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Keywords: Automated driving technology along with electric propulsion are widely expected to funda-
Automated vehicles mentally change our transport systems. They may not only allow a more productive use of travel
Driverless vehicles time, but will likely trigger completely new business models in the mobility market. A key de-
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terminant of the future prospects of both existing and new mobility services will be their pro-
duction costs. Hence, in this research the production costs of various transport modes both today
and in an automated-electric future are analyzed. To account for different local contexts, the
study is conducted for 17 cities across the globe. The results indicate that high-income countries
will benefit the most from vehicle automation, while only smaller changes can be expected in
lower-income countries. This is due to the different relative contribution of labor cost to the total
cost of current taxi and bus operations. In a likely final state, transportation costs will be largely
decoupled from a country’s income level, which will favor productivity in higher-income
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locations. While this research provides valuable first insights into potential future developments,
the underlying assumptions will need to be updated as better information becomes available.

1. Introduction

Automated driving technology is widely expected to fundamentally change our transport systems. Driverless vehicles do not only
allow today’s drivers of private vehicles to use their travel time more productively, but — in combination with modern information
technology — they may enable new mobility services and vehicle types (Burns, 2013; Cervero, 2017). Offering seamless trips between
any two points within an area, autonomous mobility services may substantially change the accessibility landscape (Meyer et al.,
2017), triggering changes to the urban form, potentially comparable to the invention of elevators or to the mass-production of cars.

Since we are still in the early stages of the autonomous driving revolution, it is largely unclear how the future of transportation
may look like. Open questions include what type of vehicles will be on the road (Burns, 2013), which services people will prefer to
travel on (Cervero, 2017), or how these systems may affect road capacities (Le Vine et al., 2015). Moreover, it is hard to predict which
regulations and policies will be put in place. Yet, from a travel demand perspective, even future services can be abstracted to private
vehicles, line-based public transport and (pooled) taxis with their key attributes being access/egress time, frequency/reliability,
travel time, comfort and cost/fare.

While the operational characteristics of the different future modes (such as levels of service or travel times) can be modeled using
simulation experiments (Alonso-Mora et al., 2017; Liu et al., 2017; Horl et al., 2019b), user preferences are commonly studied using
stated-preference approaches (Krueger et al., 2016; Haboucha et al., 2017). Yet, the results of both methods strongly depend on the
cost/price levels assumed for the different modes. Despite their importance, sound estimates of the prices are still scarce.

To address this research gap, a methodology to produce sound cost estimates for future taxis, private cars and public transpor-
tation (Bosch et al., 2018) is applied to a number of cities around the globe. By conducting this research for various different case
study locations, it is acknowledged that travel behavior is substantially shaped by local factors, too (Cervero and Kockelman, 1997).
Although limited to the current state of knowledge, the results allow a glimpse on the potential roles of the different modes in the
future and will be helpful to inform subsequent simulation experiments and survey approaches with realistic cost/price assumptions.

2. Background

Fully-autonomous driving technology will disrupt the transport system in many ways. Not only will it make existing modes of
transport, such as cars, taxis and public transport, more attractive by reducing (perceived) travel times and costs, but it will also
enable the emergence of new modes and vehicle types (Burns, 2013; Cervero, 2017) as well as ownership concepts (e.g. Mobility as a
Service (Mulley, 2017)). Yet, rebound effects in form of increased congestion can be expected if this leads to a substantial shift
towards private modes (Meyer et al., 2017; Hensher, 2018). Although the actual features of future services are difficult to predict, the
number of attributes relevant in mode choice decisions are limited (Krueger et al., 2016). Starting from operational models suggested
until now, four main modal categories can be identified:

e private vehicles,

e individual taxis,

® pooled taxis/ dynamic on-demand public transport,
e line-based public transport.

Here, private vehicles mean private use of an autonomous vehicle similar to today’s private car, but potentially shared among
household members. Individual taxis refer to the known taxi or ride-hailing services, simply without the human driver, whereas pooled
taxis include ride-sharing, where strangers share the vehicle for at least a part of their trips." In this sense, they are very similar to
suggested forms of dynamic public transport (Mulley and Nelson, 2009), although for the latter, one could imagine larger vehicle types
and requiring passengers to walk to consolidated pick-up points. Eventually, the differences between them may be shaped by po-
tential contractual frameworks, such as concessions and/or subsidies (Hensher, 2017). Finally, line-based public transport systems, i.e.
bus, light rail and rail lines, may likely prevail in their current fashion on certain corridors, minus the human driver.

Apart from first attempts to estimate consumers’ willingness to pay for automation technology in their private car (Daziano et al.,
2017; Bansal and Kockelman, 2017; Horl et al., 2019b), earlier research has mostly addressed the case of individual or pooled
autonomous taxis, finding that such systems may allow to reduce total fleet sizes by as much as 90%, hence freeing up valuable
parking space for more efficient uses (International Transport Forum, 2015; Bosch et al., 2016; Alonso-Mora et al., 2017; Fagnant and
Kockelman, 2018). However, smaller fleets do not necessarily go hand in hand with a reduction in vehicle-kilometers traveled (VKT).
Due to demand from new user groups (Meyer et al., 2017; Truong et al., 2017), vehicle relocations as well as potential detours in
shared rides (among other factors), the total kilometers traveled may likely increase (International Transport Forum, 2015; Fagnant
and Kockelman, 2018), potentially leading to a suboptimal system state (van den Berg and Verhoef, 2016) and enlarging the

! For simplicity, less common arrangements such as peer-to-peer car-sharing are not considered here.

106



H. Becker, et al. Transportation Research Part A 138 (2020) 105-126

ecological footprint of the transport system (Wadud et al., 2016).

Most of the analyses undertaken so far consider all-or-nothing scenarios, in which either the whole travel demand or full segments
of it (e.g. all taxi trips) are assigned to the new mode. A more realistic outcome is that autonomous taxis will be in competition with
other modes, or as a complement offering first/last mile connections. Consequently, much of their modal share - and thus their impact
on the transport system - will likely depend on the price difference between taxis and other modes of transport (Krueger et al., 2016;
Chen and Kockelman, 2016; Liu et al., 2017; Simoni et al., 2019; Horl et al., 2019b).

Various estimates of future fares for autonomous taxis have been proposed for the United States. For example, Burns et al. (2013)
used travel survey data in combination with an agent-based optimization model to find that a system of pooled autonomous taxis
could offer trips at 0.41 US-$ per mile (compared to 1.60US-$ for a privately owned conventional car) and that fares could decrease
further to 0.15US-$ per mile for purpose-built vehicles. Using a similar approach, Fagnant and Kockelman (2018) found that a pooled
autonomous taxi scheme could offer trips at 1.00US-$ per mile, which already includes a 19% profit margin. Using an agent-based
simulation as well, Loeb and Kockelman (2019) put a special emphasis on the detailed calculation of the costs for the charging
infrastructure for electric automated taxis. For the Austin area, their results suggest that the costs for the latter amount to 59 Cents per
mile versus 45 Cents for the gasoline counterpart. Stephens et al. (2016) analyzed how the single cost components of today’s taxi
schemes may be affected by autonomous vehicle technology for average utilization patterns. Depending on the scenario, they project
a lower bound of operating costs of 0.20-0.30 US-$ per passenger-mile. Taking up a similar methodology for individual autonomous
taxis, Johnson and Walker (2016) expect fares of 0.35US-$ by 2035. Unlike Stephens et al. (2016) and Johnson and Walker (2016),
Lim and Tawfik (2019) also look at the effect of advertising during the ride. Their results suggest that the costs for electric and
automated taxis will amount to between 8 and 29 Cents per mile, three cents lower than without any advertising. In a different
approach using NHTS trip distance and time of day distributions to generate realistic demand patterns for Austin, TX, Chen et al.
(2016) estimated that a fleet of shared electric automated vehicles could potentially serve the demand at a cost of 0.42US-$ to
0.49US-$ per occupied mile traveled. While those estimates are mostly within the same ballpark, most of the above approaches rely
on strong assumptions on travel demand and utilization patterns, neglecting potentially important factors such as maintaining and
cleaning the fleet or sometimes do not make all their assumptions transparent. Moreover, mostly only single modes (pooled au-
tonomous taxis) were considered, ignoring that they will be only one among several evolving options.

