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Abstract

We develop and analyze a simple mathematical model for malaria transmission where pyrethroids treated nets

(PTNs) are used for control purposes, and in which knock-down/lethal, excito-repellent/deterrent effects are

incorporated. We explicitly describe the contact rates between mosquitoes and humans by nonlinear functions of

bed net usage and repellency rates. Using center manifold theory, we show that our model exhibits, saddle-node,

transcritical forward and backward bifurcation when the reproduction numberR0 crosses one. Our model reveals

that repellency effect plays an important role for the existence of both the endemic equilibrium points and the

occurrence of backward bifurcation and a threshold repellency rate is calculated. The epidemiological implication

of the backward bifurcation is that, reducing R0 below one alone is not enough to eliminate malaria. We establish

that, increasing either the rate of bed nets usage (i.e community protection) or their repellent effect (i.e personal

protection) or the combination of both, decreases the contact rates between humans and mosquitoes. As a result,

the disease burden metric R0 is reduced. The global asymptotic stability of equilibrium points are proven using

the geometric approach and Lyapunov-LaSalle techniques. Furthermore, we show that neglecting repellency

underestimates the basic reproduction number and hinders the control of malaria. The disease free equilibrium

is shown to be a saddle-node of co-dimension 1 when R0 = 1. We also observe that R0 is mostly influenced by

the bed net coverage rate, repellent effect of pyrethroids and the probability that mosquitoes target human hosts.

Our results confirm that PTNs usage is an efficient control strategy to mitigate the malaria ability to spread, and

suggest that the utilization of PTNs with high lethal rate, but low repellency rate is better than the use of those

with high repellency and low lethal rates.

Keywords: Malaria; Pyrethroids; Lethal effect; Excito-repellent effect; Basic reproduction number; Backward

bifurcation; Saddle-node bifurcation

1. Introduction

Malaria is an infectious disease caused by the plasmodium parasite and transmitted between humans through

bites of the female Anopheles mosquitoes, sometimes called "malaria vectors", which bite mainly between dusk

and dawn. In 2018 an estimated 228 million cases of malaria occurred worldwide and 405000 people died, mostly

1Corresponding author permanent address: Department of Mathematics and Computer Science, University of Dschang, P.O. Box 67 Dschang,
Cameroon. E-mails: berge.tsanou@up.ac.za / berge.tsanou@univ-dschang.org

Preprint submitted to Chaos Solitons & Fractals March 22, 2020

*Manuscript

http://ees.elsevier.com/chaos/viewRCResults.aspx?pdf=1&docID=25237&rev=1&fileID=261877&msid={D9221977-A13C-4E78-BB51-2A3A6CA665E1}


children in the African region [8]. The World Health Organization (WHO) estimates that every year 250 million

people become infected and nearly one million die [1].

During the past decade, several interventions have been used to reduce malaria transmission. These include

insecticide-treated nets (ITNs) and particularly PTNs, indoor residual spraying (IRS), intermittent preventive

treatment in pregnant women and infants, larval control, and other vector control interventions. ITNs have

proven to be one of the most effective intervention measures against malaria in reducing morbidity and mortality

[21, 11, 24, 40, 26, 30]. It is only in the years 1970 with the development of pyrethroids of synthesis, less toxic for

the vertebrates and environment that the use of ITNs gained more consideration [13]. The pyrethroids are today

the only insecticide authorized for the impregnation of bed nets , because of their efficiency, their repulsive effect

and their weak toxicity to humans[47, 48, 49]. Actually, they induce many effects on insects which we mention

below.

- Knock-down effect: The direct contact with the impregnated material leads to a disruption of nerve impulse

and causes a brief paralysis of the mosquito.

- Lethal effect: Depending on the duration of contact, the quantity of active material found on the bed net and

the sensitivity of mosquito, an exposition can lead to the quick death of the latter.

- Excito-repellency effect: The direct contact of the mosquito with impregnated material causes a quick escape.

- Deterrent or dissuasive effect: Contrary to the above mentioned effects, this one does not involve any physical

contact between the mosquito and bed net, rather the presence of a mosquito net in a home or in a bedroom

can cause an avoidance behavior of the mosquito, dissuaded by the smell of insecticide.

Promising tests have revealed the efficiency of pyrethroids impregnated mosquito nets to limit the contact

between human and mosquito [12, 14, 48]. Moreover, the protection offered by insecticide treated bed nets has

been documented in many studies, ([16, 25, 28, 46, 20, 27], just to mention few) relying on the following three main

mechanisms [24, 26, 30, 25],.

1- The nets create a physical barrier between the humans and mosquito vectors.

2- The insecticide used to treat the bed net repels mosquitoes (excito-repellency or deterrence, simply referred

to as repellency), thus increasing the personal protection offered by the net.

3- If a mosquito fails to be repelled, it will often rest on the bed net, and may then be killed by lethal effect by

contacting the insecticidal material found on the net.

Mathematical transmission models of infectious agents can be useful tools in understanding disease dynamics and

assessing the impact of human behavior. As for the malaria disease, this human behavior incorporation had been

taken care by considering the use of impregnated bed nets models in the following works [1, 5, 6, 35, 31, 37, 45]

(just to mention few). on the mathematical modeling for the transmission of malaria focus only on the human

behavior. Ngonghala et al. in [35] used a deterministic model for malaria spread that captures the decrease

in ITNs effectiveness due to physical and chemical decay, as well as human behavior as a function of time.
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Motivated by the well documented strong influence of behavioral factors in ITNs usage, in [6] Buonomo proposed

a mathematical approach based on the idea of information-dependent epidemic models. The work by Mohammed

and Numfor [31] studied a mathematical model for malaria-HIV co-infection transmission and control, in which

insecticide-treated nets and malaria treatment are incorporated. More recently, Nwankwo et al. in [37] developed

a mathematical model for malaria transmission that investigates the impact of temperature on the efficacy of ITNs.

The work by Wang Xiunan et al. in [45] served to investigate the impact of bed net use on malaria control. |More

precisely, they formulated a periodic vector-bias malaria model incorporating the juvenile stage of mosquitoes

and the use of ITNs. The authors in [5] constructed a malaria model which includes the enhanced attractiveness

of infectious humans to mosquitoes, as result of host manipulation by malaria parasites, and the human behavior,

represented by insecticide-treated bed-nets usage. The researchers in [1] used a simple deterministic model that

considers the transmission dynamics of malaria infection in mosquito and human populations, and investigate the

impact of bed nets usage on its control. None of the above-mentioned works have explicitly modeled, incorporated

and studied the role of excito-repellency/deterrence effect on the transmission dynamics of malaria. Moreover,

they did consider the disease contact (human-to-mosquito and mosquito-to-human) rates as linear functions of

the bed nets usage, which in reality can be strongly nonlinear functions of bed nets usage. In particular, the model

by Agusto et al. in [1] reads as follows: 

Ṡh = Λh − λh(b)Sh + γhIh − µhSh

İh = λh(b)Sh − (µh + γh + δ)Ih

Ṡv = Λv − λv(b)Sv − µv(b)Sv

İv = λv(b)Sv − µv(b)Iv.

(1.1)

In system (1.1), the human-to-mosquito and mosquito-to-human forces of infection are given by

λh(b) =
mhβ(b)Iv

Nh
, λv(b) =

mvβ(b)Ih

Nh
,

where, the average number of bites per mosquito per unit time (contact rate) β(b), the mosquito mortality rate

were described by linear decreasing functions of treated bed-net usage (b) as follows:

β(b) = βmax − b(βmax − βmin), µv(b) = µv0 + µv1b, 0 ≤ b ≤ 1,

where, the parameters βmax and βmin are the maximum and the minimum transmission rates, respectively, and

(b) is the proportion of treated bed-net usage that could reduce the contact rate to a minimum level βmin. On

the other hand, the human-to-mosquito and the mosquito-to-human contact rates are identical and modeled by

the function β(b). The natural mortality rate of mosquito is µv0, while µv1 b is an additional mortality rate due to

ITNs utilization. The quantity mh is the transmission probability per bite from infectious mosquitoes to humans

and similarly, mv is the transmission probability per bite from infectious humans to mosquitoes. The remaining

parameters for the model (1.1) are recalled in Table (1). Nh = Sh + Ih and Nv = Sv + Iv are the total human and

mosquito populations, respectively. This above-mentioned drawback in modeling the (human-to-mosquito and

mosquito-to-human) contact rates, in the framework of insecticide or pyrethroids bed nets utilization, as identical

linear functions of bed nets usage rate (b) is our main focus on this paper.
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Therefore, the main purpose of this work is to model and do an in-depth analysis of a simple mathematical

model of bed nets for malaria transmission, in which both lethal/knock-down and repellent/deterrent effects of

ITNs/PTNs are explicitly modeled and incorporated in the model. For simplicity, we will address this by extending

the model (1.1) above in a more realistic manner such that the mosquito-to-human and human-to-mosquito contact

rates are distinct nonlinear functions of bed nets usage, and the repellent effect of pyrethroids explicitly considered.

More importantly, the role of repellency on the model’s bifurcation analysis will be insightfully assessed. Since,

on the one hand, the knock-down and lethal effects of PTNs have similar consequences on the mosquitoes and,

on the other hand, the excito-repellent and deterrent effects have the same consequences on mosquitoes behavior,

we shall explicitly consider and model only two PTNs effects (repellency and lethality) on mosquitoes, and assess

their influences on the dynamics of malaria in this manuscript. Precisely, we explicitly formulate the contact rates

as nonlinear functions of bed net usage and repellency efficacy. We show that these functions are decreasing with

respect to bed net usage and repellency effect. We perform a bifurcation analysis and highlight the occurrence of

a backward bifurcation as a result of the repellency effect and/or the disease induced death rate. The consequence

of the latter being the occurrence of a bistable situation where, a stable endemic equilibrium point co-exists with a

stable disease-free equilibrium point whenever the reproduction number R0 is less than unity. The type of disease

free equilibrium when R0 = 1 is also characterized. Using the geometric approach, we also establish the global

asymptotic stability of the endemic equilibrium for R0 > 1. All these investigations are gathered in the remaining

outline of the paper as follows. Section 2 deals with the details of model formulation. Asymptotic and bifurcation

analyses of the model are presented in Section 3. Sensitivity analysis and simulations are performed in Section 4.

Finally, Section 5 discusses and concludes the manuscript.

2. Model formulation and basic properties

2.1. Model formulation

We formulate a simple mathematical bed net model for the transmission dynamics of malaria in which,

lethal/knock-down, and excito-repellency/deterrence effects are explicitly incorporated in disease contact rates as

nonlinear functions. The human population is described by two classes such that at time t ≥ 0, there are Sh(t)

susceptibles and Ih(t) infectious. Similarly, the mosquito population has two components such that at time t ≥ 0,

there are Sv(t) susceptibles and Iv(t) infectious mosquitoes. Thus, the total human and mosquito populations at

time t, are Nh(t) = Sh(t) + Ih(t) and Nv(t) = Sv(t) + Iv(t), respectively. In our model formulation, it is assumed

that malaria is neither transmitted vertically nor horizontally. That is, all new human and mosquito births are

susceptible and there is neither direct human-to-human nor mosquito-to-mosquito transmissions.

