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Abstract  
 

Traditionally, the selection of beef cattle was based on the quantitative animal breeding 

theory and principles. The development of estimated breeding values (EBVs) resulted in 

accelerated genetic progress in most traits of economic importance. The advent of molecular 

technology, completion of the bovine genome sequence and single nucleotide polymorphism 

(SNP) marker discoveries facilitated the use of genomic selection as a selection tool which 

increased breeding value accuracies. In South Africa, the Beef Genomic Programme 

enabled the establishment of a reference population for the Bonsmara breed facilitated by 

large datasets containing performance data due to mandatory performance recording in the 

breed and availability of biological samples for genotyping. In 2017, the first genomic 

enhanced breeding values (GEBVs) were made available to breeders. This study aimed to 

assess the accuracies of EBVs and GEBVs in the selection of Bonsmara cattle for growth 

traits. The study was conducted in two parts; the dataset for analysis I and II consisted of 

4128 and 4189 genotypes, respectively and 2 018 052 phenotypic records. In analysis I, 

EBVs and GEBVs were estimated for 4128 animals and were correlated to determine if 

including genomic information in the breeding value estimates influenced the ranking of the 

animals and breeding value accuracies. In analysis II, a forward validation scheme was 

applied using validation populations, which consisted of the youngest 500 animals with 

phenotypic and genotypic information for each trait. Traditional parental averages (TPAs) 

without SNP information of the parents, genomic-based parental averages (GPAs) with SNP 

information of the parents, parental averages with genomic information (PAGs) which 

include SNP information of the parents and the animals themselves, EBVs and GEBVs were 

estimated. These breeding values were correlated to determine the predictive ability of the 

breeding value models. In analysis I, the ranking of the animals based on the GEBVs 

differed from the EBV rankings. The increase in the average GEBV accuracy was between 

2.7% to 5.3% compared to the EBVs. In analysis II, the predictive ability of the GEBV models 

were 8.4% to 78.1% higher compared to the TPA models for all the traits. Additionally, the 

predictive ability of the PAG models were 5.3% to 11.0% higher compared to the TPA and 

GPA models for height, direct and maternal weaning weight. The results indicated that 

genomic information plays an important role in the breeding value estimation and should be 

included in routine genomic evaluations for growth traits in the Bonsmara breed. This study 

confirmed the value of genomic information in the breeding value estimation for Bonsmara 

cattle. 
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Chapter 1: Introduction 

 

1.1 Introduction  

 
The South African population is expected to increase by approximately 16 million people, 

reaching a population size of 72 million by 2050 (U. N., 2019). It has been noted in a recent 

study by Queenan et al. (2020) that the expenditure on livestock-derived foods has 

increased by 39% over the past two decades, emphasising the growth in the demand for 

animal protein and production. In South Africa, the beef industry is one of the principal 

industries in the agricultural sector due to its important role in food production and support of 

livelihoods (Nevondo et al., 2019). Only 20% of the agricultural land in South Africa is 

suitable for crop production, with the majority of land (approximately 80%) only suited for 

grazing by livestock (Department of Agriculture Forestry and Fisheries, 2017).  

The South African beef industry consists of two sectors, the developed (i.e. commercial) 

sector and the developing sector, which include market-oriented farmers and subsistence 

farming (Department of Agriculture Forestry and Fisheries, 2017). The commercial beef 

production sector is divided into stud farmers (i.e. seed stock), commercial farmers, feedlots 

and abattoirs, similar to the beef industry in the United States (Garrick & Golden, 2009; 

Department of Agriculture Forestry and Fisheries, 2017). The stud and commercial farmers 

represent the cow-calf sector that consists of the stud farmers responsible for producing 

sires for breeding and the commercial farmers that focus on calf production using sires that 

are generated by the stud farmers (Garrick & Golden, 2009). The feedlot and abattoir 

industry also play an important role in the beef value chain as the majority of South African 

beef is produced by feeding and finishing of weaner calves in feedlots (Vermeulen et al., 

2008; Department of Agriculture Forestry and Fisheries, 2017). Feedlots form part of 

intensive production systems which are widespread and usually found near metropolitan 

markets and companies that supply the required animal feed (Meissner et al., 2013).  

