00 1650.05 

2017 2754.00 1835.69 -918.31 
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Table 5. 6: Logged Price Data 

Year 𝒍𝒏(𝑷𝑨𝑬𝑯) 𝒍𝒏(𝑷𝑨𝑱𝑯) 𝒍𝒏(𝑷𝑨𝑱𝑯) − 𝒍𝒏(𝑷𝑨𝒆𝑯) 

2004 6.89 6.78 -0.11 

2005 6.91 6.40 -0.51 

2006 6.64 7.24 0.61 

2007 7.08 7.41 0.34 

2008 7.29 7.61 0.32 

2009 7.60 7.20 -0.40 

2010 7.31 7.01 -0.31 

2011 7.22 7.48 0.26 

2012 7.51 7.82 0.31 

2013 7.71 7.72 0.02 

2014 7.63 7.44 -0.19 

2015 7.57 8.07 0.50 

2016 7.96 8.42 0.45 

2017 7.92 7.52 -0.41 

 

Figure 5.3 illustrates the transformation of the data from price changes to logged price 

changes form. As expected, the shape of the graph has remained relatively the same 

but the domain that the values fall in has been restricted by logging. 
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Figure 5. 3: Transformed White Maize Price Changes 
 

The following Table 5.7 below presents the results of the ADF and KPSS formal tests 

for stationarity on the logged price changes data.   

 

Table 5. 7: Unit root testing 

 ADF (P-value) KPSS test (P-value) 

𝒍𝒏(𝑷𝑨𝑱𝑯) − 𝒍𝒏(𝑷𝑨𝒆𝑯) -3.81*** (0.01) 0.08 *(0.1) 

Notes: Statistical significance levels represented by *, **, and *** for 10%, 5% and 1% respectively.  
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The ADF test rejects a null hypothesis of a unit-root at a 1%, 5% and 10% level of 

significance in favour of the alternative stationary hypothesis since the p-value (0.01) 

is less than the above-mentioned level of significances. The KPSS test rejects the 

stationarity null hypothesis at only 10% level of significance. Again, the stationarity 

testing was conducted on a small sample size is possibly the reason for the 

inconsistencies in the stationarity testing results. Because this research is in part 

conducting a dependence study of yields and prices, the latter was restricted to the 

same sample size of the scarce yields. Despite these inconsistencies, the formal ADF 

test for stationarity allows for this research to confidently state that the yield residuals 

are stationary, and this supports the informal stationarity suggested in Figure 5.3 

above. 

 

5.3 MODELLING THE MARGINAL DISTRIBUTIONS 

 

This section presents the results of fitting different marginal distribution models onto 

the transformed yield residuals and logged price changes data to produce CDF values.  

The variables are transformed to accommodate the domains of the different 

distribution models (explained in Remarks 4 and 5 in Chapter 4, p. 90 - 92). Recalling 

that the CDF values are important for their purpose in the copula fitting procedures as 

well as in simulation exercises in the latter sections and chapter.  

 

5.3.1 Distributions for Yields 

 

The following Figure 5.5 below illustrates the results of the transformation procedures 

that the yield residual values have gone through for the three districts.  
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Figure 5. 4: Yield Residual Data Transformations  

Notes: The first column consists of yield residuals graphs. The second column illustrates the graphs 

of yield residuals after translating them by a scale factor of 2. The third column illustrates the graphs 

of transformed yield residuals. 

 

Figure 5.5 above illustrates the transformation procedures the yield residual values 

have gone through for the three districts. The graphs show that despite the 

transformations done to these yield residuals, the shape of the curve has not changed 

therefore suggesting consistency in results from any analysis to be done. From the left 

to the right column, the yield data has been transformed firstly into yield residuals, 

secondly, the yield residuals are translated by a factor of 2 and thirdly, the transformed 

yield residuals are then parameterised between the 0 and 1 bounds. For consistency, 

all the distributions were fit onto the parameterised residuals that can accommodate 

all five of the chosen distribution models. 

 

Based on the AIC and BIC criterion, KS and CvM test statistics, and loglikelihood 

values, this research will distinguish the performance of fitting different distribution 

models to the transformed data. The following Table 5.8 presents results and 
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Maximum Likelihood Estimators (MLE) parameters obtained from the distribution 

fitting procedure on the transformed yield residual variables. 

 

Table 5. 8: Yield Distribution Model Fitting Results 

 Model 
Parameter 
Estimate 

KS 
test 

CvM 
test 

Maximum 
loglikelihood 

AIC BIC 

Bloemfontein 
 

Normal (1) 
𝜇 = 0.08 

𝜎 = 0.03 
0.17 0.06 29.12 -57.25 -53.12 

Lognormal 
(5) 

𝜇 = −2.66 
𝜎 = 0.52 

0.29 0.21 24.77 -45.44 -44.41 

Weibull (2) 
𝑘 = 3.44 

𝜆 = 0.09 
0.18 0.06 28.84 -53.68 -52.55 

Beta (3) 
𝛼1 = 5.14 

𝛽1 = 61.82 
0.25 0.14 26.88 -49.77 -48.64 

Gamma (4) 
𝑘 = 5.38 

𝜃 = 69.88 
0.26 0.15 26.67 -49.35 -48.22 

Delmas 
 

Normal (1) 
𝜇 = 0.08 

𝜎 = 0.02 
0.26 0.14 32.19 -60.38 -59.25 

Lognormal 
(5) 

𝜇 = −2.61 
𝜎 = 0.34 

0.34 0.24 29.41 -54.82 -53.69 

Weibull (2) 
𝑘 = 4.23 
𝜆 = 0.08 

0.26 0.15 32.09 -60.18 -59.05 

Beta (3) 
𝛼1 = 9.99 

𝛽1 = 119.98 
0.31 0.19 30.79 -57.57 -56.44 

Gamma (4) 
𝑘 = 10.58 
𝜃 = 137.50 

0.31 0.20 30.65 -57.30 -56.17 

Vryburg 

Normal (4) 
𝜇 = 0.08 
𝜎 = 0.02 

0.21 0.07 33.90 -63.80 -62.67 

Lognormal 
(1) 

𝜇 = −2.59 

𝜎 = 0.23 
0.17 0.05 24.29 -64.58 -63.45 

Weibull (5) 
𝑘 = 4.56 

𝜆 = 0.08 
0.23 0.08 33.57 -63.15 -62.02 

Beta (3) 
𝛼1 = 17.50 
𝛽1 = 209.99 

0.18 0.05 34.25 -64.49 -63.36 

Gamma (2) 
𝑘 = 18.97 

𝜃 = 246.58 
0.18 0.05 34.26 -64.51 -63.38 

 

Table 5.8 above provides the stated GOF test statistics for the distribution model fitting 

procedure followed by Figures 5.6 to 5.8 illustrating the fit of these models. According 

to the GOF values and test statistics from Table 5.8 above, the models per district are 
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ranked (number in brackets) according to the rule of thumb stating that a larger 

loglikelihood value is preferred whereas it is a smaller value for the AIC, BIC, KS and 

CvM value24 representing a better fit. Therefore the overall best-fitting model (in 

brackets) to the transformed yield residuals values of each district are Bloemfontein 

(Normal), Delmas (Normal) and Vryburg (Lognormal). 

 

 

Figure 5. 5: Fitting PDFs of Marginals on Transformed Yield Residuals – 

Bloemfontein 

 

 
24 The KS and CvM tests statistic values are rounded off to 2 decimal places however when the decision 
on the best fitting model was made, the values were rounded off to three decimal places to avoid the 
ties and these correspond with the AIC and BIC values as well as loglikelihood findings.  
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Figure 5. 6: Fitting PDFs of Marginals on Transformed Yield Residuals – Delmas 
 

 

Figure 5. 7: Fitting PDFs of Marginals on Transformed Yield Residuals – Vryburg 
 

Tables 5.9 to 5.11 below illustrate for each district, the CDF values generated by each 

of the marginal distribution models. The respective CDF points will be applied in the 

copula fitting procedure. The GOF results to these models will be kept in mind when 
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evaluating the results of copula fitting and in comparing insurance products to assess 

whether distribution choice has some effect on results for SA. 

 

Table 5. 9: Bloemfontein CDF Values 

normal lognormal Weibull gamma beta 

0.72 0.74 1.00 0.76 0.76 

0.49 0.60 0.95 0.59 0.59 

0.01 0.00 0.01 0.00 0.00 

0.88 0.83 1.00 0.87 0.88 

0.51 0.61 0.95 0.60 0.60 

0.55 0.63 0.97 0.63 0.63 

0.31 0.45 0.78 0.41 0.41 

0.55 0.63 0.97 0.63 0.63 

0.32 0.46 0.79 0.42 0.42 

0.70 0.73 1.00 0.75 0.75 

0.37 0.50 0.85 0.47 0.47 

0.10 0.16 0.28 0.13 0.13 

0.81 0.79 1.00 0.83 0.83 
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Table 5. 10: Delmas CDF Values 

normal lognormal beta Weibull gamma 

0.78 1.00 0.80 0.82 0.80 

0.56 0.93 0.64 0.61 0.64 

0.00 0.00 0.00 0.01 0.00 

0.97 1.00 0.95 0.99 0.95 

0.30 0.26 0.41 0.36 0.41 

0.36 0.47 0.47 0.43 0.47 

0.37 0.50 0.48 0.43 0.48 

0.49 0.82 0.58 0.55 0.58 

0.28 0.19 0.39 0.34 0.39 

0.37 0.48 0.47 0.43 0.48 

0.40 0.60 0.51 0.46 0.51 

0.30 0.24 0.40 0.36 0.41 

0.79 1.00 0.80 0.83 0.80 

 

Table 5. 11: Vryburg CDF Values 

normal lognormal beta Weibull gamma 

0.42 0.52 0.50 0.47 0.51 

0.33 0.41 0.40 0.38 0.40 

0.49 0.60 0.59 0.54 0.59 

0.81 0.87 0.87 0.86 0.87 

0.41 0.50 0.49 0.45 0.49 

0.46 0.56 0.55 0.51 0.55 

0.45 0.56 0.54 0.50 0.54 

0.09 0.07 0.08 0.12 0.08 

0.19 0.21 0.21 0.22 0.21 

0.96 0.97 0.97 0.98 0.97 

0.06 0.03 0.04 0.08 0.04 

0.23 0.27 0.27 0.27 0.27 

0.85 0.90 0.91 0.90 0.91 
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5.3.2 Distributions for Price 

 

Figure 5.8 below illustrates results of the transformation procedure leading to the 

transformed logged price changes data i.e. (𝑙𝑛(𝑃𝐴𝐽𝐻) − ln (𝑃𝐴𝑒𝐻)) + 2. The graph on 

the top is the 𝑙𝑛(𝑃𝐴𝐽𝐻) − 𝑙𝑛(𝑃𝐴𝑒𝐻) while the graph on the bottom is of (𝑙𝑛(𝑃𝐴𝐽𝐻) −

𝑙𝑛(𝑃𝐴𝑒𝐻)) + 2  after translating this data by a factor of 2. These two graphs show that 

despite the transformations to the 𝑙𝑛(𝑃𝐴𝐽𝐻) − 𝑙𝑛(𝑃𝐴𝑒𝐻) data, the shape of the curve has 

not changed suggesting consistency in results from any analysis to be done. A factor 

of 2 was used to also maintain consistency with the scale applied to the yield data. 