We emphasize that, though the forces of infection in model (1.1) originated from [1], as well as in many recent

bed net models [5, 6, 31, 37, 45] have considered the lethal/knock-down effect of PTNs, they failed to explicitly

incorporate the relevant excito-repellency/deterrence effect of pyrethroid impregnated nets. In addition to that,

these recent works modeled the contact rates in the form of linear functions of bed net usage. It is worth mentioning

that excito-repellency is important as it provides protection by diverting mosquitoes to non-human hosts, specially

when all individuals in the population are PTN-users [3, 24, 25, 26, 30]. This is going to be carefully taken care

4



of in the modeling setting in this manuscript. Thus, we explicitly model the forces of infection for susceptible

humans and vectors in the form of distinct nonlinear functions of bed net usage, and for the first time, as nonlinear

functions of repellency effect.

2.1.1. Modeling the human-to-mosquito force of infection for susceptible humans

In this section, as well as in the next, as our main focus is the role played by the repellent and lethal effects of

PTNs, we model the human-to-mosquito force of infection by explicitly quantifying the probability that a mosquito

initiates bites on humans.

Since the female Anopheles mosquitoes answerable of the transmission of malaria bite mainly between

dusk and dawn, we assume for simplicity that, the mosquito population under consideration is constituted

of mosquitoes who target human beings when they are sleeping indoors (endophilic mosquitoes). Actually, if

a mosquito enters a house where someone sleeps under a bed net, then it is repelled by the insecticide (or me-

chanically blocked by the net) with a probability r (note that the repellency parameter includes both, repellency

caused by volatiles of the insecticide as well as repellency due to the sheer physical feature of the net); or if it

is not repelled, it takes its bites and escapes with probability (1 − µb); or it is killed by the insecticide on the net

thanks to the lethal effect of the insecticide with probability µb. We assume that the killing probability µb depends

as in [1], on the proportion b of PTNs usage in the linear simplistic form µb = µb(b) = µv1b, 0 ≤ b ≤ 1, where µv1 is

the maximum PTN-induced death rate of mosquitoes. Notice that, when b = 1, the whole human population is

protected by PTNs, while b = 0 models no PTN utilization.

We assume that, a mosquito targets human hosts with probability θ and non-human hosts with probability

(1 − θ). If it bites indoors (at a time when people are sleeping), it can target an PTN-user during its first biting

attempt, during its second attempt (having been repelled once), during its third attempt (having been repelled

twice), etc. If a mosquito is repelled by a bed net, it leaves the house and continues to search for alternate hosts

to bite. Thanks to lethal effect, if each additional search of a host brings with it the risk µb of dying, then the

probability of having been repelled n times is [θrb(1 − µb)]n. Here, the product rb is referred to as "the efficacy rate"

of PTNs usage. An unprotected human is defined here as a person who use a completely inefficient bed net. We

model the probability of biting a human host after a single attempt by a decreasing function of the efficacy rate of

PTNs usage in the form θ(1 − rb). Hence, the following observations hold.

(i) When b = 1, the whole human population is protected by PTNs and this probability of biting a human host

after a single attempt becomes the probability θ(1 − r) of targeting a human host with probability θ when it is not

repelled by the insecticide with probability (1 − r).

(ii) When b = 0 or r = 0, that is no bed net is used, or if any is used, it completely fails to repel the mosquitoes.

Thus, θ(1 − rb) reduces to the probability θ that the mosquito targets a human host and bites him after a single

attempt.

(iii) When r = 1, this probability θ(1 − rb) of biting a human host after a single attempt becomes the probability

θ(1 − b) of targeting an unprotected human host.
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Thus, proceeding similarly as in [3], the probability that a mosquito finally bites a human host is

Ph(r, b) = θ(1 − rb)
+∞∑
n=0

[θrb(1 − µb)]n = θ(1 − rb)
+∞∑
n=0

[θrb(1 − µv1b)]n =
θ(1 − rb)

1 − θrb(1 − µv1b)
.

As expected, one can notice that the probability that a mosquito initiates a bite on a human host actually

depends on both the repellent probability r, and the treated bed-net usage rate b. The latter dependence also

accounts for the impact of human behavior on PTNs effectiveness. Moreover, note that Ph(r, b) = 0 whenever

r = b = 1. This stands for personal protection where mosquito repellency and lethality assume 100% maximal

level and represents the ideal situation for which PTNs either divert mosquitoes to non-human hosts or kill them.

The parameter mh denotes the transmission probability per bite from infectious mosquitoes to susceptible

humans (actually, mh is the product of the number of mosquitoes per person and the biting rate of mosquitoes on

humans). A similar approach as in [1, 4, 33, 35, 42] yields the average number of bites per human per unit time in

the form
Ph(r, b)Nv

Nh
.

Thus, the human-to-mosquito force of infection for susceptible humans is finally quantified by

λh(r, b) =
mhPh(r, b)Iv

Nh
.

2.1.2. Modeling the force of infection for susceptible mosquitoes

As mentioned above, PTNs also provide protection by diverting mosquitoes to non-human hosts (animals)

[10, 11, 24, 26]. Thus, proceeding similarly as above, it is straightforward to compute the probability that an

endophilic mosquito initiates a bite on a non-human host as follows:

Pa(r, b) = (1 − θ)
+∞∑
n=0

[θrb(1 − µv1b)]n =
(1 − θ)

1 − θrb(1 − µv1b)
.

Likewise, the probability that a mosquito initiates a bite indoors on a non-human host or a human host is

Pv(r, b) = Pa(r, b) + Ph(r, b) =
(1 − θ) + θ(1 − rb)
1 − θrb(1 − µv1b)

=
1 − rbθ

1 − θrb(1 − µv1b)
.

Note that mv denotes the transmission probability per bite from infectious humans to susceptible mosquitoes. We

assume that this probability is the same as the transmission probability per bite from infectious non-humans to

susceptible mosquitoes. We also suppose that the proportion of infectious humans in human host population or

in non-human host population is the same. Thus, the force of infection for susceptible vectors is modeled by

λv(r, b) =
mvPv(r, b)Ih

Nh
.

2.1.3. The model equations

Let’s recall that, due to the treatment of bed-nets by pyrethroids, the female mosquitoes who quest for blood

meals could die when they come into contact with a treated bed nets. For simplicity, we follow the approach in

[1] and model the death rate of the mosquitoes as a linear function of the bed net efficacy in the form

µv(b) = µv0 + µv1b,
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where, µv0 is the natural death rate and, µv1b is the death rate due to the insecticides on the treated bed nets.

However, a more complex (nonlinear) form of the function µv(b) could be used and explicitly calculated taking

into account the role of bed nets in repelling and/or killing mosquitoes. Altogether, the proposed model that

governs the dynamics of malaria transmission in this paper reads as follows:

Ṡh = Λh − λh(r, b)Sh + γhIh − µhSh

İh = λh(r, b)Sh − (µh + γh + δ)Ih

Ṡv = Λv − λv(r, b)Sv − µv(b)Sv

İv = λv(r, b)Sv − µv(b)Iv.

(2.1)

where,

λh(r, b) =
mhPh(r, b)Iv

Nh
, λv(r, b) =

mvPv(r, b)Ih

Nh
,

Ph(r, b) =
θ(1 − rb)

1 − θrb(1 − µv1b)
, Pv(r, b) =

1 − rbθ
1 − θrb(1 − µv1b)

,

µv(b) = µv0 + µv1b, 0 ≤ b ≤ 1, 0 ≤ r ≤ 1.

Parameters Descriptions Baseline values References

Λh Immigration rate for humans 103/(50 × 365) [9]

Λv Immigration rate for mosquitoes 104/21 [41]

b Proportion of PTNs usage variable

r Repellent probability by the insecticide variable

θ Probability that a mosquito targets human hosts 0.71(assumed)

µv1 Maximum mosquito PTNs-induced death rate 1/4 [29, 35]

µh Natural mortality rate in humans 1/(50 × 365) [35]

µv0 Natural mortality rate in mosquitoes 1/14 [15, 35]

δ Disease-induced death rate in humans 1/100000 [9]

mv Human-to-mosquito probability of disease transmission 0.4 [35]

mh Mosquito-to-human probability of disease transmission 0.195 [15, 35]

γh Recovery rate of infectious humans 1/4 [18]

Table 1: Description and baseline values for parameters of system (2.1)

2.2. Basic properties

2.2.1. Impact of PTNs utilization on the contact rate between mosquitoes and humans

First of all, we should prove that the utilization of bed nets and the explicit formulations of the contact rates

taking into account the repellency and killing/knock-down effects are favorable to the control of malaria. In this

regard, the following result serves the purpose.
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Theorem 2.1. PTNs usage reduces the contact between mosquitoes and humans. More specifically, the probability that a

mosquito finally bites human beings Ph(r, b) (resp. that a mosquito initiates bites on non-humans or humans Pv(r, b) ) is a

decreasing function of both the repellent probability r and the efficacy of bed nets utilization rate b.

Proof : It suffices to prove that
∂Ph(r, b)
∂b

,
∂Ph(r, b)
∂r

,
∂Pv(r, b)
∂b

,
∂Pv(r, b)
∂r

≤ 0.

Ph(r, b) =
θ(1 − rb)

1 − θrb(1 − µv1b)
.

If r = 0, then Ph(r, b) = Θ. Thus, no mosquito is repelled and the bed nets are useless.

If r > 0, then
∂Ph(r, b)
∂b

=
−rθ[1 − rθb(1 − µv1b)] − θ(1 − rb)[−rθ + 2rθµv1b]

[1 − rθb(1 − µv1b)]2 ,

=
(r2θ2µv1)b2

− (2rθ2µv1)b − rθ(1 − θ)
[1 − rθb(1 − µv1b)]2 .

We focus on the sign of the quadratic polynomial

P(b) = (r2θ2µv1)b2
− (2rθ2µv1)b − rθ(1 − θ). (2.2)

Since rθ(1 − θ) ≥ 0, Eq. (2.2) has two nonzero real roots b1 < 0 and b2 > 0, where,

b2 =
1
r

1 +

√
θ2µ2

v1 + r3θµv1(1 − θ)

θµv1

 .
Clearly b2 > 1 and P(b) ≤ 0 whenever b ∈ [b1, b2]. Consequently, for all b ∈ [0, 1], one always has

∂Ph(r, b)
∂b

≤ 0.

Direct computations show that
∂Ph(r, b)
∂r

=
−θb

(
1 − θ + θµv1b

)
[1 − rθb(1 − µv1b)]2 ≤ 0,

∂Pv(r, b)
∂b

=
rθµv1b (rθb − 2)

[1 − rθb(1 − µv1b)]2 ≤ 0,

∂Pv(r, b)
∂r

=
−θµv1b2

[1 − rθb(1 − µv1b)]2 ≤ 0.

This achieves the proof.

2.2.2. Positivity and boundedness of solutions

The system of equations in (2.1) monitors human and mosquito populations, all parameters in the model are

non-negative. It can be readily shown that, given non-negative initial conditions, the solutions of (2.1) remain

non-negative. In order to analyze the system, we split it into two parts, namely the human sub-population model

and mosquito sub-populations model, and consider the biologically feasible region

Ω =

{
(Sh(t), Ih(t),Sv(t), Iv(t)) ∈ R4

+ : 0 ≤ Nh(t) ≤
Λh

µh
, 0 ≤ Nv(t) ≤

Λv

µv(b)

}
.
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On the other hand, once can easily establish that is Ω positively invariance of (i.e., solutions initiated in Ω remain

in Ω for all t ≥ 0), attracting and absorbing.

In fact, we have the relations
dNh(t)

dt
= Λh − µhNh(t) − δIh(t),

dNv(t)
dt

= Λv − µv(b)Nv(t),

from which it follows that
dNh(t)

dt
≤ Λh − µhNh(t),

dNv(t)
dt

= Λv − µv(b)Nv(t).

