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ABSTRACT
This work is devoted to the modeling, analysis and assessment of the impacts of environmental
and spillover transmissions on Avian Influenza Virus (AIV) type A infection. We formulate
a nonlinear ordinary differential system for an Avian Influenza Virus transmission that takes
into account five spreading pathways: poultry-to-poultry; environment-to-poultry; poultry-
to-human (spillover event); environment-to-human and poultry-to-environment. An in-depth
theoretical and numerical analysis of the model is done. For the sub-model without recruitment
of infected poultry, the basic reproduction number is computed and serves to prove the
global stability of the disease-free equilibrium whenever it is less or equal to unity. Moreover,
whenever it is greater than one, the existence of the unique endemic equilibrium is shown and
its global stability is established. These global results are shown thanks to the construction
of suitable Lyapunov functions based on the judicious choices of Volterra-Lyapunov stable
matrices and the application of Poincaré-Bendixson and Lyapunov-LaSalle techniques. When
the infected poultry is brought into the population, the model does not have a disease-free
equilibrium and exhibits a unique endemic equilibrium whose global asymptotic stability is
established similarly using the techniques mentioned above. Further, the model is shown to
exhibit a transcritical bifurcation with the value one of the basic reproduction number being
the bifurcation parameter threshold. We further prove that during avian influenza epidemics
outbreaks, the recruitment of infected poultry increases the endemic level of the disease.
We show that the classical Runge-Kutta numerical method fails to preserve the positivity
of the solutions and alternatively design a nonstandard finite difference scheme (NSFD),
which preserves the essential properties of the continuous system. Numerical simulations
are then implemented to illustrate the theoretical results obtained and assess the role of the
environmental and spillover transmissions on the disease.

KEYWORDS
Avian Influenza Virus, Environmental transmission, Bifurcation, Spillover, NSFD method,
Global stability.

1. Introduction

The avian influenza virus infection is caused by viruses adapted to birds and it normally
affects wild birds and poultry. The wild birds are natural reservoir for all the sub-types of
influenza A viruses. Influenza viruses are widespread and due to their high mutation rate
many subtypes exist. Further, H5N1, H7N4, H7N7, H7N9, H9N2, and other avian influenza
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viruses with pathogenicity have great potential threat to human. Poultry farms are an
important reservoir for the avian influenza virus (AIV) [1]. AIV transmission to humans
is largely facilitated by contact with animals and excretion of contaminated droplets or
aerosols [2], and to a lesser extent through transport of (dead) birds or contaminated objects
(vehicles, humans, or fomites), water, food, and contact with infected wildfowl or insects
[3]. Historically, the avian influenza splits into two classes: the "High Pathogenic Avian
Influenza (HPAI)" and the "Low Pathogenic Avian Influenza (LPAI)". The HPAI can cause
a series of systemic infections that can lead to high mortality. The LPAI causes mild or no
symptoms. In general, the risk of direct transmission of avian influenza to human is very
low. However, in 2014 a high mortality rate was recorded with around 38.7% of the patients
infected with H7N9 virus dead [4]. H7N9 virus can cause pneumonia, respiratory failure,
acute respiratory distress syndrome and multi-organ failure.

Some subtypes of AIV, namely H7N9 virus is low pathogenic in poultry although it is
high pathogenic in humans. As the infection with H7N9 virus does not cause any symptoms
in poultry, it is not easy to monitor the transmission of the virus in poultry farm and from
poultry to human. Because of this, there is an urgent need of continued surveillance in
the poultry farms. The incubation period for a human infected with H7N9 influenza virus
is about seven days and at present there are some medicines to fight against this virus.
Although, these antiviral drugs are clinically effective against the H7N9 avian influenza,
the mortality due to H7N9 avian influenza is still very high. Normally, H7N9 virus is not
thought to have a strong capacity for an efficient human-to-human spread, however there
have been two cases of the familial aggregation. Under such circumstances, it is important to
study what can be the best available policies for prevention and control of the transmission
of H7N9 avian influenza.

Mathematical models have been used to understand the transmission dynamics of avian
influenza for some time now. The medical experts have analyzed the sources of infection,
the route of transmission and susceptible population. However, these are clearly not enough
and a more focused research on the epidemic dynamic model is expected to help us better
understand and control the avian influenza. Iwami et al.[5–7] reported many research results
on the mathematical modeling of influenza. In 2008, they developed a mathematical model to
study the pattern of spread of the mutant avian influenza and later in 2009, they investigated
the relations between the evolution of virulence and effectiveness of the pandemic control
measures after an emergence of the mutant avian influenza. A deterministic path-structured
model in heterogeneous environment was also studied by them in 2009. Bourouiba et al. [8]
presented a model to describe the behavior of both HPAI and LPAI strains in a domestic
bird population with the culling effect. Chong et al. [4] estimated the basic reproduction
number and the mean number of cases generated by poultry-to-human transmission of
influenza A (H7N9) infection. Later, to understand the efficacy of screening and culling of
infected poultry on the transmission dynamics of influenza A (H7N9), Liu and Fang [9]
formulated a mathematical model by considering both the human and poultry infections
and they assumed that the transmission of this disease from poultry to human as well as
human to human can be modeled using a simple mass action type incidence. Chen and Wen
[10] investigated the dynamic properties of H7N9 avian influenza models. Again, they also
considered a simple mass-action type incidence for both the bird to bird and bird to human
transmissions. They did not consider the human-to-human route of transmission. A delay
differential equation model for the avian influenza was formulated and analyzed by Liu et
al. [11]. Recently, Shu-Min Guo et al. [12] analyzed the model of avian A (H7N9) based on
low pathogenesis on poultry. They considered the saturation type incidence in the poultry,
the import of poultry, so some fraction of the total recruitment in the poultry is assumed
infected. They also did not consider human-to-human transmission of avian influenza A.

In the present study, motivated by the biological papers [1–3], we build on the baseline
mathematical model in [12], extend it and focus on the important, yet neglected role of aerosol
on the transmission of AIV. We achieve this by considering the indirect transmission through
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the incorporation of a compartment for the concentration of free-living avian influenza A
viruses in the soil of the poultry farms, generated by aerosols. We neglect the human-to-
human transmission of the avian influenza A, because it is very rare. However, knowing
that poultry-to-human transmission is also rare, but devastating, the incorporation of an
additional indirect transmission route allows us to account for the spillover infection of
AIV from poultry and environment to humans. Moreover, since the avian influenza A
does not cause typical clinical signs in the infected poultry, we assume on the one hand
that the poultry remains in incubation period without being identified as sick but being
capable of transmitting the virus from poultry to human. On the other hand, the culling
effect of infected poultry is not considered as it is not easy to identify the infected poultry.
The resulted model is deeply analyzed both theoretically and computationally. From the
analytical perspectives, we established the threshold dynamic of the system and transcritical
bifurcation using Lyapunov-LaSalle, Poincaré-Bendixson techniques and center manifold
approximation, respectively. Since the model is highly nonlinear, as usual it can not be
solved explicitly. Worse still, the powerful classical Runge-Kutta method failed to preserve
the positivity of solutions [13, 14]. Therefore, we overcome this by designing a non-standard
finite difference scheme which is dynamically consistent with the continuous model [14–
20] and used it to illustrate the theoretical results and assess the role of the spillover and
environmental transmissions of Avian Influenza A.

The outline of the remainder of the paper is as follows. In Section 2 we build an avian
influenza model that incorporates spillover and indirect transmissions and give the model’s
basic properties. Section 3 deals with the theoretical and bifurcation analysis of the contin-
uous model, while Section 4 presents a dynamically consistent discrete NSFD scheme with
which the theoretical results are numerically illustrated and the role of environmental and
spillover transmissions assessed in Section 5. Finally, we conclude the paper in Section 6
and provide some discussions that highlight few relevant perspectives.

2. Model formulation and basic properties

2.1. Model derivation

2.1.1. Dynamics of the susceptible poultry:

The time evolution of the number of susceptible poultry is described as follows. We assume
that a total number A of poultry replenishes the farm due to importation per unit time. From
this quantity, a proportion (1 − q)A is susceptible poultry, while the remaining proportion
qA is infected poultry. Susceptible poultry die at rate dX. Upon the direct transmission
among poultry, susceptible poultry moves to asymptomatic class following a saturation
type incidence at rate βvXY/(1 + αY), where βv is the transmission coefficient, such that βvY
measures the infection force of the infective poultry, α being the parameter standing for the
inhibitory effort, and 1/(1 + αY) describing the saturation due to the protection measures of
the poultry farmers or the crowding of infected poultry when the number of infective poultry
increases [11]. Upon indirect transmission, βeXC/(C + κ) corresponds to the incidence rate
between environmental contaminated food particles and susceptible poultry. In the latter
saturated incidence function, βe is the transmission coefficient such that (βe � βv); 1/(C + κ)
represents saturation due to the cleaning of the farms when the concentration of excretion
becomes larger; κ is the concentration of V. avian viruses attached to aerosol particles in the
farm which 50% chance of catching the infection. Thus, the variation of X is monitored by
the equation:

dX
dt

= (1 − q)A − βvX
Y

1 + αY
− βeX

C
C + κ

− dX. (1)
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2.1.2. Dynamics of the asymptomatic poultry

The proportion qA imported poultry is asymptomatic and enters the infected class Y, where
they eventually die at rate dY. New infected in the Y-class due to infection contact between
susceptible and infected poultry come from two sources: direct transmission and indirect
environmental transmission. All these descriptions yield the equation

dY
dt

= qA + βvX
Y

1 + αY
+ βeX

C
C + κ

− dY. (2)

2.1.3. Dynamics of the concentration of AIV in the poultry farms environment

This dynamics is derived as follows. Since an emission rate for pathogens is defined as
an amount released per unit of time, it depends on source type (pigs, poultry, industrial,
humans, etc.), source characteristics (e.g., stable construction or animal activity), excretion
route (e.g., exhaled air or faeces), pathogen species or strain, particle size, etc. For a full
quantitative risk assessment, quantified emission rates are required. Hence, the contribution
by humans and poultry in the contamination of the poultry farms is respectivelyφ1I andφ2Y;
and the degradation or decontamination rate of virus (inactivation) due to the temperature
or humidity isξ. We can neglect the contribution by humans because of the human protection
when entering in poultry farms. The time evolution of C reads as follows:

dC
dt

= φ2Y − ξC. (3)

2.1.4. Dynamics of the susceptible human individuals

New born or immigrated humans are recruited susceptible at rate B and die naturally at
rate δ. Since there are some medicines to fight against this virus, the latent and the infected
humans recover respectively at rate a and γ. The transmission of this disease from poultry
to human occurs at rate τv and τe is the transmission coefficient of this disease from the
pathogenic or infectious environment to human. Here, the incidence terms corresponding
to interaction between poultry and human or environment and human are taken in such
a way that makes this model more suitable for the study of avian influenza A in human
associated with poultry farms. Thus, the variation of S is expressed by the following ODE:

dS
dt

= B + aE + γI − τv
S
N

Y − τe
S
N

C − δS. (4)

2.1.5. Dynamics of the latent human individuals

Here, the morbidity of the latent human is ε. Thus, the time evolution of E is expressed by
the following ODE:

dE
dt

= τv
S
N

Y + τe
S
N

C − (a + δ + ε)E. (5)

2.1.6. Dynamics of the infected human individuals

Here, the disease-related death rate is ρ, with (ρ � δ). Then, the dynamics of I is modeled
by the following ODE:

dI
dt

= εE − (γ + ρ + δ)I. (6)
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The parameters in the model are summarized and explained in Table 3. They are assumed
non-negative. The model flowchart is depicted in Figure 1 from which we derive the system
of ordinary differential equations in (7) governing the dynamics of the constructed model.

Figure 1. Flow diagraw for the transmission of avian influenza A; λ = βv
Y

1 + αY
+ βe

C
C + κ

.