Figure 5. 8: Transformed Logged Price Changes 
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The following Table 5.12 presents results and MLE parameters obtained from the 

normal and lognormal model distribution fitting procedure on the (ln (𝑃𝐴𝐽𝐻) −

ln (𝑃𝐴𝑒𝐻)) + 2  data.  

 

Table 5. 12: Price Distribution Model Fitting Results 

 Parameter 

Estimate 
KS test 

CvM 

test 

Maximum 

loglikelihood 
AIC BIC 

Normal (1) 𝜇 = 2.08 
𝜎 = 0.04 

0.23 0.11 -5.78 15.56 16.69 

Lognormal 

(2) 

𝜇 = 0.07 

𝜎 = 0.19 
0.24 0.12 -6.09 16.18 17.31 

 

Based on the GOF test statistics namely, the AIC and BIC criterion, KS and CvM test 

statistics, and loglikelihood values, the normal distribution was a better fit to the 

(𝐥𝐧 (𝑷𝑨𝑱𝑯) − 𝐥𝐧 (𝑷𝑨𝒆𝑯)) + 𝟐 data when compared to the lognormal model. Figure 5.9 

below illustrates thereof the fit of these two models.  

 

Figure 5. 9: Fitting PDFs of Marginals on Transformed Logged Price Changes  
 

Tables 5.13 below presents the CDF values generated by the normal and lognormal 

marginal distribution models. The respective CDF points will be applied in the copula 

fitting procedure. 
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Table 5. 13: Price CDF Values 

normal lognormal 

0.06 0.05 

0.92 0.91 

0.75 0.77 

0.74 0.76 

0.10 0.10 

0.15 0.16 

0.68 0.71 

0.73 0.75 

0.44 0.49 

0.24 0.27 

0.87 0.86 

0.83 0.84 

0.10 0.10 

 

5.4 COPULA FITTING 

 

This section will present the results of the copula fitting procedure on the CDF values 

of price and yield data of white maize. The results will be analysed as modelled by the 

three different cases representing the progression in marginal distribution and 

dependence risk modelling techniques. MLE techniques are applied in the copula 

fitting procedure. Just to reiterate what the three cases represent, earlier methods 

assumed normality in both the marginal distributions and dependence of yield and 

price risk thus the reliance on the Gaussian copula hence making this  Case 1, the 

‘benchmark model’ (refer to section 1.3 on Cases 1 - 3).  As crop insurance risk 

modelling techniques improved, there was gravitation towards alternatives to the 

normal model in the marginals of the distribution whiles maintaining the normality 

assumption in the dependence structure of risks and this is covered in Case 2. Case 

3 represents the progression towards a combination of an alternative to the normal 

model assumptions in both marginal distributions and the dependence structure of the 

risks hence the use of alternative copula and marginal distributions.  

 

5.4.1 A Presentation of The Cases 
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Tables 5.14 to 5.16 illustrate the modelling results of the three cases for each district. 

From each table, the following key items are distinguished: the case, names of the 

superior distribution and copula model realised per case in modelling the variables, 

the dependence structure as given by Kendall’s 𝜏, as well as values of GOF measures 

namely the loglikelihood, AIC, BIC and KS test. 

 

Table 5. 14: Results of the dependence cases – Bloemfontein 

Case 
Price 

changes 

Yield 

residuals 
Copula τ 

Loglike 

lihood 
AIC BIC KS statistic  

(P-value) 

1 Normal Normal Gaussian -0.33 1.46 -0.92 -0.36 0.09(0.38) 

2 Lognormal Normal Gaussian -0.33 1.53 -1.06 -0.50 0.09(0.34) 

3 Lognormal Normal Frank -0.31 1.58 -1.15 -0.59 0.08(0.34) 

Notes: Statistical significance levels represented by *, **, and *** for 10%, 5% and 1% respectively.  

 

Table 5. 15: Results of the dependence cases - Vryburg  

Case 
Price 
changes 

Yield 
residuals 

Copula τ 
Loglike 
lihood 

AIC BIC 
KS statistic 
 (P-value) 

1 Normal Normal Gaussian -0.31 1.34 -0.69 -0.12 0.08(0.46) 

2 Normal Lognormal Gaussian -0.30 1.54 -1.08 -0.51 0.08(0.34) 

3 Lognormal Weibull 

rotated 
Clayton 
90 
degrees 

-0.35 1.89 -1.78 -1.22 0.56(0.93) 

Notes: Statistical significance levels represented by *, **, and *** for 10%, 5% and 1% respectively.  

 

Table 5. 16: Results of the dependence cases - Delmas  

Case 
Price 

changes 

Yield 

residuals 
Copula τ 

Loglike 

lihood 
AIC BIC 

KS statistic 

(P-value) 

1 Normal Normal Gaussian -0.11 0.22 1.57 2.13 0.13**(0.029) 

2 Lognormal Gamma Gaussian -0.13 0.29 1.42 1.98 0.13**(0.029) 

3 Lognormal Gamma Gaussian -0.13 0.29 1.42 1.98 0.11**(0.029) 

Notes: Statistical significance levels represented by *, **, and *** for 10%, 5% and 1% respectively.  

 

Based on Kendall’s Tau (τ) parameter established by the copula functions, there is an 

inverse relationship between the white maize yield and price data. The inverse 

relationship is stronger in the Bloemfontein and Vryburg districts but weaker in 
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Delmas. From the Loglikelihood, AIC, BIC and 𝐾𝑆 test statistics, this research was 

able to evaluate the robustness of each copula model, to be compared between the 

three cases. According to the KS GOF test for copula models, the null hypothesis was 

rejected at a 5% level of significance for Delmas but failed to reject for Bloemfontein 

and Vryburg. This means the data from Bloemfontein and Vryburg was appropriately 

modelled by the copulas chosen for Cases 1 to 3 whereas for Delmas this was not the 

situation. Overall, it is observed that Case 3 gives the best performing model with the 

smallest AIC, BIC, KS test value as well as the largest maximum loglikelihood values 

in all three districts. Therefore, following from Hypothesis 3, the alternative risk 

modelling approaches pursued indeed produce a better fitting crop insurance model. 

For Bloemfontein, the Frank copula function performed the best as modelled by the 

lognormal (price) and normal (yield) marginals. For Vryburg, it is the rotated Clayton 

90 degrees copula as modelled by the lognormal (price) and Weibull (yield) marginals. 

For Delmas, Case 2 and Case 3 give the same best alternative model that is the 

Gaussian function as modelled by lognormal (price) and gamma (yield) marginals. 

 

Please note that numerous copulas were fit to the data per case with different 

combinations of marginal distribution models of yield and price for SA white maize. To 

see all the different combinations of results, refer to Appendix C, section C.1.3. The 

copula models presented in cases 1 to 3 from Tables 5.14 to 5.16 above represent the 

best copula model for each of those cases out of the potential 180 copula model 

combinations tried for all three districts. 

 

5.5 CONCLUSION 

 

In this chapter, three of SA’s district-level white maize yield and price data are 

analysed. The yield data was stationary after logging, followed by first differencing and 

then producing yield residual values from a log-linear detrending technique (see 

Procedure 1, Chapter 4). The price data was stationary after the different price data,  

𝑃𝐴𝐽𝐻  and 𝑃𝐴𝐸𝐻 were logged and used to compute the logged price changes data, 

𝑙𝑛(𝑃𝐴𝐽𝐻) − 𝑙𝑛(𝑃𝐴𝐸𝐻) (see Procedure 3, Chapter 4). Five distribution models (normal, 

lognormal, Weibull, beta, and gamma) were fit to the transformed yield residuals data. 

For the three districts, the best fitting model (in brackets) on the transformed yield 

residuals were as follows: Bloemfontein (normal), Delmas (normal) and Vryburg 
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(lognormal). The normal and lognormal distribution models were fit to the transformed 

logged price changes data i.e. (𝑙𝑛(𝑃𝐴𝐽𝐻) − ln (𝑃𝐴𝐸𝐻)) + 2. The normal model was the 

most suitable to the (ln (𝑃𝐴𝐽𝐻) − ln (𝑃𝐴𝑒𝐻)) + 2 data. The copula fitting procedures 

were carried out to determine the dependence structure between white maize yields 

and prices per district while cognisant of the progression in crop insurance risk 

modelling techniques represented by the three cases. It was observed that Case 3 

(alternative copula coupled with alternative marginal distributions) was the best fitting 

copula model in all three districts achieving the smallest AIC, BIC, KS test and CvM 

test values as well as the largest maximum loglikelihood values in all three districts. 

Given these findings, it has been established that yes, there is an inverse relationship 

between prices and yields of white maize in the chosen districts. Also, because Case 

3 produced the better fitting copula models suggests that alternative risk modelling 

techniques followed produce a better crop insurance model hence the inverse 

relationship they established is more accurate when compared to Case 1’s, the 

‘benchmark model’. The implications of these findings on yield and revenue crop 

insurance policy comparison results will be established in the next chapter. 

 

Remark 7 

 

With regards to tail dependence, it was established in Chapter 3, section 3.2 that some 

copulas can model it. This study did not establish tail dependence because the data 

did not lend itself to it since it did not have extreme occurrences. Also, due to data 

scarcity, the time series was limited to roughly 14 years. However outside of this study, 

in many cases, a dependence relationship may appear independent but due to a 

phenomenon such as extreme weather event could result in a change from 

independence to a tail dependence, is the reason for the importance of the concept in 

risk analysis. 
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CHAPTER 6 
 

COMPARISON OF CROP INSURANCE PRODUCTS 

 

6.1 INTRODUCTION 

 

In this chapter, an economic viability study of a CRI product is conducted. The analysis 

of viability entails comparing CRI and MPCI products at different coverage levels. The 

computation of the expected losses and actuarially fair insurance premium rates is 

required because that is what the insurance products are compared on, as influenced 

by the risk modelling approach pursued. Thus, the actuarially fair insurance premium 

rate is indicative of the pure cost of buying a crop insurance policy. The analysis uses 

variates of expected July harvest prices and expected yields simulated by a Monte 

Carlo simulation based on the copula dependence structures established in 

combination with the specified marginal distribution models used. Implications of the 

approaches taken in crop insurance risk modelling techniques are evaluated, 

represented by the three cases (defined in section 1.3 and summarised in Figure 4.4, 

p.98). These three cases exemplify the progression in the risk modelling techniques 

followed.   

 

6.2 CROP INSURANCE COMPARISON RESULTS 

 

In this section, the results of comparing CRI and MPCI policies are presented. There 

are three cases per district to be analysed that represent the progression in crop 

insurance risk modelling techniques. The expected losses and actuarially fair premium 

rates (simply referred to as premium rate in the analysis) from the two crop insurance 

schemes shall be compared at the insurance coverage levels of 55%, 65% and 75%. 

