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Abstract The aim of this paper is to investigate stability of an isothermal glass tube drawing pro-

cess through control parameters by the method of linear stability analysis. We want to see how the

process parameters effect stability of the physical system being considered. For this purpose, we not

only prove the existence and uniqueness of the solutions of steady state isothermal tube drawing

model but also determine its numerical solution. To perform linear stability analysis, steady state

numerical solution is incorporated in the eigenvalue problem, formulated by linearizing the isother-

mal model. The eigenvalue problem is then solved numerically to determine the critical draw ratio

which indicates the onset of instabilities. To the end, stability of the process is analyzed using three

different values of space step size. We also observe and discuss the effect of density, viscosity and

pressure on stability of the isothermal tube drawing model.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Glass tubes are manufactured through several continuous
drawing processes to achieve the correct wall thickness and

diameter. The most commonly used are the Danner and Vello
processes [1–4] having great importance in glass fabricating
industry for the continuous production of glass tubes and
are still in use today. In Danner process, a glass is melted in

a furnace to the stage when it becomes soft and pliable. Molten
glass is then allowed to fall with low feeding speed v0 on the
surface of a cylindrical device called mandrel which is a slightly

inclined hollow device such that the air can be blown through
it. The mandrel is rotating about its axis of symmetry and is

kept in a temperature controlled tank, called oven. By the con-
tinuous rotation of mandrel, molten glass falling downward
creates a smooth layer around the mandrel. It cools down

gradually and takes the shape of a thick-walled hollow glass
tube with desired properties of design given at the end of a
mandrel. We take the length of hot-forming zone equal to L.

Glass tube is then pulled out by a drawing machine with a
drawing speed vL > v0. The ratio vL=v0 > 1 is called the draw
ratio. The drawn tube is then conveyed straight by rollers to

further process of cutting, finishing, polishing and packaging
at the end of the spinline. Keeping a constant temperature in
the hot-forming zone leads to develop an isothermal glass tube
drawing model. This manufacturing process is illustrated by

the Fig. 1. The shaping parameters such as the wall thickness
and cross-sectional area (or diameter) are the main character-
izations of the drawn tube. In either of the manufacturing
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Fig. 1 Danner draw process.
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processes, the required shape of the tube can be maintained by
the stream of the air gently blown through the mandrel. Insuf-
ficient quantity of the air blown through the mandrel can dis-

turb the desired shape of the glass tube. As a result, this
insufficient balance collapse the walls of the glass tube. More-
over, the geometry of the glass tube can be controlled by the
parameters involved herein such as the glass temperature, the

composition of the raw material, the pressure of the blowing
air in the mandrel and the rate of draw. It is to be remarkable
that as compared to the other variables, the shaping parame-

ters are significantly affected by the drawing speed which is
considered as a control variable to control the geometrical
aspects of the glass tube.

In glass industry, people are trying to control the geometry
of the glass tube optimally and investigated the proper external
parameters on their behalf through different techniques which

have been discussed in literature [1,2,4–16,42]. Their goal is to
control the circular, rectangular, square or triangular cross-
sectional area of the tube drawn during the drawing process.
In the recent past, a review on advances in metal micro-tube

forming is given by Christoph Hartl [17]. A review on cold
drawing process is performed by [18]. Some people worked
for investigation on the residual stress state of drawn tubes

by numerical simulation and neutron diffraction analysis
[19]. A numerical simulation approach was used in [20] to esti-
mate the most suitable input feedstock dimensions along with

optimum plug-die position for production of multi-rifled tubes
with given dimensions. To the best of our knowledge, the sta-
bility of the tube drawing processes has not yet been investi-

gated and analyzed. We avail this opportunity.
Linear stability analysis is the most common and successful

technique available in literature to analyze the stability of
physical models. Basically, the linear stability follows the

development, e.g. growth, oscillations or suppression of arbi-
trary small induced perturbations to understand the flow
dynamics experimentally. For many years, the linear stability

of system of differential equations is investigated and a signif-
icant number of important results have already been found
regarding the stability of different physical processes. For

example, this technique has been used to analyze the stability
of fiber fabricating process by different researchers, we refer
the readers to [21–29]. The stability of a melt spinning process
with respect to some external parameters has been investigated

in [30,31] by the method of linear stability analysis.
In this paper, we employ linear stability analysis approach
to analyze the stability behaviour of an isothermal tube draw-
ing process governed by a system of three coupled nonlinear