Estimates for other countries have been rare so far. For Germany, Friedrich and Hartl (2016) estimated a fare of 0.34 US-$ per mile
for a pooled autonomous taxi scheme. However, other future modes were not considered in their research. Dandl and Bogenberger
(2018) use an existing free-floating car-sharing scheme as a reference and find that the same service could be offered for about one
third lower fares. For the case of DriveNow in Munich, this would mean about 0.25US-$ per minute. For Switzerland, Bosch et al.
(2018) followed the component-based approach and extended it to cover all four main categories of future autonomous modes
mentioned above. Their results indicate that fares for individual taxis in Switzerland (0.58 US-$ per mile) may only be twice as
expensive as for autonomous public transportation, with the difference becoming negligible for pooled autonomous taxis. In contrast
to all other studies reviewed, Wadud (2017) calculate the total cost of ownership for different income groups in the UK. Even when
monetizing gains in available time, he finds that costs rise for those people who belong to the lower 80% of the income distribution.
Only for the upper 20% costs decrease by 6.4%. Yet, for many countries, sound estimates are still missing.

This research paper aims to address this research gap by providing cost estimates for modes of future, automated transportation
for different countries across the globe. A comparison of the results for the different cities will then provide a glimpse on the potential
future market position of the different modes.

3. Methodology

As it allows the most comprehensive analysis both with respect to cost components and types of modes, the approach of Bosch
et al. (2018) is used in this research. The approach presents a bottom-up calculation of the cost and price structures of the respective
modes. It divides the task into four parts:

. single vehicle cost structures,

. impact of fleet operation, electrification and (full) automation,
. external parameters,

. vehicle operations (and average trip characteristics).

HwWN =

In the first step, the individual cost components of a conventional vehicle (i.e. not electric and not automated) are determined.
Cost components are given per year (fixed cost) or per km (variable cost) and cover all vehicle-related costs from acquisition and
insurance to parking and fuel. Values are obtained for private ownership of the vehicles, but are assumed independent of their actual
utilization.

Second, the impact of electric propulsion and driver-less technology is defined for each cost component. These cost modifiers are
based on earlier literature and given in relative or absolute numbers. In addition, cost reductions or increases due to fleet operation
are accounted for in this step (mostly economies of scale). Hence, together with the input from above this allows to obtain fixed and
variable cost for automated, electric and automated-electric vehicles, too.

The third input are external parameters, which comprise relevant economic factors such as wages for drivers, interest rates or
typical lifetime of a vehicle. Combined with the two previous stages, this allows a determination of the cost structures of the
respective vehicle types for any operational model.
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In the fourth step, the different operational models (private car, individual/pooled taxi, line-based public transport) are defined
by providing their respective operations attributes such as average speeds, trip lengths or occupancy levels. The values were set to
describe a well-established, efficient service with a substantial fleet (tailored to the demand). Lacking any general transport model
covering all the locations in this study, daily averages (mostly from travel surveys, taxi data and/or traffic assignment models) had to
be used. In reality, there will also be an interplay between fares and demand patterns, which could not be accounted for in this
research.”

A detailed description of the methodology is presented in Bosch et al. (2018). It is therefore not presented here. Specific as-
sumptions made in this research are described in more detail in Appendix A.

Case studies were conducted for 17 locations in 14 countries across the globe (c.f. Fig. 1). The locations were selected to cover
major cities with different degrees of (public) transportation infrastructure and services, travel patterns, congestion and wealth.
Ideally, the variety of case studies analyzed in this research can be used for predictions of operating cost for other cities beyond the
sample. The case study locations are briefly introduced in the supplementary material. In addition, key indicators of city char-
acteristics are presented in Table 1.

Research has been conducted to define the input values for each of the case study locations for all of the four steps. However, due
to limited availability of dis-aggregated information and for better comparability, some assumptions were fixed for all case studies.
To provide better understanding to the source of differences in the results, two comparisons are made:

e In a first step, parameters for step 4 (i.e. vehicle operations assumptions including average speed, trip length and vehicle occu-
pancy levels) are fixed and assumed to be equal across all 17 cities. For the sake of illustration, vehicle operations parameters for
Zurich (reference city) were used in all cases.” Consequently, impacts of electrification and automation can be observed without
confounding elements like different trip lenghts or vehicle occupancy rates between cities.

o In the second set of analyses, all parameters froms steps 1 to 4 are city-specific.

Detailed information about the assumptions for each of the case study locations is provided in Appendix A. To allow compar-
ability, analyses of the different case study locations used the same underlying assumptions:

o The reference time horizon is the present. However, cost assumptions on technologies are based on future mass-market prices in
today’s US-$ (e.g. sensors are prohibitively expensive today, but prices are expected to plummet in the near future; hence, the
latter have been used in the calculation).

e For simplicity, only one vehicle type was used to estimate costs for private cars and taxi services. For each location, a specific
midsize vehicle was chosen, which matches the average price of all new vehicle registrations. Often, this also corresponds to the
most-sold vehicle.

e Analyses were conducted at the city level. For most European locations, the case study area comprises the whole urban area (also
beyond municipal borders). In most other cases (in particular mega-cities such as Tokyo), the definition includes the urban core
and its surroundings. In the vehicle operations parameters (step 4), all trips with origin and/or destination in the target area are
considered. For parking prices (part of step 1), values for the city center were used.’

e It is assumed that current policy regimes (e.g. Singaporean import taxes and registration charges or tax-exemption for electric
vehicles in Zurich) remain unaltered. While this may be a strong assumption, changes in regulation are hard to predict. Hence, the
current analysis provides an estimate of the effect of automation and electrification on cost structures previous to any (additional)
policy intervention.

e Public transport operations are represented by city bus (regular bus lines operating in the case study area). For the service, full
operational costs are considered (including capital costs of vehicles and applicable fees for the use of infrastructure), but not
construction costs of the roads/tracks or stops/stations.

Multiple iterations of internal reviews were conducted to ensure comparability of the results across locations.

While assumptions and cost analyses were made in local currency units (LCU), all results were converted to US-$ at 2016
exchange rates (marked as EXCHR; see Table A.10) to allow better comparability.® It is important to note that only two propulsion
types are considered in this research: internal combustion engines and battery-electric vehicles. Other promising solutions exist (such
as hybrid-electric vehicles or fuel-cell approaches) (Chen et al., 2016), but would exceed the scope of this research.

