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Criminal networks exploit vulnerabilities in the global financial system, using it as a conduit 

to launder criminal proceeds. Law enforcement agencies, financial institutions, and regulatory 

organizations often scrutinize voluminous financial records for suspicious activities and 

criminal conduct as part of anti-money laundering investigations. However, such studies are 

narrowly focused on incidents and triggered by tip-offs rather than data mining insights. 

This research models cross-border financial flows using a network theoretic approach and 

proposes a symmetric-key encryption algorithm to preserve information privacy in multi-

dimensional data sets. The newly developed tools will enable regulatory organizations, 

financial institutions, and law enforcement agencies to identify suspicious activity and criminal 

conduct in cross-border financial transactions. 

Anti-money laundering, which comprises laws, regulations, and procedures to combat money 

laundering, requires financial institutions to verify and identify their customers in various 

circumstances and monitor suspicious activity transactions. Instituting anti-money laundering 

laws and regulations in a country carries the benefit of creating a data-rich environment, 

thereby facilitating non-classical analytical strategies and tools. 

Graph theory offers an elegant way of representing cross-border payments/receipts between 

resident and non-resident parties (nodes), with links representing the parties' transactions. The 

network representations provide potent data mining tools, facilitating a better understanding 

of transactional patterns that may constitute suspicious transactions and criminal conduct. 
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Using network science to analyze large and complex data sets to detect anomalies in the data 

set is fast becoming more important and exciting than merely learning about its structure. This 

research leverages advanced technology to construct and visualize the cross-border financial 

flows' network structure, using a directed and dual-weighted bipartite graph. 

Furthermore, the develops a centrality measure for the proposed cross-border financial flows 

network using a method based on matrix multiplication to answer the question, "Which 

resident/non-resident nodes are the most important in the cross-border financial flows 

network?" The answer to this question provides data mining insights about the network 

structure.  

The proposed network structure, centrality measure, and characterization using degree 

distributions can enable financial institutions and regulatory organizations to identify dominant 

nodes in complex multi-dimensional data sets. Most importantly, the results showed that the 

research provides transaction monitoring capabilities that allow the setting of customer 

segmentation criteria, complementing the built-in transaction-specific triggers methods for 

detecting suspicious activity transactions. 
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“The purpose of (scientific) computing is insight, not numbers.” 

Richard Wesley Hamming 
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1.1 Introduction 

This chapter provides the research's background and scope, problem statement, and research 

objectives, including definitions of terminologies underpinning the problem statement. The 

chapter also outlines the expected contributions to knowledge and concludes with an overview 

of the thesis's structure. 

1.2 Background and scope 

1.2.1 Cross-border financial flows  

The global financial system is subject to a wide range of risks and vulnerabilities exploited by 

criminal networks to launder the proceeds of crime and finance terrorist activities with a 

relatively low risk of detection. These risks and vulnerabilities include the following:  

• Voluminous and volatile cross-border financial flows that obscure individual 

transactions and provide opportunities for criminal organizations to transfer value 

across country borders.  

• There are limited resources in most customs agencies for detecting illegal trade 

transactions and limited recourse to verification procedures or programs for exchanging 

customs data between countries. 

Cross-border flows are money transferred by a resident to a non-resident and vice versa because 

of financial transactions involving individuals, private and public firms, central banks, financial 

institutions, and legal entities such as trusts and non-profit organizations or a combination 

thereof, in at least two different countries. International trade transactions (imports/exports) in 

goods and services and remittances are examples of cross-border flows. 

Cross-border financial flows are the backbone of a country’s Balance of Payments (BoP) 

accounts. The flows comprise international business transactions between residents and non-

residents involving imports and exports of goods and services, purchase and sale of financial 

assets (bonds and shares), real assets (factories, land, and buildings), income receipts and 

payments (dividends, interest), current transfers (remittances, gifts, charitable donations), as 

well as borrowing from and lending to the rest of the world (foreign loans/bonds). Capital flows 

are an essential aspect of the global monetary system and offer potential economic benefits to 

countries. 
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1.2.2 Mechanisms for recording international financial transaction 

Countries use different accounts to record BoP transactions, distinguished according to the 

nature of the economic resources provided and received. The volatility and size of the flows 

also pose policy challenges for many countries. 

Commercial banks and other financial intermediaries use several sources, such as electronic 

messaging systems, survey questionnaires and forms to report cross-border financial flows 

transactions to regulatory authorities for BoP reporting and regulatory purposes. For example, 

the U.S. Treasury International Capital (TIC) reporting system and the SARB's International 

Transactions Reporting System (ITRS) are examples of computerized data collection systems.  

The TIC reporting system collects data on cross-border portfolio investment flows and 

positions between U.S. residents and foreign residents. SARB's ITRS is an electronic 

messaging system for collecting cross-border financial flows data between South African 

residents and non-residents from licensed financial institutions that trade foreign currencies.  

It is a regulatory obligation for authorized dealers to report the cross-border financial 

transactions to the SARB, Financial Intelligence Centre (FIC), and other regulatory institutions 

such as the South African Revenue Services (SARS). The SARB uses the international 

financial transaction database along with trade statistics from SARS to compile BoP accounts. 

Figure 1.1 depicts the flow of cross-border transactional data between South African residents 

and the rest of the world. Residents make payments to non-residents and receive payments 

from non-residents and vice versa through the authorized dealer network comprising 

commercial banks and other licensed financial institutions such as Bureau de changes (currency 

exchanges). The authorized dealers facilitate the payments through the corresponding bank 

relationships in the country of non-residents to finalize the fund's transfers.  
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Figure 1.1: Depiction of cross-border financial transactions data flow in South Africa 

The authorized dealers mostly use the eXtensible Markup Language (XML) to manage and 

share structured data in a human-readable text file to send cross-border financial flows data to 

the SARB. The design goals of XML emphasize simplicity, generality, and usability across the 

Internet.  

Several schema systems exist to support the definition of XML-based languages, while 

programmers have developed many application programming interfaces (APIs) to support 

XML data processing. In service-oriented architectures, disparate systems communicate with 

each other by exchanging XML messages. 

The computer code in Appendix B.1 shows an XML file example for reporting cross-border 

financial transactions. Each transaction comprises several components, i.e., transaction date, 

personal details of the resident party and the non-resident party, the authorized bank and the 

corresponding bank, and payment details. 
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1.2.3 Illegal cross-border transfer of value 

Researchers have documented significant financial losses in many countries due to illegal 

cross-border movement of money in recent years, which is part of money laundering (GFI, 

2015; United Nations, 2015). Money laundering is the process of obscuring the origins of 

illegally obtained money, typically by passing it through the banking system or business 

transactions.  

The process starts with the criminal activity that gives rise to the illegal proceeds, such as 

bribery, drug trafficking, tax evasion, and corrupt business practices. The money launderer 

seeks to disguise funds earned from such unlawful activities.  

In response, many countries enacted Anti-Money Laundering (AML) laws and policies, 

comprising a comprehensive plan of action to fight money laundering and terrorist finance. 

AML requires financial institutions to monitor transactions for suspicious activities and 

criminal conduct.  

The adoption of AML software systems with built-in transaction-specific triggers allows active 

tracking of transactions under the risk-based approach guidelines and recommendations 

provided by the Financial Action Task Force (FATF) for regulatory compliance purposes. 

Despite the availability of such tools coupled with the regulatory guidelines, most of the AML 

related investigations remain narrowly focused on incidents and triggered by tip-offs rather 

than data mining insights. The built-in transaction-specific triggers often produce many false 

positives for financial fraud and money laundering. Criminal networks often know the events 

that trigger suspicious transactions and circumvent them using advanced transaction layering 

techniques.  

This research hypothesizes that the illegal transfer of funds across country borders by criminal 

networks exhibits relationship structures inherent in complex systems; therefore, using 

structural and statistical properties of network science can enhance our understanding of cross-

border flows. Using the proposed network tools for analyzing cross-border transactional data 

can improve surveillance capabilities in regulatory authorities and regulated entities, enabling 

them to combat money laundering. 

In recent years, researchers have obtained useful tools for describing relationships inherent in 

complex systems through the study of network science, which is a part of mathematical graph 
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theory. Network science employs various techniques and ideas from many fields, including 

data mining and visualization, statistical inference, electrical engineering, molecular biology, 

statistical mechanics, and social sciences.  

This research leverages advances in technology and data mining methods to develop the 

network structure of cross-border financial flows using a directed and weighted bipartite graph. 

The proposed graph-theoretic approach models transactions between residents and non-

residents to identify potentially suspicious activity and criminal conduct.  

Firstly, the research develops the symmetric-key encryption algorithm to preserve information 

privacy in multi-dimensional data sets, thereby addressing privacy concerns for governments, 

firms, and private individuals. 

The proposed algorithm utilizes the group structure of the multi-dimensional data sets for 

efficient data processing using a computer program. The algorithm provides an alternative 

encryption method to the sophisticated non-cryptographic techniques used by researchers to 

query statistical databases involving multi-dimensional data sets in various fields. 

The lack of research in the analysis of cross-border flows is mainly attributable to the 

difficulties in accessing and sharing financial transactions data, which comprise private and 

confidential information protected by multitudes of regulations, laws, and best practices. 

Financial transactions that do not involve cross-border payments/receipts are not part of this 

study. 

Information privacy laws and policies protect the confidentiality of information in BoP data 

collected at the transactional level. The research's use of confidential data adheres to the 

requirements of section 33 of the SARB Act, No. 90 of 1989, as amended, which entails the 

preservation of the secrecy of the information of the SARB. As a result, this research's data set 

cannot be made available to the public. 

The legal authority for collecting BoP data derives from a section of the law (act) applicable in 

a country. For example, the Breton Wood Agreements Act of 1945 is the applicable law in the 

United States of America.  

The Exchange Control Act enforces regulatory reporting of cross-border financial transactions 

in countries maintaining Exchange Controls. For example, Section 9 of the Currency and 

Exchanges Act of 1933 is the applicable law in South Africa. Central banks and government 
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agencies such as the country's official statistical agency are the custodians of statistical data on 

cross-border transactions as delegated by the Treasury Departments in many countries. 

The IMF's BoP manual serves as the international standard for the conceptual framework 

underlying BoP statistics by providing guidelines for classifying cross-border flows data to 

member countries (IMF, 2013). The classification system groups international transactions that 

show similar behavioral patterns to facilitate their utilization and adaption for multiple 

purposes such as regional and global aggregations, bilateral comparisons of components of 

BoP statistics, policy formulations, and analytical studies. 

Secondly, the research uses SAS® software to implement the encryption algorithm, visualize 

the directed and weighted bipartite network structure, and characterize the cross-network. 

Lastly, the study develops a network centrality measure to identify the highly connected nodes 

responsible for the most transactions in the network. 

The research uses real data set comprising remittance transactions extracted from the 

International Transactions Reporting System (ITRS) of the South African Reserve Bank 

(SARB) and a hypothetical data set for network construction, visualization, and computing the 

proposed centrality measure.  

The network theoretic approach will potentially benefit financial institutions, regulatory 

organizations and law enforcement agencies to combat money laundering, illicit flow flows, 

drug trafficking, terrorist financing and other organized crimes. The benefits will be more 

pronounced in mineral-rich developing countries, which researchers found to suffer large 

capital outflows due to illicit financial flows.  

The research does not provide policy recommendations for combating money laundering using 

the proposed network-theoretic approach. Also, due to this research's nature, participants of 

this study did not agree for their data to be shared publicly, so supporting data is not available. 

1.3 Problem statement and research objectives 

Given the background provided thus far, the problem statement for this research is stated as 

follows: 
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"Illegal transfer of funds across country borders reduce domestic capital resources and the tax 

revenue needed to fund infrastructure development and poverty alleviation programs in 

emerging market economies (World Bank, 1985; Patnaik, Gupta, & Shah, 2012; GFI, 2015)." 

Furthermore, illegal activities such as exploitation of mineral resources, organized crime, drugs 

counterfeiting, corruption, and fraud in international trade have a devastating impact on the 

affected communities. 

Advanced computing and communication technology enables financial institutions and 

supervisory authorities to handle complex tasks relating to data collection, data management, 

and data mining. Also, the much-improved capacity and speed of data storage media have led 

to the heavy use of third-party services and infrastructures to host data sets. Hence, the recent 

adoption of cloud computing, business intelligence, and advanced analytical systems improves 

risk management practices within the financial services industry. 

The new technologies also present several risks and challenges including user privacy, data 

security, data lock-in, service availability, performance and disaster recovery (Buyya, Broberg, 

& Goscinski, 2010; Takabi, Joshi, & Ahn, 2010). Hence, the research’s consideration of 

protecting information privacy in the multi-dimensional data comprising cross-border financial 

flows. 

Analysis of data sets from a wide range of sources such as financial transactions held by 

financial institutions, patient records maintained by healthcare systems, salary records held by 

employers, investigation records held by the criminal justice system, motor vehicle registration 

information contained by public institutions, etc., often triggers information privacy concerns. 

Compliance with data protection regulations by private and public firms is required whenever 

one processes data comprising personally identifiable information. Large data sets, such as the 

cross-border financial transactions data set, contain personally identifiable data protected by 

information privacy laws and policies. 

Despite the availability of the cross-border flow data sets and advanced computing technology, 

illicit financial flows in developing countries keep rising. Reliance on tip-offs to support anti-

money laundering fails to yield a significant impact in reducing illicit financial flows due to 

their hidden nature. Based on the (GFI, 2015) report, illegal outflows of capital from the 

developing countries cracked the $1 trillion plateau. 

The research question is as follows: 
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Can the analysis of the cross-border financial flows' network structure and its statistical 

properties enable identifying suspicious activity transactions and criminal conduct?  

The research question above leads the formulation of the following research objectives. The 

first objective is to develop a symmetric-key encryption algorithm to preserve information 

privacy in data sets comprising cross-border financial flows. The algorithm's purpose is to 

enable the development and implementation of a cryptosystem to circumvent information 

privacy concerns when analyzing cross-border financial flows data sets. 

The proposed symmetric-key encryption algorithm uses temporary variables created during the 

computer program's compilation, making efficient use of computer memory. In addition to 

enabling data encryption, the temporary variables provide a mechanism to aid the computation 

of the underlying statistical measures of networks, such as edge weight and node degree, for 

network construction. 

The second objective is to a develop network model for studying the transaction patterns 

between residents and non-residents in cross-border financial flows. The study uses a directed 

and weighted bipartite graph with dual weights, representing the monetary value and volume 

of international financial transactions, and SAS® Visual Analytics software to create the 

visualization of the network structure  

The third objective is to develop a method of measuring node centrality based on the projection 

of vectors to illuminate the cross-border financial flows network structure. The centrality 

measure and visualization will enable financial institutions, supervisory authorities, and law 

enforcement agencies to identify the highly connected nodes in the network, thereby 

empowering them to plan their inspection programs using transaction samples from such nodes. 

The fourth and last research objective is to characterize the cross-border financial flows 

network using the distribution of node degrees. The cross-border financial flows network is a 

weighted and directed network with two distinct node sets. Therefore, it comprises two degree 

distributions for each set of nodes, resulting in four degree distributions.  

The hierarchical clustering procedure characterizes the network, reducing the number of degree 

distributions from four to two, one for each set of nodes. The research focusses on the degree 

distribution of the residents since they act as the gateway for both inward and outward financial 

flows of a country.  
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This research provides solutions to the problem statement by demonstrating the effectiveness 

of using network science tools to model cross-border financial flows while preserving 

information privacy relating to personally identifiable data.  

The formulation of the research objectives is as follows: 

• To leverage technology in developing a simple and efficient algorithm for preserving 

the privacy of personally identifiable information in multi-dimensional data sets, such 

as the cross-border financial flows data set. 

• Use network science tools to analyze transaction patterns between residents and non-

residents in cross-border transactions, thereby providing useful analytical tools for 

detecting and impeding the illegal transfer of funds across country borders.  

• Develop and use statistical properties of networks to complement the existing classical 

statistical measures for cross-border financial flows to enhance our understanding of 

the workings of cross-border financial flows. 

 

The research seeks to achieve the objectives stated above subject to the following limitations. 

• The research focuses on analytical methods for addressing the money laundering 

problem. Hence, it does not attempt to provide a quantitative measure of illicit financial 

flows.  

• The research uses a sample data set extracted from the South African database of 

international financial transactions to construct and visualize the cross-border financial 

flows network, which is not representative of the global regulatory environment.   

• The study uses a hypothetical data set of cross-border financial flows to illustrate the 

proposed centrality measure. Hence, the test data set is not very large in contrast to the 

real-world data sets. 

• The research does not make any policy recommendations to regulate or reduce the 

illegal transfer of funds across country borders.   

1.4  Knowledge contributions 

The output of this research will contribute to knowledge in the following ways: 
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•  It develops a symmetric-key encryption algorithm for preserving information privacy 

in multi-dimensional data sets, using temporary automatic variables. Various fields, 

such as medical studies, official statistics and financial transactions, with multi-

dimensional data sets, can use the proposed symmetric-key encryption algorithm to 

encrypt sensitive information. The algorithm is fast in execution and very simple to 

implement compared to other sophisticated and poorly performing methods. 

• It develops a node centrality measure based on the matrix multiplication method to 

identify the highly connected nodes in the cross-border financial flows network. 

Network structures utilizing the directed and weighted networks in other fields can use 

this measure.  

• It uses a hierarchical clustering procedure to reduce the number of degree distributions 

in a directed and weighted bipartite graph to identify important groups of nodes in the 

network. The resulting clusters enable customer segmentation in the cross-border data 

set to facilitate using the traditional analytical methods in detecting suspicious activity 

transactions. 

The research findings show that network science can strengthen financial regulation and 

improve risk management practices by supporting the risk-based approach. Supervisory 

authorities can use the derived methodology to define and plan their inspection of regulated 

entities for criminal conduct and money laundering in a cost-effective manner. 

1.5 Outline of the thesis 

The outline of the remaining chapters is as follows. Chapter two outlines the main theories and 

reviews the relevant literature. The chapter discusses the money laundering process and uses 

trade-based money laundering to illustrate the problem. The chapter reviews the literature 

relating to the global regulatory response to the money laundering problem, comprising the 

regulatory standards, risk-based approach, and the foreign exchange controls.  

Chapter two also reviews the literature relating to information privacy preservation in multi-

dimensional data sets such as cross-border financial flows, financial networks, bipartite 

network structures and centrality measures.  

Chapter 3 provides a background of mathematical graph theory, starting with a brief history of 

the subject and its network science applications. This chapter's primary focus is on graph 
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theory's main results, which are useful when developing the network structure of cross-border 

financial flows. The results are mostly attributable to the work done by (König, 1936). 

Chapter 4 discusses cryptographic and non- cryptographic methods for protecting information 

privacy in statistical databases, including encryption, differential privacy and data separation 

techniques. Most importantly, the chapter proposes the symmetric-key encryption algorithm to 

preserve the confidentiality of personally identifiable information in cross-border financial 

transactions and implements it using a SAS® computer program. The chapter concludes with 

an overview of the remittances data set. 

Chapter 5 discusses network science as the chosen tool for answering research questions. This 

chapter develops the network structure of cross-border financial flows using the directed and 

weighted bipartite graph with dual weights and discusses the significance of the proposed 

network structure. Also, the chapter presents network visualization using SAS® Visual 

Analytics software. 

Chapter 6 provides an overview of the measures for networks, including density and centrality. 

The chapter's primary objective is to develop the node centrality measure for the cross-border 

financial flows network using matrices. The proposed methodology accumulates centrality 

weights to resident nodes that transferred funds to the same non-resident nodes and vice versa, 

resulting in larger weight allocations to nodes that share connections.  

The centrality measure, along with network visualization, enables the identification of the 

highly connected nodes. The chapter further uses a hierarchical clustering procedure to 

characterize the cross-border financial flows network. The clustering procedure provides a 

visual analysis of the cross-border financial flows network structure using the degree 

distributions. The clustering procedure's output enriches the cross-border financial flows data 

set with additional variables to enable classical analytical methods and support the risk-based 

supervisory framework. 

Chapter 7 discusses the research findings, scientific contributions and the study's significance. 

The chapter summarizes the research objectives and identifies areas for further research. Also, 

the chapter discusses the limitations of the methods proposed in this research.  

Chapter 8 provides the concluding remarks, thereby summarizing the main conclusions and 

areas requiring further research.  
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Chapter 2: Literature review  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

15 

 

2.1 Introduction  

Chapter two outlines the main theories and reviews the applicable literature. The chapter begins 

with an outline of the money laundering problem and discusses trade-based money laundering. 

Next, the chapter outlines the regulatory response to the problem, discussing the global 

regulatory standards, the risk-based approach, and the foreign exchange controls.  

This research’s primary focus is the risk-based approach, which leverages technology for the 

extraction, processing and analysis of risk factors in large data sets using methods that include 

machine learning algorithms. The study adopts a network theoretic approach to enhance 

surveillance of cross-border financial flows in regulated entities. Hence, this chapter reviews 

literature on structures and statistical properties used for identifying the important nodes in 

networks. 

The chapter also discusses and reviews the literature regarding the preservation of information 

in data sets comprising private and confidential information such as cross-border financial 

flows. The chapter concludes with an overview of the data set used in the research. 

2.2 Money laundering 

Researchers and practitioners acknowledge that criminal networks continue utilizing the global 

financial system to launder their crime proceeds and finance terrorist activities (van Duyne, 

1994; Walker, 1999; Harvey, 2004; Teichmann, 2019).  

Money laundering is a mechanism that ensures the functioning of crime as an economic system, 

hence the global efforts to combat this illicit economy. Its economic feasibility enables criminal 

networks to finance terrorist activities using money deemed clean, hindering terrorism 

prevention policies' effectiveness. Money laundering poses significant economic challenges in 

emerging markets by reducing domestic resources and tax revenue needed for funding 

infrastructure and poverty alleviation programs (Ba & Huynh, 2018). 

Criminal networks commonly use three methods to obscure the origins of illegally obtained 

money and integrate it back into the formal economy. The main challenge is to achieve the 

objective without raising the suspicion of law enforcement agencies.  
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• The first method involves transferring value through the global financial system using 

wire transfers and commercial transactions.  

• The second method involves the physical movement of banknotes using cash couriers 

and bulk cash smuggling. 

• The third method uses illegal means of trading, such as smuggling and false 

declarations of trade documents to transfer value.  

This research's primary focus is the first method, involving the illegal transfer of funds across 

country borders through the banking system. Criminals often engage in unlawful cross-border 

fund transfers to conceal the proceeds of crimes and finance terrorist activities, both 

domestically and internationally. 

Three stages comprise the money laundering process, i.e., placement, layering, and integration. 

The placement phase is the initial stage of the money laundering process, which involves 

introducing the illegitimately obtained funds from criminal activities into the financial system. 

The launderer moves funds from their original cash source into some other forms, such as 

purchasing a physical asset, say property, or any physical item of value. Subsequently, the 

money launderer can sell the asset to disguise the funds as legitimately obtained funds. Hence, 

the placement phase is not just the cash flow into the banking system since it also involves the 

initial transfer of assets into other forms, enabling the money launderer to undertake further 

layering and obscure the trail of the funds (Cox, 2014). 

In most cases, money launderers will target areas with weak controls. For example, suppose 

the money launderer knows that a firm needs cash to avoid bankruptcy. In that case, the money 

launderer will seize the opportunity to place the illegally obtained funds into the business. 

The second step in the money laundering process is the layering process, which involves 

stratifying the financial transaction, making unclear the source of the funds and the funds' 

current position. Adding more layers to the financial transaction will only complicate the 

scheme, thereby making it harder to prove the funds' illicit basis. In very complex scenarios, 

the money launderer will shift the funds between several accounts in many different 

jurisdictions to obscure the audit trail. Layers often include various financial transactions, high-

value items, currency and equipment sales, real estate, and legitimate businesses' purchase. 

The layering process involving the purchase or sale of a property and other physical assets pose 

significant risks for the money launderer since the authorities can follow the trail and discover 
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the links with the original crime proceeds. Depending on the number of layers and the 

complexity of the money launderer's schemes, the layering process can become costly to the 

money launderer. 

The final step integrates illegally obtained funds into the mainstream banking system and 

returns the launderer's funds as clean money. It is called the integration phase. The money 

launderer's main aim is to successfully integrate the funds so that it becomes difficult for law 

enforcement agencies and financial regulators to distinguish between legitimate and 

illegitimate funds, thereby enabling the money launderer to use the funds. 

Detecting money activities is very difficult. It is like searching for a needle in a haystack. The 

transactions flagged by the financial institutions’ compliance environments often turn out to be 

false positives on many occasions (Pourhabibi, Ong, Kam, & Boo, 2020). 

Money launderers continue to find innovative ways to launder their criminal proceeds while 

lowering the detection risk in an era of advanced compliance regimes. Innovative mobile 

payments mark the beginning of a new era in money laundering and terrorist financing by 

allowing criminal networks to transfer funds around the world safely and conveniently with 

anonymity. 

In a recent study, Teichman surveyed criminals and white-collar crime prevention experts to 

investigate how criminals laundered money and financed terrorism through the financial 

system (Teichmann, 2019). While the study captured the perspectives of only 70 participants, 

its findings were illuminating. The results suggested that it was very feasible for criminals to 

circumvent the existing compliance mechanisms using straw man, sophisticated 

documentation, and consulting firms. The straw man fallacy disguises the beneficial owner's 

identity, which is the focus area for most compliance procedures implemented by banks and 

other financial institutions.  

Criminal networks take industry benchmarks into account when setting up legitimate 

consulting firms, providing real and fictitious services. Both terrorist financiers and money 

launderers use sophisticated documentation to prove the purpose of their transactions. 

Not much information is available on the costs and benefits of implementing technology for 

detecting and impeding money laundering. Advances in AML regulations, which requires 

regulated entities to invest in technology appear to be a cost burden instead of enhancing the 
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deterrence of money laundering, partly due to the difficulties of estimating the volume of 

money laundering (Magnusson, 2009; KANG, 2018).  

2.3 Overview of trade-based money laundering 

The term “illicit financial flows” emerged in the 1990s and was closely associated with capital 

flight, which received much attention from researchers and policymakers (World Bank, 1985). 

Illicit financial flows refer to the cross-border movement of money associated with illegal 

activity. The following conditions often determine the classification of the cross-border 

movement of funds as illicit flows: 

• The funds are related to acts deemed unlawful, such as tax evasion and corruption; or 

• The funds are themselves the proceeds of crime, for example, drug trafficking, 

smuggling of minerals, and human trafficking; or  

• The purpose of transferring the funds is to finance an illegal activity, such as organized 

crime and terrorist activity. 

Imports and exports misinvoicings are trade-based money laundering techniques considered 

the dark side of international trade and the largest component of illicit financial flows. 

Researchers have documented significant financial losses in many countries due to illicit 

financial flows (GFI, 2015; United Nations, 2015).  