A standard comparison theorem and a classical integration show respectively that

Nh(t) ≤
(
Nh(0) −

Λh

µh

)
e−µht +

Λh

µh
,

Nv(t) =

(
Nv(0) −

Λv

µv(b)

)
e−µv(b)t +

Λv

µv(b)
.

Now, if Nh(0) ≤
Λh

µh
and Nv(0) ≤

Λv

µv(b)
; then Nh(t) ≤

Λh

µh
and Nv(t) ≤

Λv

µv(b)
.

Hence, Ω is positively invariant and its attractiveness, absorbing properties follow readily. Therefore it is sufficient

to consider the dynamics of the flow generated by (2.1) in Ω. This makes the model epidemiologically and

mathematically well-posed [22] since we have proven the following result.

Theorem 2.2. The subset Ω of R4
+ is a positively invariant, attracting and absorbing compact set for model (2.1). Hence,

the model (2.1) is a dynamical system in Ω.

3. Asymptotic and bifurcation analysis

3.1. Stability of the disease-free equilibrium

The disease-free equilibrium of the system (2.1) is E0 =
(
S0

h, I
0
h,S

0
v, I0

v

)
=

(
Λh

µh
, 0,

Λv

µv(b)
, 0

)
Using the next generation operator approach as presented in [43], we calculate the reproduction number R0 of the

system (2.1). In this regard, since the infected compartments are Ih and Iv, we define the function F̃ for the rate of

new infected cases

F̃ =

(
mhPh(r, b)IvSh

Nh
,

mvPv(r, b)IhSv

Nh

)
,

and the function Ṽ for transfer terms between the disease infected compartments

Ṽ =
(
(µh + γh + δ)Ih, µv(b)Iv

)
.

We evaluate the Jacobian matrices F and V of F̃ and Ṽ at the disease-free equilibrium E0, respectively and obtain

F =

 0 mhPh(r, b)

mvPv(r, b)
Λv

Λh

µh

µv(b)
0

 , V =

 (µh + γh + δ) 0

0 µv(b)

 .
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According to [43], the reproduction number R0 is the spectral radius of the next generation matrix

FV−1 =


0

mhPh(r, b)
µv(b)

mvPv(r, b)
(µh + γh + δ)

Λv

Λh

µh

µv(b)
0

 .
That is,

R0 =
1

µv(b)

√
mvmhPv(r, b)Ph(r, b)

(µh + γh + δ)
µhΛv

Λh
.

We now proceed to study the local stability of the disease-free equilibrium. The Jacobian of system (2.1) at the

disease-free equilibrium is given by

J =



−µh γh 0 −mhph(r, b)

0 −(µh + γh + δ) 0 mhph(r, b)

0 −mvPv(r, b)
Λv

Λh

µh

µv(b)
−µv(b) 0

0 mvPv(r, b)
Λv

Λh

µh

µv(b)
0 −µv(b)


.

The eigenvalues of J are λ1 = −µh, λ2 = −µv(b) plus the two solutions of the quadratic equation,

λ2 +
(
µh + γh + δ + µv(b)

)
λ + µv(b)(µh + γh + δ)

(
1 − R2

0

)
= 0.

Clearly, for R0 < 1, the quadratic equation above has two roots with negative real parts, and for R0 > 1, it has one

positive solution. Thus we have the following result.

Proposition 3.1. The disease-free equilibrium point E0 is locally asymptotically stable if R0 < 1 and it is unstable if R0 > 1.

3.1.1. Endemic equilibrium

In this section, we investigate the existence of endemic equilibrium points. In simple epidemic models,

typically, the bifurcation will be forward or super-critical, which means that there are no endemic states when

R0 < 1. However, sometimes in more elaborated epidemic models, the phenomenon of backward or sub-

critical bifurcation occurs when a stable disease-free equilibrium co-exists with two endemic equilibrium points,

one of which is stable and the other one unstable in a region where the reproduction number is less than one

[7, 17, 34]. From these studies, it appears that the backward bifurcation is connected to complex biological and

social interactions of the infectious class. The latter phenomenon has important disease-control implications as it

asserts that reducing the reproduction number to less than one is not enough for disease elimination. Furthermore,

the presence of backward bifurcation in an epidemic model implies that additional control measures are needed

to bring the epidemic under control. The endemic equilibrium of system (2.1) is denoted by EE = (S∗h, I
∗

h,S
∗
v, I∗v),

where,

S∗h =
(µh + γh + δ)Λh

(µh + δ)
(
λ∗h(r, b) + µh

)
+ γhµh

, I∗h =
λ∗h(r, b)Λh

(µh + δ)
(
λ∗h(r, b) + µh

)
+ γhµh

,

S∗v =
Λv

λ∗v(r, b) + µv(b)
, I∗v =

λ∗v(r, b)Λv(
λ∗v(r, b) + µv(b)

)
µv(b)

,
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with,

λ∗h(r, b) =
mhPh(r, b)I∗v

N∗h
=

mhPh(r, b)Λv

µv(b)

(µh + δ)(λ∗h(r, b) + µh) + γhµh

Λh(µh + γh + δ + λ∗h(r, b))
λ∗v(r, b)

λ∗v(r, b) + µv(b)
,

λ∗v(r, b) =
mvPv(r, b)I∗h

N∗h
=

mvPv(r, b)µv(b)λ∗h(r, b)

µv(b)
(
µh + γh + δ + λ∗h(r, b)

) .
Plugging λ∗v(r, b) into λ∗h(r, b) from the above expressions yields the quadratic equation

B2[λ∗h(r, b)]2 + B1λ
∗

h(r, b) + B0 = 0, (3.1)

whose coefficients are given by


B2 = µv(b)Λh[mvPv(r, b) + µv(b)] > 0,

B1 = (µh + γh + δ)µv(b)ΛhmvPv(r, b) + 2(µh + γh + δ)µ2
v(b)Λh −mvmhPv(r, b)Ph(r, b)Λv(µh + δ),

B0 =
(
(µh + γh + δ)µv(b)

)2 Λh

(
1 − R2

0

)
.

If ∆ := ∆(R0) = B2
1 − 4B0B2 ≥ 0 denotes the discriminant of (3.1), then its roots are λ∗h±(r, b) =

−B1 ±
√

∆

2B2
.

When R0 < 1, the number of positive roots (and consequently the number of endemic equilibrium points) for (3.1)

are determined by the sign of B1. Let’s rewrite B1 in the form

B1 = (µh + γh + δ)µ2
v(b)Λh

(µh + δ)
µh

(G − R2
0),

where,

G =
mvPv(r, b) + 2µv(b)

µv(b)
µh

(µh + δ)
. (3.2)

Theorem 3.2. Let ∆(R0) = B2
1 − 4B0B2. If G < 1, then there exists a unique number Rc

0 ∈
]√

G, 1
[

satisfying ∆(Rc
0) = 0.

Proof : Set R0 ∈
]√

G, 1
[
, we have B1 < 0. The derivative of ∆(R0) with respect to R0 gives,

∆′(R0) = 4(µh + γh + δ)µ2
v(b)ΛhR0

(
2(µh + γh + δ)B2 − B1

(µh + δ)
µh

)
> 0.

Thus, ∆(R0) is strictly increasing in
]√

G, 1
[
. Moreover, ∆(

√
G) = −B0B2 < 0 and ∆(1) = B2

1 > 0. Therefore, there is

a unique Rc
0 ∈

]√
G, 1

[
such that ∆(Rc

0) = 0. This ends the proof.

Suppose b = 0 or θ = 0 then, no bed net is used or no mosquito targets human hosts. That is, all the mosquitoes

feed on non-human hosts.

Conversely, if b , 0 and θ , 0, then looking at G as a function of r and solving for r the equation G(r) = 1 gives

r∗ =

1 −
µv(b)
mvµh

(δ − µh)

bθ
(
1 −

µv(b)
mvµh

(δ − µh)(1 − µv1b)
) . (3.3)

Now, we can state the following result about the existence and the number of equilibrium points for (2.1). In order

to emphasize on the importance of repellency, we use the repellency rate r as the bifurcation parameter such that

the backward bifurcation occurs at the threshold value r∗.
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Theorem 3.3. : The malaria transmission model (2.1) has:

1. Assume r > r∗ and:

a) Suppose
√

G < R0 < 1 and B2
1 − 4B0B2 = 0, then system (2.1) has a unique endemic equilibrium.

b) Suppose
√

G < R0 < 1 and B2
1 − 4B0B2 > 0. Then for Rc

0 < R0 < 1, system (2.1) has two endemic equilibrium

points, and no endemic equilibrium point whenever Rc
0 > R0.

c) Suppose R0 <
√

G < 1, then system (2.1) has no endemic equilibrium.

d) Suppose R0 ≥ 1, then system (2.1) has a unique endemic equilibrium.

2. Assume 0 ≤ r ≤ r∗ and:

a) Suppose R0 > 1, then system (2.1) has a unique endemic equilibrium.

b) Suppose R0 ≤ 1, then system (2.1) has no endemic equilibrium.

Proof : Since G is a strictly decreasing function of δ, we have G < 1⇔ r > r∗

1.a) For
√

G < R0 < 1 and B2
1 − 4B0B2 = 0,we get G−R2

0 < 0. Thus λ∗h(r, b) = −B1
2B2

> 0 and the proof of 1.a) holds.

1.b) For
√

G < R0 < 1, since ∆(
√

G) = −B0B2 < 0, ∆(Rc
0) = 0 and ∆(1) = B2

1 > 0. We get ∆(R0) < 0 whenever

R0 < Rc
0, then system (2.1) has no endemic equilibrium. On the other hand, ∆(R0) > 0 wheneverRc

0 < R0 < 1,

then system (2.1) has two endemic equilibrium points, and 1.b) is established.

1.c) For R0 <
√

G < 1, we get B1 > 0 and B0 > 0. Then the conclusion for 1.c) holds.

1.d) For r > r∗ and R0 ≥ 1, we get B1 < 0 and B0 ≤ 0. Therefore 1.d) is proven.

2.a) For 0 ≤ r ≤ r∗ and R0 > 1, we get B0 < 0. Then system (2.1) has a unique endemic equilibrium.

2.b) For 0 ≤ r ≤ r∗ and R0 ≤ 1, we get R2
0 ≤ G and B0 ≥ 0. In this case, system (2.1) has no endemic equilibrium.

Corollary 3.4. The necessary condition for the existence of backward bifurcation is δ > µh. Moreover, if

R0 ≤ min
{
1, 1/

√
µh + δ

}
, (3.4)

then the disease-free equilibrium point E0 is globally asymptotically stable (GAS). In particular, if the disease-induced death

rate δ is small enough such that µh + δ ≤ 1, then E0 is GAS whenever R0 ≤ 1.

Proof : In fact it suffices to prove that, if δ ≤ µh, there is no endemic equilibrium when R0 ≤ 1. Indeed, for

δ ≤ µh, we have G > 1 or equivalently r < r∗. Moreover, if R0 ≤ 1, condition 2.b) of Theorem 3.3 is satisfied and

consequently no endemic equilibrium exists in this case. Hence, the backward bifurcation possibility is ruled out

if δ ≤ µh. First of all, observe that the assumptions in the second statement of Corollary 3.4 rule out the possibility

of the existence of endemic equilibrium points. To prove that statement, Lyapunov-LaSalle techniques are used

by considering the following Lyapunov function:

L = L(Ih, Iv,Sh,Sv) = µvµhIh + mh(µh + δ)PhIv + µvµh

(
Sh − S0

h ln Sh

)
+ mh(µh + δ)Ph

(
Sv − S0

v ln Sv

)
.
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Direct, yet simple computations show that

dL
dt

= −
µvµ2

h(Sh − S0
h)2

Sh
−

mhPh(µh + δ)µv(Sv − S0
v)2

Sv
+

µvµhmhPhS0
h

Nh
−mhPh(µh + δ)µv

 Iv

+

mhPh(µh + δ)mvPvS0
v

Nh
− µvµh

µh + δ + γh
S0

h

Sh

 Ih.