To further limit the number of dimensions, analysis is focused on midsize cars with private ownership, individual taxis and pooled
taxis as operational modes. Regular, line-based public transport was also analyzed to understand the relative market position of
automated taxis in the transport system. In particular, dynamic transit systems using minibuses as well as (right-sized) one-seater
micro-vehicles are not considered here. However, earlier research has demonstrated that at current demand levels larger vehicles
may not necessarily bring additional benefits compared to pooled taxi schemes (International Transport Forum, 2015). As for micro-

21t is generally possible to combine the approach of Bosch et al. (2018) with a transport simulation tool to study how fares affect demand patterns
and vice versa (Horl et al., 2019a). However, for most case study locations, no suitable transport model was available.

3 Zurich was chosen as a reference city, because it offered a high data availability and was also subject of earlier research (Bosch et al., 2018).

*In fact, parking prices may vary substantially within the case study area. The reader will need to keep this in mind when interpreting the results.

®In addition, selected results were converted at purchasing power parity (PPP) and presented in the appendix.
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Fig. 1. Case study locations (adapted from: http://techcenter.jefferson.kctes.edu/).

vehicles, predictions would substantially depend on unreliable assumptions since their actual design and potential cost structures are
largely unclear. Moreover, using current technology, they do not appear to be more efficient than regular taxis on a fleet level (Bosch
et al., 2018). Hence, despite those restrictions the analyzed modes can be expected to cover most of the future modes conceivable
today.

4. Results

The results allow various forms of comparisons and analyses. For the sake of brevity, only the most important aspects are
presented in this section.® Three aspects are analyzed sequentially: First, the production cost of the four modes are studied using
operational characteristics for a reference city. This allows a direct comparison of the unit production cost in the different markets.
Second, the corresponding operational characteristics for each of the cities are applied, so that the effective production cost in the
different cities can be compared. This setup is then also used for an assessment of individual impacts of automation and electrification
as well as an in-depth analysis of the cost structures of taxis. As a third main part, a simple regression analysis is presented which
allows to identify the main driver of production costs across the different case study locations.

4.1. Analysis for a reference city

To better understand the drivers of differences in costs, the analysis has first been performed using Zurich as a reference case. This
means that Zurich’s demand patterns and network characteristics were used for all locations (compare Section 3). This first analysis
allows a direct comparison of the unit production costs for the different cities.

The results are presented in Fig. 2. It shows in grey the production costs of conventional modes and in colors the production costs
of the corresponding automated-electric modes.” As expected, there is substantial variation in costs between cities. Europe and North
America are the most expensive, whereas China and India show the lowest costs.

Moreover, the relative differences between the modes vary substantially. In particular, cities with generally high mobility costs
also show a larger gap between conventional taxi services and private car costs. Another interesting observation is that in Zurich,
production cost for private car travel is slightly lower than for bus, whereas it is substantially more expensive than public transport
e.g. in China, India or Brazil. Singapore presents a special case, in that private car ownership and use is particularly expensive.

To derive the cost estimates for autonomous-electric operations, the production costs for the corresponding conventional mode
are modified by the factors presented in Table A.5. As shown in Fig. 2, introduction of automation and electrification slashes op-
erating costs for taxi services, whereas only little change is observed for the operating costs of private vehicles.® Public transport
services tend to get more cost-efficient, too. However, on the right side of the spectrum, reductions in taxi and bus costs are smaller.

As a general result, locations with high transportation costs see a convergence of the cost level for the different modes, whereas in
cities with lower transportation costs, a certain relative cost gap between (individual) taxi services and buses remains. As costs for
private car travel remain largely constant, it becomes the most expensive travel mode in almost all locations (when fixed costs are
included). Hence, it appears more economical to share a vehicle than to own it.

® Detailed results are presented in Appendix B allowing further analyses at the reader’s discretion.

71t is important to note that the values shown rely on (estimated) true production costs. Especially for public transport, this does not reflect the
fares paid by travellers, which are often highly subsidized.

8 Singapore is a notable exception as the prevailing duties and taxes enlarge the effect of increasing acquisition cost.
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4.2. Local case study areas

The impact of the new technologies on production cost also depends on the city characteristics. Especially the achievable pas-
senger load factors, network speeds and trip distances affect the shares of fixed and variable cost components. In consequence, the
shape of the current transport system also determines the future market potential of the different automated services.

4.2.1. Full production cost

Fig. 3 shows the production costs of conventional and automated-electric modes for the local case study characteristics. When
comparing the results with Fig. 2, it becomes obvious that including the local operations characteristics substantially changes the
production costs both within and across case study areas.

A prominent example is Tokyo, for which conventional taxi costs now are about 1 US-$ (70%) higher compared to the reference
case. On the other hand, Copenhagen sees a decrease of a similar order of magnitude. Moreover, for Santiago de Chile, using the local
operational characteristics suggests that the impact of automation and electrification will actually be lower than for the reference
city. The differences in the operating cost between the reference city (Fig. 2) and localized assumptions (Fig. 3) can also be inter-
preted as cost of congestion. It can thus serve as an indicator, how much improvements in built-environment factors or travel demand
management could potentially help to lower cost of operations.’

Also when accounting for city-specific operational characteristics, there is substantial variation in the cost impacts of automation
and electrification. As shown in Fig. 3, autonomous-electric technology mostly results in reduced costs of taxi and bus services, but
not for private cars. In contrast, autonomous-electric technology increases the cost of private car travel in various locations like
Beijing, Delhi, Jakarta, and Santiago.

4.2.2. Impact of automation and electrification

Although it is often assumed that the two innovations of electric propulsion and vehicle automation will coincide to revolutionize
the transport system, Table B.11 indicates that vehicle automation has a much more profound impact on the cost levels than electric
propulsion. While the latter may provide cost reductions of a few percent, vehicle automation may reduce costs by as much as 84% in
the case of Berlin.

Furthermore, Table 2 shows that the impacts are not homogeneous across cities, but vary substantially in their size. While there
are several cities with potential reductions in taxi costs'® in the same order of magnitude as Berlin, the effect is much lower in other
cities, down to 29% in the case of Delhi. For buses, a similar pattern applies, but with a generally lower impact of new technologies. In
contrast to the clear and substantial impact on taxi and bus costs, the impact on production costs of private car travel is ambiguous.
While lower costs can be expected in Berlin or Tel Aviv, costs may even increase in places like Delhi, Beijing, Santiago, and Jakarta.

4.2.3. Taxi cost structures

As described by Bosch et al. (2018), vehicle automation and electrification impact the cost structures in three ways: they increase
acquisition cost of the hardware, they decrease marginal operating costs (maintenance, fuel, insurance) and they allow more flexible
operations, because they remove the need of a driver (who takes shifts and breaks). Because taxi operations are the most labor-intense
(per passenger carried), they will be affected the most by this innovation (as also indicated by Table 2). To understand better the key
drivers of their cost levels, Fig. 4 shows the cost structure for conventional and automated-electric individual taxis."’

The figure indicates that in all cities, the driver’s salary is the single most important cost driver, accounting for 40% (Jakarta) to
87% (Zurich) of the total operating cost. Depending on the local context, fuel, depreciation, maintenance and parking/tolls are other
relevant factors (although mostly contributing less than 5-10% each). Again, in those countries with generally higher transportation
costs, also the share of salaries of the overall costs is the highest.