Several beef cattle breeds are used to produce high quality meat suitable for finishing in 

feedlots. In South Africa, there are approximately 30 beef breeds which include British, 

European, composite and indigenous breeds (Van Marle-Köster et al., 2013). The seven 

most important beef cattle breeds in the feedlot industry include Bonsmara, Hereford, 

Simmentaler, Limousin, SA Angus, Beefmaster and Drakensberger (Scholtz et al., 2008).  

Bonsmara cattle have been dominating the feedlot industry with up to 15.9% of weaners and 

both Hereford and Simmentaler are prevalent in crossbred calves (Scholtz et al., 2008). 

South Africa has several abattoirs forming part of the beef value chain for humane 
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slaughtering and delivering safe beef to the market (Red Meat Producers’ Organisation, 

2017). 

The overall breeding objectives of the beef sector, including seed stock and commercial 

farmers, are usually directed at the improvement of fertility and growth efficiency (Garrick, 

2011). Breeding objectives need to be clearly defined with specific and measurable selection 

criteria in order to ensure genetic improvement in the beef sector (Garrick & Golden, 2009). 

Breeding objectives may include a range of aspects and traits and differ between production 

systems (Amer et al., 2001). South African beef farmers had access to national animal 

recording schemes since the early 1960’s, followed by the development of estimated 

breeding values (EBVs) in the 1980’s which resulted in genetic improvement in most of the 

production traits with high heritability (Bergh, 1999; Mokoena et al., 1999). 

Since the completion of the bovine genome in 2009 (Matukumalli et al., 2009), followed by 

single nucleotide polymorphism (SNP) marker discovery, high density commercial arrays 

have been developed (Van Tassell et al., 2008; Eck et al., 2009; Seidel, 2010). New 

possibilities arose for using deoxyribonucleic acid (DNA) information in genetic evaluations 

for cattle (Meuwissen et al., 2001; Schaeffer, 2006; Harris et al., 2008; Garrick, 2009; 

VanRaden et al., 2009; Calus, 2010; Koopaee & Koshkoiyeh, 2014). Genomic selection 

(GS) entails using SNP genotyping information together with phenotypic and pedigree 

information to estimate genomic enhanced breeding values (GEBVs) which provide an 

additional selection tool (Meuwissen et al., 2001; Calus, 2010; Goddard, 2012). Since the 

first application of GS in a simulation study in dairy cattle in 2006 (Schaeffer, 2006), GS has 

been widely implemented in both dairy and beef cattle populations in most of the developed 

countries in the world (Koivula et al., 2012). A major advantage of GS is the increase in the 

accuracy of breeding values when genomic information is included in genetic evaluations 

(Berry et al., 2016).  

The success of GS in developed countries, led to the establishment of a state-funded project 

in South Africa in 2015, namely the Beef Genomic Programme (BGP), in order to establish 

training/reference populations for beef breeds (Van Marle-Köster & Visser, 2018a). More 

than 7000 genotypes were generated over three years and 16 breed societies participated in 

the BGP funded by the Technology Innovation Agency (TIA) (Van Marle-Köster & Visser, 

2018a). The Bonsmara breed is a composite beef breed that was developed with the 

intention to improve growth traits and to enhance adaptation to South African climatic 

conditions (Bonsma, 1980). Registering and recording the performance of Bonsmara cattle 

are mandatory in South Africa, which has led to a large population of approximately 108 198 
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registered Bonsmara animals with available phenotypic and pedigree information (Bosman 

et al., 2017; SA Stud Book, 2019).  

Animals of both sexes were genotyped in the BGP, which included high impact sires with 

EBVs for maternal weaning weight (MWW) with ≥ 65% accuracy (Bosman et al., 2017). 

Additionally, the cows were chosen based on their age (older than 6 years) and the number 

of calves (≥ 3) that they have weaned with recorded weights (Bosman et al., 2017). The 

large phenotypic and pedigree datasets that were available, for several production traits 

such as growth and fertility, together with the genotypic information from the BGP allowed 

the establishment of a reference population for the Bonsmara breed (Bosman et al., 2017). 