partial differential equations. We linearize the system and for-
mulate an eigenvalue problem. This problem is then solved
numerically to determine the critical draw ratio in order to dis-
cuss the stability of tube drawing process. For the isothermal

tube drawing, the system behaves an oscillatory instability
when the draw ratio is greater than a critical draw ratio. It is
observed that critical draw ratio decreases negligibly with the

decrease in step size. Critically, we have observed that stability
of an isothermal tube drawing model is affected by the density
and viscosity of material and remains unchanged with the

change in inside air pressure.
The structure of the paper is as follows: In Section 2, a

mathematical model of the isothermal tube drawing process

is explained. Section 3 deals with the steady state model. Exis-
tence and uniqueness of the solutions of steady state model is
shown in Section 4. A numerical strategy to find the steady
state solution of the model is studied in Section 5. Linear sta-

bility analysis for the isothermal case and the numerical imple-
mentation of results for the proposed problem is presented and
discussed in Section 6. Section 7 contains the conclusion of our

investigations.
2. Modeling isothermal tube drawing process

In the literature, different types of models for the drawing pro-
cesses with different level of demands and descriptions are
available. A considerable amount of work has been carried

out by different researchers [1–3,32–39] to model the tube
drawing process. In this section, we explain the mathematical
model for an isothermal tube drawing process.

To model the tube drawing process, we consider an incom-
pressible Newtonian flow of a molten glass between two free
surfaces r ¼ r1ðz; tÞ and r ¼ r2ðz; tÞ where r1ðz; tÞ and r2ðz; tÞ
respectively denote the inner and outer radii of the glass tube,

and assume that temperature remains constant throughout the
forming zone. Glass tube during production process is illus-
trated in Fig. 2. In the draw-down zone, the surface tension

force and the inertial force acting upon the molten glass are
insignificant and hence can be neglected. This kind of flow is
governed by the equations



Fig. 2 Glass tube during production process.
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The Eqs. (2.1a)-(2.1c) are taken from [3] and are known as

the standard equations showing the axi-symmetric stokes flow.

The first equation is the continuity equation and the last two
equations are the momentum equations respectively in r and
z directions. We denote the derivatives by subscripts r and z
where z denotes the distance along the axis of the glass tube

and r measures the distance perpendicular to it. The velocity
of the molten glass is defined to be �v ¼ ðu; vÞ where u and v
are the components of velocity �v along z and r direction respec-

tively. The pressure, density and the acceleration due to gravity
are denoted by p; q and g respectively.

Now, at the free surfaces r ¼ r1ðz; tÞ and r ¼ r2ðz; tÞ, it is

necessary to specify the stress conditions and the kinematic
conditions.

On the inner and outer surfaces of the glass tube, the stress
conditions are given as:

sn̂i ¼ �psn̂i on r ¼ r1;

sn̂o ¼ 0 on r ¼ r2;

where n̂i and n̂o are the unit normals on the surfaces r ¼ r1 and
r ¼ r2 of the tube respectively defined as
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and ps is the inside pressure applied on the surface r ¼ r1 of the

glass tube.
The kinematic conditions are given by
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where l denotes the viscosity of the molten glass which

remains constant at the given temperature.
To take benefit of the small parameters present in the prob-

lem, it is now convenient to convert the Eqs. (2.1) into dimen-
sionless form. For the dimensional quantities, the appropriate

scaling is defined as:

z ¼ L~z; r ¼ �L~r; r1 ¼ �L~r1; r2 ¼ �L~r2; l ¼ l0~l;

u ¼ U~u; v ¼ �U~v; t ¼ L
U
~t; p ¼ l0U

L
~p; ps ¼ l0U

L
~ps;

where � ¼ W
L
� 1. W is the width of the glass tube that has a

very small value than the typical length of hot-forming zone
L;U is the typical drawing speed and l0 is the typical melt glass
viscosity which has a constant value for the isothermal case.

