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Abstract

In this work, we construct numerical methods to solve a wide range of problems in

finance. This includes the valuation under affine jump diffusion processes, chaotic and

hyperchaotic systems, and pricing fractional cryptocurrency models. These problems

are of extreme importance in the area of finance. With today’s rapid economic growth

one has to get a reliable method to solve chaotic problems which are found in economic

systems while allowing synchronization. Moreover, the internet of things is changing

the appearance of money. In the last decade, a new form of financial assets known as

cryptocurrencies or cryptoassets have emerged. These assets rely on a decentralized

distributed ledger called the blockchain where transactions are settled in real time.

Their transparency and simplicity have attracted the main stream economy players,

i.e, banks, financial institutions and governments to name these only. Therefore it is

very important to propose new mathematical models that help to understand their

dynamics. In this thesis we propose a model based on fractional differential equations.

Modeling these problems in most cases leads to solving systems of nonlinear ordi-

nary or fractional differential equations. These equations are known for their stiffness,

i.e., very sensitive to initial conditions generating chaos and of multiple fractional or-

der. For these reason we design numerical methods involving Chebyshev polynomials.

The work is done from the frequency space rather than the physical space as most

spectral methods do.

The method is tested for valuing assets under jump diffusion processes, chaotic

and hyperchaotic finance systems, and also adapted for asset price valuation under

fraction Cryptocurrency. In all cases the methods prove to be very accurate, reliable
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and practically easy for the financial manager.
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Chapter 1

General Introduction

The innovation brought by the digital world has affected the financial sector, bringing

along new concepts such as digital money or cryptocurrencies [65]. This new ecosys-

tem comes with its challenges when it comes to pricing of assets. Adding the fact

that processes in this new environment do not loose memories, this suggests the use

of fractional derivatives in the modelling. In this context asset pricing problems gets

more complicated and trying to find an analytical solution would be an obsolete task.

Thus the need for reliable numerical methods for solving such problems is of great

importance.

As most problems arising finance center around ODEs and PDEs, various numerical

methods have been introduced. They range from classical finite difference methods

(FDM), finite element method (FEM) to spectral methods. In FDM the idea to ap-

proximate the solution function by local polynomials of lower order resulting from the

Taylor expansion. Actually, one simply replaces the derivatives with finite-difference

expressions and demands that the resulting algebraic equations be satisfied exactly at

the grid points. Thus finite-difference formulations can be interpreted as collocation

methods without a trial solution [34]. However, difficulties arise in imposing boundary

conditions, and low-order finite-difference formulations are often inaccurate, particu-

larly on coarse grids.

Spectral methods on the other hand offer the route of approximating the solution

2



CHAPTER 1. GENERAL INTRODUCTION 3

globally by high order polynomials. Because of being extremely accurate, spectral

methods have been intensively studied in the past decades. Depending on trial func-

tions, we can have Fourier spectral method, or Legendre type of Chebyshev type and

many more. While Fourier types cater for periodic boundary conditions problems the

Chebyshev tends to suit for non-periodic boundary conditions. In this last case the

solution is approximated by a finite series of Chebyshev polynomials. However, the

questions is how to get the coefficients of the series.

Two main approaches are commonly used. The Chebyshev spectral methods could

be implemented as spectral collocation (or pseudospectral) methods, where the work

is carried in the physical space of the values at a specific grid or as Galerkin and tau

methods, where the work is done in the spectral space of the coefficients.

One main disadvantage of working in the physical space in order to find coefficients

is that the matrices resulting in the discretization process have an increased condition

number, and thus computational rounding errors deteriorate the expected theoretical

exponential accuracy. Moreover, the discretization matrices are in general fully popu-

lated, making efficient algebraic solvers hard to apply. These disadvantages are more

obvious when solving from fourth order problems onwards, where stability and numer-

ical accuracy are lost when applying higher order approximations. Several attempts

were made in order to try to circumvent these inconveniences of this approach but

most of them are based on the fairly large flexibility in the choice of trial and test func-

tions in order to reduce the condition number and the bandwidth of the matrices. For

more on this approach the reader is referred to Boyd [14], Dongarra et al. [26], Driscoll

[27], Hiegemann [48], Trefethen [93], Weideman and Reddy [101] to mention a few.

Working in the space of coefficients on the other hand takes advantage of the spectral

properties of Chebyshev polynomials resulting in avoiding full matrices and allowing

one to land with spares triangular of band matrices. A tremendous gain in computa-

tion is therefore achieved, see Bhrawy and Alofi [9], Gheorghiu [38], Trif [94, 95] and

some more.

In this thesis, we propose some robust numerical methods for solving fractional
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financial systems following this last approach mentioned previously and we extend it

to large time scale problems by using multiple domain and also to higher dimension. In

order to carry out our numerical experiments we used exclusively the software system

MATLAB.

For our study methodology we begin with presenting first some terminologies to-

gether with some basic mathematical tools necessary for our study research. These

include a quick review of fractional calculus, an introduction to Chebyshev polynomi-

als and the design of the spectral methods based on Chebyshev polynomials. In the

second part, we implement the methods to various types problems in finance. Here

we mention the valuation of asset price under affine jump diffusion process, chaotic

and hyperchaotic finance systems, and an extension to problems involving fractional

derivatives in finance.

More precisely, the rest of thesis is organised as follows: In Chapter 2 we present

fractional derivatives. Here some key basic functions related to theory are displayed to-

gether with the constructions of various fractional derivatives. The Grünwald-Letnikov

construction is reviewed. The Riemann-Liouville fractional and the Caputo fractional

derivatives and integrals are also presented. In addition to these approaches, a more re-

cent approach that removes singularities is presented: The Atangana-Baleanu fractional

derivative and integral. Important properties and convergence in all these approaches

are discussed in this chapter.

In chapter 3 a brief introduction to spectral method using Chebyshev polynomials

is presented. In this context, concepts of approximation, convergence, numerical dif-

ferentiation and integration are reviewed. We also introduce a multiple step spectral

method. Here the time domain is divided into subdomains and the spectral method is

run over each subdomains. The convergence of this multiple spectral method is also

studied.

Having laid the foundation, we can now go on part II where we implement the

spectral method for various problems encountered in finance.

In chapter 4 we design and implement a time multidomain spectral method for
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valuing affine stochastic volatility and jump diffusion models. The method is based on

a matrix operatorial a approach using Chebyshev numerical differentiation in the fre-

quency space. The method is also coupled with domain multiple steps to cater for large

scale time domain. Convergence is investigated and a comparison with existing spec-

tral method is performed. This work was published in Communications in Nonlinear

Science and Numerical Simulation under the same title.

In chapter 5 we present a robust spectral integral method for solving chaotic finance

system and synchronization. The method is based on Chebyshev numerical integration

applied in the frequency domain. The multiple step is applied on the time domain,

convergence is studied and we carry out extensive comparisons with other results ob-

tained by using some existing methods found in literature. This work was published

in Alexandria Engineering Journal under the same title.

In chapter 6 we provide a Comparative performance of time spectral methods for

solving hyperchaotic finance system. Here, both spectral methods using differentiation

matrix and integration matrix together with a multiple steps, are implemented on a

higher dimensional case: the hyperchaotic finance system. Convergence and stability

are investigated.

In chapter 7 we deal with more challenging problems involving cryptocurrency val-

uation in a fractional context. For such we propose a fractional spectral integral meth-

ods for valuing cryptocurrency asset flow fractional differential equations. The spectral

integral method previously designed in chapter 5 is revisited and extended to the frac-

tional case. Then we present numerical results to investigate the performance of our

method together with other existing results from other methods.

Finally the last chapter 8 is devoted to concluding remarks and scope for future

research.



Chapter 2

Literature review on fractional

calculus

2.1 History of fractional calculus

Fractional calculus is a generalization of classical calculus, to a non-integer order. If

this order is negative, the fractional derivative becomes a non-integer integration and

if it is positive it is a non-integral differentiation. Fractional calculus provides several

potentially useful tools for solving integral equations. It also comes naturally in the

mechanical modeling of materials which preserve the memory of past transformations

(see [55]). Hence the particular interest in calculus and fractional analysis have taken

place in recent decades.

Although classical calculus provides powerful tools for the modeling of a good num-

ber of phenomena studied in applied sciences, these tools do not take into account

of the abnormal dynamics that present certain complex systems encountered in real

life or in the interactions of society. Experimental results show that several processes

related to complex systems have a non-local dynamic that involves long-term effects.

Fractional derivatives and integral operators have some similarities with some of these

characteristics, which makes it a more suitable tool for modeling these phenomena.

6
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The history of fractional order calculus goes back of the end of the 17th century

[82]. specialists agree to trace its beginning to the last quarter of the year 1695 when

LâĂŹHospital raised a question to Leibniz by asking the meaning of dny
dxn when n = 1

2
.

Leibniz, in his response, wanted to initiate a reflection on a possible theory of non-

integer derivative, and wrote to LâĂŹHospital: "... this would lead to a paradox from

which, one day, we will have drawn useful conclusions." We had to wait for the years

1990 to see the first "useful consequences" appear.

A first acceptable attempt to that opened question was produced by Lacroix in

1819 [58, 60] who gave an answer claiming that d
1
2 x

dx
1
2
= 2
√

x
π

in his 700 pages long book

on Calculus published in 1819. He developed a more generalized result from a case of

integer order starting with

dny

dxn
=

m!

(m− n)!x
m−n, m ≥ n. (2.1.1)

substituting the factorial by the Gamma function which we will defined later he gets

dny

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n. (2.1.2)

He gives the particular case of y = x and n = 1
2

d1/2x

dx1/2
=

Γ(2)

Γ(3/2)
x

1/22

√

x

π
(2.1.3)

Unfortunately up to that time, no possible application were given until Abel in 1823

that gave a first application of this non-integer order derivative in "tautochrome prob-

lem", [2]. Abel proposed that the solution of this problem could be obtained via an

integral transform:

K =

∫ x

0

(x− t)−1/2f(t)dt, K = cst. (2.1.4)
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The above integral is replaced by the fractional derivative of order −1/2 and becomes

K =
√
π
d−1/2

dx−1/2
[f(t)] (2.1.5)

and by taking fractional derivative of order 1/2 both side of the equation yields

d1/2

dx1/2
K =

√
πf(x) (2.1.6)

Remembering that fractional derivative of a constant is not always equal zero, unless

if by chance the constant of integration is null.

It is few decades later that a first logical definition for the fractional derivative is

given by Liouville who published nine documents on this subject between 1832 and

1837 on the monomial x−a, a > 0.

Dq
Lx

−a = (−1)qΓ(q + a)

Γ(a)
x−a−q, a > 0. (2.1.7)

Other interesting work was produced by Joseph Fourier but mostly Riemann proposed

an approach which proved to be essentially that of Liouville, and it is since that she

carries the no "Approach de Riemann-Liouville ". Later, other theories emerged like

that of Grunwald-Leitnikov, Weyl and Caputo. AT that time there were hardly any

practical applications of this theory, and it is for this reason that it was considered an

abstract topic.

With the first conference organized B. Ross at the University of New Haven in

June 1974 under the title "Fractional Calculus and Its Applications" and for the first

study attributed to Oldham and Spanier [69] who published a book in 1974 after a

joint collaboration, started in 1968 and devoted to the presentation of the methods

and applications of calculus, fractional calculus started gaining momentum physics

and engineering. Since then, fractional calculus has gained popularity and important

consideration mainly due to the many applications in various fields of applied science

and engineering where it has been noticed that the behavior of a large number of



CHAPTER 2. LITERATURE REVIEW ON FRACTIONAL CALCULUS 9

physical systems can be described using the fractional order derivative which provides

an excellent instrument for the description of several

Today various fractional operators along with significant properties have been stud-

ied by several mathematicians and scientists. Due to distinct kernel representations in

distinct function spaces they generate diversity of definitions for fractional derivatives.

These include Riemann-Liouville fractional derivative, Caputo fractional derivative,

Caputo-Erdelyi-Kober fractional derivative, Caputo-Hadamard fractional derivative,

and Caputo-Fabrizio fractional derivatives [18], to mention just a few. These deriva-

tives actually reveal some few complications in applications; for instance, the Laplace

transform of Riemann-Liouville derivative consists of terms without physical significa-

tion and its constant is not zero. These difficulties were eradicated by Caputo fractional

derivative but they involve singular kernel. In order to avoid singularities, Caputo and

Fabrizio have presented new fractional derivative, namely, Caputo-Fabrizio fractional

derivatives based on exponential kernel [79]. Lately Atangana and Baleanu [5] pro-

posed another operator that also removes any singularity by simply introducing the

Mittag-Leffler function in the kernel.

Before we get into the fractional calculus world let us quickly recall some basic

functions which are essential.

2.2 Basic functions

2.2.1 The Gamma function

In the integer-order calculus the factorial plays an important role because it is one of the

most fundamental combinatorial tools. The Gamma function has the same importance

in the fractional-order calculus.
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Definition 1. The function Γ : (0,+∞)→ R defined by:

Γ(x) :=

∫ +∞

0

tx−1e−tdt (2.2.1)

is called the Euler’s Gamma function (or Euler’s integral of second kind).

In particular we have Γ(n) = (n− 1)! for any positive integer n

The exponential provides the convergence of this integral. The convergence at zero

obviously occurs for all x ∈ R+, actually this definition extends to all complex number

z from the right half of the complex plane (Re(z) > 0). Other generalizations for

values in the left half of the complex plane can be obtained as follows: if in (2.2.1) we

substitute e−t by the well-known limit

e−t = lim
n→∞

(

1− t

n

)n

and then use n-times integration by parts we obtain the following limit definition of

the Gamma function:

Γ(x) = lim
n→∞

n!nx

x(x+ 1)...(x+ n)
. (2.2.2)

Even if this expression was derived for positive real part of x, it is possible to use

it as well as a definition of the Gamma function at points with negative real part

except negative integer numbers. So now the Gamma function is defined for all z ∈
C − {0, 1, 2, ...}. Moreover in the sense of complex analysis the negative integers are

simple poles of z. For a better understanding, the graph of Γ(z) for real values of z is

given in Figure 2.2.1a

In many formulas the reciprocal Gamma function occurs, so it is reasonable to

define it simply by
1

Γ(x)
= lim

n→∞

x(x+ 1)...(x+ n)

n!nx
. (2.2.3)

In this way we also avoided the problem in negative integers, i.e. the function 1
Γ(x)

is

defined for all complex x (especially for real values see Figure 2.2.1b bellow).
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Figure 2.2.1: Plot of Gamma and inverse Gamma functions.

The main property of the factorial is (n + 1)n! = (n+ 1)!. Of course an analogous

rule holds for the Gamma function. In fact it can be proved from the definition (2.2.1)

by integrating by parts that

Γ(x+ 1) = xΓ(x). (2.2.4)

Despite the fact that we derived (2.2.4) only for points in the right half of the complex

plane, it follows that this formula holds even for points z for which −m < Re(x) ≤
−m+ 1, where m ∈ N since

Γ(x) =
Γ(x+m)

x(x+ 1)...(x+m− 1)
.

It is natural to expect a connection between the Gamma and the factorial functions.

This is provided by the formula (2.2.4) and by the fact that Γ(1) = 1:

Γ(n+ 1) = n! for n ∈ N. (2.2.5)
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2.2.2 The Beta function

The Beta function is very important for the computation of the fractional derivatives

of the power function. It is defined by the two-parameter integral

B(z, w) =

∫ 1

0

tz−1(1− t)w−1dt, Re(z) > 0, Re(w) > 0. (2.2.6)

Applying a Laplace transform for convolution on Beta function shows that:

B(z, w) = B(w, z), (2.2.7)

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
. (2.2.8)

The Beta function allows to get some useful results about the Gamma function such

as the following:

Γ(z)Γ(1 − z) =
π

sin πz
, (2.2.9)

Γ(z)Γ

(

z +
1

2

)

=
√
π21−2zΓ(2z), (2.2.10)

Γ

(

n+
1

2

)

=

√
π(2n)!

22nn!
. (2.2.11)

2.2.3 The Mittag-Leffler function

While the Gamma function is a generalization of the factorial function, the Mittag-

Leffler function is a generalization of the exponential function, first introduced as a

one-parameter function by the series (Podlubny [77], p.16). Later, the two-parameter

generalization is introduced by Agarwal, which is of great importance for the fractional

calculus. To see it clear let recall the definition of the exponential function:

ez =

∞
∑

k=0

zk

Γ(k + 1)
. (2.2.12)
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The generalization of (2.2.12) is:

Eα(z) =

∞
∑

k=0

zk

Γ(αk + 1)
, α > 0. (2.2.13)

The two-parameter is

Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
, α > 0, β ∈ R. (2.2.14)

The following properties hold:

E1,1(z) = ez, E0(z) =
1

1− z , (2.2.15)

E1,2(z) =
ez − 1

z
, E1(z) = ez, (2.2.16)

E2,1(z
2) = cosh(z), E2(z

2) = cosh(z), (2.2.17)

E2,2(z
2) =

sinh(z)

z
, E2(−z2) = cos(z), (2.2.18)

E 1
2
,1(z) = ez

2

erfc(−z). (2.2.19)

By differentiation term per term we get:

Em
α,β(z) =

∞
∑

k=0

(k +m)!

k!

tk

Γ(αk + αm) + β
. (2.2.20)

A more three-parameter generalization is given by:

Eα,m,l = 1 +

∞
∑

k=1

(

k−1
∏

j=0

Γ(α(jm+ l) + 1)

Γ(α(jm+ l + 1) + 1)

)

zk. (2.2.21)

2.3 Basic fractional Calculus

The main objects of classical calculus are derivatives and integrals of functions - these

two operations are inverse to each other in some sense. If we start with a function f(t)

and put its derivatives on the left-hand side and on the right-hand side we continue
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with integrals, we obtain a both-side infinite sequence.

...,
d2f(t)

dt2
,
df(t)

dt
, f(t),

∫ t

a

f(τ)dτ,

∫ t

a

∫ τ1

a

f(τ)dτdτ1, ... (2.3.1)

Fractional calculus tries to interpolate this sequence so that this operation unifies the

classical derivatives and integrals and, generalises them for non-integer order. There

are many ways to define the fractional derivative or integral and these approaches are

called according to their authors. For example the Grunwald-Letnikov definition of

fractional derivatives and integrals starts from classical definitions of derivatives and

integrals based on infinitesimal division and limit. The disadvantages of this approach

are the technical difficulty in the computations, the proofs and the large number of

restrictions on functions. Fortunately there are other, more elegant approaches like the

Riemann-Liouville definition and the Caputo definition. A more recent approach that

removes singularities is the Atangana-Baleanu fractional derivative and integral which

takes its roots from the Caputo-Fabrizio fractional derivative.

Let us now introduce some definitions and concepts behind the fractional derivatives

and integrals.

2.3.1 The Grünwald-Letnikov construction

The construction takes its origin from the classical definition of the usual derivative of

integer order, then generalises it to a fractional order. As such, let us then begin with

the definition of the derivative of a continuous smooth function f at any point x in its

domain [40].
d

dx
f(x) = lim

h→0

f(x)− f(x− h)
h

.

Repeated composition of this operation leads to

dn

dxn
f(x) = lim

h→0

1

hn

n
∑

k=0

(−1)n
(

n

k

)

f(x− kh), ∀n ∈ N. (2.3.2)
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We illustrate this definition by obtaining a second order derivative of the function

f(x) = x4 as shown below

d2

dx2
(x4) = lim

h→0

1

h2

2
∑

k=0

(−1)j
(

2

k

)

(x− kh)4

= lim
h→0

1

h2
[

x4 − 2(x− h)4 + (x− 2h)4
]

= lim
h→0

[

12x2 − 24xh+ 14h2
]

We can generalise Equation (2.3.2) for non-integer order, but to do this we must not

only generalize the binomial coefficients, we also need to determine the appropriate

generalization of the upper limit in the summation, which we wrote as n in equation

(2.3.2). So, let us go back and derive "from stratch" the operations of differentiation

and integration. Consider an arbitrary smooth function f(x). We define a shift oper-

ator σh such that: σhf(x) = f(x − h). Let us consider a general operator D defined

by

Dn[f(x)] = lim
h→0

(

1− σh
h

)n

f(x).

Recalling the geometric series expression 1
1−z

= 1+ z + z2 + z3 + ..., the effects of this

operator with n = +1 or −1 are

D1[f(x)] =

(

1− σh
h

)1

f(x) =
f(x)− f(x− h)

h
,

D−1[f(x)] =

(

1− σh
h

)−1

= h [f(x) + f(x− h) + f(x− 2h) + ... + f(0)] .

Taking the limit as h→ 0, we see that D is simply the differentiation operator and its

inverse, D−1, is the integration operator. This reproduces the ordinary derivative. For

example the second derivative of f(x) is

D2[f(x)] = lim
h→0

(

1− σh
h

)2

f(x) = lim
h→0

f(x)− 2f(x− h) + f(x− 2h)

h2
,
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which illustrates how we recover the binomial equation (2.3.2) for any ordinary differ-

entiation. In this context, we should actually write the second derivative as

(

1− σh
h

)2

f(x) =
1f(x)− 2f(x− h) + 1f(x− 2h)− 0f(x− 3h) + ... + 0f(0)

h2
.