Next, since
dNh

dt
≥ Λh − (µh + δ)Nh, the application of Gronwall lemma yields a lower bound for Nh as follows:

Nh ≥
Λh

µh + δ
.

Using the above lower bound for Nh and the expression of R0, straightforward calculations and careful rearrange-

ments lead to

dL
dt

≤ −
µvµ2

h(Sh − S0
h)2

Sh
−

mhPh(µh + δ)µv(Sv − S0
v)2

Sv
+ µvµh(µh + δ)

(
µh + δ + γh

) (
R

2
0 −

1
µh + δ

)
Ih.

Clearly, if δ ≤ µh and condition (3.4) holds, then, first there is no endemic equilibrium point and secondly,

R
2
0 ≤ 1/(µh + δ) such that L(Sh, Ih,Sv, Iv) is a Lyapunov function for the disease-free equilibrium E0.

Now, ifR2
0 < 1/(µh +δ), then L(Sh, Ih,Sv, Iv) is a strict Lyapunov function and the GAS of E0 follows. IfR2

0 = 1/(µh +δ)

the LaSalle Invariance Principle applies easily in this case to L to prove that E0 is globally attractive in Ω. Hence,

E0 is GAS. The particular case is straightforward since in that case, min
{
1, 1/

√
µh + δ

}
= 1 and the conditionR0 ≤ 1

is enough for the disease-free equilibrium E0 to be GAS.

Remark 3.5. It is worth noticeable that for the parameter values given in Table 1, the condition µh + δ ≤ 1 is satisfied, while

the condition µh > δ is not. Thus, whenever R0 < 1 the backward bifurcation may occurs. On the other hand, since the

natural mortality rate is a constant for a given population and the disease-induced death rate may vary depending on the

health care conditions, there can be a favorable situation where µh ≤ δ, and the disease will possibly die out if in addition, the

reproduction number R0 is brought below one.

3.2. Stability of the endemic equilibrium

Theorem 3.6. The endemic equilibrium point EE is globally asymptotically stable if R0 > 1.

The proof of the GAS of the endemic equilibrium EE uses the following instrumental result.

Theorem 3.7. (Vidyasagar [44], Theorem 3.1). Consider the following C1 system: ẋ = f (x) x ∈ Rn

ẏ = g(x, y) x ∈ Rm,
(3.5)

with an equilibrium point (x∗, y∗) ie., f (x∗) = 0 and g(x∗, y∗) = 0.

If x∗ is globally asymptotically stable (GAS) inRn for the system ẋ = f (x), and if y∗ is (GAS) inRm for the system ẏ = g(x∗, y)

then (x∗, y∗) is (locally) asymptotically stable for (3.5). Moreover, if all the trajectories of (3.5) are forward bounded, then

(x∗, y∗) is GAS for (3.5).
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Now, we are going to show that system (2.1) has the triangular structure in Theorem 3.7.

Let Nv(t) = Sv(t) + Iv(t). We have
dNv

dt
= Λv − µv(b)Nv, so that system (2.1) is equivalent to

Ṅv = Λv − µv(b)Nv

Ṡh = Λh − λh(r, b)Sh + γhIh − µhSh

İh = λh(r, b)Sh − (µh + γh + δ)Ih

İv = λv(r, b) (Nv(t) − Iv(t)) − µv(b)Iv.

(3.6)

We have Ṅv = Λv − µv(b)Nv. Therefore, Nv(t) −→
Λv

µv(b)
as t −→ +∞. Thus, equilibrium N∗v =

Λv

µv(b)
is globally

asymptotically stable (GAS) in R for the system Ṅv = Λv − µv(b)Nv. Note that the endemic equilibrium point for

system (2.1) translates to the endemic equilibrium point for system (3.6) which we denote by ÊE = (N∗v,S∗h, I
∗

h, I
∗
v).

Therefore, the proof of the GAS EE for system (2.1) is equivalent to the proof of the GAS of ÊE for system (3.6). To

achieve the latter, if we set

x = Nv, y = (Sh, Ih, Iv),

then system (3.6) takes the desirable triangular form in Theorem 3.7, with

f (x) = Λv − µv(b)x, g(x, y) =


Λh − λh(r, b)Sh + γhIh − µhSh

λh(r, b)Sh − (µh + γh + δ)Ih

λv(r, b) (Nv(t) − Iv(t)) − µv(b)Iv

 .
Moreover, since x∗ = N∗v is GAS for ẋ = f (x), the GAS of ÊE for R0 > 1 will be established as long as the GAS of the

endemic equilibrium ẼE = (S∗h, I
∗

h, I
∗
v) of the following reduced system (3.7) (corresponding to ẏ = g(x∗, y) holds.

Ṡh = Λh − λh(r, b)Sh + γhIh − µhSh,

İh = λh(r, b)Sh − (µh + γh + δ)Ih,

İv = λv(r, b)
(
N∗v − Iv(t)

)
− µv(b)Iv.

(3.7)

One can easily show that the set Ω0 =

{
(Sh(t), Ih(t), Iv(t)) ∈ R3

+ : Sh(t) + Ih(t) ≤
Λh

µh
, Iv(t) ≤

Λv

µv(b)

}
is positively in-

variant for the flow generated by (3.7) and that, thanks to Theorem (3.3), ẼE = (S∗h, I
∗

h, I
∗
v) is the unique endemic

equilibrium for (3.7) in the interior of Ω0 when R0 > 1. On the other hand, since all the trajectories of (3.6) are

forward bounded, then according to the Theorem 3.7, the GAS of ẼE for system (3.6) is complete if the GAS of ẼE

for system (3.7) is established. This is done in the following theorem whose proof is given in the Appendix A.

Theorem 3.8. The endemic equilibrium point ẼE of system (3.7) is GAS in the interior of Ω0 whenever R0 > 1.

3.3. Bifurcation analysis

3.3.1. Types of disease free equilibrium

The following result describes the topological type of the disease free equilibrium E0.

Theorem 3.9. For system (2.1), the disease free equilibrium E0 =
(
S0

h, I
0
h,S

0
v, I0

v

)
=

(
Λh

µh
, 0,

Λv

µv(b)
, 0

)
is:

(i) an attracting node whenever R0 < 1;
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(ii) a hyperbolic saddle whenever R0 > 1;

(iii) a saddle-node of co-dimension 1 whenever R0 = 1.

Proof : See Appendix B.

3.3.2. Backward bifurcation and forward bifurcation analysis

The backward bifurcation possibility highlighted by 1.b) in Theorem 3.3 indicates that this phenomenon may

occur for the values of R0 satisfying Rc
0 < R0 < 1.

Set

th = mhPh(r, b), tv = mvPv(r, b).

Recall that

R0 = R0(th) =

√
tvth

(µh + γh + δ)
µh

(µv(b))2

Λv

Λh
.

Hence, the equation R0(th) = 1 is equivalent to:

th =
(µh + γh + δ)(µv(b))2Λh

tvµhΛv
=: t∗h (3.8)

Let r∗ be the unique solution of the equation G(r) = 1 given by (3.3). The following theorem describes the role that

the repellent effect plays on the complete bifurcation analysis of system (2.1).

Theorem 3.10. For the malaria transmission model (2.1), the following statements hold:

1. Assume r∗ < 0, then system (2.1) exhibits a backward bifurcation at R0 = 1.

2. Assume 0 < r∗ < 1, we have:

a) If r > r∗, then system (2.1) exhibits a backward bifurcation.

b) If r < r∗, then the system exhibits a forward bifurcation at R0 = 1.

3. Assume r∗ > 1, we have:

a) If δ < µh, then the system exhibits a forward bifurcation.

b) If δ >
mvµh

µv(b)
+ µh, then the system exhibits a backward bifurcation.

Proof : See Appendix C.

Remark 3.11. It is important to emphasize that r∗ is a repellency threshold value not only for the existence of the endemic

equilibrium points (see Theorem 3.3) but, also for the existence of various bifurcations (see Theorem 3.10). Moreover, the

results of Theorem 3.10 are later discussed and commented in the captions of Figure 1, Figure 2 and Figure 3.

The results in Theorem 3.10 are numerically confirmed by Figure 1, Figure 2 and Figure 3 below. In all the three

figures, we have chosen to plot the infected mosquito component I∗v of the endemic equilibrium point versus the

reproduction number R0. Of course the illustrations are similar if one chooses to plot I∗h (or any other component

of the endemic equilibrium) against R0.
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Figure 1: Illustration of the backward bifurcation phenomenon: The selected parameters are: δ = 1.58 × 10−4, µh =
1

50 × 365
, b = 0.75,

mvµh

µv(b)
+µh = 1.3944×10−4 < δ, r = 0.9. Other parameters are given in Table (1). With these parameters, r∗ = −43.9113 < 0, so that the backward

bifurcation occurs. This result exemplifies the condition 1.) in Theorem 3.10. One can observe in this figure that, high value of repellency leads

to large value of the threshold Rc
0 ≈ 1 for the occurrence of backward, making the control of malaria easier to achieve.
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Figure 2: Illustration of the backward and forward bifurcation phenomena: (A) Backward bifurcation with the chosen parameters: δ =

1.28729 × 10−4, µh =
1

50 × 365
, b = 0.9,

mvµh

µv(b)
+ µh = 1.2873 × 10−4 > δ > µh, r = 0.95. (B) Forward bifurcation with the chosen parameters:

δ = 1.28729 × 10−4, µh =
1

50 × 365
, b = 0.9,

mvµh

µv(b)
+ µh = 1.2873 × 10−4 > δ > µh, r = 3 × 10−4. The remaining parameters are given in Table

1. The computed value of r∗ is r∗ = 4.81 × 10−4, then we have, 0 < r∗ < 1. (A) r = 0.95, thus we have r > r∗, the backward bifurcation is occurs.

(B) r = 3 × 10−4, we have r < r∗, the forward bifurcation is occurs. These results illustrate the items 2.a) and 2.b) in Theorem 3.10, respectively.

The threshold value Rc
0 ≈ 0.992 for the occurrence of backward bifurcation can be very high in this figure, making the control of malaria can

be easier to achieve.

4. Sensitivity analysis and simulations

4.1. Sensitivity analysis of the basic reproduction number

We assess the impact of parameters of the bed net model (2.1) on the reproduction number R0, by computing

the elasticity indexes ofR0 with respect to parameter values given in Table 1. According to the approach proposed

in [9, 31, 32, 36], the elasticity index of R0 with respect to a parameter p, where p is any of the parameters in Table

1 reflected in the expression of R0, is given by
∂R0

∂p
×

p
R0
.