After dropping the bar notation, the system of governing equa-
tions in dimensionless form is given as follows:
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The kinematics conditions (2.1d) and (2.1e) become
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The stress conditions (2.1f)-(2.1i) read as

�pþ 2l
@v

@r

� �
� l �2

@v

@z
þ @u

@r

� �
@r1
@z

¼ �ps on r ¼ r1; ð2:2fÞ

l
@u

@r
þ �2

@v

@z

� �
� �2 �pþ 2l

@u

@z

� �
@r1
@z

¼ �2ps
@r1
@z

on r ¼ r1;

ð2:2gÞ
�pþ 2l

@v

@r
¼ l �2

@v

@z
þ @u

@r

� �
@r2
@z

on r ¼ r2; ð2:2hÞ



3422 A.I.K. Butt et al.
l
@u

@r
þ �2

@v

@z

� �
¼ �2 �pþ 2l

@u

@z

� �
@r2
@z

on r ¼ r1: ð2:2iÞ

The above model can be simplified by means of an asymptotic

expansion, in which the inverse aspect ratio � is used as scaling
parameter. Assuming the glass flow as a thin layer flow and
ignoring the large aspect ratio of the flow, one derives the sim-

plified equations to model the isothermal tube drawing pro-
cess. In this derivation, the surface tension and inertial forces
acting upon the molten glass have also been ignored due to
their insignificant contributions. For details we refer to

[1–4,32,33,38].
In view of the above considerations, the governing Eqs.

(2.2) are reduced to the following model equations represent-

ing the isothermal process:
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equipped with the initial conditions

Aðz; 0Þ ¼ A0; Rðz; 0Þ ¼ R0; for z 2 ½0;L�; ð2:3dÞ
and the boundary conditions

Að0; tÞ ¼ A0; Rð0; tÞ ¼ R0; vð0; tÞ ¼ v0;

vðL; tÞ ¼ vL; for t P 0; ð2:3eÞ

where A0 and R0 are the cross-sectional area and average
radius of the glass tube at the time of entering the hot-
forming zone, respectively. Acceleration due to gravity and

density of the molten glass are denoted by g and q, respec-
tively. Average radius R of the tube is defined as

R ¼ 1

2
r1 þ r2ð Þ:

Equations in system (2.3) give us cross-sectional area A, veloc-

ity v, and average radius R of the glass tube. Width W of the
tube can be determined by the equation

A ¼ 2pRW:

Since the temperature throughout the forming zone of the tub-
ing process remains constant, the viscosity l of the melt glass

also remains constant.

2.1. Dimensionless form

In this subsection, we obtain dimensionless equations repre-
senting isothermal tube drawing model by introducing the fol-

lowing dimensionless quantities.
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Using the above quantities into model (2.3), we obtain dimen-
sionless equations given below:
@A

@t
þ @

@z
ðvAÞ ¼ 0; ð2:4aÞ

@

@z
ð3A @v

@z
Þ þ StA ¼ 0; ð2:4bÞ

@

@t
ðR2Þ þ @

@z
ðvR2Þ ¼ pc1p

A
R4 � A2

ð4pc1Þ2
 !

; ð2:4cÞ

where

St ¼ qgL2

lv0
and c1 ¼ R2

0

A0

; ð2:4dÞ

are the dimensionless parameters. Here St is known as Stokes

number. We have avoided asterisks notations in above equa-
tions for the sake of simplicity. The initial and boundary con-
ditions are transformed to following corresponding conditions:

Aðz; 0Þ ¼ 1; Rðz; 0Þ ¼ 1; for all z 2 X ¼ ½0; 1�; ð2:4eÞ
Að0; tÞ ¼ 1; Rð0; tÞ ¼ 1; vð0; tÞ ¼ 1; vð1; tÞ ¼ vd; for t P 0;
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where vd ¼ vL

v0
> 1 is the draw ratio.

3. Steady-state model

The steady state form of the model (2.4) under the assumption

that the state variables A; v; R are time t independent is given
as follows:
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subject to the conditions:

Að0Þ ¼ 1; vð0Þ ¼ 1; vð1Þ ¼ vd; Rð0Þ ¼ 1: ð3:1dÞ
4. Existence and uniqueness

We now study the necessary conditions to obtain the existence
and uniqueness of solution of steady state model (3.1). For the

sake of simplicity, we ignore the constants and write the model
(3.1) as:
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Using (4.1d), an Eq. (4.1a) becomes

AðzÞ ¼ 1

vðzÞ ; vðzÞ > 0; z 2 X: ð4:2Þ

Hence an Eq. (4.1b) can be written as

d2

dz2
lnðvÞ ¼ �v�1; vð0Þ ¼ 1; vð1Þ ¼ vd:



A mathematical analysis of an isothermal 3423
Using the transformation w ¼ lnðvÞ, we obtain

� d2w
dz2

� e�w ¼ 0; on X;

wð0Þ ¼ 0;

wð1Þ ¼ lnðvdÞ:
To transform the boundary conditions into the homogeneous
boundary conditions, we define a function on X as follows:

cðzÞ ¼ lnðvdÞð Þz; for z 2 X:

Suppose that wðzÞ ¼ wðzÞ � cðzÞ. Thus, we have

� d2w
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where mðzÞ ¼ e�cðzÞ > 0. The nonlinear variational problem

corresponding to the Eq. (4.3) is defined as:

Find w 2 H1
0ðXÞ such that

ðAw;uÞ ¼ 0; forall u 2 H1
0ðXÞ; ð4:4Þ
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We need the following Lemmas to prove the existence and

uniqueness of the solution of variation problem (4.4).
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0.

Proof: For w1;w2 2 H1
0ðXÞ, we have

Aw1 �Aw2;w1 �w2ð Þ ¼ RX d
dz
ðw1 �w2Þ d

dz
ðw1 �w2Þ�mðzÞðe�w1 �e�w2 Þðw1�w2Þ

� �
dz

P
R
X

d
dz
ðw1 �w2Þ d

dz
ðw1 �w2Þdz

¼ RX d
dz
ðw1 �w2Þ

		 		2dz
¼ d

dz
ðw1�w2Þ



 

2
PHkw1 �w2k2;

where H ¼ 1
cðXÞ > 0, is a constant depending upon the domain

of the problem. Hence the result. �

Lemma 4.2. Function w 2 H1
0ðXÞ used in Eq. (4.3) is positive for

each z in its domain X.

Proof: Note that wðzÞ– 0 for z 2 X. Indeed, it does not sat-
isfy the Eq. (4.3a) otherwise. Let wðzÞ < 0 for z 2 X. The weak
formulation of the Eq. (4.3) is given byZ
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dz
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Z
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0ðXÞ with w

< 0 in X;

orZ
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2

dz�
Z
X
mðzÞe�wwdz ¼ 0;

which is a contradiction. Indeed, both terms on the left hand
side are strictly positive. Therefore, wðzÞ > 0 for z 2 X. �
Remark 4.3. For 0 < w1;w2 2 H1
0 the relation

j e�w1 � e�w2 j6 j j w1 � w2 j; for j > 0;

holds. We use the above remark in proving a crucial Lemma
4.4 stated below.

Lemma 4.4. The operator A : H1
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0ðXÞ defined by

(4.5) is Lipschitz continuous, that is, there exists h > 0 such that
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Hence an operator A is a Lipschitz continuous. �

Lemma 4.5. [40] Let H be a Hilbert space with scalar product
ð:; :Þ and B : H ! H a monotone and Lipschitz continuous

operator. Then an operator equation

Bw ¼ 0;

has a unique solution w 2 H.

Note that the solution obtained in the above Lemma is a
fixed point u of an auxiliary operator Tr : H ! H defined by

Tru :¼ u� rBu; u 2 H:

Indeed, Tr is contractive operator provided that the parameter

r lies in ð0; 2H
L2 Þ where H > 0 is a monotonicity constant and

h > 0 is a Lipschitz constant.

Lemma 4.6. An operator equation defined in (4.4) has a unique

solution w 2 H1
0ðXÞ.

Proof: By Lemmas 4.1 and 4.4, the operator A is strongly

monotone and Lipschitz continuous. Therefore by the Lemma
4.5, there exists a unique solution to the Eq. (4.4). �.

Using Eq. (4.2), an Eq. (4.1c) takes the form

d

dz
ðvR2Þ ¼ A ðvR2Þ2 � 1

� �
: ð4:6Þ

If we take yðzÞ ¼ vðzÞR2ðzÞ, then the Eq. (4.6) becomes

dy

dz
¼ fðz; y;AÞ; for z 2 X with yðz0Þ ¼ y0; ð4:7Þ

where fðz; y;AÞ ¼ Aðy2 � 1Þ; z0 ¼ 0; and y0 ¼ 1.