If n is a positive integer, all the binomial coefficients after the first n + 1 are

identically zero (i.e., we have
(

n
k

)

= 0 for all k greater than n), so we can truncate

the series. But for any negative value of n or any positive fractional values of n, the

binomial coefficients are non-terminating, so we must include the entire summation

over the specified range. Consequently, the upper summation limit in (2.3.2) should

actually be
[

(x−x0)
h

]

, where x0 is the lower bound on the range of evaluation. We

often choose x0 = 0 by convention, but it is actually arbitrary, and we will see below

some circumstances in which the lower bound is not zero. In any case, we can re-write

equation (2.3.2) in a more correct form that does not rely on n being a positive integer

f (n)(x) = lim
h→0

1

hn

[

(x−x0)
h

]

∑

k=0

(−1)k
(

n

k

)

f(x− kh). (2.3.3)

Introducing the Gamma function (2.2.1) in place of the factorial and rearranging terms

allow to write an extension of the equation (2.3.3) to the real values of n:

f (q)(x) = lim
h→0

1

hq

[

(x−x0)
h

]

∑

k=0

(−1)q Γ(q + 1)

Γ(q + 1− k)k!f(x− kh). (2.3.4)

If n is an integer, the vanishing of the binomial coefficients for all k greater than n

implies that we don’t really need to carry the summation beyond k = n, and in the limit

as h goes to 0 the n values of f(xk) with non-zero coefficients all converge near f(x), so

the derivative is local. However, in general, the binomial expansion has infinitely many

non-zero coefficients, so the result depends on the values of x all the way down to x0.

We typically choose x0 = 0. Thus, as mentioned previously, the generalized derivative

is a non-local operation, just as is the integration. The general derivative depends on
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the value of the function f over the whole range from x0 to x. This can be seen from

the factor f(x − xk) in the summation in equation (2.3.2), showing that as k ranges

from 0 to x−x0

h
the argument of f ranges from x down to 0. It just so happens that

this non-locality disappears for positive ordinary derivatives.

Choosing x0 = 0 as the low end of our differentiation interval, the formula (2.3.4) for

the general derivative becomes

f (q)(x) = lim
h→0

1

hq

[ xh ]
∑

k=0

(−1)k Γ(q + 1)

k!Γ(q + 1− k)f(x− kh). (2.3.5)

We finally write an elegant definition of the Grünwald-Letnikov fractional derivative:

Definition 2. Let q be a positive number, f ∈ Cm[a, b], a ≤ x ≤ b and m = [q] + 1.

Then

f (q)(x) = lim
h→0

1

hqN

N
∑

k=0

(−1)k
(

q

k

)

f(x− khN). (2.3.6)

with hN = x−a
N

, is called the Grünwald-Letnikov fractional derivative of order q of the

function f .

According to the previous definition of fractional derivative, we can propose the

variable-order fractional operator now. Replacing the constant order with a given

function, the fractional derivative is indeed extended to the variable-order fractional

sense.

Definition 3. Let q(t) be a positive function of t, f ∈ Cm[a, b], a ≤ t ≤ b and m =

[q] + 1. Then

f (q(t))(t) = lim
h→0

1

h
q(t)
N

N
∑

k=0

(−1)k
(

q(t)

k

)

f(t− khN ). (2.3.7)

with hN = t−a
N

is called the Grünwald-Letnikov variable fractional order of the function

f .
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2.3.2 The Classical fractional derivatives

By classical, we refer to Riemann-Liouville and Caputo derivatives. The construction

is based on the Cauchy formula for integral. Assuming that a function f(x) is well

defined where x > 0, we can form the definite integral from 0 to x. Let call this

(J f)(x) =

∫ x

0

f(t)dt (2.3.8)

Repeating the process twice gives

(J2f)(x) =

∫ x

0

(J f)(t)dt =

∫ x

0

(∫ t

0

f(s)ds

)

dt, (2.3.9)

and this can be extended to an arbitrary higher order integration..

The Cauchy formula for repeated integration, namely

(Jnf)(x) =
1

(n− 1)!

∫ x

0

(x− t)n−1f(t)dt, (2.3.10)

leads to a straightforward way to the generalisation for n being a real number. However

the function defined in (2.3.10) is discrete. Let then remove the discrete nature of this

integral operator for any n real by inserting the Gamma function defined in (2.2.1)

which is a smooth extension of the factorial function. In this way, we get a natural

candidate for the definition of fractional integral operator.

Definition 4. Let α be a positive real number. The operator Jα defined on L1[a, b] by:

(Jαf)(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt. (2.3.11)

is called the Riemann-Liouville fractional integral operator of order α. For α = 0,

J0 = I is the Identity operator.

This is in fact a well-defined operator moreover the operator Jα is commutative.

Lemma 5. [55, 77] Let f be an integrable function on [a, b]. For any positive real
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number α, β we have

JβJαf = JαJβf = Jα+βf =
1

Γ(α+ β)

∫ x

0

(x− t)α+β−1f(t)dt (2.3.12)

and

(Jα)nf(t) = Jαnf(t), n = 1, 2, 3, ... (2.3.13)

These results are already well known in the case of integer order integrals.

Proof. [77] Let first prove (2.3.12) then (2.3.13) will follow immediately as a conse-

quence.

JαJβf(t) =
1

Γ(α)Γ(β)

∫ t

a

(t− s)α−1

∫ s

a

(s− u)β−1f(u)du ds

=
1

Γ(α)Γ(β)

∫ t

a

∫ s

a

(t− s)α−1(s− u)β−1f(u)du ds

=
1

Γ(α)Γ(β)

∫ t

a

f(u)

∫ s

a

(t− s)α−1(s− u)β−1du ds.

Using the following change of variables: v = s−u
t−u

, we get

JαJβf(t) =
1

Γ(α)Γ(β)

∫ t

a

f(u)(t− u)α+β−1

∫ 1

0

(1− v)α−1vβ−1dv du

=
1

Γ(α + β)

∫ t

a

(t− s)α+β−1f(t− u)α+β−1f(u)du.

Another important property regarding convergence is provided by the following

lemma

Lemma 6. [39] Let Jα be the Riemann-Liouville integral operator. Then

Jαf(t) −−−−−−→
uniformely

Jnf(t) n = 1, 2, ...

as α→ n.
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Proof. Consider f ∈ L1[a, b], then the following inequality holds:

∣

∣

∣
Jαf(t)− Jnf(t)

∣

∣

∣
≤
∫ t

a

∣

∣

∣

∣

(t− s)α−1

Γ(α)
− (t− s)n−1

Γ(n)

∣

∣

∣

∣

|f(s)|ds.

But since (t−s)α−1

Γ(α)
→ (t−s)n−1

Γ(n)
as α→ n, n = 1, 2...

then Jαf(t)→ Jnf(t).

Theorem 7. [55] Let f be a continuous function on [a, b], then

lim
α→0

Jαf(t) = f(t).

Proof. Whenever f is differentiable in [a, b] one just needs to apply integration by part.

that is,

Jαf(t) =

∫ t

a

(t− s)α−1

Γ(α)
f(s)ds

=
(t− a)α
Γ(α + 1)

f(a) +

∫ t

a

(t− s)α
Γ(α + 1)

f ′(s)ds,

taking the limit we get

lim
α→0

Jαf(t) = f(a) +

∫ t

a

f ′(s)ds

= f(a) + f(t)− f(a)

= f(t).
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In the case f is not differentiable, then

Jαf(t) =

∫ t

a

(t− s)α−1

Γ(α)
f(s)ds

=

∫ t

a

(t− s)α−1

Γ(α)
[f(s)− f(t)] ds+ f(t)

Γ(α)

∫ t

a

(t− s)α−1ds

Jαf(t) =

∫ t−δ

a

(t− s)α−1

Γ(α)
[f(s)− f(t)] ds

+ f(t)
(t− s)α
Γ(α+ 1)

+

∫ t

t−δ

(t− s)α−1

Γ(α)
[f(s)− f(t)] ds (2.3.14)

for some δ small enough.

Let us consider the second integral on the right hand side. For every δ > 0 there exists

ǫ > 0 such that whenever |f(s)− f(t)| < δ then

∣

∣

∣

∣

∫ t

t−δ

(t− s)α−1

Γ(α)
[f(s)− f(t)] ds

∣

∣

∣

∣

<
ǫ

Γ(α)

∫ t

t−δ

(t− s)α−1ds

<
ǫδα

Γ(α + 1)
.

And taking into account that ǫ→ 0 as δ → 0, we obtain that for all α > 0

lim
δ→0

∣

∣

∣

∣

∫ t

t−δ

(t− s)α−1

Γ(α)
[f(s)− f(t)] ds

∣

∣

∣

∣

= 0,

considering an arbitrary ǫ > 0 and choose δ such that

∣

∣

∣

∣

∫ t

t−δ

(t− s)α−1

Γ(α)
[f(s)− f(t)] ds

∣

∣

∣

∣

≤ ǫ, ∀α ≥ 0.

For fixed δ we obtain the following estimate of the first integral in the right hand side

of the equation (2.3.14)

∣

∣

∣

∣

∫ t−δ

a

(t− s)α−1

Γ(α)
[f(s)− f(t)] ds

∣

∣

∣

∣

≤ ǫ

Γ(α)

∫ t−δ

a

[

(t− α)α−1
]

ds

≤ ǫ

Γ(α + 1)
[(t− a)α − δα] .
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Then it follows that for a fixed δ > 0

lim
α→0

∣

∣

∣

∣

∫ t−δ

a

(t− s)α−1

Γ(α)
[f(s)− f(t)] ds

∣

∣

∣

∣

= 0.

Considering that

|Jαf(t)− f(t)| =

∣

∣

∣

∣

∫ t

a

(t− s)α−1

Γ(α)
[f(s)− f(t)] ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

a

(t− s)α−1

Γ(α)
f(t)ds− f(t)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t−δ

a

(t− s)α−1

Γ(α)
[f(s)− f(t)] ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

t−δ

(t− s)α−1

Γ(α)
[f(s)− f(t)] ds

∣

∣

∣

∣

+ |f(t)|
∣

∣

∣

∣

(t− s)α
Γ(α + 1)

− 1

∣

∣

∣

∣

,

and taking into account the limits and the estimates we obtain

lim
α→0

sup |Jαf(t)− f(t)| ≤ ǫ,

where ǫ can be chosen as small as we wish, therefore

lim
α→0

sup |Jαf(t)− f(t)| = 0,

and then

Jαf(t)→ f(t), as α→ 0.

Example 8. Let t > 0, then

Jαtγ =
Γ(1 + γ)

Γ(γ + α + 1)
tγ+α, γ > −1.

In particular for γ = 0, then the Riemann-Liouville fractional integral of a constant C

of order α is

JαC =
C

Γ(α + 1)
tα.



CHAPTER 2. LITERATURE REVIEW ON FRACTIONAL CALCULUS 23

Example 9. Let f(t) = (t− a)γ for some γ > −1 and α > 0. Then

Jαf(t) =
Γ(γ + 1)

Γ(γ + α+ 1)
(t− a)α+γ .

Example 10. Let f(t) = eat where a is a constant. then

Jαeat =
1

Γ(α)

∫ t

0

(t− s)α−1easds, α > 0

=
eat

Γ

∫ t

0

uα−1e−audu, where u = t− s

= tαeatΓ∗(α, αt)

where Γ∗ stands for the incomplete Gamma function.

The Riemann-Liouville fractional order derivative of f is defined as the mth deriva-

tive of the fractional integral of order m− q. That is:

Definition 11. Let f(t) be an integrable function on [a, T ]. For all a < t < T the

Riemann-Liouville fractional derivative of order q > 0 of f is given by:

RL
a Dq

t f(t) =
dm

dtm

[

1

Γ(m− q)

∫ t

a

(t− τ)m−q−1f(τ)dτ

]

, m = [q] + 1. (2.3.15)

And for the case q = k ∈ N then m = k + 1, we recover the normal differentiation

formula
RL
a Dk

t f(t) =
1

Γ(1)

dk+1

dtk+1

[
∫ t

a

f(τ)dτ

]

=
dk

dtk
f(t).

The classical integer derivatives becomes like singularities among the Riemann-

Liouville fractional derivatives. They turn out to be the only fractional derivatives that

do not depend on the lower bound a. Remark that if f is a monomial i.e. f(t) = tr

then,
RL
a Dα

0 t
r =

Γ(r + 1)

Γ(r + 1− α)t
r−α, α > 0, r > −1, t > 0. (2.3.16)

Thus for a constant function f we have the remarkable fact that its fractional derivative

will not be zero as with any normal integer differentiation. In fact from (2.3.16) and
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taking r = 0 we have,

RL
a Dα1 =

t−α

Γ(1− α) , α ≥ 0, t > 0. (2.3.17)

Similarly to the Riemann-Liouville derivative, let introduce another fractional deriva-

tive: the Caputo derivative, which is defined as the fractional integral of the mth-

derivative. That is:

Definition 12. Let q be a positive number, f ∈ Cm[0, t] and 0 ≤ τ ≤ t. Then the

Caputo fractional derivative of f(t) is defined as

C
aD

q
t f(t) =

1

Γ(m− q)

∫ t

a

f (m)(τ)

(t− τ)q+1−m
dτ, m− 1 ≤ q < m (2.3.18)

and for the case k ∈ N then m = k + 1 thus we recover the usual derivative

C
aD

k
t f(t) =

1

Γ(1)

∫ t

a

dk+1

dtk+1
f(τ)dτ =

dk

dtk
f(t).

With the Caputo derivative we recover the fact that the derivative of a constant

function is indeed zero, however we have to pay the price that f has to bem-differentiable.

The following relations allows to see the equivalence between the Riemann-Liouville

and the Caputo fractional derivatives:

RL
a Dαf(t) = C

aD
αf(t) +

m−1
∑

k=0

(t− a)k−α

Γ(k − α + 1)
f (k)(a), a > 0 (2.3.19)

Consequently,

RL
a Dαf(t) := DmJm−αf(t) 6= Jm−αDmf(t) := C

aD
αf(t), (2.3.20)

unless the function f(t) along with its first m− 1 derivatives vanishes at t = a.
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2.3.3 Basic properties of classical fractional derivatives

Let f and g be two functions smooth enough and let λ, µ, q, a be constants real with

(a > 0) and m = [q] + 1. Then

aD
q
t [λf(t) + µg(t)] = λaD

q
t f(t) + µaD

q
t g(t), , (2.3.21)

aD
q
t

[

∞
∑

k=0

fk(t)

]

=

∞
∑

k=0

aD
q
t fk(t), (2.3.22)

RL
a Dαf(t) = C

aD
αf(t) +

m−1
∑

k=0

(t− a)k−α

Γ(k − α + 1)
f (k)(a), (2.3.23)

aD
q
t [aD

r
t f(t)] = aD

q+r
t f(t), (2.3.24)

d

dt
Jqf(t) = Jq d

dt
f(t). (2.3.25)

Proof. [55, 77] For Equation (2.3.22) we will illustrate the proof using the Riemann-

Liouville integral. The case of the Caputo derivative is similar.

RL
a Dq

t

[

∞
∑

k=0

fk(t)

]

=
1

Γ(n− q)
dn

dtn

∫ t

a

(t− τ)n−q−1
∞
∑

k=0

fk(t)dτ

=
1

Γ(n− q)
dn

dtn

∫ t

a

∞
∑

k=0

(t− τ)n−q−1fk(t)dτ

=
1

Γ(n− q)
dn

dtn

∞
∑

k=0

∫ t

a

(t− τ)n−q−1fk(t)dτ

=
1

Γ(n− q)
∞
∑

k=0

dn

dtn

∫ t

a

(t− τ)n−q−1fk(t)dτ

=

∞
∑

k=0

RL
a Dq

t fk(t).
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As for Equation (2.3.23) we have

RL
a Dq

t f(t) =
1

Γ(n− q)
dn

dtn

∫ t

a

(t− τ)n−q−1f(τ)dτ

=
1

Γ(n− q)
dn

dtn

[

(t− a)n−qf(a)

n− q +

∫ t

a

(t− τ)n−q

n− q f ′(τ)dτ

]

=
dn

dtn

[

n−1
∑

k=0

(t− a)n+k−qf (k)(a)

Γ(n+ k − q + 1)
+

1

Γ(2n− q)

∫ t

a

(t− τ)2n−q−1f (n)(τ)dτ

]

=

n−1
∑

k=0

(t− a)k−qf (k)(a)

Γ(k − q + 1)
+

1

Γ(n− q)

∫ t

a

(t− τ)n−q−1f (n)(τ)dτ

=

n−1
∑

k=0

(t− a)k−qf (k)(a)

Γ(k − q + 1)
+ C

aD
q
t f(t).

2.3.4 Convergence

We will start our analysis by first introducing the following preliminary result:

Lemma 13. [40, 55] Let n− 1 < q < n, n ∈ N, q ∈ R and f(t) be such that C
0D

qf(t)

exists. Then the following properties for Caputo fractional derivative operator holds

lim
q→n

C
0D

q
t f(t) = f (n)(t),

lim
q→n−1

C
0D

q
t f(t) = f (n−1)(t)− f (n−1)(0).

Proof. [40, 55] The proof uses integration by parts.

C
0D

q
t f(t) =

1

Γ(n− q)

∫ t

0

f (n)(s)

(t− s)q−n+1
ds

=
1

Γ(n− q)

[

−f (n)(s)
(t− s)n−q

n− q

∣

∣

∣

∣

t

0

+

∫ t

0

f (n+1)(s)
(t− s)n−q

n− q ds

]

=
1

Γ(n− q + 1)

[

f (n)(0)tn−q +

∫ t

0

f (n+1)(s)(t− s)n−qds

]

.
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Now by taking limit for q → n and q → n− 1, respectively, we get

lim
q→n

C
0D

q
t f(t) =

[

f (n)(0) + f (n)(s)(t− s)
]s=t

s=0
= f (n)(t),

and

lim
q→n−1

C
0D

q
t f(t) =

[

f (n)(0)t+ f (n)(s)(t− s)
]s=t

s=0
+

∫ t

0

f (n)(s)ds

=
[

f (n−1)(s)
]s=t

s=0

= f (n)(t)− f (n)(0).

For the Riemann-Liouville fractional derivative the corresponding property reads

lim
q→n

RL
0 Dq

t f(t) = f (n)(t),

lim
q→n−1

RL
0 Dq

t f(t) = f (n−1)(t).

Example 14. Let q ∈ (0, 1] and consider γ > −1, then

C
aD

q
t (t− a)γ =

Γ(γ + 1)

Γ(1 + γ − q)(t− a)
γ−q,

and also,

lim
q→1

C
aD

q
t (t− a)γ = γ(t− a)γ−1,

lim
q→0

C
aD

q
t (t− a)γ = γ(t− a)γ.
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Example 15.

C
aD

q
t (1 + tγ) = J1−q(γtγ−1)

= γJ1−qtγ−1

= γ
Γ(γ)

Γ(γ − q + 1)tγ−q

=
Γ(γ + 1)

Γ(γ − q + 1)
tγ−q,

and

RL
a Dq

t (1 + tγ) = RL
a DJ1−q(1 + tγ)

= RL
a Dq

t

[

t1−q

Γ(2− q) +
Γ(γ + 1)

Γ(γ − q + 2)
tγ−q+1

]

=
(1− q)t−q

Γ(2− q) +
(γ − q + 1)Γ(γ + 1)

Γ(γ − q + 2)
tγ−q

=
t−q

Γ(1− q) +
Γ(γ + 1)

Γ(γ − q + 1)
tγ−q.

The fractional derivatives presented above have all one common issue: They contain

singularities due to their kernel. Let us now provide a new fractional derivative that

removes singularities.

2.4 Atangana-Baleanu fractional derivative

We recall that the Mittag-Leffler function is the solution of the following fractional

ordinary differential equation:

dαy

dxα
= ay, 0 < α < 1. (2.4.1)

The Mittag-Leffler function and its generalized versions are therefore considered as

nonlocal functions. Let us recall the generalized Mittag-Leffler function (2.2.13) at
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z = −t:
Eα(−tα) =

∞
∑

k=0

(−t)αk
Γ(αk + 1)

. (2.4.2)

The Taylor series of e−a(t−y) at the point t is given by:

e−a(t−y) =
∞
∑

k=0

(−a(t− y))k
k!

. (2.4.3)

By changing the kernel 1
(t−τ)

with the function e−
αt

1−α and 1
Γ(1−α)

with M(α)
1−α

we get the

new Caputo-Fabrizio fractional derivative

CF
a Dq

t f(t) =
M(α)

1− α

∫ t

a

f ′(τ)e−
α(t−τ)
1−α dτ. (2.4.4)

The function M(α) is termed as the normalizing function. If we choose a = α
1−α

and

replace the above expression into Caputo-Fabrizio derivative we conclude that

CF
a Dα

t f(t) =
M(α)

1− α
∞
∑

k=0

(−a)k
k!

∫ t

b

df(y)

dy
(t− y)kdy. (2.4.5)

To solve the problem of non-locality, we derive the following expression. In equation(2.4.5),

we replace k! by Γ(αk + 1) also (t− y)k is replaced by (t− y)ak to obtain:

Dα
t f(t) =

M(α)

1− α
∞
∑

k=0

(−a)k
Γ(αk + 1)

∫ t

b

df(y)

dy
(t− y)akdy. (2.4.6)

Definition 16. Let f ∈ H1(a, b), b > a, α ∈ [0, 1], then the definition of the new

fractional derivative is given as:

ABC
bD

α
t f(t) =

B(α)

1− α

∫ t

b

f ′(x)Eα

[

−α(t− x)
α

1− α

]

dx. (2.4.7)

Of course B(α) has the same properties as in Caputo-Fabrizio case. The above

definition will be helpful to discuss real world problems and it also will have great

advantage when using the Laplace transform to solve some physical problem with
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initial condition. However, when α = 0 we do not recover the original function except

when the function vanishes at the origin. To avoid this issue, we propose the following

definition.

Definition 17. Let f ∈ H1(a, b), b > a, α ∈ [0, 1] then, the definition of the new

fractional derivative is given as:

ABR
bD

α
t f(t) =

B(α)

1− α
d

dt

∫ t

b

f(x)Eα

[

−α(t− x)
α

1− α

]

dx. (2.4.8)

Equation (2.4.7) and (2.4.8) have a non-local kernel. Also in equation (2.4.7) when

the function is constant we get zero.