Researchers commonly use two main channels to measure illicit financial flows. The first 

channel involves deliberate manipulation of customs invoices on external trade, known as trade 

misinvoicing. The second is the leakages from the balance of payments, also known as the 

World Bank Residual Method (World Bank, 1985; GFI, 2015).  

A firm interested in moving capital out of a country would misrepresent the exported goods' 

price in the invoice and other related documentation (stating it below the real value), thus 

bringing reduced foreign exchange into the country (Patnaik, Gupta, & Shah, 2012). Similarly, 

a firm engaging in imports may misrepresent the imported goods' price in the invoice and other 

related documentation (stating it above the real value). The firm transfers the difference 

between the higher invoice amount and the actual paid amount to other countries. Researchers 

used this popular technique to estimate trade-misinvoicing series for 126 countries and the 

extend of money laundering was concerning (Bhagwati, 1964; Gulati, 1987; Claessens & 

Naude, 1993; Patnaik, Gupta, & Shah, 2012). 
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It is also common for researchers to use partner country trade statistics for detecting and 

providing estimates of trade misinvoicing, using the following equation: 

For country 𝑖, product k, and partner 𝑗 at time 𝑡, export misinvoicing is calculated as follows: 

 𝐸𝑀𝑖𝑗,𝑡
𝑘 = 𝐼𝑗𝑖,𝑡

𝑘 − (𝛽 ∗ 𝑋𝑖𝑗,𝑡
𝑘 ) (2.1) 

where 𝐼𝑗𝑖 represents imports by country 𝑗 from country 𝑖 according to country 𝑗’s data, 𝑋𝑖𝑗 

represents exports by country 𝑖 to country 𝑗 as reported by country 𝑖, and 𝛽 is the associated 

freight, insurance and transportation factor. An estimated value of 1.10 is used for 𝛽 (Bhagwati, 

1964). 

Figure 2.1 shows an illustration how a copper importer, ABC, can move money offshore 

illegally by over-invoicing its imports. Firstly, ABC sets up a shell company, XYZ copper 

exporter, in a tax haven country, Mauritius. ABC purchases copper for the value of US$1000 

000 from XYZ, and an invoice showing the copper purchase of US$1 000 000 worth is 

forwarded to tax authorities by ABC. XYZ then ships copper worth US$500 000 to ABC and 

receives double the amount for the export to ABC. Bankers of XYZ then move US$500 000 

into ABC’s offshore bank account and use the remainder to pay XYZ for the copper exports. 

 

Figure 2.1: Overinvoicing of imports by a copper importer 

The two channels used to estimate illicit financial flows still fall short of measuring all the 

unrecorded flows due to the lack of bilateral trade data on services and the secretive nature of 

such flows. Other illicit financial flow channels include cash movements or smuggling of 

goods, antiques, precious gems, gold, silver, and other precious metals per the definition. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

20 

 

Bribery, the corruption of government officials and politicians also serve as conduits for illicit 

financial flows. Also, bank transfers and swap arrangements are possible channels for illegal 

transfers of money abroad.  

Hawala is one example of the difficult to measure schemes. Under the Hawala scheme, money 

changes hands across national borders without any physical movement. Under the Hawala 

scheme, the funds move through trusted associates networks, often friends and family 

members. Participants use trust and code words to authorize each other to release funds without 

corresponding funds transfers. 

The Global Financial Integrity (GFI) report on illicit financial flows indicated that of the US$1 

trillion in illicit financial flows leaving developing countries annually, over 83 percent was due 

to trade misinvoicing, and Western economies were the beneficiaries for such funds. Illicit 

financial outflows exceeded combined official development aid and inward foreign direct 

investment in all developing countries for all but three years of the 2004-2013 time period  

(GFI, 2015). According to GFI, the four primary reasons for criminals to misinvoice trade 

transactions are money laundering, directly evading taxes and customs duties, claiming tax 

incentives, and dodging capital controls (GFI, 2017). 

In 2011, African Ministers of Finance, Planning and Economic Development held the fourth 

joint conference of the African Union Commission and the United Nations Economic 

Commission for Africa (AUC/ECA).  ECA mandated the establishment of the High-Level 

Panel on illicit financial flows chaired by Thabo Mbeki, the former President of the Republic 

of South Africa. Underlying the decision was the determination to ensure Africa’s accelerated 

and sustained development, emphasizing reliance on its resources  (United Nations, 2015).  

The ECA report estimated financial losses in Africa, resulting from illicit financial flows to 

over US$50 billion annually. The panel adopted a convention of breaking the illicit financial 

flows into three components, i.e., commercial activities, criminal activities, and corruption. 

The report concluded that 65% of illegal financial flow estimates for Africa were due to 

business activities. Multinational corporations abused transfer pricing by taking advantage of 

their multiple structures to shift profit across different jurisdictions and engaged in aggressive 

tax avoidance practices. 

Studies on the financial impact of trade-based money laundering received much attention in 

the last two decades. However, it is not entirely clear how the practice is carried out precisely 
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due to the problem's technical nature. The methods involve the global shadow financial 

systems, propped up by the tax havens and financial secrecy, corruption, and poor governance 

(FATF, 2006). 

2.4 Regulatory response to money laundering 

2.4.1 Global regulatory standards  

AML refers to a set of laws, regulations, and procedures intended to deter criminals from using 

the financial sector to disguise cash proceeds from illegal activities as legitimate (Unger & van 

der Linde, 2013; Cox, 2014). AML is the epitome of fraud, requiring financial institutions to 

undertake customer care due-diligence measures, including verifying and identifying their 

customers in various circumstances and monitoring transactions for suspicious activity and 

criminal conduct. 

Global standards underpin the different AML rules and regulations within local legislations 

and allow countries to adopt a more flexible set of measures to target their resources effectively. 

The Financial Action Task Force (FATF) was established in 1989 to encourage policies to 

protect the global financial system against money laundering. The FATF made 40 

recommendations detailing a comprehensive plan of action to fight money laundering. The 

FATF increased its recommendations from 40 to 49 post the September 2001 terrorist attacks 

in the United States of America, setting out the necessary framework to detect, prevent, and 

suppress the financing of terrorism (CFT) (Turner, 2011; Cox, 2014). 

For example, the following Acts provide AML and CFT legislative framework in South Africa:  

a) The Prevention of Organized Crime Act, 121 of 1998 (POCA).  

b) The Financial Intelligence Centre Act number 38 of 2001 (FICA), as amended. 

c) The Protection of Constitutional Democracy Against Terrorist and Related 

Activities Act number 33 of 2004 (POCDATARA). 

d) Guidance Notes, Public Compliance Communications, directives, and circulars 

issued by the Regulators and Supervisors from time to time. 

Financial regulations were reformed post the 2008 global financial crisis to enable supervisory 

authorities to promote the safety and soundness of financial institutions and prudential 
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regulation (Carretta, Vincenzo, & Schwezer, 2017). Supervisory authorities adopted proactive 

regulatory methods based on standards, collectively known as the risk-based approach, to 

improve the quality of AML related risk management within regulated entities. (FATF, 2014).  

The fifth recommendation of the FATF stipulates processes and procedures at the heart of anti-

money laundering: 

• Financial institutions should not keep anonymous accounts 

• Financial institutions should undertake Customer care Due Diligence (CDD) measures, 

which include identifying and verifying their customers in a various circumstance.  

The following CDD measures should be undertaken: 

(a) Identifying and verifying the customer’s identity using reliable data and 

information that are independent; 

(b) Taking steps to identify the beneficial owner of an account; 

(c) Obtaining information on the purpose and nature of the business relationship; 

(d) Conducting ongoing due diligence on the business relationship and undertaking 

and maintaining appropriate scrutiny of transactions throughout the 

relationship. 

This research focuses on using a combination of advanced technology and data mining methods 

to improve the surveillance of cross-border financial flows for financial institutions and 

regulatory organizations. The research proposes analytical methods for improving the 

surveillance of cross-border transactions, enabling financial institutions and regulatory 

organizations to comply with the eleventh recommendation of the FATF. 

The FATF's eleventh recommendation explicitly recommends using advanced technology and 

data mining methods to identify suspicious transactions (Cox, 2014; FATF, (2012-2020)). No 

monetary thresholds apply to the reporting of suspicious and unusual transactions or activities.  

 Recommendation eleven states as follows: 

• Draw special attention to all large, complex, unusual, and unusual transaction patterns, 

which have no apparent economic value or visible lawful purpose. 

• The background and purpose of such transactions should be examined and made 

available to help competent authorities and auditors. 
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Recent supervisory practices leverage technology and analytical methods to enhance regulatory 

compliance and risk management functions in regulated entities (referred to as SupTech). Also, 

regulated entities adopt innovative technology to improve their compliance and risk 

management functions (referred to as RegTech). 

In 2014, the FATF published its risk-based approach guidance paper for the banking sector, 

aiming to support the development of prevention and mitigation measures that are 

commensurate to the money laundering and terrorist financing risks identified (FATF, 2014). 

In the guidance paper, the FATF shared countries' supervisory experiences, seeking to illustrate 

the risk-based approach's implementation. The findings indicated that due to limited resources, 

it is practically impossible for the supervisors to inspect all banks within a calendar year. 

Therefore, supervisors focus their attention on AML/CFT systems through a combination of 

on-site examinations and off-site reviews, demonstrating their reliance on SupTech and 

RegTech to facilitate the risk-based approach. 

2.4.2 The risk-based supervisory approach 

Prudential regulation requires financial intermediaries to control risks and hold adequate capital 

as defined by capital requirements, liquidity requirements, by the imposition of concentration 

risk (or large exposures) limits, and by related reporting and public disclosure requirements 

and supervisory controls and processes  (Morris, 2019). Hence, prudential regulation seeks to 

influence risk-taking in regulated entities, which is problematic since financial institutions 

continually make risk decisions (Carreta, Farina, & Schwizer, 2017). 

The term "risk-based approach" has recently become a common phrase in the risk management 

and compliance functions of regulated entities. The risk-based approach is central to the 

effective implementation of the recommendations for preventing money laundering, terrorist 

financing, and financing the proliferation of weapons of mass destruction adopted by the FATF 

plenary in February 2012 (FATF, (2012-2020)). 

SupTech and RegTech represent a move away from prudential regulation, often referred to as 

the traditional rules-based compliance to standards-based compliance, facilitating the risk-

based approach (FATF, 2014; FATF, (2012-2020)). SupTech refers to supervisory practices 

leveraging technology and analytical methods to enhance regulatory compliance and risk 

management in regulated entities. Regulatory technology (RegTech) refers to regulated 
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entities' adoption of innovative technology to improve their compliance and risk management 

functions. 

The use of machine learning methods for detecting money laundering is a subject of focus by 

researchers in recent years. Researchers developed a supervised learning model for predicting 

the probability of reporting a new transaction using background information about the 

sender/receiver, their earlier behavior, and their transaction history as inputs. Model training 

used three types of historical data: regular transactions deemed legal, transactions flagged as 

suspicious by the bank's internal alert system, and potential money laundering cases reported 

to the authorities (Martin, Anders, Huseby, Geir, & Johannes, 2020).  

Figure 2.2 provides an overview of the compliance and risk management environment 

encompassing the risk-based approach. Supervisors use data comprising activities of the 

regulated entities for compliance monitoring and regulatory reporting. Regulatory breaches 

may result from the reported activities of the regulated entities, which trigger sanctions to serve 

as inputs into the regulated entities' compliance function. This traditional regulatory approach 

focuses on the detection of non-compliance to regulations after the breach had occurred. 

The variables that are associated with an increased probability of non-compliance are called 

risk factors. The risk factors play a central role in the prediction and prevention of regulatory 

breaches. In contrast to the traditional supervisory approach, the risk-based approach allows 

supervisors to monitor risk factors, thereby enabling them to focus on the areas of most 

significant risks within the regulated entities and act in advance of regulatory breaches. 

In 2018, the Bank of International Settlements (BIS) surveyed the early users of SupTech to 

study their experiences  (Broeders & Prenio, 2018). The findings showed that Central Banks 

use data collection methods such as APIs, machine-readable regulation, data input, data pull, 

and cloud computing. The data analysis methods include neural networks, supervised learning, 

unsupervised learning, topic modeling, random forest, and image recognition. 
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Figure 2.2: A schematic depiction of a regulatory environment that encompasses a risk-based approach 

(adapted from (Lazen, 2018)) 

The available AML solutions and systems include ORACLE AML Express Edition, SAS 

AML, AML manger by Fiserv, and AIM Insight, among others. Some of these systems provide 

financial institutions and supervisors with advanced monitoring capabilities, which enable the 

setting of criteria and parameters used for customer segmentation and allocation of the clusters 

for customers. Also, some of the systems have built-in transaction-specific triggers to enable 

effective monitoring of transactions under the risk-based approach guidelines and 

recommendations provided by the FATF.  

While AML/CFT systems may trigger suspicious activity on cross-border financial 

transactions above the applicable designated threshold, criminal networks circumvent these 

compliance mechanisms by splitting transactions and spreading them over several financial 

intermediaries. The consolidated data view of regulatory organizations is critical in detecting 

such criminal behavior.  

The proposed network structure of cross-border financial flows enables the computation of 

measures based on behavioral patterns between residents and non-residents across industry 

data sources. The research proposes degree distribution and centrality measures to enable 

regulatory organizations and financial institutions to identify and assess risks associated with 

the illegal transfer of funds across country borders. 
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This research's scientific contribution is developing network science tools for analyzing cross-

border transactions data, thereby enhancing the transaction-specific triggers based approaches 

to fortify the AML restraints within the risk-based approach. Foreign exchange controls and 

capital controls 

Foreign exchange controls refer to the various forms of restrictions imposed by governments 

and central banks on the purchase/sale of foreign currencies by residents or on the purchase/sale 

of local currency by non-residents. Foreign exchange controls often accompany the capital 

controls to restrict speculation against currencies in developing economies. 

Examples of foreign exchange controls are as follows: 

1. Prohibitions for the use of foreign currency in a country. 

2. Restrictions on the amount of foreign or local currency that one can import or export. 

3. Quantitative limits on the quantity or value of commodities or goods that one can import 

or export in a given period.  

Capital flight occurs when a country experiences a large-scale outflow of financial assets and 

capital due to political and economic instability. Policy-makers use balanced and sustainable 

macroeconomic policies to manage the large-scale flight of capital. In some developing 

countries, capital controls are necessary to manage cross-border capital flows and limit capital 

flight's economic impact. 

In the late 1970s, free-market economists viewed capital controls as harmful to economic 

developments after such rules were implemented in most countries post the second World War. 

Such opposing views resulted in the emergence of widespread criticisms of capital controls. 

Later, the World Bank and the IMF persuaded countries to abandon capital controls to facilitate 

financial globalization. However, the Latin American debt crisis of the early 1980s, the 1997 

East Asian financial crisis, the 1998 Russian financial crisis, and the 2008 global financial crisis 

highlighted the risks associated with capital flows' volatility. 

The econometric analysis undertaken by the IMF and other economists found that, in general, 

countries that deployed capital controls weathered the 2008 global financial crisis better than 

comparable countries that did not (Gallagher, 2011; Ostry, Gosh, Chamon, & Qureshi, 2012). 

In April 2011, the IMF proposed its first guidelines for using capital controls (IMF, 2011). The 

policy framework focused on the emerging market economies and the IMF’s low-income 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

27 

 

members. Researchers found the framework to have limited applications due to the 

framework’s assumption that advanced economies did not need capital controls (Dierckx, 

2011). 

Fratzscher studied both capital controls and foreign exchange policy and concluded that capital 

controls appear to be less motivated by worries about financial market volatility but rather by 

concerns about capital inflows triggering an overheating economy (Fratzscher, 2012). The 

overheating of the economy can be in high credit growth, rising inflation, and output volatility. 

This view supports the IMF’s recommendation of considering prudential measures or capital 

controls in response to capital inflows.  

Annina Kaltenbrunner argued that given the inherent instability of international financial 

markets and the structural subordination assumed in developing and emerging economies, 

capital controls need to be permanent, comprehensive, and standardized development 

instruments (Kaltenbrunner, 2016). 

The Organization for Economic Co-operation and Development (OECD) provides a balanced 

framework for countries to remove barriers to capital movement while providing the flexibility 

to cope with economic and financial instability situations. In 1961, the Code of liberalization 

of capital movements was born with the OECD when member countries were in economic 

recovery and development, and international movement of capital faced many barriers. The 

OECD recently reviewed its Code, allowing non-member countries' participation, further 

strengthening the instrument while providing increased flexibility to address financial stability 

risks. The review facilitated collective action by boosting transparency and improved decision 

making to assess country-specific measures and shared understandings on acceptable practices 

relating to managing and liberalizing capital flows (OECD, 2020).  

The foreign exchange controls and capital controls restrict capital movement in and out of 

countries. The liberalization of capital controls and increased financial openness amplify 

macroeconomic management's complexity due to capital flows' volatility. Some governments 

often embed anti-money laundering policies and procedures within their capital flow 

management frameworks, further complicating their liberalization efforts and financial 

openness.  

The anti-money money laundering policies and guidelines embedded in the capital controls 

provide detailed guidelines relating to the regulatory requirements and quantitative restrictions 
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for trading foreign exchange in some countries (South African Reserve Bank, 2020). An 

essential aspect of the foreign exchange and capital control is the obligation imposed on the 

regulated entities to report the cross-border financial transactions data to the regulatory 

authorities. 

2.5 Information privacy preservation 

2.5.1 Publication of statistical data - challenges 

Statistical agencies collect and publish statistical data to help researchers and policymakers 

make appropriate inferences and decisions to benefit the broader society (Dwork, 2011; Dwork 

& Roth, 2014). The primary purpose of statistics is to take findings from a sample group and 

generalize them to a population. Using a statistical database to learn a fact, for example, that 

HIV causes AIDS, enables the analyst to compute the likelihood that individuals who are not 

necessarily in the database will develop AIDS. 

The agencies must keep individual or unit level information confidential to uphold public trust. 

Therefore, they often publicize the perturbed or masked version of the original data, where they 

remove all the explicit identifiers, such as name, address, and phone number. The practice of 

de-identifying data and ad-hoc generalization is not enough to render data anonymous because 

attributes often combine uniquely to re-identify individuals. Hence, the well-known phrase 

which says that ‘anonymous data’ often isn’t that anonymous. 

Linkage attack occurs when adversaries collect supplemental information about an individual 

from multiple data sources and then combine that data to form a whole picture about their 

target, which is often an individual’s personally identifiable information. Figure 2.5 

demonstrates linkage attack using a study by Latanya Sweeney (Sweeney, 2000) .  

The leftmost circle in Figure 2.3 shows some of the ambulatory data elements collected and 

shared by the National Association of Health Data Organizations from hospitals, physician's 

offices, clinics, and so forth. The rightmost circle shows some of the data elements from the 

voter registration list for Cambridge Massachusetts purchased by the researcher. The data 

elements included the name, address, ZIP code, birth date, and gender of each voter. This 

information can be linked using ZIP, birth date, and gender to the medical data, thereby linking 

diagnosis, procedures, and medications to individuals. 
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Figure 2.3: Linking to re-identify de-identified data 

In 2003, researchers showed that one could reveal the entire information content of the database 

by only posting the results of a surprisingly small number of random queries (Dinur & Nissim, 

2003). The general phenomenon is known as the Fundamental Law of Information Recovery, 

and its crucial insight, namely that in the most general case, one cannot protect privacy without 

injecting some amount of noise, led to the development of differential privacy (Dwork, 

McSherry, Nissim, & Smith, 2006). 

In August 2006, AOL Research released data on one of its websites containing twenty million 

search keywords for over 650,000 users intended for research purposes. AOL did not disclose 

the names of the users in the report, thinking that it was enough to anonymize their names using 

a unique IDs. However, personally identifiable information was present in many of the 

queries.  The New York Times newspaper was able to locate an individual from the 

anonymized search records by cross-referencing them with phonebook listings. Consequently, 

the ethical implications of using this data for research was debated (Barbaro & Zeller Jr, 2006).  

In 2007, Netflix published anonymized data about movie rankings for 500,000 customers and 

demonstrated that an adversary with little information about an individual subscriber could 

identify the subscriber's record in the dataset. The researchers used the Internet Movie Database 

as the source of background knowledge to successfully de-identify the Netflix records of 

known users, uncovering their apparent political preferences and other potentially sensitive 

information (Narayanan & Shmatikov, 2008).  

Another vital purpose of statistics is to offer critical guidance in producing accurate analyses 

and reliable predictions to assist investigators in a wide variety of fields such as marketing 

campaigns, law enforcement, and financial regulation, among others. The latter is the primary 
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focus of this research – to study the statistical properties of networks to benefit regulatory 

compliance. 

2.5.2 Cryptography applications in preserving information privacy 

Advances in wireless technology continue to create exponential growth in the number of 

connected devices, leading to the internet of things (IoT) revolution. IoT comprises millions of 

connected devices that can sense, compute and communicate. The devices capture, process, 

and transmit large amounts of data through the IoT network, resulting in significant 

information/data security concerns. Cryptography is often the solution to such data security 

concerns (Menon, 2017; Sreeja, Varghese, Menon, & Khosravi, 2019).  

At the basic level, cryptography aims to secure the communication between two parties, usually 

referred to as Alice and Bob, thereby enabling them to communicate over an insecure channel 

so that third parties, say, Oscar, cannot understand the conversation. The insecure channel 

could be the computer network or the telephone line, for example. The information that Alice 

sends to Bob can be English text, numerical data, or anything at all, which we call plaintext. 

Alice encrypts the plaintext using the predetermined key to result with a ciphertext, which she 

sends to Bob. Upon seeing the ciphertext in the communication channel, Oscar cannot 

determine what the plaintext was. However, Bob knows the encryption key, which he can use 

to decrypt the cyphertext and reconstruct the plaintext (Stallings, 1999; Stinson & Paterson, 

2018). 

Researchers proposed numerous encryption algorithms to ensure the security of transmitted 

data through the IoT network, including the single-key encryption technique called Tiny 

Encryption Algorithm (TEA). TEA is a block cipher known for its simplicity of description 

and implementation. David Wheeler and Roger Needham of the Cambridge Computer 

Laboratory first designed and presented TEA at the Fast Software Encryption workshop in 

Leuven in 1994 (Wheeler & Needham, 2004). TEA and its numerous developed versions have 

a few weaknesses. Notably, it suffers from equivalent keys - each key is equivalent to three 

others, meaning that the effective key size is only 126 bits.  

Most of the symmetric algorithms use Feistel ciphers. The Feistel cipher decomposes the 

encrypted plaintext into two parts and is an efficient method for implementing block ciphers. 

A transformation function known as the round function is applied to one half using a sub-key, 
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and the output of the round function is XOR'ed with the other half (Rebeiro, Nguyen, 

Mukhopadhyay, & Poschmann, 2013; Bani Baker & Al-Hamami, 2017). 

Recently, (Sreeja, Varghese, Menon, & Khosravi, 2019) proposed a novel tiny Symmetric 

encryption algorithm (NTSA), providing enhanced security for transferring text files over the 

IoT network. NTSA introduces additional key confusions dynamically for each round of 

encryption.  Experimental results showed that the NTSA algorithm was much more secure and 

efficient than some state-of-the-art existing encryption algorithms. 

The cross-border financial data comprise personally identifiable information protected by 

information privacy policies and laws. Hence, this study proposes a cryptographic technique 

to protect information privacy for individuals, firms, and non-profit organizations in cross-

border transactional records. The secrecy of the proposed symmetric-key encryption algorithm 

and its limitations will be the subject of discussion in chapter 4. The study will also discuss 

cryptanalysis, which is the process of attempting to compute the key, given the string of 

ciphertext.  

2.6 Financial networks and graph structures 

The French economist Francois Quesnay conceptualized financial network theory and provided 

a precise formulation of interdependent systems in economics and the multiplier theory's 

origin.  

Researchers used Quesnay's fundamental idea and its matrix representation to provide a 

statistical description of the flow of money and credit in an economy  (Thore, 1969; Cohen, 

1987). Thore outlined some of the matrix representation limitations of the flow of funds 

accounts and stressed the need for a framework of study focusing on the micro-behavior of the 

various monetary subjects involved, including banks, insurance companies, and other financial 

intermediaries, leading to development of financial networks (Nagurney & Hughes, 1992) 

A financial network is any collection of traders, firms, and financial intermediaries called 

vertices, with connections (edges) between the entities representing transactions or the ability 

to mediate transactions. Nagurney and Ke proposed using methodologies of network theory 

and variational inequality theory to construct a network depiction of the financial economy, 
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which explicitly includes financial intermediaries along with the 'sources' and 'uses' of funds 

(Nagurney & Hughes, 1992).  

The model proposed by Nagurney and Ke described the various economic agents' behavior, 

derived the optimality conditions, and defined the governing equilibrium state. Nagurney and 

Hughes also suggested the formulation and solution of estimating the flow of funds account as 

network optimization problems (Nagurney & Ke, 2001). 

This research does not seek to optimize funds' flows but to detect unusual financial transactions 

between residents and non-residents in cross-border transactions to combat money laundering 

and terrorist financing. Hence, the research adopts the traditional graph theory applied in many 

network science applications, such as biological networks, information networks, technological 

and social networks. Figure 5.1 shows a visualization of various forms of networks. 

(a) The network structure of the financial economy with Intermediation (Nagurney 

& Ke, 2001). 

(b) The citation network of academic papers in which vertices are papers and the 

directed edges are citations of one article by another (Newman M. J., 2003). 

(c) The World Wide Web, a network of text pages accessible over the Internet, in 

which the vertices are pages, and the directed edges are hyperlinks (Newman, 

2003).  

 

Figure 2.4: Illustrations of various forms of network structures.  

Researchers use graph-based substructures for detecting potential fraudulent cases in the 

trading networks, consisting of a group of traders that trade with each other in specific ways to 
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manipulate the stock market (Xiong H & Zhou, 2010). Economic policymakers paid much 

attention to the financial networks to better understand the root causes of the multiple financial 

crises that have devastated economies worldwide. (Silva, de Souza, & Tabak, 2016; Babus, 

2016). (Sun, Qu, Chakrabarti, & Faloutsos, 2005) investigated methods for exploiting 

communities in bipartite graphs graph to identify node anomalies. 

Using network science to analyze large and complex data sets to detect anomalies in the data 

set is fast becoming more important and exciting than merely learning about its structure. 

Anomaly detection is the branch of data mining concerned with discovering rare occurrences 

in data sets. 

The challenge associated with the research problem is that there is no unique definition for 

anomaly detection in the cross-border financial network. The reason is that the general 

definition of an anomaly or an outlier is vague. Hawkins gave the first definition of an outlier, 

dated back to 1980: “An outlier is an observation that differs so much from other observations 

to arouse suspicion that a different mechanism generated it (Akoglu, Tong, & Koutra, 2015).” 