Theorem 4.7. [41] Let the functions f and @f
@y be continuous in

some rectangle a < z < b; r < y < d containing the point
ðz0; y0Þ. Then, in some interval z0 � l < z < z0 þ l contained in

a < z < b, there is a unique solution y ¼ gðzÞ of the initial value
problem,
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dy

dz
¼ fðz; yÞ; yðz0Þ ¼ y0: �

Lemma 4.8. Let A and y be continuous functions of z. If the

functions f and @f
@y

are continuous in some rectangle

a < z < b; r < y < d containing the point ðz0; y0Þ, then there
exists a unique solution yðzÞ to the initial value problem (4.7)
in some neighborhood of ðz0; y0Þ.

Proof: Obviously

f ¼ Aðy2 � 1Þ and
@f

@y
¼ 2yA; ð4:8Þ

are continuous functions of z. It follows from Theorem 4.7
that there exists a unique solution to the Eq. (4.7) in some

neighborhood of ðz0; y0Þ. �

Remark 4.9. Existence and uniqueness of the solutions of the
differential Eq. (4.1a) follows from the Lemma 4.6 andEq. (4.2).
5. Solution strategy of steady-state model

In view of (4.2), the model (3.1) is now reduced to

d2v

dz2
¼ 1

v

dv

dz

� �2

� St

3
; ð5:1aÞ

dR

dz
¼ � R

2v

dv

dz
þ pc1p

2R
R4 � 1

4pc1vð Þ2
 !

; ð5:1bÞ

with following conditions

v 0ð Þ ¼ 1; v 1ð Þ ¼ vd; R 0ð Þ ¼ 1: ð5:1cÞ
For numerical solution of (5.1), we use shooting method along

with MATLAB ODE solver ode45.

5.1. Shooting method

Shooting method [43] transforms the boundary value problem
(BVP) into a set of initial value problems (IVPs) that can be
solved using existed ODE solvers. Let

dv

dz
¼ W:

The model (5.1) can be written as:

dv

dz
¼ W; ð5:2aÞ

dW
dz

¼ W2

v
� 1

3
St; ð5:2bÞ

dR

dz
¼ � R

2v

dv

dz
þ pc1p

2R
R4 � 1

4pc1vð Þ2
 !

; ð5:2cÞ

with conditions:

v 0ð Þ ¼ 1; v 1ð Þ ¼ vd; R 0ð Þ ¼ 1: ð5:2dÞ
For sake of simplicity, we now put the model (5.2) into a com-
pact form

dV

dz
¼ FðV; zÞ; 8 z 2 X; with V1ð0Þ ¼ 1; V1ð1Þ
¼ vd; V3ð0Þ ¼ 1; ð5:3Þ
where V ¼ vðzÞ;WðzÞ;RðzÞ½ �T 2 R3.
Thus the corresponding IVP is given as

dV

dz
¼ FðV; zÞ; 8 z 2 X; with V1ð0Þ ¼ 1; V2ð0Þ
¼ s; V3ð0Þ ¼ 1; ð5:4Þ

where the initial guess s is to be chosen such that V1 hits vd at

z ¼ 1.
The role of a parameter s is very crucial and hence we

denote the solution of IVP (5.4) by Vðz; sÞ. If we can compute
a value of s such that

EðsÞ ¼ Vð1; sÞ � vd ¼ 0; ð5:5Þ

then the solution of the IVP (5.4) coincides with the solution of

the BVP (5.3). We approximate the root of the Eq. (5.5) using
the Newton–Raphson method. To achieve this, we proceed as
follows: Let E be differentiable function over ð0; 1Þ such that
dE
ds

– 0 and Eð0ÞEð1Þ < 0, and hence there exists at least one

number �s 2 ð0; 1Þ such that Eð�sÞ ¼ 0. The sequence snf gn2N
generated by the Newton Raphson method given as follows:

siþ1 ¼ si � EðsiÞ
E0ðsiÞ ; i ¼ 0; 1; 2; . . . ð5:6Þ

which converges to �s for some suitable initial guess s0. The suit-

able guess s0 is attained by performing a few iterations of the
bisection method. To implement bisection method, we con-

sider two initial guesses s10 and s20 with s10 < s20 such that

Eðs10ÞEðs20Þ < 0: ð5:7Þ
This guarantees the existence of at least one �s 2 ½s10; s20� such
that Eð�sÞ ¼ 0; a root of an Eq. (5.5). Next, we find the mid

point s30 of interval ½s10; s20� and determine the sign of Eðs30Þ. If
Eðs30ÞEðs20Þ < 0, then the Eq. (5.5) has a root over the interval

½s30; s20�, otherwise the root exists in ½s10; s30�. This process is

repeated to obtain a sequence snf gn2N which converges to �s.