The reference population made it possible to include genomic information in the genetic 

evaluations to estimate GEBVs (SA Stud Book, 2017). 

 

1.2 Aim  

 

Initially, only EBVs were estimated for the Bonsmara breed and were useful in selecting high 

quality individuals for production traits (SA Stud Book, 2017). However, when research 

indicated the value of including genomic information in the breeding value estimation, the 

BGP was established to genotype beef breeds in South Africa (Van Marle-Köster & Visser, 

2018a). The BGP aimed to gather enough genotypes to establish reference populations for 

the beef breeds (Van Marle-Köster & Visser, 2018a). The Bonsmara Breed Society further 

invested additional funds to genotype as many animals as possible in order to establish a 

large enough reference population to estimate GEBVs for the breed (Bosman et al., 2017). 

The Bonsmara breed had large datasets with phenotypic and pedigree information available 

due to the mandatory performance recording of the animals (Bosman et al., 2017). 

Therefore, once the genotypes were obtained, a reference population for the Bonsmara 

breed was established and resulted in the estimation of GEBVs for the Bonsmara breed (SA 

Stud Book, 2017). Since 2017, GEBVs have been provided to Bonsmara breeders for 

application in their herds (SA Stud Book, 2017). This study is the first attempt to evaluate the 

effect of genomic information on the breeding value estimation in Bonsmara cattle.  

The aim of this study was to assess the accuracies of estimated breeding values and 

genomic enhanced breeding values in the selection of Bonsmara cattle. 
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In order to achieve the aim, the following objectives were set: 

 

Analysis I: 

1. Determine whether including genomic information in the breeding value estimation 

influences the ranking of Bonsmara animals with phenotypic and genotypic 

information for growth traits (direct weaning weight, maternal weaning weight, 

average daily gain and height). 

 

2. Determine whether including genomic information in the breeding value estimation 

influences the accuracy of the breeding values of Bonsmara animals for growth traits. 

 

Analysis II: 

1. Determine whether including genomic information in the breeding value estimation 

influences the predictive ability of the breeding values of Bonsmara animals for 

growth traits. 
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Chapter 2: Literature review 

 

2.1 Introduction 

 

Selective breeding in livestock plays an important role in improving economically important 

traits (Meuwissen et al., 2001; Goddard & Hayes, 2007). In the past, selection for 

economically important quantitative traits was performed using phenotypic information from 

the individuals and their relatives and making use of pedigree information (Meuwissen et al., 

2001; Goddard & Hayes, 2007). The development of DNA technology lead to the discovery 

of DNA markers that have been used to identify multiple genes which affect traits of interest 

in livestock (Koopaee & Koshkoiyeh, 2014). Mapping of the bovine genome in 2009 

(Matukumalli et al., 2009) resulted in the discovery of single-gene traits, quantitative trait loci 

(QTL) and genomic regions that affect quantitative traits (Van Marle-Köster et al., 2013; 

Koopaee & Koshkoiyeh, 2014; Rothschild & Plastow, 2014).  

The discovery of SNPs and the development of commercial SNP arrays for cattle (Van 

Tassell et al., 2008; Eck et al., 2009; Seidel, 2010), resulted in genotyping of thousands of 

cattle. The development of appropriate statistical methods facilitated the application of 

genomic selection (GS) in dairy and beef cattle (Meuwissen et al., 2001; Schaeffer, 2006; 

Harris et al., 2008; Garrick, 2009; VanRaden et al., 2009; Calus, 2010; Koopaee & 

Koshkoiyeh, 2014). This literature review provides a brief overview on the development of 

quantitative animal breeding and discusses the role genomics has played in the 

advancement of GS in cattle.  