With the driver’s salary as a main cost component gone after automation, relative contribution of the other remaining cost
components increases. However, vehicle automation and electrification have further implications: Because of increased efficiency,
the relative contribution of fuel costs increases only slightly or even decreases in some cities. Also, cleaning constitutes a substantial
share of the operating costs of automated taxis.">

Hence in general, Fig. 4 confirms that for automated-electric operations, hardware costs (depreciation, battery, maintenance) and
operations cost (cleaning and fuel) play a much more relevant role than for conventional taxi services, the cost structures of which are
dominated by salaries. In addition, there is substantially more variation between the cities, e.g. in the relative importance of
hardware cost, cleaning, tolls and taxes. For example, the relative importance of hardware costs are particularly high in China, which
should be a result of relatively low costs for services and fuel. In Copenhagen and Singapore, taxes and registration charges attached
to any vehicle purchase are particularly high, which also results in a high share of hardware-related costs. For all cities, the cost

9 System-level benefits may even be higher given that efficiency gains go beyond savings in production cost.

19 For simplicity, individual taxis and pooled taxis are considered the same except for occupancies and trip distances.

1 Cost structure decompositions for the other modes are available from the authors upon request.

2 Increases in cleaning costs are based on two effects: Because there is no driver on board, he cannot perform these tasks during any incidental
idle time anymore, but the vehicle has to drive to a service point regularly. In addition, in the spirit of the tragedy of the commons, passengers may
take less care about keeping the car clean when they are not watched by a human driver. And since such cleaning services cannot necessarily be
automated, they are cheaper in low-wage countries.
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Table 2
Impact of electrification and automation on the cost levels (data provided in Table B.11).
Location priv. car ind. taxi Pooled taxi Urban bus
Austin —4% —73% —66% —52%
Beijing 4% —67% —67% —40%
Berlin —5% —84% —83% —34%
Cape Town —6% —52% —51% —-33%
Chongqing —2% —-52% —53% —40%
Copenhagen —3% —85% —85% —43%
Delhi 27% —29% —30% —51%
Jakarta 5% —36% —35% —-17%
Johannesburg —-10% —60% —59%% —-37%
San Francisco —2% —74% —72% —44%
Santiago 1% —63% —60% —45%
Sao Paulo —-11% —53% —46% —65%
Singapore —4% —70% —70% —36%
Sydney 0% —83% —81% —70%
Tel Aviv —-13% —-73% —73% —57%
Tokyo —2% —81% —78% —70%
Zurich —8% —85% —83% —57%

component for the battery (lease) is quite large, indicating a considerable potential for savings in operating costs, once cheaper
battery options become available."?

Observations from the cost structure analysis help to interpret the different impacts, automation and electrification have on the
taxi cost structures: In locations, where the salary is the main cost component of individual taxi services, the impact is strongest,
whereas it is weakest for locations, where also hardware, fuel and tolls are important cost drivers. A similar (although weaker)
relationship can also be observed for bus operations.

4.3. Drivers of costs

The results of the above analyses indicate substantial differences in the size of the impact of vehicle automation and electrification on
production costs. Especially for taxi services, the differences can at least partly be explained by the role salaries play in the cost structure of
conventional services. To generalize these insights, Fig. 5 shows a scatterplot of production costs of taxis and bus services vs. the median per-
capita income for the given country.'* Production costs are converted at purchasing power parity (compare Table A.10).

Despite substantial local variation, Fig. 5 provides three main insights:

e Relative to other goods and services current transportation costs are more expensive in high-income countries,
o This effect is stronger for taxi services than for bus services,
e In an automated-electric regime, the relation of transport costs to the cost of other goods and services is constant across countries.

The lines in Fig. 5 show the result of a simple linear regression of the production cost vs. income data.'”
cost =a + f-inc + €

Relationships with other city characteristics (c.f. Table 1) were also studied, but no significant effect was found. This notion is
further supported by the high R? of the simple models, indicating that they can already explain about 50% of the variation in the data
for the conventional taxis (15% for buses). Detailed regression results are presented in Table 3.

The results also shed some light on the way vehicle automation may influence the future market position of the two modes.
Although automation and electrification generally reduce production costs for mobility services, the effects are stronger for taxis than
for buses and are stronger in high-income locations than in low-income locations. As a result, in lower income locations, operations
costs for taxi services will remain higher than for buses, and this difference is still substantial, in particular considering the low
income level. In contrast, in higher-income locations, the production costs of taxi and bus services will converge and - in particular
given the high income levels, the remaining absolute difference may likely become irrelevant.'®

While the general trend shown in this analysis is clear and can be expected robust, the analysis relies on 2013 income data. Hence,
especially for emerging countries like China, the current income levels are likely higher than reflected in the data. Moreover, private cars will
also play a role in the equation. However, they were not considered in this partial analysis, because values may be biased by current policies
(from very soft regulations in Austin, TX to the massive tolls and registration charges in Singapore), which may be different in the future.

13 1f, however, battery prices do not decrease as expected in this research, the contribution of the battery to the total cost will be even higher.

14 City-level data was not available from consistent sources.

15 The regression results have to be treated carefully given the heteroscedasticity in the taxi data and can thus only be used as a rough orientation.

16 Note that externalities (such as pollution or congestion) cannot not be captured here. They would likely tip the balance in favor of public
transportation if they were incorporated.
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Fig. 5. Production cost of individual taxi and bus services vs. median net per-capita income.

Table 3
Regression results as plotted in Fig. 5.
Conventional Automated
Parameter Bus Taxi Bus Taxi
a 0.21 = 0.59 s 0.14 = 0.30 s
B-107¢ 15.48 70.26 s 5.12 0.81
R? 0.15 0.52 0.05 0.00

Significance codes: * p < 0.10, #* p < 0.05, % p < 0.01.
5. Discussion

Travel time, comfort and cost usually are the key determinants of short-term mode choice decisions (Wardman, 2004). Given that
travel times depend on the capacity impacts of automated vehicles as well as their induced demand, they can hardly be predicted
today. Moreover, comfort levels will depend both on service characteristics and future vehicle design, which are also still under
development. Hence, estimating their cost structures can be assumed the next-best thing to predict the market position of generic
future mobility services. In this research, such an estimation is done using a bottom-up approach. In this approach, cost components
of current mobility services were sized and their relative changes in case of electric propulsion and vehicle automation were esti-
mated. Along with projected operational characteristics and external economic factors this allows to estimate current and future
production costs of different mobility services for a number of cities across the world.

Naturally, future operational characteristics (occupancy levels, speeds, trip lengths etc.) or policies (e.g. taxes, tolls, parking fees)
are largely uncertain and were therefore assumed to remain the same as today. Hence, the results reflect the levels of production cost
if vehicle automation and electrification were introduced into today’s transport systems. Moreover, for the costs of batteries and
automation technology only rough estimates are available today. Anyway, the framework is flexible and can always be updated as
more accurate information becomes available (Bosch et al., 2018).

The results suggest that the impact of vehicle automation and electrification will be different for the various case study locations.
In general, two clusters can be identified: In high-income countries, production costs for taxi services will approach the ones for buses
to a degree that the relative cost differences between the modes become negligible. Hence, with their production costs plummeting,
taxi services can be expected to become highly popular. And given the small differences, individual taxis will likely be the preferred
mode. However, as shown earlier, urban road networks will not be able to accommodate a shift of all travel demand towards
automated taxis (Meyer et al., 2017), at least not in cities with a substantial public transport mode share today. Therefore, policy
interventions (e.g. subsidies, road pricing, limits on empty travel) will be required to steer the development towards a system
optimum. Such measures will be important, also because there is almost no change in the costs for private cars, which may (with
features of a personal mobility robot) become even more attractive than today.