Thus, to get better insight into the transmission dynamics of AIV and its spillover event
to human, there is a strong need to couple equation (3) (for the production of viruses) with
dynamical model in poultry and/or human (for the transmission of AIV in poultry and/or
human). Therefore the whole system of ODE governing the AIV transmission becomes

dX
dt

= (1 − q)A − βvX
Y

1 + αY
− βeX

C
C + κ

− dX,

dY
dt

= qA + βvX
Y

1 + αY
+ βeX

C
C + κ

− dY,

dS
dt

= B + aE + γI − τv
S
N

Y − τe
S
N

C − δS,

dE
dt

= τv
S
N

Y + τe
S
N

C − (a + δ + ε)E,

dI
dt

= εE − (γ + ρ + δ)I,

dC
dt

= φ2Y − ξC.

(7)

Here N(t) = S(t) + E(t) + I(t) and M(t) = X(t) + Y(t), are the total population of humans and
poultry, respectively.

2.2. Basic properties

2.2.1. Model well-posedness

Since model (7) describes the evolution of a concentration of AIV in poultry farms, the indi-
viduals numbers should remain non-negative and bounded. The Cauchy problem associated
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to system (7) is  dw
dt

= F(w(t)), t ≥ 0,

w(0) = w0,
(8)

where w(t) = (X(t),Y(t),S(t),E(t), I(t),C(t)), w0 = (X0,Y0,S0,E0, I0,C0) and F(w(t)) ∈ R6 is the
right-hand vector in equation (7).

Clearly, the function F(w(t)) is continuously differentiable inR6. Thus by Cauchy-Lipschitz
theorem, for any w0

∈ R6 there exists an interval [−ς, ς] and a unique continuously differ-
entiable function w(t) ∈ R6 defined for t ∈ [−ς, ς] and satisfying (8). Thus the existence of a
unique maximal solution for (8) is guaranteed.

Theorem 2.1. Let the initial data be X0 > 0,Y0 > 0,S0 > 0,E0 > 0, I0 > 0 and C0 > 0. Then, the
corresponding solution (X; Y; S; E; I; C) of model (7) is non-negative for all t > 0, whenever it exists.
Moreover, the solutions are bounded and model (7) is a dynamical system in the set

Ω =

{
(X,Y,S,E, I,C) ∈ R6

+/X + Y ≤
A
d

; S + E + I ≤
B
δ

; C ≤
φ2A
dξ

}
.

Proof. Theorem 2.1 is not difficult to prove and the details are skipped. �

Since according to Theorem 2.1, the solutions of system (7) remain non-negative and
bounded inR6

+, We can conclude that the solution exists, globally in time. Moreover, the set
Ω is positively invariant with respect to the flow of system (7). Thus, system (7) is mathe-
matically and epidemiologically well-posed and it is sufficient to consider the dynamics of
the flow generated by system (7) in Ω, as it is also an attracting and absorbing set.

2.3. Sensitivity analysis of the basic reproduction number

2.3.1. Computation of the basic reproduction number R0

In the absence of infection, that is q = 0 and Y = E = I = C = 0, the model (7) has a
disease-free equilibrium (DFE),

Z0 = (X0,Y0,S0,E0, I0,C0) =
(A

d
, 0,

B
δ
, 0, 0, 0

)
,

which is obtained by setting the right-hand side of the system (7) to zero.
A key quantity in classic epidemiological models is the basic reproduction number, de-

noted byR0. It is a useful threshold in the study of a disease for predicting a disease outbreak
and for evaluating the control strategies. Usually, ρ(M) will indicate the spectral radius of
matrix M. We stress that, (Y,E, I,C) and (X,S) are the infected and uninfected classes, respec-
tively. In order to compute the basic reproduction number R0, we follow the method in [21].
By so doing we get,

R0 =
βvA
d2 +

βeAφ2

κξd2 . (9)

We notice that if the farms environment are free of viruses, that is βe = 0, the basic reduces
to the sole contribution of direct poultry-to-poultry reproduction number

Rv =
βvA
d2 .
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On the oher hand, if direct transmission (poultry-to-poultry) is absent, that is βv = 0 then
only the infected poultry farms contribute to build the basic reproduction number which
becomes

Re =
βeAφ2

κξd2 .

These two observations suggest that the two modes of avian influenza transmission can
independently or jointly trigger an epidemic depending on conditions. Thus, precisely
speaking, R0 measures the number of secondary avian influenza infections generated in a
wholly susceptible community when a sufficient concentration of vibrios contaminates the
farms environment and/or when an avian influenza-infected individual is introduced into
the farm.

In Rv, βv/d is the average amount of hyper infectious V. avian influenza ingested by a
asymptomatic poultry.

In Re, 1/ξ is the lifetime of the vibrios in the farms environment; βe/κ is the number of
new cases generated in terms of vibrios per unit time, measured by the eID50 concentration;
φ2/d is the average amount of V. avian influenza shed per infected poultry.

2.3.2. Local sensitivity analysis of R0

The local sensitivity analysis is based on the normalized sensitivity index of R0. The nor-
malized forward sensitivity index of a variable to a parameter is the number of the relative
change in the variable to the relative change in the parameter. Since the basic reproduction
number is a differentiable function of the parameters, the sensitivity index may alternatively
be defined using partial derivatives [22]. To this aim, denoting by Φ the generic parameter
of system (7), we evaluate the normalized sensitivity index

SΦ =
Φ

R0

∂R0

∂Φ
,

which indicates how sensitive R0 is to a change of parameter Φ. A positive (resp. negative)
index indicates that an increase in the parameter value results in an increase (resp. decrease)
in the R0 value.
Consider φ2 = 103 and the other parameter values in Table 3, we tabulate the indexes of
the remaining parameters in Table 1. From Table 1, we can observe that the parameters βv,

Table 1. Sensitivity indexes for R0.
Parameter Sensitivity index Value

βv Sβv +0.9676
βe Sβe +0.03226
A SA +0.99999
φ2 Sφ2 +0.03226
ξ Sξ -0.03226
d Sd -2.00003

βe, A and φ2 respectively have a positive influence in the value of R0. This means that the
increase or the decrease of these parameters, will increase or decrease R0. The indexes for
parameters ξ and d which represent the degradation rate of virus and natural death rate of
poultry respectively, show that increasing their values, will decrease the value of R0. From
these analyses, it is worth remakable that a higher emission rate of poultry φ2 and the lower
degradation rate of virus ξ increasesR0. Using the parameter values in Table 3, the numerical
results displayed in Figure 2 illustrate the role of φ2 and ξ on the basic reproduction number
R0, from which we observe that R0 increases whenever the parameters φ2 and ξ increase
and decrease respectively. This suggests that, an optimal control measure could be the
combination of the number of emission rate of poultry and degradation rate of virus.

7



Figure 2. The basic reproduction number R0 plotted as function of the emission rate of poultry φ2 and inactivation rate ξ.

3. Theoretical and asymptotic analysis of the model

In this section, we study the existence and asymptotic behavior of the steady state of model
(7) in two different scenarios. We start with the analysis of the sub-model where there is no
immigration of infected poultry, and secondly, we study the full model (7).

3.1. Analysis of the sub-model without imported infected poultry (q=0)

In this case, we get two equilibrium points, namely the disease-free equilibrium and the
endemic equilibrium. When q = 0, the model (7) reads

dX
dt

= A − βvX
Y

1 + αY
− βeX

C
C + κ

− dX,

dY
dt

= βvX
Y

1 + αY
+ βeX

C
C + κ

− dY,

dS
dt

= B + aE + γI − τv
S
N

Y − τe
S
N

C − δS,

dE
dt

= τv
S
N

Y + τe
S
N

C − (a + δ + ε)E,

dI
dt

= εE − (γ + ρ + δ)I,

dC
dt

= φ2Y − ξC.

(10)
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3.1.1. Existence of equilibrium points

The disease-free equilibrium is given by:

Z0 = (X0,Y0,S0,E0, I0,C0) =
(A

d
, 0,

B
δ
, 0, 0, 0

)
.

Let Z∗ = (X∗,Y∗,S∗,E∗, I∗,C∗) be an endemic steady state of model (10). Then, as N(t) =
S(t) + E(t) + I(t) and M(t) = X(t) + Y(t), it is easily seen that dN/dt = B − ρI − δN and for
the poultry vector population the corresponding total population size is asymptotically
constant: limt→+∞M(t) = A/d. Based on this, we have

S∗ = N∗ − E∗ − I∗, I∗ =
B
ρ
−
δ
ρ

N∗, E∗ =
Bη2

ρε
−
η2δ

ρε
N∗, X∗ =

A
d
− Y∗; C∗ =

φ2

ξ
Y∗, (11a)

Y∗ =
α1N∗

(
N∗ −

B
δ

)
α2 − α3N∗

, (11b)

where,

η1 = a + δ + ε , η2 = γ + δ + ρ,

α1 =
η1η2δ

ρε
, α2 =

B
ρ

(η2

ε
+ 1

) (
τv + τe

φ2

ξ

)
, α3 =

(
η2δ

ρε
+
δ
ρ

+ 1
) (
τv + τe

φ2

ξ

)
. (12)

Straightforward substitutions show that Y∗ must satisfy the following equation:

P(Y∗) = α4Y∗2 + α5Y∗ + α6 = 0, (13)

with

α4 = −
βvφ2

ξ
−
βeαφ2

ξ
−

dαφ2

ξ
, (14a)

α5 = −κβv −
βeφ2

ξ
−

(
dακ +

dφ2

ξ

)
(1 − R0) −

ακβvA
d
−
βeAφ2

2

κdξ2 , (14b)

α6 = κd(R0 − 1). (14c)

Equation (13) has a unique positive solution if R0 > 1 and no positive solution whenever
R0 ≤ 1.

Substituting this solution by its value in (11b), we obtain

h(N∗) = α1N∗2 +
(
α3Y∗ − α1

B
δ

)
N∗ − α2Y∗ = 0. (15)

Notice that it is not difficult to show that h(0) < 0 and h(B/δ) > 0. Indeed,

h(0) = −α2Y∗ < 0,
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h
(B
δ

)
=
α1B2

δ2 +
α3B
δ

Y∗ −
α1B2

δ2 − α2Y∗ =
Y∗B
δ

(
τv + τe

φ2

ξ

)
> 0.

By the intermediate value theorem, there exists a positive root for the quadratic equation
(15) which lies between 0 and B/δ. Moreover, since α1 is positive and the constant coefficient
of h(N∗) is negative, the second root of equation (15) is negative. Thus, the existence of a
unique endemic equilibrium point for model (10). Furthermore, we need to prove that the
corresponding unique endemic equilibrium lies in Ω. To that end, let P∗(Y∗) = α4Y∗2 +α5Y∗+
α6. It is straightforward that P∗(0) = α6 > 0 and

P∗
(A

d

)
= −

βvφ2A2

d2ξ
−
βeαA2φ2

d2ξ
−
αφ2A2

dξ
−
κβvA

d
− ακA +

βvφ2A2

d2ξ

+
βeαφ2A2

d2ξ
−
βeφ2A

dξ
−

Aφ2

ξ
+
κβvA

d
− dκ +

βeAφ2

dξ
,

= −
αφ2A2

dξ
−

Aφ2

ξ
− καA − dκ < 0.

Therefore, 0 < Y∗ < A/d, and it follows that C∗ and X∗ are positive. Finally, the fact that the
unique endemic equilibrium (X∗,Y∗,S∗,E∗, I∗,C∗) belongs to Ω is a direct consequence of the
formulas in (11a) and (11b). These investigations are summarized in the following result.

Lemma 3.1. The model (10) has:

(1) a unique endemic equilibrium whenever R0 > 1;
(2) no endemic equilibrium whenever R0 ≤ 1.

3.1.2. Local stability the disease-free equilibrium and bifurcation analysis at R0 = 1

Theorem 3.2. The disease-free equilibrium Z0 of system (10) is locally asymptotically stable in Ω
when R0 < 1, but unstable when R0 > 1.