(Li, et al., 2020) proposed using a multipartite network model (FlowScope) for money 

laundering involving high-volume flows of funds through bank accounts chains. The research 

considered that money launderers make fraudulent transfers from source accounts to 

destination accounts through one or many layers of middle accounts to conceal funds and 

decrease detection accuracy.  

Theoretical analysis showed that FlowScope guarantees the amount of money that fraudsters 

can transfer without being detected, outperforming state-of-the-art baselines by accurately 

detecting the accounts involved in money laundering in both injected and real-world data 

settings (Li, et al., 2020). The research appears to improve the existing graph fraud detection 

approaches, which focus on dense subgraph detection (Tang & Yin, 2005; Wang & Yang, 

2007). 

2.7 Centrality measures for bipartite networks  

Many real-world networks, including social, biochemical, World Wide Web, and other 

networks, divide naturally into communities. In such communities, the density of edges within 

a community is relatively higher than the edges' density between communities. Identifying 
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communities is challenging as the network groups can overlap or be well hidden within the 

network structure. 

The definition and analysis of groups or communities within networks is a large area of network 

theory research (Nadakuditi & Newman, 2012; Newman M. J., 2013; Peixoto, 2013; Newman 

& Peixoto, 2015; Hosseini-Pozveh, Zamanifar, & Naghsh-Nilchi, 2017). The 

cluster/community-based methods for anomaly detection in networks rely on finding densely 

connected node groups and identifying the nodes and edges that have connections across 

communities. The definition of anomaly under this setting refers to finding nodes/edges that 

do not directly belong to one particular community. Methods that exploit nodes' communities 

to identify anomalies in bipartite graphs include (Sun, Qu, Chakrabarti, & Faloutsos, 2005; 

Akoglu, Tong, & Koutra, 2015). 

Many sophisticated algorithms for community detection have been developed, such as 

hierarchical clustering and spectral partitioning. Some are based on modularity, which 

measures the quality of a network division into groups of nodes found by a community 

detection algorithm. 

Modularity is the fraction of the edges that fall within the given groups minus the expected 

fraction if edges were distributed at random. The modularity function enables evaluating the 

quality of a partition of a network into groups of nodes. The higher the modularity, the higher 

the quality of the network partition. Hence, the large values of modularity are indicative of a 

well-pronounced community structure in the observed network. Newman formally defines 

modularity as 

 
𝑄 =

1

2𝑚
∑[𝑎𝑖𝑗 − 𝑝𝑖𝑗]

𝑖,𝑗

𝛿(𝑔𝑖, 𝑔𝑗) 
     (2.2) 

where 2𝑚 is the sum of the degrees in the network, 𝑎𝑖𝑗 is the (𝑖𝑗)𝑡ℎ entry of the adjacency matrix 

𝐴, 𝑝𝑖𝑗 is the expected number of edges between nodes 𝑢𝑖 and 𝑢𝑗 if the network was random, 𝑔𝑖 is the 

community with which node 𝑢𝑖 is associated and 𝛿(𝑎, 𝑏) = 1 if 𝑎 = 𝑏 and 0 otherwise 

(Newman, 2006; Lancichinetti & Fortunato, 2011). 

In unipartite networks, ties often have a strength naturally associated with them, differentiating 

them from each other. Operationalizing tie strength as weights is standard practice, and some 

proposed network measures for weighted networks include the discussed node centrality 

measures discussed: degree, closeness, and betweenness. However, these generalizations 
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solely focused on tie weights and not on the number of ties, which was the central component 

of the original measures. (Opsahl, Agneessens, & Skvoretz, 2010) proposed generalizations 

that combine both these aspects and illustrated the benefits of this approach by applying one of 

them to Freeman's EIES dataset (Freeman L. C., 1978; Opsahl, Agneessens, & Skvoretz, 2010). 

Researchers often reduce bipartite networks to unipartite networks to simplify their analysis. 

However, the one-mode projections often compromise the network's structural properties and 

can lead to imprecise network measurements (Lehmann, Schwartz, & Hansen, 2008).  

Moreover, there are numerous ways to obtain the one-mode projections, each with different 

characteristics and peculiarities. (Yang, Aronson, & Ahn, 2020) presented BiRank, an R and 

Python package that performs PageRank on bipartite networks directly.  

In a recent study, researchers argued that there is no commonly accepted way to compare 

different centrality metrics' effectiveness and reliability, resulting in a newly developed 

theoretical framework for evaluating and comparing the metrics. Tests on a large set of 

networks using the new framework showed that the standard centrality metrics perform 

unsatisfactorily, highlighting intrinsic limitations for describing the centrality of nodes in 

complex networks (Sciarra, Chiarotti, Laio, & Ridolfi, 2018).  

Recently-developed bipartite methods include BiRank and CoHITS (Akoglu, Tong, & Koutra, 

2015). The methods proved to be significantly more robust measures of prescription drug-

seeking and better predictors of subsequent opioid overdose than traditional centrality 

estimates, including PageRank in a one-mode network projection (Aronson, Yang, Odabas, 

Ahn, & Perry, 2020). 

2.8 Summary 

Chapter two outlined the main theories and reviewed the literature applicable to this research, 

covering money laundering and the global response mechanisms to the money laundering 

problem.  

Most importantly, the chapter outlined the risk-based supervisory approach, which leverages 

advanced technology and analytical methods to enhance regulatory compliance and risk 

management in regulated entities.  
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This research aims to contribute meaningfully to the deterrence of money laundering by 

leveraging technology and data mining techniques such as visualizations and statistical 

properties of networks in line with the fifth and the eleventh recommendations of the FATF. 
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Chapter 3: Graph theory 

fundamentals  
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3.1 Introduction 

This chapter provides background on the fundamental concepts and definitions from 

mathematical graph theory, starting with a brief history of graph theory and graphs' 

representations. The chapter gives an overview of some of the essential properties of graph 

structures, network flows, and matching results in bipartite graphs. These results are mostly 

attributable to the work done by König (König, 1936). 

The chapter lays a solid mathematical foundation for this research, thereby enabling the 

introduction of the directed and weighted bipartite as a model for cross-border financial flows 

and the network's characterization using degree distributions in subsequent chapters. 

The chapter concludes with an overview of the cross-border financial flows data set and 

summarizes the chapter. 

3.2 A brief history of graph theory  

In the earliest known graph theory paper, Euler solved the famous seven bridges of Königsberg 

problem in 1736 (Newman J. R., 1953). The inhabitants of Königsberg, in what was then 

Prussia (now called Kaliningrad), debated whether it was possible to take a walk through each 

part of the city and crossing each of the seven bridges of Pregel River only once. Figure 3.1 

shows Euler’s drawing of the bridges of Königsberg in 1736, with geographical designations 

(Newman J. R., 1953; Gribkovskaia, Halskau, & Laporte, 2007). 

 

Figure 3.1: Euler’s drawing of the bridges of Königsberg in 1736 
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Leonhard Euler was chair of mathematics at the St. Petersburg Academy of Science when he 

solved this significant problem. He proved that no such walk could exist, pointing out that route 

inside each landmass is irrelevant. The only significant feature of a route is the sequence of 

bridges crossed (Euler, 1736). Euler drew an undirected graph, where he assigned a node to 

each of the four landmasses and edges connected the node pairs if a bridge connected the two 

corresponding landmasses.  

Euler argued that the graph must be connected, and each of the nodes must have an even degree 

for the solution to exist, which was not the case. Figure 3.2 shows the graph representing 

Euler’s map of Königsberg depicted in Figure 3.1. A graph containing a closed walk using each 

edge exactly once is now called unicursal or Eulerian.  

Euler did not provide formal proof of connectedness and evenness as sufficient conditions for 

unicursality. It was Hierholzer who provided the first polynomial-time “end-pairing” algorithm 

for detecting a unicursal walk in a connected and undirected graph (Hierholzer, 1873; 

Gribkovskaia, Halskau, & Laporte, 2007). Edmonds and Johnson provide a simple description 

of the Hierholzer algorithm, while Fleischner described several alternative procedures of the 

algorithm (Fleischner, 1991; Edmonds & Johnson, 1995). 

 

Figure 3.2: Graphical representation of Euler’s map depicted in Figure 3.1 

The model used by Leonhard Euler not only provided the solution to the problem but also gave 

birth to the mathematical discipline of graph theory as we know it today. Graph theory has 

emerged as a proper discipline with several books already published. Notable contributions to 
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graph theory were due to König, who published the first book on the subject (König, 1936), 

and Berge published the second book on the subject in 1958 (Harary, 1979). 

Graph theory was applied successfully in many network science applications, such as 

biological networks, information networks, technological and social networks. The focus of 

such studies recently shifted away from the analysis of simple structures to complex networks 

analysis and is mostly driven by advances in computing and communication technologies, 

which enable the collection and storage of large data sets that are both structured and 

unstructured.  

In recent years, researchers use graphs for detecting substructures and hierarchies in complex 

network communities. Several books on network science have been published (Dorogovtsev 

& Mendes, 2003; Newman, 2010; Dehmer, Pickl, & Wang, 2015). 

3.2.1  Fundamentals of graph theory 

The combinatorial methods found in graph theory ensure that the construction techniques are 

considerably different from the classical computational approach. Graphs arise naturally in the 

study of other mathematical structures such as polyhedra, lattices, and groups. In addition to 

the purely structural relationships that are the defining characteristics of a graph, quantitative 

characteristics are imparted to the graph's vertices and edges, resulting in a network. For 

example, the flow of energy is the quantitative measure for electrical networks, while traffic 

flow is the associated quantitative measure for transportation networks.  

A graph consists of a nonempty set 𝑉, a (possibly empty) set 𝐸 disjoint from 𝑉, and a mapping 

𝜙 that associates an unordered pair of distinct vertices with each edge. The elements of 𝑉 and 

𝐸 are called vertices and edges, respectively, and 𝜙 is called the incidence mapping associated 

with a graph.  

We say that an edge 𝑒 joins vertices 𝑣 and 𝑤 if  𝜙(𝑒) = {𝑣,𝑤},  written 𝑣𝑤, and that 𝑒 has ends 

𝑣 and 𝑤. An edge is incident with a vertex  𝑣 if it is one of its ends, and two vertices joined by 

an edge are adjacent. It should be noted that adjacency is a relationship between two like 

elements (either vertices or edges), while incidence is a relationship between unlike elements. 

A graph is usually denoted by 𝐺 or (𝑉, 𝐸, 𝜙), or (𝑉, 𝐸) when the incidence mapping is implicit 

in the definition. To avoid ambiguities, we denote the set of vertices of a graph by 𝑉(𝐺) and 

the set of edges by 𝐸(𝐺).  The number of elements in any set 𝑆 is denoted by |𝑆|. The number 
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of vertices and edges of a finite graph 𝐺 = (𝑉, 𝐸) is denoted by |𝑉| and |𝐸|, respectively. A 

graph is simple if it has no loops or parallel edges. A simple graph in which any two vertices 

are adjacent is called a complete graph. An empty graph is one whose edge set is empty. A 

graph is finite if both its vertex set and edge set are finite.  

In applications of graph theory, the need to introduce directions on the graph edges arises 

naturally. Directed edges may represent a relationship between vertex pairs which is not 

symmetric. For example, when dealing with problems of traffic flow, it is necessary to know 

the permitted direction of traffic flow since some roads are one-way streets. Clearly, the 

direction is a very important factor in such cases. Also, directed edges may be introduced in 

order to establish a frame of reference and thus avoid ambiguities.  

A graph in which all the edges are ordered pairs (and therefore called arcs) is called a digraph. 

Formally, a directed graph (digraph) 𝐷consists of a nonempty set 𝑉 of vertices, a set 𝐴 of arcs 

or directed edges (disjoint from 𝑉), and a mapping Δ of 𝐴 into 𝑉 × 𝑉. The mapping Δ is called 

the directional incidence mapping associated with the directed graph. If 𝑎 ∈ 𝐴 and Δ(a) =

(v,w), then arc 𝑎 is said to have 𝑣 as its initial vertex and 𝑣 as its terminal vertex. Directed 

graphs are usually denoted by 𝐷 or (𝑉, 𝐴, Δ), or by (𝑉, 𝐴) when Δ is not used explicitly. The 

associated undirected graph of a directed graph is obtained by disregarding the ordering of the 

end points of each arc.   

Parallel edges, also called multi-edges, can be drawn between vertices, which refer to multiple 

edges between the same pair of vertices. Self-edge or loop, in which the source vertex is 

identical to the target can be also drawn. Multi-edges are necessary if there are different types 

of interactions between the same pair of vertices as is often observed in real-world systems.  

In the simplest case, graphs are assumed to have no multi-edges or self-edges. Figure 3.3 

represents a graph 𝐺 whose vertex set 𝑉 is {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and edge set 𝐸 consists of 

edges {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, 𝑒8}, where vertex 𝑣3 contains a self-edge 𝑒5 and the vertex set 

{𝑣4, 𝑣5} have multi-edges {𝑒6, 𝑒7, 𝑒8}. The case when an edge joins a vertex with itself (self-

edge) is not part of this research due to the nature of cross-border financial flows transactions. 
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Figure 3.3: A multi-edged graph with a self-edge 

An important property of graphs that is frequently used in network science is the degree of each 

vertex. The vertex degree is defined as the number of its incident edges, with loops counted 

twice. A vertex with degree zero is called an isolated vertex. A graph is called regular if every 

vertex has the same degree, and it is 𝑘 −regular if that degree is 𝑘. In the case of a simple 

network consisting of 𝑁 vertices, in which 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 1, if an edge is drawn between vertices 

𝑖 and 𝑗, the degree of vertex 𝑖, 𝑘𝑖, is expressed as  

 

𝑘𝑖 = ∑𝐴𝑖𝑗

𝑁

𝑗=1

 

(3.1) 

The distribution of the vertex degree provides a characterization of the network structure and 

was defined by Barabási and Albert, see (Barabási & Albert, 1999). This distribution is defined 

as follows: 

 

𝑝(𝑘) =  
1

𝑁
∑𝛿(𝑘𝑖 − 𝑘)

𝑁

𝑗=1

 

(3.2) 

where 𝛿(𝑥) is the Kronecker’s delta function, which returns 1 when  𝑥 = 0 and returns 0 

otherwise (Takemoto & Oosawa, 2012). Hence, 𝑝(𝑘) represents the probability that a randomly 
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chosen vertex on the graph will have degree 𝑘. The degree distribution can be obtained by 

plotting a histogram of 𝑝(𝑘) for any given network. 

Given two graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2), their union is another graph 𝐺3 = (𝑉3, 𝐸3) 

denoted by 𝐺3 = 𝐺1 ∪ 𝐺2, where the vertex set 𝑉3 = 𝑉1 ∪ 𝑉2 and the edge set 𝐸3 = 𝐸1 ∪ 𝐸2. 

Figure 3.4 shows a diagrammatic representation of the union of two graphs. The intersection 

of two graphs 𝐺1 and 𝐺2 denoted by 𝐺1 ∩ 𝐺2 is a graph 𝐺4 consisting only of those vertices and 

edges that are in both 𝐺1 and 𝐺2.  

 

Figure 3.4: The union of two graphs 

Given a graph 𝐺 = (𝑉, 𝐸), the graph 𝐹 = (𝑉1, 𝐸1) is called a subgraph of 𝐺 if and only if 𝑉1  ⊆

 𝑉 and 𝐸1  ⊆  𝐸. If 𝐹 is a subgraph of 𝐺 then the relationship is denoted by 𝐹 ⊆ 𝐺. When 𝐹 ⊆

𝐺 but 𝐹 ≠ 𝐺, i.e., 𝑉 ≠ 𝑉1 and 𝐸 ≠ 𝐸1, then 𝐹 is called a proper subgraph of 𝐺. A spanning 

subgraph of 𝐺 is a subgraph 𝐹 with 𝑉 = 𝑉1, meaning that it is obtained by edge deletion only. 

Subgraphs can be naturally derived using two operations, i.e., edge deletion and vertex deletion 

resulting in smaller graphs that satisfy the conditions stated above.  An edge-deleted subgraph 

of 𝐺 is denoted by 𝐺 ∖ 𝑒.  

An induced subgraph 𝐹 is obtained from a subset of the vertices of 𝐺 and all the edges 

connecting pairs of vertices in that subset. Two subgraphs 𝐻1 and 𝐻2 are said to be vertex-

disjoint if 𝑉(𝐻1) ∩ 𝑉(𝐻2) = ∅, and similarly 𝐻1 and 𝐻2 are edge-disjoint subgraphs 

if 𝐸(𝐻1) ∩ 𝐸(𝐻2) = ∅. Given spanning subgraphs 𝐹1 = (𝑉, 𝐸1) and 𝐹2 = (𝑉, 𝐸2) of a 

graph 𝐺 = (𝑉, 𝐸), we may construct a spanning subgraph of 𝐺 whose edge set is the symmetric 

difference 𝐸1Δ𝐸2 of  𝐸1 and 𝐸2. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

44 

 

Figure 3.5 shows the symmetric difference of two spanning subgraphs  𝐹1 and 𝐹2 of a graph 

with five vertices. Note the absence of the common edges {𝑒1} and {𝑒6} on 𝐹1Δ𝐹2. 

 

Figure 3.5: The symmetric difference of two graphs 

Given a graph 𝐺, a walk in 𝐺 is a finite sequence of vertices and edges of the form 

𝑣0𝑒1𝑣1…𝑣𝑛−1𝑒𝑛𝑣𝑛 where 𝜙(𝑒𝑖) = 𝑣𝑖−1𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑛.  When it is clear which edges are 

involved, a walk 𝑊 = 𝑣0𝑒1𝑣1…𝑣𝑛−1𝑒𝑛𝑣𝑛 will be denoted by 𝑊 = 𝑣0𝑣1…𝑣𝑛−1𝑣𝑛. A walk 

from vertex 𝑢 to vertex 𝑣 is called a (𝑢, 𝑣)-walk. The number of edges in a walk is called its 

length. Given a (𝑢, 𝑣)-walk 𝑊, the (𝑣, 𝑢)-walk obtained by traversing 𝑊 in the opposite 

direction is denoted by 𝑊−1.  

A walk in which all the edges are distinct is a trail. If, in addition, the vertices 𝑣0, 𝑣1, … , 𝑣𝑛 are 

distinct (except, possibly, 𝑣0 = 𝑣𝑛), then the trail is a path. A trail that traverses every edge of 

a graph is called a Eulerian trail, named after Leonhard Euler. A walk in a graph is closed if its 

initial and terminal vertices are identical. A closed trail in which the origin and internal vertices 

are distinct is called a cycle.  

A graph is connected if and only if there is a path between each pair of vertices. In a connected 

graph 𝐺, the length of the shortest path between two vertices 𝑢 and 𝑣 is called the distance 

between 𝑢 and 𝑣, denoted by 𝑑𝐺(𝑢, 𝑣). The set of vertices at distance 𝑖 from 𝑣 is denoted 

by 𝑁𝑖,𝐺(𝑣). 𝑁1,𝐺(𝑣) is called the neighbourhood of 𝑣. Analogously for a subset of vertices 𝑆 ⊂

 𝑉, we denote the set of all the vertices of 𝐺 which are adjacent to at least one vertex in 𝑆 

by 𝑁𝐺(𝑆).  

The distance between two vertices in a connected graph is a very important property used in 

network science to characterize the structure of networks. In large networks, the length of the 

shortest path between a given pair of nodes (vertices) is known to be surprisingly small. This 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

45 

 

property is referred to as the “small-world property”. This property was demonstrated through 

experiments conducted by Stanley Milgram, who was an American social psychologist and a 

professor at Yale University in the 1960s (Newman, 2013). 

A directed graph is weakly connected if the underlying undirected graph obtained by replacing 

all directed edges of the graph with undirected edges is a connected graph. A graph is strongly 

connected if it contains a directed path from 𝑢 to 𝑣 and a directed path from 𝑣 to 𝑢 for every 

pair of vertices (𝑢, 𝑣).  A tour of a connected graph  𝐺 is a closed walk that traverses each edge 

of  𝐺 at least once, and a Eulerian tour one that traverses each edge of  𝐺 exactly once.  

One can obtain a disconnected graph by deleting edges from a connected graph as discussed 

earlier. Such subsets of edges are called edge separators or edge cuts. Many important 

properties of graphs can be successfully investigated by using derived subgraphs since the 

derived subgraphs have fewer vertices than the original graph. In this research, identification 

of such subsets is critical to the implementation of an effective cross-border financial 

surveillance model.  

The edge connectivity 𝜆(𝐺) of a graph 𝐺 is defined to be the minimum number of edges whose 

removal disconnects 𝐺. Furthermore, the graph 𝐺 is k-edge connected if 𝜆(𝐺) ≥ 𝑘. Thus, a 

non-trivial graph is 1-edge connected if and only if it is connected. Analogously, a separating 

set in a connected graph 𝐺 is a set of vertices whose deletion disconnects 𝐺. When a vertex is 

deleted, its incident edges are also removed. If a separating set contains only one vertex 𝑣, we 

call 𝑣 a cut-vertex. 

Given a graph 𝐺, a matching is a subgraph of 𝐺 where every vertex has degree 1. In particular, 

the matching represents a collection of edges that do not have a common vertex. A matching 

of a graph 𝐺 is perfect if it is a spanning subgraph of 𝐺. A perfect matching has  
|𝑉|

2
 edges. A 

matching with the largest possible number of edges is called a maximum matching. The 

matching number 𝜈(𝐺) of a graph 𝐺 is the size of the maximum matching. A maximal matching 

is a matching 𝑀 of a graph 𝐺 with the property that if any edge not in 𝑀 is added to 𝑀, it is no 

longer a matching. Examples of maximal matching and maximum matchings are indicated in 

Figures 3.6a and 3.6b, respectively.  
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Figure 3.6: (a) A maximum matching of a graph 𝐆. (b) A maximal matching of graph 𝐆 

A vertex is said to be covered or saturated by a matching 𝑀 if it is incident with an edge of 𝑀. 

An 𝑀-alternating path of cycle in  𝐺 is a path or cycle whose edges are alternating in 𝑀 and 𝐸 ∖

𝑀. An 𝑀-alternating path might or might not start or end with edges of 𝑀. If neither its origin 

nor its terminus is covered by 𝑀 then the path is called an 𝑀-augmenting path. The augmenting 

path is relevant in the study of maximum matchings. 

3.2.2 Representations of graphs 

Graphs (networks) are mathematically represented in several different ways. Much research 

effort has gone into the development of efficient methods for network related computations 

(algorithms) and storage (data structures) in computer science. Such developments facilitate 

the transition from graphs as purely mathematical objects to graphs as practical tools for use in 

the analysis of networks.  

Edge lists and adjacency matrices are the two most common ways of representing networks. 

An edge list is a simple two-column list of all adjacent node pairs. The adjacency matrix is a 

square matrix whose elements indicate whether pairs of nodes are adjacent or not in the 

network. The adjacency matrix is the most preferred method for network representation, given 

that matrices are fundamental data objects in most programming and software environments. 

In the simple network case, the adjacency matrix 𝑨 is the matrix with elements  𝐴𝑖𝑗 such that  

  𝐴𝑖𝑗 = {
1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑛𝑜𝑑𝑒 𝑗,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                        

 
(3.3)  

In such networks the adjacency matrix is symmetric, and the diagonal elements are all zero. 

Multi-edges are represented by setting the corresponding matrix 𝐴𝑖𝑗 equal to the multiplicity 
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of the edge. A single self-edge from node 𝑖 to itself is represented by setting the corresponding 

diagonal element 𝐴𝑖𝑖 of the adjacency matrix equal to 2.  

In a directed network each edge has a direction. The two directions are counted as being distinct 

directed edges and parentheses are used to denote the ordered pairs. The arrowheads on the 

edges represent the direction. The adjacency matrix for such networks is a 𝑛 × 𝑛 matrix 𝑨 with 

𝐴𝑖𝑗 = 1 if and only if  (𝑖, 𝑗) 𝜖 𝐸 or zero otherwise. In addition to direction, the weight associated 

with a connection is also important in real-world systems. For example, in the World Wide 

Web, the weight of hyperlinks for famous sites may be different from those of personal sites 

that are visited by only a few people. A weighted network may be represented using the weights 

as the entries of the adjacency matrix. Figure 3.7 shows a few examples of networks 

representing real-world systems. 

 

Figure 3.7: Vertices and edges in network models based on Newman (Newman, 2013). 

3.3 Properties of bipartite graphs 

Some real-world problems can be modelled as a graph where the edges represent compatibility 

and the goal is to create the maximum number of compatible pairs. In such situations, bipartite 

graphs arise naturally. 

The first systematic investigation of the properties of bipartite graphs was begun by König 

between 1914 and 1916 and documented in his famous book (König, 1936). This section 

provides the theoretical background on several characterizations of bipartite graphs, including 

the most widely used result from König. It also discusses matchings in bipartite graphs and the 

results from Hall (Hall, 1935). 
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The first book on bipartite graphs alone was published based on graduate courses taught by 

A.S. Asratian at Yerevan State University and lectures given by R. Häggkvist at Umea 

University (Asratian, Denley, & Häggkvist, 1998).  

Formally, a bipartite graph 𝐺(𝑉1, 𝑉2) is a graph in which the vertex set 𝑉 can be partitioned 

into two sets of vertices, 𝑉1 and 𝑉2 with the following properties: 

1. If 𝑣 𝜖 𝑉1, then it may be only be adjacent to vertices in 𝑉2.  

2. If 𝑣 𝜖 𝑉2, then it may be only be adjacent to vertices in 𝑉1.  

3. 𝑉1 ∩ 𝑉2 = ∅. 

4. 𝑉1 ∪ 𝑉2 = 𝑉. 

The sets 𝑉1 and 𝑉2 may be thought of as a colouring of the graph with two colours: if one 

colours all vertices in 𝑉1 black, and all the vertices in 𝑉2 white, each edge has endpoint of 

differing colours. Hence, the sets  𝑉1 and 𝑉2 are called the colour classes of 𝐺 and (𝑉1 ∪ 𝑉2) is 

a bipartition of 𝐺. Therefore, for a graph to be bipartite it must be possible to colour the vertices 

with at most two colours, so that no two adjacent vertices have the same colour.  

A bipartite graph with bipartition (𝑉1, 𝑉2) is denoted by 𝐺(𝑉1, 𝑉2). If 𝐺(𝑉1, 𝑉2) is a simple graph 

and every vertex in 𝑉1 is joined by to every vertex in 𝑉2, then 𝐺 is called a complete bipartite 

graph. A graph is called 𝑚 by 𝑛 bipartite if  |𝑉1| = 𝑚 and |𝑉2| = 𝑛, and a balanced bipartite 

graph if |𝑉1| = |𝑉2|. Figure 3.8 shows a 3-regular graph with coloured vertices, which is also 

represented as a balanced bipartite graph with bipartitions 𝑉1 = (𝑋, 𝑌, 𝑍) and 𝑉2 = (𝐾, 𝐿,𝑀).  