Since these indexes quantify the ratio of relative changes on R0 in response to corresponding changes in the

parameters, they can identify critical parameters for disease control. This approach states that the reproduction
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Figure 3: Illustration of the backward and Forward bifurcation phenomena: Backward bifurcation (Left figure) with the following parameters:

δ = 1×10−3, µh =
1

50 × 365
, b = 0.75,

mvµh

µv(b)
+µh = 1.3944×10−4 < δ, r = 0.9. Forward bifurcation (Right figure) with parameters: δ = 1×10−5,

µh =
1

50 × 365
, b = 0.75, µh > δ, r = 0.9. The remaining parameters are given in Table (1). With the latter set of parameters, r∗ = 2.008. We

have r∗ > 1 and µh > δ, so that forward bifurcation is occurs. This result exemplifies the condition 3.a) in Theorem 3.10. For the (Left figure),

The computing of r∗ give r∗ = 2.3650 . Thus we have r∗ > 1 and
mvµh

µv(b)
+ µh < δ, the backward bifurcation is occurs. This result illustrates the

condition 3.b) in Theorem 3.10. The threshold value Rc
0 = 0.55, for the occurrence of backward bifurcation can be very low, suggesting that the

control of malaria can be very difficult to achieve. On the other hand, even for high value of the repellency rate r, if the disease death rate δ is

greater than the natural human mortality rate µh and r∗ > 1, it becomes very difficult to control malaria.

number is most sensitive to the parameter with the largest elasticity index value and least sensitive to the parameter

with the smallest elasticity index value. Table 2 displays the elasticity indexes of R0 to the 12 (twelve) parameters,

arranged in decreasing magnitude order and hence decreasing sensitivity. As expected, the reproduction number

is most sensitive to the bed-net coverage parameter b with an elasticity index of −1.33. It is also highly sensitive to

the probability that a vector is repelled by the insecticide (or mechanically blocked by the net) r, and the probability

that a mosquito targets a human host θ. Qualitatively, R0 decreases by 13.3% for an increase in bed-net coverage

of 10%, R0 is reduced by 8.5% when repellency effect is increased by 10%, a 10% increase of the natural mosquito

mortality rate decreases R0 by 5.55%; and a 10% increase of the probability that mosquito targets a human host

increases R0 by 9.3%.

The public health implication of these results is that the use of insecticide-treated nets with high repellency and

lethal effects, and of course vector control are important steps to take for the control of malaria.

Parameter b θ r µv0 Λh Λv mv mh µh γh µv1 δ

Elasticity -1.33 0.93 -0.85 -0.55 -0.5 0.5 0.5 0.5 0.49 -0.49 -0.48 -0.001

Table 2: Elasticity indexes of the basic reproduction number R0.

4.2. Impact of combined PTNs effects on the reproduction number

Here, we assess both theoretically and numerically the role of PTNs usage on the reproduction number R0.

4.2.1. Impact of PTNs on the basic reproduction number

Let’s recall that reproduction number

R0 =

√
mvmhPv(r, b)Ph(r, b)

(µh + γh + δ)
µh

(µv(b))2

Λv

Λh
.
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For R0 , 0, we have Pv(r, b) , 0 and Ph(r, b) , 0, thus

∂R0

∂b
=

mvmhµhΛv

2(µh + γh + δ)ΛhR0(µv(b))3

[(
∂Pv(r, b)
∂b

Ph(r, b) +
∂Ph(r, b)
∂b

Pv(r, b)
)
µv(b) − 2µv1Pv(r, b)Ph(r, b)

]
.

∂R0

∂r
=

mvmhµhΛv

2(µh + γh + δ)ΛhR0(µv(b))2

(
∂Pv(r, b)
∂r

Ph(r, b) +
∂Ph(r, b)
∂r

Pv(r, b)
)
.

Since, thanks to Theorem 2.1,
∂Ph(r, b)
∂b

,
∂Pv(r, b)
∂b

,
∂Pv(r, b)
∂r

,
∂Pv(r, b)
∂r

≤ 0, we conclude that

∂R0

∂b
< 0,

∂R0

∂r
< 0.

We have shown the following important result and illustrated it Figure 4 and Figure 5 below.

Theorem 4.1. The ITNs/PTNs lethal and repellent effects, considered either solely or combined, have a positive impacts on

malaria control by decreasing its reproduction number R0.

The Figure 4 shows the minimum level of PTNs feature required to contain malaria disease: In panel (i) the

repellency rate is fixed at r = 0.75 and bed-net usage rate varies. One can see that the minimum level of bed

net coverage b is 70% (b = 0.70), that is the sufficient bed net lethal effect rate required to bring R0 below one.

Similarly in panel (ii), for the fixed value of the bed net coverage b = 0.75, one needs at least 65% of the repellent

effect to bring R0 under unity. More precisely, from Figure 4 (i), if the bed net used in a given population can repel

up to 75% (r = 0.75), then to contain malaria, the requirement is that 70% (b = 0.70) of this population should

be protected by these bed-nets. On the other hand, from Figure 4 (ii), if 75% (b = 0.75) of the population used

bed-nets, then these bed-nets should repel approximately 65%(r = 0.65) of the mosquitoes in order to offer full

protection against malaria. Furthermore, remark that as the bed-net usage or it its repellent effect decreases, R0

increases. Moreover, looking at the concavities of the plots in Figure 4, one realizes that R0 decreases faster as a

function of bed net lethal effect (concave down) than it does as a function a of bed net repellent effect (concave

up). This shows that, the influence of the lethal effect dominates the influence of repellency.

Figure 5 is the bifurcation diagram (contour plot) of R0 in the (b − r) space by combining the plots in Figure 4. It

further highlights that, if the lethal is below 0.70, irrespective of the value of the repellent effect rate, R0 will never

be brought below one, and consequently, malaria will never be eliminated. On the other hand, if the repellent rate

r is less 0.05, regardless the rate of the bed net lethal effect, R0 will remain greater that one, and malaria will never

be controlled. Therefore, any couple (b, r) which is not in the set [0, 0.7] × [0, 1] ∪ [0, 1] × [0, 0.05] can be suitably

chosen such that R0 is less that one (that is, malaria is eliminated).

4.2.2. Impact of the use of pyrethroid-treated bed net with single PTN effect on model (2.1)

The assumption in this paragraph is that the PTNs can either repel or kill the mosquitoes and not both. Note

that this assumption leads to the new expressions of the probabilities Ph and Pv determined accordingly below, and

that the equations and basic properties of model (2.1) remain unchanged. First, we consider that the bed nets can

only kill, but do not repel the mosquitoes. Thus, the model takes into account the lethal effect of ITNs only, so that

the contact rate between mosquitoes and humans depends only on the parameter b and becomes Ph(b) = θ(1 − b).
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Figure 4: The minimum level of PTNs coverage required to contain malaria disease. r = 0.75 for panel (i), b = 0.75 for panel (ii) and the

remaining parameters as in Table 1. The only effect of bed net efficacy or the repellency efficiency can help to bring the reproduction under the

elimination threshold one. Bed net utilization efficacy does it faster than repellency.
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Figure 5: Contour plot of the reproduction number Versus bed net usage (b) and repellency (r). The remaining parameters are as in Table 1.

We note that, for a fix value of repellency effect, the reproduction number R0 decreases when bed net usage increases. For a fix value of bed

net usage, we also note that as the repellency effect decreases, R0 increases and vice versa.

In this particular setting, recalling the probability (1 − θ) that mosquitoes target non-human hosts, it comes that

Pv(b) = θ(1 − b) + 1 − θ = 1 − bθ.

Consequently, the reproduction number depends only on b and not on r and takes the form:

R0(b) =

√
mvmhPv(b)Ph(b)

(µh + γh + δ)
µh

(µv(b))2

Λv

Λh
.

For R0(b) , 0, we have θ , 0 and,

dR0(b)
db

=
mvmhµhΛv

2(µh + γh + δ)Λh(µv(b))3R0(b)

[(
dPv(b)

db
Ph(b) +

dPh(b)
db

Pv(b)
)
µv(b) − 2µv1Pv(b)Ph(b)

]
.

We have
dPh(b)

db
=

dPv(b)
db

= −θ < 0 and conclude that
dR0(b)

db
< 0.

Secondly, we consider the model with bed nets that repel only and do kill mosquitoes. That is the lethal effect

of bed net wanes completely (i.e. µb = µv1b = 0). The reproduction number can be written:

R0(r) =

√
mvmhPh(r, b)
(µh + γh + δ)

µh

(µv0)2

Λv

Λh
.
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With R0(r) , 0 and b , 0, then we have θ , 0 and the derivative of R0(r) is

dR0(r)
dr

=
mvmhµhΛv

2(µh + γh + δ)Λh(µv0)2R0(r)
bθ

(
θ − 1 − θµv1b

)(
1 − rθb(1 − µv1b)

)2 .

Thus
dR0(r)

dr
< 0. These results are summarized in Theorem 4.2 below and illustrated in Figure 6:

Theorem 4.2. The utilization of PTNs with either the lethal or the repellent effect has a positive impact on the control of

malaria by decreasing the reproduction number.
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Figure 6: (A): R0 Versus bed net lethal effect b and full repellency (i.e. r= 1). (B): R0 Versus bed net repellent effect r with complete bed net

usage (i.e. b = 1). Other parameters are given in Table 1. Note that as the bed net usage decreases, R0(b) increases and vice-versa. This figure

highlights the relative prominence of bed net usage rate to the repellent effect, since the reproduction number drops faster and earlier below

one for variable lethal effect (Figure 6(A)) than it does for variable repellency effect (Figure 6(B)).

One can remark that R0(b) is decreasing and concave down (fast decrease), while R0(r) is decreasing and concave

up (slow decrease), indicating thatR0 decreases faster as a function of the lethal effect b as compared to its reduction

with respect to the repellent effect. This suggests that the utilization of ITNs with the high lethal effect is better

than those with high repellent effect.

4.2.3. Neglecting repellency underestimates the basic reproduction number and hinders malaria elimination

In this paragraph, we investigate whether the explicit involvement of repellent effect of pyrethroid in a

dynamical model of malaria overestimates or underestimates the basic reproduction number. To do, we denote

the Agusto et al.’s model (1.1) reproduction number by R(a)
0 and compare it with the reproduction number R0

obtained in our model (2.1). This comparison is possible only if the two models share some basic and relevant

parameters. Since model (1.1) did not considered the non-human host population, we fix (for comparison purpose)

θ = 1 in our PTNs’ model (2.1). Let’s recall that reproduction number in model (1.1)

R
(a)
0 =

√
mvmhβ(b)β(b)
(µh + γh + δ)

µh

(µv(b))2

Λv

Λh
,

where,

β(b) = βmax − b(βmax − βmin); 0 ≤ b ≤ 1

The simulations in Figure 7 depicts the comparison between the reproduction number for our PTNs model (2.1)

and the reproduction number for Agusto et al.’ model (1.1). They suggest that the value of the reproduction
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number can be underestimated if the repellent effect of the PTNs is neglected. The consequence of this is that the

elimination of malaria might be more difficult to achieve, if the PTNs with low/zero repellent rate are distributed

for utilization to a given malaria affected population.
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Figure 7: Neglecting repellency underestimates the reproduction number: R(a)
0 and R0 versus the PTNs lethal effect b, with different value of

repellency rate r. All shared parameters are those from Agusto et al. model [1]. Repellency regulates the reproduction number and the lesser

value for the repellency r, the larger the gap between the reproduction number without repellency effect R(a)
0 and the reproduction number

with repellency R0.

.

4.2.4. Numerical illustrations of the impacts of bed net usage on contact rates

In this sub-subsection, we present some simulations to illustrate the impacts of bed net coverage b and repellent

effect r on the contact rates between mosquitoes and humans. Parameters values as in Table 1. These impacts are

shown and commented the captions of Figure 8 and Figure 9 below. The illustrations are presented for Ph(r, b), but

the reader should notice the conclusions hold for the plot and contour plot of Pv(r, b). For that reason we did not

display them in the manuscript. The common feature of these figures is that the contact rates Ph(r, b) and Pv(r, b)

are decreasing functions of the lethal effect or the repellency effect.