Proof. The eigenvalues of a Jacobian matrix of the vector field described by (10) at the DFE,
are the roots λ1 and λ2 of the quadratic equation

λ2 + λ

(
ξ + d −

βvA
d

)
+ dξ −

βvAξ
d
−
βeAφ2

κd
= 0. (16)

These roots satisfy the relations

λ1 + λ2 = −ξ − d +
βvA

d
= −ξ −

βeAφ2

κd2ξ
+ d(R0 − 1),

λ1 × λ2 = dξ −
βvAξ

d
−
βeAφ2

κd
= dξ(1 − R0).

Clearly, If R0 < 1, then λ1 × λ2 > 0 and λ1 + λ2 < 0, such the λ1 and λ2 have negative real
parts. This proves the local asymptotic stability of Z0. On the other hand, if R0 > 1, at least
one of the eigeinvalues has a positive real part, which implies that Z0 is unstable. �

Biologically, Theorem 3.2 shows that the avian influenza can be eliminated (when R0 < 1)
if the initial population lies in the basin of attraction of DFE Z0.

Lemma 3.1 and Theorem 3.2 establish thatR0 = 1 is a bifurcation parameter. In fact, across
R0 = 1 the disease-free equilibrium, Z0 changes its stability property from local stability to
unstable (see Theorem 3.5). In the next result, the Center Manifold Theory [23] as described
by Theorem 4.1 in [23] is used to investigate the appearance of the trans-critical bifurcation
at R0 = 1 where the stable disease-free equilibrium Z0 becomes unstable when R0 crosses
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1 from below and gives rise to a stable endemic equilibrium Z∗. We have the following
theorem.

Theorem 3.3. The system (10) presents a trans-critical forward bifurcation at R0 = 1.

Proof. To apply this theory, we first rename the state variables. Let x1 = X, x2 = Y, x3 =
S, x4 = E, x5 = I and x6 = C so that N = x3 + x4 + x5. Further, by using the vector notation x =
(x1, x2, x3, x4, x5, x6)T, the avian influenza model (10) can be written in the form dx/dt = f (x),
with f = ( f1, f2, f3, f4, f5, f6)T as follows:

dx1

dt
= f1 = A − βvx1

x2

1 + αx2
− βex1

x6

x6 + κ
− dx1,

dx2

dt
= f2 = βvx1

x2

1 + αx2
+ βex1

x6

x6 + κ
− dx2,

dx3

dt
= f3 = B + ax4 + γx5 − (τvx2 + τex6)

x3

x3 + x4 + x5
− δx3,

dx4

dt
= f4 = (τvx2 + τex6)

x3

x3 + x4 + x5
− (a + δ + ε)x4,

dx5

dt
= f5 = εx4 − (γ + ρ + δ)x5,

dx6

dt
= f6 = φ2x2 − ξx6.

(17)

The Jacobian of system (17) at the DFE Z0 = (A/d, 0,B/δ, 0, 0, 0), is the same as for the one in
proof of Theorem 3.2. The basic reproduction number of the transformed (linearized) system
(17) is the same as that of the original model (10).
Let σe be the non-negative real numbers such that βe = σeβv , then the basic reproduction
number R0 becomes

R0 =
βeκξA + βeφ2σeA

κσeξd2 .

Therefore, choosing βe as the bifurcation parameter, by solving for βe whenR0 = 1, we obtain:

βe = β∗e =
κσeξd2

A(κξ + φ2σe)
.

It follows that the Jacobian (J|Z0) of system (17) at the DFE Z0, with βe = β∗e, denoted by
J|β∗e has a simple zero eigenvalue (with all other eigenvalues having negative real parts).
Hence, the Center Manifold theory [23] can be used to analyze the dynamics of system
(17). In particular, Theorem 4.1 in [23], will be used to show that, when R0 > 1, there exists
a unique endemic equilibrium of system (17) (as shown in Lemma 3.1) which is locally
asymptotically stable for R0 near 1, under certain conditions. The application of Theorem
4.1 in [23] hinges on the following computations (it should be noted that we are using β∗e as
the bifurcation parameter, in place of φ in Theorem 4.1 [23]).

Eigenvectors of J|β∗e : The right eigenvector corresponding to the zero eigenvalue is:

u = (u1,u2,u3,u4,u5,u6)T.

By solving the system −du1 −
βvA

d
u2 −

βeA
κd

u6 = 0;
(
βvA

d
− d

)
u2 +

βeA
κd

u6 = 0; φ2u2 − ξu6 = 0;

−τvu2 − δu3 + au4 + γu5 − τeu6 = 0; τvu2 − η1u4 + τeu6 = 0; εu4 − η2u5 = 0,

11



we obtain

u1 = −u2 , u2 = u2 > 0 , u3 =

(
a
δη1

+
γε

δη1η2
−

1
δ

) (
τv +

τeφ2

ξ

)
u2,

u4 =
1
η1

(
τv +

τeφ2

ξ

)
u2 , u5 =

ε
η1η2

(
τv +

τeφ2

ξ

)
u2 , u6 =

φ2

ξ
u2.

Similarly, the components of the left eigenvectors (corresponding to the zero eigenvalue)
v = (v1, v2, v3, v4, v5, v6) is obtained by solving the system

v1 = 0, v3 = 0; −
βvA

d
v1 +

(
βvA

d
− d

)
v2 − τvv3 + τvv4 + φ2v6 = 0; av3 − η1v4 + εv5 = 0;

γv3 − η2v5 = 0; −
βvA

d
v1 +

βeA
κd

v2 − τev3 + τev4 − ξv6 = 0.

Hence,

v1 = 0 , v2 =
κdξ
βeA

v6 , v3 = 0 , v4 = 0 , v5 = 0 , v6 = v6 > 0.

Computation of a: For system (17), the corresponding non-zero partial derivatives of fi
(i = 1; 2; 3; 4; 5; 6) calculated at the disease-free equilibrium are given by:

∂2 f2
∂x2

2

= −2α
βvA

d
;
∂2 f2
∂x2

6

= −2
βeA
κ2d

;
∂2 f2
∂x1∂x2

= βv ;
∂2 f2
∂x1∂x6

=
βe

κ
.

Consequently, we calculate the associated bifurcation coefficient a.

a =
∑6

k,i, j=1 vkuiu j
∂2 fk
∂xi∂x j

(Z0) = v2

(
u2

2

∂2 f2
∂x2

2

+ u2
6

∂2 f2
∂x2

6

+ 2u1u2
∂2 f2
∂x1∂x2

+ 2u1u6
∂2 f2
∂x1∂x6

)
,

=
κdξ
βeA

v6u2
2

[
− 2α

βvA
d
− 2

βeφ2
2A

κ2ξ2d
−
βeφ2

κξ
− 2βv

]
< 0.

Computation of b: For system (17), the corresponding non-zero partial derivatives of
fi (i = 1; 2; 3; 4; 5; 6) calculated at the disease-free equilibrium are given by:

∂2 f1
∂x6∂β∗e

= −
A
κd
,

∂2 f2
∂x6∂β∗e

=
A
κd
.

We compute the associated bifurcation coefficient b.

b =

6∑
k,i=1

vkui
∂2 fk
∂xi∂β∗e

(Z0) = v2u6
A
κd

=
A
κd
φ2

ξ
κdξ
βeA

u2v6 =
φ2

βe
u2v6 > 0.

Thus, the bifurcation coefficient a is always negative. Furthermore, the bifurcation coefficient
b is always positive. Hence, it follows from Theorem 4.1 in [23], that model (17) does undergo
the trans-critical forward bifurcation at R0 = 1. �

Remark 3.4. The application of Theorem 4.1 in [23] which proves Theorem 3.3, also establishes the
local asymptotic stability of the unique endemic equilibrium Z∗, but this result applies only for small
values ofR0 > 1. Nonetheless, for all values ofR0 > 1, Z∗ is LAS as well and the proof follows similar
procedure as in the demonstration of Theorem (3.14).
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3.1.3. Global stability analysis of the equilibrium points

For a better control of the disease, the global asymptotic stability of the DFE is needed.

Theorem 3.5. The disease-free equilibrium of system (10) is globally asymptotically stable (GAS)
in Ω if R0 ≤ 1.

Proof. We use the Lyapunov function approach. Define

L(X,Y,S,E, I,C) =

(
1
d

+
φ2

dξ

)
Y(t) +

1
ξ

C(t).

Then,

dL
dt

=

(
1
d

+
φ2

dξ

)
dY
dt

+
1
ξ

dC
dt
,

=

(
1
d

+
φ2

dξ

) (
βvX

Y
1 + αY

+ βeX
C

C + κ
− dY

)
+

1
ξ

(φ2Y − ξC),

=

(
1
d

+
φ2

dξ

) (
βvX

Y
1 + αY

+ βeX
C

C + κ

)
− Y − C,

=

(
R0

βvX0 +
κR0

βeX0 −
βeφ2

κξβvd
−
κβv

βed

) (
βvX

Y
1 + αY

+ βeX
C

C + κ

)
− Y − C.

Direct calculations lead to

dL
dt
≤

(
R0

βvX0 +
κR0

βeX0 −
βeφ2

κξβvd
−
κβv

βed

) (
βvX

Y
1 + αY

+ βeX
C

C + κ

)
+
βeφ2

κξd
X0Y

+
κβ2

v

dβe
X0Y +

β2
eφ2

κ2dξβv
X0C +

βv

d
X0C −

κβv

βe
R0Y −

βe

κβv
R0C − Y − C,

≤
R0

X0

XY
1 + αY

+
κβvR0

βeX0

XY
1 + αY

−
βeφ2

κξd
XY

1 + αY
−
κβ2

v

dβe

XY
1 + αY

+
βeR0

βvX0

XC
C + κ

+
κR0

X0

XC
C + κ

−
β2

eφ2

κdξβv

XC
C + κ

−
κβv

d
XC

C + κ
+
βeφ2

κξd
X0Y +

κβ2
v

dβe
X0Y +

β2
eφ2

κ2dξβv
X0C +

βv

d
X0C −

κβv

βe
R0Y

−
βe

κβv
R0C − Y − C − R0Y + R0Y − R0C + R0C.

Some simple rearrangements yield,

dL
dt
≤ (R0 − 1)(Y + C) −

R0Y
X0

(
X0
−

X
1 + αY

)
−
κR0βv

βeX0 Y
(
X0
−

X
1 + αY

)
+
βeφ2

κξd
Y

(
X0
−

X
1 + αY

)
+
κβ2

v

dβe
Y

(
X0
−

X
1 + αY

)
−
βeR0

βvX0 C
(

X0

κ
−

X
C + κ

)
−
κR0

X0 C
(

X0

κ
−

X
C + κ

)
+
β2

eφ2

κdξβv
C

(
X0

κ
−

X
C + κ

)
+
κβv

d

(
X0

κ
−

X
C + κ

)
.

Finally,

dL
dt
≤ (R0 − 1)(Y + C) −

κξR0

(βv + βeφ2)X0

(
1 +

φ2

ξ

) [
βvY

(
X0
−

X
1 + αY

)
+ βeC

(
X0

κ
−

X
C + κ

)]
.
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Since X ≤ X0, we have

dL
dt
≤ (R0 − 1)(Y + C) −

κξR0

(βv + βeφ2)X0

(
1 +

φ2

ξ

) [
βvY(X0

− X) + βeC
(

X0

κ
−

X
κ

)]
≤ 0,

whenever R0 ≤ 1. Moreover,
dL
dt

= 0,⇔ Y = C = 0 or X = X0 and R0 = 1.

Thus, the largest invariant set H such that H ⊂

{
(X,Y,S,E, I,C) ∈ R6

+/dL/dt = 0
}

is
{Z0
} because in H one has limt→+∞ Y(t) = limt→+∞ C(t) = 0. In system (10), we obtain

limt→+∞X(t) = X0, limt→+∞ S(t) = S0, limt→+∞ E(t) = limt→+∞ I(t) = 0. By LaSalle’s Invariance
Principle [24], {Z0

} is globally asymptotically stable in Ω. The proof is complete. �

As for the proof of the GAS of the endemic equilibrium Z∗, one should notice that, since the
poultry sub-model is independent of the human population variables (S,E, I), system (10)
takes the triangular form 

dx
dt

= f (x), x = (X,Y,C),

dy
dt

= g(x, y), y = (S,E, I).