Since this convergence is very slow, we stop bisection iterations

when the length of the last interval containing the root is less
than the given tolerance. The mid point of the last interval
gives the best initial guess s0 for the Newton’s iterations
(5.6). To implement Newtons’s iterations (5.6), we also need

E0ðsnÞ. For this, we define Uðz; sÞ as follows:

Uðz; sÞ ¼ @V

@s

				
z¼1

¼ E0ðsÞ; ð5:8Þ

and formulate a second initial value problem as follows

@U
@z

¼ @F

@V

� �
U with U1ð0; sÞ ¼ 0; U2ð0; sÞ

¼ 1; U3ð0; sÞ ¼ 0: ð5:9Þ
We solve the initial value problems (5.4) and (5.9) for V1ð1; s0Þ
and U1ð1; s0Þ which respectively give us Eðs0Þ (by (5.5)) and

E0ðs0Þ. Now Newton’s iterations (5.6) give the next refined
guess siþ1; i ¼ 0; 1; . . .. The process is repeated until we obtain

the result. The numerical strategy given above is implemented
through the following algorithm.
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Algorithm 1.

(1) Make two initial guesses s10 and s20 such that s10 < s20 for V2ð0Þ.
(2) Solve (5.4) for each of the guess and then solve (5.5) for Eðs10Þ
and Eðs20Þ.
(3) If Eðs10ÞEðs20Þ > 0 move to step 1 otherwise move to next step.

(4) Find s30 ¼ s10þs20
2 , if Eðs20ÞEðs30Þ < 0, set s10 ¼ s30, otherwise

s20 ¼ s30.

(5) If j s10 � s20 j> tol1, move to step 4 otherwise s0 ¼ s1
0
þs2

0

2 .

(6) Evaluate the initial value systems (5.4) and (5.9).

(7) If j EðsiÞ j> tol2, find siþ1 using (5.6) and move to step 6

otherwise STOP.

Here tol1 and tol2 are set to terminate the computing
process.

The parametric values appearing in the model (3.1) are
given in the Table 1.

6. Linear stability analysis

In this section, we investigate the stability of tube drawing pro-

cess employing a linear stability analysis. We construct an
eigenvalue problem and solve it to determine the critical draw
ratio to investigate the stability of the model. To achieve this

goal, we re-write the equations of the isothermal model (2.4)
in the form

@A

@t
¼ �A

@v

@z
� v

@A

@z
; ð6:1aÞ

0 ¼ A
@2v

@z2
þ @A

@z

@v

@z
þ 1

3
StA; ð6:1bÞ

@R2

@t
¼ �v

@R2

@z
� R2 @v

@z
þ pc1pR

4

A
� pc1pA

ð4pc1Þ2
; ð6:1cÞ

along with the initial and boundary conditions given by (2.4e)
and (2.4f).

To determine the linear stability, the first step is to linearize

the system (6.1). For this purpose, we split the unsteady solu-
tion vðz; tÞ;Aðz; tÞ and Rðz; tÞ into the form given as
Table 1 Summary of parametric values appearing in the

model (3.1).

Parameters Symbols Approximate

Values

Units

feeding speed v0 1 mm=s

drawing speed vL 12 mm=s

length of the hot-forming

zone

L 1 m

viscosity l0 5� 105 Pa:s

inside pressure ps 420 Pa

density q 2500 kg=m3

average radius of the glass

tube

R0 30 mm

initial area of the tube A0 1885 mm
vðz; tÞ ¼ vsðzÞ þ KðzÞekt; ð6:2aÞ
Aðz; tÞ ¼ AsðzÞ þ /ðzÞekt; ð6:2bÞ
Rðz; tÞ ¼ RsðzÞ þ .ðzÞekt; ð6:2cÞ
where KðzÞ;/ðzÞ; .ðzÞ are the perturbed quantities of the state

variables Aðz; tÞ; vðz; tÞ;Rðz; tÞ respectively; k 2 C, a complex
eigenvalue which determines the rate of growth of the pertur-
bations KðzÞ, /ðzÞ; .ðzÞ, and vs;As;Rs denote the steady-state

solutions of model (3.1), respectively.