2.4.1 Properties of the new derivatives

In this section, we start by presenting the relation between both derivatives with

Laplace transform. By simple calculation we conclude that

L
[

ABR
0D

α
t f(t)

]

(p) =
B(α)

1− α
pαL[f(t)](p)
pα + α

1−α

, (2.4.9)

and

L
[

ABC
0D

α
t f(t)

]

(p) =
B(α)

1− α
pαL[f(t)](p)− pα−1f(0)

pα + α
1−α

, (2.4.10)

respectively. The following theorem can therefore be established

Theorem 18. [5] Let f ∈ H1(a, b), b > a, α ∈ [0, 1] then, there exists a function H

such that the following relation holds

ABC
0D

α
t f(t) =

ABR
0D

α
t f(t) +H(t). (2.4.11)
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Proof. [5] By using the definition (2.4.11) and Laplace transform applied on both sides

we obtain easily the following result:

L
[

ABC
0D

α
t f(t)

]

(p) =
B(α)

1− α
pαL[f(t)](p)
pα + α

1−α

− pα−1f(0)

pα + α
1−α

B(α)

1− α. (2.4.12)

Following equation (2.4.9) we have

L
[

ABC
0D

α
t f(t)

]

(p) = L
[

ABC
0D

α
t f(t)

]

(p)− pα−1f(0)

pα + α
1−α

B(α)

1− α. (2.4.13)

Applying the inverse Laplace on both sides of the equation (2.4.13) we obtain:

ABC
0D

α
t f(t) =

ABR
0D

α
t f(t)−

B(α)

1− αf(0)Eα

[

− α

1− αt
α

]

. (2.4.14)

This completes the proof.

Theorem 19. [5] Let f be a continuous function on a closed interval [a, b]. Then the

there exists a constant K such that the following inequality is obtained on [a, b].

∥

∥

ABR
0D

α
t f(t)

∥

∥ <
B(α)

1− αK, (2.4.15)

where the norm here and throughout the rest of this chapter, is defined by: ‖f(t)‖ =
maxa≤t≤b |f(t)|.
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Proof.

∥

∥

ABC
0D

α
t f(t)

∥

∥ =

∥

∥

∥

∥

B(α)

1− α

∫ t

0

d

dx
f(x)Eα

[

−α(t− x)
α

1− α

]

dx

∥

∥

∥

∥

<
B(α)

1− α

∫ t

0

∣

∣

∣

∣

d

dx
f(x)

∣

∣

∣

∣

Eα

[

−α(t− x)
α

1− α

]

dx

<
B(α)

1− α

∫ t

0

sup
0≤x≤t

∣

∣

∣

∣

d

dx
f(x)

∣

∣

∣

∣

Eα

[

−α(t− x)
α

1− α

]

dx

≤ B(α)

1− α

∥

∥

∥

∥

d

dx
f(x)

∥

∥

∥

∥

∫ t

0

Eα

[

−α(t− x)
α

1− α

]

dx

≤ B(α)

1− α

∥

∥

∥

∥

d

dx
f(x)

∥

∥

∥

∥

sup
0≤x≤t

∫ t

0

Eα

[

−α(t− x)
α

1− α

]

dx

≤ B(α)

1− α

∥

∥

∥

∥

d

dx
f(x)

∥

∥

∥

∥

M

≤ B(α)

1− αK.

where M is a constant large enough and K is taken to be
∥

∥

d
dt
f(x)

∥

∥M . Now given

∥

∥

ABR
0D

α
t f(t)

∥

∥ =

∥

∥

∥

∥

ABC
0D

α
t f(t) +

B(α)

1− αf(0)Eα

[

− α

1− αt
α

]∥

∥

∥

∥

≤ B(α)

1− αK +
B(α)

1− α

∣

∣

∣

∣

f(0)Eα

[

− α

1− αt
α

]∣

∣

∣

∣

≤ B(α)

1− α

[

K +

∣

∣

∣

∣

f(0)Eα

[

− α

1− αt
α

]∣

∣

∣

∣

]

≤ B(α)

1− αL.

This completes the proof.

Theorem 20. [5] The AB derivative in Riemann and Caputo sense possess the Lip-

schitz condition, that is to say, for a given couple function f and g, there exists a

function H(t) such that the following inequalities can be established:

∥

∥

ABR
0D

α
t f(t)−ABR

0D
α
t g(t)

∥

∥ ≤ H(t)‖f(t)− g(t)‖ (2.4.16)
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and also
∥

∥

ABC
0D

α
t f(t)−ABC

0D
α
t g(t)

∥

∥ ≤ H(t)‖f(t)− g(t)‖. (2.4.17)

We present the proof of (2.4.16) as the proof of (2.4.17) can be obtained similarly.

Proof. [5, 7]

∥

∥

ABC
0D

α
t f(t)−ABC

0D
α
t g(t)

∥

∥ =

∥

∥

∥

∥

B(α)

1− α

∫ t

0

d

dx
[f(x)− g(x)]Eα

[

−α(t− x)
α

1− α

]∥

∥

∥

∥

dx

≤ B(α)

1− α

∫ t

0

∣

∣

∣

∣

d

dx
[f(x)− g(x)]

∣

∣

∣

∣

Eα

[

−α(t− x)
α

1− α

]

dx

≤ B(α)

1− α

∥

∥

∥

∥

d

dt
[f(t)− g(t)]

∥

∥

∥

∥

∫ t

0

Eα

[

−α(t− x)
α

1− α

]

dx

Using the Lipschitz condition of the first order derivative, we can find positive constant

M such that

∥

∥

∥

∥

d

dt
[f(t)− g(t)]

∥

∥

∥

∥

< θ

<
M

‖f − g‖‖f − g‖ = θ‖f − g‖

for θ = M
‖f−g‖

. This implies

∥

∥

ABC
0D

α
t f(t)−ABC

0D
α
t g(t)

∥

∥ < K‖f − g‖,

taking K = B(α)θ
1−α

∣

∣

∣

∫ t

0
Eα

[

−α (t−x)α

1−α

∣

∣

∣
dx
∣

∣

∣
completes the proof.

2.4.2 AB Derivative and the Related Fractional Integral

From the properties of the fractional derivative, we can easily prove by taking the

inverse Laplace transform and using the convolution theorem that the following time

fractional ordinary differential equation:

ABC
0D

α
t f(t) = u(t) (2.4.18)
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has a unique solution, namely

f(t) =
1− α
B(α)

u(t) +
α

B(α)Γ(α)

∫ t

0

u(y)(t− y)α−1dy. (2.4.19)

Definition 21. The fractional integral associated to the new fractional derivative with

non-local kernel is defined as:

AB
aI

α
t [f(t)] =

1− α
B(α)

f(t) +
α

B(α)Γ(α)

∫ t

a

f(y)(t− y)α−1dy. (2.4.20)

When α is zero, we recover the initial function and also for α is 1, we obtain the

ordinary integral.

The ABR fractional derivative can be expressed as

ABR
0D

α
t f(t) =

B(α)

1− α
d

dt

∞
∑

k=0

( −α
1− α

)k
d

dt

[

Jαk+1
t f(t)

]

. (2.4.21)

where Jα
t stands for the Riemann-Liouvile fractional integral defined in (2.3.11). The

AB fractional integral operator ABIαt follows directly from the solution (2.4.19) and be

precisely defined as:

ABIαt f(t) =
1− α
B(α)

f(t) +
α

B(α)
Jα
t f(t). (2.4.22)

The relation (2.4.22) can be easily developed by applying the Laplace transform to

equation (2.4.18) as it was demonstrated by Baleanu and Fernandez [7]. Further, we

have the following left and right inverse properties:

ABIαt
[

ABR
0D

α
t f(t)

]

= f(t), (2.4.23)

ABR
0D

α
t

[

ABIαt f(t)
]

= f(t) (2.4.24)
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and the commutative properties for β ∈ (0, 1)

ABRDα
t

[

ABRDβ
t f(t)

]

=ABR Dβ
t

[

ABRDα
t f(t)

]

, (2.4.25)

All proves regarding the above relations can be found in details in Baleanu and Fer-

nandez [7].

Having discussed fractional derivatives and fractional integral together with their

basic properties, let us now explore the numerical tool that will unable us to solve

differential equations in a most efficient way. Here we mention spectral method.



Chapter 3

Spectral Method

One of the most well known spectral method is the Fourier spectral method. However

it is only appropriate for problems with periodic boundary conditions. If a Fourier

method is applied to a non-periodic problem, it inevitably induces the so-called Gibbs

phenomenon, and reduces the global convergence rate to O(N − 1) (cf. Gottlieb and

Orszag [41]). Consequently, one should not apply a Fourier method to problems with

non-periodic boundary conditions. Instead, one should use orthogonal polynomials

which are eigenfunctions of some singular Sturm-Liouville problems. The commonly

used orthogonal polynomials include the Legendre, Chebyshev, Hermite and Laguerre

polynomials. In this part we present spectral method based on Chebyshev polynomials.

3.1 Heuristic and construction of smooth periodic ver-

sion of a function

The idea in this approach is that given a function f we approximate the function by a

series of trigonometric functions. In the case where f is already periodic with period

T , then we know it has a Fourier series representation of the form

f(t) =
∞
∑

n=−∞

cne
i(nω0t). (3.1.1)

36
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If f is smooth enough, then the Fourier series coefficients cn decay rapidly with n. This

means we can get a very high accurate approximation of f from just a few of its Fourier

coefficients. More precisely if we consider N points then the error in our approximation

would be of the order of e−αN for a large α. Finally, it is also known that we can get

the Fourier coefficients in a very simple way at some suitable N sample points.

With such a powerful tool how can such approach be extended to the case of non-

periodic function? This is answered in a simple way as follows: We transform the non-

periodic function into a periodic function then apply the fourier transform in (3.1.1).

To construct a periodic function out of the non-periodic function f we restrict

ourself to the interval [−1, 1] and define:

g(θ) = f(cos θ).

This a smooth periodic function. As θ varies from 0 to π, g(θ) describes f over the

interval [−1, 1], but in a "backward" way. Next, from π to 2π, g(θ) describes f over

[−1, 1] this time in the correct orientation, ie from f(−1) to f(1), see Figure 3.1.1.

Notice also that g admits turning points at θ = 0 and θ = π corresponding to x = 1

and x = −1 respectively, which are just end points and not necessary turning points

in f .

Since g is now periodic hence Equation (3.1.1) applies so it can be expressed in

terms of its fourier cosine series as:

g(θ) =
a0
2

+
∞
∑

k=1

ak cos kθ, (3.1.2)

with coefficients

ak =
2

π

∫ π

0

g(θ) cos kθ dθ. (3.1.3)



CHAPTER 3. SPECTRAL METHOD 38

−1.5 −1 0 1 1.5 2
−12

−6

−2

0

x

f(
x)

 

 

f(x)

(a) Initial non periodic function f(x) on
[−1.5, 1.7]

−2\pi pi 0 pi 2\pi
−6

−5

−2

−1

0

θ

g(
θ)

 

 

g(θ)=f(cos θ)

(b) Periodic function g(θ)

Figure 3.1.1: Construction of a periodic function g(θ) out of initial non-periodic func-
tion f(x)

We can then write f as:

f(t) = g(arccos t) (3.1.4)

f(t) =
a0
2

+

N/2
∑

k=1

ak cos(k arccos t). (3.1.5)

The last equation (3.1.5) is looking a priori ugly, but it was actually well redesigned

by the Russian mathematician Pafnuty Lvovich Chebyshev in a form of chebyshev

polynomials. Let us enter this new space of chebyshev polynomials...

3.2 Chebyshev polynomials

The Chebyshev polynomial Tn(x) of 1st kind is a polynomial in x ∈ [−1, 1] of degree

n > 0 defined by the relation:

Tn(x) = cosnθ, for x = cos θ (3.2.1)

ie. Tn(x) = cos(n arccos(x))
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Note that the definition of the Chebyshev polynomials can easily be extended to any

interval by just considering the shift mapping s : x → s(x) = 2
b−a

x − b+a
b−a

. We can

therefore work on the interval [−1, 1] then apply the inverse the shift mapping to allow

the catering of any interval [a, b].

As such the first few Chebyshev polynomials are plotted is Figure 3.2.1 and there

respective algebraic expressions are as follows:

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x.

From the trigonometric relation

cos(nθ) + cos(n− 2)θ = 2 cos θ cos(n− 1)θ (3.2.2)

we derive the three-term recurrence formula:

Tk+1(x) = 2xTk(x)− Tk−1(x), k = 1, 2, 3.... (3.2.3)

with T0(x) = 1 and T1(x) = x.

The Chebyshev polynomials are eigenfunctions of the Sturm-Liouville problem:

√
1− x2(

√
1− x2T ′

n(x))
′ + n2Tn(x) = 0, (3.2.4)

or equivalently,

(1− x2)T ′′
n (x)− xT ′

n(x) + n2Tn(x) = 0. (3.2.5)
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(c) T2(x) = 2x2 − 1
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(d) T3(x) = 4x3 − 3x
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(e) T4(x) = 8x4 − 8x2 + 1
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(f) T5(x) = 16x5 − 20x3 + 5x

Figure 3.2.1: Plot of the first six Chebyshev polynomials

Chebyshev polynomials (of 1st kind) are a special case of Jacobi polynomials {Jα,β
n }

for (α, β) = (−1/2,−1/2). Hence one can also derive its properties from those a Jacobi

polynomals.

An immediate consequence is the recurrence relation

2Tn(x) =
1

n + 1
T ′
n+1(x)−

1

n− 1
T ′
n−1(x), n ≥ 2. (3.2.6)
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One can derive from (3.2.1) that

Tn(−x) = (−1)nTn(x), Tn(±1) = (±1)n, (3.2.7)

|Tn(x)| ≤ 1, |T ′
n(x)| ≤ n2, (3.2.8)

(1− x2)T ′
n(x) =

n

2
Tn−1(x)−

n

2
Tn+1(x), (3.2.9)

2Tm(x)Tn(x) = Tm+n(x) + Tm−n(x), m ≥ n ≥ 0. (3.2.10)

and

T ′
n(±1) = (±1)n−1n2, (3.2.11)

T”n(±1) =
1

3
(±1)nn2(n2 − 1). (3.2.12)

It is also easy to show that

∫ 1

−1

Tn(x)Tm(x)
1√

1− x2
=
cnπ

2
δmn, (3.2.13)

where c0 = 2 and cn = 1 for n ≥ 1. Hence, we find from (3.2.4) that

∫ 1

−1

T ′
n(x)T

′
m(x)

1√
1− x2

=
n2cnπ

2
δmn, (3.2.14)

i.e., {T ′
n(x)} are mutually orthogonal with respect to the weight function

√
1− x2.

We can obtain from (3.2.6) that

T ′
n(x) = 2n

n−1
∑

k=0,k+n odd

1

ck
Tk(x), (3.2.15)

T”n(x) =

n−2
∑

k=0,k+n even

1

ck
n(n2 − k2)Tk(x). (3.2.16)

Another remarkable consequence of (3.2.1) is that the Gauss-type quadrature nodes

and weights can be derived explicitly.
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Theorem 22. [64, 87] Let {xj , wj}Nj=0 be a set of Chebyshev-Gauss-type quadrature

nodes and weights.

For Chebyshev-Gauss (CG) quadrature,

xj = − cos
(2j + 1)π

2N + 2
, wj =

π

N + 1
, 0 ≤ j ≤ N.

For Chebyshev-Gauss-Radau (CGR) quadrature,

xj = − cos
2πj

2N + 1
, 0 ≤ j ≤ N

w0 =
π

N + 1
, wj =

2π

2N + 1
, 1 ≤ j ≤ N.

For Chebyshev-Gauss-Lobatto (CGL) quadrature,

xj = − cos
πj

N
, wj =

π

c̃jN
, 0 ≤ j ≤ N.

where c̃0 = c̃N = 2 and c̃j = 1 for j = 1, 2, ..., N − 1.

With the above choices, there holds

∫ 1

−1

p(x)
1√

1− x2
dx =

N
∑

j=0

p(xj)wj , ∀p ∈ P2N+δ, (3.2.17)

where δ = 1, 0,−1 for the CG, CGR and CGL respectively.

In the Chebyshev case, the nodes {θj = arccos(xj)} are equally distributed on [0, π],

whereas {xj} are clustered in the neighbourhood of x = ±1 with density O(N2), for

instance, for the CGL points

1− x1 = 1− cos
π

N
= 2 sin2 π

2N
≃ π2

2N2
for N ≫ 1.

For more properties on Chebyshev polynomials, we refer to Rivlin [81].
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3.2.1 Chebyshev approximation

Given that the set of Chebyshev polynomials is complete and that polynomials are

dense in C ([−1, 1]) it is thus natural to approximate any function by a unique series

of Chebyshev polynomials. Therefore we have the following theorem, see theorem 3.1

of [87], more details also in Mason and Handscomb [64]

Theorem 23. [14, 64] Let f be a Lipschitz continuous function on the interval [-1,1].

Then f admits a unique representation as a series of the form:

u(x) =
c0
2
+

∞
∑

k=1

ckTk(x). (3.2.18)

where Tk(x) are Chebyshev polynomials,

ck =
2

π

∫ 1

−1

u(x)Tk(x)√
1− x2

dx, k = 0, 1, 2, 3, ... (3.2.19)

This series converges uniformly and absolutely.

Thus, any continous function u on the interval [−1, 1] can be approximated by the

following Chebyshev expansion:

un(x) =
n
∑

k=0

ckTk(x) (3.2.20)

= c · T (x) (3.2.21)

for some coefficients ck and c = (c0, c1, . . . , cn) is the vector of coefficients associated

with the approximation un.

Since this representation is unique and from Equation (3.1.3), a naive way to cal-

culate the coefficients ck is to view them as coefficients in the Fourier cosine series of

the even 2π-periodic function g(θ) = f(cos θ). That is,

ck =
2

π

∫ π

0

f(cos θ) cos(kθ)dθ (3.2.22)
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This integral can be computed in a simple manner by (n+ 1)−trapezoidal rule

ck =
2

n

[

1

2
f0 + f1 cos

(

kπ

n

)

+ f1 cos

(

kπ

n

)

+ ... (3.2.23)

... +fn−1 cos

(

(n− 1)kπ

n

)

+
1

2
fn cosnπ

]

(3.2.24)

where fk = f(cos kπ
n
). Writing this equation at each node generates the following


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2

n
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
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













1
2

1 1 1 . . . 1 1
2

1
2

cos π
n

cos 2π
n

cos 3π
n

. . . cos π
n

1
2
cos π

1
2

cos 2π
n

cos 4π
n

cos 6π
n

. . . cos π
n

1
2
cos 2π

1
2

cos 3π
n

cos 6π
n

cos 9π
n

. . . cos π
n

1
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cos 3π
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2

cos 4π
n

cos 8π
n

cos 12π
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1
2
cos 4π
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
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






















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fn


















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












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

(3.2.25)

This writes in matrix notation as:

c = Λf (3.2.26)

where c, f are Chebyshev coefficients and function values of f at the quadrature points

respectively, and the matrix Λ is defined by:

Λjk =



















1
n

k = 0,

2
n
cos jkπ

n
k = 1, ..., n− 1,

1
n
cos jπ k = n.

3.2.2 Convergence

Let Mn ≥ 1 be an integer, PMn
be the set of polynomials of degree at most Mn

and {xn,j , ωn,j}Mn

j=0 be the standard Chebyshev-Gauss-Lobatto quadrature, nodes and
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weights with

xn,j = − cos

(

πj

Mn

)

, 0 ≤ j ≤Mn,

ωn,0 = ωn,Mn
=

π

2Mn
, ωn,j =

π

Mn
, 1 ≤ j ≤Mn − 1.

It is clear that

TMn+1(xn,j)− TMn−1(xn,j) = 0. (3.2.27)

Next, denote by IMn
: C(Λ) → PMn

the Chebyshev-Gauss-Lobatto interpolant, such

that

IMn
u(n,j) = u(xn,j), 0 ≤ j ≤Mn.

According to the property of standard Chebyshev-Gauss-Lobatto quadrature, it follows

that for any φ ∈ P2Mn−1(Λ),

∫

Λ

φ(x)ω(x)dx =

Mn
∑

j=0

φ(xn,j)ωn,j (3.2.28)

Moreover, a direct computation shows that

Mn
∑

j=0

T 2
Mn

(xn,j)ωn,j = π. (3.2.29)

In particular, the following equivalence holds (cf.Guo [43]),

∫

Λ

φ2(x)ω(x)dx ≤
Mn
∑

j=0

φ2(xn,j)ωn,j ≤ 2

∫

Λ

φ2(x)ω(x)dx, ∀φ ∈ PMn
. (3.2.30)

Let Hr(Λ) be the usual Sobolev space associated with the semi-norm | · |Hr(Λ) and

norm ‖ · ‖Hr(Λ). Denote by c a generic positive constant independent of Mn, hn and any

functions. Then the following holds
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Lemma 24. [100] For any u ∈ Hr(Λ) with integer 1 ≤ r ≤Mn + 1,

‖u− IMn
u‖Hk(Λ) ≤ cMk−r

n ‖(1− x2) r−1
2 ∂rxu‖L2(Λ), k = 0, 1. (3.2.31)

Proof. (cf [100]) Thanks to results from Ma [62], we have

‖∂xIMn
u‖L2(Λ) +Mn‖IMn

u− u‖L2 ≤ c‖∂xu‖L2(Λ), ∀u ∈ H1(Λ). (3.2.32)

Next, let ILMn
be the standard Legendre-Gauss-Lobatto interpolant. Due to (2.16) of

[42], we have that for any integer r ≥ 1,

‖∂(u− ILMn
u)‖L2(Λ) ≤ cM1−r

n ‖(1− x2) r−1
2 ∂rxu‖L2(Λ). (3.2.33)

Applying (3.2.32) to the function u− ILMn
u and using (3.2.33), we get

‖∂(IMn
u− ILMn

u)‖L2(Λ) +Mn‖IMn
u− u‖L2(Λ) ≤ c‖∂(u − ILMn

u)‖L2(Λ)

≤ cM1−r
n ‖(1− x2) r−1

2 ∂rxu‖L2(Λ). (3.2.34)

Then the desired result follows from the triangle inequality and the approximation

result (3.2.33).