(18)

Therefore, in order to deal with the global asymptotic stability of the unique endemic
equilibrium stated in Theorem 3.9, the following three results are instrumental.

Theorem 3.6. (Vidyagasar [25])
Consider a C1 class system with an equilibrium point (x∗; y∗).

dx
dt

= f (x),

dy
dt

= g(x, y), x ∈ Rn, y ∈ Rm,

f (x∗) = 0, g(x∗, y∗) = 0.

(19)

If x∗ is GAS in Rn for system dx/dt = f (x), and if y∗ is GAS in Rm, for system dy/dt = g(x∗; y),
then equilibrium point (x∗; y∗) is (locally) asymptotically stable for system (19). Moreover, if all the
trajectories of (19) are positively bounded , then (x∗; y∗) is GAS for (19).

Theorem 3.7. Let H be a 2 × 2 matrix [26, 27]. Then

H =

[
a11 a12
a21 a22

]
,

is Volterra-Lyapunov stable if and only if a11 < 0, a22 < 0, and a11a22 − a12a21 > 0.

Theorem 3.8. Let H be a non-singular n × n matrix, where n ≥ 2, with inverse H−1 = K and W a
positive diagonal n × n matrix [28]. Let H∗,K∗, and W∗ denote the (n−1)× (n−1) matrices obtained
from H,K, and W, respectively, by deleting the last row and the last column. Then

(i) if WH + (WH)T > 0, we must have ann > 0, W∗H∗ + (W∗H∗)T > 0, and W∗K∗ + (W∗K∗)T > 0;
(ii) if ann > 0,W∗H∗ + (W∗H∗)T > 0, and W∗K∗ + (W∗K∗)T > 0, it is possible to choose wn > 0

such that WH + (WH)T > 0.

Now, we claim the following result.
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Theorem 3.9. The unique positive endemic equilibrium point x∗ = (X∗,Y∗,C∗) of the system (20) is
globally asymptotically stable if R0 > 1.

Proof. Following, Theorem 3.6, we first study the GAS of the endemic equilibrium x∗ of the
poultry system:

dx
dt

= f (x) ≡



dX
dt

= A − βvX
Y

1 + αY
− βeX

C
C + κ

− dX,

dY
dt

= βvX
Y

1 + αY
+ βeX

C
C + κ

− dY,

dC
dt

= φ2Y − ξC.

(20)

Consider the following domain as a result of a nondimensionalized system (20)

Ω1 =

{
(X,Y,C) ∈ R3

+/0 < X + Y ≤
A
d
,C ≤

φ2A
dξ

}
.

Next, construct the Lyapunov function

V = ω1(X − X∗)2 + ω2(Y − Y∗)2 + ω3(C − C∗)2, (21)

with ω1 > 0, ω2 > 0 and ω3 > 0. Note that for the endemic equilibrium x∗ , we have the
following three equations for the nondimensionalized system:

A − βvX∗
Y∗

1 + αY∗
− βeX∗

C∗

C∗ + κ
− dX∗ = 0, (22a)

βvX∗
Y∗

1 + αY∗
+ βeX∗

C∗

C∗ + κ
− dY∗ = 0, (22b)

φ2Y∗ − ξC∗ = 0. (22c)

Using (22a)-(22c), we obtain

dV
dt

= 2ω1(X − X∗)
[
−βvX

Y
1 + αY

− βeX
C

C + κ
− dX + βvX∗

Y∗

1 + αY∗
+ βeX∗

C∗

C∗ + κ
+ dX∗

]
+2ω2(Y − Y∗)

[
βvX

Y
1 + αY

+ βeX
C

C + κ
− dY − βvX∗

Y∗

1 + αY∗
− βeX∗

C∗

C∗ + κ
+ dY∗

]
+2ω3(C − C∗)

[
φ2Y − ξC − φ2Y∗ + ξC∗

]
.

Some substitutions yield

dV
dt

= 2ω1(X − X∗)
[
−

(
βvX

Y
1 + αY

− βvX∗
Y

1 + αY
+ βvX∗

Y
1 + αY

− βvX∗
Y∗

1 + αY∗

)
−

(
βeX

C
C + κ

− βeX∗
C

C + κ
+ βeX∗

C
C + κ

− βeX∗
C∗

C∗ + κ

)]
− 2ω1d(X − X∗)2

+2ω2(Y − Y∗)
[(
βvX

Y
1 + αY

− βvX∗
Y

1 + αY
+ βvX∗

Y
1 + αY

− βvX∗
Y∗

1 + αY∗

)
+
(
βeX

C
C + κ

− βeX∗
C

C + κ
+ βeX∗

C
C + κ

− βeX∗
C∗

C∗ + κ

)]
− 2ω2d(Y − Y∗)2

+2ω3(C − C∗)
[
φ2(Y − Y∗) − ξ(C − C∗)

]
.
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The gatherings of some terms give

dV
dt

= −2ω1

(
βv

Y
1 + αY

+ βe
C

C + κ
+ d

)
(X − X∗)2

− 2ω1
βvX∗

(1 + αY)(1 + αY∗)
(X − X∗)(Y − Y∗)

−2ω1
κβeX∗

(C + κ)(C∗ + κ)
(X − X∗)(C − C∗) + 2ω2

( βvX∗

(1 + αY)(1 + αY∗)
− d

)
(Y − Y∗)2

+2ω2

(
βv

Y
1 + αY

+ βe
C

C + κ

)
(Y − Y∗)(X − X∗) + 2ω2

κβeX∗

(C + κ)(C∗ + κ)
(Y − Y∗)(C − C∗)

+2ω3φ2(C − C∗)(Y − Y∗) − 2ω3ξ(C − C∗)2,

= U(WH + HTW)UT,

where U = [X − X∗,Y − Y∗,C − C∗] , W = diag(ω1, ω2, ω3) and

H =


−βv

Y
1 + αY

− βe
C

C + κ
− d −

βvX∗

(1 + αY)(1 + αY∗)
−

κβeX∗

(C + κ)(C∗ + κ)

βv
Y

1 + αY
+ βe

C
C + κ

βvX∗

(1 + αY)(1 + αY∗)
− d

κβeX∗

(C + κ)(C∗ + κ)
0 φ2 −ξ

 . (23)

The global asymptotic stability of x∗ will be established if we can show that the matrix H
defined in (23) is Volterra-Lyapunov stable [28]; that is, a positive diagonal matrix W exists
such that WH + HTW is negative definite.
From (23), one can see that H is non-singular because

det H =
dκβeφ2X∗

(C + κ)(C∗ + κ)
+

dβvξX∗

(1 + αY)(1 + αY∗)
− dξ

(
βv

Y
1 + αY

+ βe
C

C + κ
+ d

)
,

=
dκβeφ2X∗

(C + κ)(C∗ + κ)
+

dβvξX∗

(1 + αY)(1 + αY∗)

−

( βvξX∗

1 + αY∗
+
βeφ2X∗

C∗ + κ

)(
βv

Y
1 + αY

+ βe
C

C + κ
+ d

)
,

= −
dβeφ2X∗C

(C∗ + κ)(C + κ)
−

dβvξX∗Y
(1 + αY)(1 + αY∗)

−

( βvξX∗

1 + αY∗
+
βeφ2X∗

C∗ + κ

)(
βv

Y
1 + αY

+ βe
C

C + κ

)
< 0.

Moreover,

H−1 =
1

det H



h11 h12 −
dκβeX∗

(C + κ)(C∗ + κ)

h21 h22
dκβeX∗

(C + κ)(C∗ + κ)

βvφ2Y
1 + αY

− +
βeφ2C
C + κ

dφ2 +
βvφ2Y
1 + αY

+
βeφ2C
C + κ

h33


,
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where,

h11 = dξ −
βvξX∗

(1 + αY)(1 + αY∗)
−

κβeφ2X∗

(C + κ)(C∗ + κ)
,

h12 = −
βvξX∗

(1 + αY)(1 + αY∗)
−

κβeφ2X∗

(C + κ)(C∗ + κ)
,

h21 =
βvξY

1 + αY
+
βeξC
C + κ

,

h22 = dξ +
βvξY

1 + αY
+
βeξC
C + κ

,

h33 = d
(
βvY

1 + αY
+

βeC
C + κ

)
+ d2
−

dβvX∗

(1 + αY)(1 + αY∗)
.

Using the fact that det H < 0, and the relations that link the endemic equilibrium component,
one can readily verify the hypotheses of Theorem 3.7 for the matrix (H−1)∗ and conclude that
it is Volterra-Lyapunov stable. Hence, a 2 × 2 positive diagonal matrix W∗ = diag(ω1, ω2)
exists such that W∗(H−1)∗+(W∗(H−1)∗)T < 0. Setting O = (−H)−1, we have W∗O∗+(W∗O∗)T > 0.
After lenghty but direct calculations, we obtain

(−det H)[W∗O∗ + (W∗O∗)T] =

[
a11 a12
a12 a22

]
,

with

a11 = 2ω1

(
dξ −

βvξX∗

(1 + αY)(1 + αY∗)
−

κβeφ2X∗

(C + κ)(C∗ + κ)

)
,

a12 = ω2

(
βvξ

Y
1 + αY

+ βeξ
C

C + κ

)
− ω1

( βvξX∗

(1 + αY)(1 + αY∗)
+

κβeφ2X∗

(C + κ)(C∗ + κ)

)
,

a22 = 2ω2

(
dξ + βvξ

Y
1 + αY

+ βeξ
C

C + κ

)
.

On the other hand,

W∗(−H)∗ + (W∗(−H)∗)T =

[
b11 b12
b12 b22

]
, with

b11 = 2ω1

(
d + βv

Y
1 + αY

+ βe
C

C + κ

)
,

b12 = ω1
βvX∗

(1 + αY)(1 + αY∗)
− ω2

(
βv

Y
1 + αY

+ βe
C

C + κ

)
,

b22 = 2ω2

(
d −

βvX∗

(1 + αY)(1 + αY∗)

)
.

Next, we prove that W∗(−H)∗ + (W∗(−H)∗)T > 0. Indeed, since W∗O∗ + (W∗O∗)T is positive
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definite and −det H > 0, we have det
{
(−det H)[W∗O∗ + (W∗O∗)T]

}
> 0 and

det
{
W∗(−H)∗ + (W∗(−H)∗)T

}
= 4ω1ω2

[
d + βv

Y
1 + αY

+ βe
C

C + κ

][
d −

βvX∗

(1 + αY)(1 + αY∗)

]

−ω2
1

[ βvξX∗

(1 + αY)(1 + αY∗)

]2

− ω2
2

[
βv

Y
1 + αY

+ βe
C

C + κ

]2

+2ω1ω2
βvξX∗

(1 + αY)(1 + αY∗)

[
βv

Y
1 + αY

+ βe
C

C + κ

]
,

= det
{
(−det H)[W∗O∗ + (W∗O∗)T]

}
+4ω1ω2

dξκβeφ2X∗

(C + κ)(C∗ + κ)
+ ω2

1

[ κβeφ2X∗

(C + κ)(C∗ + κ)

]2

+2ω1ω2
κβeφ2X∗

(C + κ)(C∗ + κ)

[
βv

Y
1 + αY

+ βe
C

C + κ

]
+2ω2

1

βvξX∗

(1 + αY)(1 + αY∗)
κβeφ2X∗

(C + κ)(C∗ + κ)
> 0,

where,

det
{
(−det H)[W∗O∗ + (W∗O∗)T]

}
= 4ω1ω2

[
dξ + βvξ

Y
1 + αY

+ βeξ
C

C + κ

]
×

[
dξ −

βvξX∗

(1 + αY)(1 + αY∗)
−

κβeφ2X∗

(C + κ)(C∗ + κ)

]
−ω2

1

[ βvξX∗

(1 + αY)(1 + αY∗)
+

κβeφ2X∗

(C + κ)(C∗ + κ)

]2

−ω2
2

[
βvξ

Y
1 + αY

+ βeξ
C

C + κ

]2

+2ω1ω2

[
βvξ

Y
1 + αY

+ βeξ
C

C + κ

]
×

[ βvξX∗

(1 + αY)(1 + αY∗)
+

κβeφ2X∗

(C + κ)(C∗ + κ)

]
.

