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Abstract

A more robust assessment of malaria control will come from a better understanding of the distribution
and connectivity of breeding and blood feeding sites. Spatial heterogeneity of mosquito resources, such
as hosts and breeding sites, affects mosquito dispersal behavior. This paper analyzes and simulates
the spreading of anopheles mosquito on a complex metapopulation, that is, networks of populations
connected by migratory flows whose configurations are described in terms of connectivity distribution of
nodes (patches) and the conditional probabilities of connections between nodes. We examine the impacts
of vector dispersal on the persistence and extinction of a mosquito population in both homogeneous
and heterogeneous landscapes. For uncorrelated networks in a homogeneous landscape, we derive
an explicit formula of the basic offspring number R(m)

0 . Using the theory of monotone operators, we
obtain sufficient conditions for the global asymptotic stability of equilibria. Precisely, the value 1 of
the basic offspring number is a forward bifurcation for the dynamics of anopheles mosquito, with the
trivial (mosquito-free) equilibrium point being globally asymptotically stable (GAS) when R(m)

0 ≤ 1, and
one stable nontrivial (mosquito-persistent) equilibrium point being born with well determined basins of
attraction when R(m)

0 > 1. Theoretical results are numerically supported and the impact of the migration
of mosquitoes are discussed through global sensitivity analysis and numerical simulations.

Keywords: Anopheles mosquito; dispersal; monotone system; stability analysis; metapopulation;
simulation.

1. Introduction

For many centuries, vector-borne diseases among all infectious diseases of human beings, have consti-
tuted a major cause of human mortality and morbidity. Even with the recent advances in the biomedical
sciences, vector-borne diseases still seriously threaten world health. For example, according to the latest
WHO estimates, released in December 2015, there were 214 million cases of malaria in 2015 and 438000
deaths [1]. It is well known that the malaria parasite is transmitted from human-to-human through the
anopheles mosquito bites, and that the transmission cycle is essentially driven by the human biting habit
of the mosquito [2]. Now, the female anopheles mosquito bites a human being for the sole purpose of
harvesting blood that she needs for the development of her eggs. The malaria parasite has exploited
the mosquito’s life style by adapting its life cycle so that part of it is in the human being and the other
part in the mosquito. By so doing, the mosquito can then propagate the parasite from human to hu-
man. Transmission of most indirectly transmitted diseases of human being follows the same pattern.
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The vector (in most cases an insect) interacts with a human being, and depending on the disease status
of both organisms, will either infect or be infected. Thus, understanding the population dynamics of
mosquitoes, and relationship between mosquitoes and the environment is fundamental to the study of
the epidemiology of mosquito-borne diseases. Mosquito abundance is a key determining factor that
affects the persistence or resurgence of mosquito-borne diseases in a given region [3]. Hence, it is crucial
to study the dynamics of mosquitoes, and devise effective and realistic methods for controlling mosquito
population in communities.

The spatial distribution of anopheles vectors has shown great potential to affect malaria transmission
intensity [3]. Therefore, a better understanding of the distribution, productivity and connectivity of
anopheles breeding sites in order to determine their influence on anopheles distribution could be very
useful in malaria control. Several theoretical studies of malaria vector dynamics have emphasized the
importance of considering individual larval habitats, but few have addressed the effects of interactions
between larval habitat connectivity [3, 4].

Mathematical models play an important role in understanding and providing solutions to natural
phenomena which are difficult to measure in the field, and some models have incorporated dispersal or
heterogeneity when modeling mosquito population [5, 6, 7]. Spatial models usually used the diffusion
approach, which considers space as a continuous variable. Although partial differential equations (PDEs)
are a good and classical way of modeling such dispersal [6, 8], their analysis is usually limited and do
not incorporate the various factors that affect migrations. However, discrete approaches offer a better
and simpler way of modeling heterogeneity [5, 9]. Thus, in areas where resources can be located in
patches, mosquito dispersal is more suitably modeled by using a metapopulation approach, in which the
population is subdivided into discrete patches. Then, in each patch, the population is subdivided into
compartments corresponding to different status. This leads to a multi-patch, multi-compartment system.

Talking about the metapopulation setting, a recent approach based on the formalism used in statistical
mechanics of complex networks is presented in [10, 11, 12, 13]. Under this approach, the structure of the
spatial network of patches is encapsulated by means of the connectivity (degree) distribution p(k) defined
as the probability that a randomly chosen patch has connectivity k. Note that the degree or connectivity of
a patch (node) is the number of links connected to that node (i.e., the number its neighbors). Recent works
have shown that it is possible to investigate the dynamics of epidemic spread using statistical mechanics on
configuration model networks [14, 15, 16, 17, 18]. Most of above-mentioned investigations [13, 15, 16, 18]
mainly considered epidemic models on networks with no degree correlation (i.e., uncorrelated networks).
In such networks, a patch which is only constrained by degree distribution (and hence by the number of
neighbors it has), can point to any patch from a pool of the network. However, few recent works [14, 17]
have taken into account the degree correlation in complex networks and have conducted comparison
studies on the prediction of disease evolution on correlated networks.

Many other works have focused on a metapopulation approach to model the mosquito population
[4, 5]. In their work in [4], the authors presented a stochastic network model not governed by a dynamical
system and did not consider all main stages of the mosquito life cycle to analyze the significance of
the productivity of breeding sites. The work in [5] considered a set of discrete hexagonal patches to
investigated the effects of mosquito dispersal on its dynamics.

In this work, we intend to fill some of the gaps mentioned above in order to better take into account the
heterogeneity in the connectivity of the nodes of network. To fulfill our goal, we make use of an approach
based on statistical mechanics which could allow us identifying other breeding site characteristics which
could best explain the distribution and abundance of mosquitoes. The methodology and objectives of
this paper are to design a complex network extension of the seminal model in [19], analyze and simulate
a mathematical model for the spatio-temporal dynamics of anopheles mosquito using the alternative
approach based on a statistical mechanics. This extension is inspired by the works [4, 5, 11, 12, 13] and
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some references therein. We consider the spread of anopheles mosquitoes on complex metapopulations,
i.e., networks of populations connected by migratory flows whose configurations are described in terms
of the conditional probabilities of connections between nodes. Note that nodes of the network represent
potential breeding and feeding sites of mosquitoes, around which are human hosts habitations.

From the modeling perspective, the model proposed in this manuscript is a substantial extension of the
basic model in [19] by incorporating the dispersal of mosquitoes. It also extends and enriches the work in
[4, 5] by considering: (i) all the stages of the mosquito life cycle and (ii) heterogeneity in the connectivity
of patches. From the theoretical and numerical perspectives, we examine the significance of larval habitat
connectivity and mosquito dispersal in a homogeneous and a heterogeneous landscapes on the persis-
tence of mosquitoes populations. More precisely, we construct corresponding metapopulation models
and perform their qualitative and quantitative analyzes. Specifically, for the mathematical tractability,
uncorrelated networks in a homogeneous landscape are considered and the following investigations are
highlighted:

• The bifurcation/threshold parameter (basic offspring number) is explicitly computed.

• The sensitivity analysis of the threshold parameter, the model variables with respect to model
parameters is given.

• A simple and digestive proof based on the Hethcote-Thieme fixed point theorem [20], of a unique
nontrivial equilibrium point is provided.

• Contrary to the few existing works where, Lyapunov-LaSalle techniques are usually used, the
monotone operator theory [21] is the main ingredient here for the establishment of global asymptotic
stability of both trivial and nontrivial equilibrium points.

Moreover for both homogeneous and heterogeneous landscapes, the effects of dispersal/migration and
patch heterogeneity on the mosquito population are numerically investigated. Finally, the comparison of
metapopulation models in homogeneous and heterogeneous landscapes are presented through numerical
simulations. The rest of the paper is organized as follows. After the presentation of the basic model
without mosquito dispersal in Section 2, we formulate metapopulation models for both homogeneous and
heterogeneous landscapes in Section 3. Their qualitative and quantitative analyses are further presented.
Theoretical results and the role of dispersal, patch connectivities and migration are investigated through
numerical simulations in Section 4. The summary of the main results of our work and its possible
extensions conclude the paper in Section 5.

2. The basic model in a single patch: mosquito dynamics without dispersal

We consider the classical Anguelov-Dumont-Lubuma model [19]:
Ȧ = ΦF − (γ + µ1 + µ2A)A,
Ẏ = rγA − (β + µY)Y,
Ṁ = (1 − r)γA − µMM,
Ḟ = βY − µFF.

(2.1)

This model was developed according to the following biological and entomological facts recalled hereafter.
The life cycle of mosquitos consists of two main stages: aquatic (egg, larva, pupa) and adult. After
emergence from pupa, a female mosquito needs to mate and get a blood meal before it starts laying eggs.
Depending on the condition, this takes about a week. Then, every 4-5 days she will take a blood meal
and lay 100-150 eggs at different places (10-15 per place). Mathematically, the population of mosquitoes
is then divided into the following compartments: population in aquatic stage A; young female not yet
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Figure 1: Wild mosquito flow chart.

laying eggs Y; fertilized and eggs laying females F and males M. This description was depicted in [19] by
the flowchart in Fig. 1.

Note that the first equation of system (2.1) can be combined as logistic population with harvesting. A
female needs to mate successfully only once. The eggs are laid in the so-called gonotrophic cycle, which
consists of taking blood meal, maturation of the eggs and oviposition. Before a female begins to lay eggs,
two essential events need to take place, mating and taking a blood meal, occurring in varying order.