 

6.2.1 Bloemfontein Results 

 

For Bloemfontein, Figures 6.1 to 6.3 illustrate the dependence relationship as depicted 

by the copula functions and specified marginal distributions represented by the three 

cases. Case 1 shows a symmetric relationship as modelled by the Gaussian copula 

whereas Case 2 departs from symmetry, as evident from the lower tail of the contour 

plot when the price and yield marginals follow a lognormal and normal distribution 
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model respectively. Case 3, while also modelled by the lognormal (price) and normal 

(yield) marginal, shows a less extent of the lower tail which is justified because it is 

modelled by the Frank copula that focusses on central tendencies. From this analysis, 

alternative marginal distributions do influence the representation of dependence as 

shown in the comparison of Case 1 and 2 from Figures 6.1 and 6.2, respectively. Table 

6.1 below will provide the extent of the implication of the different risk modelling 

techniques on the expected loss and premium rate results for CRI and MPCI products.  

 

 

Figure 6. 1: 3D Scatter-, Surface- and Contour-plot from a Gaussian copula 

Notes: The figures are from a bivariate random sample of size 1 000 modelled by normal (price) and 

normal (yield) marginals and simulated from a Gaussian copula with a dependence parameter of 𝜏 = -

0.33. 

 

 

Figure 6. 2: 3D Scatter-, Surface- and Contour-plot from a Gaussian copula 

Notes: The figures are from a bivariate random sample of size 1 000 modelled by lognormal (price) and 

normal (yield) marginals and simulated from a Gaussian copula with a dependence parameter of 𝜏 = -

0.33. 
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Figure 6. 3: 3D Scatter-, Surface- and Contour-plot from a Frank copula 

Notes: The figures are from a bivariate random sample of size 1 000 modelled by lognormal (price) and 

normal (yield) marginals and simulated from a Frank copula with a dependence parameter of 𝜏 = -0.31. 

 

The crop insurance comparison results between CRI and MPCI are presented in Table 

6.1 below. 

 

Table 6. 1: Bloemfontein insurance comparison results for Case 1 to Case 3 
  55% Coverage 65% Coverage 75% Coverage 

  

Expected 

loss 

(premium) 

(R/t) 

Premium 

rate 

 

Expected 

loss 

(premium) 

(R/t) 

Premium 

rate 

 

Expected 

loss 

(premium) 

(R/t) 

Premium 

rate 

 

Case 

1 

MPCI R169.95 12.78% R265.15 16.87% R379.14 20.91% 

CRI R105.85 9.19% R176.88 12.99% R266.46 16.96% 

Case 

2 

MPCI R170.19 12.70% R266.04 16.80% R380.98 20.85% 

CRI R104.03 9.11% R174.24 12.91% R261.98 16.82% 

Case 

3 

MPCI R170.34 12.77% R265.91 16.87% R380.71 20.94% 

CRI R117.74 10.05% R193.08 13.95% R287.15 17.98% 

Notes: The copulas and marginals that modelled each case are as follows: Case 1 - Gaussian with 

normal (price)  and normal (yield), Case 2 - Gaussian copula, with lognormal (price) and normal (yield) 

and Case 3 - Frank copula with lognormal (price) and normal (yield) marginals. 

 

For Bloemfontein, as the coverage levels increase, so does the expected losses and 

premium rates realised for both MPCI and CRI, which is expected because the amount 

of risk being assumed by the insurer is growing. At identical insurance coverage levels, 

CRI achieves lower expected losses and premium rates than those of MPCI in all three 

cases. These findings are in line with expectations from the literature that given an 
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inverse dependence relationship between crop yields and their prices, revenue-based 

crop insurance policies will be cheaper than those of yield-based crop insurance 

products (Meuwissen, Huirne and Skees, 2003; Ahmed and Serra, 2015). 

 

Objective three of this study requires an assessment of the implications of the different 

risk modelling techniques followed, which represents the progression in crop 

insurance risk modelling techniques. Therefore, this requires the comparison of Cases 

2 (𝜏 = -0.33) and 3 (𝜏 = -0.31) to Case 1 (𝜏 = -0.33), the ‘benchmark model’ as follows:  

 

• Comparing the CRI premium rates realised between Case 2 and Case 1, the 

assessment is as follows (refer to Table 6.1, p.123): for the insurance coverage 

levels of 55%, 65% and 75%, Case 2 realised the premium rates of 9.11%, 

12.91% and 16.82%, respectively, which are lower than Case 1’s premium 

rates of 9.19%, 12.99 and 16.96%, respectively. Despite that Case 1 and Case 

2 have an identical dependence structure of 𝜏 =  −0.33 as established by the 

Gaussian copula, the premium rates realised were slightly different possibly 

due to the marginal distribution models used in representing the variables. This 

is a probable reason because the distribution estimates are used in simulating 

(predictions of) yield and price variates which are then used for calculating 

expected losses and premium rates. With the distribution model choice in mind, 

Case 1 was restricted to the normal (price) and normal (yield) distribution 

models whereas Case 2 had the lognormal (price) and normal (yield) 

distribution models.  

• Comparing CRI premium rates realised between the most robust copula model, 

Case 3 (𝜏 = −0.31 ) and Case 1 (𝜏 = −0.33), the assessment is as follows  

(refer to Table 6.1, p.123): for the insurance coverage levels of 55%, 65% and 

75%, Case 3 realised premium rates of 10.05%, 13.95% and 17.98%, 

respectively, which are higher than Case 1’s premium rates of 9.19%, 12.99 

and 16.96%, respectively. This finding is expected because recalling the basis 

of a natural hedge (covered in section 1.3) says that, given an inverse 

dependence relationship between crop yields and their prices, CRI expected 

losses and premium rates should be lower than those of MPCI. From the basis 

of a natural hedge, this means one should be able to compare different CRI 
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policies and the one modelled from a bigger inverse dependence structure 

should therefore achieve lower expected losses and expected premium rates. 

In this situation, Case 3 (𝜏 = −0.31), has a smaller inverse dependence 

structure than Case 1’s (𝜏 = −0.33), hence why the formers premium rates are 

higher. 

 

6.2.2 Vryburg Results 

 

From Vryburg, Figures 6.4 to 6.6 illustrate the dependence relationship as depicted by 

the copula functions and specified marginal distributions represented by the three 

modelling cases. Case 1 shows a symmetric relationship as modelled by the Gaussian 

copula whereas Case 2 departs from symmetry, as evident from the lower tail of the 

pear-shaped contour plot when the distributions follow a lognormal (yield) and normal 

(price) models. On the other hand, Case 3’s pear-shaped contour plot has a narrower 

and further-reaching lower tail as modelled by the rotated Clayton 90 degrees copula 

with lognormal (price) and Weibull (yield) distributions models. From this analysis, 

alternative marginals distributions do influence the representation of dependence as 

shown in the comparison of Case 1 and Case 2.  

 

 

Figure 6. 4: 3D Scatter-, Surface- and Contour-plot from a Gaussian copula 

Notes: The figures are from a bivariate random sample of size 1 000 modelled by normal (price) and 

normal (yield) marginals and simulated from a Gaussian copula with a dependence parameter of 𝜏 = -

0.31. 
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Figure 6. 5: 3D Scatter-, Surface- and Contour-plot from a Gaussian copula 

Notes: The figures are from a bivariate random sample of size 1 000 modelled by normal (price) and 

lognormal (yield) marginals and simulated from a Gaussian copula with a dependence parameter of 𝜏 

= -0.30. 

 

 

Figure 6. 6: 3D Scatter-, Surface- and Contour-plot from a rotated Clayton 90 

degrees copula  

Notes: The figures are from a bivariate random sample of size 1 000 modelled by lognormal (price) and 

Weibull (yield) marginals and simulated from a rotated Clayton 90-degrees copula with a dependence 

parameter of 𝜏 = -0.35. 

 

Table 6.2 below provides the extent of the implication of the different risk modelling 

techniques on the expected loss and premium rates realised for CRI and MPCI 

products for Vryburg. 
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Table 6. 2: Vryburg insurance comparison results for Case 1 to Case 3  

  55% Coverage 65% Coverage 75% Coverage 

  

Expected 

loss 

(premium) 

(R/t) 

Premium 

rate 

 

Expected 

loss 

(premium) 

(R/t) 

Premium 

rate 

 

Expected 

loss 

(premium) 

(R/t) 

Premium 

rate 

 

Case 

1 

MPCI R57.15 4.29% R114.56 7.27% R196.12 10.78% 

CRI R39.68 3.26% R85.09 5.92% R153.04 9.23% 

Case 

2 

MPCI R27.83 2.09% R77.87 4.95% R159.33 8.79% 

CRI R26.61 2.19% R66.92 4.66% R132.54 7.99% 

Case 

3 

MPCI R52.82 3.95% R105.56 6.68% R180.81 9.92% 

CRI R24.31 2.03% R59.81 4.22% R119.23 7.29% 

Notes: The copulas and marginals that modelled each case are as follows: Case 1- Gaussian with 

Normal (price) and Normal (yield), Case 2- Gaussian copula, normal (price) and lognormal (yield) and 

Case 3- rotated Clayton 90 degrees copula with lognormal (price) and Weibull (yield). 

 

For Vryburg, as the coverage levels increase, so does the expected losses and 

premium rate realised for both MPCI and CRI, which is expected because the amount 

of risk being assumed by the insurer is increasing. At identical insurance coverage 

levels, CRI achieves lower expected losses than those of MPCI as well as premium 

rates in the three cases, except for Case 2’s premium rate calculation at a 55% 

insurance coverage level. To a larger extent, these findings are in line with 

expectations from the literature that given an inverse relationship between crop yields 

and their prices, revenue-based crop insurance policies are cheaper than those of 

yield-based crop insurance products (Meuwissen, Huirne and Skees, 2003; Ahmed 

and Serra, 2015). 

 

Objective three of this study requires an assessment of the implications of the different 

risk modelling techniques followed which represent the progression in crop insurance 

risk modelling techniques. Therefore, this requires the comparison of Cases 2 (𝜏 =

 −0.30)  and Case 3 (𝜏 =  −0.35)  to Case 1 (𝜏 =  −0.31), the ‘benchmark model’ as 

follows: 

• Comparing CRI premium rates realised between Case 2 and Case 1, the 

assessment is as following (refer to Table 6.2 above) for the insurance 
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coverage levels of 55%, 65% and 75%, Case 2 realised the premium rates of 

2.19%, 4.66% and 7.99%, respectively, which are lower than Case 1’s premium 

rates of 3.26%, 5.92% and 9.23%, respectively. These findings contradict the 

natural hedge expectation that indirectly states that when comparing CRI 

policies, the larger the inverse dependence relationship between crop yields 

and their prices is the lower the premium rates realised. In this situation, Case 

2 (𝜏 = −0.30) has a smaller inverse dependence structure than Case 1 (𝜏 =

−0.31), yet Case 2 premium rates were cheaper, hence contradicting the 

natural hedge expectation. To explain this contradiction, it is plausible that the 

marginal distributions played a role. This is because the distribution parameter 

estimates are utilised in simulating (predictions of) yield and price variates for 

calculating expected losses and premium rates. Case 1’s marginal distributions 

are restricted to the normal (price) and normal (yield) distribution models 

whereas Case 2 has normal (price) and lognormal (yield) distribution models. 