3.3 Differentiation and Integration

3.3.1 Differentiation in the Physical Space

We recall the Chebyshev approximation of any function (3.2.20)

u(x) =
n
∑

k=0

ckTk(x). (3.3.1)
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By differentiation, its derivative is

u′(x) =
n
∑

k=0

ckT
′
k(x). (3.3.2)

On the collocation points, the equation becomes

u′(x0) =
n
∑

k=0

ckT
′
k(x0),

u′(x1) =

n
∑

k=0

ckT
′
k(x1),

...

u′(xn) =
n
∑

k=0

ckT
′
k(xn),

which translates in matrix from as follows

















u′0

u′1
...

u′n

















=

















T ′
0(x0) T ′

1(x0) . . . T ′
n(x0)

T ′
0(x1) T ′

1(x1) . . . T ′
n(x1)

... . . . ...

T ′
0(xn) T ′

1(xn) . . . T ′
n(xn)

































c0

c1
...

cn

















or simply

u
′ = T

′
c.

Using (3.2.26) we get

u
′ = T

′
Λu.

Therefore the matrix of the derivative operator is

D
′ = T

′
Λ. (3.3.3)
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Which actually can be simply determined as follows:

dkj =































−2n2+1
6

, k = j = 0,

ck
cj

(−1)k+j

xk−xj
, k 6= j, 0 ≤ k, j ≤ n,

− xk

2(1−x2
k
)
, 1 ≤ k = j ≤ n− 1,

2n2+1
6

, k = j = n,

(3.3.4)

3.3.2 Differentiation in the frequency space

Recall again equation (3.2.20) and differentiate it

u′(x) =

n
∑

k=0

ckT
′
k(x). (3.3.5)

The differentiation of relation (3.2.3)gives

T0 = T ′
1, (3.3.6)

T1 =
T ′
2

2
, (3.3.7)

Tn+1(x) = nT ′
n−1(x)− 2(1− x2)T ′

n(x), (3.3.8)

ie. Tn =
T ′
n+1

2(n+ 1)
− T ′

n−1

2(n− 1)
, n = 2, 3, .... (3.3.9)

Also remembering u′(x) can be written directly using Equation (3.2.20) as:

u′(x) =

n
∑

k=0

c′kTk(x) (3.3.10)

where {ck} are coefficients of u′(x). That implies that

n
∑

k=0

c′kTk(x) = c′0 + c′1T1 +

n−1
∑

k=2

c′k

[

T ′
k+1

2(k + 1)
− T ′

k−1

2(k − 1)

]

(3.3.11)

=
c′n−1

2n
T ′
n +

n−1
∑

k=1

1

2k
(δkc

′
k−1 − c′k+1)T

′
k (3.3.12)
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where δ0 = 2 and δk = 1 for k ≥ 1. Since {T ′
k} are mutually orthogonal, we compare

the expansion coefficients in terms of {T ′
k} and find that {c′k} can be computed from

{ck} via the backward recurrence relation:

c′n = 0, c′n−1 = ncn,

c′k−1 =
2kck+c′

k+1

ck−1
, k = n− 1, ..., 1.

(3.3.13)

Another way of computing the coefficients of the derivative is by means of induction.

From the equation (3.3.5) and combining it with the recurrence formula in (3.3.9) yields

an expression of u in terms of Tk’s which writes as follows

n
∑

k=0

c′kTk(x) =

n
∑

k=0

n
∑

l=0

dklclTk(x), (3.3.14)

ie. c′ = Dc (3.3.15)

For a certain matrix D = (dkl)0<k,l<n. defined as follows:



















dkl = 0, for k ≤ l,

dkl = 0, if l − k is even,

dkl = 2k, if l − k is odd.

(3.3.16)

As such D is a sparse upper triangular matrix. The later computation shall be used for

differentiation in the frequency domain. So for higher derivatives we apply the above

result recursively to get the spectral representation c(p) of the derivative at order p of

u:

c(p) = Dpc. (3.3.17)

Having covered differentiation let us now have a look at numerical integration in the

frequency space.
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3.3.3 Integration

For the case of integration, recall again relation (3.3.9)

Tn+1(x) = nTn−1(x)− 2(1− x2)Tn(x), (3.3.18)
∫

Tn(x)dx =
1

2

[Tn+1(x)

n + 1
− Tn−1(x)

n− 1

]

, n = 2, 3..., (3.3.19)
∫

T1(x)dx =
1

4
T2(x), (3.3.20)

∫

T0(x)dx =
1

2
T1(x). (3.3.21)

As a linear operator, the integral of u will also be a continuous Lipschitz function in

[−1, 1], which will in turn have a unique expansion series of the form

∫

u(x)dx =

n
∑

k=0

IkTk(x), x ∈ [a, b],

where Ik’s are coefficients of the integral of u, and similarly as with differentiation there

exists a n× n-matrix J such that

Ik =
n
∑

l=0

Jklcl, (3.3.22)

or simply

I = J · c (3.3.23)
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where I is the spectral representation of the integral of u. In fact,

∫

u(x)dx =

∫ n−1
∑

k=0

ckTk(x),

i.e

n−1
∑

k=0

IkTk(x) =

∫ n−1
∑

k=0

ckTk(x) dx

=

n−1
∑

k=0

ck

∫

Tk(x) dx

n−1
∑

k=0

n−1
∑

j=2

JkjcjTk(x) =

n
∑

k=2

ck
1

2

[ Tk+1

k + 1
− Tk−1

k − 1

]

.

Performing a smart multiplication and rearranging terms we get the coefficients of J

recursively as follows:

Jkk = 0, J01 =
1

2
, Jk,k−1 = −Jkk+1 =

1

k
.

So then, the spectral representation of the integral of u is the vector d = J.c. In

other words, J is the spectral representation of the integral operator.

3.4 The multi-step spectral method

Consider a function u defined on an interval [0, T ] and let Ih be a mesh on the interval

[0, T ]:

Ih := {tn : 0 = t0 < t1 < · · · < tn = T}

We denote by Λn[tn−1, tn], hn = tn − tn−1 and un(t) the projection of u(t) on the n-th

element Λn, namely,

un(t) = u(t), ∀t ∈ Λn, 1 ≤ n ≤ N.
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Let ωn(t) =
1√

(t−tn−1)(tn−t)
. We define the shifted Chebyshev polynomials by

Tn,j(t) := Tj

(

2t− tn−1 − tn
hn

)

, t ∈ Λn.

Clearly, Tn,0(t) = 1, Tn,1(t) = (2t− tn−1 − 2tn)/hn, and

Tn,j+1(t) =
4t− 2tn−1 − 2tn

hn
Tn,j(t)− Tn,j−1(t), j ≥ 1.

The set of Tn,j(t) is a complete L2
ωn
(Λn)-orthogonal system, namely,

∫

Λn

Tn,j(t)Tn,k(t)ωn(t)dt =
π

2
cjδj,k. (3.4.1)

Thus, for any v(t) ∈ L2
ωn
(Λn), we can write

v(t) =

∞
∑

j=0

vjTn,j(t), vj =
2

πcj

∫

Λn

v(t)Tn,j(t)ωn(t)dt.

Moreover, we have

Tn,j(t) =
hn

4(j + 1)
T ′
n,j+1(t)−

hn
4(j − 1)

T ′
n,j−1(t), (3.4.2)

Tn,j(tn−1) = (−1)j , Tn,j(tn) = 1. (3.4.3)

Set

tn,j =
1

2
(hnxn,j + tn−1 + tn) .

According to (3.2.27),

Tn,Mn+1(tn,j)− Tn,Mn−1(tn,j) = 0. (3.4.4)

Further, it follows from (3.2.28) that for any ψ ∈ P2Mn−1(Λn),

∫

Λn

ψ(t)ωn(t)dt =
Mn
∑

j=0

ψ(tn,j)ωn,j. (3.4.5)
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Next, let (u, v)ωn
and ‖v‖ωn

be the inner product and the norm of space L2
ωn
(Λ) with

(u, v)ωn
=

∫

Λn

u(t)v(t)ωn(t)dt, ‖v‖ωn
= (v, v)1/2ωn

.

We also introduce the following discrete inner product and norm in the interval Λn,

< u, v >Mn
=

Mn
∑

j=0

u(tn,j)v(tn,j)ωn,j, ‖v‖Mn
=< v, v >

1/2
Mn

. (3.4.6)

Thanks to (3.4.5), for any φψ ∈ P2Mn−1(Λn) and ϕ ∈ PMn−1(Λn),

(φ, ψ)ωn
=< φ, ψ >Mn

, ‖ϕ‖ωn
= ‖ϕ‖Mn

. (3.4.7)

According to (3.2.30) we deduce readily that for any φ(t) ∈ PMn
,

‖ϕ‖ωn
≤ ‖ϕ‖Mn

√
2‖ϕ‖ωn

. (3.4.8)

Furthermore, by (3.2.29) we get

< Tn,Mn
, Tn,Mn

>Mn
= π. (3.4.9)

Let Hr(Λn) be the usual Sobolev space associated with the semi-norm | · |Hr(Λn) and

the norm ‖·‖Hr(Λn). Particularly, ‖·‖L2(Λn) = ‖·‖H0(Λn). Denote by πMn
: C(Λn)→ PMn

the shifted Chebyshev-Gauss-Lobatto interpolant such that

πMn
v(tn,j) = v(tn,j), 0 ≤ j ≤ Mn.

Theorem 25. [100] For any v ∈ Hr(Λn) with integer 1 ≤ r ≤Mn + 1,

‖v − πMn
v‖L2(Λn) ≤ chrnM

−r
n |v|Hr(Λn), (3.4.10)

|v − πMn
v|H1(Λn) ≤ chr−1

n M1−r
n |v|Hr(Λn) (3.4.11)
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This proof and the next theorem are taken from Wang and Mu [100]

Proof. Let u(x) = v(t)|
t=

hnx+tn−1+tn

2

. Then we have

πMn
v(tn,j) = v(tn,j) = u(xn,j) = IMn

u(xn,j), 0 ≤ j ≤Mn.

Moreover, πMn
v(t)|

t=
hnx+tn−1+tn

2

and IMn
u(x) belong to PMn

in the variable x. Hence

πMn
v(t)|

t=
hnx+tn−1+tn

2

= IMn
u(x). (3.4.12)

This with (3.2.31) leads to

‖v − πMn
v‖L2(Λn)2 =

hn
2

∫

Λn

[u(x)− IMn
u(x)]2 dx

≤ chnM
−2r
n

∫

Λn

[∂rt u(x)]
2 (1− x2)r−1dx

≤ ch2nM
−2r
n

∫ tn

tn−1

[∂rt v(t)]
2 (t− tn−1)

r−1(tn − t)r−1dt

≤ ch2nM
−2r
n |v|2Hr(Λn). (3.4.13)

similarly,

|v − πMn
v|H1(Λn)2 ≤ cM2−2r

n

∫

Λn

(∂rt v(t))
2(t− tn−1)

r−1(tn − t)r−1dt

≤ ch2r−2
n M2−r

n |v|2Hr(Λn). (3.4.14)

This ends the proof.

As for the global error on the entire interval Λ let denote

hmax = max
1≤n≤N

hn and Mmin = min
1≤n≤N

Mn.

For our convergence analysis, we need the following discrete Gronwall lemma
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Lemma 26. Let {an}Nn=1 be two sequences of nonnegative real numbers with b1 ≤ b2 ≤
· · · ≤ bN . Assume tha for c ≥ 0 and ki > 0, i = 1, · · · , N − 1, the following inequalities

hold

a1 ≤ b1, an ≤ bn + c

n−1
∑

i=1

kiai, n = 2, · · · , N. (3.4.15)

Then, we have

an ≤ bne
c
∑n−1

i=1 ki, for n = 1, · · · , N. (3.4.16)

Next let UM(t) be the global approximation of u, which is given by

UM(t) = UMn
(t), t ∈ Λn, 1 ≤ n ≤ N.

Theorem 27. [64, 100] Assume that u belongs to the broken Sobolev space: u ∈
H1(0, T ) and u|Λn

∈ Hrn(Λn), 1 ≤ n ≤ N with integers 2 ≤ rn ≤ Mn + 1, and there

exists a constant L ≥ 0 such that for any z1 and z2,

|f(z1, t)− f(z2, t)| ≤ L|z1 − z2|. (3.4.17)

Then for

2
√
2πhmaxL ≤ β < 1, (3.4.18)

we have

‖u− UM‖2H1(0,T ) ≤ cβTe
cβT

N
∑

i=1

h2ri−2
i M2−2ri

i |u|2Hri(Λ), (3.4.19)

where cβ is a positive constant depending only on β.

For full proof the reader can refer to Wang and Mu [100].

The next part of this dissertation is devoted to applications of the designed spectral

methods to financial problems. Let us begin with pricing under general affine jump

diffusion models which is a very large class of pricing problems in finance.
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Chapter 4

A time multidomain spectral method

for valuing affine stochastic volatility

and jump diffusion models

This chapter is a slightly modified version of the article published in Communications

in Nonlinear Science and Numerical Simulation, and has been reproduced here with the

permission of Elsevier, the copyright holder. The paper is available at the following link:

https://www.sciencedirect.com/science/article/abs/pii/S1007570419304782.

4.1 Introduction

A quest for efficient solutions for option pricing problems in the financial market has

been an on going topic of research among academics and practitioners. In the early 70’s,

Fisher Black and Myron Scholes published an influential paper where they presented

the Black-Scholes model which soon became a major source for most financial traders

for pricing and hedging options. The model represents a parabolic partial differential

equations (PDE) with constant coefficients to be solved, see [11, 21]. In this context

closed form solutions could still be found in case of one dimension with few parameters.

However empirical studies show that volatility of financial assets follows a stochas-
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tic process and also that underlying stock prices experience jumps. In this case, op-

tion pricing problems result into solving a multi-dimensional partial integro-differential

equation (PIDE) which gets more complicated to solve as the dimension increases. Var-

ious numerical solutions have been proposed for solving these problems.

In one dimension, classical numerical methods such as Finite Difference Methods

(FDM) or Finite Element Method (FEM) [31, 45] were used to solve these PIDEs,

numerically. Pindza et al. [73, 74, 75] proposed a robust spectral method to obtain

accurate solutions to these PIDEs. Ngounda et al. [68] provided a combined spec-

tral domain decomposition method and an inverse Laplace transform with Bromwich

contour integral to obtained spectral convergence for pricing of European options.

In two dimensions, in’t Hout et. al [90] proposed new ADI schemes to solve the

pricing of the European option under the Bates model numerically, Zhu et. al [109] de-

veloped a Legendre quadrilateral spectral element approximation for the Black-Scholes

equation to price European options with two underlying assets. Their methodology

displayed an exponential convergence. Clift et. al [84] derived a modified finite differ-

ential method by combining a fixed point iteration scheme with an FFT to avoid dense

linear system solutions and improve the efficiency of the existing methods.

In three dimensions, computational intensive works were conducted by Taruvinga

et. al [91], they used an accurate and efficient method of line to compute a three-asset

American options with jumps. The above methods are without doubt very effective in

the sense they provide accurate solutions of Black-Sholes PIDE directly in a reasonable

time. However as the dimension gets higher, these numerical methods begin to suffer

the curse of dimensionality. A tremendous amount of computation can be reduced if

one could avoid the PIDE by taking advantage of the dynamics of the underlying asset

and considering volatility models without departing so much from reality, unlike the

original Black-Scholes model that considered volatility to be constant.

So, in order to maintain a balance between effectiveness of solution and solvability

of option pricing problems, Heston [47] presents a model with stochastic volatility
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that includes correlation and capable to provide semi-closed form solution for option

prices in terms of the characteristic function of the Log-stock price. The solution is

more realistic, consistent with the smile and the skewness observed from empirical

data. The model is later on generalised by Duffie et al. [28] to cater for an entire

class of affine jump diffusion processes. The main advantage with such processes lies in

applying some transform analysis to arrive at a system of stiff Riccati equations that

can still be solved analytically although costly, but also numerically.

Many approaches have been used to obtain numerical solution of the stiff Riccati

equations, these approaches include finite difference methods, homotopy perturbation

methods [66]. Unfortunately these methods tend to require many points to achieve good

results and also turn out to lose their accuracy for larger time scale. This is due to the

fact that some component in the solution decays more rapidly than others, forcing thus

any numerical method with a finite region of stability, to excessively use more stepsizes

in order to get smoothness of solution. This inevitably leads to decrease of the efficiency

and accumulates more machine roundoff error [50]. Dahlquist and Bjorck [22], Huang

[51] recommend the use of implicit methods when comes to stiff problems. For these

reasons we introduce a time spectral domain decomposition method for solving Riccati

system of equations, numerically.

The literature around spectral methods is rich. These methods have been used

in several areas such as computational fluid dynamics Canuto et al. [16], Hussaini and

Zang [52], modeling different types of wave motion Komatitsch and Tromp [57], weather

forecasting Bourke et al. [13] and finance Pindza et al. [73, 74]. Spectral methods have

the particularity of handling technical boundary value problems in the sense that the

solution is approximated by a series of polynomials, the particularity of the polynomials

reside on the way coefficients are calculated. In the case of Chebyshev spectral method,

the solution is given as a Chebyshev series and the differential equation is shifted to the

interval [−1, 1]. Chebyshev spectral methods could be implemented as Galerkin and

Tau methods, where the work takes place in the frequency space or as pseudospectral

methods where the work takes place in the physical space [14]. Since most softwares
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are matrix orientated, an effective way to apply the above methods computationally

would be in an operatorial way. That is the solution is presented as U = A−1F where

U is the solution vector at some given points, A is a matrix, and F is some vector.

Bhrawy and Alofi [9] introduces operational matrix to the shifted Chebyshev method

to generate already a fast algorithm for fractional integration in the sense that only

a small number of shifted Chebyshev polynomials is needed to obtain a satisfactory

result. More on this approach can be found in Weideman and Reddy [101], Trefethen

[93] with some variants but still based on the pseudospectral methods. Although ac-

curate, one main disadvantage with pseudospectral is that the differention matrix is

full making the computation of A−1 a heavy task. However significant computational

savings can be realized via representation in frequency domain. Trif [94] proposed a

solution based on Tau method allowing to avoid full matrices. We shall follow these

footsteps.

In this chapter, we develop a time-spectral domain decomposition method based

the Tau-matrix operational approach using a differentiation matrix method on a time

interval divided into disjoint domains. The obtained matrices have the advantage

of being sparse upper triangular instead of full as most operational matrix methods

produce. The methodology is applied to solve systems of stiff Riccati equations that

are encountered in pricing under stochastic volatility model even in presence of jumps.

Numerical results show that our method is fast, accurate and robust as compared to

the existing Chebfun method [76], which is to my knowledge one the most well-known

and leading package of Matlab using spectral methods.

This work is organised as follows. Section 4.2 gives a quick layout of the mathe-

matical model and results under affine settings. Section 4.3 introduces the numerical

method, and Section 4.4 is applications on case studies. In the last Section 8, we draw

a conclusion.
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4.2 The mathematical model setup

Consider the financial market model M =
(

Ω,F ,P, (Ft)t≥0 , (St)t≥0

)

where Ω is the

set of all possible outcomes of an experiment known as the sample space, F is the

set of all events, i.e. permissible combinations of outcomes, P is a map F −→ [0, 1]

which assigns a probability to each event, (Ft)t≥0 is a natural filtration and St a risky

underlying asset price process. The triplet (Ω,F ,P) is defined as a probability space.

Let (Wt)t≥0 be a P-Wiener process, (Zt)t≥0 is a pure jump process (a poisson process

with parameter λt), σ(t, Xt) > 0 the volatility of the underlying asset, µ(t, Xt) the

drift parameter. We consider a state (underlying) process Xt satisfying the following

stochastic differential equation

dXt = µ(t, Xt)dt+ σ(t, Xt)dWt + dZt. (4.2.1)

In order to avoid arbitrage, the price Ψ(t, Xt) at time t of a contingent claim that pays

off ΦT at maturity time T ≥ t, under an equivalent martingale measure Q, is given by

Ψ(t, Xt) = EQ
(

e−
∫ T

0
r(s,Xs)dsΦT |Ft

)

, (4.2.2)

where the expectation is taken with respect to the risk-neutral measure Q. The ap-

plication of Ito differentiation on equation (4.2.2) (see [66]) yields the partial integro

differential equation (PIDE) of the form

∂Ψt

∂t
+ µt

∂Ψt

∂Xt
+

1

2
σtσ

⊤
t

∂2Ψt

∂X2
t

− λtΨt + λt

∫

R\0

Ψ(xs + z)dν0(z) = 0. (4.2.3)

In affine framework (see also [21]), the drift vector µt, the instantaneous covariance

matrix σtσ⊤
t , the jump intensity λt and the risk free rate rt have an affine dependence
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on Xt:

µt = K0 +K1 ·Xt, (K0, K1) ∈ Rd × Rd×d

σtσ
⊤
t = H0 +H1 ·Xt, (H0, H1) ∈ Rd×d × Rd×d×d

λt = l0 + l1 ·Xt, (l0, l1) ∈ Rd × Rd×d

rt = ρ0 + ρ1 ·Xt, (ρ0, ρ1) ∈ Rd × Rd×d.

Duffie et al. [28] show that under some conditions the solution of the PIDE (4.2.3) can

be computed via the complex-valued Riccati ordinary differential equations (ODEs)

defined as follows:

Theorem 28. [28] Under technical conditions, if the pay-off function ΦT , at maturity

time T , is chosen such that

ΦT = euXT , for some u ∈ Rd

then Ψ is of the form

Ψ(t, Xt) = eα(t)+β(t)Xt (4.2.4)

with α and β verifying the following Riccati equation



















∂α
∂t
(t) = ρ0 −K0 · β(t)− 1

2
β(t)⊤H0β(t)− l0 [Λ(β(t))− 1] ,

∂β
∂t
(t) = ρ1 −K⊤

1 β(t)− 1
2
β(t)⊤H1β(t)− l1 [Λ(β(t))− 1] ,

(4.2.5)

with terminal conditions α(T ) = 0 and β(T ) = u.