A female mosquito is considered to be in the Y-compartment since its emergence from pupa until her
gonotrophic cycle has began, that is the time needed to mate and take the first blood meal, which takes
typically 3-4 days. The death rate during that period reflects essentially only death from predators and
adverse climatic conditions. Therefore, it is generally lower than the death rate for the F-compartment.
Typically, the male mosquitoes are (depending on the temperature) about half or 40 percent of the total
population.

In the model, the fraction of the emerging female mosquitoes is denoted by r, with (1 − r) being the
fraction of emerging male mosquitoes. A male mosquito can mate practically through all its life. Since
a female needs one successful mating, there is an overabundance of males. Therefore, in general, it is
reasonable to assume that the waiting time for mating does not depend on the number of males (M) in
the sense that, if M is increased further this rate remains the same. For the model, this means that the
transfer rate β from compartment Y to compartment F is independent of M. Mathematically, this means
that the third equation of system (2.1) can be decoupled from the system. Sometimes β is referred to
as "mating rate", which, as explained above, can be abetted misleading and does not defined well the
boundary between compartments Y and F. The model under derivation clearly fixed boundary at the
beginning of the first gonotrophic cycle of female, that is immediately after the mating and first blood
meal. Then, the rate (per day) of laying eggs in the breeding sites is φF, where φ is the average amount of
eggs laid per fertilized female per day. In the model, the size of the population is restricted by a density
dependent death rate similar to [22, 23]. However, the density dependent death rate is used only for the
aquatic stage. The reason is that in a typical environment the size of the mosquito population is also
restricted mainly by the available breeding sites. In [24], the size of the population is also restricted only
in the aquatic stages but in a different way by an explicit carrying capacity beyond which no egg is laid.
In equation (2.1), the parameters µ1 and µ2 denote the density independent and the density dependent
death rates of the aquatic stage, respectively. In all equations of model (2.1), µwith respective index refers
to the death rate for the specific compartment (which is density independent).

The parameter values of model (2.1) used for simulations are given in Table 1 and the analytical results
for this model can be found in [19]. However, for the easier readability of our work, we recall without
proof the main results. System (2.1) has two equilibria: the trivial equilibrium Q0 = (0, 0, 0, 0) and the
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Table 1: Numerical values for the parameters of system (2.1) [19].

Parameter Description Value
r Fraction of the emerging female mosquitoes (per day) 0.5
γnontrivial Maturation rate from larvae to adult (per day) 0.1
β Transfer rate from the compartment Y to F (per day) 0.25
1/µM Average lifespan of male mosquitoes (in days) 7
1/µF Average lifespan of female mosquitoes (in days) 10
1/µY Average lifespan of adult female mosquitoes (in days) 20
Φ Number of eggs at each deposit per capita (per day) variable
µ1 Mortality rate of the aquatic stage (per day) 0.25
µ2 Density mortality rate of the aquatic stage (per day) 10−5

nontrivial equilibrium Q∗ = (A∗,Y∗,F∗,M∗)T where A∗, Y∗, F∗ and M∗ are defined as follows:

A∗ =
(γ + µ1)(R0 − 1)

µ2
, Y∗ =

rγ(γ + µ1)(R0 − 1)
µ2(β + µY)

,

F∗ =
βrγ(γ + µ1)(R0 − 1)
µFµ2(β + µY)

and M∗ =
(1 − r)γ(γ + µ1)(R0 − 1)

µ2µM
,

(2.2)

where R0 is given by

R0 =
rγβΦ

(γ + µ1)(β + µY)µF
. (2.3)

The nontrivial equilibrium Q∗ has a biological meaning if and only if R0 ≥ 1. The threshold quantity R0 is
the basic offspring number for the population of anopheles mosquitoes in a single patch model [19]. It is
the average number of the newly anopheles mosquitoes generated by a single fertilized and eggs laying
female anopheles mosquito during her life when she is introduced into a population of male anopheles
mosquitoes in the absence of any given intervention strategies.

The following result summarizes the asymptotic behavior of model (2.1) as shown in [19].

Theorem 2.1. System (2.1) is a dissipative dynamical system in Ω = R4
+ = {(S,Y,F,M) ∈ R4 / S,Y,F,M ≥ 0}.

Moreover,

(i) If R0 ≤ 1, then the trivial (mosquito-free) equilibrium Q0 is globally asymptotically stable on Ω.

(ii) If R0 > 1, then the system has two equilibria Q0 and Q∗ on Ω where Q∗(the mosquito-persistent equilibrium)
is stable with basin of attraction Ω \ {(A,Y,M,F) ∈ R4

+, A = Y = F = 0} and Q0 is unstable with the
nonnegative M-axis being a stable manifold.

3. Metapopulation models in complex networks

3.1. A generic reaction-diffusion model in a complex network

Herein, we extend model (2.1) to incorporate the diffusion/migration process. Mosquitoes disperse while
searching for hosts or breeding sites [4]. We consider the dynamical evolution of the population of
anopheles mosquitoes in heterogeneous metapopulation. The model consists of n patches. We recall that
these patches represent breeding-feeding sites around which are potential human habitats and between
which mosquitoes move creating links between these nodes. A given fraction of adult mosquitoes
searching for hosts and a fraction of adult mosquitoes searching for breeding sites leave their current
patches of residence, while the remaining fraction is motionless. We assume that the architecture of
the network of patches (nodes) where local populations live is mathematically encoded by means of the
connectivity (degree) distribution p(k). Typically, p(k) is defined as the probability that a randomly chosen
path has degree k. We recall that the degree or connectivity of a patch is the number of links connected
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to that patch. At any given time, in each patch, an individual mosquito is in one of the following states:
population in aquatic stage (ρA,k), young female not yet laying eggs (ρY,k), fertilized and eggs laying
females (ρF,k), male mosquitoes (ρM,k). The total variable population size in patches of degree k at time t is
given by ρk(t) = ρA,k(t) + ρY,k(t) + ρF,k(t) + ρM,k(t). Note again that, we focus in this part on the migration of
mosquitoes from patch to patch (that is the case of connected patches). A reasonable assumption is that,
mosquitoes in aquatic phase can not move out of their residence patch, while those in adult phase can
migrate.

In Fig. 2, we give an example of a n-patches network: each patch here is breeding-feeding site. Without

Patch 
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3 

Patch 
 i+1 

Patch 
1 

Patch 
4 

Patch  
 i 

Patch 
n 

Figure 2: A general n-patches network for the population dynamics of anopheles mosquito between n feeding-breeding sites.

loss of generality, we suppose that in each patch, the population dynamics of anopheles mosquitoes is
governed by the basic system (2.1). Mosquitoes move from a patch with degree k to another with degree
k′ with a diffusion rate Dkk′ that depends on the degrees of the origin and destination patches. The
probability Pk of leaving a patch with degree k is then given by

Pk = k
∑

k′
P(k′|k)Dkk′ , (3.1)

where P(k′|k) is the conditional probability that any given edge departing from a node of degree k is
pointing to a node of degree k′ [12].

Under this generic type of diffusion, the equations governing the spatio-temporal evolution of anophe-
les mosquitoes are giving by the system below :

ρ̇A,k = ΦρF,k − (γ + µ1 + µ2ρA,k)ρA,k,
ρ̇Y,k = rγρA,k − (β + µY)ρY,k − PkρY,k + k

∑
k′

P(k′|k)Dk′kρY,k′ ,

ρ̇M,k = (1 − r)γρA,k − µMρM,k − PkρM,k + k
∑
k′

P(k′|k)Dk′kρM,k′ ,

ρ̇F,k = βρY,k − µFρF,k − PkρF,k + k
∑
k′

P(k′|k)Dk′kρF,k′ .

(3.2)

As in classical reaction-diffusion processes, system (3.2) expresses the time variation of the subpopula-
tions of mosquitoes in aquatic phase, young female not yet laying eggs, fertilized and eggs laying females
and males mosquitoes as the sum of two independent contributions: reaction and diffusion. In particular,
the diffusion term includes the outflow of mosquitoes (diffusing particles) from patches of degree k and
the inflow of migratory mosquitoes from the nearest patches of degree k′. In general, with n different
patches of corresponding degrees k1, k2, ..., kn in the network, Eq. (3.2) is a 4 × n system of differential
equations. The solutions of system (3.2) remain nonnegative in R4n

+ because the out movement always
stops when the corresponding patch is emptied. This latter assertion is mathematically established in the
following result.

Theorem 3.1. If system (3.2) with initial condition in R4n
+ has a solution, then the latter solution remains in R4n

+

(i.e. nonnegative) for all times.
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Proof: It suffices to show that system (3.2) can written in the following form:

Ẋ =M(X)X, (3.3)

whereM(X) is a 4n× 4n cooperative (Metzler) matrix, and X a 4n column matrix to be determined below.
To this end, system (3.2) rewrites:

ρ̇A,ki = ΦρF,ki − (γ + µ1 + µ2ρA,ki )ρA,ki ,

ρ̇Y,ki = rγρA,ki − (β + µY)ρY,ki − PkiρY,ki + ki

n∑
j=1

P(k j|ki)Dk jkiρY,k j ,

ρ̇M,ki = (1 − r)γρA,ki − µMρM,ki − PkiρM,ki + ki

n∑
j=1

P(k j|ki)Dk jkiρM,k j i = {1, 2, ...,n},

ρ̇F,ki = βρY,ki − µFρF,ki − PkiρF,ki + ki

n∑
j=1

P(k j|ki)Dk jkiρF,k j .