For lower-income locations, changes in the transport system may not be that profound. Although costs for bus and taxi services
will be reduced, the respective price gaps will not change substantially. And the relatively small absolute savings by automation may
even be too small to outweigh the additional benefits of a human driver (in terms of service, safety and reaction to unforeseen
circumstances). Besides taxis and formal buses, in many such locations informal transit by minibuses or jitneys has emerged (Cervero
and Golub, 2007), offering mobility at even cheaper prices and towards locations under-served by formal public transportation.
Although a detailed analysis of such systems was beyond the scope of this research, it can safely be assumed that the impact of

116



H. Becker, et al. Transportation Research Part A 138 (2020) 105-126

automation and electrification would lie between those of taxis and formal buses, so that the fare spacing and thus the general
structure of demand between the service types may not change dramatically.

Also within the two groups of higher-income and lower-income locations, certain differences can be observed. For example, in
Beijing, all modes are substantially more expensive than in Chongqing. The reason for the differences may less be the size of the
respective cities, but the general price level (and especially parking prices) as well as policy measures (tolls and taxes). Moreover,
different performance levels in the transport systems can amplify differences in certain cost components. For Cape Town and
Johannesburg, only small differences occur since their transport systems and price levels are very similar.

Given the substantial uncertainties in the future development and deployment of electric propulsion and automated driving,
validating the results was only possible using empirical data of current services and other predictions of future production costs. For
the former, results of this research have been validated against data from car owners’ associations as well as taxi/ Uber fare estimates.
For the latter, only few alternative approaches are available. As discussed above, in earlier research usually certain cost levels were
assumed, but not derived. A rare exception is the approach presented by Chen et al. (2016), who use synthetic trip data for Austin,
TX, to design an optimal automated taxi scheme to serve this demand. They estimate a cost of 0.42 US-$ per occupied trip mile (0.26
US-$ per km) for an automated-electric individual taxi. The estimate is substantially lower than the result of this research for Austin,
TX (0.40 US-$ per km). However, the gap can be mostly explained by two key methodological differences: First, Chen et al. (2016) did
not include (substantial) cleaning costs and second, they assume a 100% shift of travel demand towards automated individual taxis.
In this research, however, trip characteristics of today’s taxi and Uber trips were used, which may lead to a slight underestimation of
the operational efficiency of such a large-scale automated taxi scheme (w.r.t. empty travel and idle times).

It has to be stressed that the results presented in this research rely on various assumptions and predictions which reflect the current state
of knowledge. Hence, the analysis should be updated as more reliable information becomes available. Uncertainties do not only pertain to
advances in technology and business models, but to a large degree also on future transport policies. While a thorough sensitivity analysis is
unfeasible given the large number of dimensions, the disaggregated results in Table B.12 allow the reader to assess how relevant (changes in)
certain cost components are. Additional disaggregated results are available from the corresponding author upon request.

The main aim of this research was to estimate actual production costs for different mobility services. It is important to note that the prices
paid by travellers are usually biased by policy (in the case of public transport subsidies) or relate more to customers’ willingness to pay (Uber’s
surge pricing). Yet, only using actual production costs, system-optimal states can be identified, thus allowing integrated planning. In this light,
it may be worthwhile to study further, to what extent and in which situations e.g. dynamic automated ridesharing/ pooled taxi schemes may
provide accessibility more efficiently than formal bus lines, hence calling for an extended definition of public transportation (Hensher, 2017;
Cervero, 2017) and in consequence, a revised approach in public transport subsidies and pricing.

6. Conclusion

The analyses presented in this paper provide several contributions. It provides a comprehensive comparison of production costs for
different generic mobility services, which - even for currently existing modes - has rarely been presented. In addition, estimates for future
production costs in an era of automated-electric vehicles are produced. Obviously, the results only reflect current knowledge and will have to
be updated once better data becomes available. Despite such uncertainties, the results have multiple implications. Not only do they allow first
insights on the role the different mobility services may play in a future transport system, but they also inform subsequent studies with realistic
cost assumptions, so that e.g. stated-preference experiments or simulation models can provide even more powerful outcomes.

In this research, median income was found to be the key factor to determine production costs for conventional modes. For automated
services however, we could not observe an effect of the income level on production costs. We therefore conclude that transportation costs will
become more similar across different countries and that the highest impact of automation is to be expected in high-income countries (also
compare Tirachini and Antoniou (2020)). Other city characteristics used in this research did not show significant effects for both conventional
and automated modes. Yet in light of earlier research indicating that spatial characteristics of a location do affect travel demand (Cervero and
Kockelman, 1997) and the small sample used in this study, a more detailed analysis with respect to such impacts on production costs may be
worthwhile. Given that most studies so far (including this one) have addressed the case of dense urban environments in and around major
cities, such future research may also help to shed more light on the question, how vehicle automation and electrification may affect transport
supply and demand in exurban or rural environments or smaller cities.

As a general result, the analyses suggest a decline in production costs across most modes. Hence, apart from modal shift, the effect
of induced demand may be substantial. Moreover, cheaper taxi services may trigger profound changes in land-use patterns in higher-
income cities, thus further increasing negative externalities of private transportation. But beyond that, newly emerging mobility will
contest the role of line-based formal public transport as single provider of accessibility. Hence, automation and electrification may
allow transit agencies to substantially lower fares. Alternatively, they may re-allocate subsidies to emerging modes and lower-density
areas, where automated-electric taxis may allow to provide the required level of service more efficiently. In another scenario, political
stakeholders may even demand an overall reduction in the level of subsidies. Further research will be needed to understand the
impact of the possible responses on system performance.

7. Final thoughts
We are extremely grateful for the valuable time and feedback provided by three anonymous reviewers. Two of them expressed
strong concerns about the accuracy of the predictions in this paper and we would like to acknowledge this problem here.

Reviewers’ concerns

117



H. Becker, et al. Transportation Research Part A 138 (2020) 105-126

First, that the success of our exercise depends on the ability to achieve consistency in the measurements made in all the cities
considered, and - unfortunately — not all cities around the world follow the exact same standards. All our indices are highly de-
pendent on the utilization of the various modes and on best guesses by the analysts, as there is no formal process of calibration and
internal consistency. Second, the costs caused by changes in propulsion type, and also vehicle automation, can be regarded as wild
guesses, especially when it comes to electrification as we do not know what will be the costs if electromobility becomes a mass market
reality.

Authors’ reflections

With regard to these concerns we wish to comment that, in our case, the accuracy of the predictions is determined by three
factors: the methodology, the data, and our assumptions:

® Methodology: we need to project the changes in individual cost components for the different modes. One of the aims of this study
was to provide inputs for simulation models aimed at predicting counterfactual scenarios. For this reason, we implemented the
cost calculator as a dynamic component to be used in simulation studies. This ensures that the prices reflect a given occupancy
level rather than a given arbitrary baseline for every city. Regarding calibration, we want to emphasize that the costs of public
transport reflect the information provided by the transport agencies. Finally, with regards to internal consistency, we want to note
that we used strict guidelines and multiple rounds of internal reviews to arrive at the same assumptions.