A judicious exploitation of the equilibrium relations shows that

b22 = d −
βvX∗

(1 + αY)(1 + αY∗)
> 0.

Hence, the matrix W∗(−H)∗ + (W∗(−H)∗)T is positive definite. Since b22 > 0, W∗(−H)∗ +
(W∗(−H)∗)T > 0 and W∗(−H−1)∗ + (W∗(−H−1)∗)T > 0, then thanks to Theorem 3.8 (ii), there
exists ω3 > 0 such that W(−H) + (W(−H))T > 0; that is, WH + HTW < 0. Thus H is Volterra-
Lyapunov stable. Hence a feasible equilibrium x∗ is globally asymptotically stable in Ω1. �
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Next, we investigate the dynamics of the human sub-system:

dy
dt

= g(x∗; y) ≡



dS
dt

= B + aE + γI − τv
S
N

Y∗ − τe
S
N

C∗ − δS,

dE
dt

= τv
S
N

Y∗ + τe
S
N

C∗ − (a + δ + ε)E,

dI
dt

= εE − (γ + ρ + δ)I.

(24)

Theorem 3.10. The unique positive endemic equilibrium point y∗ = (S∗,E∗, I∗) of the system (24) is
globally asymptotically stable if R0 > 1.

Proof. We introduce the fractions x = δS/B, y = δE/B, z = δI/B and scale time by introducing
a new time τ = δt. This gives us the simplified system as:

dx
dτ

= 1 + ay + γz − (τvY∗ + τeC∗)
δ
B

x

N
− x,

dy
dτ

= (τvY∗ + τeC∗)
δ
B

x

N
− (1 + a + ε)y,

dz
dτ

= εy − (1 + ρ + γ)z,

(25)

where

a =
a
δ
, τv =

τv

δ
, τe =

τe

δ
, ε =

ε
δ
, ρ =

ρ

δ
, γ =

γ

δ
, N = x + y + z.

Here, we have used the fact that

dN
dτ

= 1 −N − ρz.

It can be shown that the region

Ω2 =
{
(x, y, z) ∈ R3

+/0 ≤ x + y + z ≤ 1
}
,

is positively invariant. Now, consider the equivalent system:

dy
dτ

= (τvY∗ + τeC∗)
δ
B

x

N
− (1 + a + ε)y,

dz
dτ

= εy − (1 + ρ + γ)z,

dN
dτ

= 1 −N − ρz.

(26)

Denote

Ω3 =
{
(y, z,N) ∈ Ω2/N = 1 − ρz

}
=

{
(y, z,N) ∈ Ω2/x + y + (1 + ρ)z = 1

}
.

Then it not difficult to prove that Ω3 is a positively invariant and attracting subset of Ω2.
Next we use the Poincaré-Bendixson techniques to prove that system (24) has no periodic
solution. Let us assume that the system (24) has a periodic solution ψ(τ) = {x(τ), y(τ), z(τ)}.
Let ψ(τ) be the trajectory of periodic solution, and Π be the planar region of ψ(τ). Let
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f1(x, y, z), f2(x, y, z) and f3(x, y, z) respectively represent the three expressions of the right-
hand side of the system (25). Set f = ( f1, f2, f3)T, g(x, y, z) = r × f/(xyz), where r = (x, y, x)T .
Then g · f = 0, let g = (g1, g2, g3), where

g1 =
f3(x, z)

xz
−

f2(x, y)
xy

, g2 =
f1(x, y)

xy
−

f3(y, z)
yz

, g3 =
f2(y, z)

yz
−

f1(x, z)
xz

.

Then

Curlg =
(∂g3

∂y
−
∂g2

∂z
,

∂g1

∂z
−
∂g3

∂x
,

∂g2

∂x
−
∂g1

∂y

)
.

By simple calculations, we have

f1(x, y)
xy

=
1

xy
+

a
x

+
γ(1 − x − y)

(1 + ρ)xy
− (τvY∗ + τeC∗)

δ
By

1 + ρ

1 + ρ(x + y)
−

1
y
,

f1(x, z)
xz

=
1
xz

+
a[1 − x − (1 + ρ)z]

xz
+
γ

x
− (τvY∗ + τeC∗)

δ
Bz

1
1 − ρz

−
1
z
,

f2(y, z)
yz

= (τvY∗ + τeC∗)
δ
B

1 − y − (1 + ρ)z
yz(1 − ρ)z

−
1 + a + ε

z
,

f2(x, y)
xy

= (τvY∗ + τeC∗)
δ

By
1 + ρ

1 + ρ(x + y)
−

1 + a + ε
x

,

f3(y, z)
yz

=
ε
z
−

1 + γ + ρ

y
,

f3(x, z)
xz

=
ε[1 − x − (1 + ρ)z]

xz
−

1 + γ + ρ

x
.

Now, since x + y + (1 + ρ)z = 1, it is clear that −[1 − (1 + ρ)z] = −(x + y) < 0, so that

∂g3

∂y
−
∂g2

∂z
= −

ε

z2 − (τvY∗ + τeC∗)
δ
B

1 − (1 + ρ)z
y2z(1 − ρz)

< 0.

Further, we have

∂g1

∂z
−
∂g3

∂x
= −

ε(1 − x)
xz2 −

1
x2z
−

a[1 − (1 + ρ)z]
x2z

−
γ

x2 ,

∂g2

∂x
−
∂g1

∂y
= −

1
x2y
−

a
x2 −

γ(1 − y)
(1 + ρ)x2y

− (τvY∗ + τeC∗)
δ

By2

1 + ρ

1 + ρ(x + y)
.

Obviously, the right hand sides in the two equations above are negative. Taking the unit
normal vector of Ω3

n =
(1, 1, 1 + ρ)T√
ρ2 + 2ρ + 3

,

we obtain (Curlg) ·n < 0. By the Poincaré-Bendixson theorem, we know that the system (24)
has no periodic solution. Thus, the equilibrium y∗ is GAS in Ω2. �

Finally, the combination of Theorem 3.6, Theorem 3.9 and Theorem 3.10 establishes the
GAS of Z∗ as stated in the corollary below.

Corollary 3.11. The positive endemic equilibrium Z∗ of model (10) is globally asymptotically stable
when R0 > 1.
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3.2. Analysis of the full model (q , 0)

3.2.1. Existence and uniqueness of the equilibrium point

When q , 0, one can easily establish that the components of the positive equilibrium Z =

(X,Y,S,E, I,C) of the system (7) satisfy Eqs.(11a), where X,E, I,C , and S replace X∗,E∗, I∗,C∗

and S∗ respectively. Y is the solution of the equation

qA + βv

(A
d
− Y

) Y

1 + αY
+ βe

(A
d
− Y

) C

C + κ
− dY = 0, (27)

which takes the form

Q(Y, q) = a4Y
3

+ a5Y
2

+ a6Y + a7 = 0, (28)

where,

a4 = −
βvφ2

ξ
−
βeαφ2

ξ
−

dαφ2

ξ
; a5 =

qAαφ2

ξ
− κβv − dακ +

βvAφ2

dξ
+
βeAαφ2

dξ
−
βeφ2

ξ
−

dφ2

ξ
,

a6 = κqAα +
qAφ2

ξ
+
κβvA

d
− dκ +

βeAφ2

dξ
; a7 = κqA.

And N is the positive solution of the quadratic equation

H(N) = α1N
2

+
(
α3Y − α1

B
δ

)
N − α2Y = 0. (29)

Notice that an endemic equilibrium (i. e. a positive constant solution) Z for system (7) is
obtained by solving for Y equation (28), then solves for N equation (29) and finally recover
the remaining components of Z by replacing the obtained Y and N into Eqs.(11a).

We claim the following result.

Theorem 3.12. When q > 0, system (7) has a unique positive solution Z. Moreover, the asymp-
tomatic components of Z and Z∗ satisfy the inequality Y > Y∗, where Y is a positive solution of (28)
and Y∗ is the unique positive solution of (13) .

Proof. It is straightforward that, if Y is a positive root for (28), then since α1 > 0 and α2 > 0,
equation (29) has a unique positive solution. Therefore, it is enough to solve only equation
(28) for positive Y.

Notice that a7 is positive and a4 is negative. Thus, according to the Descartes’ rule of signs,
the number of positive real roots of the polynomial (28) depends on the signs of a5 and a6 as
depicted in Table 2 below.

Table 2. Total number of possible real roots of (28)
Case a4 a5 a6 a7 Number of sign changes Number of positive real roots

- + + + 1 1
(i) - - - + 1 1

- - + + 1 1
(ii) - + - + 3 1 or 3

Now, if the signs of a5 and a6 follow case (i) of Table 2, then there exists exactly one positive
solution Y of (28). If rather case (ii) holds, that is a5 > 0 and a6 < 0, the existence of at least
one positive solution Y is ensured. The uniqueness of Y in this case (ii) will follow later
by the proof (in Corollary (3.15)) of the global asymptotic stability of endemic equilibrium
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Z, which normally rules out the possibility of multiple equilibria. It remains to prove that
Y > Y∗.

To achieve that, observe that the polynomial Q(Y, q) can be rewritten as the explicit
function q in the form:

Q(Y, q) = YP(Y) + q
{

Aαφ2

ξ
Y

2
+

(
kAα +

Aφ2

ξ

)
Y + kA

}
. (30)

Next for q > 0,Y∗ > 0, and because P(Y∗) = 0 and α4 < 0, we have:

Q(Y∗, q) = q
{

Aαφ2

ξ
(Y∗)2 +

(
kAα +

Aφ2

ξ

)
Y∗ + kA

}
> 0, and lim

Y→+∞
Q(Y, q) = −∞.

Therefore, it follows by the intermediate value theorem that the unique positive solution Y
for equation (28) lies in (Y∗,+∞). That is Y > Y∗. �

Remark 3.13. The last statement of Theorem 3.12 established that, when the avian influenza without
immigration of infected poultry (q = 0) has a unique endemic equilibrium Z∗, then the importation
of infected poultry (q > 0) introduces no new endemic equilibrium but serves to shift the existing
(unique) endemic equilibrium to a higher disease endemic level. In order works, during avian influenza
epidemic outbreaks, the recruitment of infected poultry in the farms increases the endemic level of
avian influenza in the poultry population.

3.2.2. Local and global stability analysis of the unique endemic equilibrium point

Theorem 3.14. If q , 0, the positive equilibrium point Z of system (7) is locally asymptotically
stable.

Proof. The Jacobian matrix of the vector field described by (7) at the EE is

J = [Ji j]1≤i, j≤6 =



−P − d −Q 0 0 0 −R
P Q − d 0 0 0 R

0 −τv
S
N
−τv

Y
N
− τe

C
N
− δ a γ −τe

S
N

0 τv
S
N

τv
Y
N

+ τe
C
N

−(a + δ + ε) 0 τe
S
N

0 0 0 ε −(γ + ρ + δ) 0
0 φ2 0 0 0 −ξ


,

(31)
where Ji j is the non-vanishing (i, j) entry of J and

P = βv
Y

1 + αY
+ βe

C

C + κ
, Q = βv

X

(1 + αY)2
, R = κβe

X

(κ + C)2
.