(3.4)

Now, let
XA = (ρA,k1 , ρA,k2 , . . . , ρA,kn )T, XY = (ρY,k1 , ρY,k2 , . . . , ρY,kn )T,

XM = (ρM,k1 , ρM,k2 , . . . , ρM,kn )T, XF = (ρF,k1 , ρF,k2 , . . . , ρF,kn )T,

Q1 = diag(Pk1 , · · · ,Pkn ), Q2 =
(
kiP

(
k j|ki

)
Dk jki

)
(i, j)
, MA = −(γ + µ1)In − µ2diag(XA),

MY = −(β + µY + Q1)In + Q2, MM = −(µM + Q1)In + Q2 MF = −(µF + Q1)In + Q2,

and

M(X) =


MA On On ΦIn
rγIn MY On On

(1 − r)γIn On MM On
On βIn On MF

 ,
where In and On denote the n × n identity and null matrices, respectively. Since the entries of Q1 and Q2

are nonnegative, it is straightforward that MA, MY, MM, MF are Metzler matrices, so isM(X). Finally, let

X = (XA, XY, XM, XF)T ,

then model (3.4) becomes
Ẋ =M(X)X.

This achieves the proof. �

In the following subsections we study special cases of system (3.2) depending on the type of diffusion
processes by considering diffusion rates that are inherent to the traffic characteristics of each node.
Typically there are two distinguishable landscapes with different features which must retain our attention.

3.2. The metapopulation model in a homogeneous landscape

A landscape is homogeneous when all its patches have similar characteristics. Thus, in such land-
scapes, it is reasonable to assume that the mosquitoes have the same dispersal/diffusion rate between
patches. The mosquitoes searching for breeding sites to lay their eggs are attracted by the availability of
breeding sites [25]. Therefore they move randomly in any breeding sites to lay their eggs. Mosquitoes
can detect host odor, but it is unclear whether they have the learning capacity they would need to enable
them to return to particular hosts or breeding sites [5, 26]. In the case where all patches have similar
characteristics (i.e. homogeneous landscape), the mosquitoes disperse equally between the patches and
the dispersal parameter is the same for all patches. In this case, the diffusion rate along any given link of
a node with degree k is simply equal to

Dkk′ =
Di

k
, i = Y,M,F. (3.5)
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For the sake of brevity, we consider strictly positive diffusion rates DY,DF,DM > 0. Thus, assuming that
distance has no bearing on the probability of mosquito flying between breeding sites and, using the fact
that

∑
k

P(k|k′) = 1, the dynamics of free-flying mosquitoes in a patch of degree k is



ρ̇A,k = ΦρF,k − (γ + µ1 + µ2ρA,k)ρA,k,

ρ̇Y,k = rγρA,k − (β + µY)ρY,k −DYρY,k + kDY
∑
k′

P(k′|k)
ρY,k′

k′
,

ρ̇M,k = (1 − r)γρA,k − µMρM,k −DMρM,k + kDM
∑
k′

P(k′|k)
ρM,k′

k′
,

ρ̇F,k = βρY,k − µFρF,k −DFρF,k + kDF
∑
k′

P(k′|k)
ρF,k′

k′
,

(3.6)

Note that, since the number of links emanating from nodes of degree k to nodes of degree k′ must be equal
to the number of links emanating from nodes of degree k′ to nodes of degree k in non-directed graphs, we
have the following relationship between p(k) and P(k′|k) [14]:

kP(k′|k)p(k) = k′P(k|k′)p(k′). (3.7)

For networks with a connectivity pattern defined by a set of conditional probabilities P(k′|k), we define
the elements of the connectivity matrix C as

Ckk′ =
k
k′

P(k′|k). (3.8)

Note that these elements are the average number of mosquitoes that patches of degree k receive from
neighboring patches of degree k′ assuming that one mosquito leaves each of these patches by choosing
at random one of the k′ connections [13]. On the other hand, for those degrees k that are not present in
the network, one must have P(k′|k) = 0, ∀k′. Hereafter in this paper, when talking about degrees, we
implicitly mean those degrees that are present in the network. Furthermore, the case where all patches
have the same connectivity is excluded from our consideration because, under the present approach, the
model equations reduce to those of a single patch model.

In order to obtain further analytical results about the metapopulation dynamics of anopheles mosquitoes,
we need to be precise about the form of P(k′|k). As in most network models, the easiest and usual assump-
tion is to restrict ourselves to uncorrelated networks.

3.2.1. Uncorrelated networks
In these networks, the degrees of the nodes at the end of any given link are independent. In other

words, there is no degree-degree correlation between the connected nodes. Therefore, we have

P(k′|k) = k′p(k′)/〈k〉, (3.9)

which corresponds to the degree distribution of nodes (patches) that arrive at by following a randomly
chosen link [10]. Using Eqs. (3.7), (3.8), (3.9),

∑
k

P(k|k′) = 1 and change the order of summations in

system (3.4), one obtains the following equations for the time evolution of anopheles mosquitoes in
metapopulations described by uncorrelated networks:

ρ̇A,k = ΦρF,k − (γ + µ1 + µ2ρA,k)ρA,k,

ρ̇Y,k = rγρA,k − (β + µY)ρY,k −DY

(
ρY,k −

k
〈k〉
ρY

)
,

ρ̇M,k = (1 − r)γρA,k − µMρM,k −DM

(
ρM,k −

k
〈k〉
ρM

)
,

ρ̇F,k = βρY,k − µFρF,k −DF

(
ρF,k −

k
〈k〉
ρF

)
,

(3.10)
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where
〈k〉 =

∑
k

kp(k) and ρ j(t) =
∑

k

p(k)ρ j,k, j = A,Y,M,F.

〈k〉 is defined as the average network degree. ρA, ρY, ρF and ρM, represent the average number of popu-
lation in aquatic stage, young females and eggs laying females, and population of males mosquitoes in
each patch at time t, respectively. In this case, the diffusion term is simply given by the difference between
the outflow of young females not yet laying eggs (DYρY,k), fertilized and eggs laying females (DFρF,k)
and male mosquitoes (DMρM,k) in patches of connectivity k and the total inflow of young females not yet
laying eggs (DYρY/〈k〉), fertilized and eggs laying females (DFρF/〈k〉) and male mosquitoes (DMρM/〈k〉)
in patches of connectivity k, respectively; across all their k connections, which is k times the average flow
of mosquitoes across a connection in the network. Note that this average flow across a connection does
not depend on the degree k of the considered patch because we have assumed that the architecture of the
metapopulation is described by an uncorrelated network. In these network configurations, the elements
of the connectivity matrix C are simply

Ckk′ =
kp(k′)
〈k〉

. (3.11)

Clearly, C is a rank-one matrix and the vector v, whose components vk = k, is its eigenvector corresponding
to its unique non-zero eigenvalue 1. Thus, if there are (as assumed above) n different patches in the
network, then the eigenvalues of the said connectivity matrix are λ = 0 (with algebraic multiplicity n− 1)
and λ = 1 (which is a simple eigenvalue). This latter remark will be used to prove the stability of equilibria
of the model. For the way forward, we first "vectorialize" system (3.10), using the following set of vectors
as formerly defined:

XA = (ρA,k1 , ρA,k2 , . . . , ρA,kn )T, XY = (ρY,k1 , ρY,k2 , . . . , ρY,kn )T,
XM = (ρM,k1 , ρM,k2 , . . . , ρM,kn )T, XF = (ρF,k1 , ρF,k2 , . . . , ρF,kn )T.

Remind that, if X ∈ Rn is a vector, diag(X) denotes the n × n diagonal matrix whose entries are given by
the respective components of X. With these notations, system (3.10) becomes

ẊA = f1(X) = ΦXF −
[
γ + µ1 + µ2diag(XA)

]
XA,

ẊY = f2(X) = rγXA −
[
β + µY + DY

]
XY + DYCXY,

ẊM = f3(X) = (1 − r)γXA −
[
µM + DM

]
XM + DMCXM,

ẊF = f4(X) = βXY −
[
µF + DF

]
XF + DFCXF,

(3.12)

where C is the connectivity matrix defined in Eq. (3.11).
Notice that, in the case where the parameters Φ, γ, β, µ1, µ2, µY, µM and µF are not the same for

all patches, they are replaced in system (3.12) by nonnegative diagonal blocs matrices and this does not
change the fundamental structure of the system.

a) Basic offspring number
System (3.12) has a trivial (mosquito-free) equilibrium P0 = (0, 0, 0, 0) with 0 standing for the zero

vector of dimension n when there is no fertilized and eggs laying females in each patch. We calculate the
basic offspring number,R(m)

0 (where the subscript "m" stands for "metapopulation" and simply differentiate
it with the single patch basic offspring number R0), using the next generation approach developed in [27].
Let

F =

 ΦXF
0
0

 and V =

 γXA + (µ1 + µ2diag(XA))XA
−rγXA + (µY + β)XY + DYXY −DYCXY
−βXY + µFXF + DFXF −DFCXF

 .
The Jacobian matrices of F andV at the trivial equilibrium P0 are

F =

[
F11 F12
F21 F22

]
and V =

(γ + µ1)In 0 0
−rγIn (β + µY + DY −DYC)In 0

0 −βIn (µF + DF −DFC)In

 ,
9



where

F11 = 0, F12 =
[
0, Φ

]
, F21 =

[
0
0

]
and F22 =

[
0 0
0 0

]
.

To compute V−1, denote

V =

[
V1 V2
V3 V4

]
, where V1 = (γ + µ1)In, V2 =

[
0 0

]
, V3 =

[
−rγIn

0

]
and

V4 =

[
(β + µY + DY −DYC)In 0

−βIn (µF + DF)In −DFC

]
.