It is without doubt that equation (4.2.5) is analytically difficult to solve and in

general they present stiffness. We require numerical methods to come to the rescue.

In the next section, we introduce the time multidomain spectral method based on

operational matrix.
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4.3 Multidomain Spectral method

Recall the spectral representation of any function u given by Equation (3.2.20) and its

derivative:

u′(x) =
n
∑

k=0

ckT
′
k(x). (4.3.1)

Section 3.3.2 tells us of the existence of a matrix D = (dkl)0<k,l<n such that

n
∑

k=0

c′kTk(x) =
n
∑

k=0

n
∑

l=0

dklclTk(x), (4.3.2)

ie. c′ = Dc (4.3.3)

where c′ stands for the spectral representation of the derivative function u′. Moreover,

D is a sparse upper triangular matrix, with the following properties



















dkl = 0, for k ≤ l,

dkl = 0, if l − k is even,

dkl = 2k, if l − k is odd.

(4.3.4)

Applying the above result recursively we get the spectral representation c(p) of the

derivative at order p of u as:

c(p) = Dpc. (4.3.5)

Consequently, if we consider a general differential equation Au = f of order m

with constant coefficients for which the differential operator can be written as A =

L + N where L and N are respectively the linear part and the nonlinear part, then

the equation can be written as

Lu(t) +Nu(t) = f(t) (4.3.6)
m
∑

k=0

u(k)(t) = −Nu(t) + f(t) (4.3.7)
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The above equation can be represented in the frequency space as:

m
∑

k=0

Dkc = −n + f̃,

A c = f, (4.3.8)

implying c = A−1 (f)

for some A =
∑m

k=0D
k; where n, f̃ are the spectral representation of Nu and f

respectively, and f = −n + f̃. we use the following algorithm 1:

Algorithm 1 Pseudo code
1: u0 ← initial solution
2: INITIALIZE A
3: Evaluate N , and f at u0
4: u := A−1 ∗ (N + f)
5: while ‖u− u0‖ > ǫ do

6: u0 ← u
7: Evaluate N , and f at u0
8: u = A−1 ∗ (N + f)
9: end while

10: RETURN u

The above method has proven to struggle when T gets larger. For this reason, we

suggest a domain decomposition of the interval [0, T ].

Recall the partition Ih to be a mesh on the interval [0, T ] and N be the number of

subintervals, as defined in section 3.4

Ih := {tn : 0 = t0 < t1 < · · · < tN = T} .

We denote by Λn = [tn−1, tn], hn = tn − tn−1 and un(t) the solution of (4.3.6) on the

n-th element of the partition Ih, namely,

un(t) = u(t), ∀t ∈ Λn, 1 ≤ n ≤ N.

Let Mn > 0 be an integer and consider PMn
to be the space of polynomials of order
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at most Mn built on Λn. We apply the spectral method as described is algorithm 1

to obtain a numerical solution UMn
∈ PMn

on Λn. The Time Multidomain Spectral

Method on the interval [0, T ] consists of a successive application of the spectral method

on each Λn to obtain a global numerical solution UM (t) of (4.3.6) defined such that:

UM(t) = UMn
(t), t ∈ Λn, 1 ≤ n ≤ N.

where M is taken to be the smallest of the Mn’s: that is, M = inf0<n≤N Mn.

For each subinterval [ti, ti+1] equation (4.3.8) is applied.

A(i)c(i) = f(i), i = 0, ..., m− 1. (4.3.9)

The overall matrix A of the entire problem is then a diagonal of block matrices A(i).

















A(1) 0

0 A(2) 0
. . . . . .

0 A(m)

































c(1)

c(2)

...

c(m)

















=

















f(1)

f(2)

...

f(m)

















(4.3.10)

By inversion of the matrix A(i) on each domain Λi, we obtain c(i) and therefore uMi

which is UM on Λi.

In this case a global error can arise and jeopardise the convergence. But thanks

be to the theorem 27 that still guaranties an exponential convergence even after dis-

cretization.

4.4 Applications and numerical results

In this section, we apply our method to different problems found in finance and test

the convergence and the efficiency of the proposed method again the existing Chebfun

method [76]. In all numerical experiments, when analytical solutions are not available,
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we choose the solution from ODE15s with relative and absolute tolerances to be 10−14

as the benchmark solution as one of the appropiate Matlab package for stiff problems

[70]. The error E is the maximal error given by:

||E|| = ||SolBenchmark − SolNumerical||∞. (4.4.1)

4.4.1 Oil price model

The model for oil pricing is derived as follows. Let St be the spot price of the crud oil

and Vt the stochastic variance. We allow the log-stock price to be driven by

d lnSt = µtdt+
√

VtdW
s
t + dZs

t . (4.4.2)

The stochastic variance is considered to be square root process. In absence of jump,

the mean reverting toward the parameter v is the long run mean of V . The process

reverts at a speed controlled by the parameter κ and σv is the volatility of the volatility.

It measures the responsiveness to diffuse volatility shocks. The volatility is driven by

the following dynamics:

dVt = κ(v − Vt)dt+ σv
√

VtdW̃
v
t (4.4.3)

with corr[dW s
t , dW

v
t ] = ρ and that the jump process Zs

t of St arrive exponentially with

rate λt and with size normally distributed N(µ̄s, σs). Therefore the model is expressed

as:

d





Yt

Vt



 =





r − λtms − 1
2
Vt

κ(v − Vt)



 dt +
√

Vt





1 0

ρσv
√

1− ρ2σv



 dWt + dZt. (4.4.4)

Considering the state process Xt =





Yt

Vt



, equation (4.4.4) can then be written
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as:

dXt = µtdt+ σtdWt + dZt

where

µt =





r − λtms

κv



+





0 −1
2

0 −κ



Xt and σtσ
⊤
t =





1 ρσv

ρσv σ2
v



Vt

Referring to affine settings in (4.2.5), we see that:

ρ0 = r, ρ1 = (0, 0), l0 = λt, l1 = (0, 0),

K0 =





r − λms

κv



 , K1 =





0 −1
2

0 −κ



 , H0 =





0 0

0 0



 and H1 =





0 0
... 1 ρσv

0 0
... ρσv σ2

v



 .

The oil price is given by:

φt = eα(t)+β(t) x

= eα(t)+β1(t)yt+β2(t)Vt

= S
β1(t)
t eα(t)+β2(t)Vt

where α and β = (β1, β2) are real valued functions that satisfy the Riccati equation



















α̇(t) = r − (r − λms)β1(t) + κvβ2(t)− λ(Λ(β(t))− 1),

β̇1(t) = 0,

β̇2(t) =
1
2
β1(t) + κβ2(t)− 1

2
β2
1(t)− β1(t)β2(t)ρσv − 1

2
β2
2(t)σ

2
v ,

(4.4.5)

together with terminal conditions

α(T ) = 0 and β(T ) = (u, 0).

and Λ is defined as Λ(c) =
∫

R2 exp (c z)dν(z). In other words, Λ(c) is the moment

generating function of the random vector Z taken at c. The risk neutral condition
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imposes ms = Λ(1, 0)− 1, that is ms = eµs+
σ2
s
2 (see Duffie et al. [28]).

Considering the jump distribution to be of Gaussian type, that is Zs
t = N(µ̄s, σs),

we get

Λ(β(s)) = Λ(u, β2(s)) = euµ̄s+
u2

2
σ2
s and ms = Λ(1, 0)− 1 = eµ

s+ 1
2
σ2
s

Operating the change in time τ = T − t the system of equations reduces to







α̇(τ) = −r + (r − λms)β1(τ)− κvβ2(τ) + λ(g(τ)− 1)

β̇2(τ) = −1
2
β1(τ)− κβ2(τ) + 1

2
β2
1(τ) + ρσvβ1(τ)β2(τ) +

1
2
σ2
vβ

2
2(τ)

, (4.4.6)

with

α(0) = 0 β2(0) = 0 β1(τ) = u

The exact solution of the above equation is:

β2(τ) =
−a (1− e−γτ )

2γ − (γ + b) (1− e−γτ )
, (4.4.7)

α(τ) = −rτ + r uτ − κv
[

γ + b

σ2
v

τ +
2

σ2
v

ln

(

1− γ + b

2γ
(1− e−γτ )

)]

− λ(1 +msu)τ + λg(τ), (4.4.8)

where γ = b2 − aσ2
v , and g(τ) = τ eµ

s+ 1
2
σ2
s .

For numerical illustration, we choose the parameters to have the following values,

as illustrated in [59] :

µs = −1.8521, σs = 1.9578, λ = 0.0294, κ = 0.0118, v = 4.6978, σv = 0.1655294,

ρ = −0.0083, r = 0, ms = 0.0642.

We compare our numerical solution with the exact solution and evaluate the error
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as the L∞ distance between the exact and the numerical solution. The plots in Figure

4.4.1a and 4.4.1b show that the exact and numerical solutions for variable α and β are

in a good agreement.

We also run a comparison with another appropriate well known numerical method,

here we mention Chebfun, which is based on spectral chebyshev polynomials too. As

we vary the number of collocation points for both methods, we record in Figure 4.4.2a

the error on variable α. It shows that as the number of collocation points gets larger

(n > 8) TMDSM achieves better accuracy quicker than Chebfun. The same remark

holds also for variable β.

In figure 4.4.2b a plot of the efficiency of the TMDSM and of Chebfun is provided.

It is interesting to see that we achieve accuracy of order 10−15 within 0.005s, whereas

Chebfun would take close to 0.02s to achieve the same order of accuracy on the same

problem with the same processor Core I5-8th Gen. This is mostly due to the structure

of the matrices inherited from the differentiation in the frequency space rather than

in the physical space, which was mentioned to be sparse upper triangular whereas

chebfun matrices differentiation matrices are full, see Figure 4.4.3. More elaborately,

Figure 4.4.3a exhibits two upper triangles together with lines, it represents the plot

of matrix operator A. The first triangle cares for the first variable x together with

its boundary condition, and the second triangle is for the second variable y also with

its boundary condition too. In reality these triangles contains trips of zeros, due to

the relation (4.3.4). For a case of 100 collocation points for instance, the operator A

is a (200 × 200)-matrix which has normally 40, 000 elements but in our case the total

number of nonzero elements is 5398 and the rest are zeros. The sparsity coefficient is

hence about 86.5% reducing considerably the amount of calculation of A−1. As for the

structure of the Chebfun matrix in 4.4.3b we have a totally dense matrix.
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Figure 4.4.1: Exact and numerical solutions plot for T = 50 with 2 domains

4.4.2 Interest rate model

Short rate models are helpful in pricing of assets such as bonds. It has been shown

that most short rate time series experience mean reverting phenomenon that varies

with time. It also appears that interest rates rt converge rather quickly towards a time

varying mean level µt which itself reverts more slowly toward an unconditional mean

θ. One reason for this mean reversion is due to inflation factor that manifest itself in

the required nominal interest rate, as mentioned by Andersen et al. [4]. Another key

feature is that theory predicts that an unexpected information arrival should induce

a discontinuity in the return process. An announced shift in monetary policy for in-

stance, can induce the appearance of jumps in the interest rate process. Plus having

jumps as part of the modeling can improve model description, calibration as jumps

can also accommodate outliers in the short rate distribution. For this example we will

restrict to jumps which are normally distributed and uncorrelated.

Thus, we consider the interest rate r to be driven by the following process:

drt = (κ1µ̄t − λµ̄J − κ1r) dt+
√

VtdW
r
t + dZr

t (4.4.9)
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Figure 4.4.2: Convergence and efficiency of TMDSM vs Chebun on α.
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Figure 4.4.3: Plots of the structure of the underlying matrix A for 1-Domain TMDSM
vs Chebfun
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where W r
t , Z

r
t are respectively a Brownian process and a pure jump process (with

constant intensity λ) associated with the stock price process. The stock price volatility
√
Vt is stochastic with the following dynamics,

dVt = κ2(v − Vt)dt+ σv
√

VtdW
v
t

where W r
t ,W

v
t are independent Brownian motions.

Note in this model that the volatility is mean reverting, with mean v and κ2 as mean

reversion coefficient, σv is the volatility of the volatility. Also we consider the mean

value µ̄t of the drift to be stochastic. This is due to some unsual change by governments

in their monetary policies. Let write the dynamics of µ̄t be driven by the following

equation:

dµ̄t = κ3(v̄ − µ̄t)dt+ σm
√
µ̄tdW

m
t . (4.4.10)

As it stands, a good candidate to consider as a state process is Xt = (rt, Vt, µ̄t) where

rt is the short rate process.

d











rt

Vt

µ̄t











=











κ1µ̄t − λµ̄J − κ1rt
κ2v − κ2Vt
κ3v̄ − κ3µ̄t











dt+
√

Vt











1 0 0

0 σv 0

0 0 σm











dWt + dZt,

where Wt = (W r
t ,W

v
t , 0) is a three-dimensional Brownian motion and Zt = (Zr

t , 0, 0)

is a three-dimensional Poisson process in t with mean arrival rate λt. As such the

entire process Xt jumps only when rt jumps. Hence the intensity arrival λt = λ and

the multivariate distribution of the jump size of Zt is identical to the distribution of Zr
t .

Referring to affine settings from section 4.2 and if we consider a financial claim that

pays off ΨT = eū·XT at time T for some constant ū = (u1, u2, u3) ∈ R3 then theorem

28 ensures that its price φt at time 0 < t < T is of the form

φt = eα(t)+β(t) x (4.4.11)
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where α and β = (β1, β2, β3) are deterministic functions of t that satisfy the Riccati

equation (4.4.5), which yields the following:































α̇(t) = 0− (−λrµJ)β1(t)− κ2v(β2(t))− κ3ηβ3(t)− λr(Λ(β(t))− 1),

β̇1(t) = 1 + κ1β1,

β̇2(t) = κ2β2(t)− 1
2
β2
1(t)− 1

2
σ2
vβ

2
2(t),

β̇3(t) = −κ1β1(t) + κ3β3(t)− 1
2
σ2
mβ

2
3(t),

(4.4.12)

together with terminal conditions

α(T ) = 0 and β(T ) = (0, 0, 1).

Operate the rescaling time τ = T − t. Also it is not difficult to see that the solution of

β1 is:

β1(τ) =
1

κ1
[e−κ1τ − 1] i.e. β1(t) =

1

κ1
[eκ1(t−T ) − 1]. (4.4.13)

The simultaneous equations (4.4.12) then results to the following initial value problem



















α̇(τ) = −λrµJβ1(τ) + κ2vβ2(τ) + κ3ηβ3(τ) + λr(Λ(β(τ))− 1),

β̇2(τ) = −κ2β2(τ) + 1
2
β2
1(τ) +

1
2
σ2
vβ

2
2(τ),

β̇3(τ) = κ1β1(τ)− κ3β3(τ) + 1
2
σ2
mβ

2
3(τ)

, (4.4.14)

with initial conditions

α(0) = 0, and β(0) = (0, 0, 1).

Once again for the case of a jump distribution of Zs
t being of Gaussian type, that is

Zs
t = N(µs, σs) then,

Λ(β(s)) = Λ(β1, β2(s)) = eµsβ1(s)+
σ2
sβ

2
1(s)

2 .

For numerical implementation let consider the same set of parameters (see 4.4.15) used
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by Andersen et al. [4]. As such the problem present a moderate stiffness factor. A

similar problem with a severe stiffness factor is encountered in bond pricing [50].

κ1 = 1.7887, κ2 = 1.7895, κ3 = 0.2792, σm = 0.0459, µJ = 0, (4.4.15)

v = 0.000052, σv = 0.0110, η = 0.0525, σJ = 0.0016, λr = 3.2688. (4.4.16)

Equation (4.4.14) is a system of nonlinear ordinary differential equation of order 3. It

can be written as:

Au+Nu = f. (4.4.17)

Using our Time MultiDomain Spectral Method described in section 3..., we transport

the equation in the frequency space and it becomes

Ac = f (4.4.18)

where c and f are spectral representations of the unknown solution vector u = (α, β2, β3)

and the nonlinear part f −Nu, respectively. In addition, the matrix A is of the form:

A =











D κ2vIn κ3ηIn

0 D − κ2In 0

0 0 D − κ3In











where In is the identity matrix of order n and D is the differentiation matrix as defined

in (4.3.3). The nonlinear part will write as:

N =











−λµJβ1(τ)− lr[Λ(β(τ))− 1]

1
2
β1(τ)

2 − 1
2
σ2
vβ

2
2(τ)

κ1β1(τ)
1
2
σ2
mβ

2
3(τ)











.

A plot of the benchmark solution generated from ODE15s (with absolute tolerence
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10−14) and TMDSM is provided in Figure 4.4.4 for each variable α, β2 and β3.
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Figure 4.4.4: Plot of the 3 variables for T = 5

As we vary the number of collocation points from n = 4, 8, 16, 32, 64, 128, 256 and

512, we record in table 4.4.1 the error on each variable α, β2 and β3. The results show

again that it only requires few points to reach to the solution with high precision. The

table shows that we achieve an error of about 10−8 within 16 points. The same holds

also for the other two variables. This is in line with Figure 4.4.2a observed earlier. In

other words, the spectral convergence still holds even in a higher dimension case.

n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

α 2.223E-5 1.526E-7 7.591E-9 4.070E-10 2.383E-11 1.398E-12 8.40E-14 5.551E-15

β2 6.058E-4 8.195E-6 3.367E-7 1.768E-8 1.024E-9 6.183E-11 3.839E-13 2.703E-14

β3 2.890E-3 1.972E-5 9.704E-7 5.204E-8 3.042E-9 1.781E-10 1.078E-12 6.90E-14

Table 4.4.1: Convergence of the error of α, β2 and β3

Given that chebfun returns the solution in 1.31 seconds, we also record in figure

4.4.5 the accuracy achieved as the running time increases. The graph shows that for

the very same problem, the TMDSM achieves an accuracy of order 10−13 within 0.06

seconds. Again this is mostly due to the structure of the matrices produced from our

differentiation for the system, compared to those from Chebfun which are full, see

figure 4.4.6.

Let increase T to 100 and introduce different partition in 1,2 and 4 subintervals for

a total number of Chebyshev collocation points varying from 256, 512, 1024, 2048 and
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Figure 4.4.5: Efficiency of 2-Domain TMDSM for α

4096. Let record the error as well as the CPU running time in the table 4.4.2. Clearly

the discretization of our interval [0, T ] is uniform, that is hn = h = T
N

where N is the

number of subintervals. We also consider Mn = M to be constant since we generate

the same number of Chebyshev points in each subinterval. Moreover it is not difficult

to see that our function f here abides to the Lipschitz conditions. Therefore we should

expect an exponential decay of the error.

n = 256 n = 512 n = 1024 n = 2048 n = 4096

N = 1 CPU 0.450 1.653 8.875 66.589 607
Error 6.136E-9 3.802E-10 2.368E-11 1.485E-12 5.337E-13

N = 2 CPU 0.397 0.765 2.883 16.870 156
Error 2.158E-8 1.327E-9 7.960E-11 5.117E-12 4.993E-13

N = 4 CPU 0.394 0.501 1.160 5.18 45
Error 7.572E-8 4.538E-9 2.779E-10 1.672E-11 1.068E-12

Table 4.4.2: Convergence and efficiency of TMDSM with 1, 2 and 4 domains at T = 100.

The table 4.4.2 shows that as the number of collocation points gets larger (here

n > 1000) on the interval [0, T ], the TMDSM tends to suffer. Indeed the matrix A

gets very large, making inversion a complicated task. But if the structure of A gets

more porous (lower sparsity factor) then the spectral method would still be capable of
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handling such even larger problem without losing much in accuracy. For instance, when

the total number of points is 4092 it takes 607 seconds (nearly 10min) for TMDSM

to deliver the solution whereas it will take the same TMDSM only 45 seconds when

the interval [0, 100] is splitted into 4 subintervals [0, 25] ∪ [25, 50] ∪ [50, 75] ∪ [75, 100].

This is a tremendous gain in computational time. Indeed the structure of the linear

operator A plays an important role. We plot the structure of the matrix A in figure

4.4.6 using 200 collocation points. The matrix is 600 × 600 and for the case of one

domain the total number of nonzero elements is 31396 (see Figure 4.4.6a) implying a

sparsity of 91.2% whereas when splitting the domain into 4 subdomains the number

of nonzero terms reduces to 8884 (see Figure 4.4.6c) resulting to a sparsity of 97.5%.

It is also remarkable to notice that the overall error did not suffer, it remained in the

order of 10−12. The method is stable. The accuracy depends not on the number of

subinterval but on the total number of Chebyshev collocation points.

4.4.3 Electricity pricing under affine process

Energy commodity prices are important to model as their cost of storage is usually very

high. Modeling their dynamics with affine jump diffusion looks reasonable in order

to capture salient features of energy commodity prices, [23]. For instance electricity

cannot be stored or inventoried economically once generated. Electricity demand and

supply in bulk electricity power network has to be balanced continuously so as to

prevent network from collapsing.

The most noticeable behaviour of energy commodities is the mean-reverting aspect.

That is, when price of the commodity is high, its supply tends to increase, thus putting

a downward pressure on the price. When the spot price is low, the supply of commodity

tends to decrease thus providing an upward lift to the price. Another feature is the

presence of jumps and spikes. These happen when a massive storage of commodity is

not economically available and demand exhibits low elasticity. Also a forced outage

of a major power plant or sudden uprise of demand would either cause the supply
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Figure 4.4.6: Plots of the underlying matrix A for 1, 2, 4-Domain TMDSM vs Chebfun
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curve to shift to the left or lift up the demand curve, therefore causing a price jump.

For electricity, spikes can be observed when an unexpected breakdown of some power

plant occurs, the spot price can experience an abrupt upward increase, but as the lost

generator gets restored, the price falls back quickly to their normal range [23].