® Data: we used the best information sources available for each city. However, given that the transport system is organized locally,
standards of data collection and preparation are obviously not the same across the globe. This is why all input data were picked
and reviewed by co-authors with a deep knowledge about the local situations. Moreover, several rounds of internal reviews were
conducted to ensure comparability of input data across locations. In addition, following scientific best practice, we are making all
sources and assumptions transparent in the supplementary material.

e Assumptions: the strongest hypothesis in this paper refers to the use of parameters for the different vehicle services. In fact, it is
almost impossible to predict how the different transport services will be used in the future. Hence, we strongly suggest to combine
the results of this research with simulation tools (which usually lack valid cost estimates) in a next step. Vehicle automation may
fundamentally disrupt the whole transport system. Hence, any kind of predictions — be it in vehicle-miles-travelled, future fleet
sizes, or (as in this case) production costs - can only be made with uncertainty. In this sense, the goal of this paper is not to provide
perfectly accurate forecasts of future production costs. It is, rather, a first attempt to do so, which would also capture differences
across various locations across the globe.

While the paper does operate in uncertain territory by attempting to project consequences of autonomous technology at a global
scale, the finding that transportation costs will become more similar across different countries and that the highest impact of au-
tomation is to be expected in high-income countries, cannot easily be rejected however, as it is persistent across a range of scenarios.
This insight is valuable to understand the global perspective of autonomy although precise impacts cannot be measured.

To end, we sincerely hope that this paper will only be the beginning of a longer scientific discussion, and invite other researchers
to validate or question our results with their approaches. Hence, the two reviewers’ concerns highlight a fundamental challenge of
long-term planning: uncertainty.
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Appendix A. Assumptions

In the following, the input data used for the algorithm (Bosch et al., 2018) is presented for the different case study areas. To
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Table A.4

Fixed and variable vehicle costs in US-$ at EXCHR.
Acquisition Registration tax Insurance Annual Parking Other Battery Maintenance Tires Fuel Other
[per year] tax [per [per year] [per [per km] [per km] [per [per [per
year] year] km] km] km]
Austin 20,914 63 2,662 15 1,926 0 0.041 0.055 0.039 0.040 0.000
Beijing 22,575 0 632 63 903 0 0.041 0.018 0.009 0.057 0.000
Berlin 27,654 29 885 88 299 0 0.041 0.038 0.022 0.082 0.000
Cape Town 14,460 0 1,074 41 775 231 0.041 0.011 0.007 0.084 0.000
Chongqing 22,575 19 632 45 722 0 0.041 0.018 0.009 0.057 0.000
Copenhagen 14,484 12,255 783 98 4,457 0 0.041 0.077 0.013 0.089 0.000
Delhi 7,330 0 298 95 244 0 0.041 0.007 0.002 0.068 0.000
Jakarta 19,724 2,404 410 394 793 11 0.041 0.002 0.008 0.066 0.069
Johannesburg 14,460 0 1,074 41 775 231 0.041 0.011 0.007 0.086 0.000
San Francisco 25,000 0 1,645 387 4,200 1,200 0.041 0.050 0.000 0.052 0.000
Santiago 19,334 69 709 300 532 0 0.041 0.035 0.009 0.061 0.023
Sao Paulo 25,856 139 1,189 1,078 1,124 611 0.041 0.036 0.000 0.086 0.000
Singapore 134,405 49,720 1,612 1,629 6,400 1,143 0.041 0.072 0.004 0.106 0.000
Sydney 25,275 297 558 297 2,974 3,085 0.041 0.036 0.007 0.074 0.000
Tel Aviv 32,547 0 1,302 417 65 260 0.041 0.096 0.013 0.096 0.026
Tokyo 22,629 0 662 363 3,265 69 0.041 0.016 0.009 0.057 0.000
Zurich 35,519 0 1,015 254 1,522 41 0.041 0.065 0.020 0.081 0.000

reduce complexity, analyses have been conducted for regular, 4-seater midsize cars only.'” The authors have taken great care to find
reliable numbers in a web-based search or to make reasonable assumptions where necessary. Due to the large number of different
sources and the fact that many of them are not available in English, references for the individual assumptions are not provided in the
paper, but are available from the supplementary material of this paper and from the authors upon request.

Table A.4 presents the fixed and variable cost components for the respective midsize vehicles. Values are given as gross prices for
private customers and for conventional vehicles (no automation, no electric propulsion). Acquisition cost is deprecated by vehicle
lifetime. Since local data was not always available, the same values were assumed for all locations:'® For private vehicles, it is
assumed that the value of an average-aged car drops by 6.7% each year, independent of the mileage.'® Economic lifetime for
commercially used vehicles was assumed 300000 km.>°

For each cost component, the effect of electrification (transition to battery-electric vehicles) and vehicle automation (change
towards driverless technology) is determined separately. Moreover, discounts (or price increases) for commercial fleet services are
provided, which mostly represent economies of scale for larger fleets.”” It is assumed that the three factors are linearly independent.
To ensure comparability between cities, some assumptions were aligned:

e Impact of automation on acquisition cost: It is assumed that eventually, sensors and computers required for vehicle automation
will come at 5’000 US-$ per vehicle*” (converted to local currency via exchange rate).

e Impact of automation on tax levels: A wide range of new taxes and congestion charges will likely be required to manage future travel
demand (also compare Meyer et al. (2017)). However, their actual form can hardly be predicted. Hence, a zero-effect was assumed
for all case study locations, acknowledging that this should be adjusted as soon as more reliable information becomes available.

e Impact of automation on insurance: While there is the general expectation of a disruption of the vehicle insurance industry, it is
not clear, how it will affect premiums. Yet, given that automated vehicles are expected to drive more safely than humans, a 50%
reduction is assumed.

e Impact of automation on parking: It is well conceivable that self-driving vehicles will avoid parking costs by driving out of town for
parking. Yet, it can be expected that cities will design policies to prevent this behavior. Given such uncertainties, no change was assumed.

o Impact of automation on fuel consumption and tires: Lacking any more detailed data, it is assumed that due to smoother driving, automated
vehicles will reduce fuel consumption and by 10% for all case studies (Stephens et al., 2016); the same effect was assumed for tires.

e Impact of automation on maintenance cost: Despite some promises of a more efficient and conservative driving behaviour, there
have not been any reports yet that automation leads to a reduction in maintenance cost. If anything, it could even be assumed that

17 n Bosch et al. (2018) different vehicle types were analyzed.

8 1n reality, vehicle lifetime may be affected by different road conditions, driving behaviour and maintenance standards.

19 This corresponds to an economic lifetime of 15 years, assuming linear depreciation (also compare Bento et al. (2018)).

20BMW press statement according to http://www.spiegel.de/auto/aktuell/bmw-setzt-maximal-laufleistung-von-150-000-km-voraus-a-855355.
html (accessed on December 4th, 2018).

21 Actually, the modifier would depend on the fleet size. For simplicity, in this research fleet sizes comparable with today’s car rental agencies are
assumed. Results of larger public transport operators further indicate that economies of scale almost exclusively arise through a better bargaining
power towards suppliers (White, 2017), so that there is a natural limit given by the supplier’s production cost.

22 https://www.reuters.com/article/us-autos-delphi/self-driving-costs-could-drop-90-percent-by-2025-delphi-ceo-says-idUSKBN1DY2AC (ac-
cessed on May 4th, 2018)
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Table A.5
Relative impact on cost components [%].
Automated Electric Fleet
Acquisition +5000US-$ - —30%
Insurance —50% see Table A.6 —20%
Tax - see Table A.6 see Table A.6
Parking - see Table A.6 -
Maintenance - —35% —25%
Tires —10% +20% —25%
Fuel —-10% see Table A.6 —5%
Table A.6

Relative impact on cost components [%] — location-specific modifyers.