5. Conclusion and discussions

Pyrethroid-treated bed nets protect individuals against malaria by blocking and repelling mosquitoes, and they

protect the community by killing mosquitoes thanks to lethal effect. We have proposed and analyzed a dynamical

PTNs model for malaria transmission, in which lethal and excito-repellency/deterrence effects are incorporated

and their role on the long run of the system studied. The results obtained have revealed the existence of a

backward bifurcation for certain parameter values which implies that the reduction of R0 below unity alone is not

enough to mitigate malaria evolution. Therefore, additional control strategies such as indoor residual spraying

and treatment might be necessary to reduce malaria burden and control the disease. Furthermore, the occurrence
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Figure 8: Contour plot of the contact rate Ph(r, b) between mosquitoes and humans. For a fixed value of repellency effect, the contact rate

decreases when bed net usage increases. For a fix value of bed net usage, we also note that as the repellency effect decreases, the contact rate

increases and vice versa.
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Figure 9: Impacts of lethal and repellent effects on the malaria contact rates. (C): Ph(r, b) versus the bed net usage efficacy b and three

(mild-moderate-high) levels of repellent effect. (D)-Ph(r, b) versus the bed net repellent effect r and and three (mild-moderate-high) levels of

bed net utilization efficacy.

of a backward bifurcation has been shown to depend on the range of the repellent effect rate. Precisely, we have

computed the repellency threshold value r∗ necessary to study the existence of both the endemic equilibrium

points and backward bifurcation when the basic reproduction number R0 is less than one.

We have shown that the reproduction number is highly sensitive to the bed-net coverage parameter (b) and the

repellency parameter (r), and demonstrated that although the disease contact rates are decreasing functions of the

bed net usage b and repellency effect r, they are more sensitive to b than r. The global asymptotic stability of the

endemic equilibrium wheneverR0 > 1 has been established, using the geometric approach. We have demonstrated

that the disease free equilibrium is a saddle-node of co-dimension 1 when R0 = 1, and established that the PTNs

utilization (lethal or repellent or combined effect) has a positive impact in reducing the reproduction number.
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This allowed us to conclude that the (PTNs) utilization decreases reproduction number, thus reducing the disease

burden and help to control malaria. We have shown that the elimination of malaria might be more difficult to

achieve, if bed nets with low/zero repellent rate is distributed to the population. As a whole, the following results

summarize the theoretical and numerical analyses of our model:

(i) The consideration of bed net repellency enriches the dynamics of malaria evolution by making disease

contact rates highly nonlinear functions of lethal and repellent effects.

(ii) Bed net repellency is one of the causes of backward bifurcation, which impedes the classical requirement

that, bringing the reproduction number below unity is sufficient to control malaria.

(iii) Both low bed net repellency and high disease-induced mortality rates can hinder the efficient control of

malaria.

(iv) The utilization of bed nets with high lethal effect is better than bed nets with high repellency effect.

(v) Both bed net repellency and lethal effects decrease the disease contact rates, and the lethal effect rate does it

faster than the repellency effect.

(vi) Bed net repellency effect regulates the disease burden and its negligence might underestimates that burden.

(vii) Malaria dies out completely if the malaria-induced death rate is less than the natural mortality rate or the

sum of these two mortality rates is less than unity.

Our recommendation is that that public health authorities provide pyrethroid-treated bed nets with high lethal

and repellent effects and organize the sensitization campaign to inform population to use them properly.

Although our relatively simple model (2.1) with the new nonlinear bed nets contact rates functions displays

rich and complex dynamical behaviors, we acknowledge that the dynamics of PTNs might be more complicated

if some modeling hypotheses are relaxed and many other relevant disease features taking into consideration. For

instance, if the assumption that mosquito PTN-induced mortality is a linear function of bed net usage is relaxed,

one should expect the mosquito mortality rate to become a highly nonlinear function of bed net lethal effect b, and

consequently, a more difficult and richer dynamics of the disease evolution to studied. This complication will be

empowered if additionally, that new model explicitly incorporates the repellent effect r, making the PTN-induced

mortality rate a nonlinear function of r as well. On the other hand, if one considers explicitly the mosquito

preference [2, 38] to our modeling framework in this manuscript, the resulted model might more harder to study

and the result expectations might not be predictable. All these new modeling settings might not lead to monotone

disease contact rates and constitute to the new directions of our work that need to be investigated and on which

we are already working.

Acknowledgments

The first author (BT), acknowledges the financial support of the University of Pretoria Senior Postdoctoral

Program Grant (2018-2020). Our gratitude goes to the Editor and the anonymous reviewers whose comments and

suggestions have substantially improved the presentation and the quality of the manuscript.

23



Appendices

Appendix A: Proof of Theorem 3.8

We use the geometric approach to establish the global asymptotic stability of ẼE. First, note that Ω0 is simply

connected in R3
+ and system (3.7) has a unique endemic equilibrium in the interior of Ω0 whenever R0 > 1.

Moreover, the instability of the disease-free equilibrium implies the uniform persistence of system (3.7) see [19],

i.e. there exists a constant c > 0 such that any solution x(t, x0) = (Sh(t), Ih(t), Iv(t)) of (3.7) with the initial condition

x0 = (Sh(0), Ih(0), Iv(0)) in the interior of Ω0 satisfies the inequality

min
{

lim
t→+∞

in f Sh(t), limt→+∞in f Ih(t), limt→+∞in f Iv(t)
}
> c.

The uniform persistence together with boundedness of Ω0 is equivalent to the existence of a compact absorbing

set K in the interior of Ω0 [23]. Therefore, it remains to find conditions for which the Bendixson’s criterion are

verified. The Jacobian matrix J of System (3.7) is

J =


−
∂λh

∂Sh
Sh − λh − µh −

∂λh

∂Ih
Sh + γh −

∂λh

∂Iv
Sh

∂λh

∂Sh
Sh + λh

∂λh

∂Ih
Sh − (γh + µh + δ)

∂λh

∂Iv
Sh

∂λv

∂Sh
(N∗v − Iv)

∂λv

∂Ih
(N∗v − Iv) −λv − µv


.

For a 3 × 3 matrix

M =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,
the second additive compound matrix is given by

M[2] =


a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

 .
Hence, the second additive compound matrix J[2] of J is

J[2] =


−b11

∂λh

∂Iv
Sh

∂λh

∂Iv
Sh

∂λv

∂Ih
(N∗v − Iv) −b22 −

∂λh

∂Ih
Sh + γh

−
∂λv

∂Sh
(N∗v − Iv)

∂λh

∂Sh
Sh + λh −b33


,

with,

b11 = γh + 2µh + δ + λh +

(
∂λh

∂Sh
−
∂λh

∂Ih

)
Sh,

b22 = µh + µv(b) + λh + λv +
∂λh

∂Sh
Sh,

b33 = γh + µh + δ + µv(b) + λv −
∂λh

∂Ih
Sh.

Let x = (Sh, Ih, Iv). Choose now the matrix P = P(Sh, Ih, Iv) = diag(1, Ih/Iv, Ih/Iv) and define the matrix P f by

(Pi j(x)) f =

(
∂Pi j(x)
∂x

)T

. f (x) = ∇Pi j(x). f (x).
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Then, P f P−1 = diag
(
0,

İh

Ih
−

İv

Iv
,

İh

Ih
−

İv

Iv

)
, and the matrix N = P f P−1 + PJ[2]P−1 can be re-written in the block form

N =

 N11 N12

N21 N22

 ,
where,

N11 = −γh − 2µh − δ − λh −

(
∂λh

∂Sh
−
∂λh

∂Ih

)
Sh, N12 =

(
ShIv

Ih

∂λh

∂Iv

ShIv

Ih

∂λh

∂Iv

)
,

N21 =

(
∂λv

∂Ih

Ih

Iv
(N∗v − Iv), −

∂λv

∂Sh

Ih

Iv
(N∗v − Iv)

)
, N22 =


İh

Ih
−

İv

Iv
− b22 −

∂λh

∂Ih
Sh + γh

∂λh

∂Sh
Sh + λh

İh

Ih
−

İv

Iv
− b33

 .
Now, define a vector norm |.| in R3

+ by

|(x, y, z)| = max{|x|, |y| + |z|}.

Let σ(.) denote the Lozinskii measure with respect to the above defined norm given by

σ(N) = lim
h→0+

|I + hN| − 1
h

.

Using a similar argument as in [39], we have the following estimate

σ(N) ≤ sup{g1, g2} = sup{σ1(N11) + |N12|, σ1(N22) + |N21|},

where |N21|, |N12| are matrix norms with respect to the L1 vector norm defined for a generic matrix A = (ai j),

|A| = max1≤k≤n
∑n

j=1 |a jk| and σ1 is the Lozinskii measure of A with respect to that L1 norm. Since N11 is scalar, its

Lozinskii measure with respect to any norm in R+ is equal to N11 . Therefore,

σ1(N11) = −γh − 2µh − δ − λh −

(
∂λh

∂Sh
−
∂λh

∂Ih

)
Sh,

σ1(N22) = max
{

İh

Ih
−

İv

Iv
− b22 +

∂λh

∂Sh
Sh + λh,

İh

Ih
−

İv

Iv
− b33 −

∂λh

∂Ih
Sh + γh

}
,

= max
{

İh

Ih
−

İv

Iv
− µh − µv(b) − λv,

İh

Ih
−

İv

Iv
− b33 − δ − µh − µv(b) − λv

}
,

=
İh

Ih
−

İv

Iv
− µh − µv(b) − λv,

and

|N12| =
ShIv

Ih

∂λh

∂Iv
, |N21| =

(
∂λv

∂Ih
−
∂λv

∂Sh

)
Ih

Iv
(N∗v − Iv).

Thus,

g1 = −γh − 2µh − δ − λh −

(
∂λh

∂Sh
−
∂λh

∂Ih

)
Sh +

ShIv

Ih

∂λh

∂Iv
, (5.1)

and

g2 =
İh

Ih
−

İv

Iv
− µh − µv(b) − λv +

(
∂λv

∂Ih
−
∂λv

∂Sh

)
Ih

Iv
(N∗v − Iv). (5.2)
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From system (3.7), we have

λh
Sh

Ih
=

İh

Ih
+ (γh + µh + δ), (5.3)

and
λv

Iv
(N∗v − Iv) =

İv

Iv
+ µv(b), (5.4)

On the other hand, we know that

Iv
∂λh

∂Iv
= λh. (5.5)

Thus,
ShIv

Ih

∂λh

∂Iv
= λh

Sh

Ih
, (5.6)

and the substitution of (5.3) into (5.1) and (5.4) into (5.2) yields

g1 =
İh

Ih
− µh − λh −

(
∂λh

∂Sh
−
∂λh

∂Ih

)
Sh, g2 =

İh

Ih
− µh − λv +

[(
∂λv

∂Ih
−
∂λv

∂Sh

)
Ih

Iv
−
λv

Iv

]
(N∗v − Iv).

Now, after some computations it comes that

g1 =
İh

Ih
− µh − λh, (5.7)

and

g2 =
İh

Ih
− µh − λv. (5.8)

The relations in (5.7) and (5.8) imply

σ(N) ≤
İh

Ih
− µh. (5.9)

The above relations hold alongside each solution (Sh(t), Ih(t), Iv(t)) to system (3.7) corresponding to the initial

condition (Sh(0), Ih(0), Iv(0)) ∈ K, with K being a compact and absorbing in ω0 shown earlier. Moreover, ∀ t > T,

1
t

∫ t

0
σ(N) ds ≤

1
t

∫ T

0
σ(N) ds +

1
t

ln
Ih(t)
Ih(T)

− µh
t − T

t
.

Therefore,

q = lim
t→+∞

sup sup
x0∈K

1
t

∫ t

0
σ(N(x(s, x0))) ds ≤ −µh < 0.