A suitable equation that can capture the above mentioned features is:

d











Xt

Vt

Yt











=











κ1θ1 − κ1Xt

κ2θ2 − κ2Vt
κ3θ3 − κ3Yt











dt+











√
Vt 0 0

ρ1σ2
√
Vt

√

1− ρ21σ2
√
Vt 0

ρ2σ3
√
Vt 0 σ3











dWt + dZt

(4.4.19)

where Xt is the log stock price, Vt is the volatility and Yt is the product supply of

raw material, Wt = (W x
t ,W

v
t ,W

y
t ) is a three-dimensional Brownian motion and Zt =

(Zx
t , Z

v
t , 0) is a three-dimensional Poisson process in t with mean arrival rate λ =

λx + λv + λc. The process can then be written as:

dXt = µtdt+ σtdWt + dZt (4.4.20)

and the electricity price is of the form:

φt = eα(t)+β(t) x (4.4.21)

where α and β = (β1, β2, β3) are real valued functions that satisfy the Riccati equation

α̇ = r −
3
∑

i=1

κiθiβi −
1

2
σ2
3β

2
3 − λx [Λ(β)] , (4.4.22)

β̇1 = κ1β1 −
1

2
σ2
3β

2
3 , (4.4.23)

β̇2 = κ2β2 −
1

2
[β2

1 + σ2
2β

2
2 + ρ22σ

2
3β

2
3 ]− λ2[Λ(β)− 1],

−ρ1σ2β1β2 − ρ2σ3β1β3 − ρ1ρ2σ2σ3β2β3, (4.4.24)

β̇3 = κ3β3 (4.4.25)
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together with terminal conditions

α(T ) = 0 and β(T ) = (0, 0, 1).

This problem can only be solved by numerical method. Operating again the rescaling

τ = T − t the system becomes

α̇ = −r +
3
∑

i=1

κiθiβi +
1

2
σ2
3β

2
3 + λx [Λ(β)− 1] , (4.4.26)

β̇1 = −κ1β1 +
1

2
σ2
3β

2
3 , (4.4.27)

β̇2 = −κ2β2 +
1

2
[β2

1 + σ2
2β

2
2 + ρ22σ

2
3β

2
3 ] + λ2[Λ(β)− 1]

+ρ1σ2β1β2 + ρ2σ3β1β3 + ρ1ρ2σ2σ3β2β3, (4.4.28)

β̇3 = −κ3β3, (4.4.29)

with initial condition:

α(0) = 0 and β(0) = (0, 0, 1).

As in the previous problem we will compute the numerical solution using the set of

parameters considered in [23]:

κ1 = 2.17, κ2 = 3.5, κ3 = 1.8, θ1 = 3.2, θ2 = 0.85, θ3 = 0.87,

σ2 = 0.8 , σ3 = 0.54, ρ1 = 0.25, ρ2 = 0.2

,λ1 = 6.43, λ2 = 5, µ11 = 0.23, µ12 = 0.22, µ21 = −0.14.

The associated differentiation matrix is:

A =

















D −k1θ1 −k2θ2 −k3θ3
0 D + k1 0 0

0 0 D + k2 0

0 0 0 D + k3

















,
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the corresponding nonlinear part of the equation is:

N =

















−r + lr[Λ(β)− 1]

1
2
σ2
3β

2
3

λ2[Λ(β)− 1] +N3

0

















where N3 =
1
2
[β2

1 + σ2
2β

2
2 + ρ22σ

2
3β

2
3 ] + ρ1σ2β1β2 + ρ2σ3β1β3 + ρ1ρ2σ2σ3β2β3. Once again

we run the spectral method and compare the solution against ODE15s solution. The

resulting error is captured in Figure 4.4.7a It can be seen that with a number of

Chebyshev collocation points n = 16 the accuracy is relatively good.
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Figure 4.4.7: Comparison of the convergence and efficiency of TMDSM against Chebfun

A log-log plot of the efficiency of the two methods (TMDSM and Chebfun) is

provided in figure 4.4.7b. As in the previous example, the TMDSM achieves better

accuracy in quicker time Chebfun. Once again the sparsity of the matrix A, (see

figure 4.4.8) inherited from the sparsity of the differentiation matrix D obtained in

each subinterval, is the main cause of such difference in efficiency. Here we considered

200 collocation points generating therefore 800 × 800 matrix. Using a single domain,

the number of nonzero terms is 41994 resulting a sparsity factor of 93.4%. With a 2



CHAPTER 4. A TIME MULTIDOMAIN SPECTRAL METHOD FOR VALUING
AFFINE STOCHASTIC VOLATILITY AND JUMP DIFFUSION MODELS 82

domain, Figure 4.4.8b shows 21988 nonzero terms in A that is a sparsity of 96.5%. For

the case of 4 domains, the sparsity increases to 98.1%.
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Figure 4.4.8: Plots of the underlying matrix A for 1, 2, 4-Domain TMDSM vs Chebfun

4.5 Conclusion

We have designed a spectral method that accommodates differential equations arising

from financial models of affine type. The affine structure of these financial models is

used to avoid solving the PIDE but rather to solving a system of Riccati equations. The
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proposed numerical method to solve theses Riccati equations presents an operational

matrix based on Chebyshev polynomials and the solution is obtained in the frequency

domain. In doing so, the original problem is transformed into an iterative system of

algebraic equations making it easier to solve. In addition the time domain is discretized

into small domains allowing for spectral convergence to still hold. Three numerical

examples are implemented and solutions are compared to numerical solutions from

Chebfun, a leading package available for solving differential equation using spectral

method. The result from error calculation shows that our method still maintains its

spectral convergence even as we increase the time space interval. In addition, the

method shows robustness and competitiveness compared to other numerical methods

on the field, here ODE15s and Chebfun. The method can be applied in the entire

class of affine models with jumps. Consequently it can be applied for the pricing of

many other financial derivatives such as swaptions, coupon-bearing bonds, captions,

currency options etc, just to mention a few. For further possible applications it would

be interesting to see how TMDSM would perform when affine structure is not taken

into account, that is, directly on the PIDE. Also, it worths to investigate how does

the method apply to chaotic problems. In this coming chapter, we shall approach the

spectral method from an integration angle in order to solve the chaotic finance system,

with the hope of achieving quicker solution.



Chapter 5

A robust spectral integral method for

solving chaotic finance system and

synchronization

This chapter is a slightly modified version of the article published in Alexandria En-

gineering Journaland has been reproduced here with the permission of Elsevier, the

copyright holder. This article is available here https://www.sciencedirect.com/

science/article/pii/S111001682030017X.

5.1 Introduction

Nonlinear chaotic systems have attracted many research works in the sense that they

can describe the evolution of more complex systems in a reasonable manner. The

presence of parameters is typical for many models of economic processes. For example,

in economic growth models, they may represent tools for influencing the economy, while

the aim of the analysis is to find such quantities that would lead to the optimal path of

growth. However, if the analyzed model has chaotic dynamics, the matter is essentially

complicated. The high sensitivity of chaotic system to a change in the initial conditions

makes it impossible to predict the effects of economic decisions in a long time scale.

84
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Considering that government are usually interested in stimulating investment in order

to cope with unemployment rate, exports, etc..., this may cause a total new trajectory

for the system. Therefore, an effective and rapid control method is very much needed

when chaos appears in order to avoid undesired trajectory and make suitable economic

adaptation and prediction possible, specially from government and investors side. Ma

and Chen [53, 54] provided a practical way to analyse and predict the chaotic economic

systems from a bifurcation approach.

By control, we refer to redesigning the system in which parameters are added and

controlled in order to eradicate the chaotic behaviour of the system and reach a desired

goal. Lots of research has been conducted on the nonlinear chaotic finance problem,

mostly with the aim of achieving control and synchronization. Several techniques are

used for control of the chaotic system including sliding mode, feedback control [1],

integral sliding mode control [99], inverse optimal control [19], passive control [83],

adaptive control [98], backstepping control [97] to name these only.

In the synchronization process, we are given two identical systems with different

starting points. One initial system, also called driving, and a second system called

response, or slave, similar to the driving system. The aim is that by adding some

parameters on the slave system we should match the driving system after some time.

In the world of finance, this means from one chaotic finance system generated from

a certain economy we can add some parameters to it in order to match another de-

sired chaotic system generated by another economy. Various synchronization methods

have been introduced so far and some with extension to fractional cases, namely, the

projective synchronisation [104, 108], sliding mode [56, 96], and the nonlinear control

[71, 107]. In this paper, a two sliding controller mode synchronisation is used as it reg-

ulates synchronisation of chaotic finance system more effectively than passive control,

while keeping also the system internally stable [56].

Analytical solutions for nonlinear chaotic systems are almost nonexistent. There-

fore, we rely on numerical methods to study these systems. In the field of numerical

methods for solving differential equations, two main classes can be distinguished, clas-
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sical methods and spectral methods. By classical methods we refer to the class of finite

difference, finite element methods. These methods are very accurate, but computa-

tionally costly.

However, spectral methods have the advantage of being fast converging methods.

Their truncation error decays as fast as the global smoothness of the underlying so-

lution permits. Their definite integrals are calculated once by the quadrature rule

[33], see also [35, 86] for more on spectral methods. For ordinary differential equa-

tions in which some coefficient functions or solutions are not analytic, Babolian [6]

introduced a modified spectral method that is more efficient than the existing spec-

tral methods. Various quadrature and modified quadrature rules can be found in the

literature of spectral methods, including quadrature based on Chebyshev polynomials.

Shifted Chebyshev polynomials for instance are used to solve the Klein-Gordon equa-

tion, [44]. The method is referred to as shifted Chebyshev-Tau method. An extension

of this method is applied in the case of fractional differential equations [25]. Two years

later, Bhrawy [9] introduced an operational matrix to the shifted Chebyshev method

to generate a faster algorithm for fractional integration in the sense that only a small

number of shifted Chebyshev polynomials is needed to obtain a satisfactory result.

Liu [61] applies a quasi-inverse technique to solve differential equations directly. The

method performs very well and shows obvious advantage especially when it comes to

multi-dimensional cases.

Driscoll [27] presents a fast algorithm based on operational matrices in which the

matrices have a lower density. In integral form, large condition numbers associated with

differentiation matrices in high-order problems are avoided. The Chebfun package of

Matlab [93] is used in the algorithm, as it exploits results from approximation theory,

spectral methods, and object-oriented software design to reduce the distance between

analytical expressions and numerical solutions for one-dimensional problems. Like the

Matlab Differentiation Matrix Suite (DMS) package [101], Chebfun also suffers from the

fact that the differentiation matrix gets full (while it is sparse for the finite difference

or the finite element method) and, more importantly, it is very sensitive to rounding
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errors. Reason being that these two packages are based on the spectral collocation

method where the approach focuses more on the physical space generated from the

quadrature.

Following the same matrix based operational approach, an improvement of these

packages is brought by Trif [94] in introducing the chebpack package that is based on

the Chebyshev-Tau method where the focus is more on the spectral space of coeffi-

cients rather than the physical space. This approach takes advantage of the spectral

properties of Chebyshev polynomials resulting in avoiding full matrices. Actually the

obtained matrices are sparse upper triangular and for the particular case of constant

coefficient in the system, the matrices become diagonal almost everywhere. Hence a

tremendous gain in computation is achieved.

In this chapter we intend to solve the chaotic finance system by means of the robust

spectral integral method (RSIM), to compute the solution of three dimensional and four

dimensional problems. In addition, a splitting method is used in order to achieve fast

convergence without compromising on the accuracy over a long time period.

This chapter is organised as follows, Section 5.2 presents the chaotic finance system

with a brief analysis on the stability. In Section 5.3 we introduce the robust spectral

integral method In Section 5.4, we present numerical results and conduct an error

analysis as well as a synchronisation via sliding mode. The last section is devoted to

the conclusion.

5.2 Chaotic finance systems

The chaotic finance system, under study, is driven by the interaction of three main

variables influencing the market economy. This interaction is modeled in the form

of three nonlinear simultaneous ordinary differencial equations (ODEs) as follows (see
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[54])


















ẋ = z + (y − a) x,
ẏ = 1− by − x2,
ż = −x− cz.

(5.2.1)

where x component stands for the interest rate dynamics which is defined as the per-

centage amount of the principal a borrower promises to pay the lender, y is the invest-

ment demand which is the desired capital and inventories by firms, and z represents

the price index of a stock. The positive constant parameters a, b, c are the saving, the

per-investment cost and the elasticity of the demand, respectively.

By applying some appropriate change of coordinate system and settings, differ-

ent views of the chaotic finance system can be presented [24]. In this paper we

shall stick to the presentation given in (5.2.1). The system admits three equilib-

rium points X0 = (0, 1
b
, 0), X1 =

(
√

1− ba− b
c
, a+ 1

c
,−1

c

√

1− ba− b
c

)

and X2 =
(

−
√

1− ba− b
c
, a+ 1

c
, 1
c

√

1− ba− b
c

)

. The Jacobian matrix is

Jx =











y − a x 1

−2x −b 0

−1 0 −c











, (5.2.2)

and at the equilibrium point X0,

Jx0
=











1
b
− a 0 1

0 −b 0

−1 0 −c











.

The characteristic polynomial is

P (λ) = λ3 −
(

1

b
− a− b− c

)

λ2 −
(c

b
− ab− ac− bc

)

λ− (c− b− abc). (5.2.3)

According to the Routh-Hurwitz criterion for polynomial of order 3, the real parts of
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the three eigenvalues are all negative if the following simultaneous inequalities hold:

−
(

1

b
− a− b− c

)

> 0, (5.2.4)

− (c− b− abc) > 0, (5.2.5)
(

1

b
− a− b− c

)

(c

b
− ab− ac− bc

)

+ (c− b− abc) > 0. (5.2.6)

In addition, we also see that the root λ = −b of the characteristic polynomial (5.2.3)

has a negative real part if b > 0. Now, if we arbitrarily consider b = 0.1, c = 1 and if

we take a to be our control parameter, then the above set of conditions is written as:

a >
89

10
,

a > 9,
(

a− 89

10

)(

11a− 99

10

)

− a− 9

10
> 0.

This means for a > 9 all the eigenvalues will have a negative real part. As a result, X0

is asymptotically stable.

At the equilibrium pointX1 =
(
√

1− ba− b
c
, a+ 1

c
,−1

c

√

1− ba− b
c

)

, the Jacobian

is given by

Jx1 =











1
c

√

1− ba− b
c

1

−2
√

1− ba− b
c

−b 0

−1 0 −c











.

Therefore, the corresponding characteristic polynomial is obtained in Equation (5.2.7)

P (λ) = λ3 +

(

b+ c− 1

c

)

λ2 +

(

2 + bc− 2ab− 3b

c

)

λ+ (2c− 2b− 2abc). (5.2.7)
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Accordingly, the real parts of all the eigenvalues are all negative if

b+ c− 1

c
> 0, (5.2.8)

2c− 2b− 2abc > 0, (5.2.9)
(

b+ c− 1

c

)(

2 + bc− 2ab− 3b

c

)

− (2c− 2b− 2abc) > 0. (5.2.10)

Choosing the constants b = 0.1, c = 1, the above set of conditions result to

a < 9,

a > 9

implying X1 cannot be stable no matter the value of a. The same analysis can also

be conducted for the equilibrium point X2 =
(

−
√

1− ba− b
c
, a+ 1

c
, 1
c

√

1− ba− b
c

)

.

Abd-Elouahab et al. [1] proved the existence of a chaotic behaviour of problem (5.2.1)

for the constants b = 0.1, c = 1 and 0 < a < 7 from the Lyapunov theory.

In the next section, we present a pseudo-spectral method used to solve the system

of ODEs (5.2.1). The main advantage of this method is that it can handle large time

values while preserving high accuracy.

5.3 The Robust Spectral Integral Method

We recall section 3.3 and consider two functions a and u of a variable x, with spectral

representation a and u respectively. Then the product a(x) ·u(x) admits also a spectral

representation, denoted as φ which is defined by

φ = a.c (5.3.1)

where a is termed as the matrix representation of the function a(x) and c is the spectral

representation of function u, see [27]
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An efficient way of getting matrix a is to write the product in its discrete form.

Since a(x)u(x) =

[

n
∑

k=0

akTk(x)

][

n
∑

k=0

ckTk(x)

]

, (5.3.2)

then
n
∑

k=0

φkTk(x) =
n
∑

k=0

n
∑

l=0

αklakclTkTl (5.3.3)

for some coefficients αkl, 0 ≤ k, l ≤ n. In addition, given the following relation

Tk(x)Tl(x) =
1

2

[

Tk+l(x) + T|k−l|(x)
]

, for all k, l = 0, 1, ...n (5.3.4)

and in rearranging terms properly, it brings to existence a matrix a such that

n
∑

k=0

φkTk(x) =
n
∑

k=0

[

n
∑

l=0

aklcl

]

Tk(x).

In the frequency space, this will written in the form

φ = ac. (5.3.5)

As a linear operator, the integral of u is a continuous Lipschitz function in [−1, 1],
which has a unique expansion series of the form

∫

u(x)dx =

n
∑

k=0

IkTk(x), x ∈ [a, b],

where Ik’s are coefficients of the integral of u. Section 3.3.3 shows the existence of a

n× n-matrix J such that

Ik =

n
∑

l=0

Jklcl, (5.3.6)

or simply

I = J · c, (5.3.7)
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where I is the spectral representation of the integral of u. and J defined in 5.3.6

Jkk = 0, J01 =
1

2
, Jk,k−1 = −Jkk+1 =

1

k
. (5.3.8)

So then, the spectral representation of the integral of u is the vector d = J.c, and for

any continuous function a(x), the corresponding spectral representation for the integral

of the product a(x) u(x) is J a c where a is the matrix representation of the function

a. We shall write
∫

a(x)u(x)dx→ J a c. (5.3.9)

Consequently it can be seen with the help of elementary technique of integration by

parts that

∫

a1(x)u
′(x)dx → (I − JD)a1 c

∫ ∫

a2(x)u
′′(x)dx → (I − JD)2a2 c

∫

a3(x)
d3u

dx3
(x)dx → (I − JD)3a3 c

...
∫

...

∫

am(x)
dmu

dxm
(x)dx...dx → (I − JD)mam c

where I stands for the identity matrix and D is differentiation matrix as defined by

(3.3.16). Thus, for a general linear differential operator L

L u(x) =

m
∑

i=0

ai(x)
diu

dxi
(x), (5.3.10)

we have
∫

...

∫

L u(x)dxm →
m
∑

i=0

Jm−i(I − JD)iai c. (5.3.11)
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The matrix

A =

m
∑

i=0

Jm−i(I − JD)iai (5.3.12)

is the spectral representation of the integral operator of L.

If we consider a general differential equation Au = f of order m for which the

differential operator can be written as A = L+N where L and N are respectively the

linear part and the nonlinear part, then

the differential equation then writes as

Lu(t) +Nu(t) = f(t) (5.3.13)

Lu(t) = −Nu(t) + f(t) (5.3.14)
∫

...

∫

Lu(t)→ Ac = −n + Jmf (5.3.15)

Ac = f (5.3.16)

implying c = A−1f (5.3.17)

where n is the spectral representation of the integral of Nu at order m, and f =

−n + Jmf is the spectral representation of −Nu + f(t). We make use the algorithm

1 to generate the numerical solution:

As in section 4.3 we apply the domain decomposition by considering Ih to be a

mesh on the interval [0, T ] and N to be the number of subintervals and

Ih := {tn : 0 = t0 < t1 < · · · < tN = T} .

Denote by Λn = [tn−1, tn], hn = tn− tn−1 and un(t) the solution of (5.3.13) on the n-th

element, namely

un(t) = u(t), ∀t ∈ Λn, 1 ≤ n ≤ N.

Let Mn > 0 be an integer and consider PMn
to be the space of polynomials of order at

most Mn built on Λn. We apply the spectral method as described in the algorithm 1 to
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obtain a numerical solution UMn
∈ PMn

on Λn. The Robust Spectral Integral Method

on the interval [0, T ] consists of a successive application of the obtained spectral method

on each Λn to obtain a global numerical solution UM(t) of (5.3.13) defined in such way

that

UM(t) = UMn
(t), t ∈ Λn, 1 ≤ n ≤ N.

where M is taken to be the smallest of the Mn’s. That is,

M = inf
0<n≤N

Mn

,

For each subinterval [ti, ti+1], equation (5.3.16) is applied.

A(i)c(i) = f(i), i = 0, ..., m− 1. (5.3.18)

The overall matrix A of the entire problem is then a diagonal of the block of matrices

A(i).
















A(1) 0

0 A(2) 0
. . . . . .

0 A(m)

































c(1)

c(2)

...

c(m)

















=

















f(1)

f(2)

...

f(m)

















. (5.3.19)

By inversion of the matrix A(i) on each domain Λi, we obtain c(i) and therefore uMi

which is UM on Λi.

Exponential convergence in this case is still guaranteed by theorem 27.

5.4 Applications and numerical results

In this section, we apply our method to different problems found in financial economics

and test the convergence, and efficiency of the proposed method against the existing

Chebfun method [76]. In addition we provide an application of our method for syn-
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chronization. Since the exact solution is not available we choose the ODE15s with

relative and absolute tolerance 10−14 to serve as the benchmark solution. The error E

is the maximal error given by:

||E|| = ||SolBenchmark − SolNumerical||∞. (5.4.1)

Let us apply the above technique described in Section 5.3 to the nonlinear chaotic

problems stated in Section 5.2. First lets recall the problem (5.2.1) in its initial form



















ẋ+ ax− z = xy,

ẏ + by = 1− x2,
ż + x+ cz = 0,

(5.4.2)

which can also be written as:

a u′(t) +B u(t) = f(t), t ∈ [0, T ] (5.4.3)

where a = (1, 1, 1), u(t) = [x(t), y(t), z(t)] , B =











a 0 −1
0 b 0

1 0 c











and f(t) = (x(t)y(t), 1−

x2(t), 0). Integrating (5.4.3) yields

au(t) +B

∫ T

0

u(t) dt =

∫ T

0

f(t) dt. (5.4.4)

The Chebyshev approximation of problem (5.4.4) at order n in the space of Chebyshev

polynomials yields the following simultaneous equations



















(I + aJ)x− Jz = f1,

(I + bJ)y = f2,

(I + cJ)z + Jx = f3.