 

2.2 Brief overview of the history and development of quantitative and 

molecular genetics focusing on animal breeding 

 

Quantitative genetic principles laid the foundation for the development of statistical models 

which enabled the estimation of breeding values for livestock (Patterson & Thompson, 1971; 

Henderson, 1984; Meuwissen et al., 2001). However, studies suggested that the breeding 

value accuracy could be increased by including SNP genotyping information in the breeding 

value estimation (Meuwissen et al., 2001; Schaeffer, 2006). Therefore, the developments in 

molecular genetics that made SNP genotyping possible were essential for the estimation of 
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GEBVs for livestock and the implementation of GS in cattle (Gray et al., 2000; Harris et al., 

2008; Garrick, 2009, 2011; Matukumalli et al., 2009; VanRaden et al., 2009; Calus, 2010; 

Goddard, 2012; Koopaee & Koshkoiyeh, 2014). 

 

2.2.1 Quantitative principles 

 

Dr Jay Lush established the field of animal breeding (Lush, 1935, 1936; Hill, 2014). He is 

known for explaining the concept of additive genetic variance and the role of the 

environment in the observed differences among traits (Lush, 1935, 1936; Hill, 2014). The 

term ‘narrow sense heritability’, which indicated the ratio of additive genetic variance to the 

total phenotypic variance within a population, was introduced in 1936 (Lush, 1936; Bell, 

1977), followed by the “breeder’s equation”, consisting of narrow sense heritability (h2) and 

the selection differential (S) which could be applied to predict the response to selection 

(Lush, 1937).  

Hazel and Lush, as early as 1942, compared three selection methods to determine the best 

method for efficient selection of individual traits (Hazel & Lush, 1942). These methods 

included selection for one trait at a time, selection for a total score and selection using 

independent culling levels (Hazel & Lush, 1942). The selection method that assigned an 

appropriate weight to each trait i.e. the selection for total score was the most efficient (Hazel 

& Lush, 1942). However, the standard index theory used for selection could only be used in 

the case where all the animals were reared under the same environmental conditions, due to 

the assumption that the selection method already corrected for the environmental effects 

(Hazel & Lush, 1942). Therefore, the selection method could not be applied to bulls that had 

daughters distributed among many different herds and environments as a result of artificial 

insemination (AI) (Hazel & Lush, 1942). Additionally, Hazel (1943) explained the role of 

genetic correlations on selection and application thereof in the calculation of multi-trait 

selection indices.  

Henderson postulated the inclusion of fixed effects such as herd or season and random 

effects in the breeding value models, which lead to the initial development of the best linear 

unbiased prediction (BLUP) method (Henderson, 1948; Hill, 2014). Estimating variance and 

covariance components of the random effects in the models were necessary to estimate 

breeding values for selection candidates (Hofer, 1998). However, the variance component 

analyses at the time mainly focussed on biological data with a balanced structure (Crump, 

1946, 1951; Eisenhart, 1947). Henderson aimed to design efficient testing and selection 

programs for the New York State dairy bulls where the data had an unbalanced structure 
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and required high quality variance estimates of the production records of the daughters 

(Henderson, 1953). Therefore, Henderson continued to develop mixed model methods to 

estimate variance and covariance components for data with an unbalanced structure, as is 

commonly the case with livestock data (Henderson, 1953). The development of computer 

software programs made the use of these methods possible, due to the ability of the 

program to handle large datasets for the estimation of genetic parameters (Harvey, 1960, 

1977). Robertson & Rendel (1954) introduced the concept of contemporary comparisons 

that grouped animals according to similar environmental and management conditions which 

influenced the phenotypes of the animals. Contemporary comparisons resulted  in the 

determination of breeding values with a higher accuracy (Robertson et al., 1956). 

Patterson and Thompson (1971) developed the restricted maximum likelihood (REML) 

method, which became the preferred theoretical method to estimate variance and 

covariance components in animal breeding (Meyer, 1989; Hofer, 1998). However, REML 

was not frequently implemented in practice due to it having extensive computational 

requirements and complex algorithms (Meyer, 1986, 1989). Therefore, Meyer (1986) 

developed a simple model that could facilitate the use of large amounts of data to estimate 

variance and covariance components between and within genetic groups. The development 

of computational resources and specialized algorithms at the time greatly facilitated the use 

of REML (Meyer, 1989).  