We emphasize that, since V is a M-matrix and −V is stable, V−1
≥ 0. Let the inverse matrix of V be written

in the following form:

V−1 =

[
W11 W12
W21 W22

]
,

where W11 and W22 are square matrices of dimension (2n×2n) and (n×n), respectively. With this in mind,
one has

FV−1 =

[
A B

0 0

]
,

where A = F12 W21 and B = F12 W22. Then following [27], the basic offspring number R(m)
0 is defined as

the spectral radius of the next generation matrix, FV−1. Precisely,

R
(m)
0 = ρ(FV−1) = ρ (F12 W21) . (3.13)

To obtain an explicit expression of the basic offspring number, we only need to compute W21. The
following lemma demonstrated in Appendix A, is instrumental:

Lemma 3.2. Let N be a square block matrix of the following form:

N =

[
N1 N2
N3 N4

]
,

where N1 and N4 are square matrices.
If N1 and D = N4 −N3N−1

1 N2 are invertible, then the inverse matrix of N is given by

N−1 =

[
N−1

1 + N−1
1 N2D−1N3N−1

1 −N−1
1 N2D−1

−D−1N3N−1
1 D−1

]
.

Notice that V defined above has the same form as N defined in Lemma 3.2 ( with: N1 = V1, N2 = V2,
N3 = V3 and N4 = V4). Moreover, it is easy to check that V satisfies all the assumptions in Lemma 3.2.
Thus, applying Lemma 3.2, V−1 is given by

V−1 =

[
V−1

1 0
−V−1

4 V3V−1
1 V−1

4

]
,

from which one can extract W21 = −V−1
4 V3V−1

1 . Thus, computing W21 amounts to compute V−1
4 since

V3 is given and V−1
1 is obvious. Notice also that V4 has the same form as N in Lemma 3.2 (with N1 =

(β + µY + DY − DYC)In, N2 = 0, N3 = −βIn and N4 = (µF + DF)In − DF C). Hence, another application of
Lemma 3.2 yields

V−1
4 =

[
N−1

1 0
−N−1

4 N3N−1
1 N−1

4

]
.

From the above expressions, it appears that to obtain an explicit expressions of V−1
4 , we need to compute

the inverse matrices of N−1
1 and N−1

4 . These shall be done using another instrumental lemma, stated below
and proved in Appendix B.
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Lemma 3.3. Let G = U + K W Z be an n × n invertible matrix. Assume the matrices U, W and W−1 + Z U−1 K
are invertible. Then the inverse matrix of G is given by

G−1 = U−1
−U−1 K [W−1 + Z U−1 K]−1 Z U−1. (3.14)

Now, we can explicitly calculate N−1
1 and N−1

4 . We shall use recursively Lemma 3.3 and the fact that
Cm = C,∀m ∈N∗.

Note that N4 = (µF + DF)In −DFC has the form of the matrix G with

U = (µF + DF)In, K = (k1, ..., kn)T, W = In and

Z =
−DF

〈k〉
(P(k1), ...,P(kn)) .

With this in mind and using Lemma 3.3, it is straightforward that

N−1
4 =

In

(µF + DF)
−

In

(µF + DF)


k1
...

kn


[
In −

DF

µF + DF

]−1

×
−DF

〈k〉(µF + DF)
(P(k1), ...,P(k2)),

=
In

(µF + DF)
+

In

(µF + DF)
DFC
µF

=
1

(µF + DF)

[
In +

DF

µF
C
]
.

Now, let us compute N1 = (β+µY +DY−DYC)In. One can also observe that N1 has the form of G in Lemma
3.3, with

U = (β + µY + DY)In, K = (k1, ..., kn)T, W = In and

Z =
−DY

〈k〉
(P(k1), ...,P(kn)) .

Thus, another application of Lemma 3.3 yields

N−1
1 =

1
(β + µY + DY)

[
In +

DY

β + µY
C
]
.

Using the expressions of N−1
1 and N−1

4 , one has

N−1
4 N3N−1

1 =
−β

(µF + DF)(β + µY + DY)

(
In +

DYC
β + µY

+
DFC
µF

+
DFDYC
µF(β + µY)

)
.

Thus,

F12W21 =
rβγΦ

(γ + µ1)(µF + DF)(β + µY + DY)

[
In +

DYC
β + µY

+
DF

µF
C +

DFDY

µF(β + µY)
C
]
.

The basic offspring number is therefore

R
(m)
0 = ρ(F12W21),

= ρ [Γ(a0In + (b0 + c0 + d0)C)] ,
(3.15)

where

a0 = 1, b0 =
DY

β + µY
, c0 =

DF

µF
, d0 =

DFDY

µF(β + µY)
and Γ =

rβγΦ

(γ + µ1)(µF + DF)(β + µY + DY)
.

Since the rank of C is one and λ = 1 is its unique non-zero and positive eigenvalue, the largest eigenvalue
of the matrix Γ[a0In + (b0 + c0 + d0)C) is Γ(a0 + b0 + c0 + d0) > 0. Thus, R(m)

0 for system (3.10) is

R
(m)
0 =

rβγΦ

(γ + µ1)(µF + DF)(β + µY + DY)

[
1 +

DY

β + µY
+

DF

µF
+

DFDY

µF(β + µY)

]
. (3.16)

11



Remark 3.4. The relevance of the above techniques (Lemma 3.2 and Lemma 3.3) used to compute R(m)
0 lies in that

it enables us to obtain an explicit formula of the basic offspring number for a complex metapopulation model. More
importantly, it gives an easy interpretable expression of the basic offspring number. In metapopulation settings,
this kind of result is quite rare (or does not exist at all). It is worth pointing out that, this achievement have been
probably made possible due the "statistical" modeling approach used in this work.

b) Sensitivity analysis
We carried out sensitivity analysis to determine the model robustness to parameter values [28, 29]. This

amounts to single out the most influential parameters on R(m)
0 and mosquito subpopulation dynamics.

A Latin Hypercube Sampling (LHS) scheme [29] samples 1000 values for each input parameter using
a uniform distribution over the range of biologically realistic values, listed in Table 3 with descriptions
and references given in Table 1 and Table 2. Using system (3.12), 1000 model simulations are performed
by randomly pairing sampled values for all LHS parameters. Outcome measures are calculated for
each run : the basic offspring number (R(m)

0 ), the average number of population in aquatic stage (ρA),
young females (ρY) and fertilized females (ρF) for a network of five patches. Partial Rank Correlation
Coefficients (PRCC) and corresponding p-values are computed. An output is assumed sensitive to an
input if the corresponding PRCC is less than −0.50 or greater than +0.50, and the corresponding p-values
is less than 5%.

Parameter Range Parameter Range Parameter Range
r [0.49 , 0.51] µ2 [10−6 , 10−4] µF [0.05 , 0.2]
γ [0.05 , 0.2] β [0.05 , 0.35] DY [10−2 , 1]
Φ [0.5 , 50] µY [0.01 , 0.2] DM [10−2 , 1]
µ1 [0.1 , 0.5] µM [0.05 , 0.2] DF [10−2 , 1]

Table 2: Parameter value ranges of model (3.12) used as input for the LHS method.

Parameter R
(m)
0 ρA ρY ρF

r 0.0831 0.0003 0.0325 0.0593
γ ∗∗0.6617 0.3648 0.2364 0.4401
Φ ∗∗∗0.9281 0.4003 ∗0.5414 ∗0.5079
µ1

∗∗
− 0.7047 −0.0565 −0.0123 −0.0520

µ2 −− −0.3327 −0.4112 −0.3789
β ∗0.5329 0.2586 0.2033 0.1317
µY

∗
− 0.5770 −0.2008 −0.1530 −0.1389

µM −− 0.0874 −0.0066 −0.1577
µF

∗∗
− 0.7959 −0.3169 −0.2749 −0.1873

DY 0.0136 ∗∗∗0.9103 ∗∗∗0.8641 ∗∗∗0.8411
DM −− −0.0237 0.0283 0.0231
DF 0.0402 ∗∗∗

− 0.9058 ∗∗∗
− 0.8712 ∗∗∗

− 0.8547

Table 3: PRCCs between R(m)
0 , ρA, ρY, ρF and each parameter: The (?)’s indicate the most influential parameters. Precisely, (?)

indicates a parameter whose sensitivity level (in absolute value) is between 0.5 and 0.65. The (??) indicates a parameter whose
sensitivity level (in absolute value) is between 0.66 and 0.8. The (???) indicates a parameter whose sensitivity level (in absolute
value) is above 0.84.

Table 3 suggests that parameter Φ has the highest influence on the offspring number R(m)
0 , following

in decreasing order by the parameters µF, µ1, γ, µY and β. One can also observe that, for the values of
ρA, ρY and ρF, the parameters with more influence are DY, DF and Φ. This suggests that the migration of
female mosquitoes between the patches may play a dominant role on the persistence of the mosquito’s
population.
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c) Global stability of the trivial (mosquito-free) equilibrium point.
Using Theorem 2 in [27], the following result is straightforward.

Lemma 3.5. The trivial (mosquito-free) equilibrium point P0 of system (3.12) is locally asymptotically stable
whenever R(m)

0 < 1, and unstable if R(m)
0 > 1.

Biologically speaking, Lemma 3.5 implies that mosquitoes can be eliminated in all breeding sites (when
R

(m)
0 < 1) if the initial sizes of the population of anopheles mosquitoes are in the basin of attraction of the

trivial equilibrium point P0.
System (3.12) can be written in the form Ẋ = f (X), where X = (XA,XY,XM,XF)T and f (X) =

( f1(X), f2(X), f3(X), f4(X))T. It is straightforward that system (3.12) is cooperative on Ω = R4n
+ because

the jacobian matrix of (3.12) is a Metzler matrix. Furthermore, f is continuous on Ω and the vector field
defined by f is directed inwards on the border ∂Ω of Ω. Thus, Theorems 2, 5 and 6 in [19] can be applied
to extend the local result in Lemma 3.5 to a global one on Ω as follows:

Theorem 3.6. System (3.12) defines a dissipative dynamical system on Ω = R4n
+ . Moreover, if R(m)

0 ≤ 1 then the
trivial (mosquito-free) equilibrium point P0 is globally asymptotically stable on Ω.