6.1. Eigenvalue equations

We Substitute the Eqs. (6.2) into system (6.1) and ignore the
higher order terms to obtain the following linearized system
for the isothermal flow.

X/ ¼ a1/þ a2
d/
dz

þ a3Kþ a4
dK
dz

; ð6:3aÞ

0 ¼ b1/þ b2
d/
dz

þ b3
dK
dz

þ b4
d2K

dz2
; ð6:3bÞ

X. ¼ d1/þ d2Kþ d3
dK
dz

þ d4.þ d5
d.
dz

; ð6:3cÞ

subject to the boundary conditions given by

Kð0Þ ¼ 0; Kð1Þ ¼ 0; /ð0Þ ¼ 0; .ð0Þ ¼ 0; ð6:3dÞ
where ai; bi and di are functions of z and read as

a1 ¼ �v0s; a2 ¼ �vs;

a3 ¼ v0s
v2s
; a4 ¼ � 1

vs
;

b1 ¼ v00s þ 1
3
St; b2 ¼ v0s;

b3 ¼ � v0s
v2s
; b4 ¼ 1

vs
;

d1 ¼ �v2sR
0
s � K2

1
Rs
� 1

2
vsv

0
sRs; d2 ¼ �R0

s;

d3 ¼ � 1
2
Rs; d4 ¼ �v0s � vs

R0
s

Rs
þ 2K1vsR

2
s ;

d5 ¼ �vs:

Here K1 ¼ pc1p and K2 ¼ pc1p
ð4pc1Þ2

.

6.2. Numerical solution

We discretize the linearized system (6.3) using finite difference
approximations on an equally spaced grid

zi ¼ ih; i ¼ 0; 1; 2; . . . ; n with grid size h ¼ 1
n
. The derivatives

are approximated as follows:

dn
dz
ðziÞ � niþ1�ni�1

2h
;

d2n
dz2

ðziÞ � niþ1�2niþni�1

h2
;

where ni ¼ nðziÞ and i ¼ 1; 2; . . . ; n� 1. We apply the back-
ward difference approximations to obtain

dn
dz
ðziÞ � ni�ni�1

h
;

d2n
dz2

ðziÞ � ni�2ni�1þni�2

h2
;

for the end point i ¼ n.
We have three unknowns Ki;/i and .i at each grid point zi.

Finite difference approximations of derivatives are plugged
into the system (6.3) and the terms are re-arranged to get the
following system of discretized equations (eigenvalue

equations)



Fig. 3 Plot of real part of the leading eigenvalues against the

draw ratio vd ¼ vL
v0
> 1 for the density q ¼ 2500.

Table 2 Critical draw ratios for different values of h.

Step size h ¼ 0:01 h ¼ 0:005 h ¼ 0:001

Critical draw ratio 41.215 39.919 38.882
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M/þNK� k/ ¼ 0; ð6:5aÞ
X/þ YK ¼ 0; ð6:5bÞ
S/þ TKþU.� k. ¼ 0; ð6:5cÞ
where M;N;X;Y;S;T and U are coefficient matrices. Eq.
(6.5b) leads us to

K ¼ �Y�1X/;

provided that the matrix Y is invertible. Now substituting K
into matrix Eqs. (6.5a) and (6.5c), we obtain the system

Q11/� k/ ¼ 0;

Q21/þQ22.� k. ¼ 0:

In a compact form, we have

Qn ¼ kn; ð6:7Þ
where

Q ¼ Q11 O

Q21 Q22

� �
; n ¼ /

.

� �
;

Fig. 4 Plot of critical draw ratio dc agai
and

Q11 ¼ M�NY�1X;

Q21 ¼ S� TY�1X;

Q22 ¼ U:

are the block matrices. To determine the linear stability of the
isothermal tube drawing model (2.4), we find the eigenvalues ki
of the eigenvalue problem (6.7) and check the sign of their real

parts. If real part of ki is positive, that is, ReðkiÞ > 0 for any i,
then the given system is unstable which indicates the
unbounded growth of the state variables with time. The system
will be stable only if each eigenvalue ki has negative real part.