Furthermore, having explained why the Gaussian copula is most suited for 

normal marginal distribution models whereas Case 2 has a lognormal 

distribution could have also contributed to the contradictory finding (refer to 

section 3.2.2.1.1 explaining the ‘benchmark model’).  

• Comparing CRI premium rates realised from the most robust copula model, 

Case 3 to Case 1, the assessment is as follows (refer to Table 6.2 above): for 

the insurance coverage levels of 55%, 65% and 75%, Case 3 realised the 

premium rates of 2.03%, 4.22% and 7.29%, respectively, which are lower than 

Case 1’s premium rates of 3.26%, 5.92% and 9.23%, respectively. This finding 

is expected because it meets the natural hedge expectation since Case 3 (𝜏 =

−0.35) has a larger inverse dependence structure between crop yields and their 

prices than that from Case 1 (𝜏 = −0.31). 

 

6.2.3 Delmas Results 

 

For Delmas, Figures 6.7 to 6.9 illustrate the dependence relationship as depicted by 

the copula functions and specified marginal distribution models represented by the 

three modelling cases for Delmas. Case 1 suggests a weak symmetric relationship as 

modelled by the Gaussian copula whereas Case 2 departs from symmetry, as evident 

from the lower tail slightly resembling a pear-shaped contour plot when the distribution 
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models follow gamma (yield) and lognormal (price) models. Case 3’s figures are 

identical to Case 2’s because the two are from the same copula models (i.e. they have 

the same marginal distribution parameters and copula function). Alternative marginals 

distributions do influence the representation of dependence as shown in the 

comparison of Case 1 to Case 2 and 3.  

 

 

Figure 6. 7: 3D Scatter-, Surface- and Contour-plot from a Gaussian copula  

Notes: The figures are from a bivariate random sample of size 1 000 modelled by normal (price) and 

normal (yield) marginals and simulated from a Gaussian copula with a dependence parameter of 𝜏 = -

0.11. 

 

 

Figure 6. 8: 3D Scatter-, Surface- and Contour-plot from a Gaussian copula 

Notes: The figures are from a bivariate random sample of size 1 000 modelled by lognormal (price) and 

gamma (yield) marginals and simulated from a Gaussian copula with a dependence parameter of 𝜏 = -

0.13. 
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Figure 6. 9: 3D Scatter-, Surface- and Contour-plot from a Gaussian copula  

Notes: The figures are from a bivariate random sample of size 1 000 modelled by lognormal (price) and 

gamma (yield) marginals and simulated from a Gaussian copula with a dependence parameter of 𝜏 = -

0.13. 

 

Table 6.3 will provide the extent of the implication of the different risk modelling 

techniques on the expected loss and premium rate results for CRI and MPCI products. 

 

Table 6. 3: Delmas insurance comparison results for Case 1 to Case 3  

  55% Coverage 65% Coverage 75% Coverage 

  

Expected 

loss 

(premium) 

(R/t) 

Premium 

rate 

 

Expected 

loss 

(premium) 

(R/t) 

Premium 

rate 

 

Expected 

loss 

(premium) 

(R/t) 

Premium 

rate 

 

Case 

1 

MPCI R56.54 4.26% R113.50 7.23% R194.59 10.78% 

CRI R79.04 6.17% R144.31 9.53% R231.34 13.24% 

Case 

2 

MPCI R93.20 6.97% R177.3 11.23% R286.65 15.73% 

CRI R109.98 8.75% R193.54 13.03% R298.5 17.41% 

Case 

3 

MPCI R86.37 6.46% R166.46 10.54% R271.85 14.91% 

CRI R105.33 8.34% R186.69 12.50% R289.89 16.83% 

Notes: The copulas and marginals that modelled each case are as follows: Case 1-Gaussian with 

normal (price) and normal (yield), Case 2-Gaussian copula, normal (price) and lognormal (yield) and 

Case 3-rotated Clayton 90 degrees copula with lognormal (price) and Weibull (yield). 

 

For Delmas, as the coverage levels increase, so does the expected losses and 

premium rate realised for both MPCI and CRI, which is expected because the amount 

of risk being assumed by the insurer is increasing. Contrary to other studies 

(Meuwissen, Huirne and Skees, 2003; Ahmed and Serra, 2015), CRI insurance 
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expected losses and premium rates are higher than those of MPCI even with the 

inverse dependence structure present between crop yields and their prices. These 

findings contradict the natural hedge expectation (covered in section 1.3) that states 

given an inverse relationship between crop yields and their prices, revenue-based crop 

insurance products are cheaper than those of yield-based insurance products 

(Meuwissen, Huirne and Skees, 2003; Tejeda and Goodwin, 2008; Goodwin, 2015). 

Therefore, this inverse relationship is supposed to be the premise on which CRI 

functioning permits it to be cheaper than MPCI.  

 

Objective three of this study requires an assessment of the implications of the different 

risk modelling techniques followed which represent the progression in crop insurance 

risk modelling techniques. Therefore, this requires the comparison of Cases 2 (𝜏 =

−0.13)  and 3 (𝜏 = −0.13),  to Case 1 (𝜏 = −0.11), the ‘benchmark model’ as follows: 

 

• Comparing CRI premium rates realised between Case 2 and Case 1, the 

assessment is as following  (refer to Table 6.3 above): for the insurance 

coverage levels of 55%, 65% and 75%, Case 2 realised premium rates of 

8.75%, 13.03% and 17.41%, respectively, which are higher than Case 1’s 

premium rates of 6.17%, 9.53% and 13.24%, respectively. These findings also 

contradict the natural hedge expectation that indirectly states when comparing 

CRI policies, the larger the inverse dependence relationship between crop 

yields and their prices is the lower the premium rates realised. However, in this 

situation, Case 2 (𝜏 = −0.13)  has a larger inverse dependence structure than 

Case 1 (𝜏 = −0.11)  yet the formers premium rates are higher.  Because Case 

3 is an identical copula model to that of Case 2, the premium rate results also 

contradict the natural hedge when compared to Case 1. 

 

Delmas experienced opposite results from those of the other districts which is contrary 

to other studies. It is possible that given the relatively stable rainfall experience in 

Delmas has contributed to the disconnect in the yield and price relationship in this 

district which is weak thus eliminating the natural hedge concept. When comparing the 

dependence relationships established between crop yields and prices, Delmas’ is 

weakly inverse whereas the other districts which are drought-prone realised stronger 
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inverse dependence structures. The copula fitting procedure for Delmas achieved poor 

GOF parameters when compared to the other districts (refer to section 5.4) possibly 

indicating the disconnect. The hypothesis test results for the copula model GOF state 

that models for cases 1 to 3 for Delmas do not fit the data well hence the null 

hypothesis was rejected at a 1% level of significance (refer to Chapter 5, Table 5.16 

on p.118). Furthermore, Delmas yields have not necessarily followed the same trends 

as the other districts and when they do, the magnitude of yield changes also differ. 

This means there could be instances where the yields in Delmas are high, but the 

national yield is low explaining the disconnect in this district’s yield and national price 

relationship.  

 

6.3 CONCLUSION 

 

In this chapter, it was established that alternative models to the normal in the marginals 

of the distribution do influence the dependence relationship as modelled by the 

Gaussian copula functions. Because parameter estimates from the marginal 

distribution models are used in a Monte Carlo simulation, it is important to pick an 

appropriate model to avoid overestimating or underestimating the risks, which is 

reflected in the premium rate. When comparing insurance products, Bloemfontein and 

Vryburg realised lower CRI expected losses and premium rates than those of MPCI. 

However, comparison results for Delmas contradicted the ‘natural hedge’ expectation 

when CRI realised higher expected losses and premium rates than MPCI, even though 

there was an inverse dependence structure between white maize yields and prices. It 

has been elaborated that the potential disconnect between Delmas’ yields and prices 

is probably largely due to the higher and more stable rainfall the district enjoys.  
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CHAPTER 7 
 

CONCLUSIONS 

 

7.1 OVERVIEW 

 

Chapter 1 provided the context of this study’s purpose to conduct a viability study of 

a crop-revenue insurance product for the South African white maize market. It was 

established that MPCI is a loss-making product in South Africa. 

 

Chapter 2 introduced the concept of insuring crops. The transformation of crop 

insurance over the past 200 years was discussed, incorporating the current trends in 

the global industry, and then narrowed down to a South African context. 

 

Chapter 3 introduced the literature on the crop insurance risk modelling techniques 

used and how these techniques have progressed over the years. The statistical copula 

approach was introduced as a superior dependency modelling technique. It was 

established that each copula function has a unique type of dependence that it can 

model but is flexible enough to be rotated to accommodate other types of 

dependences. Furthermore, copula functions were established as flexible in 

accommodating different marginal variable distribution model structures. 

 

Chapter 4 provided the methodology while highlighting the seven key steps to follow 

in its execution. An in-depth explanation of the different procedures to be implemented 

was provided, as well as the context is given on why certain process and 

transformations to the data needed to occur to - fit marginal distributions models, for 

the copula fitting procedures and use of the Monte Carlo simulations. 

 

Chapter 5 presented the results from executing the methodology up to the copula 

fitting procedure. A combination of alternative marginal distributions and copula 

functions were implemented in the crop insurance risk modelling and the results were 

compared to the Gaussian copula function of normal (price) and normal (yield) 

distributions - the industry ‘benchmark model’. It was found that there is an inverse 

relationship between the two variables that was strong in Bloemfontein and Vryburg 

but weak in Delmas. In all three districts, the alternative marginal distribution 
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combination with alternative copulas was a better fitting model than the ‘benchmark 

model’. Given this finding, the benchmark model overestimated the inverse 

relationship in Bloemfontein and understated it in Vryburg and Delmas, while this 

relationship is important because it influences the expected loss outcome and 

ultimately the actuarially fair insurance premium rates achieved. 

 

Chapter 6 presented the findings and implications of the different risk modelling 

techniques on the comparison results between CRI and MPCI. A Monte Carlo 

simulation produced variates of expected yield and price values as modelled by the 

different risk modelling techniques implemented. Simulated values of yield and prices 

were used to calculate expected losses and actuarially fair premium rates of the two 

products and these were the two matrices used in comparing CRI and MPCI. 

 

7.2 FINDINGS SUMMARY 

 

To analyse the viability of CRI for the South African white maize market, this study 

employed three key stages to the analysis. The initial step entailed fitting different 

distribution models to the yield and price marginal distributions of the districts. For 

Bloemfontein and Vryburg, the normal model was a better fit to the yield marginal 

distributions followed by Weibull and beta coming in second and third, respectively. 

For these two districts, it means the benchmark model will correctly model the yield 

variables. On the other hand, the lognormal model provided the best fit to the Delmas 

yield data, followed by the beta and gamma models, respectively. In the case of 

Delmas, the benchmark model is not the most appropriate model to represent the 

behaviour of the yield data of this district. The price data was better represented by 

the normal model over the lognormal, thus the benchmark model is appropriate for 

modelling South African white maize price data. An appropriate distribution model for 

these variables is required since the MLE  parameter estimates are used in simulating 

(predictions of) yield and price variates for calculating expected losses and premium 

rates for the comparison of different crop insurance products.  