Let

c1 = −(J33 + J44 + J55),
c2 = (J33J55 + J33J44 + J44J55 − J34J43),
c3 = (J34J43J55 + J43J54J35 − J33J44J55),
c1 = −(J11 + J22 + J66),
c2 = (J11J66 + J22J66 + J11J22 + J26J62 − J12J21),
c3 = (−J11J26J62 + J12J21J66 − J11J22J66 − J21J16J62).
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Then the characteristic equation of J|EE is given by

(λ3 + c1λ
2 + c2λ + c3)(λ3 + c1λ

2 + c2λ + c3) = 0. (32)

We show that

c1 > 0 , c2 > 0 , c3 > 0 , c1 > 0 , c2 > 0 , c3 > 0 , c1c2 − c3 > 0 and c1c2 − c3 > 0. (33)

It is clear that J11 < 0 , J22 < 0 , J33 < 0 , J44 < 0 , J55 < 0 , J66 < 0 , J12 < 0 , J16 < 0 , J21 >
0 , J26 > 0 , J32 < 0 , J34 > 0 , J35 > 0 , J42 > 0 , J43 > 0 , J54 > 0 , J62 > 0.
It follows that

c1 > 0 , c2 > 0, c1 > 0 , c2 > 0 , c3 > 0 , c3 = J55(J34J43 − J33J44) + J43J54J35 > 0.

Meanwhile, we notice that

c1c2 − c3 = −J2
33J55 − J2

33J44 − 2J33J44J55 + J33J34J43 − J2
44J33 − J2

44J55
+J44J34J43 − J2

55J33 − J2
55J44 − J43J54J35,

= −J2
33J55 − J2

44J55 − 2J33J44J55 − J43J54J35 + (J33 + J44)(J34J43 − J33J44) > 0,

c1c2 − c3 = −J2
11J66 − J2

11J22 − J2
22J66 − J2

22J11 − J2
66J11 − J2

66J22
+J11J12J21 − 2J11J22J66 − J22J26J62 + J22J12J21 − J26J62J66 + J16J21J62 > 0.

According to the Routh-Hurwitz criterion, all the eigenvalues of (32) have negative real
parts. Thus the endemic equilibrium Z of system (7) is locally asymptotically stable in Ω
when q , 0. �

Following the same procedure as for q = 0, we can prove that the equilibrium Z is globally
asymptotically stable even when q , 0. This result is stated below.

Corollary 3.15. When q , 0, the unique positive equilibrium Z of system (7) is unconditionally
globally asymptotically stable.

4. Numerical analysis: construction and analysis of a discrete NSFD scheme

In this section, we design a nonstandard finite difference scheme that satisfies the positivity
of the state variables involved in the system.

It is important that a numerical method preserves this property when used to solve
differential models arising in population biology because these state variables represent
sub-populations which never take negative values. To begin with, the time domain [0,T]
is partitioned through the discrete time levels tn = nh, where h > 0 is the time step-size.
To construct the NSFD scheme, we discretize system (7) based on the approximation of the
temporal derivatives by a generalized first order forward difference method as follows.

4.1. Construction of a discrete NSFD scheme

For X(t) ∈ C1, the discrete derivative is defined by

dX(t)
dt

=
X(t + h) − X(t)

φ(h)
+ O(φ(h)), as h→ 0, (34)
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where φ is a function of step-size, called "denominator" functions. X(t) → Xn and φ have
the property

φ(h) = h + O(h2). (35)

The discrete derivative for other state variables are obtained analogously whereas the non-
derivative terms are approximated locally, i.e., at the base time level. Denoting the approxi-
mations of X(nh), Y(nh), S(nh), E(nh), I(nh) and C(nh) by Xn, Yn, Sn, En, In and Cn, respectively,
where n = 0, 1, 2, ..., the NSFD scheme reads

Xn+1
− Xn = φ(h)

[
(1 − q)A − βvXn+1 f1(Yn) − βeXn+1 f2(Cn) − dXn+1

]
,

Yn+1
− Yn = φ(h)

[
qA + βvXn+1 f1(Yn) + βeXn+1 f2(Cn) − dYn+1

]
,

Sn+1
− Sn = φ(h)

[
B + aEn+1 + γIn+1

− τvg1(Yn)Sn+1
− τeg2(Cn)Sn+1

− δSn+1
]
,

En+1
− En = φ(h)

[
τvg1(Yn)Sn+1 + τeg2(Cn)Sn+1

− (a + δ + ε)En+1
]
,

In+1
− In = φ(h)

[
εEn+1

− (γ + ρ + δ)In+1
]
,

Cn+1
− Cn = φ(h)

[
φ2Yn

− ξCn+1
]
,

(36)

where the discretizations for f1(Yn), f2(Cn), g1(Yn) and g2(Cn) are given by

f1(Yn) =
Yn

1 + αYn , f2(Cn) =
Cn

Cn + κ
, g1(Yn) =

Yn

Sn + En + In , g2(Cn) =
Cn

Sn + En + In . (37)

In work we choose once for good the function φ as follows:

φ(h) =
1 − e−(a + δ + ε + γ + ρ + d)h

a + δ + ε + γ + ρ + d
. (38)

Let

De = (1 + φδ)(1 + η1φ)(1 + η2φ)
+φ{τvg1(Yn) + τeg2(Cn)}{(1 + η1φ)(1 + η2φ) − φa(1 + η2φ) − φ2γε}.

Simplifying (36), we obtain

Yn+1 =
qAφ + Yn + φ{βv f1(Yn) + βe f2(Cn)}Xn+1

1 + dφ
,

=
qAφ(1 + dφ) + Aφ2

{βv f1(Yn) + βe f2(Cn)}
(1 + dφ)[1 + φ{βv f1(Yn) + βe f2(Cn) + d}]

+
[1 + φ{βv f1(Yn) + βe f2(Cn) + d}]Yn + φ{βv f1(Yn) + βe f2(Cn)}Xn

(1 + dφ)[1 + φ{βv f1(Yn) + βe f2(Cn) + d}]
,

Xn+1 =
(1 − q)Aφ + Xn

1 + φ{βv f1(Yn) + βe f2(Cn) + d}
,
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Sn+1 =
Sn + φ{B + aEn+1 + γIn+1

}

1 + φ{τvg1(Yn) + τeg2(Cn) + δ}
,

=
Bφ(1 + η1φ)(1 + η2φ)

De
+

(1 + η1φ)(1 + η2φ)Sn

De

+
φ[a(1 + η2φ) + γεφ]En

De
+
φγ(1 + η1φ)In

De
,

En+1 =
En + φ{τvg1(Yn) + τeg2(Cn)}Sn+1

1 + η1φ
,

=
Bφ2
{τvg1(Yn) + τeg2(Cn)}(1 + η2φ)

De

+
φ{τvg1(Yn) + τeg2(Cn)}(1 + η2φ)Sn

De

+
φ2
{τvg1(Yn) + τeg2(Cn)}[(1 + η2φ) + γεφ]En

(1 + η1φ)De

+
γφ2
{τvg1(Yn) + τeg2(Cn)}In

De
+

En

(1 + η1φ)
,

In+1 =
εφEn+1 + In

1 + η2φ
,

=
Bεφ3

{τvg1(Yn) + τeg2(Cn)}
De

+
εφ2
{τvg1(Yn) + τeg2(Cn)}Sn

De

+
εφ3
{τvg1(Yn) + τeg2(Cn)}[(1 + η2φ) + γεφ]En

(1 + η2φ)(1 + η1φ)De

+
εφ3γ{τvg1(Yn) + τeg2(Cn)}In

(1 + η2φ)De

+
εφEn

(1 + η2φ)(1 + η1φ)
+

In

1 + η2φ
,

Cn+1 =
φ2φYn + Cn

1 + ξφ
,

where, η1 = a + δ + ε and η2 = γ + ρ + δ.
The positivity of the solutions of the scheme (36) follows readily by its construction.

It remains to prove the positive invariance of Ω. Firstly adding the first and the second
equations in (36), one has Mn+1(1 + dφ) = Aφ + Mn. Therefore, Mn+1

≤ A/d whenever
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Mn
≤ A/d. Secondly, adding the third, fourth and fifth equations in (36) we have

Nn+1(1 + δφ) = Bφ + Nn
− ρφIn+1

≤ Bφ + Nn.

Therefore, Nn+1
≤ B/δ whenever Nn

≤ B/δ.

4.2. Analysis of the discrete NSFD scheme (36)

In the following sub-section we examine the stability properties of system (36) by proving
that: (i) the continuous and the discrete models have the same equilibrium points, and (ii)
both models possess similar qualitative features near these equilibrium points.

4.2.1. The fixed points of the numerical scheme

Theorem 4.1. The discrete scheme (36) preserves the equilibrium points of the continuous model (7).
That is, on the one hand, the only fixed points of the scheme (36) are either the endemic equilibrium
point of the continuous model (7) when q > 0 or its disease-free and endemic equilibria when q = 0.
On the other hand, the fixed points have the same stability properties are those of the equilibrium
points of the continuous model (7).

Proof. Details of this theorem are omitted, because they lead us to existence of equilibria
for the continuous model. �

4.2.2. Stability analysis of the fixed points

Theorem 4.2. The disease-free fixed point of the NSFD scheme (36) for the sub-model without
imported infected poultry (q = 0) is LAS whenever R0 ≤ 1.

Proof. Note that the Jury criterion is used to study the local stability of the fixed points. The
Jacobian matrix of the NSFD scheme is:

J∗ =



J∗11 J∗12 0 0 0 J∗16
J∗21 J∗22 0 0 0 J∗26
0 J∗32 J∗33 J∗34 J∗35 J∗36
0 J∗42 J∗43 J∗44 J∗45 J∗46
0 J∗52 J∗53 J∗54 J∗55 J∗56
0 J∗62 0 0 0 J∗66


,

where the non vanishing entry of J are:

J∗11 =
∂F1(Xn,Yn,Cn)

∂Xn =
1

1 + φ
(
βv

Yn

1 + αYn + βe
Cn

Cn + κ
+ d

) ,
J∗12 =

∂F1(Xn,Yn,Cn)
∂Yn = −

φβv[(1 − q)Aφ + Xn]

(1 + αYn)2
(
1 + φ{βv

Yn

1 + αYn + βe
Cn

Cn + κ
+ d}

)2 ,

J∗16 =
∂F1(Xn,Yn,Cn)

∂Cn = −
φβeκ[(1 − q)Aφ + Xn]

(Cn + κ)2
(
1 + φ{βv

Yn

1 + αYn + βe
Cn

Cn + κ
+ d}

)2 ,
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J∗21 =
∂F2(Xn,Yn,Cn)

∂Xn =

φ
(
βv

Yn

1 + αYn + βe
Cn

Cn + κ

)
(1 + dφ)

(
1 + φ

(
βv

Yn

1 + αYn + βe
Cn

Cn + κ
+ d

)) ,
J∗22 =

∂F2(Xn,Yn,Cn)
∂Yn =

φβv[(1 − q)Aφ + Xn]

(1 + dφ)(1 + αYn)2
(
1 + φ{βv

Yn

1 + αYn + βe
Cn

Cn + κ
+ d}

)
−

φ2βv[(1 − q)Aφ + Xn]
(
βv

Yn

1 + αYn + βe
Cn

Cn + κ

)
(1 + dφ)(1 + αYn)2

(
1 + φ{βv

Yn

1 + αYn + βe
Cn

Cn + κ
+ d}

)2 +
1

1 + dφ
,

J∗26 =
∂F2(Xn,Yn,Cn)

∂Cn =
φβeκ[(1 − q)Aφ + Xn]

(1 + dφ)(κ + Cn)2
(
1 + φ{βv

Yn

1 + αYn + βe
Cn

Cn + κ
+ d}

)
−

φ2βeκ(1 − q)Aφ + Xn]
(
βv

Yn

1 + αYn + βe
Cn

Cn + κ

)
(1 + dφ)(Cn + κ)2

(
1 + φ{βv

Yn

1 + αYn + βe
Cn

Cn + κ
+ d}

)2 ,

J∗62 =
∂F6(Xn,Yn,Cn)

∂Yn =
φ2φ

1 + ξφ
,

J∗66 =
∂F6(Xn,Yn,Cn)

∂Cn =
1

1 + ξφ
,

J∗33 =
∂F3(Xn,Yn,Cn)

∂Sn =
O1

D2
e
,

J∗34 =
∂F3(Xn,Yn,Cn)

∂En =
O2

D2
e
,

J∗35 =
∂F3(Xn,Yn,Cn)