Proof : It hinges basically on the monotone properties of model (3.12). The inequalities

4R(m)
0 kip(ki) + 4Γ

n∑
j=1, j,i

k jp(k j)

〈k〉
<
γ + µ1 + µ2ρA,ki

γ + µ1
, i = 1, 2, · · · ,n, (3.17)

hold for all sufficiently large XA. Let m = (m1,m2, · · · ,mn) > 0 and let XAm be so large that in addition to
(3.17) the following inequalities also hold :

XAm ≥ m, (3.18)

XFm :=
(γ + µ1 + µ2diag(XAm ))XAm

2Φ
≥ m, (3.19)

XYm :=
(µFIn + DFIn −DFC)XFm

2β
≥ m, (3.20)

XMm :=
2(1 − r)γ
µM + DM

[
In +

DM

µM
C
]

XAm ≥ m. (3.21)

Let bm = (XAm ,XYm ,XFm ,XMm )T. Then, one has

f1(bm) = −ΦXFm < 0; f3(bm) = −(1 − r)γXAm < 0; f4(bm) = −βXYm < 0;

f2(bm) = rγ

In −
(N−1

1 )−1(N−1
4 )−1[γ + µ1 + µ2diag(XAm )]

4βΦrγ

 XAm ,

= rγ
[
In −

(a0In + (b0 + c0 + d0)C)−1

4Γ

[γ + µ1 + µ2diag(XAm )]
γ + µ1

]
XAm ,

< 0 if 4Γ(a0In + (b0 + c0 + d0)C) <
γ + µ1 + µ2diag(XAm )

γ + µ1
,

i.e.

f2(bm) < 0 if

4R(m)
0 kip(ki) + 4Γ

n∑
j=1, j,i

k jp(k j)

〈k〉
<
γ + µ1 + µ2ρA,ki

γ + µ1
, i = 1, 2, · · · ,n.

So, f (bm) = ( f1(bm), f2(bm), f3(bm), f4(bm))T < 0. Applying Theorem 6 in [19] with a = 0 and b = bm, we
obtain that (3.12) defines a dynamical system on [0, bm]. However, bm can be selected larger than any
X ∈ R4n

+ . Thus, (3.12) defines a dynamical system on Ω = R4n
+ . The only equilibrium point in Ω is the

trivial equilibriumP0. It follows from Theorem 6 in [19] thatP0 is globally asymptotically stable on [0, bm]
for any m > 0, and therefore is globally asymptotically stable on Ω = R4n

+ . �
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d) Nontrivial (mosquito-persistent) equilibrium point and its stability
In this paragraph, we begin by showing that system (3.12) has a unique nontrivial equilibrium point

when R(m)
0 > 1. To achieve our goal, we reformulate the problem in terms of fixed point problem and use

Theorem 2.1 in [20] for the existence and uniqueness of a positive fixed point of a multi-variable function.
To be self contained, Theorem 2.1 in [20] is recalled hereafter.

Theorem 3.7 ([20], Theorem 2.1). Let F(x) be a continuous, monotone non-decreasing, strictly sublinear, bounded
function which maps the non-negative orthantRn

+ into itself. Let F(0) = 0 and F′(0) exists and be irreducible. Then
F(x) does not have a nontrivial fixed point on the boundary of Rn

+. Moreover, F(x) has a positive fixed point iff
ρ(F′(0)) > 1. If there is a positive fixed point, then it is unique.

An equilibrium pointP∗ = (X∗A,X
∗

Y,X
∗

M,X
∗

F) for system (3.12) satisfies the following system of equations
ΦX∗F −

[
γ + µ1 + µ2diag(X∗A)

]
X∗A = 0,

rγX∗A −
[
(β + µY) + DY

]
X∗Y + DYCX∗Y = 0,

(1 − r)γX∗A −
[
µM + DM

]
X∗M + DMCX∗M = 0,

βX∗Y −
[
µF + DF

]
X∗F + DFCX∗F = 0.

(3.22)

Solving (3.22) yields

X∗F =
[γ + µ1 + µ2diag(X∗A)]X∗A

Φ
,

X∗Y =
(µFIn + DFIn −DFC)[γ + µ1 + µ2diag(X∗A)]X∗A

βΦ
, (3.23)

X∗M =
(1 − r)γ
µM + DM

[
In +

DM

µM
C
]

X∗A.

Replacing (3.23) in the second equation of system (3.22), one obtain

rγ
[
In −

N1N4[γ + µ1 + µ2diag(X∗A)]

βΦrγ

]
X∗A = 0.

Hence, the existence of the nontrivial equilibrium point is reformulated as the following fixed point
problem: Find a unique positive X∗A, such that X∗A = F(X∗A), where

F(X∗A) = rβγΦ
[
γ + µ1 + µ2diag(X∗A)

]−1
N−1

4 N−1
1 X∗A.

Notice that F is a continuous, bounded function that maps Rn
+ into itself and it is infinitely differentiable.

Let us prove that F is strictly sublinear in Rn
+ i.e. F(νX∗A) > νF(X∗A), for any X∗A ∈ R

n
+ with X∗A > 0, and

ν ∈ (0, 1). Direct, but lengthly calculations give

νF(X∗A)[F(νX∗A)]−1 = diag
(
γ + µ1 + νµ2ρA,k1

γ + µ1 + µ2ρA,k1

, · · · ,
γ + µ1 + νµ2ρA,kn

γ + µ1 + µ2ρA,kn

)
.

Since ν ∈ (0, 1), we have
γ + µ1 + νµ2ρA,ki

γ + µ1 + µ2ρA,ki

< 1, i = 1, 2, · · · ,n.

Thus, νF(X∗A)[F(νX∗A)]−1 < In i.e. νF(X∗A) < F(νX∗A). Hence, F is strictly sublinear.
One can easily check that the off-diagonal elements ai, j (i , j) of the matrix F′(X∗A) are

ai j =
Γ(b0 + c0 + d0)kip(k j)
〈k〉(γ + µ1 + µ2ρA,ki )

> 0, ∀i , j ∈ {1, 2, · · · ,n}.

Thus, F is a monotone non-decreasing function. We have also that F(0) = 0 and F′(0) = Γ(a0In + (b0 +

c0C + d0)C). Therefore ρ(F′(0)) = R(m)
0 > 1 iff R(m)

0 > 1. Thanks to the graph theory and the irreducibility
of the matrix C, F′(0) is irreducible because its associated graph is strongly connected. Thus, we have
established the following theorem :
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Theorem 3.8. If R(m)
0 ≤ 1, the only equilibrium point of the system is the trivial equilibrium P0. If R(m)

0 > 1 there
also exists a unique nontrivial (mosquito-persistent) equilibrium point P∗ in int(Ω).

By Lemma 3.5, the trivial equilibrium point P0 is unstable whenever R(m)
0 > 1. We terminate this

section by proving the following result which establishes the global stability of the nontrivial equilibrium.

Theorem 3.9. If R(m)
0 > 1, the nontrivial (mosquito-persistent) equilibrium P∗ of the system (3.12) is GAS on Ω.

Proof : Since R(m)
0 > 1, the inequalities

γ + µ1 + µ2ρA,ki

γ + µ1
<

R
(m)
0 kip(ki) + Γ

n∑
j=1, j,i

k jp(k j)√
R

(m)
0 〈k〉

, i = 1, 2, · · · ,n, (3.24)

hold for all sufficiently small values XA. Let ε = (ε1, ε2, · · · , εn) > 0 and let XAε be so small that in addition
to (3.24) the following inequalities also hold :

XAε ≤ ε, (3.25)

XFε :=

4
√
R

(m)
0 (γ + µ1 + µ2diag(XAε ))XAε

Φ
≤ ε, (3.26)

XYε :=

4
√
R

(m)
0 (µFIn + DFIn −DFC)XFε

β
≤ ε, (3.27)

XMε :=
(1 − r)γ

4
√
R

(m)
0 (µM + DM)

[
In +

DM

µM
C
]

XAε ≤ ε. (3.28)

Let aε = (XAε ,XYε ,XFε ,XMε )
T. Then, one has

f1(aε) =

1 −
1

4
√
R

(m)
0

ΦXFε > 0; f3(aε) =
(
√
R

(m)
0 − 1)(1 − r)γ√
R

(m)
0

XAε > 0;

f4(aε) =

1 −
1

4
√
R

(m)
0

 βXYε > 0;

f2(aε) = rγ

In −

√
R

(m)
0 (N−1

1 )−1(N−1
4 )−1[γ + µ1 + µ2diag(XAm )]

βΦrγ

 XAm ,

= rγ

In −

√
R

(m)
0 (a0In + b0InC + c0InC + d0InC)−1

Γ

[γ + µ1 + µ2diag(XAm )]
γ + µ1

 XAm

> 0 if
Γ(a0In + b0InC + c0InC + d0InC)√

R
(m)
0

>
γ + µ1 + µ2diag(XAm )

γ + µ1
,

i.e.

f2(aε) > 0 if
γ + µ1 + µ2ρA,ki

γ + µ1
<

R
(m)
0 kip(ki) + Γ

n∑
j=1, j,i

k jp(k j)√
R

(m)
0 〈k〉

, i = 1, 2, · · · ,n.
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Thus, f (aε) = ( f1(aε), f2(aε), f3(aε), f4(aε))T > 0. Applying once again Theorem 6 in [19] (with a = aε and
b = bm), we obtain that the nontrivial equilibrium point P∗ is globally asymptotically stable on [aε, bm].
Since aε can be selected to be smaller than any X > 0 and bm can be selected to be larger than any X > 0,
we obtain that P∗ is asymptotically stable on Ω = R4n

+ with basin of attraction being at least the interior of
Ω. �

3.3. The metapopulation model in a heterogeneous landscape

Differences in the distribution of resources create heterogeneity on the network, since patches may
have different degrees of attractiveness to mosquitoes. According to [5] we describe how heterogeneity
and differences in patch attractiveness to mosquitoes during movement is incorporated. Here, each patch
represent a potential breeding-feeding site. The number of hosts is allowed to differ between patches
across the local network, introducing heterogeneity. Heterogeneity of breeding sites is incorporated here
by taking different values for parameter µ2 in each patch. In this case, the carrying capacities of breeding
sites would be different.