 

The second stage of analysis entailed using copula functions to establish the 

dependence relationships between the yield and price data, which answers to this 

study’s first hypothesis - Hypothesis 1: There is an inverse relationship between the 
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price and the yield of white maize in SA. The process of the second stage of analysis 

was defined by the following three cases:  

• Case 1 - Approach maintains normality in both marginal distribution models and 

dependence structure when modelling crop insurance risks – the ‘benchmark 

model’. 

• Case 2 – Approach uses a combination of alternative marginal distributions 

models in modelling crop insurance risks while maintaining normality in the 

dependence structure (the Gaussian copula). 

• Case 3 – Approach uses a combination of alternative marginal distribution 

models and different copulas in modelling crop insurance risks.  

 

Therefore, CDF values generated from the different distribution models were utilised 

in the copula fitting procedure. In all three districts, Hypothesis 1 holds, an inverse 

relationship was established between white maize yield and the price data that was 

stronger in Bloemfontein and Vryburg but weak in Delmas. When taking into 

consideration the rain patterns of the three districts over 10 years starting from the 

2010 season (refer to Figures 2.6 to 2.8, p.43 - 44), Delmas exhibits the most and 

stable rainfall. Therefore, a weak inverse relationship in Delmas was likely attributed 

to the stable rainfall experienced that produces less variable yields (refer to   Figure 

3.3, p.55) when compared to the other districts, while the domestic maize prices are 

influenced by a combination of national and international harvests. Thus, for Delmas 

the South African maize yield and price linkage would be weakened, hence the weaker 

inverse relationship experienced.  From the three cases, it was established that the 

best fitting copula model was from Case 3, followed by Case 2 and lastly Case 1 in all 

the districts. 

 

The third stage of analysis entailed the use of the copula dependence structures in a 

Monte Carlo simulation to produce variates of white maize yield and prices as depicted 

by the marginal distribution models. These simulated variates were used to calculate 

expected losses and premium rates for each district to compare insurance products, 

recalling that the premium rate is the matrix determining affordability. By comparing 

the premium rates of MPCI and CRI, the second hypothesis is answered - Hypothesis 

2: Premium rates realised for a revenue-based crop insurance product are lower than 
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those from a yield-based product. For Bloemfontein and Vryburg, it was established 

that at the same insurance coverage levels, CRI expected losses and premium rates 

are lower than those of MPCI products therefore Hypothesis 2 holds. These findings 

were expected because of the inverse dependence relationship established between 

yield and price which is the premise of the natural hedge concept (explained in section 

1.2) and therefore also answering objectives one and two of this study that stated:   

• Establish whether there is an inverse relationship between SA white maize yield 

and price data, and if this is indeed the case, assess whether the ‘natural hedge’ 

holds. 

• Compare the expected losses and premium rates realised from the two 

insurance schemes (MPCI and CRI) to make a call on the affordability of the 

products. Affordability is determined by a comparison of premium rates realised by 

the two products at identical insurance coverage levels. 

However, Delmas experienced results different from the other districts which is 

contrary to other studies because it defied the ‘natural hedge’ expectation and thus 

Hypothesis 2 did not hold. Therefore, answering objectives one and two, the ‘natural 

hedge’ failed to hold despite having an inverse relationship between price and yield, 

resulting in  CRI being more expensive than MPCI in this case. A plausible reason 

given as to why Delmas results were different to the other regions is due to a 

disconnect between the district’s maize yield to the national yield, as well as the 

national price relationship because of the relatively more stable rainfall experienced in 

that district. Furthermore,  the white maize price discovery mechanism for SA is also 

influenced by international maize supplies. Therefore, an oversupply of maize on the 

international market will influence SA maize prices thus also contributing to the 

domestic yield and price relationship disconnect that could further alienate Delmas’ 

yield and national price relationship.  

 

The final stage of analysis speaks to the third hypothesis - Hypothesis 3: Alternative 

risk modelling approaches in the marginal distributions of the variables as well as in 

establishing dependence relationships produces a better fitting crop insurance model. 

Hypothesis 3 is therefore accompanied by the third objective of this study that states:  

• Assess what the effects of different marginal distribution and dependence risk 

modelling techniques have on the actuarially fair insurance premium rates 

achieved, separately and in combination (representing the progression in crop 
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insurance risk modelling techniques). This will require comparing Case 2 results to 

Case 1, the ‘benchmark model’ as well as comparing Case 3 to Case 1.  

Therefore, to answer Hypothesis 3 and the third objective of this study, the final stage 

of analysis compares the CRI premium rate outcomes by case as follows: 

 

Bloemfontein 

Comparing Bloemfontein results, Case 2 (𝜏  =  −0.33) CRI premiums were lower than 

those of Case 1 (𝜏  =  −0.33), the ‘benchmark model’, even though they have an 

identical dependence relationship. It must be noted that Case 2 price data was 

modelled by a lognormal distribution model whereas it was established that the normal 

distribution was a better fit to that data thus possibly a contributing factor to the 

difference in premium rates achieved. As already explained, the choice of distribution 

chosen influences the simulation outcomes. However, the Gaussian copula model did 

have Case 2 as the better fitting model when compared to Case 1 despite the 

distributions being a combination of normal (yield) and lognormal (price) models. The 

premium rates from Case 3 (𝜏  =  −0.31)  were higher than those from Case 1 and 2, 

and this was expected since Case 3 had the weaker inverse dependence structure. 

According to the natural hedge concept, the stronger the inverse relationship between 

price and yield is the cheaper the CRI insurance premium and vice versa. Taking into 

consideration that Case 3 is the superior copula fitting model, the rating results 

suggest the ‘benchmark model’ under-priced CRI policies in Bloemfontein from the 

data used in this study.  

 

When restricting the premium rate analysis to the MPCI findings, the premiums for 

Case 3 when compared to Case 1 are lower at 55% coverage but equal at 65% 

coverage and greater at 75% coverage. This finding on MPCI suggests that at lower 

coverage levels, the benchmark model is overpricing MPCI premiums while under-

pricing at higher coverage levels given the data used in this study and the results of 

the better fitting model which was Case 3. 

 

Vryburg 

Comparing Vryburg results, CRI premium rates for Case 2 (𝜏 = −0.30) were lower 

than Case 1’s (𝜏 =  −0.31), the benchmark model, indirectly contradicting the natural 
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hedge expectation since the latter has a greater inverse dependence structure. It is 

worth noting that for Vryburg, the normal distribution was chosen as the superior fitting 

model for both yield and price variables whereas the best fitting Gaussian copula was 

Case 2 with the distribution models of lognormal (yield) and normal (price). Again, this 

may be a contributing factor to the difference in premium rates achieved as explained 

already that choice of distribution chosen influences the simulation outcomes. 

Comparing Case 3 (𝜏 =  −0.35) to Cases 1 and 2,  the former achieves lower premium 

rates, and this is in line with the natural hedge expectations since Case 3 has a larger 

inverse dependence structure between yields and prices. Taking into consideration 

that the better fitting copula model realises the lowest premium rates for CRI suggests 

the ‘benchmark model’ in this case would overprice CRI policies from the data used in 

this study.  

 

Restricting the premium rate analysis to MPCI findings for Vryburg, Case 3 realises 

lower premiums than those of Case 1 suggesting that this product is being overpriced 

in Vryburg when using the benchmark model based on the data of this study and the 

results of the better fitting model which was Case 3.  

 

Delmas 

Comparing the affordability of CRI products for Delmas, Case 2 (𝜏 =  −0.13) 

premiums rates are relatively more expensive than Case 1’s (𝜏 =  −0.11), the 

benchmark model. This finding indirectly contradicts the natural hedge expectation 

that states the bigger the inverse relationship, is the lower the premium rates realised 

which is not the case here. Case 3 (𝜏 =  −0.13) being an identical copula model to 

Case 2 also indirectly contradicted the natural hedge expectation when compared to 

Case 1. Findings from CRI comparisons for Delmas were the opposite of the other 

districts and contradicted expectation from other studies. A probable cause given was 

a disconnect in the relationship between Delmas white maize yields and the national 

prices because of the district’s stable rainfall when compared to other top maize 

producing regions. 

   

Restring the premium rate analysis to MPCI findings for Delmas, Case 3 premiums 

are higher than those of Case 1, suggesting that comprehensive yield insurance is 
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under-priced by the benchmark model based on the data used in this study and the 

results of the better fitting model which was Case 3.  

 

In conclusion, this study brings forth indicative results of how CRI and MPCI policies 

compare on expected losses and premium rates given an inverse relationship between 

maize yields and prices. When the inverse relationship is strong, it was established 

that CRI policies are indeed cheaper than those of MPCI in Bloemfontein and Vryburg. 

However, when the inverse relationship is weak, as was the case in Delmas, the 

natural hedge expectation did not hold hence MPCI policies were cheaper than CRI. 

Therefore, this study’s outcomes are not definite conclusions on how CRI compares 

to MPCI but merely providing an approach on how to model revenue-based crop 

insurance policies. 

 

7.3 RECOMMENDATION FROM FINDINGS 

 

From this study, it was observed that at the same level of insurance coverage, CRI 

expected losses and premium rates are lower than those of MPCI policies for 

Bloemfontein and Vryburg. Given these findings, this study recommends that insurers 

should consider offering CRI in Bloemfontein and Vryburg as an alternative to MPCI. 

Considering that MPCI is struggling in SA for various reasons,  one of them being that 

it is expensive, it could therefore make a business case for the insures to switch to a 

relatively cheaper alternative in CRI. This switch, therefore, means farmers will have 

an alternative to MPCI that is relatively more affordable based on the premium rates 

achieved. Hopefully, the difference in the cost to purchase crop insurance will 

incentivise farmers to buy CRI as their first choice in crop insurance risk mitigation 

tools. If indeed farmers give a positive response to CRI by buying the policies, the 

insured pool would grow in SA to possibly incorporate the lower risk clients that make 

an insurers book of business more profitable. The profitability of the product is 

desirable for the industry because insurers and reinsurers have been de-risking from 

MPCI due to losses incurred. Furthermore, it is a possibility that the affordability of CRI 

relative to MPCI could curtail the culture of variable insurance uptake in SA which has 

been blamed on the high costs of purchasing MPCI policies.  
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Another reason why this study recommends CRI to the insurers is based on the 

expected losses realised for Bloemfontein and Vryburg when compared to those of 

MPCI. It was established that given the same crop insurance coverage levels, the 

value of expected loses realised from CRI are less than those of MPCI policies. Given 

this finding, this study argues for CRI on the grounds of being a relatively more 

sustainable product to offer because insurers and reinsurers would be paying less in 

indemnity payments when compared to MPCI at identical insurance levels.  