 

Figure 3.8: (a) A 3-regular graph with coloured vertices, (b) a unique bipartition of (a). 
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Cycles of bipartite graphs are of even length. Some simple observations about the structure of 

bipartite graphs are stated below and followed by some widely used results that characterises 

bipartite graphs. There are many characterisations of bipartite graphs, and therefore many ways 

to recognise them algorithmically.  

Property 3.3.1. A connected bipartite graph has a unique bipartition 

Property 3.3.2. A bipartite graph, without isolated vertices, which has t connected 

components, has 2𝑡−1 bipartitions. 

For example, the complete bipartite graph on Figure 3.2 has one bipartition because it consists 

of one connected component. 

Lemma 3.3.3. If  𝐺 is a bipartite graph, and the bipartition of 𝐺 is (𝑉1, 𝑉2), then 

∑ 𝑑𝑒𝑔(𝑣) = ∑ 𝑑𝑒𝑔(𝑣)

𝑣∈𝑉2𝑣∈𝑉1

 

Proof. By induction on the number of edges of the graph 𝐺. Suppose |𝑉1| = 𝑚 and |𝑉2| = 𝑛 

for some 𝑚, 𝑛 > 0. The case when both 𝑚 and 𝑛 are equal to one is trivial since only one edge 

can be drawn between the vertices. 

Now take the spanning subgraph of 𝐺 without the edges and proceed with induction as follows: 

add one edge from any vertex in 𝑉1 to any vertex in 𝑉2. Then 

∑ 𝑑𝑒𝑔(𝑣) = ∑ 𝑑𝑒𝑔(𝑣)

𝑣∈𝑉2𝑣∈𝑉1

= 1 

Now suppose this is true for 𝑛 − 1 edges and add one more edge. Since this edge adds exactly 

one to both  ∑ 𝑑𝑒𝑔(𝑣)𝑣∈𝑉1  and ∑ 𝑑𝑒𝑔(𝑣)𝑣∈𝑉2 , then it is true for all 𝑛 ∈ 𝑁. 

Theorem 3.3.4. If  𝐺 is a k-regular bipartite graph with 𝑘 > 0 and the bipartition of 𝐺 

is (𝑉1, 𝑉2), then the number of elements in  𝑉1 is equal to the number of elements in 𝑉2. 

Proof. Since the graph is 𝑘 −regular, ∑ 𝑑𝑒𝑔(𝑣) = 𝑘|𝑉1|𝑣∈𝑉1  and ∑ 𝑑𝑒𝑔(𝑣) = 𝑘|𝑉2|𝑣∈𝑉2 . From 

the previous lemma, we have 

∑ 𝑑𝑒𝑔(𝑣) = ∑ 𝑑𝑒𝑔(𝑣)𝑣∈𝑉2𝑣∈𝑉1 ⟹ 𝑘|𝑉1| = 𝑘|𝑉2| ⟹ |𝑉1| = |𝑉2|. 
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Lemma 3.3.5. A graph 𝐺 is a bipartite graph if and only if 𝐺 contains no closed walk of odd 

length.  

Proof. Since an odd cycle is also an odd walk the condition is certainly sufficient. Let 𝐺 be a 

bipartite graph and 𝑊 = 𝑣0𝑣1𝑣2…𝑣𝑛𝑣0 be a closed walk in 𝐺. Consider the level 

representation of 𝐺 with respect to 𝑣0. Define the sequence 𝛼1𝛼2, … 𝛼𝑘+1 by  

𝛼𝑖 = {
1 𝑖𝑓 1 ≤ 𝑖 ≤ 𝑘 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑣𝑖−1 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑣𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                  

 

Then, since 𝑊 is closed, the sequence must contain equal numbers of 1’s and 0’s, hence must 

be of even length. Therefore  𝑊 is also of even length. 

The theorem below was derived by König and is one of the most widely results used to 

characterise bipartite graphs. As stated earlier, there are many other ways to characterise 

bipartite graphs.  

Theorem 3.3.6. A graph 𝐺 is a bipartite graph if and only if 𝐺 has no cycle of odd length.  

Proof.  Suppose that 𝐺 is a bipartite graph with bipartition (𝑉1, 𝑉2), and 𝐶 = 𝑣0𝑣1𝑣2…𝑣𝑛𝑣0 is 

a cycle of 𝐺. Without loss of generality, we may assume that 𝑣0 ∈ 𝑉1. Given that 𝐺 is a bipartite 

graph, 𝑣1 ∈ 𝑉2 since the vertices of  𝐶 must alternately be in 𝑉1 and 𝑉2. Hence 𝑛 must be odd 

and, and 𝐶 is an even cycle. 

It suffices to prove the converse when 𝐺 is connected. Assume that 𝐺 contain only even cycles 

and let 𝑣 be an arbitrary vertex of 𝐺. Partition all other vertices of 𝐺 based on the parity distance 

(even or odd) from vertex 𝑣. That is, let  

𝑉1 = {𝑢 ∈ 𝑉: 𝑑𝐺(𝑢, 𝑣) 𝑖𝑠 𝑒𝑣𝑒𝑛} 

𝑉2 = {𝑢 ∈ 𝑉: 𝑑𝐺(𝑢, 𝑣) 𝑖𝑠 𝑜𝑑𝑑} 

Clearly,  𝑉1 ∩ 𝑉2 = ∅ and 𝑉1 ∪ 𝑉2 = 𝑉. It remains to show that (𝑉1, 𝑉2) is indeed a bipartition 

of 𝐺. Suppose that 𝑥 and 𝑦 are two vertices of  𝑉1, and that 𝑥𝑦 ∈ 𝐸. It follows that  

𝑥 ∈ 𝑉1 ⟹ ∃(v, x) − path 𝑃1 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑦 ∈ 𝑉1 ⟹ ∃(v, y) − path 𝑃2 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 
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Concatenate (v, x)-path  𝑃1, the edge 𝑥𝑦, and the (y, v)-path 𝑃2
−1 to obtain a closed odd walk. 

By the previous lemma, the graph must contain an odd cycle. Hence, it must be the case that 

(𝑉1, 𝑉2) is a valid bipartition, so 𝐺 is bipartite. 

3.4 Matching in bipartite graphs 

In many applications of graph theory, many questions of practical interest amount to finding a 

matching in a bipartite graph 𝐺 with bipartition (𝑉1, 𝑉2), which covers every vertex in 𝑉1. For 

example, suppose that a certain number of jobs are vacant. Given a group of applicants for 

these jobs, fill as many jobs as possible, assigning applicants only to jobs for which they are 

qualified. A bipartite graph 𝐺 with bipartition (𝑉1, 𝑉2) can be used to represent this situation 

where 𝑉1 represents the set of applicants, 𝑉2 the set of jobs, and an edge 𝑣𝑤 with 𝑣 ∈ 𝑉1 and 

𝑤 ∈ 𝑉2  signifies that applicant 𝑣 is qualified to do a job 𝑤. An assignment of applicants to 

jobs, one person per job, corresponds to a matching problem in 𝐺, and the problem of filling as 

many vacant jobs as possible amount to finding a maximum matching in 𝐺.  

The 𝑀-augmenting path defined earlier plays an important role in the structure of matchings. 

Consider the following two properties. 

Property 3.4.1. Let 𝑀 be a matching and 𝑃an augmenting path relative to 𝑀 then  𝑀Δ𝑃 is 

also a matching of 𝐺 and |𝑀Δ𝑃| = |𝑀| + 1. 

Property 3.4.2. Let 𝑀 and 𝑁 be matchings in 𝐺. Then each connected component of 𝐺[𝑀∆𝑃] 

is one of the following: 

(1) An even cycle with edges alternately in 𝑀 ∖ 𝑁 and 𝑁 ∖ 𝑀, or 

(2) A path whose edges are alternately in 𝑀 ∖ 𝑁 and 𝑁 ∖ 𝑀. 

The following theorem, which builds on these observations, due to Berge (1957), points out 

the relevance of augmenting paths to the study of maximum matchings. 

Theorem 3.4.3. A matching 𝑀 in a graph 𝐺 is a maximum matching if and only if 𝐺 contains 

no 𝑀-augmenting path. 
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Proof.  Let 𝑀 be a matching in 𝐺. Suppose that 𝐺 contains an 𝑀-augmenting path 𝑃. Then, the 

set  𝑀∗ = (𝑀\𝐸(𝑃)) ∪ (𝐸(𝑃)\𝑀) = 𝑀Δ𝐸(𝑃) is a matching with larger cardinality than 𝑀, 

i.e., |𝑀∗| = (|𝑀| + 1) > |𝑀|. Thus, 𝑀 is not a maximum matching.   

Conversely, suppose that 𝑀 is not a maximum matching. Therefore, there exists a matching 

 𝑀′ with |𝑀′| > |𝑀|. Consider the subgraph 𝐻 ⊆ 𝐺 with 𝑉(𝐻) = 𝑉(𝐺) and 𝐸(𝐻) = 𝑀 ∪𝑀′. 

Each vertex of 𝐻 has degree one or two in 𝐻, for it can be incident with most one edge of 𝑀 and 

one edge of 𝑀′. Consequently, each component of 𝐻 is either an even cycle with edges 

alternately in 𝑀 and 𝑀′, or else a path with edges alternately in 𝑀 and 𝑀′. Since |𝑀′| > |𝑀|, 

there is a component of  𝐻 which is a path with more edges in 𝑀′ than in 𝐻. Then 𝑃 is an 𝑀-

augmenting path. 

Hall (1935) derived the necessary and sufficient conditions for the existence of a matching in 

a bipartite graph 𝐺 with bipartition (𝑉1, 𝑉2), which covers every vertex in 𝑉1.  

Theorem 3.4.4. A bipartite graph 𝐺(𝑉1, 𝑉2) has a matching which covers every vertex in 𝑉1 if 

and only if  |𝑁(𝑆)| ≥ |𝑆| for 𝑆 ⊆ 𝑉1. 

Proof.  Let 𝐺(𝑉1, 𝑉2) be a bipartite graph which has a matching 𝑀 covering every vertex in 𝑉1. 

Consider the subset 𝑆 of 𝑉1. The vertices in 𝑆 are matched under 𝑀 with distinct vertices 

in 𝑁(𝑆). Therefore, |𝑁(𝑆)| ≥ |𝑆| and the matching condition holds. 

Conversely, suppose that 𝐺(𝑉1, 𝑉2) is a bipartite graph which as a matching covering every 

vertex in 𝑉1. Let 𝑀′ be a maximum matching in 𝐺 and 𝑣 a vertex in 𝑉1 not covered by 𝑀′. 

Denote by 𝑍 the set of all vertices reachable from 𝑣 by 𝑀′ −alternating paths. Since 𝑀′ is a 

maximum matching, it follows from the previous theorem (Berge’s) that 𝑣 is the only vertex 

in 𝑍 not covered by 𝑀′. Set 𝑅 = 𝑉1 ∩ 𝑍 and 𝐵 = 𝑉2 ∩ 𝑍. Clearly, the vertices of 𝑅\{𝑣} are 

matched under 𝑀′ with the vertices of 𝐵. Therefore, |𝐵| = |𝑅| − 1 and 𝑁(𝑅) ⊇ 𝐵. In 

fact 𝑁(𝑅) = 𝐵, because every vertex in 𝑁(𝑅) is connected to 𝑣 by an 𝑀′ −alternating path. 

These two equations imply that 𝑁(𝑅) = |𝐵| = |𝑅| − 1. Hence, Hall’s theorem holds. 

3.5 Network flows 

Network flow theory is essentially the study of digraphs. The models and algorithms introduced 

by L.R Ford, Jr., and D.R. Fulkerson in their classic book titled ‘Flows in Networks’ have set 
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the foundation for the study of network flow problems (Ford & Fulkerson, 1962). Network 

flow problems arise in many applications of graph theory such as internet traffic, transportation 

systems, communication systems, road traffic flow, and power supply networks. This section 

presents an overview of network flow theory. In particular, the maximum flow problem and its 

relationship to the minimum cut are discussed together with Ford and Fulkerson approach to 

finding the maximum flow in a network. Most results from this section were quoted from a 

well written book by Jonathan Gross and Jay Yellen (Gross & Yellen, 2006). 

A digraph 𝑁 = (𝑉, 𝐴) is called a network, if 𝑉 is a set of vertices with two distinguished 

vertices called the source and the sink, 𝐴 a set of arcs or directed edges (disjoint from 𝑉), and 

to each 𝑎 ∈ 𝐴 a non-negative real number 𝑐𝑎𝑝(𝑎) is assigned which is called the capacity of 

arc 𝑎. The out-set of vertex 𝑣 denoted 𝑂𝑢𝑡(𝑣), is the set of all arcs that are directed from vertex 

𝑣 and the in-set of vertex 𝑣 denoted 𝐼𝑛(𝑣), is the set of all arcs that are directed to vertex 𝑣. If 

𝑠 ∈ 𝑉 is the source then 𝑠 is not incident to any element of the in-set, and 𝑡 ∈ 𝑉 is the sink if 𝑡 

is not incident to any element of the out-set.  A single source-single sink network with source 

𝑠 and sink 𝑡 is referred to as a  𝑠 − 𝑡 network. For any two vertex subsets 𝑋 and 𝑌 of a 

digraph 𝑁, we denote 〈𝑋, 𝑌〉 the set of all arcs in 𝑁 that are directed from a vertex in 𝑋 to a 

vertex in 𝑌. 

A (feasible) flow 𝑓 in a network 𝑁 is an assignment to each arc 𝑎 ∈ 𝐴 a non-negative real 

number 𝑓(𝑎) such that: 

1. (Capacity constraint) 𝑓(𝑎) ≤ 𝑐𝑎𝑝(𝑎); 

2. (Conservation constraint) For every vertex 𝑣 ∈ 𝑉, except 𝑠 and 𝑡, the following flow 

conservation law holds:  

∑ 𝑓(𝑎)

𝑎∈𝐼𝑛(𝑣)

= ∑ 𝑓(𝑎)

𝑎∈𝑂𝑢𝑡(𝑣)

 

An arc for which 𝑓(𝑎) = 𝑐𝑎𝑝(𝑎) is called saturated; if 𝑓(𝑎) < 𝑐𝑎𝑝(𝑎), then arc 𝑎 is called 

unsaturated. The value of the network flow in a capacitated network, denoted by 𝑣𝑎𝑙(𝑓) is the 

sum of all the flows leaving the source 𝑠; the flow conservation law implies that it equals the 

sum of the flows arriving at 𝑡:  

𝑣𝑎𝑙(𝑓) = ∑ 𝑓(𝑎)

𝑎∈𝑂𝑢𝑡(𝑠)

= ∑ 𝑓(𝑎)

𝑎∈𝐼𝑛(𝑡)
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Figure 3.9 shows a flow for a 6-vertex capacitated 𝑠 − 𝑡 network. The adopted convention on 

the drawing to distinguish capacity from flow when both numbers appear is to place capacity 

in bold and to the left of the flow. Note that the total amount of flow leaving the sources vertex 

𝑠 equals 15, which equals the net flow entering the sink vertex 𝑡. 

 

Figure 3.9: Example of a flow for a 6-vertex capacitated 𝐬 − 𝐭 network. 

A flow in a network 𝑁 is a maximum flow if there is no flow in 𝑁 of greater value. The 

problems of finding the maximum flow in a capacitated network 𝑁 is closely related to the 

problem of finding the minimum cut in 𝑁. Maximum flows are very important in many 

applications of network flow theory such as traffic flow networks and transportation networks. 

Consider the subset of arcs 𝑆 ⊆ 𝐴 that partitions the vertices of the network 𝑁 into two disjoint 

sets 𝑉𝑠 and 𝑉𝑡 such that the source 𝑠 ⊆ 𝑉𝑠 and the sink 𝑡 ⊆ 𝑉𝑡. Then the set of all arcs that are 

directed from a vertex in set 𝑉𝑠 to a vertex in set 𝑉𝑡 is called a 𝑠 − 𝑡  cut of the network 𝑁  and 

is denoted by 〈𝑉𝑠, 𝑉𝑡〉.  

Figure 3.10 shows an example of a 𝑠 − 𝑡  cut where 𝑉𝑠 = {𝑠, 𝑣1, 𝑣2} and 𝑉𝑡 = {𝑣3, 𝑣4, 𝑡}. The 

capacity of a cut is the sum of the capacities of the arcs in the cut. The minimum cut of a 

network 𝑁 is defined as the cut with the minimum capacity. Different cuts have different 

capacities and no flow can exceed the smallest capacity over all cuts in the 𝑠 − 𝑡 network.  
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Figure 3.10: Example of a 𝐬 − 𝐭 cut 

Proposition 3.5.1. Let 〈𝑉𝑠, 𝑉𝑡〉 be a 𝑠 − 𝑡  cut of a network 𝑁. Then every directed 𝑠 − 𝑡  path 

in 𝑁 contains at least one arc in 〈𝑉𝑠, 𝑉𝑡〉.  

Proof.  Let 𝑌 = 〈𝑠 = 𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑘 = 𝑡〉 be the vertex sequence of a directed 𝑠 − 𝑡 path in 

network 𝑁. Since 𝑠 ∈ 𝑉𝑠 and 𝑡 ∈ 𝑉𝑡, there exists a first vertex 𝑣𝑗  on this path that is in the set 𝑉𝑡. 

Then the arc from vertex 𝑣𝑗−1 to 𝑣𝑗  is in 〈𝑉𝑠, 𝑉𝑡〉. 

The following proposition demonstrates the relationship between flows and cuts. 

Proposition 3.5.2. Let 𝑓 be a flow in an  𝑠 − 𝑡 network 𝑁, and let 〈𝑉𝑠, 𝑉𝑡〉 be any 𝑠 − 𝑡  cut 

of 𝑁. Then  

𝑣𝑎𝑙(𝑓) = ∑ 𝑓(𝑎)

𝑎∈〈𝑉𝑠,𝑉𝑡〉

− ∑ 𝑓(𝑎)

𝑎∈〈𝑉𝑡,𝑉𝑠〉

 

The upper bound for the maximum flow problem is provided by the following proposition. 

Proposition 3.5.3. Let 𝑓 be a flow in an  𝑠 − 𝑡 network  𝑁, and let 〈𝑉𝑠, 𝑉𝑡〉 be any 𝑠 − 𝑡  cut 

of 𝑁. Then  

𝑣𝑎𝑙(𝑓) ≤ 𝑐𝑎𝑝〈𝑉𝑠, 𝑉𝑡〉 

The techniques presented by Ford and Fulkerson (1962) spurred the development of 

computational tools for analysing network flow problems. The basic idea presented by Ford 

and Fulkerson is to increase the flow in a network iteratively based on suitably chosen 

alternating sequence of vertices and arcs until it cannot be increased any further, resulting in 
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the maximum flow in a network. The alternating sequence of vertices and arcs is called the 

augmenting flow path.  

An 𝑠 − 𝑡 quasi-path in a network 𝑁 is an alternating sequence 𝑃 = 〈𝑠 =

𝑣0𝑎1𝑣1, … , 𝑣𝑘−1𝑎𝑘𝑣𝑘 = 𝑡〉 of vertices and arcs that forms and 𝑠 − 𝑡 path in the underlying 

graph of 𝑁 where arc 𝑎𝑖 is called a forward arc if it is directed from vertex 𝑣𝑖−1 to vertex 𝑣𝑖, 

and arc 𝑎𝑖 is called a backward arc if it is directed from vertex 𝑣𝑖 to vertex 𝑣𝑖−1. If the flow on 

each forward arc can be increased and the flow on each backward arc can be decreased the 𝑠 −

𝑡 quasi-path is called the 𝑓-augmenting path 𝑃. Thus, if △𝑝 denotes the flow increase, then 

 △𝑝= {
𝑐𝑎𝑝(𝑎) − 𝑓(𝑎), 𝑖𝑓 𝑎 𝑖𝑠 𝑎 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑎𝑟𝑐

𝑓(𝑎), 𝑖𝑓 𝑎 𝑖𝑠 𝑎 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑎𝑟𝑐                 
} 

The quantity  △𝑝 is called a slack on arc a. Its value on a forward arc is the largest possible 

increase in the flow, and on a backward arc, the largest possible decrease in the flow, 

disregarding conservation of flow. The following proposition summarises how the 𝑓-

augmenting path is used to increase the flow 𝑓 in a network and Theorem 2.4.5 associates the 

maximum flow in a network  𝑁 to the 𝑓-augmenting path. The relationship between the 

maximum flow and minimum cut is summarised in Theorem 2.4.6. 

Proposition 3.5.4. Let 𝑓 be a flow in an  𝑠 − 𝑡 network 𝑁, and let 𝑃 be an 𝑓-augmenting path 

with minimum slack  △𝑝  on its arcs. Then the augmented flow 𝑓 given by  

𝑓 =

{
 

 
𝑓(𝑎) +  △𝑝, 𝑖𝑓 𝑎 𝑖𝑠 𝑎 𝑓𝑜𝑤𝑎𝑟𝑑 𝑎𝑟𝑐 𝑜𝑓 𝑃

𝑓(𝑎) −  △𝑝, 𝑖𝑓 𝑎 𝑖𝑠 𝑎 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑎𝑟𝑐 𝑜𝑓 𝑃

𝑓(𝑎),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         
  }

 

 
 

is a feasible flow in network 𝑁, and 𝑣𝑎𝑙(𝑓) = 𝑣𝑎𝑙(𝑓) +  △𝑝. 

Theorem 3.5.5 [Characterisation of maximum flow]. Let 𝑓 be a flow in a network 𝑁. Then 

𝑓 is a maximum flow in N if and only if there does not exist an 𝑓-augmenting path in 𝑁.  

Theorem 3.5.6 [Max-Flow Min-Cut]. For a given network, the value of a maximum flow is 

equal to the capacity of a minimum cut.   

The Ford-Fulkerson approach to finding the augmenting path in the augmented flow 𝑓 (residual 

graph) is not specified. An improvement to the Ford-Fulkerson algorithm was achieved by 

Edmonds-Karp (Edmonds & Karp, 1972), by specifying the search order when finding the 
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augmenting path. The Edmonds-Karp algorithm uses breadth-first search techniques to traverse 

the network to find the shortest path that has available capacity. 

3.6 Summary 

Chapter 3 introduced the fundamentals of mathematical graph theory, beginning with the 

subject history, the concepts, definitions, representation of graphs, and proofs of significant 

results relating to bipartite graphs. 

The research uses the directed and weighted bipartite graph as a model for cross-border 

financial flows. The next chapter introduces the symmetric-key encryption algorithm that 

utilizes the multi-dimensional data set's group structure to compute the edge weights of the 

proposed directed and weighted bipartite graph model for cross-border financial flows. 
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Chapter 4: Preservation of 

information privacy using 

encryption  
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4.1 Introduction  

Researchers use three broad classes to categorize techniques for preserving the privacy of 

personally identifiable information in statistical databases, i.e., data obfuscation, 

summarization, and data separation (Adam & Wortmann, 1989; Cios & Moore, 2002; Clifton 

& Vaidya, 2004; Kou, Peng, Shi, & Chen, 2007). 

Encryption is part of cryptography, viewed as one of the most complex data obfuscation 

techniques by many. The encryption techniques are widely used by governments to protect 

their sensitive political, economic, law enforcement, and military information from foreign 

governments with hostile interests. The U.S. government endorsed the first publicly available 

cryptographic algorithm called the Data Encryption Standard in the early 1970s (Smid & 

Branstad, 1988). 

The underlying complexities and robustness of encryption techniques are evident in distributed 

ledger technologies such as Blockchain, which rely on sophisticated cryptographic algorithms 

to secure the sender of transactions' identity and ensure no tampering of records. Current 

encryption algorithms in use include the Triple-DES, IDEA, AES, RSA, RC6, Serpent, and 

Elliptic curve (Stinson & Paterson, 2018). 

This chapter proposes a cryptographic approach to privacy-preservation by developing a 

symmetric-key encryption algorithm to preserve personally identifiable information in multi-

dimensional data sets. The proposed symmetric-key encryption algorithm leverages the multi-

dimensional data sets' group structure to create temporary variables during a computer 

program's compilation phase. The algorithm uses the temporary variables to perform the 

algorithmic operations relating to data processing and computing the cross-border financial 

flows network's weights. The objective is to avail data comprising personally identifiable 

information for analysis without revealing the identities of individuals. 

The chapter begins with a background on privacy preservation methods, emphasizing the 

cryptographic approach and other techniques for preserving privacy in statistical databases 

such as differential privacy and data separation techniques. 

The algorithm comprises two distinct parts. The first part performs elementary algebraic 

computations to derive a non-random permutation, a significant component of the encryption 

and decryption key. The second part reorganizes the data set and computes the descriptive 
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statistics for deriving the network structure of cross-border financial flows. The chapter 

concludes with the implementation of the algorithm using the SAS® software program. 

4.2 Overview of cryptographic techniques 

Symmetric-key encryption algorithms are generally categorized in two categories, i.e., block 

ciphers and stream ciphers. In block ciphers, the successive plaintext elements are encrypted 

using the same key, 𝐾. That is, the ciphertext string 𝒚 is obtained as follows: 

 𝒚 = 𝑦1𝑦2… = 𝑒𝐾(𝑥1)𝑒𝐾(𝑥2)… (4.1) 

The basic idea of stream ciphers is to generate a keystream 𝒛 = 𝑧1𝑧2…, and use it to encrypt 

plaintext string 𝒙 = 𝑥1𝑥2… according to the rule  

 𝒚 = 𝑦1𝑦2… = 𝑒𝑧1(𝑥1)𝑒𝑧2(𝑥2)… (4.2) 

Block ciphers often operate as critical components in the design of many cryptographic 

protocols and widely used for encryption of bulk data. In contrast, stream ciphers are simple to 

implement in hardware and fast in execution, especially in applications where plaintext comes 

in quantities of unknowable length like in a secure wireless connection. 

More formally, a cryptosystem is a five-tuple (𝑃, 𝐶, 𝐾, 𝐸, 𝐷), which satisfies the following 

conditions: 

1. 𝑃 is the finite set of possible plaintexts; 

2. 𝐶 is a finite set of possible ciphertexts; 

3. 𝐾, the keyspace, is a finite set of possible keys; 

4. For each 𝑘 ∈ 𝐾, there is an encryption rule 𝑒𝑘 ∈ 𝐸 and a corresponding decryption rule 

𝑑𝑘 ∈ 𝐷. Each 𝑒𝑘: 𝑃 → 𝐶 and 𝑑𝑘: 𝐶 → 𝑃 are functions such that 𝑑𝑘(𝑒𝑘(𝑥)) = 𝑥 for every 

plaintext element 𝑥 ∈ 𝑃. 

Condition 4 says that if a plaintext is encrypted using an encryption key, and the resulting 

ciphertext is subsequently decrypted using the decryption key, then the original plaintext 

results. This condition is the main property of encryption.  