Let H be the total population of hosts in the network and Hk the population of hosts in patches of
degree k. The proportion of hosts in patches of degree k is

Hk =
Hk

H
, with

∑
k

Hk = 1. (3.29)

Mosquitoes are attracted to odors released by hosts, this leads to mosquitoes being less likely to leave
the patch if their current patch is a home to many hosts and more likely to move out of the patch if
there are few hosts [26, 30]. As in [5], we mimic this phenomenon by using a decreasing exponential
function to model the movement rate. We assume that heterogeneity of hosts also influence the males
dispersal because females go to the hosts for blood-meal and males go to meet females [31]. Note that
immature females are not subjected to the attraction of hosts, they diffuse randomly in any direction. We
also incorporate the spatial proximity of patches by using a decreasing linear function, since mosquitoes
have a limited mobility. Hence, we can define the diffusion rate along any given link of a patch of degree
k to a patch of degree k′ as

Dkk′ =
DYψ(dkk′ )

k
and Dkk′ =

Diψ(dkk′ )
k

e−λ(Hk−Hk′ ), i = M,F, (3.30)

where λ is a constant parameter for the decay function, dkk′ =
√

(xk − xk′ )2 + (yk − yk′ )2 is the cartesian
distance between a node of degree k and a node of degree k′; ψ the distance function defined as

ψ(dkk′ ) =

 dmax − dkk′

dmax
if dkk′ < dmax,

0 else,
(3.31)

with dmax the maximal mobility distance.
Thus, the equations governing the spatio-temporal evolution of anopheles mosquitoes in this case for
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a n-patches in an uncorrelated network are giving by the system below:

ρ̇A,k = ΦkρF,k − (γk + µ1k + µ2kρA,k)ρA,k,

ρ̇Y,k = rγkρA,k − (βk + µYk )ρY,k −
DY

〈k〉

∑
k′

k′p(k′)ψ(dkk′ )

ρY,k +
kDY

〈k〉

∑
k′

p(k′)ψ(dkk′ )ρY,k′ ,

ρ̇M,k = (1 − r)γkρA,k − µMkρM,k −
DM

〈k〉

∑
k′

e−λ(Hk−Hk′ )k′p(k′)ψ(dkk′ )

ρM,k

+
kDM

〈k〉

∑
k′

e−λ(Hk′−Hk)p(k′)ψ(dkk′ )ρM,k′ ,

ρ̇F,k = βkρY,k − µFkρF,k −
DF

〈k〉

∑
k′

e−λ(Hk−Hk′ )k′p(k′)ψ(dkk′ )

ρF,k

+
kDF

〈k〉

∑
k′

e−λ(Hk′−Hk)p(k′)ψ(dkk′ )ρF,k′ ,

(3.32)

From Theorem 3.1 above, one can easily see that (3.32) is a dynamical system inR4n
+ . A patch of degree

k is at a mosquito-free equilibrium point if ρA,k = ρY,k = ρM,k = ρF,k = 0. However, given the complexity of
the equations, we do not perform further theoretical analysis for model (3.32). We shall rather focus on
numerical analysis in the next section.

4. Numerical simulations

To illustrate the various theoretical results of the previous sections, we consider a metapopulation
network with five patches and the following connectivities: k1 = 2; k2 = 3; k3 = 4; k4 = 1 and k5 = 2 (see
Figure 3). Since we do not know what trajectories mosquitoes adopt in reality, we use strategies such

Figure 3: An example of a network with five patches.

as Levy-flight (which are comprised of random sequences of movement-segments with lengths l drawn
from a probability distribution function having a power-law tail p(l) ∼ l−µ where 1 < µ ≤ 3) to optimize
foraging efficiency [32]. Thus, we consider an architecture network given by the distribution p(k) ∼ k−3

[12, 13].
Models (3.12) and (3.32) are both simulated by using data from recent works. These data are summa-

rized in Table 1. As far as mosquito dispersal is concerned, some studies have shown that daily flights
range from 200 to 400 m, where the maximum distance recorded is 661 m [33]. We run all simulations
with the following initial conditions: the total number mosquitoes in aquatic stages is 1500, 1000 young
mosquitoes are females not yet laying eggs, 1000 are males, while 1250 are fertilized and eggs laying
females. They are evently distributed across the network.

4.1. General dynamics
In this subsection, we numerically illustrate the asymptomatic behavior of model (3.12). For that, we

consider a network of metapopulation with five patches. The dynamics of all compartments are very
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similar to each other. Hence, only the graphs of mosquitoes at the aquatic stage and total flying mosquito
population (that is, Y + M + F) are presented here.
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Figure 4: Simulation results showing the GAS of the trivial equilibrium P0 for the basic model when Φ = 0.5, DY = DM = DF = 0.1
and R(m)

0 ≤ 1. All other parameters are as in Table 1.

Figure 4 presents the trajectories of model (3.12) for all patches when Φ = 0.5, DY = DM = DF = 0.1
and the basic offspring number R(m)

0 is less than one (R(m)
0 = 0.6531). From this figure, we can see that the

mosquito populations die out in all patches. Thus, the trajectories converge to the trivial equilibrium as
shown in Theorem 3.6.

Figure 5 plots the trajectories of system (3.12) when Φ = 10, DY = DM = DF = 0.1 and the basic
offspring number R(m)

0 is greater than one (R(m)
0 = 13.0612). This illustrates the fact that the mosquitoes are

always present in all patches and the trajectories converge to the nontrivial equilibrium as established in
Theorem 3.9.

0 50 100 150 200 250 300
0

1

2

3

4

5

6
x 10

5

Time (days)

A
qu

at
ic

 s
ta

ge

 

 
k

1

k
2

k
3

k
4

k
5

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8
x 10

5

Time (days)

A
du

lts
 m

os
qi

to
es

 (
Y

+
M

+
F

)

 

 
k

1

k
2

k
3

k
4

k
5

Figure 5: Simulation results showing the GAS of the nontrivial equilibrium P∗ when Φ = 10, DY = DM = DF = 0.1 and R(m)
0 > 1. All

other parameters are as in Table 1.

4.2. Impact of dispersal on population dynamics
To evaluate the impact of dispersal on population dynamics, we carry out in Figure 6 numerical

simulations (when Φ = 10) on system (3.12) both without and with dispersal. This figure shows that
persistence of mosquito population is more important in the presence of dispersal than in the case
without dispersal, especially in high-degree patches.

4.3. Impact of the heterogeneous connectivity of patches on population dynamics
To investigate the significance of heterogeneous connectivity of patches on vector population dynamics,

system (3.12) is simulated in Figure 7 with variable degree of patches.

18



0 50 100 150 200 250 300
0

2

4

6

8

10

12

14
x 10

5

Time (days)

T
ot

al
 p

op
ul

at
io

n 
(A

+
Y

+
M

+
F

)

 

 
k

1

k
2

k
3

k
4

k
5

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8
x 10

5

Time (days)

T
ot

al
 p

op
ul

at
io

n 
(A

+
Y

+
M

+
F

)

 

 
k

1

k
2

k
3

k
4

k
5

Figure 6: Trajectories plots of model (3.12) without dispersal (left) and with dispersal (right) when Φ = 10: the total mosquito
population increases as the diffusion coefficients increase.
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Figure 7: Mosquito population in patches of degree k = 1, 2, ..., 10, when Φ = 10 and DM = DY = DF = 0.1: the total mosquito
population increases as the patch connectivity increases.

Figure 7 illustrates the fact that, with the same diffusion coefficients (DM = DY = DF), the total mosquito
population increases as the connectivity of the patch increases. This suggests that the heterogeneous
connectivity of patches play an important role on vector population dynamics. This heterogeneity may
come from the daily productivity and destruction of some breeding sites, since small pools of water are
continually destroyed and reformed [4].

4.4. Impact of migration and heterogeneity on mosquito spread

In this section, numerical simulations are carried out to investigate the role of dispersal/diffusion and
heterogeneity on mosquito spread. Models (3.12) and (3.32) are both simulated with different values of
Φ in each patch. In order to observe more effects of the migration on the dynamics of model (3.12) and
(3.32), we consider the hypothetical scenario where the mosquito-persistent equilibrium is GAS in the
patch of minimal degree (patch 4) and unstable in the other patches (patch 1, 2, 3, 5). Model (3.32) is
simulated with Hk1 = 0.6, Hk2 = 0.07, Hk3 = 0.06, Hk4 = 0.03, Hk5 = 0.24, dmax = 661 m and λ = 0.5. LetR(i)

0 ,
i = 1, 2, 3, 4, 5, denotes the basic offspring number for the local population of anopheles mosquito in patch
i as defined in (2.3). Choose Φ1 = Φ2 = Φ3 = Φ5 = 0.5, Φ4 = 10 so that R(1)

0 = R(2)
0 = R(3)

0 = R(5)
0 = 0.5714 < 1

and R(4)
0 = 11.4286 > 1. It is observed from Figure 8 that, in the absence of migration/diffusion (i.e.