∂In =
O3

D2
e
,

J∗43 =
∂F4(Xn,Yn,Cn)

∂Sn =
O4

1 + η1φ
,

J∗44 =
∂F4(Xn,Yn,Cn)

∂En =
1

1 + η1φ
+

O5

1 + η1φ
,

J∗45 =
∂F4(Xn,Yn,Cn)

∂In =
O6

1 + η1φ
,

J∗53 =
∂F5(Xn,Yn,Cn)

∂Sn =
εφ ×O4

(1 + η1φ)(1 + η2φ)
,

J∗54 =
∂F5(Xn,Yn,Cn)

∂En =
εφ ×O5

(1 + η1φ)(1 + η2φ)
+

εφ

(1 + η1φ)(1 + η2φ)
,

J∗55 =
∂F5(Xn,Yn,Cn)

∂In =
εφ ×O6

(1 + η1φ)(1 + η2φ)
+

1
1 + η2φ

,
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O1 = (1 + η1φ)(1 + η2φ)De

+
(
τv

Yn

(Sn + En + In)2 + τe
Cn

(Sn + En + In)2

)(
(1 + η1φ)(1 + η2φ) − φa(1 + η2φ) − φ2γε

)
Nu,

O2 = φ[(1 + η2φ) + γεφ]De

+
(
τv

Yn

(Sn + En + In)2 + τe
Cn

(Sn + En + In)2

)(
(1 + η1φ)(1 + η2φ) − φa(1 + η2φ) − φ2γε

)
Nu,

O3 = φγ(1 + η1φ)De

+
(
τv

Yn

(Sn + En + In)2 + τe
Cn

(Sn + En + In)2

)(
(1 + η1φ)(1 + η2φ) − φa(1 + η2φ) − φ2γε

)
Nu,

O4 = −φ
(
τv

Yn

(Sn + En + In)2 + τe
Cn

(Sn + En + In)2

)
×

Nu

De

+J33 × φ
(
τv

Yn

(Sn + En + In)
+ τe

Cn

(Sn + En + In)

)
,

O5 = −φ
(
τv

Yn

(Sn + En + In)2 + τe
Cn

(Sn + En + In)2

)
×

Nu

De

+J34 × φ
(
τv

Yn

(Sn + En + In)
+ τe

Cn

(Sn + En + In)

)
,

O6 = −φ
(
τv

Yn

(Sn + En + In)2 + τe
Cn

(Sn + En + In)2

)
×

Nu

De

+J35 × φ
(
τv

Yn

(Sn + En + In)
+ τe

Cn

(Sn + En + In)

)
,

Nu = Bφ(1 + η1φ)(1 + η2φ) + (1 + η1φ)(1 + η2φ)Sn + φ[(1 + η2φ) + γεφ]En + φγ(1 + η1φ)In.

Firstly, we show the local stability of disease-free fixed point Ẑ0. Substituting the disease-
free fixed point Ẑ0 into the Jacobian matrix, we find that the eigenvalues are

λ1 =
1

1 + dφ
, λ3 =

1
1 + φδ

, λ4 =
1

1 + η1φ
, λ5 =

1
1 + η2φ

,

and the others satisfies

λ2
− b1λ + b2 = 0, (39)

where

b1 =
1

1 + ξφ
+

d + φβvA
d(1 + dφ)

, b2 =
d + φβvA

d(1 + ξφ)(1 + dφ)
−

φ2βeAφ2

dκ(1 + ξφ)(1 + dφ)
.

We have

1 + b1 + b2 =
dξφ2(1 − R0)

(1 + ξφ)(1 + dφ)
, (40a)

1 − b1 + b2 = 1 +
dκ(1 + dφ) + 2κ(d + φβvA) + 2κξφ2βvA + dκξφ(1 − φR0)

dκ(1 + dφ)(1 + ξφ)
, (40b)
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1 − b2 =

d2κφ(1 − R0)(1 + ξφ) + dκξφ(1 + R0dφ) +
βeAφ2φ

ξ
(1 + ξφ)

dκ(1 + dφ)(1 + ξφ)
. (40c)

Clearly, the expressions in (40a), (40b) and (40c) are positive if R0 ≤ 1. The LAS of the
disease-free fixed point follows from Jury criterion for (39) given by:

1 − b1 + b2 > 0, 1 + b1 + b2 > 0, 1 − b2 > 0.

�

As for the local asymptotic stability of endemic fixed point, the characteristic equation
associated with the above matrix J evaluated at the endemic fixed point is

(λ3 + b3λ
2 + b4λ + b5)(λ3 + b6λ

2 + b7λ + b8) = 0, (41)

where,

b3 = −(J11 + J22 + J66) =
J1

(1 + ξφ)(1 + dφ)(κ + Ĉ)2(1 + αŶ)2[1 + φ(P + d)]3
,

b4 = J11J22 + J11J66 + J22J66 − J26J62 − J12J21,

=
J2

(1 + ξφ)(1 + dφ)(κ + Ĉ)2(1 + αŶ)2[1 + φ(P + d)]3
,

b5 = J11J26J62 + J12J21J66 − J11J22J66 + J16J21J62,

=
J3

(1 + ξφ)(1 + dφ)(κ + Ĉ)2(1 + αŶ)2[1 + φ(P + d)]3
,

b6 = −(J33 + J44 + J55) =
J4

D6
e (1 + η1φ)2(1 + η2φ)

,

b7 = J33J44 + J33J55 + J44J55 − J45J54 − J34J43 − J35J53 =
J5

D6
e (1 + η1φ)2(1 + η2φ)

,

b8 = J33J45J54 + J34J43J55 − J33J44J55 + J35J43J54 + J35J53J44 − J33J53J45 =
J6

D6
e (1 + η1φ)2(1 + η2φ)

,

J1 = −(1 + ξφ)(1 + dφ)(κ + Ĉ)2(1 + αŶ)2[1 + φ(P + d)]2

−φβv[(1 − q)Aφ + X̂](1 + ξφ)(κ + Ĉ)2[1 + φ(P + d)]2

+φβvP[(1 − q)Aφ + X̂](1 + ξφ)(κ + Ĉ)2[1 + φ(P + d)]
−(1 + ξφ)(κ + Ĉ)2(1 + αŶ)2[1 + φ(P + d)]3

−(1 + dφ)(κ + Ĉ)2(1 + αŶ)2[1 + φ(P + d)]3,
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J2 = φβv[(1 − q)Aφ + X̂](1 + ξφ)(κ + Ĉ)2[1 + φ(P + d)]
−φ2Pβv[(1 − q)Aφ + X̂](1 + ξφ)(κ + Ĉ)2

+φβv[(1 − q)Aφ + X̂](κ + Ĉ)2[1 + φ(P + d)]2

−φ2Pβv[(1 − q)Aφ + X̂](κ + Ĉ)2[1 + φ(P + d)]
+(κ + Ĉ)2(1 + αŶ)2[1 + φ(P + d)]3

+(1 + ξφ)(κ + Ĉ)2(1 + αŶ)2[1 + φ(P + d)]2

+(1 + dφ)(κ + Ĉ)2(1 + αŶ)2[1 + φ(P + d)]2

−φ2βeκφ2[(1 − q)Aφ + X̂](1 + αŶ)2[1 + φ(P + d)]2

+φ3βeκφ2P[(1 − q)Aφ + X̂](1 + αŶ)2[1 + φ(P + d)]
+φ2βvP[(1 − q)Aφ + X̂](1 + ξφ)(κ + Ĉ)2,

J3 = −φβv[(1 − q)Aφ + X̂](κ + Ĉ)2[1 + φ(P + d)] + φ2Pβv[(1 − q)Aφ + X̂](κ + Ĉ)2

−(κ + Ĉ)2(1 + αŶ)2[1 + φ(P + d)]2 + φ2βeκφ2[(1 − q)Aφ + X̂](1 + αŶ)2[1 + φ(P + d)]
−φ3βeκφ2P[(1 − q)Aφ + X̂](1 + αŶ)2

− φ2βvP[(1 − q)Aφ + X̂](κ + Ĉ)2

−φ3βeκφ2P[(1 − q)Aφ + X̂](1 + αŶ)2,

J4 = −(1 + η1φ)3(1 + η2φ)2D5
e − (1 + η1φ)2(1 + η2φ)P1P2NuD4

e
−D6

e (1 + η1φ)(1 + η2φ) −D6
e (1 + η1φ)2 + φD5

e (1 + η1φ)(1 + η2φ)P1Nu
−φ2(1 + η1φ)[(1 + η2φ) + γεφ](1 + η2φ)P3D5

e − φ(1 + η1φ)(1 + η2φ)P1P2P3D4
e Nu

+εφ2(1 + η1φ)P1NuD5
e − φ

2γ(1 + η1φ)2D5
e P3 − (1 + η1φ)P1P2P3φD4

e Nu,

J5 = O1(1 + η1φ)(1 + η2φ)D4
e −O1φP1Nu(1 + η1φ)(1 + η2φ)D3

e
+εφ2O1O3P3D2

e (1 + η1φ) − εφ2O1P1NuD3
e (1 + η1φ) + O1D4

e (1 + η1φ)2

+εφ2O2O3P3D2
e (1 + η1φ) − εφ2O2P1D3

e Nu(1 + η1φ) + O2D4
e (1 + η1φ)2

−εφ(φP1NuDe)2D2
e + εφ3O3P1P3NuD3

e + εφ3O2P1P3NuD3
e

−εφ3O2O3P2
3D2

e − εφD6
e + O2φP1Nu(1 + η1φ)(1 + η2φ)D3

e
+εφO3O4(1 + η1φ)D4

e ,

J6 = εφO2(φP1NuDe)2
− 2εφ3O2O3P1P3NuDe − εφ3O1O2P1P3NuDe

+2εφ3O1O2O3P2
3 − φO2P1NuD3

e (1 + η1φ) + φO1P1NuD3
e (1 + η1φ)

−O1D4
e (1 + η1φ) + εφO3(φP1NuDe)2

− εφ3O1O3P1P3NuDe
+εφ2O1O3P3D2

e − εφ
2O3P1NuD3

e
+εφO3O4D4

e + εφO3O4O5D4
e − εφO1O5O6D4

e .

Theorem 4.3. IfR0 > 1, the endemic fixed point for the sub-model without imported infected poultry
is LAS if and only if the following conditions are met:

(1) : 1 + b3 + b4 + b5 > 0,
(2) : 1 − b3 + b4 − b5 > 0,
(3) : 1 + b3b5 − b4 − b2

5 > 0,
(4) : 3 + b3 − b4 − 3b5 > 0,
(5) : 1 + b6 + b7 + b8 > 0,
(6) : 1 − b6 + b7 − b8 > 0,
(7) : 1 + b6b8 − b7 − b2

8 > 0,
(8) : 3 + b6 − b7 − 3b8 > 0.

The LAS of the endemic fixed point for the full model can be shown analogously to
Theorem 4.3 and the following theorem hold true.

Theorem 4.4. The endemic fixed point for the full model is LAS if and only if the following conditions
hold:
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(a) : 1 + d3 + d4 + d5 > 0,
(b) : 1 − d3 + d4 − d5 > 0,
(c) : 1 + d3d5 − d4 − d2

5 > 0,
(d) : 3 + d3 − d4 − 3d5 > 0,
(e) : 1 + d6 + d7 + d8 > 0,
(f) : 1 − d6 + d7 − d8 > 0,
(i) : 1 + d6d8 − d7 − d2

8 > 0,
(j) : 3 + d6 − d7 − 3d8 > 0,

where the coefficients d3 to d8 have respectively the same form as b3 to b8. Moreover, they are obtained
from the characteristic polynomial of J evaluated at the endemic fixed point of full model which has
the same form as equation (41). That is:

(λ3 + d3λ
2 + d4λ + d5)(λ3 + d6λ

2 + d7λ + d8) = 0. (42)

Conditions (1)− (8) and (a)− ( j) are very difficult to established analytically, however they
can be verifed numerically.