Continuing with the analogy described in chapter two, Alice and Bob will choose an encryption 

key when they are in the same place and are not being observed by Oscar, or alternatively, 

when they do have access to a secure channel, in which case they can be in different places. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

61 

 

The use of the chosen key will enable Alice and Bob to communicate over an insecure channel 

as illustrated in Figure 4.1 

 

Figure 4.1: The communication channel 

The encryption algorithm which utilizes a single key is called a symmetric-key encryption 

algorithm. In such cryptosystems, the decryption rule 𝑑𝑘 and the encryption rule 𝑒𝑘 are either 

the same or 𝑒𝑘 can be derived from 𝑑𝑘. For example, DES decryption is identical to encryption, 

but the key schedule is reversed. Such algorithms execute fast and are simple to implement. 

However, if the encryption process requires too many steps to execute, then the algorithm may 

not be suitable for encrypting large amounts of data (Ayushi, 2010). 

Some of the well-known single-key encryption algorithms include the Shift Cipher and the 

Substitution Cipher. To encrypt the plaintext in a Caesar Cipher, one moves each letter a 

specific number of positions to the left or right. For example, with a shift of 5, E would be 

replaced by F, G would become B, and so on. The Caesar Cipher is an example of the Shift 

Cipher, named after Julius Caesar, who used it with a shift of three to protect messages of 

military significance. 

The Substitution Cipher uses permutations of alphabetic characters for encryption and 

decryption. Hence, the Substitution Cipher includes all the 26! permutations, while the Shift 

Cipher uses the 26 elements only. Its formal definition is as follows: 

Let 𝑃 = 𝐶 = ℤ26, where ℤ26 is the set {0, … ,𝑚 − 1} equipped with two operations, + and −, 

called the arithmetic modulo 𝑛. 𝐾 consists of all possible permutations of the 26 symbols 

0,1, … ,25. For each permutation 𝜑 ∈ 𝐾, define 
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𝑒𝜑(𝑥) = 𝜑(𝑥), 

and define 

𝑑𝜑(𝑥) = 𝜑
−1(𝑥), 

where 𝜑−1 is the inverse permutation to 𝜑. 

It is more convenient to use alphabetic characters as opposed to residues modulo 26, since the 

encryption and decryption operations do not require computations. Figure 4.2 shows an 

example of a random permutation, 𝜑, which could comprise an encryption function. Lowercase 

characters represent plaintext and uppercase letters represent cyphertext. 

 

Figure 4.2: A random permutation comprising an encryption function 

Thus, 𝑒𝜑(𝑎) = 𝐸, 𝑒𝜑(𝑏) = 𝑈, etc. The decryption function is the inverse permutation formed 

by writing the second line first, and then sorting in alphabetic order to obtain Figure 4.3. The 

decryption operations are 𝑑𝜑(𝐴) = 𝑚, 𝑑𝜑(𝐵) = 𝑒, etc. 

 

Figure 4.3: An inverse permutation comprising the decryption function 

Another special case of the Substitution Cipher is the Affine Cipher, which uses encryption 

functions of the form 𝑒(𝑥) = (𝑎𝑥 + 𝑏) 𝑚𝑜𝑑 26, where 𝑎, 𝑏 ∈ ℤ26. Some simple cryptosystems 

include the Vigenere Cipher, Hill Cipher, Permutation Cipher, and Autokey Cipher (Stinson & 

Paterson, 2018). 
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Asymmetric encryption, which is also called public-key encryption, utilizes two keys. The 

message encrypted using the public key requires the same algorithm and a matching private 

key to decrypt. While the public key can be freely shared, the paired private key must remain 

a secret well kept.  

Diffie and Hellman put forward the idea of public-key encryption in 1976, leading to the 

invention of the well-known RSA algorithm in 1977 (Diffie & Hellman, 1976; Rivest, Shamir, 

& Adleman, 1978). Public key algorithms are fundamental security ingredients in modern 

cryptosystems, applications, and protocols assuring the confidentiality, authenticity, and non-

reputability of electronic communications and data storage. 

The public-key algorithms underpin various Internet standards, such as Transport Layer 

Security (TLS). Some algorithms provide key distribution and secrecy (e.g., Diffie-Hellman 

key exchange). In contrast, some provide digital signatures (e.g., Digital Signature Algorithm), 

and others offer both (e.g., RSA).  

Asymmetric encryption tends to be slower in execution than symmetric encryption, mainly due 

to complex algorithms with a high computational burden. Figure 4.4 is a graphical depiction 

of asymmetric encryption. 

 

Figure 4.4: Asymmetric key encryption 
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Classical cryptography was synonymous with encryption. Modern-day cryptography concerns 

various aspects of information security, such as data confidentiality, data integrity, and user 

authentication.  

Cryptography exists at the intersection of the disciplines of mathematics, computer science, 

electrical engineering, communication science, and physics. Applications of cryptography 

include electronic commerce, chip-based payment cards, digital currencies, computer 

passwords, and military communications. Distributed ledger technologies such as Blockchain 

rely on sophisticated cryptographic algorithms to secure the identity of the sender of 

transactions and to ensure the safekeeping of financial records. Triple-DES, IDEA, AES, RSA, 

RC6, Serpent, and Elliptic curve are some examples of encryption algorithms that are currently 

in use (Stinson & Paterson, 2018). 

4.3 Non-cryptographic approaches to privacy-preservation   

Recent advances in privacy-preservation methods include DataSifter and Personalised 

Differential Privacy (PDP). These methods effectively provided useful information about 

sensitive data without revealing much about any individual (Ebadi, Sands, & Schneider, 2015; 

Marino, et al., 2019).  

Data separation-based methods such as vertical partition and horizontal partition are also robust 

against side-knowledge, allowing them to perform better than the widely used summarization 

techniques (Vaidya & Clifton, 2004; Kou, Peng, Shi, & Chen, 2007).  

Researchers have also integrated cryptography and machine learning into the three broad 

categories of privacy-preserving methods (Pathak, Rane, & Raj, 2010; Pathak M. , Rane, Sun, 

& Raj, 2011; Wang, Wang, Bi, & Xu, 2018). Multiple parties can use deep learning based on 

artificial neural networks to model, classify, and recognize complex data such as images, 

speech, and text without sharing their input datasets (Shokri & Shmatikov, 2015). The next 

section provides an overview of differential privacy. 

4.3.1 Differential privacy 

Privacy issues are usually associated with failure to control access (authentication) to 

information, to control the flow of information, or the purposes for using the information. 
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Differential privacy arose in a context in which ensuring privacy is a challenge even if all these 

control problems are solved; thus, differential privacy is a definition of privacy tailored to the 

problem of privacy-preserving data analysis (Dwork, 2011). 

In a study to examine the trade-off between the privacy and usability of statistical databases, 

researchers found that a small amount of disturbance suffices to result in a substantial violation 

of privacy (Dinur & Nissim, 2003). This insight led to the development of differential privacy 

in 2006 (Dwork, McSherry, Nissim, & Smith, 2006). 

Differential privacy uses mathematical tools such as Laplace and Gaussian mechanisms, 

among others, to randomize the individual's responses, which effectively hides the presence or 

absence of the individual's data throughout the lifetime of the database. Hence, it separates the 

utility of the database from the increased risk of harm for an individual due to joining the 

database (Dwork, McSherry, Nissim, & Smith, 2006).  

Differential privacy ensures that the outcome of any analysis is equally likely, independent of 

whether an individual takes part or refrains.  

Formally, a randomized function ℚ gives 𝜀 − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑟𝑖𝑣𝑎𝑐𝑦 if for all data sets 𝐷 and 

𝐷′ differing on at most one row, and all 𝑅 ⊆ 𝑅𝑎𝑛𝑔𝑒(ℚ), 

 
𝑃𝑟[ ℚ(𝐷) ∈ 𝑅]

𝑃𝑟[ℚ(𝐷′) ∈ 𝑅]
≤ 𝑒𝜀 (4.3) 

where the probability space in each case is over the coin flips of ℚ, and 𝜀 is small, say 0.01, 

0.1, or in some cases, ln 2 or ln 3. 

Research and applications of differentially private algorithms continues to grow, with large 

corporations such as Apple Inc. and Google LLC using differential privacy (Erlingsson, Pihur, 

& Korolova, 2014; Tang, Korolova, Bai, Wang, & Wang, 2017). Founded in 2014, Privitar is 

a company specializing in the development and adoption of privacy engineering technology 

with a global client-base across North America, Europe, and Asia.  
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4.4 Single-key encryption algorithm using temporary variables 

The proposed symmetric-key encryption algorithm uses elementary arithmetic operations to 

derive a permutation, which is independent of the plaintext. The purpose of the permutation is 

to enable encryption and decryption. Hence, a critical component of the symmetric-key.  

The algebraic operations begin by sorting the database records using the target encryption 

variable and utilizing the multi-dimensional data sets' group structure to determine the 

permutation. The procedure uses temporary variables to determine the start and end of record 

groups while computing the required descriptive statistics for constructing the directed and 

weighted bipartite network structure. Several software environments for statistical computing 

such as SAS® and R programming language, among others, provide packages for By-Group 

processing. This research uses the contents of the PDV variables in SAS® software to create 

new variables, which comprise descriptive statistics to construct the bipartite network structure.  

The idea of the proposed symmetric-key encryption algorithm is first to encrypt the plaintext 

using the non-random permutation, which creates the cyphertext. Secondly, to store the unique 

relationship between the plaintext and the cyphertext in a secure environment for decryption 

purposes. At the same time, compute the descriptive statistics to enable network representation. 

A permutation of a finite set 𝑆 is a bijective function 𝜑:𝑋 → 𝑋, meaning that the function 𝜑 is 

both one-to-one (injective) and onto (surjective). It follows that for every 𝑥 ∈ 𝑋, there is a 

unique element 𝑥′ ∈ 𝑋 such that 𝜑(𝑥′) = 𝑥. The inverse permutation is a map 𝜑−𝟏: 𝑋 → 𝑋 

with the rule 𝜑−𝟏(𝑥) = 𝑥′ if and only if 𝜑(𝑥′) = 𝑥, thus, 𝜑−𝟏 is also a permutation of 𝑋. 

The derived permutation enables the decryption technique that is analogous to the Permutation 

Cipher, which is a lookup table. Hence, it is not computationally intense. The approach allows 

the algorithm to execute fast due to its simplicity, thereby making it possible to encrypt large 

data sets.  

Figure 4.5 shows the graphical illustration of the process underpinning the single-key 

encryption algorithm. During the compilation time of a computer program, the automatic 

variables are created, converting high-level language into machine language. The algorithm 

does not store the temporary variables in computer memory, but only make the variables 

available during execution. 
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Figure 4.5: Symmetric key encryption using the temporary variables 

4.4.1 Description of variables 

(1) N; a counter variable which records the record number being processed in the dataset. Its 

initial value is set to 1 and is incremented by one each time a new record is processed.  

(2) Encryption variables; are the names of variables comprising personally identifiable 

information.  

(3) BY-variables; are the names of the encryption variables by which the dataset is sorted or 

indexed.  

(4) BY-values; are the values of the BY-variables. 

(5) BY-groups; are distinct groups of records with the same BY-values. A single BY-group 

divides the records of a BY-variable by its BY-values.  

(6) FIRST.BY-variable; is a Boolean mapping on the BY-group variable, which has a value 

true if processing is done on the first record of the BY-group and value false otherwise. 

(7) LAST. BY-variable; is a Boolean mapping on the BY-group variable, which has a value 

true if processing is done on the last record of the BY-group and value false otherwise 

4.4.2 Procedure – part one 

(8) Input the original dataset with multiple records per subject. 

(9) Sort the dataset by the encryption variables to enable the creation of BY-groups. 

(10) FIRST.BY-variable and N are automatically set to true at the start of dataset processing. 

(11) If the BY-value of the next record equals the BY-value of the current record, set 

LAST.BY variable to false and true otherwise. 

(12) Concatenate a chosen prefix for the encryption variable with N to obtain the encrypted 

variable, 
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(13) Retain the encrypted variable and initialize all other dataset variables. 

(14) N automatically increments by one. 

(15) If the BY-value of the current record equals the BY-value of the previous record, set 

FIRST.BY variable to false and true otherwise. 

(16) Return to step (4). 

(17) Stop after processing the last record of the dataset to complete the encryption of the 

first variable. 

(18) Repeat the algorithm from step 1 through step 10 until all the encryption variables have 

been encrypted.  

(19) Drop the encryption variables from the data set to remain with the encrypted dataset.  

4.4.3 Procedure – part two 

(1) Input the dataset from part one. 

(2) Sort the dataset by the encrypted variables to enables the creation of BY-groups. 

(3) FIRST.BY-variable and N are automatically set to true at the start of dataset processing. 

(4) If the BY-value of the next record equals the BY-value of the current record, set LAST.BY 

variable to false and true otherwise. 

(5) If FIRST.BY-variable is true, initialize all the variables comprising summary statistics to 

zero, otherwise increment the variables comprising the summary statistics. 

(6) If LAST.BY-variable is true, output the current record.  

(7) N automatically increments by one. 

(8) If the BY-value of the current record equals the BY-value of the previous record, set 

FIRST.BY variable to false and true otherwise. 

(9) Return to step (4). 

(10) Stop after processing the last record of the dataset. 

4.5 Implementation of the algorithm a using SAS® programming language 

This section provides an overview of the components of the SAS® programming language, 

followed by the encryption of the illustration of the hypothetical data to illustrate the workings 

of the proposed symmetric-key encryption algorithm. The section concludes with a 

presentation of the research results after applying the proposed symmetric-key encryption 

algorithm to encrypt the cross-border financial flows data set.  

Table A.4 (see Appendix A) shows the hypothetical data set comprising cross-border financial 

transactions, for illustrating the workings of the proposed symmetric-key encryption. The 
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resident name and the non-resident name are the variables consisting of private and confidential 

information. Each financial transaction represents a record of cash received/paid by a country's 

resident individual/firm from/to a non-resident individual/firm residing in another country. The 

goal is to replace personally identifiable information (resident name and non-resident name) 

with labels before analyzing the data set. 

4.5.1 Overview of the SAS® program 

The SAS® programming language builds a data set one observation at a time using the Program 

Data Vector (PDV), which is a logical area in computer memory. SAS® reads the record into 

the PDV and then write it to a target data set during the program execution phase. The PDV 

contains both permanent and temporary variables.  

The SAS® program structure encompasses the DATA step processing, along with BY-group 

processing. The BY statement used along with the SET statement in a DATA step instructs 

SAS® to create the automatic variables FIRST.BY-variable and LAST.BY-variable. Each 

completed iteration of the DATA step increments the automatic variable _N_ by one (SAS 

Institute Inc., 2010).  

Figure 4.6 shows an overview of the DATA step processing in SAS®, starting with the 

compilation phase, which converts high-level language into machine language (SAS Institute 

Inc., 2001).  

The execution phase in Figure 4.6 shows the state of the PDV variables and the automatic 

variables as SAS® processes observations iteratively during the execution of the program. The 

program carries out the algebraic operations of the proposed symmetric-key encryption 

algorithm during the program execution phase. 
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Figure 4.6: DATA step processing from the compile phase to execution phase. 

4.5.2 Implementation using SAS® software – hypothetical data set 

The SAS® program in Appendix B1 uses the DATA step processing, along with the BY-group 

processing, to obfuscate two variables comprising personally identifiable information, i.e., 

“resident name” and “non-resident name,” in the hypothetical data set shown in Table A.4 

(Appendix A). The program was generated using SAS® Enterprise Guide 7.1. Copyright © 

2014, SAS Institute Inc., Cary, NC, USA.  
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The program uses the PDV variables and the RETAIN statement, which is a compile-time-only 

statement to retain the values of the encrypted variables in the PDV across iterations of the 

DATA step. Hence, the RETAIN statement avoids the reinitialization of the PDV variables. 

The program executes basic algebraic operations consisting of two parts, for each of the 

variables comprising personally identifiable information to generate the encryption key. The 

execution of both parts of the program completes the first part of the proposed symmetric-key 

encryption algorithm. The two parts comprising the algebraic operations are as follows: 

1. Sort the observations in ascending order by the variable comprising personally 

identifiable information. Refer to Figure 4.7 for an illustration of the first part of the 

SAS® program. 

2. Identify the first and the last occurrence of the variable in the data set using the PDV 

variables and create a new corresponding variable, which becomes a member of the 

non-random permutation set. 

 

Figure 4.7: Illustration of part one of the encryption program. 

The second part of the program uses the PDV variables to compute the aggregated number of 

transactions and their aggregated financial value. The two aggregates are the weights of the 

directed and weighted bipartite graph.  
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Depictions from Figure 4.8 to Figure 4.14 illustrate the workings of the second part of the 

program. The figures show the state of the PDV variables during the next iterations of the 

DATA step. The computer code in Appendix B.2 was used to generate the encryption key. The 

resulting encryption key is shown in Table A.5 (see Appendix A) and should be safely stored. 

A DROP Statement within the SAS® code was used to drop all the variables comprising 

personally identifiable information from the encryption key to remain with the encrypted 

variables.  

 

Figure 4.8: Illustration of the second part one of the encryption program. 
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Figure 4.9: State of the PDV variables during program execution of the first observation. 

 

 

Figure 4.10: State of the PDV variables during program execution of the second observation. 
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Figure 4.11: State of the PDV variables during program execution of the third observation. 

  

 

Figure 4.12: State of the PDV variables during program execution of the fourth observation. 
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Figure 4.13: Encryption key depicting the permutation derived from executing the algorithm. 

 

Figure 4.14: The encrypted hypothetical data set comprising cross-border financial flows. 

4.5.3 Encryption of the cross-border financial flows data set  

Table A.2 (Appendix A) shows the encrypted sample of the remittances data set using the 

proposed symmetric-key encryption algorithm. To interpret the data set, consider the first 

observation in the data set, i.e., r10. The encryption algorithm allocated the label r10 to a 

resident whose name is private and confidential information. The resident labeled r10 entered 
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into a single financial transaction with a marked non-resident nr639259, whereby r10 received 

an amount of USD 3,942 from nr639259 in a single business transaction.  

The lookup-table comprising both the resident name and the resident label enables decryption, 

while the encryption algorithm along with the data set, enables encryption. The algorithm 

dropped the resident name, and the non-resident name to arrive at the encrypted data set.  

Most importantly, encryption occurs at a granular level to enable the summarization of the data 

set. Hence, the algorithm avails all the data for analysis while preserving the privacy and 

confidentiality of information. For example, consider observation number 6 in Table A.2 

(Appendix A), i.e., r100129. The sample data set shows that r100129 received a total number 

of 13 payments from two non-residents. 

4.6 Advantages and disadvantages of the symmetric-key encryption algorithm. 

4.6.1 Advantages 

The advantages of the proposed symmetric-key algorithm are as follows: 

(1) The algorithm executes fast due to its simplicity, thereby making it possible to encrypt large 

data sets.  

(2) The decryption operation uses a similar technique to the Permutation Cipher, which is a 

lookup table. Hence, it is not computationally intense. 

(3) Massive data sets with many encryption variables complicate the symmetric-key 

derivation, thereby making the algorithm safer. 

(4) The algorithm does not provide statistical summaries of demographic nature, reducing the 

chances of making it susceptible to linkage attacks. A linkage attack occurs when 

adversaries collect supplemental information about an individual from multiple data 

sources and then combine that data to form a whole picture about their target, which is often 

an individual's personally identifiable information 

4.6.2 Disadvantages 

(1) The algorithm's safety depends on the security of the channel used to exchange the 

decryption key. However, it is technically impossible to stop a person who is duly 

authorized to access confidential information from improperly disclosing that information 

to someone else. 

(2) The algorithm is not suitable for encrypting and decrypting a live database due to the 

symmetric-key storage requirement. 
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(3) The effectiveness of the algorithm is limited to multi-dimensional data sets only due to their 

desired group structure.  

However, no single tool can be enough to eliminate information vulnerabilities. For example, 

it is technically impossible to stop a person who is duly authorized to access confidential 

information from improperly disclosing that information to someone else. 

4.7 Description of the real data set 

4.7.1 Overview of remittances data set 

A remittance is a transfer of money by a foreign worker to an individual in their home country, 

including current transfers in cash or in-kind between resident and non-resident individuals. 

The area of regulatory concern in the remittances industry is the detection and prevention of 

money laundering activity.  

According to the World Bank, remittance flows to developing country regions were estimated 

at US$440 billion in 2015 (World Bank, 2017). Migrant worker remittances compete with 

international aid as one of the most massive inflows in developing countries' economies.  

Table 1 shows the frequency table of remittances outflows for 2015, which forms part of the 

cross-border financial flows data set collected by the SARB for BoP reporting and regulatory 

purposes. Most of the transactions averaged under 100 US$ since migrants tend to send smaller 

amounts more frequently. Remittances play an increasingly large role in the economies of 

many countries surveyed by the World Bank Group (World Bank, 2017).For example, 

remittances contributed as much as 2.7% of India's Gross Domestic Product (GDP) in 2018 

(Rebecca, 2019)  

Table A.1 (see Appendix A) shows the alphabetic list of the few variables used in this 

illustration, created using the SAS® CONTENTS Procedure. Table A.2 (see Appendix A) 

shows the sample data set. The extracted data set comprised 3,823,732 financial transaction 

records, categorized for BoP reporting purpose as "migrant worker remittances" and "foreign 

national contract worker remittances" in 2015. The estimated number of unique parties to the 

recorded transactions were 427,322 residents and 231,173 non-residents. 

Payments from residents to non-residents comprised 3,495,114 financial transactions. A total 

of 328,351 residents made these payments. Payments from non-residents to residents 
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comprised 8.6% of the total transactions count, and 108,564 non-residents concluded those 

payments. Therefore, a total of 98,971 residents received at least one payment from a non-

resident without making a single payment to a non-resident. Similarly, 122,909 non-residents 

received at least one payment from a resident without making any cross-border payment. 

Table 1: Frequency distribution table of remittances outflows 

$_Amount Frequency Percent 
Cumulative Cumulative 

Frequency Percent 

0 - 100    2,370,563  67.83       2,370,563  67.83 

100 - 200       642,438  18.38       3,013,001  86.21 

200 - 400       339,531  9.71       3,352,532  95.92 

400 - 600         60,436  1.73       3,412,968  97.65 

600 - 1,000         28,922  0.83       3,441,890  98.48 

1,000 - 2,000         26,701  0.76       3,468,591  99.24 

2,000 - 3,000           9,554  0.27       3,478,145  99.51 

Over 3,000         16,969  0.49       3,495,114  100 

 

The right-skewed distribution of the remittance outflows data set is presented using a bar chart 

instead of a histogram due to the unequal bin sizes in Figure 2.6 

 

Figure 4.15: Bar graph of the distribution of remittance outflows 

4.7.2 Data set validation 

In the absence of unique identifiers for both resident and non-resident parties on the extracted 

data set, validating the number of distinct residents and non-residents is a complicated task. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

79 

 

For example, using a name for identifying a resident or non-resident may not result in a unique 

individual partly due to inconsistent spelling of names in the data set. For example, a resident 

named "Ndlovu" could be misspelled as "Ndhlovu" on the data set, resulting in more than one 

name for the same resident on the network. However, the international transaction reporting 

system uses validation rules for authenticating the uniqueness of residents/non-residents on the 

database using the identity/passport number and residential address or a combination thereof. 

4.8 Summary 

Chapter 4 provided an overview of cryptographic and non-cryptographic techniques used to 

preserve the privacy of personally identifiable information in a statistical database. Most 

importantly, this chapter introduced the proposed symmetric-key encryption algorithm to 

protect the privacy of personally identifiable data.  

The algorithm was presented in two parts. The first part performed algebraic operations on the 

multi-dimensional data set for encryption purposes, while the second part computed the edge 

weights to facilitate the construction of the cross-border financial flows network from records 

of international transactions. 

Chapter 4 implemented the proposed privacy-preserving algorithm on real data set comprising 

remittances flows using SAS® software and outlines its advantages and disadvantages. The 

chapter concluded with an overview of the data set used to illustrate the research's central 

theories. 
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Chapter 5: Network structure of 

cross-border financial flows  
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5.1 Introduction 

This chapter provides a mathematical definition of the cross-border financial flows network, 

comprising the resident and non-resident vertex sets. A first step in analyzing the network 

structure is to create a visualization of it. However, network visualizations are mostly useful 

when the number of nodes and edges are not quite large. Hence, the two visualizations 

presented use a sample of real data set extracted from the database of international financial 

transactions of the SARB and the hypothetical data set, respectively. 

The research uses SAS® Visual Analytics software to present the network visualizations. 

Eyeballing the visualizations reveals network features suggesting suspicious transaction 

patterns between residents and non-residents. For example, it is uncommon for remittance 

transactions to involve multiple residents and non-residents transactions, which may indicate 

the existence of some illicit financial schemes.   

5.2 Network structure of cross-border financial flows  

FATF’s recommendation number five requires financial institutions to identify the beneficial 

owner and take reasonable measures to verify the beneficial owner's identity to its satisfaction. 

Each cross-border financial transaction comprises two distinct nodes, resident and non-

resident. The edge links between the two nodes are the existing financial transactions between 

residents and non-residents.  

A directed and weighted bipartite network serves as a convenient model to depict cross-border 

financial flows. The presence of directed and weighted arcs differentiates the proposed model 

from other bipartite graphs used in several studies, including the structure used for describing 

the world trade web (Ermann & Shepelyansky, 2013). The undirected and weighted bipartite 

graph model was proposed as a model to measure influence diffusion in online social networks 

(Zhiguo, Jingqin, & Liping, 2015). 

Formally, the cross-border financial flows network is defined as the directed and weighted 

bipartite graph 𝐺 = (𝑉, 𝐴, 𝑤), with 𝑉(𝐺) = 𝑉𝑅 ∪ 𝑉𝑁𝑅 and 𝐴(𝐺) ⊆ (𝑉𝑅 × 𝑉𝑁𝑅) ∪ (𝑉𝑁𝑅 × 𝑉𝑅). 

The disjoint vertex sets  𝑉𝑅 = {𝑟1, … , 𝑟𝑘} and 𝑉𝑁𝑅 = {𝑛𝑟1, … , 𝑛𝑟𝑙} represent the resident vertex 

set and the non-resident vertex set with | 𝑉𝑅| = 𝑘 and |𝑉𝑁𝑅| = 𝑙. The directed arcs set 𝐴(𝐺) 
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represent the direction of the financial flows, where outflows are from residents to non-

residents and inflows are from non-residents to residents.  

The weight function reduces the parallel multi-edges between pairs of vertices into a single 

edge by computing the total number of transactions and the total value of transactions. The 

weight function is defined by a pair of matrices used to measure the intensity of the flows 

between vertex pairs. 

Figure 5.1 shows a schematic depiction of the network structure of cross-border financial flows 

with single edge weights indicating the total financial value of transactions between node pairs. 