(5.4.5)

where I is the identity matrix of order 3, J is the integration matrix as defined in (5.3.6),
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x, y, z are the spectral representation of the unknown functions [x(t), y(t), z(t)] respec-

tively, and similarly [f1, f2, f3] which represent the coefficient vectors of the nonlinear

part [xy, 1− x2, 0] respectively. In other words,











I + aJ 0 −J
0 I + bJ 0

J 0 I + cJ





















x

y

z











=











f1

f2

f3











. (5.4.6)

This problem is nonlinear, we will apply an iterative method to equation (5.4.6)

and the aim is to get the coefficient vector c of u(t) = [x(t), y(t), z(t)].

Lets then consider the fix point problem

Ac = f. (5.4.7)

We shall start with an initial guess coming out of the initial condition [1, 1, 1] then get

the new c by c = A−1f where the old c is used to compute f in the iterations. Keeping

in mind that the chaotic finance (5.2.1) is also highly nonlinear on some interval, and in

order to speed up convergence, we suggest the use of a splitting method on the interval

[0, T ] into N -subintervals 0 = t0 < t1 < ... < tN = T and apply the robust spectral

integral method.

The results are implemented for a = 0.9, b = 0.2, c = 1.2. Figure 5.4.1 shows

the chaotic behaviour of the finance system as expected. The solution functions

x(t), y(t), z(t) are plotted in Figure 5.4.2 where a 4-domains decomposition has been

used with 8 collocation points per domain.

As we vary the number of collocation points from n = 4, 8, 16, 32, 64, 128, 256 and

512, we record in table 5.4.1 the error on each variable x, y and z.

Given that Chebfun returns the solution in 1.05 seconds, we also record the accuracy

achieved as the running time increases and with respect to the number of domains (here

we consider 1, 2 and 4 subintervals), for a total number of Chebyshev collocation points

varying from 256, 512, 1024, 2048 and 4096. Lets also record the error as well as the
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Figure 5.4.1: Phase portraits for T = 1000
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Figure 5.4.2: Plot of the 3 variables for T = 5 using 4-domains decomposition

CPU running time in the Table 5.4.2. Figure 5.4.3 shows the efficiency, on one variable,

of our method compare to Chebfun in solving the chaotic finance system. The method

is reliable on this problem. Clearly the discretization of our interval [0, T ] is uniform,

that is, hN = h = T
N

, where N is the number of domains. In addition we consider

MN = M to be constant since we generate the same number of Chebyshev points in

each domain. Moreover, it is not difficult to see that our function f here adheres to the

Lipschitz conditions. Therefore we should expect an exponential decay of the error as

shown in Figure 5.4.4b where we also considered an additional case of N = 8 domains.

Table 5.4.2 shows that as the number of collocation points get larger (here n > 1000)

on each subinterval, the method tends to suffer in terms of rapidity. Indeed matrix A

gets very large, making inversion a complicated task. But if the structure of A gets

more porous (increase in sparsity) then the spectral method would still be capable of
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Figure 5.4.3: Convergence and efficiency RSIM vs Chebfun
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n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

x(t) 2.390E-2 4.528E-4 1.992E-5 1.013E-6 5.844E-8 3.501E-9 2.145E-10 1.158E-11

y(t) 2.031E-2 4.484E-4 1.673E-5 9.079E-7 5.203E-8 3.139E-9 1.918E-10 1.0752E-11

z(t) 6.135E-3 1.001E-4 3.990E-6 2.2074E-7 1.182E-8 7.127E-10 4.361E-11 2.570E-12

Table 5.4.1: Convergence of the error of the variables x, y and z fot T = 1 with 1
domain only.

n = 256 n = 512 n = 1024 n = 2048 n = 4096

N = 1 CPU 0.271 0.746 2.543 10.593 40.02
Error 6.925E-9 4.304E-10 2.570E-11 3.431E-12 2.814E-12

N = 2 CPU 0.128 0.344 0.998 3.823 15.508
Error 1.372E-8 8.429E-10 E-11 4.231E-12 2.961E-12

N = 4 CPU 0.104 0.174 0.525 1.525 5.451
Error 3.646E-8 2.189E-9 1.348E-10 9.730E-12 2.762E-12

Table 5.4.2: Convergence and efficiency of RSIM with 1, 2 and 4 domains at T = 5.

handling an even larger problem without losing much in accuracy. This explains why

in the Table 5.4.2, our algorithm, RSIM, performs faster in larger time scale when

splitting is done.
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Figure 5.4.5: Plots of the underlying matrix A for 1, 2, and 4-Domain RSIM vs Chebfun
matrix
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As mentioned earlier, the chaotic finance system is highly sensitive to the initial

conditions, which can be a problem for an economical system. Controlling such system

is of great importance in order to match a desired way of functioning. This is achieved

by means of synchronization.

5.5 Synchronization

This section is devoted to the synchronization mentioned earlier. The sliding mode

is applied using two controller parameters. We depart the section by considering our

driving system with variables (x, y, z) to be the initial finance system (5.2.1) and let

the response system be defined with variables xs, ys, zs in the following way:



















ẋs = zs + (ys − a) xs +u1(t),

ẏs = 1− bys − x2s +u2(t),

żs = −xs − czs +u3(t).

(5.5.1)

where u = (u1, u2, u3) is a suitable sliding control function to be determined in order

to achieve synchronization. The error function from solution e = (e1, e2, e3) is defined

by


















e1 = xs − x,
e2 = ys − y,
e3 = zs − z.

(5.5.2)

The dynamics of the error is thus driven by



















ė1 = e3 − ae1 + xsys − xy + u1(t),

ė2 = −be2 − x2s + x2 + u2(t),

ė3 = −e1 − ce3 + u3(t).

(5.5.3)

From sliding mode control theory, Kocamaz et al. [56] show that in order to achieve

synchronization while maintain the system stable, the required sliding control function



CHAPTER 5. A ROBUST SPECTRAL INTEGRAL METHOD FOR SOLVING
CHAOTIC FINANCE SYSTEM AND SYNCHRONIZATION 101

u must satisfy


















u1(t) = −xsys + xy + ν(t),

u2(t) = x2s − x2 + ν(t),

u3(t) = 0,

(5.5.4)

where ν(t) = a1(xs − x)− b1(ys− y) + c1(zs− z)− q sign(−1.75(xs − x) + 2.75(ys− y))
and a1 = 1.75(k − a), b1 = 2.75(k − b), c1 = 1.75, and k, q are some parameters to be

adjusted. In other words, sliding mode control achieves synchronisation only requires

to act on interest rates and investment demand. Introducing all this back into (5.5.1)

we obtain

ẋs + (a− a1)xs + b1ys − (1 + c1)zs = −a1x+ b1y − c1z + xy

− q sign((−1.75(xs − x) + 2.75(ys − y))

ẏs + a1xs + (bs + b)ys + c1zs = −a1x+ b1y − c1z + 1− x2

− q sign(−1.75(xs − x) + 2.75(ys − y))

żs + xs + czs = 0.

Applying integration and expressing it in a matrix form as in section 4.4 yields











I + (a− a1)J b1J −(1 + c1)J

−a1J I + (b+ b1)J −c1J
J 0 I + cJ





















x

y

z











=











f1

f2

f3,











(5.5.5)

where f1 is coefficient vector of−a1x+b1y−c1z+xy−q sign(−1.75(xs−x)+2.75(ys−y))
and f2 is coefficient vector of−a1x+b1y−c1z+1−x2−q sign(−1.75(xs−x)+2.75(ys−y)).

With a driving system starting at initial condition [1, 2,−0.5], and a response system

starting with initial condition [−1, 1.7, 0.5], and a time factor varying from 0 to 10,

we see from Figure 5.5.1 that synchronization is achieved quite fast from t = 3.5

on all three variables x, y, z. In what follows we plot the error dynamics function

e1 = xs − x, e2 = ys − y and e3 = zs − z in Figure 5.5.2. Again, we have a better
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confirmation of that actually from t = 4, the two systems behave the same.
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Figure 5.5.1: Drive and response system behaviour for k = 5, q = 0.1 and 0 ≤ t ≤ 10

In other words, the controller defined in (5.5.4) is switched at time t = 4. Making

therefore the chaotic finance system (5.2.1) rapidly controllable.
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Figure 5.5.2: Error behaviour for k = 5, q = 0.1 and 0 ≤ t ≤ 10.

5.6 Conclusion

In this chapter, a Chebyshev spectral method has been applied on time multiple do-

main. The method proves to be robust and efficient for chaotic finance problem. The

results are also compared with solutions obtained from other numerical methods in the

literature. We achieve good accuracy in very short time as result of using integration

in the frequency space. The method also proves to be reliable for synchronization of

chaotic finance system. Now that we have seen the advantages of the spectral method
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using differentiation on one side and integration on the side, both in the frequency

space, it will interesting to compare the efficiency of these approaches specially in

problems that are highly sensitive to initial conditions such as hyperchaotic finance

systems. We shall explore this topic in details in our next chapter.



Chapter 6

Comparative performance of time

spectral methods for solving

hyperchaotic finance system

This chapter is a slightly modified version of the article published in Chaos, Solitons

and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium

and Complex Phenomenaand has been reproduced here with the permission of Elsevier,

the copyright holder. This article is available here https://www.sciencedirect.com/

science/article/pii/S0960077921001223?dgcid=author.This chapter is a slightly

modified version of a paper submitted into an accredited journal and still under review.

6.1 Introduction

Nonlinear chaotic systems have attracted many research works in the sense that they

can describe the evolution of more complex systems in a reasonable manner. Appli-

cation of theses systems include the area of physics, control theory, telecommunica-

tion artificial neural networks, biological networks, chemical reactor etc. Hyperchaotic

system is usually defined as a chaotic system with at least two positive Lyapunov ex-

ponents. In the area of economics, the phenomenon of chaos was first discovered in

104
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1985 and later it was found in finance by Ma and Chen [53, 54]. Financial system

dynamics have a significant role in micro-economics. This system becomes more and

more complicated with economic growth and contains many complex factors such as

interest rate, the price of goods, investment demand and stock. Over the past few

years, many more hyperchaotic systems have been discovered in the high-dimensional

social economical system.

It is without a doubt that an analytical solution for the nonlinear chaotic system is

almost unachievable. We shall rely on numerical methods for computation of solutions

since the HCFS is actually a dynamical system that is described by a set of nonlinear

ODEs.

Countless papers can be found on this literature of numerical methods for differen-

tial equations. These methods include finite difference methods (FDM) and variants

such as Adams-Bashforth-Moulton methods [102], finite element methods (FEM), ho-

motopy analysis or perturbation methods (HAM/HPM) together with Adomian de-

composition [30] etc., and spectral methods. The methods mentionned in first place

are very accurate, but computationally costly. Spectral methods, however, have the

advantage of being fast converging methods. Their truncation error decays as fast as

the global smoothness of the underlying solution permits, their definite integrals are

calculated once by the quadrature rule [33].

Various modified and quadrature rules can be found in the literature of spectral

methods, including quadrature based on Chebyshev polynomials. Shifted Chebyshev

polynomials for instance are used to solve the Klein-Gordon equation, [44]. The method

is referred to as Shifted Chebyshev-Tau method. An extension of this method is ap-

plied in the case of fractional differential equations [25]. Two years later, Bhrawy [9]

introduces an operational matrix to the shifted Chebyshev method to generate an even

faster algorithm for fractional integration in the sense that only a small number of

shifted Chebyshev polynomials is needed to obtain a satisfactory result.

In a more computational and practical way, Driscoll [27] presents a fast algorithm

based on operational matrices in which the matrices have a lower density. The Chebfun
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package of Matlab presented by Trefethen [93], is used in the algorithm, as it exploits

results from approximation theory, spectral methods, and object-oriented software de-

sign. Similarly, another operatorial matrix approach is brought by Trif [94] and intro-

duces the chebpack package that is based on the Chebyshev-Tau method where the

focus is more on the spectral space of coefficients rather than the physical space. This

approach takes advantage of the spectral properties of Chebyshev polynomials resulting

in avoiding full matrices. Actually the obtained matrices are sparse upper triangular

and for the particular case of constant coefficient in the system, the matrices become

diagonal almost everywhere. Hence a tremendous gain in computation is achieved. We

shall use the later technique to construct a spectral method coupled with decomposi-

tion method to solve the HCFS, from an integral approach on one hand, and on the

other hand using a differential approach.

This chapter is organised as follows, Section 6.2 presents the HCFS, then in Sec-

tion 6.3 We apply these numerical methods to the HCFS and draw comparisons with

solutions obtained from Chebfun. The last section is allocated to the conclusion.

6.2 The hyperchaotic finance system

It has been shown (see Zhao et al. [107]) that four sub-blocks actually drive the dynam-

ics of the finance model: production, money, stocks and labor force. Their interaction

is reported by three nonlinear differential equations defining what is termed as the

chotic finance system. Technically and more explicitly, the finance system describes

the time variation of three main state variable: the interest rate x, the investment

demand y and the price index of stock z. The interest rate is an amount expressed

as the percentage of the principal by lender to a borrower for an asset. Investment

demand can be defined as the desired capital and inventories by firms. The chaotics

finance system is expressed as follows:
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

















ẋ = z + (y − a) x
ẏ = 1− by − x2

ż = −x− cz
(6.2.1)

where the parameters a, b, c are respectively the saving, the per-investment cost and the

elasticity of the demand [56]. These parameters are all considered to be non-negative

and constant. From the chaotic finance system (6.2.1) Yu et al. [106] found that the

factors affecting the interest rates are related not only to investment demand and price

index but also to the average profit margin. Moreover, the average profit margin and

interest rate are proportional. Hence an improved chaotic finance system is constructed

by including an additional state variable w that will stand for the average profit margin.

The system is now of four dimensional differential equations:































ẋ = z + (y − a)x+ w,

ẏ = 1− by − x2,
ż = −x− cz,
ẇ = −d xy − ew.

(6.2.2)

Let us now apply the numerical methods based on spectral Chebyshev methods

developed in section 3.3, that will allow us to get solutions of (6.2.2).

6.3 Applications and numerical results on the hyper-

chaotic finance system

In this section, we apply our method to HCFS and test the convergence, and efficiency

of the proposed methods. Since the exact solution is not available we choose the

ODE15s with relative and absolute tolerance 10−14 to serve as the benchmark solution.
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The error we consider E is the maximal error given by:

||E|| = ||SolBenchmark − SolNumerical||∞. (6.3.1)

In order to apply techniques described in Section 3.3 to the nonlinear hyperchaotic

problems stated in Section 6.2. First lets recall the problem (6.2.2) in its initial form































ẋ+ ax− z − w = xy,

ẏ + by = 1− x2,
ż + x+ cz = 0,

ẇ + ew = −d xy,

(6.3.2)

which can also be written as:

a u′(t) +B u(t) = f(t), t ∈ [0, T ] (6.3.3)

where a = (1, 1, 1, 1), u(t) = [x(t), y(t), z(t), w(t)] , B =

















a 0 −1 −1
0 b 0 0

1 0 c 0

0 0 0 e

















and

f(t) = (x(t)y(t), 1− x2(t), 0,−d x(t)y(t)).
The spectral representation of the (6.3.3) is

















D + aI 0 −I −I
0 D + bI 0 0

Id 0 D + cI 0

0 0 0 D + eI

































x

y

z

w

















=

















f1

f2

f3

f4

















(6.3.4)

where x, y, z, w are the spectral representation of the unknown functions [x(t), y(t), z(t), w(t)]

respectively, and similarly [f1, f2, f3, f4] which represent the coefficient vectors of the

nonlinear part [xy, 1− x2, 0, dxy] respectively.
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On the other hand we can approach the hyperchaotic problem by integration first

then apply Chebychev approximation to the resulting integral problem.

It is not difficult to see that the Chebyshev approximation of problem (5.4.4) at

order n in the space of Chebyshev polynomials yields the following simultaneous equa-

tions






























(I + aJ)x− Jz− Jw = f1,

(I + bJ)y = f2,

(I + cJ)z + Jx = f3,

(I + eJ)w = f4,

(6.3.5)

where x, y, z, w are defined as above, and similarly [f1, f2, f3, f4] which represent the

coefficient vectors of the integral of the nonlinear part [xy, 1− x2, 0, dxy] respectively.

In other words,

















I + aJ 0 −J −J
0 I + bJ 0 0

J 0 I + cJ 0

0 0 0 I + eJ

































x

y

z

w

















=

















f1

f2

f3

f4

















(6.3.6)

The two approaches generates nonlinear problem, we will apply an iterative method

to equations (6.3.6) and (6.3.4). The aim is to get the coefficient vector c of u(t) =

[x(t), y(t), z(t)].

Lets then consider the fix point problem

Ac = f. (6.3.7)

We shall start with an initial guess coming out of the initial condition then get the new

c by c = A−1f where the old c is used to compute f in the iterations. Keeping in mind

that the chaotic finance (6.2.2) is also highly nonlinear on some interval, and in order

to speed up convergence we suggest the use of a splitting method on the interval [0, T ]

into N -domains 0 = t0 < t1 < ... < tN = T and apply the spectral methods.
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The results are implemented for a = 0.9, b = 0.2, c = 1.2, d = 0.2, e = 0.17. Figure

6.3.1 shows the phase portraits between variables for a long time T = 200. They both

exhibit chaos as excected.
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Figure 6.3.1: Phase portraits 2D and 3D

The solution functions x(t), y(t), z(t), w(t) are plotted in Figure 6.3.2 where a 3

domain decomposition have been used with 16 collocation points per domain and T = 5.

It is clear, the numerical solutions from both spectral approaches match the benchmark

solution from ODE15s.

We go on into investigating the effect of n and N on the decay error. Figure 6.3.3a

shows that employing more collocation points on a domain enhances the precision of

the numerical solution both from integration as well as differentiation method. It is

also remarquable to see that while it takes close 80 points for Chebfun to reach an ac-

curacy of 10−4, the integral and differentiation spectral methods only require 20 points

to achieve same accuracy. However the later methods tend to lose this quality as the

number of points gets larger (here n = 120) as compare to Chebfun. This makes us

consider a domain decomposition of the interval [0, T ].

However, better accuracy can also bring along a cost in time. Figure 6.3.3e presents

the efficiency of the three methods. From the reading of that graph one can see that
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Figure 6.3.2: Plot of x, y, z, w variables using 3 domains and 16 collocation points and
T = 5

the spectral integral method outperforms better than the other two methods on the

hyperchaotic finance system for time T = 5. The reason for such is mainly due to

the level of sparcity of the matrices generated by the schemes. Figure 6.3.5 shows the

sparcity structures of matrices generated for each method. The integral method has

a matrix structure more porous than others, giving it the advantage to be invertible

faster than the matrix from differentiation method which is upper triangular, and also
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matrix from chebfun which is is full.

Another point to consider is the factor T . It is worth noting that during the course

of our simulations, the differentiation method starts malperforming when the size of the

domain gets greater than 2 and same remark would apply to the integral method but

for T > 4. For this additional reason, as T gets larger, we shall decompose our interval

[0, T ] into multiple domains. The same remark also holds for Chebfun, it degenerates

whenever T > 11 as shown in Figure 6.3.3d. The remedy is the same, one has to

consider decomposing the intervals into sub-intervals. This turns out also to produce

improvement in the CPU running time, (see figure 6.3.4). In all cases, still the integral

method performs faster than the differentiation method.

As we vary the total number of collocation points from n = 32, 64, 128, 256, 512, 1024, 2048

and 4096, the error on each variable x, y, z and w.

Figure 6.3.4 shows that as the number of collocation points get larger (here n >

1000) on each subinterval, the methods tend to suffer in terms of rapidity. Indeed

matrix A gets very large, making inversion a complicated task. But if the structure

of A gets more porous (increase in sparsity) then the spectral methods would still

be capable of handling an even larger problem without losing much in accuracy. For

instance, one can see that with the differentation approach, it takes 1320s ie. 23min to

obtain an error of order 10−12 using one domain but with 8 domain decomposition the

algorithm will take less that 2min using differention method and less than 1min using

the integral method.

We look at the influence of number of domains N and the time T as it increases

maintaining the number of collocation point n constant equal 64. Figure 6.3.6 shows

that the error remains the same no matter how big is T , as long as the domain sizes

are enough to allow for the spectral method to run on each domain. The number of

domains N does not influence the error but helps in speeding up the algorithm.
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(b) Error versus n for T = 2
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(c) Error versus n for T = 2
N = 4
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(d) Error versus n for T = 11 N = 4
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Figure 6.3.3: Convergence and efficiency of the three methods a we vary the number
of collcation points
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ation method
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Figure 6.3.4: Efficiency and convergence of integral and differentiation method as we
vary the number of domains
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Figure 6.3.5: Plots of the underlying matrix A of all three methods.
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Figure 6.3.6: Plots of error as T increases to 100 and n = 64, for different number of
domains

6.4 Conclusion

In this chapter, a Chebyshev spectral method has been applied on time multiple domain

using differentiation matrix and also using integration approach. The methods prove

to be robust with the integral approach showing to be more efficient for hyperchaotic

finance problem than the method from differential approach. The results are also

compared with solutions obtained from other numerical methods in the literature to

confirm reliabily of the solutions. The spectral methods presented here are simple

and accurate for handling even more complicated ODEs, however when it comes to

fractional cases, it will be interesting to see how can the method perform on such

problem. This is the subject of the next coming chapter.



Chapter 7

Fractional spectral integral methods

for valuing cryptocurrency asset flow

modeled by fractional differential

equations

This chapter is a slightly modified version of a paper submitted into an accredited

journal and still under review.