 

Despite the favourable results of this study on the performance of CRI in Bloemfontein 

and Vryburg, the systemic nature of risks found in agriculture remains. This study, 

therefore, recommends that the South African government through a Private-Public-

Partnership (PPP) should share the responsibility of providing reinsurance for the 

systemic type of risks, specifically drought. Some examples were provided in Chapter 

2 on how PPPs have been utilised in getting the US and Canadian governments 

involved in supporting reinsurance. The reason for the PPP recommendations is to 

ensure responsible underwriting from the reinsurers since they will have a stake in the 

risk assumed, while possibly bringing in private sector knowledge and efficiencies in 

the underwriting process. This study has recommended the government’s involvement 

in reinsurance for specifically CRI for two reasons. The first is that based on the 

expected loses realised it is a relatively more sustainable offering when compared to 

MPCI, symbolising a responsible use of taxpayers’ money. Secondly, it was 

established in Chapters 1 and 2 that systemic risk, especially of drought in SA, are key 

contributors to the failure of crop insurance products hence why insurers and 

reinsurers are de-risking from MPCI in SA. Therefore, the government's involvement 

with CRI could enhance the offering in the market. Furthermore, it is in the best interest 

of the government to support CRI because the traditional role MPCI has played in the 

market was in assisting farmers without land collateral (or inadequate collateral) to 

accessing production finance, while this product is fast disappearing in SA. Also, 

because the government holds the title deed to the land reform farms means that 

beneficiaries of these farms do not possess the title deed to use as collateral and 

without MPCI or CRI policy, it would be difficult for them to access production finance 

from banks or any other financial institution.  
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Contrary to findings in Bloemfontein, Vryburg and other studies, the natural hedge 

expectation was not realised in Delmas even with the inverse dependence structure 

between white maize yields and prices. Therefore, this study does not encourage the 

insurers to offer CRI as an alternative to MPCI in Delmas because if they did, they 

would pay more in indemnity payments while farmers would be charged a relatively 

higher premium rate. Given these findings, this study recommends that insurers 

incorporate local modelling techniques for different areas to capture much more 

accurate dependence relationships between crop prices and yields. This means going 

further than what this study’s district-level data permits because this research was 

restricted in this regard and limited to a small dataset. Furthermore, insurers and 

reinsurers when modelling their risk should compare alternatives and not always rely 

on benchmark models because findings from this research have shown that the 

benchmark model was not the best. 

 

To finalise the recommendations section, CRI performs well in Bloemfontein and 

Vryburg whereas MPCI is a better product in Delmas. Therefore, insurers could use a 

mix of these two products in SA to achieve a profitable portfolio of crop insurance 

products as their competitive advantage.  

 

7.4 STUDY LIMITATIONS AND RECOMMENDATIONS 

 

This study focussed primarily on assessing the viability of CRI based on the expected 

losses and premium rates achieved when compared to those of MPCI. The argument 

from the literature was that, given an inverse relationship between crop yields and their 

prices, revenue-based crop insurance products are expected to be cheaper than those 

of yield-based policies. However, from the crop insurance rating results of this study, 

Delmas defied this expectation. What stood out from Delmas compared to the other 

districts was its weak dependence relationship as modelled by the copulas.  This 

research recommends that future studies investigate what the inverse dependence 

structure threshold is that warrants for revenue-based crop insurance expected losses 

and premium rates to be lower than those of yield-based policies. Also,  this study was 

limited to a short time-series data set of fourteen points which is restrictive as a larger 

series is preferable to capture a longer trend. The data was limited due to this study’s 

need for a low level of yield aggregation which was available but limited at a district 
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level.  Therefore, the findings should be interpreted while taking into consideration the 

short time-series utilised. 

 

From discussions in section 2.4.3.2, there are welfare gains discussed linked to the 

introduction of CRI schemes. This study, therefore, recommends that future studies 

quantify the welfare changes from the introduction of CRI in SA. By quantifying welfare 

gains, the crop insurance sector could present a stronger case for government support 

in the industry.  
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APPENDICES 

 

Appendix A Comparison of Revenue Insurance Products 

 

A.1 List of Tables 

 

Table A 1: Comparison of the initial revenue-based insurance products in the 

US 

Feature Crop Revenue 
Coverage 

Income protection Revenue 
assurance 

Unit 
organisation 

Basic, optional, or 
enterprise units 

Enterprise unit (all 
acreage of the insured 
crop in the county in 
which the insured has 
interest) 

Basic, optional, 
enterprise, or Whole 
Farm units (all RA 
insurable crop 
acreage in the 
county in which the 
insured has an 
interest) 

Basic for 
insurance 
guarantee 

Higher of 
1) APH yield * 

Base 
2) APH yield * 

Harvest price 
Insurance 
guarantee increases 
when the Harvest 
price exceeds the 
Base price 

APH yield * Projected 
price 

APH yield * 
Projected Harvest 
price 
Harvest price option 
increases the 
guarantee when the 
Harvest price 
exceeds the 
Projected Harvest 
price 

Maximum 
protection 
unit price 
increase 

Maize 
US$1.50/bushel, 
Cotton US$0.70/lb.  
Grain sorghum 
US$1.50/bushel 
Rice US$0.05/lb. 
Soybeans 
US$3.00/bushel 
Wheat 
US$2.00/bushel  

Not applicable Not applicable 

Reference 
commodity 
price 

For corn, cotton, 
rice, soybeans, and 
wheat, 100% of the 
selected commodity 
contract traded on a 
commodity futures 
exchange. 

For maize, cotton, 
soybeans, and wheat, 
100% of selected 
commodity contract 
traded on a commodity 
futures exchange. 
Grain sorghum is 90% 
of the corn futures. 

100% of selected 
commodity contract 
traded on a 
commodity 
futures exchange  
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Grain sorghum is 
95% of 
the maize futures. 

Barley is 85% of the 
corn futures.  

Eligibility for 
high-risk land 

High-risk land is 
eligible 
for coverage  

High-risk land is not 
eligible for coverage 

High-risk land is 
eligible 
for coverage 

Coverage 
levels 

50-75% in 5% 
increments, except 
50-85% where 85% 
APH is available. 
CAT is not available 

50-75%, except 50-
85% where 85% APH 
is available CAT is 
27.5% 

65-75%, except 65-
85% for Whole farm 
and Enterprise units. 
CAT is not available 

Hail and fire 
exclusion 

Not available Not available Not available 

Insured crops Maize, cotton, grain, 
sorghum, rice, 
soybeans, and 
wheat 

Barley, maize, cotton, 
grain 
sorghum, soybeans, 
and wheat 

Maize, feed barley, 
rapeseed, canola, 
soybeans, 
sunflowers, and 
spring wheat 

Premium 
rating 

APH base rate plus 
low price factor plus 
high price factor 
plus CRC factor 

New rating model 
incorporating yield and 
price variability 

New rating model  
incorporating yield 
and price variability 
and yield and price 
correlation 

 

Appendix B Distribution Models 

 

B.1 Other – Uniform Distribution 

 

The probability density function of  a uniform distribution is, 

 𝑓(𝑥) =  
1

𝑏−𝑎
 , for 𝑎 ≤ 𝑥 ≤ 𝑏 (39) 

where a = the lowest value of x and b=the highest value of x. 

The theoretical mean is given by, 

 µ =
𝑎+𝑏

2
  (40) 

 and standard deviation by, 

 σ =  √
(𝑏−𝑎)2

12
 . (41) 

 

The cumulative distribution function (CDF) of a uniform distribution is given by, 

 𝐹(𝑥) = ∫
1

𝑏−𝑎

𝑥

𝑎

 𝑑𝑥 = 
𝑥−𝑎

𝑏−𝑎
,  for 𝑎 ≤ 𝑥 ≤ 𝑏. (42) 
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Appendix C Referenced Results - Special Functions 

 

C.1 Special Functions 

C.1.1 Results 1 - Price Distributions 

C.1.1.1 CDF of normal distribution 

 

The cumulative distribution function (CDF) of Normal distribution is, 

 𝐹(𝑥) = ∫
1

√2𝛱𝜎
exp  [−

(𝑡 − µ)2

−2𝜎2
] 𝑑𝑡,

𝑥

−∞

𝜎 > 0 (43) 

Mean = μ = 1.990 
 

Standard deviation = σ = 0.325 

 

 

C.1.2  Results 2 – Yield Distributions 

 

C.1.2.1 Normal distribution 

 

 𝐹(𝑥) = ∫
1

√2𝛱𝜎
exp  [−

(𝑡 − µ)2

−2𝜎2
] 𝑑𝑡,

𝑥

−∞

𝜎 > 0 (44) 

 
mean = μ = 2.00 
 
standard deviation = σ = 0.166 

 

C.1.2.2 Beta distribution 

 

 𝑃(𝑥 ≤ 𝑡) =  ∫
𝑥𝑎−1(1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
𝑑𝑡

𝑡

0

 (45) 

 

Expected value = 𝐸[𝑋] =
𝑎𝛽

(𝛼+𝛽+1)(𝑎+𝛽)2
 = 132.6677 

 
Variance = 𝑉𝑎𝑟[𝑋] = 2785.9795 

 

C.1.2.3 Weibull distribution 

 𝐹(𝑥) = 1 − exp [− (
𝑥−𝜆

𝛼
)
𝛽

],   𝑥 ≥ 𝜆,   𝑎 > 0, 𝛽 > 0 (46) 
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  mean = 𝛼𝛤 (1 +
1

𝛽
) +  𝜆 =  15.82 

  variance = 𝛼2 (𝛤 (1 +
2

𝛽
) + 𝛤2 (1 +

1

𝛽
))  = 2.077 

 

C.1.3 Copula Fitting Results 

C.1.3.1 Bloemfontein 

 
Table C 1: Copula fitting with normal (price) and beta (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
change
s 

Yield 
residual
s 

Copula Copula 
paramet
er 

Kendall
's Tau 

loglike
lihood 

AIC BIC 

normal beta Gaussian -0.42 -0.28 1.27 -0.54 0.02 

normal beta t-copula -0.42 -0.27 1.13 1.73 2.86 

normal beta Frank -2.92 -0.30 1.48 -0.95 -0.39 

normal beta rotated 
Gumbel 90 
degrees 

-1.43 -0.30 1.32 -0.65 -0.08 

normal beta rotated 
Clayton 
270 
degrees 

-0.9 -0.31 1.51 -1.02 -0.45 

normal beta rotated Joe 
90 degrees 

-1.74 -0.29 1.31 -0.62 -0.06 

 

Table C 2: Copula fitting with normal (price) and normal (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residual
s 

Copula 
Copula 
paramet
er 

Kendall'
s  Tau 

loglik
elihoo
d 

AIC BIC 

normal normal Gaussian -0.49 -0.33 1.46 -0.92 -0.36 

normal normal t-copula -0.48 -0.32 1.36 1.28 2.41 

normal normal Frank -2.94 -0.30 1.50 -1.00 -0.44 

normal normal 

rotated 
Gumbel 90 
degrees 

-1.41 -0.29 1.14 -0.27 0.29 

normal normal 

rotated 
Clayton 
270 
degrees 

-0.75 -0.27 1.14 -0.27 0.29 

normal normal 
rotated Joe 
90 degrees 

-1.59 -0.25 0.86 0.27 0.84 
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Table C 3: Copula fitting with normal (price) and Weibull (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau 