This proves the GAS of ẼE.

Appendix B: Proof of Theorem 3.9

We have Ṅv = Λv − µv(b)Nv. Therefore, Nv(t) −→
Λv

µv(b)
= S0

v as t −→ +∞. Thus, the type of disease free

equilibrium E0, is the same as that of the equilibrium E1 =
(
S0

h, I
0
h, I

0
v

)
=

(
Λh

µh
, 0, 0

)
for the following system (5.10).


Ṡh = Λh − λh(r, b)Sh + γhIh − µhSh

İh = λh(r, b)Sh − (µh + γh + δ)Ih

İv = λv(r, b)
(
S0

v − Iv(t)
)
− µv(b)Iv.

(5.10)

The eigenvalues of Jacobian matrix of system (5.10), at E1 are −µh and the two roots of the quadratic equation

λ2 +
(
µh + γh + δ + µv(b)

)
λ + µv(b)(µh + γh + δ)

(
1 − R2

0

)
= 0.
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If R0 < 1, the quadratic equation has two negative real roots. Thus E1, and hence E0 is also an attracting node.

If R0 > 1. It is clear that E1 is a hyperbolic saddle. Thus, E0 is a hyperbolic saddle.

If R0 = 1 the third eigenvalue is zero. To determine the type of E1. First, we translate E1 to origin by the change of

variables x = Sh − S0
h, y = Ih and z = Iv. Observe that, 0, −µh and −(µh + γh + δ + µv(b)) are the three eigenvalues of

Jacobian matrix evaluated at E1, and the corresponding associated to the eigenvectors V1, V2 and V3 are:

V1 =



−
µv(b)2 (

µh + δ
)
Λh

µ2
hmvPv(r, b)Λv

µv(b)2Λh

mvPv(r, b)µhΛv
;

1


, V2 =



1

0

0


, V3 =



−

(
γh + µv(b)

)
γh + µv(b) + δ

1

−
mvPv(r, b)µhΛv

Λhµv(b)
(
µh + γh + δ

)


.

Let’s define the following linear transformation
x

y

z

 = P


X

Y

Z

 ,
where P is the matrix whose respective columns are V1,V2,V3. Under the transformation P which diagonalizes

the Jacobian matrix at E1, system (5.10) is transformed to

Ẋ =
i+ j+k=2∑
i, j,k∈N

li jkXiY jZk + O(|X,Y,Z|3),

Ẏ = −µhY +
i+ j+k=2∑
i, j,k∈N

mi jkXiY jZk + O(|X,Y,Z|3),

Ż = −(µh + γh + δ + µv(b))Z +
i+ j+k=2∑
i, j,k∈N

ni jkXiY jZk + O(|X,Y,Z|3).

(5.11)

The coefficients li jk, mi jk and ni jk of system (5.11) are computed as follows. For the non-vanishing coefficients li jk,

mi jk and ni jk, direct computations and algebraic simplifications give

l200 =
mhPh(r, b)µv(b)2

mvPv(r, b)Λv
,

l101 =
mhPh(r, b)µh

Λh

(
1 −

µv(b)
µh + γh + δ

)
,

l002 = −
mvPv(r, b)mhPh(r, b)µ2

hΛv

Λ2
h

(
µh + γh + δ

)
µv(b)

.



m200 = −
mhPh(r, b)µv(b)2

mvPv(r, b)Λv
,

m101 = −
mhPh(r, b)µh

Λh

(
1 −

µv(b)
µh + γh + δ

)
,

m002 =
mvPv(r, b)mhPh(r, b)µ2

hΛv

Λ2
h

(
µh + γh + δ

)
µv(b)

.
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

n200 =
µv(b)3

mvPv(r, b)Λv
(µh + δ −

2Λhµv(b)
Λvµh

− 2),

n002 = −2
mvPv(r, b)µh

Λh
(1 +

Λvµh

Λhµv(b)
) +

mvPv(r, b)µ2
hΛv

Λ2
hµv(b)

×
(γh + µv(b))

(γh + µv(b) + δ)
,

n101 = −4
µv(b)2

Λv

(
1 +

Λvµh

Λhµv(b)

)
+
µv(b)
Λh

(µh + δ) +
µv(b)µh(γh + µv(b))
Λh(γh + µv(b) + δ)

,

n110 = −
µv(b)µh

Λh
,

n011 = −
mvPv(r, b)µ2

hΛv

Λ2
hµv(b)

.

Thereafter, the system (5.11) on the center manifold is locally topologically equivalent to

Ẋ = A1X2 + O(X3),

where,

A1 =
mhPh(r, b)µv(b)2

mvPv(r, b)Λv
.

Since A1 > 0, we conclude that E0 is a saddle-node of co-dimension 1.

Appendix C: Proof of Theorem 3.10

The Jacobian matrix of system (2.1) at the disease-free equilibrium DFE with th = t∗h is

J(E0) =



−µh γh 0 −t∗h
0 −(µh + γh + δ) 0 t∗h
0 −tv

Λv

Λh

µh

µv(b)
−µv(b) 0

0 tv
Λv

Λh

µh

µv(b)
0 −µv(b)


.

Hence, its eigenvalues are λ1 = −µh, λ2 = −µv(b), λ3 = 0 and λ4 = −µh − γh − µv(b).

Now, we denote by W = (w1,w2,w3,w4)T a right eigenvector corresponding to the zero eigenvalue. Then,

W =

(
−
µh + δ

µh
w2, w2, −tv

Λv

Λh

µh

µv(b)2 w2, tv
Λv

Λh

µh

µv(b)2 w2

)T

.

Furthermore, the left eigenvector V = (v1, v2, v3, v4) corresponding to the zero eigenvalue such that V.W = 1 solves

the linear system: 

−µhv1 = 0,

γhv1 − (µh + γh + δ)v2 − tv
Λv

Λh

µh

µv(b)
v3 + tv

Λv

Λh

µh

µv(b)
v4 = 0,

−µv(b)v3 = 0,

−v1t∗h + v2t∗h − µv(b)v4 = 0.

Thus,

V =

(
0, tv

Λv

Λh

µh

µv(b)(µh + γh + δ)
v4, 0, v4

)
.
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Let w2 =
Λh

Λv

µv(b)
µhtv

, V.W = 1 equivalent to v2w2 + v4w4 = 1. Thus v4 =
(µh + γh + δ)µv(b)
µv(b) + µh + γh + δ

.

Let fi(i = 1, 2, 3, 4) be the vector on the right hand side of system (2.1). The non-vanishing second-order partial

derivatives of fi(i = 1, 2, 3, 4) at the disease-free equilibrium E0 are:

∂2 f2
∂Ih∂Iv

(E0, t∗h) =
−t∗h
S0

h

;
∂2 f4
∂Sh∂Ih

(E0, t∗h) =
−tvS0

v

(S0
h)2

;
∂2 f4
∂Ih∂Sv

(E0, t∗h) =
tv

S0
h

;
∂2 f4
∂I2

h

(E0, t∗h) =
−2tvS0

v

(S0
h)2

.

Using t∗h given by equation (3.8), we obtain:

∂2 f2
∂Ih∂Iv

(E0, t∗h) = −
(µh + γh + δ)(µv(b))2Λh

tvµhΛv
×
µh

Λh
= −

(µh + γh + δ)(µv(b))2

tvΛv
.

According to definitions of the coefficientsA and B in [7] (Theorem 4.1), it follows that:

A =
1
2

4∑
k,i, j=1

vkwiw j
∂2 fk
∂xi∂x j

(E0, t∗h), x = (Sh, Ih,Sv, Iv),

= 2v2w2w4
∂2 f2
∂Ih∂Iv

(E0, t∗h) + 2v4w1w2
∂2 f4
∂Sh∂Ih

(E0, t∗h) + 2v4w2w3
∂2 f4
∂Ih∂Sv

(E0, t∗h) + v4w2
2

∂2 f4
∂I2

h

(E0, t∗h),

and

B =

4∑
k,i=1

vkwi
∂2 fk
∂xi∂th

(E0, t∗h) = v2w2.

Substituting the eigenvectors and the above non-zero partial derivatives intoA and B leads us to

A =
2(µh + γh + δ)(µv(b))2

tvΛvµh
(
µh + γh + δ + µv(b)

) (
δ − µh −

tvµh

µv(b)

)

=
2(µh + γh + δ)(µv(b))2

mvPv(r, b)Λvµh
(
µh + γh + δ + µv(b)

) (
δ − µh −

mvPv(r, b)µh

µv(b)

)
,

=
2(µh + γh + δ)(µv(b))2

mvPv(r, b)Λvµh
(
µh + γh + δ + µv(b)

)bθ
(
1 − µv(b)

mvµh
(δ − µh)(1 − µv1b)

) mvµh

µv(b)
(
1 − θrb(1 − µv1b)

) (r − r∗) .

and

B = tv
Λv

Λh

µh

µv(b)
(
µh + γh + δ + µv(b)

) . (5.12)

Obviously, the coefficient B is positive. Now,

1. Assume r∗ < 0. In fact it suffices to prove that
(
1 −

µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
> 0.

First, we show that δ > mvµh

µv(b) + µh.

a) If δ ≤ µh, we get 0 <
(
1 −

µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
≤

(
1 −

µv(b)
mvµh

(δ − µh)
)
. Thus, r∗ ≥ 1. Absurd.

b) If δ > µh and δ ≤
mvµh

µv(b)
+ µh, then

(
1 −

µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
>

(
1 −

µv(b)
mvµh

(δ − µh)
)

and(
1 −

µv(b)
mvµh

(δ − µh)
)
≥ 0. Thus r∗ ≥ 0. Absurd.

Secondly, for δ >
mvµh

µv(b)
+ µh and r∗ < 0, we have

(
1 −

µv(b)
mvµh

(δ − µh)
)
< 0 and r∗ < 0. Thus(

1 −
µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
> 0. Hence, model (2.1) undergoes a backward bifurcation.
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2. Assume 0 < r∗ < 1. In fact it suffices to prove that
(
1 −

µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
> 0.

First, we show that: µh < δ <
mvµh

µv(b)
+ µh.

a) If δ ≤ µh, we get r∗ ≥ 1. Absurd.

b) If δ ≥
mvµh

µv(b)
+ µh, then

(
1 −

µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
>

(
1 −

µv(b)
mvµh

(δ − µh)
)

and
(
1 −

µv(b)
mvµh

(δ − µh)
)
≤ 0.

i) If
(
1 −

µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
< 0, then r∗ > 1. Absurd.

ii) If
(
1 −

µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
> 0, then r∗ ≤ 0. Absurd.

Secondly, for µh < δ <
mvµh

µv(b)
+ µh, we get

(
1 −

µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
>

(
1 −

µv(b)
mvµh

(δ − µh)
)

and(
1 −

µv(b)
mvµh

(δ − µh)
)
> 0. Thus,

(
1 −

µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
> 0.

3.a) Assume r∗ > 1 and δ < µh, we have
(
1 −

µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
> 0. Hence, the system presents a forward

bifurcation at R0 = 1.

3.b) Assume r∗ > 1 and δ >
mvµh

µv(b)
+ µh. For δ >

mvµh

µv(b)
+ µh, we have δ > µh and δ >

mvµh

µv(b)
+ µh, then(

1 −
µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
>

(
1 −

µv(b)
mvµh

(δ − µh)
)

and
(
1 −

µv(b)
mvµh

(δ − µh)
)
< 0.