Electric — Insurance

Electric — Tax

Electric — Parking

Electric — Fuel

Fleet — Tax

Austin —-25
Beijing —100 -10
Berlin —-20 —100 -50
Cape Town -35 —-100 —55
Chongqing —100 -10 -83
Copenhagen -13 -37
Delhi -60 -14
Jakarta —100 —-34
Johannesburg -35 —100 —-69
San Francisco 20 -5 —-40
Santiago —-72
Séo Paulo —47 -85
Singapore -35 —65
Sydney -25 -60
Tel Aviv —100 —40
Tokyo -3 -100 —44 -76
Zurich -35 —100 -50
Table A.7

Public transport parameters.

Urban bus capacity

Urban bus full cost [US-$/km]

Urban bus effect of electrification

Urban bus effect of automation

Austin 60
Beijing 60
Berlin 94
Cape Town 60
Chongqing 60
Copenhagen 70
Delhi 60
Jakarta 100
Johannesburg 60
San Francisco 50
Santiago 90
Sédo Paulo 99
Singapore 100
Sydney 60
Tel Aviv 70
Tokyo 72
Zurich 60

5.90
0.07
5.53
3.12
1.01
6.18
0.51
1.90
3.12
11.09
1.54
1.75
3.25
4.89
3.91
7.61
7.25

—-12%
—16%
—6%
—20%
—15%
—6%
—30%
—5%
—24%
—6%
—14%
—19%
—6%
—5%
—6%
—6%
—6%

—45%
—29%
—30%
—17%
—35%
—40%
—30%
—13%
—-17%
—40%
—36%
—57%
—32%
—68%
—55%
—68%
—55%

the sensors and computers require more frequent or more expensive maintenance efforts. Acknowledging a lack of information, at
this point a zero-effect was assumed across all case study locations.

Impact of fleet operation on acquisition cost, insurance, maintenance, tires and fuel: Again, disaggregate information was not

available. Therefore a reduction of 30% in acquisition cost, 20% in insurance, 25% in maintenance and tire cost and 5% in fuel is
assumed for all case studies (Bosch et al., 2018).

Impact of fleet operation on parking: values could only be obtained for a subset of cities and varied greatly. Hence, for consistency

across the different cases it was assumed that there is no difference in parking cost between private and commercial vehicles.

Impact of electrification on acquisition cost: Currently, electric vehicles are usually more expensive than their combustion-engine

counterparts. However, the price-difference is mostly driven by the battery cost. Following Bosch et al. (2018), a zero-impact on
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Table A.8
External parameters.

Cleaning price per instance Hourly wage of drivers Annual interest rate Annual interest rate General sales tax/

[US-$1 [US-$1 (private) (commercial) VAT

Austin 15.00 15.00 4.5% 5.0% 8%
Beijing 4.52 2.54 5.2% 5.2% 17%
Berlin 10.95 21.57 5.9% 1.9% 19%
Cape Town 8.16 2.37 10.0% 8.0% 15%
Chongqing 4.52 3.01 5.2% 5.2% 17%
Copenhagen 11.88 37.29 4.8% 2.0% 25%
Delhi 3.72 0.79 9.0% 13.5% 12%
Jakarta 3.01 1.74 5.7% 11.9% 10%
Johannesburg 5.44 2.63 10.0% 8.0% 15%
San Francisco 19.00 19.00 4.0% 5.0% 8%
Santiago 4.26 4.92 18.0% 3.4% 19%
S3o Paulo 12.89 2.80 19.9% 13.0% 21%
Singapore 9.52 20.69 2.8% 1.7% 7%
Sydney 11.15 25.27 8.4% 1.5% 10%
Tel Aviv 13.02 23.43 5.0% 2.0% 17%
Tokyo 17.92 16.97 2.6% 1.5% 8%
Zurich 15.22 35.52 8.0% 1.5% 8%

acquisition cost is assumed, while battery costs are presented separately (compare Table A.4).

e Impact of electrification on maintenance cost: According to earlier research, vehicle electrification is expected to reduce main-
tenance cost by 35% (Diez, 2016). Since no country-specific values were found, this modifier was used for all case studies.
However, a key cost driver of electric vehicles will be the battery with approximately 0.04 US-$/km (Bosch et al., 2018). Assuming
a global market for supply of batteries, the same cost value was used for all case study areas.

e Impact of electrification on tire cost: An increase of 20% is assumed given that electric vehicles tend to be heavier than their
conventional counterparts.”*

All modifiers are provided as relative changes. Aligned modifyers are presented in Table A.5. Location-specific modifiers are
shown in Table A.6.

Since for public transport (Table A.7), cost values were only available on an aggregate level for most case study locations, analyses
were performed using the full operating costs only. In addition, the relative impact of automation and electrification was determined.
The full operating costs are meant to include all expenses of operators of public transport services and include capital costs, man-
agement, salaries, vehicle maintenance and depreciation, fuel etc. Not included in the full operational cost are construction costs (e.g.
for dedicated infrastructure), but only infrastructure usage fees if paid by the respective operator. It is important to note that the
production costs presented in the table usually do not correspond to the (politically or commercially defined) prices paid by travelers.**

Table A.8 presents the external parameters (step 3), which capture aspects of travel behavior and economic indicators relevant for
the operating costs of any business model. To reduce complexity, certain parameters were fixed for all locations. These include the
cleaning frequency (8 times per year for private cars, every second day for conventional taxis, every fourtieth ride for automated
taxis), credit periods (5 years for private and 3 years for commercial borrowers), payment handling fees (0.5%). For overhead and
vehicle management cost, the value of 24 CHF per vehicle per day was used from the Swiss analysis (Bosch et al., 2018) and scaled by
hourly compensation cost for manufacturing (c.f. Table A.10).*

Table A.9 presents the assumptions for the behavioral parameters relevant in step 4 of the algorithm (c.f. Section 3). Parameters
were obtained from household travel surveys, current taxi data or assignment models. Hence, they describe large-scale and mature
mobility services. It is assumed that these operational characteristics do not change through automation or electrification.

Since detailed data was not available for all cities, differences were expressed in terms of occupancy, speed and passenger trip
distance only. To reflect the generally lower data availability, only daily averages were used.?® On the same note, for pooled taxis, the
same speed and operations hours were assumed as for individual taxis. Moreover, passenger trip length was assumed 15% longer due
to potential detours (Alonso-Mora et al., 2017) and vehicle occupancy was fixed to 60% of the vehicle capacity. For both individual
and pooled taxis it was further assumed that they carry passengers only during 46% of their operating hours (54% idle time) across all
case study locations (compare Bosch et al. (2018)).

23 http://www.modelcenter.transport.dtu.dk/Noegletal /Transportoekonomiske-Enhedspriser

24In Beijing and Chongqing, operating costs were not available on the vehicle level. Instead, the presented values already are the full operating
costs per passenger km.

25 The assumed value for overhead and vehicle management cost is the same for conventional and automated fleets. It can be expected that
automated vehicles may demand more remote management (or even backup drivers) than human driven vehicles, but in turn management of
drivers is not required anymore. Lacking any more detailed information, it is assumed that these effects will cancel out.

26 The original approach allowed a further temporal disaggregation (Bosch et al., 2018).
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Table A.10
Exchange rates, purchasing power parities (PPP) and hourly compensation costs for manufacturing [US-$] for case study locations. Exchange rates
and PPP displayed in national currency units per US-$ for 2016 (OECD, 2018).