Loglike 
lihood 

AIC BIC 

normal Weibull Gaussian -0.15 -0.10 0.73 0.54 1.10 

normal Weibull t-copula -0.16 -0.10 0.64 2.72 3.85 

normal Weibull Frank -1.31 -0.14 0.67 0.65 1.22 

normal Weibull 

rotated 
Gumbel 
90 
degrees -1.03 -0.02 0.09 1.82 2.38 

normal Weibull 

rotated 
Clayton 
270 
degrees -0.08 -0.04 0.54 0.91 1.48 

normal Weibull 

rotated 
Joe 90 
degrees -1.01 -0.01 0.02 1.96 2.53 

 

Table C 4: Copula fitting with normal (price) and gamma (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
 Tau 

Loglike 
lihood 

AIC BIC 

normal gamma Gaussian -0.42 -0.28 1.26 -0.52 0.05 

normal gamma t-copula -0.41 -0.27 1.12 1.76 2.89 

normal gamma Frank -2.92 -0.3 1.46 -0.92 -0.36 

normal gamma 

rotated  
Gumbel 
90 
degrees -1.42 -0.3 1.31 -0.62 -0.06 

normal gamma 

rotated 
Clayton 
270 
degrees -0.9 -0.31 1.51 -1.01 -0.45 

normal gamma 

rotated 
Joe 90 
degrees -1.74 -0.29 1.30 -0.61 -0.04 
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Table C 5: Copula fitting with normal (price) and lognormal (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau 

Loglike 
lihood 

AIC BIC 

normal lognormal Gaussian -0.4 -0.26 1.11 -0.21 0.35 

normal lognormal t-copula -0.39 -0.26 0.95 2.1 3.23 

normal lognormal Frank -2.82 -0.29 1.30 -0.6 -0.03 

normal lognormal 

rotated 
Gumbel9
0 -1.4 0.29 1.13 -0.26 0.31 

normal lognormal 

rotated 
Clayton 
270 
degrees -0.88 -0.31 1.37 -0.74 -0.17 

normal lognormal 

rotated 
Joe 90 
degrees -1.71 -0.28 1.12 -0.23 0.33 

 

 

Table C 6: Copula fitting with lognormal (price) and beta (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau 

Loglike 
lihood 

AIC BIC 

lognormal beta Gaussian -0.43 -0.28 1.32 -0.64 -0.07 

lognormal beta t-copula -0.42 -0.28 1.18 1.63 2.76 

lognormal beta Frank -2.94 -0.3 1.49 -0.97 -0.41 

lognormal beta 

rotated 
Gumbel 
90 
degrees -1.42 -0.3 1.31 -0.61 -0.05 

lognormal beta 

rotated 
Clayton 
270 
degrees -0.85 -0.3 1.43 -0.87 -0.3 

lognormal beta 

rotated 
Joe 90 
degrees -1.7 -0.28 1.22 -0.44 0.12 
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Table C 7: Copula fitting with lognormal (price) and normal (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

lognormal normal Gaussian -0.5 -0.33 1.53 -1.06 -0.5 

lognormal normal t-copula -0.49 -0.33 1.44 1.13 2.26 

lognormal normal Frank -3.04 -0.31 1.58 -1.15 -0.59 

lognormal normal 

rotated 
Gumbel 
90 
degrees -1.41 -0.29 1.16 -0.31 0.25 

lognormal normal 

rotated 
Clayton 
270 
degrees -0.73 -0.27 1.12 -0.23 0.33 

lognormal normal 

rotated 
Joe 90 
degrees -1.57 -0.24 0.84 0.33 0.89 

 

Table C 8: Copula fitting with lognormal (price) and Weibull (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residual
s 

Copula 
Copula 
paramet
er 

Kendall
's Tau 

Loglike 
lihood 

AIC BIC 

lognormal Weibull Gaussian -0.15 -0.09 0.68 0.64 1.21 

lognormal Weibull t-copula -0.15 -0.1 0.62 2.75 3.88 

lognormal Weibull Frank -1.2 -0.13 0.57 0.87 1.43 

lognormal Weibull 

rotated 
Gumbel 
90 
degrees -1.03 -0.03 0.12 1.76 2.33 

lognormal Weibull 

rotated 
Clayton 
270 
degrees -0.08 -0.04 0.52 0.95 1.52 

lognormal Weibull 

rotated  
Joe 90 
degrees -1.02   0.04 1.91 2.48 
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Table C 9: Copula fitting with lognormal (price) and gamma (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

lognormal gamma Gaussian -0.43 -0.28  1.31 -0.61 -0.05 

lognormal gamma t-copula -0.42  -0.27 1.17 1.67 2.8 

lognormal gamma Frank -2.93  -0.3 1.47 -0.94 -0.37 

lognormal gamma 

rotated 
Gumbel 
90 
degrees -1.42  -0.29 1.29 -0.58 -0.02 

lognormal gamma 

rotated 
Clayton 
270 
degrees -0.86  -0.30 1.43 -0.86 -0.29 

lognormal gamma 

rotated  
Joe 90 
degrees -1.70  -0.28 1.21 -0.42 0.14 

 

Table C 10: Copula fitting with lognormal (price) and lonormal (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau 

Loglike 
lihood 

AIC BIC 

lognormal lognormal Gaussian -0.41 -0.27  1.15 -0.3 0.26 

lognormal lognormal t-copula -0.40  -0.26 0.99 2.02 3.15 

lognormal lognormal Frank -2.81  -0.29 1.29 -0.58 -0.02 

lognormal lognormal 

rotated 
Gumbel 
90 
degrees -1.39  -0.28 1.11 -0.21 0.35 

lognormal lognormal 

rotated 
Clayton 
270 
degrees -0.83  -0.29 1.29 -0.57 -0.01 

lognormal lognormal 

rotated 
Joe 90 
degrees -1.67  -0.27 1.03 -0.05 0.51 
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C.1.3.2 Vryburg 

Table C 11: Copula fitting with normal (price) and beta (yield) marginals 

Distributions Dependence measures GOF statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

normal beta Gaussian -0.45 -0.30 1.49 -0.99 -0.42 

normal beta t-copula -0.44 -0.29 1.38 1.24 2.37 

normal beta frank -2.42 -0.25 1.30 -0.61 -0.04 

normal beta 

rotated 
Gumbel 
270 
degrees 

-1.38 -0.27 1.32 -0.63 -0.07 

normal beta 
rotated 
Clayton 90 
degrees 

-0.80 -0.29 1.58 -1.16 -0.60 

normal beta 
rotated Joe 
270 
degrees 

-1.62 -0.26 1.27 -0.54 0.03 

 

Table C 12: Copula fitting with lognormal (price) and lognormal (yield) marginals 

Distributions Dependence measures GOF statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

normal lognormal Gaussian -0.46 -0.30 1.54 -1.08 -0.51 

normal lognormal t-copula -0.45 -0.29 1.42 1.16 2.29 

normal lognormal frank -2.43 -0.26 1.33 -0.66 -0.09 

normal lognormal 

rotated 
Gumbel 
270 
degrees 

-1.35 -0.26 1.23 -0.47 0.10 

normal lognormal 
rotated 
Clayton 90 
degrees 

-0.72 -0.27 1.48 -0.95 -0.39 

normal lognormal 
rotated Joe 
270 
degrees 

-1.54 -0.23 1.11 -0.21 0.35 
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Table C 13: Copula fitting with normal (price) and gamma (yield) marginals 

Distributions Dependence measures GOF statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

normal gamma Gaussian -0.46 -0.30 1.50 -1.00 -0.43 

normal gamma t-copula -0.44 -0.29 1.39 1.23 2.36 

normal gamma frank -2.42 -0.25 1.31 -0.61 -0.05 

normal gamma 

rotated 
Gumbel 
270 
degrees 

-1.37 -0.27 1.31 -0.61 -0.05 

normal gamma 
rotated 
Clayton 90 
degrees 

-0.79 -0.28 1.57 -1.14 -0.57 

normal gamma 
rotated Joe 
270 
degrees 

-1.61 -0.25 1.25 -0.50 0.07 

 

Table C 14: Copula fitting with normal (price) and normal (yield) marginals 

Distributions Dependence measures GOF statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

normal normal Gaussian -0.46 -0.31 1.34 -0.69 -0.12 

normal normal t-copula -0.45 -0.30 1.26 1.47 2.60 

normal normal frank -2.36 -0.25 1.17 -0.35 0.22 

normal normal 
rotated 
Gumbel 90 
degrees 

-1.43 -0.30 1.42 -0.84 -0.27 

normal normal 
rotated 
Clayton 90 
degrees 

-0.95 -0.32 1.78 -1.56 -0.99 

normal normal 
rotated Joe 
270 
degrees 

-1.77 -0.30 1.59 -1.19 -0.62 
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Table C 15: Copula fitting with normal (price) and Weibull (yield) marginals 

Distributions Dependence measures GOF statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

normal Weibull Gaussian -0.45 -0.30 1.34 -0.69 -0.12 

normal Weibull t-copula -0.44 -0.29 1.24 1.52 2.65 

normal Weibull frank -2.41 -0.25 1.24 -0.42 0.14 

normal Weibull 

rotated 
Gumbel 
270 
degrees 

-1.44 -0.31 1.47 -0.93 -0.37 

normal Weibull 
rotated 
Clayton 90 
degrees 

-1.03 -0.34 1.82 -1.65 -1.08 

normal Weibull 
rotated Joe 
270 
degrees 

-1.85 -0.32 1.69 -1.37 -0.81 

 

Table C 16: Copula fitting with lognormal (price) and beta (yield) marginals 

Distributions Dependence measures GOF statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

lognormal beta Gaussian -0.44 -0.29 1.40 -0.81 -0.24 

lognormal beta t-copula -0.43 -0.28 1.30 1.41 2.54 

lognormal beta frank -2.38 -0.25 1.27 -0.54 0.03 

lognormal beta 

rotated 
Gumbel 
270 
degrees 

-1.38 -0.27 1.31 -0.62 -0.05 

lognormal beta 
rotated 
Clayton 90 
degrees 

-0.82 -0.29 1.63 -1.25 -0.69 

lognormal beta 
rotated Joe 
270 
degrees 

-1.64 -0.26 1.33 -0.66 -0.09 
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Table C 17: Copula fitting with lognormal (price) and lognormal (yield) marginals 

Distributions Dependence measures GOF statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

lognormal lognormal Gaussian -0.45 -0.30 1.46 -0.91 -0.35 

lognormal lognormal t-copula -0.43 -0.29 1.34 1.32 2.45 

lognormal lognormal frank -2.39 -0.25 1.29 -0.59 -0.02 

lognormal lognormal 

rotated 
Gumbel 
270 
degrees 

-1.35 -0.26 1.23 -0.45 0.11 

lognormal lognormal 
rotated 
Clayton 90 
degrees 

-0.74 -0.27 1.51 -1.03 -0.46 

lognormal lognormal 
rotated Joe 
90 degrees 

-1.56 -0.24 1.15 -0.31 0.26 

 