7.1 Introduction

Recently the notion of cryptocurrency has become increasingly popular. A cryptocur-

rency is essentially a type of digital asset used as money in a sense of the Austrian school

of economics, i.e. money emerges from a competition of medium of exchanges [12, 92].

A cryptocurrency value is dictated by the supply and demand in a free economy where

the intervention of any entity or government is not possible in the issuance of its new

units as to opposed fiat currencies that follow the Keynesian school of economics, i.e.

a governmental organization can have a positive effect on an economy, especially when

115
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it begins to slow down or take a hit [46, 89]. The backbone technology underpinning

a cryptocurrency is the blockchain. It is a distributed public ledger that records all

the transactions since inception in a safe, secure, verifiable and non-editable manner

[3]. Newly issued units of a cryptocurrency is realized through a process called mining.

Miners verify transactions in a block by solving of complex hard mathematical process

which requires an enormous amount of computing power. This is known as the proof

of work. During this process, the most competitive miner receives mining rewards and

transactions fees. This is how new coins are issued [63]. Bitcoin uses the proof of work

verification process to ensure the integrity of the system. There exists other types of

verification processes such as the proof of stake, the delegated proof of stake, the proof

of authority, etc. [10, 85].

A lot of research has been carried out to gain insights into the dynamics of the

bitcoin price. However most of them focuses on time series modelling [88]. Bitcoin

prices and derivatives are barely studied from modelling point of view. Some papers

dealing with option pricing are available but an extensive empirical analysis is missing.

Additional literature on pricing is provided by Madan et al. [63]. A dynamical approach

instead is carried by Caginalp [15] to analyse stability of cryptocurrency markets. The

model describes a system of nonlinear ordinary differential equations.

However, due to high variability in the dataset, total differentiation can in some

instance leave some challenges in the degree of the accuracy of the model and by using

fractional differentiation, the accuracy on pricing models may be improved. We extend

the study of the model proposed by Caginalp [15] to fractional differential equations

(FDE). Fractional derivatives are unfortunately not unique. The classical ones are the

Rieman-Liouville fractional derivatives and the Caputo fractional derivative [77]. One

challenge with classical fractional calculus is to handle nonlinear phenomena [17, 29].

Various fractional derivative operators have been introduced recently among them, the

Atangana-Baleanu (AB) fractional derivative. Fractional derivatives have been tested

with success in many fields including chaotic behavior, epidemiology [5, 8, 49]. Since

our cryptocurrency model also is valid on a short period of time, singularities are not
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observed. Hence a Caputo fractional operator is preferred in order to facilitate the

introduction of fractional integration. A fractional dynamical approach for cryptocur-

rency in the Caputo sense is therefore proposed.Attempts to solve FDEs has been an

ongoing active topic of research. There are several analytical methods such as Ado-

mian decomposition methods, homotopy- perturbation methods, variational iteration

method and homotopy Analysis methods [32, 66, 80, 105]. In general, most FDEs do

not have exact analytical solutions, so approximations and numerical techniques must

be used. Most works developed in numerical methods for solving FDEs have focused

on lower (or classical) methods which include the class of finite difference and finite

element methods. These methods have shown a slow convergence.

Higher order (or spectral) methods, however, have the advantage of being fast con-

verging methods. Though only sparely explored in the context of fractional differential

equations, high order methods have the potential to reduce computational cost by

allowing the use of fewer points, while achieving the same accuracy as that of lower

order methods [20]. In this chapter we intend to solve the fractional dynamical system

governing the price process of cryptocurrency by means of spectral method, following

the footsteps of [67, 94] with an extension to the three dimensional problem. More

precisely the Caputo fractional operator is used for handling fractional differentiation.

This chapter is organised as follows. Section ?? presents some basic concepts of

fractional integrals derivatives. In Section 7.3, we introduce the fractional spectral

integral method that will be used, then we apply this to the cryptocurrency problem

in Section 7.4. In the same section we present results and conduct an error analysis.

The last section is devoted to the conclusion.

7.2 Quick review of fractional operators

We first recall Euler’s Gamma function from Equation (2.2.1).
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Γ(x) :=

∫ +∞

0

tx−1e−t (7.2.1)

Assuming that a function f(x) is well defined where x > 0, we can form the definite

integral from 0 to x. The fractional integral of order α of f is

(Jαf)(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt. (7.2.2)

and the he Riemann-Liouville fractional order derivative of f is defined as the mth

derivative of the fractional integral of order m− q. That is:

RL
a Dq

t f(t) =
dm

dtm

[

1

Γ(m− q)

∫ t

a

(t− τ)m−q−1f(τ)dτ

]

, m = [q] + 1. (7.2.3)

For all a < t < T

The Caputo frsctional derivative on the other hand is defined as the fractional

integral of the mth-derivative, That is:

C
aD

q
t f(t) =

1

Γ(m− q)

∫ t

a

f (m)(τ)

(t− τ)q+1−m
dτ, m− 1 ≤ q < m (7.2.4)

With the Caputo derivative we recover the fact that the derivative of a constant function

is indeed zero, however we have to pay the price that f has to be m-differentiable.

The following relations shows the equivalence between the Riemann-Liouville and the

Caputo fractional derivatives:

RL
a Dαf(t) = C

aD
αf(t) +

m−1
∑

k=0

tk−α

Γ(k − α + 1)
f (k)(0+), (7.2.5)

Consequently,

RL
a Dαf(t) := DmJm−αf(t) 6= Jm−αDmf(t) := C

aD
αf(t), (7.2.6)

unless the function f(t) along with its first m− 1 derivatives vanishes at t = 0+.



CHAPTER 7. FRACTIONAL SPECTRAL INTEGRAL METHODS FOR
VALUING CRYPTOCURRENCY ASSET FLOW MODELED BY FRACTIONAL
DIFFERENTIAL EQUATIONS 119

7.3 Chebyshev approximation and fractional integral

matrix operator

We recall the definition of the fractional integral in (7.2.2)

Jqf(x) =
1

Γ(q)

∫ x

0

(x− t)q−1f(t)dt. (7.3.1)

Let us consider a function f : [0, b]→ R, with the Chebyshev approximation:

f(x) =
n−1
∑

k=0

ckTk(αx+ β), α =
2

b
, β = −1. (7.3.2)

Note that c = (c0, c1, . . . , cn) is its spectral representation. The fractional integral of

order q of the function f at any collocation point xk is:

Jqf(xj) =
1

Γ(q)

∫ xj

0

(xj − t)q−1
n−1
∑

k=0

ckTk(αt− 1)dt

=
n−1
∑

k=0

ck

∫ xj

0

(xj − t)q−1Tk(αt− 1)dt

=
n−1
∑

k=0

ckIk(xj)

where

Ik(xj) =

∫ xj

0

(xj − t)q−1Tk(αt− 1)dt. (7.3.3)

Thus the physical representation of the fractional integral of f on the entire interval

[0, b] is:

v(x) = Jqf(x) = (Jqf(x0), J
qf(x1), ..., J

qf(xn))
(

n
∑

k=0

c̃kTk(x0), ...,
n
∑

k=0

c̃kTk(xn)

)

=

(

n
∑

k=0

ckIk(x0), ...,
n
∑

k=0

ckIk(xn)

)
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The above relation implies the existence of a matrix I such that

T c̃ = I c

c̃ = T−1I c

where c̃ is the spectral representation of the fractional integral of f , the matrix I is

defined as follows

I = (Ikj), Ikj = Ik(xj), i, j = 1, 2, ..., n (7.3.4)

Ik(xj) being defined as in (7.3.3). Consequently the physical representation of the

fractional integral operator is I · T−1 and the spectral representation of the fractional

integral operator is T−1I. It remains therefore to compute the matrix I. To this extend

we have the following lemma, see also [72, 95].

Lemma 29. [95] Let f be a continuous function defined on [0,b] and vanishing at 0,

and define Ik(x) as in (7.3.3). Then

I0(x) =
x1−q

1− q/2,

I1(x) =
αx2−q

(2− q)(1− q) −
x1−q

k(1− q) ,

I2(x) =
4α2x3−q

(3− q)(2− q)(1− q) −
4αx2−q

(2− q)(1− q) +
x1−q

1− q

and

(

1 +
1− q
k

)

· Ik(x) = 2(αx− 1) · Ik−1(x) +

(

1− q
k − 2

− 1

)

· Ik−2(x)−
2(−1)k
k(k − 2)

x1−q

Proof. [95] We are interested in computing the following integral

Ik(x) =

∫ x

0

Tk(αt− 1)

(x− t)q−1
dt (7.3.5)
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We have

∫ x

0

1

(x− t)1−q
dt =

xq

2q
(7.3.6)

∫ x

0

t

(x− t)1−q
dt =

xq+1

q(q + 1)
(7.3.7)

∫ x

0

t2

(x− t)1−q
dt =

2xq+2

q(q + 1)(q + 2)
(7.3.8)

Thus

I0(x) =

∫ x

0

1

(x− t)1−q
dt =

xq

2q
(7.3.9)

I1(x) =

∫ x

0

(αt− 1)

(x− t)1−q
dt

= α

∫ x

0

t dt

(x− t)1−q
dt+

∫ x

0

dt

(x− t)1−q

= α
xq+1

q(q + 1)
− xq

2q
(7.3.10)

I2(x) =

∫ x

0

2(αt− 1)2 − 1

(x− t)1−q
dt = 2α2

∫ x

0

t2dt

(x− t)1−q
− 4α

∫ x

0

t dt

(x− t)1−q

+

∫ x

0

1

(x− t)1−q
dt

= 4α2 xq+2

q(q + 1)(q + 2)
− 4α

xq+2

q(q + 1)
+
xq

q
(7.3.11)

Using the recurrence relation in (??) we get the following

Ik(x) =

∫ x

0

Tk(αt− 1)

(x− t)q dt =

∫ x

0

2(αt− 1)Tk−1(αt− 1)− Tk−2(αt− 1)

(x− t)q dt (7.3.12)

= 2α

∫ x

0

tTk−1(αt− 1)

(x− t)1−q
dt− 2

∫ x

0

Tk−1(αt− 1)

(x− t)1−q
dt−

∫ x

0

Tk−2(αt− 1)

(x− t)1−q
dt

= 2α

[

t

∫ x

0

Tk−1(αt− 1)

(x− t)1−q
dt

]t=x

t=0

− 2α

∫ x

0

Tk−1(αt− 1)

(x− t)1−q
dt− 2Ik−1(x)− Ik−2(x)

= 2αxIk−1(x)− 2α

∫ x

0

Tk−1(αt− 1)

(x− t)1−q
dt− 2Ik−1(x)− Ik−2(x). (7.3.13)
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On the other hand,

Ĩk−1(x) =

∫ x

0

(x− t)qTk−1(αt− 1)dt

=

∫ x

0

(x− t)q
[

T ′
k(αt− 1)

2k
− T ′

k−2(αt− 1)

2(k − 2)

]

dt

=
1

2k

∫ x

0

(x− t)qT ′
k(αt− 1)dt− 1

2(k − 2)

∫ x

0

(x− t)qT ′
k−2(αt− 1)dt

=
1

2k

{

[

1

α
(x− t)qTk(αt− 1)

]t=x

t=0

+

∫ x

0

q

α
(x− t)q−1Tk(αt− 1)dt

}

− 1

2(k − 2)

{

[

1

α
(x− t)qTk−2(αt− 1)

]t=x

t=0

+

∫ x

0

q

α
(x− t)q−1Tk−2(αt− 1)dt

}

=
1

2k

[

−x
q

α
Tk(−1)

]

+
q

2kα

∫ x

0

(x− t)q−1Tk(αt− 1)dt

− 1

2(k − 2)

[

−x
q

α
Tk−2(−1)

]

− q

2α(k − 2)

∫ x

0

(x− t)q−1Tk−2(αt− 1)dt

=
xq

2α

[

Tk−2(−1)
k − 2

− Tk(−1)
k

]

+
q

2kα

∫ x

0

(x− t)q−1Tk(αt− 1)dt

− q

2α(k − 2)

∫ x

0

(x− t)q−1Tk−2(αt− 1)dt

=

[

(−1)k−2

k − 2
− (−1)k

k

]

xq

2kα
+

q

2kα
Ik(x)−

q

2α(k − 2)
Ik−2(x)

=
(−1)kxq
αk(k − 2)

+
q

2kα
Ik(x)−

q

2α(k − 2)
Ik−2(x).

Therefore

Ik(x) = −2α
[

(−1)kxq
αk(k − 2)

+
q

2kα
Ik(x)−

q

2α(k − 2)
Ik−2(x)

]

+ 2(αx− 1)Ik−1(x)− Ik−2(x)

=
−2(−1)kxq
k(k − 2)

− q

k
Ik(x) +

q

k − 2
Ik−2(x) + 2(αx− 1)Ik−1(x)− Ik−2(x)

(

1 +
q

k

)

Ik = 2(αx− 1)Ik−1(x) +

(

q

k − 2
− 1

)

Ik−2(x)−
2(−1)kxq
k(k − 2)

.

Consequently let 0 < q0 < q1 < ... < qm, and consider a general multiple order
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fractional differential equation Au = f of order qm with constant coefficients. Suppose

the fractional differential operator can be written as A = L +N where L and N are

respectively the linear part and the nonlinear part, then the equation can be written

as

Lu(t) +Nu(t) = f(t) (7.3.14)
m
∑

k=0

Dqku(t) = −Nu(t) + f(t) (7.3.15)

Taking fractional integral of order qm to (7.3.15) and applying relation (7.2.6) we get:

m
∑

k=0

Jqm−qku(t) = Jqm [−Nu(t) + f(t)] . (7.3.16)

The above equation can be represented in the frequency space as:

m
∑

k=0

J
qm−qkc = −n+ f̃

A c = f (7.3.17)

implying c = A
−1 (f)

for some A =
∑m

k=0 J
qm−qk ; where n, f̃ are the spectral representation of JqmNu and

Jqmf respectively, and f = −n + f̃ .

7.4 Application and numerical results

In this section, we apply our fractional spectral integral method (FSIM) to problems

in cryptocurrency world. We also test the convergence of our proposed method against

existing fde12 method [36, 37]. Whenever the analytical solution is not found, we

choose our FSIM with relative tolerance 10−14 (that is 2000 collocation points) as the
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benchmark solution. The error E is the maximal error given by

||E|| = ||SolBenchmark − SolNumerical||∞. (7.4.1)

All the numerical simulations are performed on a processor Intel core I5, 8th Gen.

7.4.1 Benchmark problem

Here we consider the following system of fractional differential equation [103]



















Dq1x(t) =
√
t+ 6

√

(y(t)− 0.5)(z(t)− 0.3),

Dq2y(t) = Γ(2.2),

Dq3z(t) = Γ(2.8)
Γ(2.2)

,

(7.4.2)

with q1 = 0.5 q2 = 0.2 and q3 = 0.6 together with initial condition: x(0) = 1, y(0) = 0.5

and z(0) = 0.3, for which the exact solution is found to be x(t) = t+1, y(t) = t1.2, z(t) =

t1.8 + 0.3.

Applying our method and comparing with the exact solution we get the following

plot for the solutions x, y, z in Figure 7.4.1. This plot shows that the numerical solution

from (FSIM) and the exact solution are in good agreement.

We also run a comparison with another already existing numerical method, here

fde12 which is based on Taylor expension approximation.

As we vary the number of collocation points on the FSIM we record in Figure 7.4.1d

the evolution of the error dynamics on the variable z. The log-log graph shows an

exponential decay of the error which is expected from a spectral method. The same

result holds also for the variables x and y.

7.4.2 Cryptocurrency model

The behaviour of the cryptocurrency price dynamics in the market is based on some

key factors:
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Figure 7.4.1: Plot of the variables x, y, z for T = 5 and N = 32 collocation points and
convergence

• P (t): The market price of cryptocurrency.

• L(t): The Liquidity price at time t.

• ζ1(t): The trend-based component of investor preference at time t.
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Caginalp [15] proposed a dynamical system based on asset flow differential equation to

describe the behaviour of those three variables in the market as :



















τ0
dP
dt

= (1 + 2ζ1)L− P,
c0

dL
dt

= 1− L+ q(1 + 2ζ1)L− qP,
c1

dζ1
dt

= q1(1 + 2ζ1)
L
P
− q1 − ζ1.

(7.4.3)

The system admits only one equilibrium point obtained for L = P and ζ1 = 0.

It is known that integer order derivative may fail to take into consideration the history

of the system and fails to address some technical issues describing this system. For

this reason, let substitute the integer derivative by a Caputo fractional derivatives into

the system, we get:



















τ c0D
α1
t P = (1 + 2ζ1)L− P,

cc0D
α2
t L = 1− L+ q(1 + 2ζ1)L− qP,

cc1D
α3
t ζ1 = q1(1 + 2ζ1)

L
P
− q1 − ζ1.

(7.4.4)

Taking fractional integrals appropriately for each equation in the system and using

(7.2.6) we get



















τ0P = Jα1(1 + 2ζ1)L− Jα1P,

c0L = Jα2(1− L+ q(1 + 2ζ1)L− qP ),
c1ζ1 = Jα3(q1(1 + 2ζ1)

L
P
− q1 − ζ1).

(7.4.5)

Equation (7.4.2) is a 3 dimensional system of nonlinear ordinary fractional integral

equations. It can be written as:

Au+Nu = f (7.4.6)
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Using our Fractional Spectral Integral Method described in section 3, we transport the

equation in the frequency space and it becomes

Ac = f (7.4.7)

where c and f are spectral representations of the unknown solution vector u = (P, L, ζ1)

and the nonlinear part f −Nu, respectively. In addition, the matrix A is of the form:

A =











τ0I + Jα1 −Jα1 0

qJα2 c0I + (1− q)Jα2 0

0 0 c1I + Jα3











where I is the identity matrix and J is the integral matrix as defined in (7.3.4). The

nonlinear part will write as:

N =











2Jα1ζ1L

Jα2(1 + 2qζ1L)

Jα3
(

q1(1 + 2ζ1)
L
P
− q1

)











.

We run the algorithm for the following set of parameters τ0 = 1.8, c0 = 1, q0 =

0.75, q1 = −2.5, c1 = 1; considering an initial solution to be P (0) = 1.8, L(0) =

0.8, ζ1(0) = −0.1, and α1 = 0.5, α2 = 0.7, α3 = 0.9. We compare the results with the

solution from fde12 method. The solutions are plotted in Figure 7.4.2 for the variables

x(t), y(t), z(t).

A long run behaviour of the solutions is plotted in Figure 7.4.3a together with a

phase plane PL, Pζ1 and Lζ1 in Figure 7.4.3b, Figure 7.4.3c and Figure 7.4.3d respec-

tively. These plots confirm the stability analysis announced earlier and that is, there

is no chaotic behaviour observed in the cryptocurrency pricing problem, see also [78]

for more on the stability analysis.

Looking at the effect of varying the fractional order of differentiation, Figure 7.4.4

shows that as α → 1 the solution of the fractional differential equation converges to
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Figure 7.4.2: Plot of the variables P, L, ζ1 for T = 1, N = 32 collocation points and
h = 10−5 for the fde12 method

the solution of the ordinary differential equation. In addition, the numerical results

demonstrate that a decrease in the derivative order is associated with a decrease in the

minimum value of P and L and in the maximum value of ζ1.

We investigate the convergence and efficiency of the method compared to fde12

method. Figure 7.4.4e confirms the fast convergence of the spectral method. Indeed

it only takes 32 points and 512 points to already reach accuracy of order 10−3 and

10−7 respectively while it would necessitate respectively 1000 and 100,000 points to

achieve the same order of accuracy for the fde12 method. In terms of efficiency, Figure
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Figure 7.4.3: Phase planes for large T = 1000

7.4.4d shows that fde12 method takes 1.7s to achieve accuracy order 10−4 whereas

our spectral method covers this same accuracy within 0.2s. In addition, it becomes a

mission for the fde12 to reach higher order of accuracy since the number of unkowns

becomes extremely large.

7.5 Conclusion

In this chapter we have presented a spectral integral method to numerically solve

systems of FDEs especially in the case of cryptocurrency models where the problem
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Figure 7.4.4: Plot of the variables x, y, z for T = 1
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involves multiple orders of FDE. The result from error analysis shows that our method

maintains its spectral convergence. An efficiency analysis was also conducted against

an existing method, here the fde12 and results are satisfactory. For further application

it would be interesting to couple our method with a spliting method in order to deal

large time scale FDEs. Also see how the method can be adjusted in the case of problems

with kernels that would require Atanga-Baleanu fractional derivatives in the modeling

instead of the Caputo derivative.



Chapter 8

Conclusion and Future Perspectives

8.1 Conclusion

We have designed a spectral method that accommodates problems of various type in

finance. These problems result into solving systems of ODEs. The proposed numerical

method presents an operatorial matrix based on chebyshev polynomials with solutions

in the frequency domain instead of the physical domain as most actual numerical

methods do.

For large time scale ODEs, a discretization of the time is applied allowing thus the

spectral method to converge not only on the subdomains but also globally. In the se-

quel, two approaches are implemented: The differential approach on one side, resulting

into triangular matrices and the integral approach on the other side resulting in band

matrices which become diagonal when the problem involves constant coefficients. In

both cases the matrices are spares reducing tremendously the amount of calculations.

A comparison is run on hyperchaotic problems and results tend favoured the integral

approach in terms of efficiency.

We also apply our method to fractional cryptocurrency problems. From a dynamical

approach, the problem yields a system of fractional differential equations of multiple

orders. In this framework the spectral integral method is redesigned to handle such

problems.

Most importantly, our designed spectral methods show robustness and fast con-

132
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vergence when compared to existing well known Matlab numerical packages that are

available, we mention ODE15s, Chebfun [93], DMS [101] and for fractional case we

mention fde12 [37].

8.2 Future Perspectives

The results obtained in this thesis and challenges encountered during the process, have

lead to numerous research questions which require further investigation. Some of them

are listed below.

- To further extend the method to stochastic differential equations and partial integro-

differential equations

- To further investigate fractional problems with singularities.
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