 

Figure 5.1: Schematic depiction of the cross-border financial flows network 

5.3 Adjacency matrix representation 

Denote by ℝ𝑘×𝑙 the set of 𝑘 × 𝑙 matrices with non-negative real entries. We arrange the vertex 

set 𝑉𝑅 ∪ 𝑉𝑁𝑅 of the cross-border financial flows network in the order 𝑟1, … , 𝑟𝑘, 𝑛𝑟1, … , 𝑛𝑟𝑙. The 

matrices comprising weights are 𝑨 and 𝑩, which are elements of ℝ𝑘×𝑙 with entries 𝑨 = {𝑎𝑖𝑗} 

and 𝑩 = {𝑏𝑖𝑗}, respectively, such that  

 𝐴𝑖𝑗 = { 
𝑎𝑖𝑗 if resident 𝑟𝑖 transferred funds to non − resident 𝑛𝑟𝑗        

0  otherwise                                                                                          
}  (5.1) 

where 

 𝑎𝑖𝑗 = ∑ (𝑟𝑖 → 𝑛𝑟𝑗)𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡    (5.2) 

and  
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 𝐵𝑖𝑗 = { 
𝑏𝑖𝑗 if 𝑎𝑖𝑗 > 0 

0  otherwise 
}  (5.3) 

where 

 𝑏𝑖𝑗 = ∑ (𝑟𝑖 → 𝑛𝑟𝑗)𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑚𝑜𝑢𝑛𝑡   (5.4) 

 

Similarly, entries of matrices 𝑨′ ∈ ℝ𝑙×𝑘and 𝑩′ ∈ ℝ𝑙×𝑘 are such that 

 

 𝐴′𝑖𝑗 = { 
𝑎′𝑖𝑗  if  non − resident 𝑛𝑟𝑗  transferred funds to resident 𝑟𝑖  

0  otherwise                                                                                        
}  (5.5) 

 

where 𝑎′𝑖𝑗 = ∑ (𝑛𝑟𝑗 → 𝑟𝑖)𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡   (5.6) 

   

 

 
𝐵′𝑖𝑗 = { 

 𝑏′𝑖𝑗 if  𝑎
′
𝑖𝑗 > 0   

0  otherwise      
} (5.7) 

where 

    𝑏′𝑖𝑗 = ∑ (𝑛𝑟𝑗 → 𝑟𝑖)𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑚𝑜𝑢𝑛𝑡   (5.8) 

 

The adjacency matrix 𝑭 of the cross-border financial flows network is of the form  

 𝑭 = [
0𝑘,𝑘 𝐴

𝐴′ 0𝑙,𝑙
] (5.9) 

where 0𝑘,𝑘 and 0𝑙,𝑙 represent the 𝑘 × 𝑘 and 𝑙 × 𝑙 zero matrices. The matrices 𝐴 and 𝐴′ in 

equation 5.9 are replaced with 𝐵 and 𝐵′ when using the total financial value of transactions as 

the network weights.  

The adjacency matrix is a simple and convenient method of representing the cross-border 

financial flows network on a computer. However, it uses computer memory inefficiently due 

to its large number of zero entries (Newman M. E., 2010). Network representation methods 

such as the adjacency lists, and edge lists do not suffer from the same weaknesses as the 

adjacency matrix.  
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Table A.2 (see Appendix A) shows a representation of the cross-border financial flows network 

on a computer using the summary list of transactions. To interpret the network data in Table 

A.2, consider observation number 2009. A resident labeled r10075708 entered into a single 

financial transaction with a non-resident labeled nr15905119, whereby r10075708 paid non-

resident nr15905119 USD 302.03. Observation number 2010 indicates that the same resident 

entered into 26 financial transactions with a non-resident labeled nr15908732, whereby 

r10075708 paid non-resident nr15908732 the sum of USD 4 982.70. The table shows the 

temporary variables generated by the encryption algorithm for illustration only. Note that 

‘First. Resident Indicator’ equals zero instead of one in the latter scenario due to the multiple 

transactions. The outward payments by residents represent inward receipts by non-residents.  

5.4 Cross-border financial flows network visualization 

The visualization of the cross-border financial flows network depicts the directed and weighted 

bipartite graph, comprising two disjoint sets of nodes that are differentiated by their colours, 

with the condition that no two connected nodes are of the same colour. Figure 5.2 shows the 

visualization based on a sample of real data drawn from the ITRS of the SARB. SAS ® Visual 

Analytics software version 7.4 was used to create the visualization.   
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Figure 5.2: Cross-border financial flows network visualization 

The visualization of Figure 5.3a shows the highly connected nodes highlighted in Figure 5.2 

while Figure 5.3b shows the visualization of the network based on the example data set. The 

visualization was created using SAS® Visual Analytics software. 7.4. Copyright 2014-2017, 

SAS Institute Inc., Cary, NC, USA. The “ungrouped” node-link pairs, which require the 

network data to be structured to fit the basic data roles being “source” and “target” was used to 

generate the visualization. 
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Figure 5.3: (a) The highly connected nodes of Figure 5.2, (b) Network visualization based on the 

example data set 

The outward payment flows had residents as the source nodes and non-residents as the target 

nodes while the inward payment flows had non-residents as the source nodes and residents as 

the target nodes. An additional binary variable was created to differentiate between the resident 

nodes and the non-resident nodes, which facilitates the depiction of the bipartite structure of 

the cross-border financial flows network. 

The create the visualization depicted Figure 5.4b in the SAS® Visual Analytics Explorer 

window, load the transformed data set into the SAS® LASR Server, and use the following 

network roles (SAS Institute Inc, 2017; Sekgoka & Adetunji, 2019): 

• Network type = Ungrouped  

• Source = Source Node (determines the direction of payment flows) 

• Target = Target Node 

• Node size set to “empty.” 

• Node color = Resident indicator (binary 1 = yes, 0 = no) 

• Link width = Amount (thick links for large payment flows) 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

87 

 

• Link color and data tips set to “empty.” 

5.5 Significance of the cross-border financial flows network 

The research proposed a network representation of cross-border financial transactions, with a 

formal mathematical definition. The network model used the directed and weighted bipartite 

graph. Upon gathering network data on the network structure, what insights can be drawn from 

the data? What lessons can be learned about the function of the international financial 

transactions in an economy? What are the statistical properties of the network related to the 

issues of concern for this research?  

The next chapter develops a centrality measure, an important and useful class of network 

measures to answer the questions posed in this research. Furthermore, the research 

characterizes the network using degree distributions to provide answers to the research 

question. 

5.6 Summary 

Chapter 5 presented the directed and weighted bipartite graph as a model for cross-border 

financial transactions between residents and non-residents of a country. The adjacency matrix 

representation of the network proved cumbersome due to a large number of zero entries. Hence, 

the research proposed using a list of transactions to represent the number on a computer. 

Also, the chapter provided the visualization of the network using SAS® Visual Analytics 

software. The visualization simplifies identifying the network's highly connected nodes and 

motivates using the network's statistical properties to understand the network structure better. 
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Chapter 6: Cross-border 

financial flows network 

measures  
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6.1 Introduction 

The chapter develops the centrality measure for the cross-border financial flows network using 

a technique based on matrix multiplication to answer the question, "Which resident/non-

resident nodes are the most important in the cross-border financial flows network?" The answer 

to this question provides data mining insights about the cross-border financial flows network 

structure. In particular, the proposed measure identifies the dense subgraphs of the cross-border 

financial flows network. 

The chapter begins with some network measures, including node centrality, the random 

network model, and the configuration model. The configuration model serves as the benchmark 

in calculating network modularity, which measures the extent to which nodes connect to their 

types in a network. 

Supervisory authorities can use the proposed centrality measures to identify the residents/non-

residents nodes responsible for transferring large volumes of financial flows and large 

transaction volumes. The measure can provide some leads in identifying unusual patterns of 

interaction between nodes, such as transactions with substantial volumes but low financial 

value, and most importantly, the identification of nodes that transfer funds to common nodes. 

According to FATF's anti-money laundering recommendation, the identified nodes trigger 

investigations of the apparent economic or visible lawful purpose of the transactions, which 

may necessitate examinations of their background and purpose. 

The second part of this chapter uses a hierarchical clustering technique to derive the resident 

node set's approximate degree distribution. Using cluster analysis aims to group the network 

residents by their degrees so that residents within groups are similar to one another and 

dissimilar between the groups. The clustering procedure reduces the degree dimensions of the 

resident node-set from two to one. The resulting clusters characterize the cross-border financial 

flows network, making it easier for the regulatory organizations to plan their inspections as part 

of the risk-based supervision of regulated entities. 
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6.2 Network density and centrality measures 

After network data gathering, visualization is the first step in analyzing the network structure 

to provide more information about the system. However, direct visualization with a human eye 

is only useful for small to medium-sized networks. The case of vast networks with millions of 

edges and thousands of vertices requires network measures to obtain helpful information about 

the network structure and its properties.  

A useful and essential class of network measures is centrality, which measures nodes' 

importance in a network. Centrality addresses the question, "Which are the most important or 

central nodes in a network?" Several centrality measures were developed based on different 

concepts and definitions of what it means to be important in a network.  

To exemplify the idea of node centrality,  (Freeman L. C., 1978) used a network consisting of 

five nodes and four edges, see Figure 6.1. The size of the nodes corresponds to the node's 

degree. Node A can reach all the others more quickly; it controls the flow between the others; 

and has more ties, giving it three advantages over the other nodes. Based on these three features, 

he formalized three different node centrality measures: degree, closeness, and betweenness.  

 

Figure 6.1: A star network with 5 nodes and 4 edges, adapted from (Freeman L. C., 1978).  

This section discusses network density, the widely used centrality measures, followed by the 

proposed centrality measure for the cross-border financial flows network. 
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6.2.1 Network density 

The edge density 𝜌 of a network is the fraction of the number of edges |𝐸| with respect to the 

maximum possible edges. For simple directed network ((i.e., one with no multi-edges or self-

edges), the edge density is  

 
𝜌 =

|𝐸|

|𝑉|(|𝑉 − 1|)
 

     (6.1) 

where 𝐸  is the number of edges and 𝑉 is the number of nodes in the network. The density lies 

strictly in the range 0 ≤ 𝜌 ≤ 1. A network or subgraph with a density of one is called a clique. 

The opposite of a dense network is a sparse network, one with only a few edges. 

The density of a bipartite network as computed by the equation above can never reach one. 

Therefore, the alternative definition for the density of a bipartite network is: 

 
𝜌 =

|𝐸|

(|𝑈||𝑉|)
 

     (6.2) 

where 𝐸  is the number of edges and 𝑈 and 𝑉 are the number of nodes in the bipartite network. 

6.2.2 Degree centrality 

Perhaps the simplest of these measures is the degree centrality of a node, which is the number 

of edges connected to the node. Although degree centrality is a simple measure, it can 

illuminate the network structure and capture its features. For instance, it seems reasonable to 

suppose that individuals with connections to many others in social networks might have more 

influence, more access to information, or more prestige than those with fewer connections. 

A non-social network example is the use of citation counts in the evaluation of scientific papers. 

The number of citations a paper receives from other papers, which is its in-degree in the citation 

network, gives a crude measure of whether the paper has been influential or not and is widely 

used to measure the impact of scientific research (Newman, 2010). 

Degree centrality applies to the directed bipartite networks such as the cross-border financial 

flows network without modifications. The cross-border financial flows network comprises two 

sets of nodes; each node has two different degrees, resulting in four different degrees. The 

nodes with unusually high degrees are called hubs. 
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6.2.3 Eigenvector centrality 

A natural extension of degree centrality is eigenvector centrality (also called prestige score). 

This measure assigns relative scores to all nodes in the network based on the concept that 

connections to high-scoring nodes contribute more to the score of the node in question than 

equal connections to low-scoring nodes. A high eigenvector score means that a node is 

connected to many nodes who themselves have high scores. 

For a given graph vertices and adjacency matrix 𝐺 = (𝑉, 𝐸) with |𝑉| vertices and adjacency 

matrix 𝐴 = (𝑎𝑣, 𝑡), the relative centrality, 𝑥, score of vertex 𝑣 can be defined as: 

 
𝑥𝑣 =

1

𝜆
∑ 𝑥𝑡

𝑡𝜖𝑀(𝑣)

=
1

𝜆
∑ 𝑎𝑣, 𝑡 𝑥𝑡

𝑡𝜖𝑀(𝑣)

 
     (6.3) 

 

where 𝑀(𝑣) is a set of the neighbors of 𝑣 and 𝜆 is a constant. In theory, this measure can be 

calculated for either undirected or directed networks. However, it works best for undirected 

networks. It requires some modifications before applying it to directed networks. A variation 

of the eigenvector centrality called Katz centrality addresses the eigen vector centrality 

problems (Katz, 1953; Newman, 2010). 

6.2.4 Closeness centrality 

Closeness centrality is based on the measure of distance in a network. It measures the average 

distance from a node to other nodes in a network. The closeness centrality of node 𝑢𝑖 is given 

by  

 𝑐𝑖 = (|𝑈| − 1)  ∑𝑑(𝑢𝑖 , 𝑢𝑗)

𝑗≠𝑖

⁄  
     (6.4) 

Hence, the closeness centrality of a node is the inverse of its average distance to all other nodes 

in the network. The minimum distance between two nodes of a bipartite network is two if the 

nodes are for the same type, otherwise the minimum distance equals one. 

6.2.5 Betweenness centrality 

A complex measure of centrality is betweenness centrality. It measures the extent to which a 

node lies on paths between other vertices. This measure is attributed to Freeman (Freeman, 
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1977). However, Freeman pointed out that this measure was independently proposed some 

years earlier by Anthonise in an unpublished report. The betweenness centrality of node 𝑢𝑖 is 

given by  

 
𝑏𝑖 =

1

𝜆
∑

𝑔𝑖
𝑗𝑘

𝑔
𝑗𝑘𝑗,𝑘

 
     (6.5) 

where 𝑔𝑗𝑘 is the number of shortest paths between nodes 𝑢𝑗  and 𝑢𝑘 and 𝑔𝑖𝑗𝑘 is the number of shortest 

paths between nodes 𝑢𝑗  and 𝑢𝑘 that contain 𝑢𝑖. If 𝑔𝑗𝑘 = 𝑔
𝑖
𝑗𝑘 = 0 then 

𝑔𝑖𝑗𝑘

𝑔𝑗𝑘
= 0 by definition. 

6.3 Random networks 

The random network model is one of the classical network models which provide a basis for 

describing networks using probability distributions. Paul Erdős and Alfred Rényi developed 

the popular random network model, also known as the ER model (Erdős & Rényi, 1959). Edgar 

Gilbert also introduced this model independently and contemporaneously (Edgar, 1959).  

The random network model is considered in several fields, including sociology and 

mathematical biology, due to its simplicity. The significance of statistical properties observed 

in real-world systems can be evaluated based on the discrepancy between the random and real-

world networks. Hence, the random networks used for comparison must have the same order 

and size, and the same degree distribution or sequence as the observed network. This research 

provides an overview of two popular techniques to generate random networks that can be useful 

for comparison purposes, i.e., the configuration model and the Curveball algorithm. 

6.3.1 The configuration model 

The most widely studied random network model is the configuration model, with applications 

in both one-mode and two-mode networks. The configuration model is a random network 

model with a given degree sequence, rather than degree distribution. Hence, it allows the user 

to incorporate arbitrary degree distributions (Newman, 2010).  

The configuration model begins with a network of a given order and size zero. Each node has 

a specified number of half-edges or stubs corresponding to its desired degree. Hence, fixing 

the number of nodes and the number of edges in the random network. Next, the model chooses 
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pairs of stubs at random and connects them to form an edge. The result is a network in which 

every vertex has exactly the desired degree. Figure 6.2 depicts the configuration model. 

 

Figure 6.2: The configuration model 

The uniform distribution over matchings in the configuration model has the necessary 

consequence that any sub is equally likely to connect to any other stub. This crucial property 

makes the configuration model solvable for many of its characteristics. 

In the directed configuration model (DCM), each node is given as a number of half-edges called 

tails and heads. Researchers have used the DCM to model complex real-world networks such 

as neural networks, finance, and social networks (Amini & Minca, 2013; Li H. , 2018). 

6.3.2 The Curveball algorithm 

The Curveball algorithm randomizes the adjacency matrix while preserving its row and column 

totals of a network (Strona, Nappo, Boccacci, Fattorini, & San-Miguel-Ayanz, 2014). 

Preserving the row and column totals of the adjacency matrix is equivalent to fixing the degree 

sequence. The Curveball algorithm is not computationally intensive and produces uniformly 

distributed matrices with fixed row and column totals (Casterns, 2015). 
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To randomize the adjacency matrix 𝐴, the algorithm randomly extracts two rows of 𝐴, say 𝐴𝑖 

and 𝐴𝑗, to create two lists. Next, the algorithm compares the two lists to identify the elements 

present in 𝐴𝑖 but not in 𝐴𝑗, and the elements present in 𝐴𝑗 but not in 𝐴𝑖. The procedure then 

selects the identified elements at random from 𝐴𝑖 and trades them with the identified elements 

in 𝐴𝑗. In general, for any pair of lists, a certain number of elements exclusive of a list are traded 

with an equal number of elements exclusive of the other list. The number of trades for each 

pair of lists will vary from 0 to 𝑛, where 𝑛 is the size of the smaller of the two sets of exclusive 

elements. 

Figure 6.3 illustrates the functioning of the Curveball algorithm. It starts with the directed 

bipartite network diagram and its adjacency matrix, which comprises the outflows only, i.e., 

(directed edges from Resident nodes (𝑅) nodes to Non-resident nodes (𝑁𝑅)).  

(a) Randomly choose two resident nodes, say 𝑅1 and 𝑅2.  

(b) The two lists are compared to identify the set of non-residents present in 𝑅1 but not in 

𝑅2 and the set of non-residents present in 𝑅2 but not in 𝑅1. 

(c) Randomly choose one member of 𝑅1, say 𝑁𝑅3 and trade with the only member of 𝑅2 

resulting with a newly formed list. 
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Figure 6.3: Illustration of a ‘trade’ in the Curveball algorithm. 

6.4 Cross-border flows network centrality 

This research proposes a centrality measure based on the principle of matrix multiplication, 

commonly used to obtain the dot product of vectors. Formally, consider the weights of the 

cross-border financial flows network, i.e., 𝑨 and 𝑩.  

Let 𝑪 = 𝑨𝑩𝑇 be the asymmetric matrix with entries 𝑪𝒊𝒋 that are the sum product of the rows of 

𝑨 and columns of 𝑩𝑻. Define the centrality measure for resident 𝑖 as follows: 

 

𝑵𝒊 =
∑ 𝑪𝒊𝒋𝒋

‖𝑪‖
 

 

(6.6) 

where ‖𝑪‖ is the sum of all the entries of the matrix 𝑪 and   
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 ∑𝑁𝑖 = 1

𝑖

 (6.7) 

The diagonal entries 𝐶𝑖𝒊 are the sum product of transaction volumes and financial values for 

resident 𝑖. Large diagonal entries indicate large transfers of funds across country borders by 

residents. The onus is on the financial institutions to verify the financial flows in the event of 

extreme values indicated by the centrality measure. 

If 𝐶𝑖𝑗 > 0 for 𝑖 ≠ 𝑗 it means that resident 𝑖 and resident 𝑗 transferred funds to the same non-

resident. If 𝐶𝑖𝑗 ≠ 0 then 𝐶𝑗𝑖 ≠ 0 and 𝐶𝑖𝑗 ≠ 𝐶𝑗𝑖. 𝐶𝑖𝑗 is equal to the product of the number of 

transactions for resident 𝑖 and the financial value of transactions for resident 𝑗 while 𝐶𝑗𝑖 is equal 

to the product of the number of transactions for resident 𝑗 and the financial value of transactions 

for resident 𝑖. Hence, the centrality measure for resident 𝑖 and resident 𝑗 increase when the two 

residents transfer funds to the same non-resident, but the measure does not increase by the same 

amount.  

It should be noted that it is not the absolute value of the centrality measure that matters but the 

high or low measure value. The centrality measure based on matrices 𝑨 and 𝑩 provides an 

indication of the importance of each of the resident nodes in the cross-border financial flows 

network. It makes it easier to visually analyze the cross-border financial flows network.  

The centrality measure for non-residents is similarly defined, where 𝑪 = 𝑨′𝑩′
𝑇
. It measures 

the importance of non-residents as the source of funds in the network.  

6.4.1 Illustration of the adjacency matrix representation  

The entries of the asymmetric adjacency matrix of the cross-border financial flows derived 

from the example data set are represented by matrices 𝑨 and 𝑩𝑇 below. To interpret the two 

matrices together, consider the first row of matrix 𝑨 and the first column of matrix 𝑩𝑇. The 

entry in the second row and first column of 𝑩𝑇 indicates that the total financial value of 1500 

was transferred in two cross-border transactions shown in the first row and second column 

entry of the matrix 𝑨 by resident "𝑅1" to non-resident "𝑁𝑅6".  

A simpler interpretation of the adjacency matrix is provided in Table A.6, where the entries of 

the matrix are the co-ordinate pairs (𝒙, 𝒚), representing the transaction volumes and the 

associated financial values based on the example data set, respectively.  
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 𝑨 =

[
 
 
 
 
 
 
0 2 0 0 0 0 0 1 0 0
0 0 0 0 0 2 0 0 0 3
0 0 2 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
2 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 2]

 
 
 
 
 
 

, 𝑎𝑛𝑑 (6.8) 

 𝑩𝑇 =

[
 
 
 
 
 
 
 
 
 
0 0 0 0 2250 0 0

1500 0 0 0 0 0 0
0 0 550 0 0 0 0
0 0 0 3500 0 0 0
0 0 0 0 2750 0 0
0 6000 0 0 0 0 250
0 0 0 0 0 500 0
500 0 0 0 0 0 0
0 0 0 0 0 0 0
0 7000 0 0 0 0 400]

 
 
 
 
 
 
 
 
 

 (6.9) 

6.4.2 Illustration of network centrality measure  

The entries of the matrix Q represent the normalized values of the product of matrices 𝑨 and 

 𝑩𝑻  

 𝑸 =

[
 
 
 
 
 
 
0.0471 0 0 0 0 0 0
0 0.4438 0 0 0 0 0.0229
0 0 0.0148 0 0 0 0
0 0 0 0.0471 0 0 0
0 0 0 0 0.1345 0 0
0 0 0 0 0 0.0067 0
0 0.2690 0 0 0 0 0.0141]

 
 
 
 
 
 

 (6.10) 

 

Summing over each of the rows of 𝑸 yields the desired centrality measure in equation (6.6) as 

follows:  

 𝑁𝑖

[
 
 
 
 
 
 
𝑅1
𝑅4
𝑅8
𝑅10
𝑅13
𝑅17
𝑅18]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
0.0471
0.4667
0.0148
0.0471
0.1345
0.0067
0.2831]

 
 
 
 
 
 

 (6.11) 

The centrality measure illuminates the cross-border financial flows network by providing a 

measure of node importance instead of relying on the human eye. For example, it is possible 
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to identify nodes with large financial flows by inspecting the diagonal elements of the matrix 

Q. The measure also identified the nodes characterized by large financial flows, many 

connections, and large volumes, namely, 𝑅4,𝑅18 and 𝑅13 by allocating the highest centrality 

scores to such nodes. 

The proposed centrality measure can assist authorities in planning their inspections of regulated 

entities for compliance with the Exchange Control laws in countries that maintain Exchange 

Controls. Authorities can identify residents who deliberately transact large volumes with low 

financial values from several authorized dealers to avoid detection. Upon identifying such 

nodes, regulatory authorities can investigate their apparent economic or visible lawful purpose 

under the FATF recommendations. The network structure facilitates identifying all the linked 

nodes to enable targeted investigations. The off-diagonal elements of the matrix Q increased 

the centrality for nodes that share connections. 

6.5 Network characterization using degree distribution 

Many often cite the vertex degree's frequency distribution as the most fundamental of network 

properties and the defining characteristic of the network structure. The directed bipartite 

networks comprise four vertex degree distributions, two for each vertex set (Newman M. J., 

2010). The cross-border financial flows network comprises two sets of nodes; each node has 

two different degree distributions, resulting in four different degree distributions. The research 

uses the clustering procedure to reduce the cross-border financial flows network's degree 

distributions from four to two, thereby providing a distribution summary of the dual-weighted 

network. 

This section characterizes the cross-border financial flows network using the resident node set's 

degree distribution. The resident node-set mainly acts as the gateway for both inward and 

outward financial flows of a country.  

6.5.1 Description of the classification procedure 

Many often cite the vertex degree's frequency distribution as the most fundamental network 

property and the network structure's defining characteristic. The directed bipartite networks 

comprise four vertex degree distributions, two for each vertex set  (Newman M. E., 2003). 
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Ward's minimum variance procedure reduces the degree dimensions from four to two, thereby 

enabling cluster visualizations and simplifying large data sets analysis. 

The rationale for choosing the Ward clustering method is that the hierarchical tree diagram 

computed with this method has a well-defined look in which clusters jump out at the eye. 

Anderberg provides a detailed mathematical treatment of the Ward clustering method 

(Anderberg, 1973). The early availability of a computer algorithm for the Ward clustering 

algorithm provided the stimulus to its wide use (Veldman, 1967; Romesburg, 2004). 

Table 6.1 depicts the network data matrix, showing the input data's layout for the clustering 

procedure. The symmetric-key encryption algorithm computes the network data matrix entries, 

hence its use for constructing the cross-border financial flows network. The matrix entries 

represent the degrees per resident node as follows: 

Let 𝑥𝑖𝑗
′ = {

1 if 𝑏𝑖𝑗 > 0

0 otherwise
 and 𝑦𝑖𝑗

′ = {
1 if  𝑏′𝑖𝑗 > 0

0 otherwise
 be the two indicator variables that denote the 

presence of cross-border flows from resident 𝑖 to non-resident 𝑗 and from non-resident 𝑗 to 

resident 𝑖, respectively. The degrees are the connection counts in both directions.  

 

Table 2: Network data matrix for the resident vertex set 

Resident 𝑟1 𝑟2 … 𝑟𝑘 

Out-degree 

∑𝑥1𝑗
′

𝑙

𝑗=1

 ∑𝑥2𝑗
′

𝑙

𝑗=1

 

… 

∑𝑥𝑘𝑗
′

𝑙

𝑗=1

 

In-degree 

∑𝑦1𝑗
′

𝑙

𝑗=1

 ∑𝑦2𝑗
′

𝑙

𝑗

 

… 

∑𝑦𝑘𝑗
′

𝑙

𝑗=1

 

 

If there are g residents to be grouped using 𝑛 variables then the clustering procedure follows a 

series of steps that begins with 𝑔 clusters and reduces the number of clusters from 𝑔 to 𝑔 − 1 

in a manner that would minimize the total within group Error Sum of Squares (𝐸𝑆𝑆) associated 

with each cluster formed and then, without modifying the clusters formed, repeats the process 

until the number of clusters is systematically reduced from 𝑔 to 1 (Ward, 1963).  