From the results in this section, we can conclude that both models (the continuous one (7)
and the discrete one (36) have the same equilibria, and their behaviors are qualitatively simi-
lar near these equilibria. Hence, the nonstandard finite difference method (36) is elementary
stable.

We end this section by providing some numerical simulations using the non-standard
finite difference method (36) and the 4th order Runge Kutta method (RK4) encoded in
the MatLab platform. At the start, we compare both RK4 and NSFD schemes for the dis-
cretization step size h =0.05. It is observed that both the numerical schemes are respectively
convergent and converge numerically to the true steady states (Z0 and Z∗) of the continuous
model as shown in Figures 3-4 . Moreover, for h = 0.05, RK4 and NSFD exhibit positive
solutions in the basic feasible region Ω.

Critically, if we compare the schemes for the step size h = 0.1, RK4 exhibits negative solu-
tions and does not converge to both Z0 and Z∗, respectively, but NSFD preserves positivity
and gives convergence of the solutions, as shown in Figures 5-6.

The above discussion shows that the RK4 scheme does not always converge rather con-
ditionally converge and depends on the value of the step size h, and does not preserve
the convergence and positivity for a large step size (h ≥ 0.1), while Figures 3-6 illustrate
the power of an unconditionally convergent NSFD scheme to produce the converged and
positives solutions of the model for any value of the step size h.
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Figure 3. Comparison of solutions obtained by NSFD and RK4 numerical schemes for Z0 with an initial condition (X(0), Y(0),
S(0), E(0), I(0), C(0)) = (3426.56, 173.442, 2603.125, 50, 55.478, 4959.487) and step size h = 0.05. Both the schemes converge to the
true steady state of Z0 with R0 = 0.9183 < 1.
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Figure 4. Comparison of solutions obtained by NSFD and RK4 numerical schemes for Z∗ with an initial condition (X(0), Y(0),
S(0), E(0), I(0), C(0)) = (3426.56, 173.442, 2603.125, 50, 55.478, 4959.487) and step size h = 0.05. Both the schemes converge to the
true steady state of Z∗ with R0 = 1.1849 > 1.
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Figure 5. Comparison of solutions obtained by NSFD and RK4 numerical schemes for Z0 with an initial condition (X(0), Y(0),
S(0), E(0), I(0), C(0)) = (3426.56, 173.442, 2603.125, 50, 55.478, 4959.487) and step size h = 0.1, with R0 = 0.9183 < 1. The NSFD
scheme converges to the true steady state of Z0, whereas the RK4 scheme is seen to be divergent.
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Figure 6. Comparison of solutions obtained by NSFD and RK4 numerical schemes for Z∗ with an initial condition (X(0),
Y(0), S(0), E(0), I(0), C(0)) = (3426.56, 173.442, 2603.125, 50, 55.478, 4959.487) and step size h = 0.1 with R0 = 1.1849 > 1. The
comparison shows that the RK4 scheme fails to converge. However, the NSFD scheme improves the result obtained by RK4
and it is seen to be convergent dynamically to the correct endemic equilibrium Z∗.

5. Numerical illustrations: assessment of the role of environmental and spillover
transmissions

In this section, we use model (7) to further investigate the impact of some control strategies
on the spread of Avian influenza infection among poultry and human populations. Based
on the sensitivity analysis of the basic reproduction number with respect to its parameters,
we seek optimal measures to control the transmission of the disease using parameter values
in Table 3 related, which have been found in the literature.

33



Table 3. Parameters, their definitions and baseline values.
Symbols Definitions Estimate for AIV Source

q Proportion of asymptomatic imported poultry 0.01 [12]
A Numbers of imported poultry 100 ind.week−1 [12]
βv Direct contact rate in poultry host 1.71 ×10−6/( ind.week) [31]
βe Indirect contact rate in poultry host 0.002 week−1 Assumed
d Natural death rate of poultry 1/72 week−1 [9]
α Parameter of the inhibitory effort 0.001 ind−1 [31]
B Recruitment rate for humans 1.5 ind/week [12]
a Recovery rate of the latent humans 1 week−1 [31]
γ Recovery rate of the infected humans 0.9/ week [31]
ρ Disease-related death rate 0.001 week−1 [12]
τv Transmission rate of AIV from poultry to human 0.6 week−1 [12]
ε Morbidity of the latent humans 1 week−1 [12]
δ Natural death rate of humans 0.00025641 week−1 [9]
κ Half saturation rate (eID50) 106 g.m3 [12]
ξ Degradation rate of virus 35 week−1 Assumed
τe Transmission rate of AIV from environment to human ind./(g.m3.week) Assumed
φ2 Emission rate of poultry g.m3 /(ind.week) Assumed

5.0.1. Numerical illustrations of stability results.

To illustrate the stability results contained in this paper, model (7) is simulated using the
parameter values in Table 3. It is assumed that the average poultry lifespan is 72 weeks and
the average lifespan of human being is 75 years.

Figure 7 presents the time series of model (7) for different initial conditions whenφ2 = 103,
τe = 0.1 and R0 ≤ 1. From these figures, we can see that there are always susceptible
individuals all types in the population while all the infected populations and avian influenza
viruses disappear. Thus, the trajectories converge to the disease-free equilibrium. This means
that the disease disappears in the host populations as proved in Theorem 3.5.

Figure 7. Global stability of disease-free equilibrium. The parameters are: q=0 , A=100, βv=1.7143, βe=0.002, d=1/72, α=0.001,
B=1.5, a=1, γ=0.9, ρ=0.001, τv=0.6, ε=1, δ=0.00025641, κ = 106, ξ=35, τe=0.1, φ2 = 103 and R0 = 0.9183 ≤ 1.

Figure 8 plots the solutions when φ2 = 104, τe = 0.1, R0 > 1 and for various initial con-
ditions. We can observe that the infected individuals and viruses persist in the population.
This means that the trajectories converge to the endemic equilibrium point. Thus, whenever
R0 > 1, the disease persists in the population as established in Corollary 3.11.

Figure 9 depicts the solutions when φ2 = 103, τe = 0.1 and q = 0.1. From this figure, the
infected individuals and viruses remain in the population as the trajectories converge to the
endemic equilibrium point. Thus, whenever q , 0, the disease persists in the population as
established in Theorem 3.14.
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Figure 8. Global stability of endemic equilibrium. The parameters are: q=0 , A=100, βv=1.7143, βe=0.002, d=1/72, α=0.001,
B=1.5, a=1, γ=0.9, ρ=0.001, τv=0.6, ε=1, δ=0.00025641, κ = 106, ξ=35, τe=0.1, φ2 = 104 and R0 = 1.1849 > 1.

5.0.2. Impact of transmission coefficient of AIV from environment to human.

Firstly, we fixφ2 = 104,τv = 0.6 and varyτe to observe the effect of increasing the transmission
rate of AIV from environment to asymptomatic poultry and infected humans.

When we vary τe from 10% to 15% after fixing τv = 0.6, φ2 = 104, we see in Figure 10 that
the impact of transmission rate τe is a bit stronger. Thus, the low ratio of this transmission rate
stands for a control measure against AIV infection in places with high prevalent AIV. Even
in this favorable situation, the number of infected individuals remains high. This implies
that the control of τe alone is not sufficient to effectively eliminate the disease.

5.0.3. Impact of transmission coefficient of AIV from poultry to human.

Secondly, we fix φ2 = 104, τe = 0.1 and vary τv to observe the effect of increasing the trans-
mission coefficient of AIV from poultry to human on infected humans. We see from Figure
11 that, the increment of τv from 60% to 65% has an increase effect on both asymptomatic
poultry and infected humans.

5.0.4. Impact of the imported infected poultry proportion q on asymptomatic poultry and infected
humans

The effect of the parameter q on both asymptomatic poultry and infected human is shown
in Figure 12. From this figure, we conclude that increase in the proportion from 10% to 15%
causes the increase in both asymptomatic poultry and infected humans.
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Figure 9. Global stability of the endemic equilibrium whenever q , 0. The parameters are: q=0.1 , A=100, βv=1.7143, βe=0.002,
d=1/72, α=0.001, B=1.5, a=1, γ=0.9, ρ=0.001, τv=0.6, ε=1, δ=0.00025641, κ = 106, ξ=35, τe=0.1, φ2 = 103.
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Figure 10. Simulation results showing the impact of transmission rate τe. On infected humans (left panel). On asymptomatic
poultry (right panel). Both graphs are sketched with the following parameters: q=0, A=100, βv=1.7143, βe=0.002, d=1/72,
α=0.001, B=1.5, a=1, γ=0.9, ρ=0.001, τv=0.6, ε=1, δ=0.00025641, κ = 106, ξ=35, φ2 = 104.

These numerical simulations of model (7) suggest that a significant reduction of transmis-
sion rate τe can be an efficient control strategy for AIV transmission. However, combining
the reduction of the emission rate of poultry and the recruitment of infected poultry could
be a better control measure for the disease.
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Figure 11. Simulation results showing the impact of transmission rate τv: On infected humans (a); On asymptomatic poultry
(b). Both graphs are sketched with the following parameters: q=0, A=100, βv=1.7143, βe=0.002, d=1/72, α=0.001, B=1.5,a=1,
γ=0.9, ρ=0.001, ε=1, δ=0.00025641, κ = 106,ξ=35, τe=0.1, φ2 = 104.
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Figure 12. Variation of Y and I with time showing the effect of the parameter q. Both graphs are sketched with the following
parameters: A=100, βv=1.7143, βe=0.002, d=1/72, α=0.001, B=1.5, a=1, γ=0.9, ρ=0.001, τv=0.6, ε=1, δ=0.00025641, κ = 106,
ξ=35, τe=0.1, φ2 = 104.

6. Conclusion and discussion.

This paper has formulated and analyzed a new mathematical model for the dynamical
transmission of AIV which specifically incorporates the following usually neglected,yet
important features:
(i) The indirect transmission via the environment.
(ii) The recruitment of imported infected poultry and the spillover phenomenon from poultry
to human beings. A qualitative, quantitative, as well as sensitivity analysis of the model and
variables have been presented using a range of techniques and methods.

From the qualitative point of view, the ingenious construction of suitable Lyapunov func-
tions, the application of LaSalle Invariance Priniciple, the intuitive selection of Lyapunov-
stable matrices and the application of Poincaré-Bendixson theorem have been judiciously
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combined where necessary to deal with global asymptomatic stability of equilibria. The ex-
plicitly computed basic reproduction number R0 served to establish the threshold dynamic
of the model and to prove the transcritical bifurcation of the system. The calculations of
elasticity indexes were to study the sensitivity of R0 with respect to model parameters. In a
more precise manner, we have shown:

(1) If the importation of infected poultry is banned (q = 0), then the basic reproduction
numberR0 determines whether the disease will persist in the population or dies out by
proving that whenever R0 < 1, the disease-free equilibrium Z0 is globally asymptoti-
cally stable, while R0 > 1, ensures existence of a unique globally asymptotically stable
endemic equilibrium Z∗. Furthermore, from elasticity indexes of R0, it was observed
that the most effective control measure is to reduce the number of new born poultry
and the number of emission rate of virus by asymptomatic poultry.

(2) If the importation of infected poultry is permitted (q , 0), the unique endemic equi-
librium Z∗ is simply shifted to the one Z for which the asymptomatic component Y is
larger to Y∗ and is unconditionally globally asymptotically stable. This highlighted the
fact that the recruitment of infected poultry worsens the endemic level of AIV during
outbreaks.

As far as the quantitative and computational perspectives are concerned, we have con-
structed a dynamical consistent NSFD scheme, to overcome the undesirable situation for
which the classical Rung-Kutta numerical scheme exhibit negative solutions. In addition,
we have proved analytically and numericaly that the proposed NSFD scheme preserves the
boundedness of solutions, as well as the number, values and local stability of equilibria.

A reasonable extension of this paper on which we are already working, despite the
mathematical analysis complications, will be to add the convection/advection and diffusion
of viruses into air, as well as the displacement of poultry in the farms.
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