DM = DY = DF = 0), the mosquito-persistent equilibrium point is unstable in patches 1, 2, 3, 5 and stable
in the fourth patch, as expected.

19



0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

Time (days)

T
ot

al
 p

op
ul

at
io

n 
(A

+
Y

+
M

+
F

)

 

 
k

1

k
2

k
3

k
5

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8
x 10

5

Time (days)

T
ot

al
 p

op
ul

at
io

n 
(A

+
Y

+
M

+
F

)

 

 
k

4

Figure 8: Simulation results of systems (3.12) and (3.32) showing the mosquito population in mosquito-free patches (left) and
mosquito-persistent patch (right) in absence of migration. R(i)

0 < 1, i = 1, 2, 3, 5 and R(4)
0 > 1. All other parameters are as in Table 1.

Figures 9-12 present the mosquito spread from an mosquito-persistent patch (patch 4) to mosquito-free
patches (patches 1, 2, 3, 5) under different scenario when DM = DY = DF = 0.1.
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Figure 9: Simulation result showing the mosquito spread from mosquito-persistent patch (right) to mosquito-free patches (left) in
a homogeneous landscape (Eq. 3.12) with DM = DY = DF = 0.1 and all other parameters are as in Table 1. R(i)

0 < 1, i = 1, 2, 3, 5 and

R
(4)
0 > 1.

Observing these latter figures, one can see that in the presence of dispersal, mosquitoes moving out
of an mosquito-persistent patch (patch 4) migrate into the mosquito-free patches (patches 1, 2, 3, 5). This
illustrates the fact that mosquito dispersal could lead to a larger presence of mosquitoes in all patches and,
shows the important effects of dispersal and connectivity of patches on population spread. However, this
diffusion varies according to the type of landscape.

4.4.1. Dispersal in a homogeneous landscape
Figure 9 presents the trajectories of the mosquito spread from mosquito-persistent patch (right) to

mosquito-free patches (left) in a homogeneous landscape (Eq. (3.12)). We observe in this case that
mosquitoes coming from mosquito-persistent patch (patch 4) migrate more to the high-degree patches
(see patches 3 and 2) and equitably to the patches with equal degree (see patches 1 and 5).

4.4.2. Dispersal in a heterogeneous landscape
Figure 10 gives numerical solutions of model (3.32), depicting the mosquito spread from mosquito-

persistent patch (right) to non mosquito-persistent patches (left) in a heterogeneous landscape (hetero-
geneity of hosts and homogeneity of breeding sites), when distance has no effect on mosquito flights (i.e.
ψ(dkk′ ) = 1, ∀k, k′). Even though a great number of mosquitoes moves into the patches of high degree, the
dispersal becomes more important in the patches with more hosts.
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Figure 10: Simulation results showing the mosquito spread from mosquito-persistent patch (right) to mosquito-free patches (left) in
a heterogeneous landscape (heterogeneity of hosts and homogeneity of breeding sites) with ψ(dkk′ ) = 1, ∀k, k′, DM = DY = DF = 0.1
and all other parameters are as in Table 1. R(i)

0 < 1, i = 1, 2, 3, 5 and R(4)
0 > 1.
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Figure 11: Simulation results showing the mosquito spread from mosquito-persistent patch (right) to non mosquito-persistent
patches (left) in a heterogeneous landscape (heterogeneity of hosts and homogeneity of breeding sites) with ψ(dkk′ ) as in (3.31),
DM = DY = DF = 0.1 and all other parameters are as in Table 1. R(i)

0 < 1, i = 1, 2, 3, 5 and R(4)
0 > 1.
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Figure 12: Simulation result showing the mosquito spread from mosquito-persistent patch (right) to non mosquito-persistent
patches (left) in a heterogeneous landscape (heterogeneous hosts and breeding sites) with ψ(dkk′ ) = 1, ∀k, k′, µ21 = 10−4, µ22 = 10−3,
µ23 = 10−2, µ24 = 10−5, µ25 = 10−5 and DM = DY = DF = 0.1 DM = DY = DF = 0.1. R(i)

0 < 1, i = 1, 2, 3, 5 and R(4)
0 > 1.

Figure 11 simulates the solutions of model (3.32) and displays the mosquito spread from mosquito-
persistent patch (right) to non mosquito-persistent patches (left) in a heterogeneous landscape (hetero-
geneity of hosts and homogeneity of breeding sites), when distance affects mosquito dispersal (i.e. ψ(dkk′ )
as in (3.31), with dk3k4 = 300 m, dk5k1 = 370 m, dk3k1 = 361 m, dk3k2 = 361 m, dk3k5 = 400 m, dk2k5 = 380 m). As
in the latter Figure 10, similar result is observed, with the difference in that the mosquito dispersal from
mosquito-persistent patch (patch 4) to mosquito-free patches (patches 1, 2, 3 and 5) is less important in
this case.
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Figure 13: Simulation result showing the mosquito spread from mosquito-persistent patch (right) to non mosquito-persistent patches
(left) (heterogeneity of hosts and homogeneity of breeding sites) with ψ(dkk′ ) as in (3.31), when distances between patches 1, 2, 3, 5
are large.

Figure 12 presents the simulation results of model (3.32), showing the mosquito spread from mosquito-
persistent patch (right) to mosquito-free patches (left) in a heterogeneous landscape (heterogeneity of hosts
and breeding sites), with µ21 = 10−4, µ22 = 10−3, µ23 = 10−2, µ24 = 10−5, µ25 = 10−5 and ψ(dkk′ ) = 1, ∀k, k′.
From this figure, it is noticeable that heterogeneity of hosts and breeding sites greatly influences the
mosquito dispersal and their spatial distribution. This suggests that the heterogeneous connectivity of
patches and heterogeneous distribution of hosts and breeding sites may play an important role on the
spatial distribution of mosquitoes.

Figure 13 simulates model (3.32) and shows that the mosquito spread from mosquito-persistent patch
(right) to mosquito-free patches (left) in a heterogeneous landscape (heterogeneity of hosts and homo-
geneity of breeding sites), with ψ(dkk′ ) as in (3.31) when patches are highly distanced from each other and
close to the maximal distance dmax between nodes (dk3k4 = 500 m, dk5k1 = 510 m, dk3k1 = 589 m, dk3k2 = 539 m,
dk3k5 = 400 m, dk2k5 = 539 m). From this figure, one observe that mosquito migration rate to distant patches
is very low. This is coherent with the known preference of the mosquito dispersal: indeed, according
to [34] the dispersal of adult mosquitoes can be classified into long-range and short-range dispersals.
Long-range dispersal is often unintentional and aided by wind or human transport while short-range
dispersal is often intentional. Furthermore, Figure 13 shows that the availability and abundance of sites
have a strong influence on the distance that individual adult female mosquitoes need to fly in order to
lay their eggs, since spatial distance between patches is large when breeding sites are eliminated from
neighborhoods of hosts or are not available in most patches. Similar findings were obtained in [23]. Thus,
more efforts to reduce breeding sites in close proximity to houses (mechanical control) is needed and can
be very efficient as a vector control strategy.

Our simulations results in homogeneous landscape (Eq. 3.12) and heterogeneous landscape (Eq. 3.32)
reveal that the heterogeneous connectivity of patches plays an important role on the spatial distribution of
mosquito population. Simulations in a homogeneous landscape indicate that there is a linear relationship
between connectivity of patches and mosquitoes distribution (see Figures 6 and 9). However, when there
are heterogeneities in the network (hosts, distances), this linear relationship is perturbed and induces a
strong influence on spatial distribution and population dynamics of mosquitoes (see Figures 10-13).

5. Conclusion and perspectives

In this paper, we have developed a reaction-diffusion type model to describe the spatial evolution
of anopheles mosquito in heterogeneous complex metapopulations and assess the influences of larvae
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habitats (breeding-feeding sites) connectivity and vector on the spatial distribution and populations
dynamics of mosquitoes. We have focused on the migration of mosquitoes from one patch to another in
both homogeneous and heterogeneous landscapes. The spatial configuration was given by the degree
p(k) and the conditional probabilities P(k′/k).

For uncorrelated networks in a homogeneous landscape, we have derived an explicit formula for the
basic offspring number,R(m)

0 , which has been proven to be a sharp threshold parameter for our model. The
most influential parameter on the expression for R(m)

0 is the number of eggs at each deposit Φ. Using the
theory of monotone operators, we have established the global stability of equilibrium points. Precisely,
we have shown that the mosquito-free equilibrium is GAS whenever R(m)

0 ≤ 1 and unstable otherwise.
In the case where R(m)

0 > 1, we have shown that there exists a unique mosquito-persistent equilibrium,
which is GAS.

For uncorrelated networks in a heterogeneous landscape, we have only carried out numerical studies.
Comparing our simulation results in Figures 6-12, we have concluded that numerous factors considered
in our models play important roles in spatial distribution of mosquitoes and could lead to a larger amount
of mosquitoes. Further, our sensitivity analysis results have revealed that an efficient strategy to reduce
the amount of mosquitoes in all patches could be to control the production of eggs (by mechanical control
for example) and minimize the migration of female mosquitoes.