Country Local currency Exhange rate PPP Hourly comp. cost
Australia AUD 1.345 1.486 47.7
Austria EUR 0.904 0.800 41.5
Brazil BRL 3.491 1.995 11.2
Chile CLP 676.958 402.571 10.6
China CNY 6.644 3.474 3.1
Denmark DKK 6.732 7.356 48.5
Germany EUR 0.904 0.780 45.8
India INR 67.195 17.447 1.6
Indonesia IDR 13,308.327 4,091.834 2.6
Israel NIS 3.841 3.833 20.1
Japan JPY 108.793 100.279 35.3
Singapore SGD 0.840 0.840 24.2
South Africa ZAR 14.710 5.865 5.3
Switzerland CHF 0.985 1.232 57.8
United States USD 1.000 1.000 35.7

Data for Singapore was not available from OECD OECD (2018).
Therefore, the IMF’s World Economic Outlook Database,
October 2016, was used in this case.
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Appendix B. Detailed results

See Tables B.11 and B.12.

Table B.11
Production cost per passenger kilometer (in US-$ at EXCHR).
Location Technology Priv. car Ind. taxi Pooled taxi Urban bus
Austin conv. 0.26 1.45 0.67 0.44
auton. 0.24 0.39 0.22 0.24
auton. elect. 0.25 0.40 0.22 0.21
Beijing conv. 0.62 0.33 0.30 0.13
auton. 0.63 0.10 0.09 0.09
auton. elect. 0.64 0.11 0.10 0.08
Berlin conv. 0.45 1.78 1.06 0.36
auton. 0.45 0.29 0.18 0.25
auton. elect. 0.43 0.28 0.18 0.23
Cape Town conv. 0.22 0.19 0.15 0.23
auton. 0.22 0.10 0.08 0.19
auton. elect. 0.21 0.09 0.07 0.15
Chongqing conv. 0.16 0.17 0.15 0.05
auton. 0.17 0.09 0.08 0.04
auton. elect. 0.16 0.08 0.07 0.03
Copenhagen conv. 0.52 1.60 1.22 0.27
auton. 0.52 0.25 0.19 0.16
auton. elect. 0.51 0.24 0.19 0.15
Delhi conv. 0.08 0.10 0.09 0.02
auton. 0.09 0.06 0.06 0.02
auton. elect. 0.10 0.07 0.07 0.01
Jakarta conv. 0.18 0.30 0.18 0.08
auton. 0.19 0.18 0.11 0.07
auton. elect. 0.19 0.19 0.11 0.07
Johannesburg conv. 0.22 0.22 0.17 0.23
auton. 0.21 0.10 0.08 0.19
auton. elect. 0.20 0.09 0.07 0.15
San Francisco conv. 0.62 0.96 0.60 1.20
auton. 0.60 0.25 0.17 0.72
auton. elect. 0.61 0.25 0.17 0.68
Santiago conv. 0.33 0.45 0.25 0.08
auton. 0.35 0.18 0.11 0.05
auton. elect. 0.34 0.17 0.10 0.05
Sao Paulo conv. 0.55 0.50 0.26 0.03
auton. 0.55 0.27 0.16 0.01
auton. elect. 0.49 0.23 0.14 0.01
Singapore conv. 1.71 1.69 1.30 0.09
auton. 1.68 0.53 0.41 0.06
auton. elect. 1.63 0.51 0.39 0.06
Sydney conv. 0.54 1.55 0.84 0.36
auton. 0.55 0.28 0.16 0.12
auton. elect. 0.54 0.27 0.16 0.11
Tel Aviv conv. 0.58 0.87 0.79 0.16
auton. 0.56 0.25 0.23 0.07
auton. elect. 0.51 0.24 0.21 0.07
Tokyo conv. 0.64 2.46 1.35 0.42
auton. 0.64 0.46 0.30 0.14
auton. elect. 0.62 0.46 0.30 0.13
Zurich conv. 0.42 2.76 1.64 0.54
auton. 0.42 0.44 0.29 0.24
auton. elect. 0.39 0.42 0.28 0.23

124



Transportation Research Part A 138 (2020) 105-126

125

Ieam
€0 60 L0 L0 90 60 ¥'C 0T L€ 9T TL 1c v'e €€ 0'¢ ST 8y pue dUBUIIUIRIA
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Aroneg
01 9T 0C |4 144 9T ye LS 9'€ Sy [ 6°€ 61 €61 9 144 ¥9 uoneraidaq
C0 (4] S0 S0 €0 90 S0 1 ¥°0 L0 T'T €0 €0 01 L0 60 80 QoueInsuy
0 00 00 00 01l 10 €0 1 c0 (4 00 €0 9T 9’11 0 1o c0 XeL
20 €0 90 90 8'S [ ¥'C ¢ ST 6T 0T 184 €T 8'S €0 6'S ST S[[0} pue Subjred
S0 0 80 90 S0 01 90 6C 01 61 8T [ T €1 6'1 S'S 9T Buruea[d
8T ST Ty St 9t ST v 9 184 S'€ Le Sv (a4 6'S €S (4 8'S Pnd
(a4 86 96 611 611 C'€T 6'8C 6'vC 0L SvL CEIT 96CT S8EL €911 S'IST 9'80C 6°0¥C salrefes
suonerado

€0 €0 L0 80 90 60 1C €€ 0C Ly 16 C'8 9 9% 80T 9Vl T¢Il S[OIYSA pue pedayIaAQ  IXe} "AUOD
Ieam
z0 L0 90 90 90 L0 L1 €1 9T LT 8'S ST ¥'C (44 ST [ 9 PUE 90UBUIUIBIA
€1 I 91T LT TT ! 1c €T [ TT 6C 0T ST 8’1 1 ST €T Aroneg
91T [ 8T 6C ¥'S (4 €Y 6’9 184 S'S ¥'9 LYy ST 0°02 'S 'S €L uonenardaq
0 10 0 0 0 €0 c0 90 c0 0 Tl T0 T0 €0 €0 0 C0 doueInsuy
00 00 00 00 90 00 €0 L0 00 (4] 00 €0 9T 9’11 00 00 00 XeL
C0 €0 90 90 8'g T1 v'C 1'C L 6°C 0c (a4 €T 8'S €0 6°'S ST S[[0} pue unjred
80 L1 T 80 L0 1 ST €S 00T ¥'s 00T ot T 144 (4 TYrL LT1 Surues[d
TT 0 LT €1 LT 0T 0T 80 TT 61 ST 91 v'C 6’1 v'C (44 9T Pnd
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 saLrefes
suonerado

€0 €0 L0 80 90 60 1c €€ 0C Ly 6 C'8 19 9 80T 9%l T¢€l 92124 puE peay oA Xe) gy

umo, uadey
g SurbSuoyy aden 3mgsouueyor  eyeyer 3uiflleg oenues oned oeS AIAY [9], O0dSURIJ UBS unlsny AdupAs -uadop arodedurs urreg OANOL UoLNZ J[qelrea IIAIS

H. Becker, et al.

‘(YHDXH 18 $-SN ur un{pQT 1od 1S0D) SI01AISS IXE} 10§ S2INIdNIS 10D Jo uostreduro)
cr'd ?1qel



H. Becker, et al. Transportation Research Part A 138 (2020) 105-126

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.tra.2020.04.021.
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