Alternatively, the problem could be formulated as a maximization problem where the 

proportion of variation explained by a grouping of vertices is maximized. Formally, let 𝑚𝑘 

denote the number of observations in the 𝑘th of ℎ clusters and define the following quantities: 
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𝑥𝑖𝑗𝑘 = the value on the 𝑖th of 𝑛 variables for the 𝑗th of 𝑚𝑘 observations, 

𝑥̅𝑖𝑘 = ∑
𝑥𝑖𝑗𝑘

𝑚𝑘

𝑚𝑘
𝑗=1   is the mean on the 𝑖th variable for observations in the 𝑘th cluster, 

𝐸𝑆𝑆𝑘 = ∑ ∑ (𝑥𝑖𝑗𝑘 − 𝑥̅𝑖𝑘)
2𝑚𝑘

𝑗=1
𝑛
𝑖=1  is the error sum of squares for cluster 𝑘, 

𝐸𝑆𝑆 = ∑ 𝐸𝑘
ℎ
𝑘=1  is the total within group error sum of squares for the collection of clusters, 

𝑇𝑆𝑆 = ∑ ∑ ∑ (𝑥𝑖𝑗𝑘 − 𝑥̅..𝑘)
2

𝑘𝑗𝑖  is the total sum of squares. 

The objective is to maximize  𝑟2, 

 where  

 
𝑟2 =

𝑇𝑆𝑆 − 𝐸𝑆𝑆

𝑇𝑆𝑆
 

(6.12) 

The numbers of clusters to use in the classification must be determined to conclude the 

clustering procedure and interpret the classification results. Unfortunately, there is no prior 

knowledge of the number of clusters to use in a classification. It is also widely acceptable that 

there are no completely satisfactory methods for determining the number of clusters for any 

type of cluster analysis (Hartigan, 1975). 

Milligan and Cooper compared 30 methods of estimating the number of clusters in a 

classification using four hierarchical clustering procedures and recommended that use of some 

automatic decision to eliminate the problems associated with human subjectivity (Milligan & 

Cooper, 1985). We use a combination of a cluster validity index plot called the 𝑝𝑠𝑒𝑢𝑑𝑜 𝑡2 

statistic and a dendrogram to provide a graphical assessment of the cluster solution. The 

𝑝𝑠𝑒𝑢𝑑𝑜 𝑡2 statistic is defined as  

 
𝑃𝑠𝑒𝑢𝑑𝑜 𝑡2 =

𝐵𝐽𝐾

(
𝑊𝐽 +𝑊𝐾

𝑁𝐽 + 𝑁𝐾 − 2
)

  
(6.13) 

where 𝑁𝐽 and 𝑁𝐾 are the number of observations in clusters 𝑗 and 𝑘, 𝑊𝐽 and 𝑊𝐾 are within 

cluster sum of squares of clusters 𝑗 and 𝑘, 𝐵𝐽𝐾 is the between cluster sum of squares during a 

step in the hierarchical procedure to merge cluster 𝐾 and cluster 𝐿. The 𝑝𝑠𝑒𝑢𝑑𝑜 𝑡2 statistic 

quantifies the difference between two clusters that are merged at a given clustering step. 

Therefore, if it has a distinct jump at step 𝑗 of the hierarchical clustering, then the clustering 
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step 𝑗 + 1 is selected as the optimal cluster. It is closely related to Duda and Hart’s index (Duda 

& Hart, 1973).  

After determining the number of clusters, the plot of 𝑝(𝑘) versus cluster 𝑘, is constructed, 

where 𝑝(𝑘) = 𝑛(𝑘)/𝑛 is the number of residents that belong to cluster 𝑘 in the cross-border 

financial flows network with 𝑛 residents. Each cluster is uniquely defined by the clustering 

procedure with the cluster name and attributes such as minimum outdegree, maximum 

outdegree, minimum indegree, maximum indegree, and frequency of residents.  

The plot of 𝑝(𝑘) versus cluster 𝑘 represents the approximate degree distribution of the cross-

border financial flows network with reduced degree dimensions obtained using the clustering 

procedure.  

6.5.2 Characterization results using the remittances data set -  

The research uses a threshold of 15 out-degrees per resident to reduce the remittances data set 

for computational convenience, resulting in 34,002 residents' characterization. 

Figure 6.4 shows a graphical depiction of the 𝑝𝑠𝑒𝑢𝑑𝑜 𝑡2 statistic used to determine the criteria 

for estimating the number of clusters. The plot shows a distinctive jump when the number of 

clusters is 6. Therefore, the 𝑝𝑠𝑒𝑢𝑑𝑜 𝑡2 statistic suggests that clusters may be reasonably well-

separated when the number of clusters is 7.  
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Figure 6.4: The pseudo t2 statistics plot depicting the index at various number of clusters 

Figure 6.5 shows the bar chart of the degree distribution of the resident vertex set of the cross-

border financial flows network. Table A.3 (see Appendix A) indicates the vertex mergers 

starting with 34,002 clusters and ending with one cluster. The x-axis of the bar chart shows the 

7-cluster partitions, while the y-axis displays the proportion of vertices in each cluster. 

The distribution appears skewed to the right, with 18,390 residents (CL10 members) 

comprising 54% of the cross-border financial flows network. The maximum out-degree is 21, 

and the maximum indegree is 7 in this cluster. The last cluster (CL9) comprises five members, 

which resulted from two vertex mergers between CL13 (with four members) and resident 

r2434297. CL9 has the most connections, with an average out-degree of 615 and an average 

in-degree of 44. 

Connections between clusters can potentially reveal interesting structural properties of the 

network, such as network nestedness. Nestedness indices mostly characterize bipartite 

networks such as this one (Csermely, London, Wu, & Uzzi, 2013). A visual assessment of the 

proposed degree distribution of residents shows that it is potentially more useful to analyze the 

one distribution graph instead of two distribution graphs (one for each degree type). 
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Figure 6.5: Bar chart of the degree distribution of the resident vertex set of the cross-border financial 

flows network 

It is not feasible to depict the clusters' hierarchical formation using a dendrogram when the 

network size is enormous (34, 002 vertices). However, it is possible to use the last 50 clusters 

from the cluster history table to plot the dendrogram's top end, as illustrated in Figure 6.6. The 

dendrogram provides a visual assessment of the cluster solution. 
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Figure 6.6: A dendrogram depicting the last 50 clusters of the cross-border financial flows network 

The next step replicates residents' allocation to clusters in the data set, which creates a new 

variable. The computer code in Appendix B.4 creates a text file with embedded programming 

logic, generating multiple "if statements" to allocate residents to clusters. The resulting data set 

enables the computation of statistical measures such as sums and averages of inflows and 

outflows per resident cluster to provide further insight into the transaction patterns between 

residents and non-residents 

6.5.3 Significance of the results 

The characterization results availed additional variables in node clusters, enabling the 

computation of traditional statistics such as sums and averages of inflows and outflows per 

cluster to provide further insights into the transaction patterns between the resident and non-

resident nodes. The significance of the clustering algorithm's variables is that they provide 
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guidelines for financial institutions and regulatory organizations to design a sampling rule for 

inspections planning as part of AML strategies. 

A representative sample of cross-border financial transactions for inspection can include 

transactions from each of the clusters instead of randomly selecting transactions as often done 

in practice. Most importantly, clusters that pose the highest risks, such as clusters 5, 6, and 7, 

can be afforded the most resources during the inspections. 

6.6 Summary 

In this chapter, the network centrality measure was derived based on the method of matrix 

multiplication to answer the question, “Which are the most important resident/non-resident 

nodes in the cross-border financial flows network?” The research used the hypothetical data 

set cross-border financial flows to demonstrate the proposed centrality measure. The results 

showed that the centrality measure effectively identified the resident nodes responsible for the 

most cross-border flows and those responsible low financial value but high transaction 

volumes. 

In addition, the chapter characterized the cross-border financial flows network using node 

degrees. A hierarchical clustering procedure was used to derive the approximate degree 

distribution of the resident node set. The results were presented in a dendrogram and a 

distribution bar chart.  
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Chapter 7: Discussion  
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7.1 Introduction 

This research proposed data mining of cross-border financial flows using a network theoretic 

approach to solve the money laundering problem. Networks science provides useful tools such 

as visualization and statistical properties such as degree distributions, assortativity, and 

centrality measures to help understand real-world phenomena in various fields. The research 

focused primarily on the illegal transfer of funds across country borders, central problem to 

regulatory organizations, financial institutions, and law enforcement agencies.  

The research developed several analytical tools, leveraging advances in technology to enable 

data processing and analysis of large multi-dimensional data sets comprising cross-border 

financial flows while circumventing information privacy concerns. 

This chapter summarizes the research objectives, discusses the findings, the contributions to 

knowledge, the limitations, and the areas of further research. 

7.2 Summary of the research objectives and a discussion of findings 

Money laundering is a global problem, which devastates economies around the world. Criminal 

activities such as illegal transfer of funds across country borders, exploitation of mineral 

resources, organized crime, terrorist financing, drugs counterfeiting, corruption, and fraud in 

international trade have devastating impacts on the affected communities.  

The money laundering process starts with the criminal activity that gives rise to crime proceeds, 

such as bribery, drug trafficking, tax evasion, and corrupt business practices. The money 

launder seeks to obscure the origins of illegally obtained money by passing it through the 

banking system or business transactions. This research focused on analyzing international 

business transactions posing international money laundering risks for financial institutions, 

regulatory organizations, and law enforcement agencies. The research leveraged advanced 

technology to fortify the regulatory restraints of AML.  

In Chapter 2, the research outlined two main channels for measuring illicit financial flows, i.e., 

deliberate manipulation of customs invoices on external trade and leakages from the balance 

of payments (GFI, 2015), also known as the World Bank Residual Method (World Bank, 1985). 

Trade misinvoicing is trade-based money laundering, widely thought to be the largest 
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component of illicit financial flows. However, the two channels used to estimate illicit financial 

flows still fall short of measuring all the unrecorded flows due to the lack of bilateral trade data 

on services and the secretive nature of such flows.  

Chapter 2 also discussed other illicit financial flows channels that are not easy to measure using 

the available economic data due to their hidden nature. This research focused on analyzing 

transaction patterns between residents and non-residents to enhance the surveillance of cross-

border financial transactions for regulatory organizations, financial institutions, and law 

enforcement agencies.  

Chapter 3 provided the background on the fundamental concepts and definitions from 

mathematical graph theory and an overview of some of the essential properties of graph 

structures, mostly attributable to the work done by König (König, 1936). Hence, it laid a solid 

mathematical foundation for this research, which enabled the introduction of the directed and 

weighted bipartite as a model for cross-border financial flows and the network's 

characterization using degree distributions in subsequent chapters. 

The research developed the symmetric-key encryption algorithm to circumvent information 

privacy concerns when analyzing the multi-dimensional data sets comprising cross-border 

financial flows. Chapter 4 presented the proposed encryption algorithm and discussed its 

advantages and disadvantages. In addition to encryption, the algorithm computed the necessary 

statistical measures of networks such as node degree and weights discussed in Chapter 3, 

thereby accomplishing the research’s first stated objective. 

Chapter 5 provided a formal definition of the network structure of cross-border financial flows 

using a directed and weighted bipartite graph with dual weights, representing the monetary 

value and volume of transactions. The study leveraged advances in technology to construct the 

network structure. Presentation of the transactions in a network form enabled efficient use of 

business intelligence tools and statistical software packages to compute basic statistics and 

visualizations at resident and non-resident node level.  

The proposed network structure enables the regulatory organizations to plan inspections of both 

authorized dealers and resident/non-resident transactions optimally by focusing on suspicious 

transactions using the FATF's notions instead of relying on tip-offs and random sampling 

transactions. The network weights provide transaction aggregates from various authorized 

dealers for each resident/non-resident node. Hence, the defined network structure strengthens 
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the implementation and enforcement of AML by financial institutions and regulatory 

organizations. Chapter 2 discussed the compliance and risk management environment 

encompassing the risk-based approach, which is the appropriate deployment area for the 

proposed cross-border financial flows model. 

Chapter 6 proposed a network measure to identify suspicious activity and criminal conduct per 

FATF recommendations, advocating using advanced technology for regulatory purposes. The 

proposed centrality measure for directed and weighted bipartite networks expands the available 

scientific tools for mining cross-border financial transactions data. The centrality measure 

addresses the question, "Which are the most important or central nodes in the cross-border 

financial flows network?". 

Chapter 6 further proposed the characterization of the cross-border financial flows network 

using the distribution of node degrees, often cited as the most fundamental of network 

properties and the defining characteristic of network structure. The cross-border financial flows 

network developed in this research comprises four-degree distributions, two for each node-set. 

Characterization reduces the degree distributions from four to two and avails additional 

variables that can facilitate the design of a sampling rule for inspecting transactions, as 

discussed in Chapter 6. 

The research used a real data set comprising remittances transactions to illustrate the 

symmetric-key encryption algorithm and cross-border financial flows' network structure.  The 

hypothetical data set also provided a mechanism for illustrating the symmetric-key encryption 

algorithm step by step and the computation of the centrality measure. 

The research used SAS® Visual Analytics software to visualize the network structure and a 

SAS® computer program to develop the encryption code. The results showed that the proposed 

centrality standard could illuminate the network by providing a quantitative measure of node 

importance, which is a significant finding in the battle against the illegal cross-border transfer 

of funds. 

The network theoretic approach adopted in this research complements the regulatory guidelines 

by enriching the data environment with non-classical analytical tools such as network structure, 

centrality measure, and characterization variables for identifying suspicious transactions. 

Hence, providing an answer to the following research question: 
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Can the use of networks' statistical properties to analyze transactional patterns between 

residents and non-residents in cross-border financial flows data enable identifying suspicious 

activity and criminal conduct to detect and impede the illegal transfer of funds across country 

borders? 

7.3 Contributions and significance of research 

The algorithm's application areas are vast due to the rapid increase in digital services, which 

enable people to use banking, transportation, payments, healthcare, navigation, shopping, and 

healthcare services. The digital services create sizeable multi-dimensional data sets comprising 

private and confidential information. The analysis of such data sets often triggers information 

privacy concerns. Like most symmetric-key encryption techniques, the technique is simple to 

implement and fast in execution. 

The distinguishing factor between the proposed algorithm and other existing encryption 

algorithms discussed in Chapter 4 is the use of temporary variables to indicate By-groups' start 

and end. The second part of the algorithm leveraged the temporary variables to compute the 

network weights, thereby enabling the constructing of the cross-border financial flows network 

structure.  

While the study used the algorithm to encrypt only two variables, the technique is applicable 

in cases involving several variables. The minimum requirement for applying the technique is 

that it must be possible to sort and group the multi-dimensional data sets to enable BY-group 

processing. Like in any other encryption algorithm, data quality challenges can potentially limit 

its effectiveness. 

The research defined the cross-border financial flows network using a directed and weighted 

bipartite graph with dual weights. The two network weights represented the total monetary 

amount and the total number of transactions between each resident and non-resident node pairs. 

The network model enabled non-classical statistical measures to study transaction patterns 

between the resident and non-resident nodes. The network was represented on a computer using 

the adjacency matrix and visualized using SAS ® software.  

The research proposed a measure of network centrality based on matrix multiplication, 

allocating centrality points based on each node's weights and degrees. Like other measures of 
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centrality and assortativity, it does not rely on the centrality's absolute magnitude, only about 

which nodes have high or low centrality values. Hence, it is possible to compare its 

performance against eigenvector centrality or other measures such as the Katz centrality, which 

addresses eigenvector centrality's limitations (Katz, 1953).  

The significance of the proposed centrality measure and network characterization using node 

degrees is that they both provide the ability to measure the importance of a node based on the 

node's contribution in the network in addition to the node's degrees. Therefore, the cross-border 

financial flows network structure and its statistical properties obtained in this research can 

enhance regulatory compliance and risk management practices in regulated entities, thereby 

promoting these entities' safety and soundness. 

7.4 Limitations of the study and areas of further research  

This research proposed using network science to understand the workings of cross-border 

financial flows and, in many ways, given rise to more questions that require further research. 

This section presents a list of topics for future investigation. 

7.4.1 Performance of the proposed symmetric-key encryption algorithm 

Chapter 4 discussed several privacy-preserving approaches and proposed the symmetric-key 

encryption algorithm, which made efficient use of computer memory by using temporary 

variables and the multi-dimensional data set's group structure. The chapter outlined both 

advantages and disadvantages of the proposed algorithm. However, the algorithm’s 

performance comparisons against the other encryption techniques discussed in this research is 

a subject for further investigation. The algorithm's use appears limited due to the requirement 

that the data set comprises multiple dimensions. 

7.4.2 Limitations of the cross-border financial flows network 

The directed and weighted bipartite graphs have been used recently as models for complex 

networks. This research introduced the directed and weighted bipartite graph model with two 

weights representing transaction volumes and amounts. Therefore, further research must 

develop an understanding of network measures for directed and dual weighted networks. Areas 
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such as community detection and network assortativity are subjects of further investigation in 

directed and dual weighted networks.  

The research used the Ward clustering technique to characterize the cross-border financial 

flows network. The chosen hierarchical clustering method performs well in small networks but 

underperforms with increasing data size. Using other classification methods suitable for large 

data sets can benefit the research.  

7.4.3 Limitations of the proposed network centrality measure 

The proposed network centrality measure was significant in identifying the transaction patterns 

between residents and non-resident nodes in the cross-border financial flows network. The 

highly connected nodes identified using the measure require further analysis and inspection. 

However, the measure was applied to a small data set, making it challenging to observe the 

computational inefficiencies and complexities of execution. Performing the same computations 

involving much larger data sets can shed some light on the proposed centrality measure's 

performance and provide insights into its limitations. 

The proposed centrality measure's statistical significance can be evaluated based on the 

discrepancy between the random directed and weighted bipartite network and the cross-border 

financial flows network. The research discussed the Configuration model and the Curveball 

algorithm for generating the random network with the same order and size, and the same degree 

distribution or sequence as the observed cross-border financial flows network. The evaluation 

of the centrality measure's statistical significance is an area requiring further research. 

Further research on comparative performance studies of the proposed centrality measure 

against other available centrality measures for directed and weighted networks will 

undoubtedly provide beneficial information. 

7.4.4 Policy response to research findings 

The research emphasized the development of network science tools for financial institutions, 

regulatory organizations, and law enforcement agencies to combat money laundering. 

However, the study did not provide policy recommendations suitable for integrating the 

proposed methodology into the current regulatory landscape. The use of the FATF's 

recommendations served to indicate the relevant application area of this study. Implementation 
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of the proposed network theoretic approach requires further analysis from a regulatory policy 

front. 

7.5 Summary 

Chapter seven provided a summary of the research objectives, discussed the significance of the 

research findings and the contributions to knowledge. Also, the chapter discussed the 

limitations of the research along with the areas of further research. 

Unexpectedly, the network structure and the centrality enriched the regulatory compliance and 

risk management environments in financial institutions with additional data to enable RegTech 

and SupTech. SupTech is useful for regulatory organizations to plan their inspection of 

regulated entities optimally and to identify regulatory non-compliance in advance. RegTech 

enables the regulated entities to effectively monitor risk factors, as discussed in Chapter 2 of 

this research. 
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Chapter 8: Concluding remarks 
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8.1 Introduction 

This chapter concludes the thesis. The next section presents the concluding remarks, which 

notes the main research findings. The summary excludes the first three introductory chapters 

of the thesis, which do not contain new research material. The last section concludes with 

summarized suggestions for future research. 

8.2 Summary of the research findings 

This research primarily focused on developing network tools for analyzing cross-border 

financial transactions to assist financial institutions, regulatory organizations, and law 

enforcement agencies in detecting and impeding the illegal transfer of funds across country 

borders.  

Chapter 2 discussed three different approaches used by criminal networks to launder their 

criminal proceeds. The research focused on the first method, which involves transferring value 

through the global financial system using wire transfers and commercial transactions. The 

study demonstrated the effectiveness of the proposed network theoretic approach for modeling 

cross-border financial transactions using a sample of real data set drawn from the South African 

database of international financial transactions. This section summarizes the main conclusions. 

8.2.1 Privacy-preserving symmetric-key encryption algorithm 

Chapter 4 provided an overview of both cryptographic and non-cryptographic techniques for 

preserving the privacy of personally identifiable information in statistical databases. Most 

importantly, the chapter proposed and developed the symmetric-key encryption algorithm. 

The research presented the two components of the algorithm. The first part performed algebraic 

operations on the multi-dimensional data set for encryption purposes. The second part 

computed the edge weights to facilitate constructing the cross-border financial flows network 

from international financial records. 

The algorithm proved to execute fast due to its simplicity, thereby making it possible to encrypt 

large data sets. It used decryption operations like the Permutation Cipher, which is a lookup 

table. More massive data sets with multiple encryption variables complicate the algorithm's 
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symmetric-key derivation, thereby improving its safety. The encrypted data set derived using 

the proposed encryption algorithm is less susceptible to linkage attacks since the algorithm 

does not provide statistical (demographic) data linked to individuals. 

In contrast to the non-cryptographic techniques discussed in Chapter 4, the algorithm 

underperforms since it cannot encrypt a live statistical database. The algorithm's use is limited 

to multi-dimensional data sets only due to the data set's desired group structure. Also, the 

algorithm's safety depends on the database's security used to store the decryption key. Chapter 

4 discussed the advantages and disadvantages of the proposed symmetric-key encryption 

algorithm. 

In addition to preserving privacy in financial transactions, the algorithm's application areas can 

extend to patient records held by the healthcare system, salary records held by employers, 

investigation records held by the criminal justice system, and public institutions' motor vehicle 

registration information. 

8.2.2 Network structure of cross-border financial flows  

The study of directed graphs is a well-researched are called Network flow theory, introduced 

in Chapter 3 of this research. Network flow problems arise in many graph theory applications 

such as internet traffic, transportation systems, communication systems, road traffic flow, and 

power supply networks. In contrast, this research studied directed and weighted graphs often 

classified as financial networks, with a primary focus on the transaction patterns between 

residents and non-residents for regulatory compliance and risk management purposes. 

The research developed the cross-border financial flows network using a directed and weighted 

bipartite graph with dual weights and leveraged advanced technology to construct and visualize 

its structure. The two network weights represented the total monetary amount and the total 

number of transactions between each resident and non-resident node pairs.  

Chapter 5 provided a mathematical definition of the cross-border financial flows network. The 

research used SAS® Visual Analytics software for network visualization, making it easier to 

identify the network's highly connected nodes. Network visualization revealed that most nodes 

have one or two connections, while few nodes form part of largely connected sub-networks. 

However, due to the limitations of using the human eye to eyeball the network, the research 

suggested using the cross-border financial network's statistical properties to understand the 
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structure further. Transaction sampling strategies focused on highly connected nodes can add 

value to the financial institutions' regulatory compliance departments and risk management 

functions instead of relying on transaction-specific triggers.  

The network model enabled non-classical statistical measures to study transaction patterns 

between the resident and non-resident nodes in the database of international financial 

transactions. The proposed model fits both the SupTech and RegTech environment defined in 

Figure 1, as part of the AML systems, business intelligence, analytical systems. Also, the 

network structure can complement the built-in transaction-specific triggers in AML systems 

discussed in chapter 2, which enable active tracking of transactions under the risk-based 

approach guidelines and recommendations provided by the FATF for regulatory compliance 

purposes. 

8.2.3 Centrality measure and network characterization 

The research proposed a centrality measure based on the network's adjacency matrix 

multiplication to answer the question, "Which are the most important resident/non-resident 

nodes in the cross-border financial flows network?". The study used the hypothetical data set, 

comprising cross-border financial flows to demonstrate the proposed centrality measure. The 

results showed that the centrality measure effectively identified the resident nodes responsible 

for the most cross-border flows and those responsible for low financial value but high 

transaction volumes. These are significant results, which answer the research question. 

The study used the hierarchical clustering procedure to derive the resident node-set's 

approximate degree distribution, thereby characterizing the cross-border financial flows 

network. The SAS® computer program presented the clustering procedure results using a 

dendrogram and a distribution bar chart. Both the dendrogram and the distribution chart 

provided additional data that enriched the cross-border transactional database. 

The area of regulatory concern in the remittances industry is the detection and prevention of 

money laundering activity. The visualization depicted in Figure 5.4 showed residents who 

remitted funds to multiple non-residents, while the non-residents remitted funds to other 

residents. Identifying such transactions for money laundering investigations is critical under 

the risk-based approach. Other suspicious activity arises when multiple residents remit money 
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to the same non-resident. Such cases often occur when criminals attempt to disguise the 

beneficial owner of the transactions. 

After network characterization, the enriched data landscape and the derived centrality measure 

can enable classical statistical measures to understand the network structure further. For 

example, it can be possible to study transactional patterns for businesses and/or individuals by 

focusing directly on their activities as cluster members and using the normalized matrix derived 

in Chapter 6. Hence, the proposed solution to the research problem can enable RegTech and 

SupTech in regulatory organizations and financial institutions' compliance and risk 

management environments. 

8.3 Directions for future research 

Uses of the proposed symmetric-key encryption algorithm appear limited because the data set 

must comprise multiple dimensions to enable By-group processing, which is the cornerstone 

of the algorithm's design. Further research can extend the algorithm's uses to single-

dimensional data sets to ascertain this fact. The algorithm's secrecy and performance 

comparisons against the other encryption techniques are also a subject for further investigation.  

The research discussed the Configuration model and the Curveball algorithm for generating 

the random network with the same order and size, and the same degree distribution or sequence 

as the observed cross-border financial flows network. Future research can be directed at 

generating the random directed and weighted bipartite network using the Configuration model 

or the Curveball algorithm to evaluate the proposed centrality measure's statistical significance 

based on the discrepancy between the randomly generated network and the cross-border 

financial flows network.  