Table C 18: Copula fitting with lognormal (price) and gamma (yield) marginals 

Distributions Dependence measures GOF statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

lognormal gamma Gaussian -0.44 -0.29 1.41 -0.82 -0.26 

lognormal gamma t-copula -0.43 -0.28 1.30 1.40 2.53 

lognormal gamma frank -2.38 -0.25 1.27 -0.54 0.02 

lognormal gamma 

rotated 
Gumbel 
270 
degrees 

-1.37 -0.27 1.30 -0.60 -0.03 

lognormal gamma 
rotated 
Clayton 90 
degrees 

-0.81 -0.29 1.61 -1.23 -0.66 

lognormal gamma 
rotated Joe 
270 
degrees 

-1.63 -0.26 1.30 -0.61 -0.04 
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Table C 19: Copula fitting with lognormal (price) and normal (yield) marginals 

Distributions Dependence measures GOF statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

lognormal normal Gaussian -0.45 -0.30 1.28 -0.57 0.00 

lognormal normal t-copula -0.44 -0.29 1.21 1.59 2.72 

lognormal normal frank -2.35 -0.25 1.17 -0.33 0.23 

lognormal normal 

rotated 
Gumbel 
270 
degrees 

-1.43 -0.30 1.44 -0.88 -0.32 

lognormal normal 
rotated 
Clayton 90 
degrees 

-0.99 -0.33 1.87 -1.74 -1.18 

lognormal normal 
rotated Joe 
270 
degrees 

-1.80 -0.31 1.70 -1.40 -0.83 

 

Table C 20: Copula fitting with lognormal (price) and Weibull (yield) marginals 

Distributions Dependence measures GOF statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

lognormal Weibull Gaussian -0.43 -0.29 1.25 -0.49 0.07 

lognormal Weibull t-copula -0.42 -0.28 1.15 1.70 2.83 

lognormal Weibull frank -2.36 -0.25 1.18 -0.35 0.21 

lognormal Weibull 

rotated 
Gumbel 
270 
degrees 

-1.44 -0.31 1.45 -0.91 -0.34 

lognormal Weibull 
rotated 
Clayton 90 
degrees 

-1.06 -0.35 1.89 -1.78 -1.22 

lognormal Weibull 
rotated Joe 
270 
degrees 

-1.88 -0.33 1.77 -1.54 -0.98 
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C.1.3.3 Delmas 

Table C 21: Copula fitting with normal (price) and beta (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

normal beta gaussian -0.19 -0.12 0.25 1.51 2.07 

normal beta t-copula -0.18 -0.11 0.13 3.74 4.87 

normal beta frank -0.98 -0.11 0.16 1.67 2.24 

normal beta 

rotated 
Gumbel 
90 
degrees 

-1.14 -0.12 0.19 1.61 2.18 

normal beta 

rotated 
Clayton 
270 
degrees 

-0.29 -0.13 0.17 1.66 2.23 

normal beta 
rotated 
Joe 270 
degrees 

-1.23 -0.12 0.17 1.67 2.23 

 

Table C 22:Copula fitting with normal (price) and normal (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

normal normal gaussian -0.18 -0.11 0.22 1.57 2.13 

normal normal t-copula -0.17 -0.11 0.12 3.77 4.90 

normal normal frank -1.02 -0.11 0.20 1.60 2.16 

normal normal 

rotated 
Gumbel 
90 
degrees 

-1.10 -0.09 0.11 1.78 2.35 

normal normal 

rotated 
Clayton 
90 
degrees 

-0.12 -0.06 0.12 1.76 2.33 

normal normal 
rotated 
Joe 90 
degrees 

-1.11 -0.06 0.05 1.91 2.47 
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Table C 23: Copula fitting with normal (price) and Weibull (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

normal Weibull gaussian -0.16 -0.10 0.17 1.65 2.22 

normal Weibull t-copula -0.16 -0.10 0.10 3.79 4.92 

normal Weibull frank -1.04 -0.11 0.20 1.60 2.17 

normal Weibull 

rotated 
Gumbel 
90 
degrees 

-1.09 -0.09 0.10 1.79 2.36 

normal Weibull 

rotated 
Clayton 
90 
degrees 

-0.14 -0.06 0.12 1.77 2.33 

normal Weibull 
rotated 
Joe 90 
degrees 

1.10 -0.06 0.04 1.92 2.48 

 

Table C 24: Copula fitting with normal (price) and gamma (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

normal gamma gaussian -0.20 -0.13 0.25 1.50 2.07 

normal gamma t-copula -0.18 -0.11 0.13 3.73 4.86 

normal gamma frank -0.98 -0.11 0.16 1.68 2.24 

normal gamma 

rotated 
Gumbel 
90 
degrees 

-1.14 -0.12 0.20 1.61 2.17 

normal gamma 

rotated 
Clayton 
270 
degrees 

-0.30 -0.13 0.18 1.65 2.21 

normal gamma 
rotated 
Joe 90 
degrees 

-1.24 -0.12 0.17 1.65 2.22 

 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



172 | P a g e  
 

Table C 25: Copula fitting with normal (price) and lognormal (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

normal lognormal gaussian -0.06 -0.04 0.18 1.64 2.21 

normal lognormal t-copula -0.04 -0.04 -0.48 4.97 6.09 

normal lognormal frank -0.33 -0.04 0.03 1.94 2.51 

normal lognormal 

rotated 
Gumbel 
90 
degrees 

-1.00 0.00 0.00 2.00 2.57 

normal lognormal 

rotated 
Clayton 
90 
degrees 

-0.02 -0.01 0.08 1.84 2.41 

normal lognormal 
rotated 
Joe 90 
degrees 

-1.00 0.00 0.00 2.00 2.57 

 

Table C 26: Copula fitting with lognormal (price) and beta (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
resid
uals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

lognormal beta gaussian -0.21 -0.13 0.29 1.42 1.99 

lognormal beta t-copula -0.19 -0.12 0.17 3.66 4.79 

lognormal beta frank -1.07 -0.12 0.19 1.61 2.18 

lognormal beta 

rotated 
Gumbel 
90 
degrees 

-1.13 -0.12 0.18 1.64 2.20 

lognormal beta 

rotated 
Clayton 
270 
degrees 

-0.27 -0.12 0.18 1.65 2.21 

lognormal beta 
rotated 
Joe 90 
degrees 

-1.19 -0.10 0.13 1.75 2.31 
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Table C 27: Copula fitting with lognormal (price) and norma (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

lognormal normal gaussian -0.18 -0.12 0.24 1.53 2.09 

lognormal normal t-copula -0.18 -0.11 0.13 3.73 4.86 

lognormal normal frank -1.07 -0.12 0.22 1.57 2.13 

lognormal normal 

rotated 
Gumbel 
90 
degrees 

-1.09 -0.08 0.09 1.82 2.38 

lognormal normal 

rotated 
Clayton 
90 
degrees 

-0.13 -0.06 0.13 1.74 2.31 

lognormal normal 
rotated 
Joe 90 
degrees 

-1.08 -0.04 0.03 1.95 2.51 

 

Table C 28: Copula fitting with lognormal (price) and Weibull (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

lognormal Weibull gaussian -0.18 -0.11 0.21 1.58 2.15 

lognormal Weibull t-copula -0.17 -0.11 0.14 3.72 4.85 

lognormal Weibull frank -1.12 -0.12 0.23 1.55 2.11 

lognormal Weibull 

rotated 
Gumbel 
90 
degrees 

-1.09 -0.08 0.10 1.79 2.36 

lognormal Weibull 

rotated 
Clayton 
90 
degrees 

-0.166 -0.07 0.14 1.71 2.28 

lognormal Weibull 
rotated 
Joe 90 
degrees 

-1.09 -0.05 0.04 1.93 2.49 
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Table C 29: Copula fitting with lognormal (price) and gamma (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

lognormal gamma gaussian -0.13 -0.13 0.29 1.42 1.98 

lognormal gamma t-copula -0.19 -0.12 0.17 3.66 4.79 

lognormal gamma frank -1.07 -0.12 0.19 1.62 2.18 

lognormal gamma 

rotated 
Gumbel 
90 
degrees 

-1.13 -0.12 0.18 1.63 2.20 

lognormal gamma 

rotated 
Clayton 
270 
degrees 

-0.27 -0.12 0.18 1.63 2.20 

lognormal gamma 
rotated 
Joe 270 
degrees 

-1.19 -0.10 0.13 1.74 2.30 

 

Table C 30: Copula fitting with lognormal (price) and lognormal (yield) marginals 

Distributions Dependence measure Fit Statistics 

Price 
changes 

Yield 
residuals 

Copula 
Copula 
parameter 

Kendall's 
Tau  

Loglike 
lihood 

AIC BIC 

lognormal lognormal gaussian -0.07 -0.04 0.24 1.52 2.09 

lognormal lognormal t-copula -0.07 -0.04 -0.37 4.74 5.87 

lognormal lognormal frank -0.44 -0.05 0.05 1.90 2.46 

lognormal lognormal 

rotated 
Gumbel 
90 
degrees 

-1 0.00 0 2 2.57 

lognormal lognormal 

rotated 
Clayton 
90 
degrees 

-0.02 -0.01 0.08 1.85 2.41 

lognormal lognormal 
rotated 
Joe 270 
degrees 

-1.00 0.00 0.00 0.00 0.00 
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C.1.4 Theory of Goodness-of-fit 

C.1.4.1 AIC and BIC Criterion 

Generally, the rules of thumb are, the bigger the log-likelihood value and the smaller 

the AIC or BIC value, is the better the fit of a model. The AIC and BIC is defined as 

follows (Fang et al. 2014): 

 

𝐴𝐼𝐶 =  −2 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

𝑆𝐼𝐶 =  −2(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

+ ln(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑎𝑣𝑎𝑡𝑖𝑜𝑛) (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)  

 

The AIC and BIC approach despite not being able to conduct a formal goodness-of-fit 

test is favourable because you can use the same dataset to compare different copula 

methods thus lending itself to ease of computation. The downside to this approach is 

that, if the true copula is not part of the pool, the one with least AIC/BIC value is chosen 

which would result in the incorrect copula method being implemented possibly. 

 

C.1.4.2 Kolmogorov-Smirnov Goodness-of-Fit Test (KS test) 

 

This is a ‘distribution free’ goodness of fit test (Massey, 1951) which means that one 

can test how well their observed data fits to a hypothetical distribution. The KS  

statistic therefore implies how well a dataset fits to a specified curve. 

The KS test hypothesis tests are given as: 

𝐻0: The data follows a specified distribution 

𝐻𝑎: The data does not follow a specified distribution 

The KS test statistic is defined by Massey (1951) as follows: 

 𝑑 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚|𝐹0(𝑥) − 𝑆𝑁(𝑥)|, (47) 

 

where 𝐹0(𝑥) is the assumed known specified population cumulative distribution and 

𝑆𝑁(𝑥) is the observed cumulative step-function of a sample. 
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The rejection rules use the significance ∝ level and critical values from tables 

provided. The null hypothesis is rejected if d is greater than critical value provided in 

the tables.  

Because the KS test statistic, d is measuring the distance between two curves, while 

the smaller the gap means the observed data fits well to a specified distribution is 

how this research manages to make a decision on which is the better fitting 

distribution to the yield and price data. 
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