Thus for r∗ > 1 and
(
1 −

µv(b)
mvµh

(δ − µh)
)
< 0, we get

(
1 −

µv(b)
mvµh

(δ − µh)(1 − µv1b)
)
< 0. Therefore, model (2.1)

undergoes a backward bifurcation.

References

[1] F.B. Agusto, S.Y. Del Valle, K.K. Blayneh, C.N. Ngonghala, M.J. Goncalves, N. Li, R. Zhao, H. Gong. The

impact of bed-net use on malaria prevalence. J. Theor. Biol. 320 (2013) 58–65.

[2] D. Aldila, H. Seno. A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on

Mosquitoes’ Biased Distribution and Mosquito Repellent Use. Bull. Math. Biol. 81 (2019) 4977–5008.

[3] P.L.G. Birget, J.C. Koella. An Epidemiological Model of the Effects of Insecticide-Treated Bed Nets on Malaria

Transmission. PLoS ONE 10 (2015) e0144173.

[4] C. Bowman, A.B. Gumel, P. Van den Driessche, J. Wu, H. Zhu. A mathematical model for assessing control

strategies against West Nile virus. Bull. Math. Biol. 67 (2005) 1107–1133.

[5] B. Buonomo. Analysis of a malaria model with mosquito host choice and bed-net control. Int. J. Biomath. 6

(2015) 1550077.

[6] Buonomo, B. Modeling ITNs Usage: Optimal Promotion Programs Versus Pure Voluntary Adoptions. Math-

ematics. 3 (2015) 1241–1254.

30



[7] C. Castillo-Chavez, B. Song. Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1

(2004) 361–404.

[8] CDC. Malaria/Disease of the week/CDC. https://www.cdc.gov>dotw>malaria. Accessed 02 February 2020.

[9] N. Chitnis, J.M. Hyman, J.M. Cushing. Determining important parameters in the spread of malaria through

the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70 (2008) 1272–1296.

[10] N. Chitnis, T. Smith, R. Steketee. A mathematical model for the dynamics of malaria in mosquitoes feeding

on a heterogeneous host population. J. Biol. Dyn. 2 (2008) 259–285.

[11] N. Chitnis, A. Schapira, T. Smith, R. Steketee. Comparing the effectiveness of malaria vector-control interven-

tions through a mathematical model. Am. J. Trop. Med. Hyg. 83 (2010) 230–240.

[12] C.F. Curtis, J.D. Lines. Impregnated fabrics against malaria mosquitoes. Parasitol. Today 1 (1985) 147.

[13] C. Czeher. Distribution nationale de moustiquaires impregnées d’insecticide au niger: Effet sur les anopheles

vecteurs. Thèse de doctorat, Université de Versailles-Saint-Quentin-en-Yvelines (2010). Accessed 26 Nov 2019.

[14] F. Darriet, V. Robert, T. Vien, P. Carnevale. Evaluation of the efficacy of permethrin-impregnated intact and

perforated mosquito nets against vectors of malaria. Who/VBC/84.899, World health organization, Geneva

(1984). Accessed 30 Nov 2019.

[15] G. Davidson, C. Draper. Field studies of some of the basic factors concerned in the transmission of malaria.

Trans. R. Soc. Trop. Med. Hyg. 47 (1953) 522–535.

[16] A. Dipo, S. Hiromi. A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on

Mosquitoes Biased Distribution and Mosquito Repellent Use. Bull. Math. Biol. 81 (12)(2019) 4977–5008.

[17] J. Dushoff, W. Huang. C. Castillo-Chavez. Backwards bifurcations and catastrophe in simple models of fatal

diseases. Math. Biosci. 36 (1998) 227–248.

[18] J.A. Filipe, E.M. Riley, C.J. Drakeley, C.J. Sutherland, A.C. Ghani. Determination of the processes driving the

acquisition of immunity to malaria using a mathematical transmission model. PLoS Comput. Biol. 3 (2007)

e255.

[19] H.I. Freedman, S. Ruan, M. Tang. Uniform persistence and flows near a closed positively invariant set. J. Dyn.

Diff. Equt. 6 (1994) 583–600.

[20] J.E. Gimnig, J.M. Vulule, T.Q. Lo, L. Kamau, M.S. Kolczak, P.A. Phillips-Howard, et al.: Impact of permethrin-

treated bed nets on entomologic indices in an area of intense year-round malaria transmission. Am. J. Trop.

Med. Hyg. 68 (2003) 16–22.

[21] C.A. Goodman, A.J. Mills. The evidence base on the cost-effectiveness of malaria control measures in Africa.

Health. Policy. Plann. 14 (1999) 301–312.

31



[22] H.W. Hethcote. The mathematics of infectious diseases. Siam. Rev. 42 (2000) 599–653.

[23] V. Hutson, K. Schmitt. Permanence and the dynamics of biological systems. Math. Biosci. 111 (1992) 1-71.

[24] G.F. Killeen, T.A. Smith. Exploring the contributions of bed nets, cattle, insecticides and excitorepellency to

malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Trans. R. Soc. Trop.

Med. Hyg. 101 (2007) 867–880.

[25] G.F. Killeen, N. Chitnis, S.J. Moore, F.O. Okumu. Target product profile choices for intra-domiciliary malaria

vector control pesticide products: repel or kill? Malar. J. 10 (2011) 207. https://doi.org/10.1186/1475-2875-10-

207.

[26] G.F. Killeen , A. Seyoum, J.E. Gimnig, J.C. Stevenson, C.J. Drakeley, N. Chitnis. Made-to-measure malaria

vector control strategies: rational design based on insecticide properties and coverage of blood resources for

mosquitoes. Malar. J. 13 (2014) 146. https://doi.org/10.1186/1475-2875-13-146.

[27] E.J. Kweka, W.M.M. Nkya, A.M. Mahande, A. Assenga, F.W. Mosha, E.E. Lyatuu, et al. Mosquito abundance,

bed net coverage and other factors associated with variations in sporozoite infectivity rates in four villages

of rural Tanzania. Malar. J. 7 (2008) 59. https://doi.org/10.1186/1475-2875-7-59.

[28] C. Lengeler. Insecticide-treated bed nets and curtains for preventing malaria, 2004. Cochrane Database. Syst.

Rev. 2 (2004) Art. No.: CD000363 https://doi.org/10.1002/14651858.CD000363.pub2

[29] J. Lines, J. Myamba, C.J. Curtis. Experimental hut trials of permethrin-impregnated mosquito nets and eave

curtains against malaria vectors in Tanzania. Med. Vet. Entomol. 1 (1987) 37–51.

[30] S. Lindsay, J. Adiamah, J. Armstrong. The effect of permethrin-impregnated bed nets on house entry by

mosquitoes (Diptera: Culicidae) in The Gambia. Bull. Entomol. R. 82 (1992) 49 – 55.

[31] J. Mohammed-Awel, E. Numfor. Optimal insecticide-treated bed-net coverage and malaria treatment in a

malaria-HIV co-infection model. J. Biol. Dyn. 11 (2017) 160–191.

[32] S. Moore, S. Shrestha, K.W. Tomlinson, H. Vuong. Predicting the effect of climate change on African try-

panosomiasis: integrating epidemiology with parasite and vector biology. J. R. Soc. Interface 9 (2012) 817-

830.

[33] G.A. Ngwa, W.S. Shu. A Mathematical Model for Endemic Malaria with Variable Human and Mosquito

Populations. Math. Comput. Model. 32 (2000) 747–763.

[34] C.N. Ngonghala, G.A. Ngwa, M.I. Teboh-Ewungkem. Periodic oscillations and backward bifurcation in a

model for the dynamics of malaria transmission. Math. Biosci. 240 (2012) 45–62.

[35] C.N. Ngonghala, S.Y. Del Valle, R. Zhao, J. Mohammed-Awel. Quantifying the impact of decay in bed-net

efficacy on malaria transmission. J. Theor. Biol. 363 (2014) 247–261.

32



[36] C.N.Ngonghala, G.A. Ngwa, M.I. Teboh-Ewungkem. Persistent oscillations and backward bifurcation in a

malaria model with varying human abd mosquito populations: implications for control. J. Math. Biol. 70 (7)

(2015) 1581–622.

[37] A. Nwankwo, D. Okuonghae. A Mathematical Model for the Population Dynamics of Malaria with a Tem-

perature Dependent Control. Differ. Equ. Dyn. Syst. (2019). https://doi.org/10.1007/s12591-019-00466-y.

[38] R.C. Rivera, I. Barradas. Vector Preference Annihilates Backward Bifurcation and Reduces Endemicity. Bull.

Math. Biol. 81 (2019) 4447– 4469.

[39] H. Robert, Jr. Martin. Logarithmic norms and projections applied to linear differential systems, J. Math. Anal.

Appl. 45 (1974) 432–454.

[40] L. Smith, N. Maire, A. Ross, M. Penny, N. Chitnis, A. Schapira, A. Studer, B. Genton, C. Lengeler, F. Tediosi,

D. De Savigny, M. Tanner. Towards a comprehensive simulation model of malaria epidemiology and control.

Parasitology. 135 (2008) 1507–1516.

[41] M.I. Teboh-Ewungkem.M I. Malaria Control: The Role of Local Communities as Seen through a Mathematical

Model in a Changing Population-Cameroon, In Advances in Disease Epidemiology (J.M.T& Z.M., eds), Nova

Science Publishers, pp. 103-140 (2009).

[42] M.I. Teboh-Ewungkem, C.N. Podder, A.B. Gumel. Mathematical study of the role of gametocytes and an

imperfect vaccine on malaria transmission dynamics. Bull. Math. Biol. 72 (2010) 63–93.

[43] P. Van den Driessche, J. Watmough. Reproduction numbers and subthreshold endemic equilibria for com-

partmental models of disease transmission. Math. Biosci. 180 (2002) 29–48.

[44] M. Vidyasagar. Decomposition techniques for large-scale systems with nonadditive interactions: Stability

and stabilizability, IEEE Trans. Autom. Control 25 (1980) 773–779.

[45] X. Wang, X.-Q. Zhao. A climate-based malaria model with the use of bed nets. J. Math. Biol. 1 (2018) 1–25.

[46] L.J. White, R.J. Maude, W. Pongtavornpinyo, S. Saralamba, R. Aguas, N.P.J Day, N.J. White. The role of simple

mathematical models in malaria elimination strategy design. Malar. J. 8 (2009) 212.

[47] WHO. Pesticides and their application for the control of vectors and pests of public health importance, Sixth

edition. WHO/CDS/NTD/WHOPES/GCDPP/2006.1, Geneva.

https://apps:who.int/iris/handle/10665/69223. Accessed 26 Nov 2019.

[48] WHO. Core vector control methods. https://www.who.int>malaria>areas. Accessed 26 Nov 2019.

[49] M. Zaim, A. Aitio, N. Nakashima. Safety of pyrethroid-treated mosquito nets. Med. Vet. Entomol. 14 (2000)

1–5.

33



Declaration of interests 
 

 

 

 
 

The authors declare that they have no known competing financial interests or personal relationships that 
could have appeared to influence the work reported in this paper. 
 
 

*Declaration of Interest Statement



Berge Tsanou: Conceptualization, Methodology, Formal analysis, 

Writing-Review & Editing.  Jean Claude Kamgang: Methodology, 

Writing- Original draft preparation, Formal analysis, Software.  Jean M.-

S. Lubuma: Conceptualization, Supervision, Methodology, Funding 

acquisition, Writing-Review & Editing: Duplex Elvis Houpa Danga: 

Methodology, Writing-Review & Editing, Formal analysis. 

*Credit Author Statement



Conflict of Interest 
 
 

The authors have no conflict of interest to declare.  

*Conflict of Interest Form