The research emphasized the development of network science tools for financial institutions, 

regulatory organizations, and law enforcement agencies to combat money laundering and 

terrorism financing. Hence, the research fell short of providing policy recommendations 

suitable for integrating the proposed methodology into the current regulatory and compliance 

landscape. The FATF's recommendations only served to indicate the application area of this 

study. Implementation of the proposed network theoretic approach requires further analysis 

from a regulatory policy front.  
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 Tables 

Table A.1: Remittances data set – variables description 

Alphabetic List of Variables and Attributes 

# Variable Type Len Format Informat Label 

9 CATEGORY Char 6 $6. $6. BoP reporting category 

13 DOLLARAMOUNT Num 8   Amount of flow in United 

States Dollars 

3 FLOW Char 3 $3. $3. Outflow or Inflow 

11 FLOWDATE Num 8   Transaction date 

10 LOCATIONCOUNTRY Char 66 $66. $66. Destination country for flows 

6 NR_COUNTRY Char 66 $66. $66. Country of non-resident 

5 NR_SURNAME_OR_LEGALNAME Char 70 $70. $70. Non-resident name 

1 REPORT_QUAL_NAME Char 6 $6. $6. Report qualifier name - BoP 

customer 

12 RESIDENTNAME Char 200   Resident name and surname 

joined 

8 R_NAME_OR_TRADINGNAME Char 70 $70. $70. Resident name 

7 R_SURNAME_OR_LEGALENTITYNAME Char 70 $70. $70. Resident surname 

2 STATUS Char 2 $2. $2. Either original or cancelled 

transaction 

4 TRNREFERENCE Char 34 $34. $34. Transaction reference number 
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Table A.2: Encrypted sample of remittances data set using the symmetric-key encryption 

algorithm 
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Table A.3: Cluster history table showing the last 50 vertex mergers 

Cluster History 

Number of 
Clusters 

Clusters Joined Frequency Semipartial R-
Squared 

R-Squared Pseudo F 
Statistic 

Pseudo t-
Squared 

50 r2417378 CL57                6  0 0.999 810,000 4.9 

49 CL324 CL72          2,843  0 0.999 790,000 5,192.0 

48 CL346 CL105          1,397  0 0.999 770,000 13,000.0 

47 CL382 CL75             970  0 0.999 750,000 1,844.0 

46 CL77 CL81             136  0 0.999 730,000 290.0 

45 CL47 CL364          1,752  0.0001 0.999 710,000 1,254.0 

44 CL80 CL95                7  0.0001 0.999 690,000 19.2 

43 CL373 CL85          2,266  0.0001 0.999 670,000 20,000.0 

42 CL76 CL63             518  0.0001 0.999 650,000 755.0 

41 CL68 CL102              25  0.0001 0.999 630,000 53.9 

40 CL64 CL101             408  0.0001 0.999 610,000 1,086.0 

39 CL371 CL56          1,980  0.0001 0.998 590,000 2,236.0 

38 CL71 CL73             621  0.0001 0.998 570,000 1,524.0 

37 CL384 CL403          2,869  0.0001 0.998 560,000   

36 CL84 CL61             106  0.0001 0.998 550,000 210.0 

35 CL55 CL38          1,532  0.0001 0.998 530,000 988.0 

34 CL362 CL53          3,846  0.0001 0.998 520,000 6,063.0 

33 CL74 CL51             825  0.0001 0.998 510,000 1,112.0 

32 CL355 CL347          4,348  0.0001 0.998 490,000   

31 CL59 CL66          1,317  0.0002 0.998 480,000 3,739.0 

30 CL320 CL49          5,987  0.0002 0.997 460,000 19,000.0 

29 CL44 r1324529                8  0.0002 0.997 440,000 19.6 

28 CL54 CL60              74  0.0002 0.997 420,000 231.0 

27 CL52 CL58             370  0.0002 0.997 400,000 838.0 

26 CL34 CL319          8,055  0.0002 0.997 390,000 12,000.0 

25 CL39 CL50          1,986  0.0003 0.996 380,000 2,393.0 

24 CL37 CL25          4,855  0.0003 0.996 360,000 2,534.0 

23 CL45 CL48          3,149  0.0004 0.996 350,000 7,074.0 

22 CL29 CL67              21  0.0004 0.995 330,000 24.7 

21 CL40 CL42             926  0.0006 0.995 310,000 2,324.0 

20 CL46 CL36             242  0.0007 0.994 290,000 834.0 

19 CL28 CL41              99  0.0009 0.993 270,000 231.0 

18 CL33 r2459199             826  0.001 0.992 250,000 4,491.0 

17 CL18 CL31          2,143  0.001 0.991 230,000 1,541.0 

16 CL30 CL32        10,335  0.0012 0.99 220,000 33,000.0 

15 CL24 CL43          7,121  0.0013 0.988 210,000 9,501.0 

14 CL23 CL35          4,681  0.0016 0.987 200,000 9,190.0 

13 CL142 r243436                4  0.0024 0.984 180,000 3,121.0 

12 CL21 CL27          1,296  0.0027 0.982 170,000 3,123.0 

11 CL19 CL22             120  0.0044 0.977 150,000 255.0 

10 CL16 CL26        18,390  0.0045 0.973 130,000 41,000.0 

9 CL13 r2434297                5  0.0063 0.966 120,000 7.8 

8 CL12 CL20          1,538  0.009 0.957 110,000 2,895.0 

7 CL17 CL14          6,824  0.0098 0.948 100,000 14,000.0 

6 CL10 CL15        25,511  0.0202 0.927 87,000 59,000.0 

5 CL92 CL9                9  0.022 0.905 81,000 17.9 

4 CL8 CL11          1,658  0.0313 0.874 78,000 2,562.0 

3 CL7 CL4          8,482  0.0839 0.79 64,000 11,000.0 

2 CL3 CL6        33,993  0.2165 0.573   41,000.0 

1 CL2 CL5        34,002  0.5733 0   46,000.0 
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Table A.4: Cross-border financial transactions – the hypothetical data set 

Resident_name  Transaction_date Flow NonResident_name  $_amount 

Lynn 2018-01-16 Out Joaquin         3,500  

Elizabeth 2018-01-25 Out Victoria         1,000  

Christo 2018-02-07 Out Mavis            500  

Elizabeth 2018-02-14 In Victoria            250  

Lynn 2018-03-04 In Victoria            100  

Rosalia 2018-03-12 In Sara            200  

Christo 2018-03-12 In Benjamin         2,500  

Martina 2018-03-30 In Benjamin         1,000  

Martina 2018-03-31 Out Benjamin         2,250  

Rosalia 2018-04-18 Out Mariana            250  

Martina 2018-04-23 In Benjamin         1,250  

Rosalia 2018-05-05 In Benjamin         1,000  

Christo 2018-06-05 Out Catalina         1,000  

Michael 2018-06-10 Out Matias            500  

Elizabeth 2018-06-15 Out Mariana         1,000  

Elizabeth 2018-06-18 Out Mariana         5,000  

Rosalia 2018-07-02 In Victoria            150  

Linda 2018-07-11 Out Diego            275  

Lynn 2018-07-14 In Mariana            750  

Linda 2018-08-08 Out Diego            275  

Martina 2018-08-17 Out Lucas            500  

Rosalia 2018-09-02 Out Victoria            150  
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Table A.5: Encryption key generated by DATA step processing 

Resident 

name 

Transaction 

date 

Flow Non-resident 

name 

$_amount Resident 

label 

Non-resident 

label 

Christo 12Mar2018 In Benjamin 2,500 R1 NR1 

Martina 23Apr2018 In Benjamin 1,250 R13 NR1 

Martina 31Mar2018 Out Benjamin 2,250 R13 NR1 

Martina 30Mar2018 In Benjamin 1,000 R13 NR1 

Rosalia 05May2018 In Benjamin 1,000 R18 NR1 

Christo 05Jun2018 Out Catalina 1,000 R1 NR6 

Linda 11Jul2018 Out Diego 275 R8 NR7 

Linda 08Aug2018 Out Diego 275 R8 NR7 

Lynn 16Jan2018 Out Joaquin 3,500 R10 NR9 

Martina 17Aug2018 Out Lucas 500 R13 NR10 

Elizabeth 15Jun2018 Out Mariana 1,000 R4 NR11 

Elizabeth 18Jun2018 Out Mariana 5,000 R4 NR11 

Lynn 14Jul2018 In Mariana 750 R10 NR11 

Rosalia 18Apr2018 Out Mariana 250 R18 NR11 

Michael 10Jun2018 Out Matias 500 R17 NR15 

Christo 07Feb2018 Out Mavis 500 R1 NR16 

Rosalia 12Mar2018 In Sara 200 R18 NR17 

Elizabeth 25Jan2018 Out Victoria 1,000 R4 NR18 

Elizabeth 14Feb2018 In Victoria 250 R4 NR18 

Lynn 04Mar2018 In Victoria 100 R10 NR18 

Rosalia 02Sep2018 Out Victoria 150 R18 NR18 

Rosalia 02Jul2018 In Victoria 150 R18 NR18 
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Table A.6: Adjacency matrix representation of the cross-border financial flows network with 

dual weights 

  R1 R4 R8 R10 R13 R17 R18 NR1 NR6 NR7 NR9 NR10 NR11 NR15 NR16 NR17 NR18 

R1 0 0 0 0 0 0 0   (2,1500)           (1,500)     

R4 0 0 0 0 0 0 0           (2,6000)       (3,7000) 

R8 0 0 0 0 0 0 0     (2,550)               

R10 0 0 0 0 0 0 0       (1,3500)             

R13 0 0 0 0 0 0 0 (2,2250)       (2,2750)           

R17 0 0 0 0 0 0 0             (1,500)       

R18 0 0 0 0 0 0 0           (1,250)       (2,400) 

NR1 (1,2500)       (2,2250)   (1,1000) 0 0 0 0 0 0 0 0 0 0 

NR6               0 0 0 0 0 0 0 0 0 0 

NR7               0 0 0 0 0 0 0 0 0 0 

NR9               0 0 0 0 0 0 0 0 0 0 

NR10               0 0 0 0 0 0 0 0 0 0 

NR11       (1,750)       0 0 0 0 0 0 0 0 0 0 

NR15               0 0 0 0 0 0 0 0 0 0 

NR16               0 0 0 0 0 0 0 0 0 0 

NR17             (2,1200) 0 0 0 0 0 0 0 0 0 0 

NR18   (1,250)   (2,850)     (3,1350) 0 0 0 0 0 0 0 0 0 0 
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  Computer Code 

B.1 : Example of an XML document for reporting cross-border financial transactions 
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B.2 : SAS® code for encryption of the hypothetical data set. 

/* the encryption phase of the algorithm*/ 

 

proc sort data = ExampleDataset; 

     By Resident_name NonResident_name; 

run; 

 

data CrossBorderData; 

   set ExampleDataset; 

      by Resident_name; 

      retain resident_label; 

         if FIRST.Resident_name then 

         Resident_label = CAT(‘R’,_N_); 

run; 

 

proc sort data = CrossBorderData; 

     By NonResident_name Resident_name; 

run; 

 

data CrossBorderDataFinal; 

   set CrossBorderData; 

      by NonResident_name; 

      retain NonResident_label; 

         if FIRST.NonResident_name then 

         NonResident_label = CAT(‘NR’,_N_); 

run; 

 

data CrossBorderDataFinal; 

   set CrossBorderData; 

      by NonResident_name; 

      retain NonResident_label; 

         if FIRST.NonResident_name then 

         NonResident_label = CAT(‘NR’,_N_); 

 

/* display the encrypted data set*/ 

 

data CrossBorderAnalysis; 

     retain Resident_label Flow_Amount NonResident_label; 

        set CrossBorderDataFinal (drop = Transaction_date Resident_name NonResident_name); 

 run; 

 

/* the data reorganization phase and computation of descriptive statistics*/ 

 

proc sort data = CrossBorderAnalysis; 

      by Resident_label NonResident_label; 

   run; 

 

   data NetworkOUTdegrees; 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

128 

 

       set CrossBorderAnalysis; 

         where Flow = 'Out'; 

              by Resident_label NonResident_label; 

                if First.Resident_label = 1 then do; 

                   trans_count = 0; 

                   total_amount = 0; 

                end; 

                trans_count + 1; 

                total_amount + amount; 

                if Last.NonResident_label = 1 then output; 

   run; 

 

   data NetworkINdegrees; 

       set CrossBorderAnalysis; 

         where Flow = 'In'; 

            by Resident_label NonResident_label; 

              if First.Resident_label = 1 then do; 

              trans_count = 0; 

              total_amount = 0; 

           end; 

           trans_count + 1; 

           total_amount + amount; 

           if Last.NonResident_label = 1 then output; 

   run; 

 

   data NetworkOUTdegrees; 

       set CrossBorderAnalysis; 

         where Flow = 'Out'; 

            by Resident_label NonResident_label; 

              if First.Resident_label = 1 then do; 

              trans_count = 0; 

              total_amount = 0; 

           end; 

           trans_count + 1; 

           total_amount + amount; 

           if Last.NonResident_label = 1 then output; 

   run;  
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B.3: SAS® code for construction of the directed and weighted bipartite network 

Libname Articles 'C:\Research\Input_Data'; 

Libname Outicles 'C:\Research\Output_Data'; 

 

/* Prepare the input data files for processing */ 

 

%Let CrossborderData = Articles.File1_2015 Articles.File2_2015 Articles.File3_2015  

     Articles.File4_2015 Articles.File5_2015 Articles.File6_2015 

     Articles.File7_2015 Articles.File8_2015 Articles.File9_2015 

     Articles.File10_2015 Articles.File11_2015 Articles.File12_2015 

     Articles.File13_2015 Articles.File14_2015 Articles.File15_2015 ; 

 

/* Read the input data files into the model, create the resident name variable, 

   format the valuedate of the flow and convert all the ZAR amounts to USD amounts */ 

 

DATA Articles.DollarizeFlowAmounts; 

  SET &CrossborderData;   

    FLOWDATE = INPUT(VALUEDATE,yymmdd10.); 

    RESIDENTNAME = CATX(' 

',R_NAME_OR_TRADINGNAME,R_SURNAME_OR_LEGALENTITYNAME); 

    DROP VALUEDATE RANDVALUE; 

       IF Year (FLOWDATE) = 2014 and Month (FLOWDATE) = 01 THEN DollarAmount = 

RandValue * 0.089936; 

       IF Year (FLOWDATE) = 2014 and Month (FLOWDATE) = 02 THEN DollarAmount = 

RandValue * 0.092980; 

       IF Year (FLOWDATE) = 2014 and Month (FLOWDATE) = 03 THEN DollarAmount = 

RandValue * 0.095065; 

       IF Year (FLOWDATE) = 2014 and Month (FLOWDATE) = 04 THEN DollarAmount = 

RandValue * 0.094986; 

       IF Year (FLOWDATE) = 2014 and Month (FLOWDATE) = 05 THEN DollarAmount = 

RandValue * 0.094571; 

       IF Year (FLOWDATE) = 2014 and Month (FLOWDATE) = 06 THEN DollarAmount = 

RandValue * 0.094092; 

       IF Year (FLOWDATE) = 2014 and Month (FLOWDATE) = 07 THEN DollarAmount = 

RandValue * 0.093435; 

       IF Year (FLOWDATE) = 2014 and Month (FLOWDATE) = 08 THEN DollarAmount = 

RandValue * 0.093736; 

       IF Year (FLOWDATE) = 2014 and Month (FLOWDATE) = 09 THEN DollarAmount = 

RandValue * 0.088519; 

       IF Year (FLOWDATE) = 2014 and Month (FLOWDATE) = 10 THEN DollarAmount = 

RandValue * 0.090702; 

       IF Year (FLOWDATE) = 2014 and Month (FLOWDATE) = 11 THEN DollarAmount = 

RandValue * 0.090394; 

       IF Year (FLOWDATE) = 2014 and Month (FLOWDATE) = 12 THEN DollarAmount = 

RandValue * 0.086575; 

       IF Year (FLOWDATE) = 2015 and Month (FLOWDATE) = 01 THEN DollarAmount = 

RandValue * 0.085848; 
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       IF Year (FLOWDATE) = 2015 and Month (FLOWDATE) = 02 THEN DollarAmount = 

RandValue * 0.085755; 

       IF Year (FLOWDATE) = 2015 and Month (FLOWDATE) = 03 THEN DollarAmount = 

RandValue * 0.082355; 

       IF Year (FLOWDATE) = 2015 and Month (FLOWDATE) = 04 THEN DollarAmount = 

RandValue * 0.083930; 

       IF Year (FLOWDATE) = 2015 and Month (FLOWDATE) = 05 THEN DollarAmount = 

RandValue * 0.082320; 

       IF Year (FLOWDATE) = 2015 and Month (FLOWDATE) = 06 THEN DollarAmount = 

RandValue * 0.082305; 

       IF Year (FLOWDATE) = 2015 and Month (FLOWDATE) = 07 THEN DollarAmount = 

RandValue * 0.078869; 

       IF Year (FLOWDATE) = 2015 and Month (FLOWDATE) = 08 THEN DollarAmount = 

RandValue * 0.075403; 

       IF Year (FLOWDATE) = 2015 and Month (FLOWDATE) = 09 THEN DollarAmount = 

RandValue * 0.072166; 

       IF Year (FLOWDATE) = 2015 and Month (FLOWDATE) = 10 THEN DollarAmount = 

RandValue * 0.072291; 

       IF Year (FLOWDATE) = 2015 and Month (FLOWDATE) = 11 THEN DollarAmount = 

RandValue * 0.069009; 

       IF Year (FLOWDATE) = 2015 and Month (FLOWDATE) = 12 THEN DollarAmount = 

RandValue * 0.064601; 

RUN; 

 

DATA Articles.CrossBorder_Out ; 

  SET Articles.DollarizeFlowAmounts;  

 WHERE STATUS = 'OT' AND FLOW = 'OUT'; 

RUN; 

 

DATA Articles.CrossBorder_In  ; 

  SET Articles.DollarizeFlowAmounts; 

 WHERE STATUS = 'OT' AND FLOW = 'IN'; 

RUN; 

 

/* Invoking automatic variables for outward transactions aggregation */ 

 

PROC SORT DATA = Articles.CrossBorder_Out; 

     BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

RUN; 

 

DATA Articles.OutDegree_Parametarization; 

  SET Articles.CrossBorder_Out (WHERE = (Category IN ('416-00' '417-00'))); 

    BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

      IF First.RESIDENTNAME = 1 THEN First_Res_Indicator = 1; 

        ELSE First_Res_Indicator = 0; 

      IF First.NR_SURNAME_OR_LEGALNAME = 1 THEN First_NonRes_Indicator = 1; 

        ELSE First_NonRes_Indicator = 0; 

      IF Last.RESIDENTNAME = 1 THEN Last_Res_Indicator = 1; 

        ELSE Last_Res_Indicator = 0; 

      IF Last.NR_SURNAME_OR_LEGALNAME = 1 THEN Last_NonRes_Indicator = 1; 
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        ELSE Last_NonRes_Indicator = 0; 

RUN; 

 

PROC SORT data = Articles.OutDegree_Parametarization; 

   BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

RUN; 

 

/* First level aggregation using indicator variables */ 

 

DATA Articles.OutDegree_Comp; 

  SET Articles.OutDegree_Parametarization; 

    BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

      IF First_NonRes_Indicator = 1 THEN DO; 

        Trans_CountOut = 0; 

        Total_DollarAmountOut = 0; 

      END; 

        Trans_CountOut + 1; 

        Total_DollarAmountOut + DollarAmount; 

      IF Last_NonRes_Indicator = 1 THEN OUTPUT; 

RUN; 

 

/* Computation of vertex out-degree for the resident vertex */ 

 

PROC SORT DATA = Articles.OutDegree_Comp; 

     BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

RUN; 

 

DATA Outicles.Out_DegreeFinal; 

  SET Articles.OutDegree_Comp; 

    BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

      IF First_Res_Indicator = 1 THEN DO; 

        Out_degree = 0; 

        Tot_TransCountOut = 0; 

        Tot_DollarAmountOut = 0; 

      END; 

        Tot_TransCountOut + Trans_CountOut; 

        Tot_DollarAmountOut + Total_DollarAmountOut; 

        Out_degree + 1; 

      IF Last_Res_Indicator = 1 THEN OUTPUT; 

RUN; 

 

/* Invoking automatic variables for inward transactions aggregation */ 

 

PROC SORT DATA = Articles.CrossBorder_In; 

     BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

RUN; 

 

DATA Articles.InDegree_Parametarization; 

  SET Articles.CrossBorder_In (WHERE =(Category IN ('416-00' '417-00'))); 

    BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 
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      IF First.RESIDENTNAME = 1 THEN First_Res_Indicator = 1; 

        ELSE First_Res_Indicator = 0; 

      IF First.NR_SURNAME_OR_LEGALNAME = 1 THEN First_NonRes_Indicator = 1; 

        ELSE First_NonRes_Indicator = 0; 

      IF Last.RESIDENTNAME = 1 THEN Last_Res_Indicator = 1; 

        ELSE Last_Res_Indicator = 0; 

      IF Last.NR_SURNAME_OR_LEGALNAME = 1 THEN Last_NonRes_Indicator = 1; 

        ELSE Last_NonRes_Indicator = 0; 

RUN; 

 

PROC SORT DATA = Articles.InDegree_Parametarization; 

   BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

RUN; 

 

DATA Articles.InDegree_Comp; 

  SET Articles.InDegree_Parametarization; 

    BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

      IF First_NonRes_Indicator = 1 THEN DO; 

        Trans_CountIn = 0; 

        Total_DollarAmountIn = 0; 

      END; 

        Trans_CountIn + 1; 

        Total_DollarAmountIn + DollarAmount; 

      IF Last_NonRes_Indicator = 1 THEN OUTPUT; 

RUN; 

 

PROC SORT data = Articles.InDegree_Comp; 

   BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

RUN; 

 

DATA Outicles.In_DegreeFinal; 

  SET Articles.InDegree_Comp; 

    BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

      IF First_Res_Indicator = 1 THEN DO; 

        In_degree = 0; 

        Tot_TransCountIn = 0; 

        Tot_DollarAmountIn = 0; 

      END; 

        Tot_TransCountIn + Trans_CountIn; 

        Tot_DollarAmountIn + Total_DollarAmountIn; 

        In_degree + 1; 

      IF Last_Res_Indicator = 1 THEN OUTPUT; 

RUN; 

 

 

/* Prepare output data for match-merging by sorting*/ 

 

DATA Outicles.Bipart_NetworkSubsetOut ; 

  SET Outicles.Out_DegreeFinal (WHERE =(RESIDENTNAME ne " ")); 

RUN; 
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PROC SORT data = Outicles.Bipart_NetworkSubsetOut; 

   BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

RUN; 

 

 

DATA Outicles.Bipart_NetworkSubsetIn ; 

  SET Outicles.In_DegreeFinal (WHERE =(RESIDENTNAME ne " ")); 

RUN; 

 

PROC SORT DATA = Outicles.Bipart_NetworkSubsetIn; 

   BY RESIDENTNAME NR_SURNAME_OR_LEGALNAME; 

RUN; 

 

/* Perform match-merging by sorting*/ 

 

DATA Outicles.Bipart_Network (Keep = Nr_Surname_or_Legalname Residentname 

Out_degree In_degree Tot_TransCountOut Tot_DollarAmountOut Tot_TransCountIn 

Tot_DollarAmountIn) ; 

  MERGE Outicles.Bipart_NetworkSubsetOut Outicles.Bipart_NetworkSubsetIn; 

    BY RESIDENTNAME; 

      IF In_degree = " " then Do; 

        Tot_TransCountIn = 0; 

        Tot_DollarAmountIn = 0; 

        In_degree + 0; 

      END; 

      IF Out_degree = " " then Do; 

        Tot_TransCountOut = 0; 

        Tot_DollarAmountOut = 0; 

        Out_degree + 0; 

      END; 

RUN; 

 

/* Relabelling the Resident Vertex Set for reporting results and producing the final Bipartite 

Network */ 

 

DATA Outicles.Bipart_Network_Final;  

  RETAIN Res_Vertex Residentname Out_degree In_degree Tot_DollarAmountOut 

Tot_DollarAmountIn NetFlow Tot_TransCountOut Tot_TransCountIn ; 

    SET Outicles.Bipart_Network (Drop = Nr_Surname_or_Legalname); 

      BY RESIDENTNAME ; 

        Netflow = Tot_DollarAmountOut - Tot_DollarAmountIn; 

        IDENTIFIER = _N_; 

        Res_Vertex = Cat('r',Identifier); 

        DROP IDENTIFIER ; 

RUN; 

 

 

Proc Print data = Outicles.Bipart_Network_Final (firstobs = 250000 obs = 250050); 
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Format Tot_DollarAmountOut: Comma10.2 Tot_DollarAmountIn: Comma10.2 NetFlow: 

Comma10.2; 

Run; 
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B.4: SAS® code for degree distribution and dendrogram based on remittances data set 

ods graphics on; 

ods html style = journal2; 

ods escapechar='^'; 

 

/* Sub setting the bipartite network by out-degree for clustering purpose */ 

  

DATA Outicles.Network_data_Matrix; 

  SET Outicles.Bipart_Network_Final; 

 RUN; 

 

/* Invoking the Ward clustering procedure to produce the cluster history and dendrogram */ 

 

PROC CLUSTER DATA = Outicles.Network_data_Matrix Method = ward Pseudo 

outtree=Dendrogram noeigen noprint 

        plots = (dendrogram (horizontal height=rsq)); 

   VAR Out_Degree In_Degree; 

   ID Res_Vertex; 

RUN; 

 

goptions vsize=6in hsize=9.4in htext=10pt htitle=6pct; 

axis1 order=(0 to 1 by 0.2); 

 

/* Invoking the Tree procedure to produce the full cluster history without printing the 

dendrogram */ 

 

PROC TREE DATA = Dendrogram out=Outicles.clust nclusters=12 noprint 

   HAXIS = axis1 horizontal; 

   HEIGHT _rsq_; 

   COPY Out_Degree In_Degree ; 

   ID Res_Vertex; 

RUN; 

 

/* Scatter plot of the clusters */ 

 

PROC SGPLOT DATA= Outicles.clust; 

   SCATTER x = Out_Degree y = In_Degree / group=cluster ; 

RUN; 

 

PROC SORT DATA = Outicles.clust; 

   BY clusname; 

RUN; 

 

PROC PRINT DATA = Outicles.clust; 

   BY clusname; 

   ID clusname; 

RUN;  
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B.5: SAS® code for automated creation of text file for allocating nodes to clusters 

/* Create a text file containing rules to execute the if-then-else statement for clusters */ 

 

DATA _NULL_; 

  SET Outicles.clust end=last; 

  FILE 'C:\Research\Output_Data\RVertexClus.txt'; 

    IF _n_ = 1 THEN put "Select (Res_Vertex);"; 

    put " when ('" Res_Vertex +(-1) "') Res_Vertex_clus = '" cluster +(-1) "';"; 

    IF last THEN do; 

    put " otherwise Res_Vertex_clus = 'U';" / "end;"; 

    END; 

RUN; 

 

 

PROC MEANS DATA = Outicles.clust min max maxdec=0 nway; 

   CLASS clusname; 

     LABEL clusname = "Cluster Name"; 

     VAR cluster Out_Degree In_Degree; 

RUN; 

 

/* Produce the vertex degree distribution (bar chart) */ 

 

PROC SGPLOT DATA = Outicles.clust; 

   VBAR  Cluster/ group=clusname groupdisplay = cluster barwidth = 0.7 stat = percent; 

     XAXIS label ="Cluster"; 

  YAXIS label ="Percentage of vertices in a cluster "; 

  LABEL clusname = "Cluster Name"; 

RUN; 

 

ods graphics off; 
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