We are unable to determine the behavior of the physical sys-
tem if we do not have any of the above said situations. The
minimal value of the draw ratio where instability occurs is

called critical draw ratio denoted by dc. To determine critical
draw ratios of isothermal tube drawing, we plug the numerical
solution As; vs, and Rs of steady state model (3.1) into the

eigenvalue problem (6.7) and solve it for the eigenvalues of
the matrix Q. Stability of the model is discussed on the basis
of computed eigenvalues/critcal draw ratios.

6.3. Numerical implementations of results

In Fig. 3, real parts of the leading eigenvalues have been plot-
ted against draw ratios for three different step sizes

h ¼ 0:01; 0:005 and 0:001. A plot of critical draw ratios against
three step sizes is shown in Fig. 4 and the corresponding data is
given in the Table 2. We observe a small decrease in the critical

draw ratio for the drawing process with the decrease in the step
size h. This shows that step size h has a minor influence on the
process stability. Stable and unstable regions are also shown in

both of these figures. For further analysis, we investigate the
effect of density q, viscosity l and the pressure ps on the critical
nst the step size h ¼ 0:01; 0:005; 0:001.



Fig. 5 Critical draw ratio dc against the density q where h ¼ 0:01.
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draw ratio dc. Fig. 5 shows that critical draw ratio changes lin-
early with increase in density of the material. The stable and
unstable regions are also shown in this figure. Table 3 gives

the numerical view of the Fig. 5. The critical draw ratio
increases with the increase in density of the melt glass, by
which the onset of instability is shifted to higher critical draw

ratios. Thus, by setting higher density of melt glass, the stabil-
ity of the isothermal tube drawing process can be improved.
On the other hand, the critical draw ratio decreases with the
increase in viscosity of molten glass as illustrated in Table 4.

The stable and unstable regions are shown in Fig. 6. This
decrease in critical draw ratio will regress the stability of the
Table 3 Critical draw ratio

for the isothermal case

depending on density of

molten glass with step size

h ¼ 0:01

Critical draw ratio Density

22.125 100

25.695 500

29.855 1000

33.775 1500

37.545 2000

41.215 2500

Table 4 Critical draw ratio for the isothermal case depending

on viscosity of molten glass with step size h ¼ 0:01 and

q ¼ 2500.

Critical draw ratio Viscosity

41.215 5:0� 105

39.565 5:5� 105

38.165 6:0� 105

36.975 6:5� 105

35.945 7:0� 105

35.045 7:5� 105

Fig. 6 Critical draw ratio dc against the viscosity l0 where

h ¼ 0:01.
isothermal tube drawing process. Moreover, it is observed that

stability of the isothermal tube drawing process with respect to
pressure ps does not change. The obtained stable/unstable
regions in practice can influence the tube drawing process.

Practically, stable region gives the reliability of the process
with respect to the parameters involved over which the manu-
facturing process works well and fulfills all the desired proper-

ties of the tube drawn. On the other hand, the unstable region
is the region where minimal value of the draw ratio disappears.
As a result, the tubing process behaves unstable and do not

work well. We discuss all of the numerical results with stable
and unstable regions.

7. Conclusions

The main purpose of this study is to analyze the isothermal
tube drawing process with respect to some process parameters,
which can be unstable by such parameters when some critical

conditions are exceeded. That’s why, stability of the tube
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drawing process with respect to process parameters is impor-
tant in glass industry. To analyze the isothermal tubing pro-
cess, linear stability method (a typical stability tool) has been

used. We formulated an eigenvalue problem and solved it
using MATLAB ODE solver ode45 and the MATLAB routine
eig.

For the parametric values given in Table 1 and for h ¼ 0:01,
the critical draw ratio for isothermal tube drawing process is
noticed to be 41:215. We also noticed that there is a small

change in the critical draw ratio dc with the change in step size
h. With the refinement of the step size, we have a minor
decrease in the critical draw ratio. So, the stability of tube
drawing process is influenced negligibly by a step size h.

We further analyzed the stability of isothermal tube draw-
ing process with respect to the material properties such as den-
sity and viscosity etc. We observed that the critical draw ratio

increases linearly with the increase in the density of the molten
glass. Hence, the stability of the isothermal tube drawing pro-
cess can be improved by taking higher density of the material.

We also study the effect of viscosity on the stability of the pro-
cess. It is observed that increase in viscosity of the material
gives the small regress in stability of the model. For the

isothermal process, we noticed that stability domain of the
model is independent of the air pressure.
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