To summarize our contributions in few words, the methodology and results we have obtained are as
follows:
• From the modeling perspective, we have extended to a complex network of patches the single patch
models in [4, 19] by incorporating the dispersal of mosquitoes and patch connectivity.
• From the theoretical and numerical perspectives, we have examined the impacts of larval habitat
connectivity and mosquito dispersal in a homogeneous and a heterogeneous landscapes on the persistence
of mosquitoes populations.
• From the qualitative and quantitative aspects for uncorrelated networks have obtained the following
analytical results:

1. The bifurcation/threshold parameter (basic offspring number) has been explicitly computed.

2. The sensitivity analysis of the threshold parameter has been performed.

3. A simple and digestive proof based on Hethcote-Thieme fixed point theorem [20], of a unique
mosquito-persistent equilibrium has been provided.

4. Contrary to the few existing works where, Lyapunov-LaSalle techniques are usually used, the
monotone operator approach [21] has been the main ingredient here, for the establishment of the
global asymptotic stability of both mosquito-free and mosquito-persistent equilibria.

An immediate possible extension of this work we are already working on is to consider correlated
networks with precise configuration/distribution of patches (i.e., some assortative or assortative networks)
and investigate if the techniques used here could be applied to obtain similar theoretical/analytical results.
Moreover, since we take into account the male dispersal, another extension of this work could be to
consider the Sterile Insect Technique (SIT) in our model by releasing sterilized male mosquitoes near of
high-degree patches. We hope our model could be used to develop other possible and efficient vector
control strategies, which can optimize the allocation of scarce resources.

Acknowledgements

The authors will like to thank the three anonymous reviewers and the Associate Editor for highly
relevant remarks and suggestions that have substantially improved the work.

23



Fundings

This research did not receive any specific grant from funding agencies in the public, commercial, or
not-for-profit sectors.

References

[1] World Health Organization, Malaria-Media centre, 2016, http://www.who.int/mediacentre/factsheets/fs094/en/

(accessed 06.12.16).

[2] H.M. Giles, D.A. Warrel, Bruce-Chwatt’s Essential Malariology, Heinemann Medical Books, 3rd
edition, Portsmouth, NH, 1993.

[3] S. Wanji, F.F. Mafo, N. Tendongfor, M.C. Tanga, F. Tchuente, C.F. Bilong Bilong, T. Njine, Spatial
distribution, environmental and physicochemical characterization of anopheles breeding sites in the
mount cameroon region, J. Vector. Borne. Dis. 46 (2009) 75–80.

[4] L. Yakob, G. Yan, A network population model of the dynamics and control of African malaria
vectors, Trans. R. Soc. Med. Hyg. 104 (10) (2010) 669–675.

[5] A. Lutambi, M.A. Penny, T. Smith, N. Chitnis, Mathematical modelling of mosquito dispersal in a
heterogeneous environment, Math. Biosci. 213 (2013) 198–216.

[6] C. Dufourd, Yves Dumont, Impact of environmental factors on mosquito dispersal in the prospect of
sterile insect technique control, Computers Mathematics with Applications 66 (2013) 1695–1715.

[7] A. Lloyd, R.M. May, Spatial heterogeneity in epidemic models, J. Theor. Biol. 179 (1996) 1–11.

[8] Y. Wang, J. Cao, G. Sun, J. Li, Effect of time delay on pattern dynamics in a spatial epidemic model,
Physica A 412 (2014) 137–148.

[9] P. Auger, E. Kouokam, G. Sallet, M. Tchuente, B. Tsanou, The ross-macdonald model in a patchy
environment, Math. Biosci. 216 (2008) 123–131.

[10] M.E.J. Newman, S.H. Strogatz, D.J. Watt, Random graphs with arbitrary degree distributions and
their applications, Phys. Rev. E 64 (2001) 026118.

[11] V. Colizza, A. Vespignani, Invasion threshold in heterogeneous metapopulation networks, Phys. Rev.
Lett. 99 (2007) 148701.

[12] V. Colizza, A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous cou-
pling pattern : Theory and simulations, J. Theor. Biol. 251 (2008) 450–457.

[13] J. Saldana, Modelling the spread of infectious diseases in complex metapopulations, Math. Mod. Nat.
Pheno. 5 (6) (2010) 22–37.

[14] M. Boguna, R. Pastor-Satorras, Epidemic spreading in correlated complex networks, Phys. Rev. E 66
(2002) 047104.

[15] R. Pastor-Satorras, V. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86
(2001) 3200–3204.

[16] Y. Wang, J. Cao, Global dynamics of a networks epidemic model for waterborne diseases spread,
Appl. Math. Comp. 237 (2014) 474–488.

24



[17] Y. Wang, J. Cao, A. Alofi, A. AL-Mazrooei, A. Elaiw, Revisiting node-based sir models in complex
networks with degree correlations, Physica A 437 (2015) 75–88.

[18] J. Cao, Y. Wang, A. Alofi, A. AL-Mazrooei, A. Elaiw, Global stability of an epidemic model with
carrier state in heterogeneous networks, IMA Journal of Applied Mathematics 80 (2015) 1025–1048.

[19] R. Anguelov, Y. Dumont, J. Lubuma, Mathematical modeling of sterile insect technology for control
of anopheles mosquito, Computers Mathematics with Applications 64 (2012) 374–389.

[20] H.W. Hethcote, H.R. Thieme, Stability of the endemic equilibrium in epidemic models with subpop-
ulations, Math. Biosci. 75 (1985) 205–227.

[21] H.L. Smith, Monotone dynamical systems : an introduction to the theory of competitive and cooper-
ative systems (mathematical surveys and monographs), Am. Math. Soc. 41 (1995) 1–174.

[22] N. Chitnis, J.M. Cushin, J.M. Hyman, Bifurcation analysis of a mathematical model for Malaria
transmission, SIAM J. Applied Math. 67 (2006) 24–45.

[23] N. Chitnis, J.M. Hyman, J.M. Cushin, Determining important parameters in the spread through the
sensitivity analysis of a mathematical model, Bull. Math. Biol. 70 (2008) 1272–1296.

[24] L. Esteva, H.M. Yang, Mathematical model to assess the control of aedes aegypti mosquitos by the
sterile insect technique, Math. Biosci. 198 (2005) 132–147.

[25] N. Minakawa, P. Seda, G. Yan, Influence of host and larval habitat distribution on the abundance of
african malaria vectors in western kenya, Am. J. Trop. Med. Hyg. 67 (1) (2002) 32–38.

[26] B.G.J. Knols, J. Meijerink, Odors influence mosquito behavior, Science and Medicine 4 (5) (1997)
56–63.

[27] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for
the compartmental models of disease transmission, Math. Biosci. 180 (2002) 29–48.

[28] M.L. Mann Manyombe, J. Mbang, J. Lubuma, B. Tsanou, Global dynamics of a vaccination model for
infectious diseases with asymptomatic carriers, Math. Biosci. Eng 13 (2016) 813–840.

[29] S. Marino, I.B. Hogue, C.J. Ray, D.E. Kirschner, A methodology for performing global uncertainty
and sensitivity analysis in systems biology, J. Theor. Biol 254 (2008) 178–196.

[30] C. Mwandawiro, M. Boots, N. Tuno, W. Suwonkerd, Y. Tsuda, M. Takagi, Heterogeneity in the host
preference of japanese encephalitis vectors in chiang mai, northern thailand, Trans. R. Soc. Trop.
Med. Hyg. 94 (3) (2000) 238–242.

[31] A.N. Clement, The Biology of Mosquitoes : Sensory Reception and Behaviour, Vol. 2, CABI Publishing
Inc, New York, 1999.

[32] A. M. Reynolds, M. A. Frye, Free-flight odor tracking in drosophila is consistent with an optimal
intermittent scale-free search, PLoS One 2 (4) (2007) e354. doi:10.1371/journal.pone.0000354.

[33] J.T. Midega, C.M. Mbogo, H. Mwambi, M.D. Wilson, G. Ojwang, J.M. Mwangangi, J.G. Nzovu, J.I.
Githure, G. Yan, J.C. Beier, Estimating dispersal and survival of Anopheles gambia and Anopheles
funestus along the Kenyan coast by using mark-release-recapture methods, J. Med. Entomol. 6 (44)
(2007) 923–929.

[34] A.R.W. Elbers, C.J.M. Koenraadt, R. Meiswinkel, Mosquitoes and culicoides biting midges : vector
range and the influence of climate change, Rev. Sci. Tech. Off. Int. Epiz. 34 (1) (2015) 123–137.

25



Appendixes

Appendix A: Proof of Lemma 3.2

Note that the matrix N can be written as

N =

[
N1 N2
N3 N4

]
=

[
N1 0
N3 I

] [
I N−1

1 N2
0 D

]
.

Then, one can deduce that

N−1 =

[
I N−1

1 N2
0 D

]−1 [
N1 0
N3 I

]−1

=

[
I −N−1

1 N2 D−1

0 D−1

] [
N−1

1 0
−N3N−1

1 I

]
,

=

[
N−1

1 + N−1
1 N2D−1N3N−1

1 −N−1
1 N2D−1

−D−1N3N−1
1 D−1

]
.

This ends the proof. �

Appendix B: Proof of Lemma 3.3

It suffices to verified that GG−1 = In. Indeed, one has

GG−1 = UU−1
− K

[
W−1 + ZU−1X

]−1
ZU−1 + KWZU−1

− KWZU−1K
[
W−1 + ZU−1K

]−1
ZU−1,

= In − K
[[

W−1 + ZU−1K
]−1

+ W −WZU−1K
[
W−1 + ZU−1K

]−1
]

ZU−1,

= In − KW
[
W−1

[
W−1 + ZU−1K

]−1
− In + ZU−1K

[
W−1 + ZU−1K

]−1
]

ZU−1,

= In − KW
[[

W−1 + ZU−1K
] [

W−1 + ZU−1K
]−1
− In

]
ZU−1,

= In − KW(In − In)ZU−1,
= In.

This concludes the proof. �
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