Initially, REML was used most often in sire models, where dairy cattle data was analysed 

using information of the progeny to gain information on half of the progenies’ sire breeding 

values (Meyer, 1989). However, the animal model was theoretically superior in estimating 

variance and genetic parameters compared to the sire model (Everett et al., 1979; 

Schaeffer, 1983; Hudson & Schaeffer, 1984; Sun et al., 2009) and therefore animal models 

started to gain more interest (Meyer, 1989). These models could account for all records and 

was therefore able to provide insight on the measured animal’s additive genetic merit 

(Meyer, 1989). Parents without phenotypic information could be included in the animal 

models, which ensured that all relationship information could be taken into account (Meyer, 

1989). This led to Graser et al. (1987) suggesting a derivative-free REML algorithm using an 

animal model for univariate analyses that could use data from thousands of animals from 

large selection experiments to estimate the additive genetic and error variance. Thereafter, a 

derivative-free REML approach was developed for the estimation of variance components 

including the animals’ additive genetic merit and random effects for univariate and extended 

multi-variate analyses (Meyer, 1989, 1991).  
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In 1984, Henderson presented the BLUP method, based on a linear model that uses 

phenotypic and pedigree information to calculate the inverse of the additive relationship 

matrix (A-matrix) to estimate breeding values for animals (Calus, 2010; Forni et al., 2011). 

The A-matrix uses pedigree data to calculate the probability that gene pairs are identical by 

descent (Wright, 1922; Forni et al., 2011). In traditional animal breeding models the base 

population is assumed to be unrelated to each other and share no common alleles or genes 

(VanRaden, 2007). The A-matrix therefore assigns a 0 to off-diagonal elements indicating no 

relationship between individuals and a 1 for diagonal elements where the individual is 

compared to itself (VanRaden, 2007). Once the A-matrix is calculated, it is used to estimate 

EBVs using the traditional BLUP method (Meuwissen et al., 2016).  

The basis of the BLUP linear model is expressed as follows, 

y = Xβ + Zu + e, 

with X representing an incident matrix (n x p) that is known and fixed, β representing a fixed 

vector (p x 1), Z representing an incidence matrix (n x q) and u representing a random vector 

(q x 1) with null means (Henderson, 1984). Xβ defines the fixed effects and Zu defines the 

random effects (VanRaden, 2008).  

 

2.2.2 Molecular developments 

 

Since 1980 several technological developments made it possible to study the genome.  The  

development of the polymerase chain reaction (PCR) made a major contribution to the 

accelerated amplification of DNA (Mullis et al., 1986) and use of several DNA markers which 

included restriction fragment length polymorphism (RFLP) markers, random amplification of 

polymorphic DNA (RAPD) markers and microsatellite markers (Botstein et al., 1980; Weller 

et al., 1984; Williams et al., 1990). The sequencing of the entire human genome by the 

human genome sequencing consortium led the way for other genomes to be sequenced 

such as the mouse genome in 2002 (Mouse Genome Sequencing Consortium, 2002) and 

the chicken genome in 2004 (Hillier et al., 2004).  

The bovine genome assembly was completed in 2009 and the sequence was based on a 

Hereford cow, which was partially inbred, as well as her sire (Matukumalli et al., 2009). The 

sequence provided insight on the cattle genome and was useful for comparison with other 

species and studying the evolution of cattle (Matukumalli et al., 2009). A study indicated that 

the cattle genome consists of a minimum of 22 000 genes and approximately 14 000 
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orthologs are shared between cattle and seven mammalian species (Elsik et al., 2009). 

Once the bovine genome sequence became available several studies were performed to 

identify SNPs in the genome (Van Tassell et al., 2008; Eck et al., 2009; Seidel, 2010).  

SNPs had several advantages as opposed to using microsatellite markers which lead to 

SNPs becoming the preferred genotyping method (Gray et al., 2000; Garrick, 2011). SNPs 

are usually bi-allelic due to mutation bias and single nucleotide substitutions having a low 

frequency at the origin of SNPs (Vignal et al., 2002). In many genomes these nucleotide 

changes are found every 300 to 1000 base pairs (Aitken et al., 2004). A base pair can be 

classified as a SNP when the allele with the lowest frequency has a frequency greater than 

or equal to 1% (Vignal et al., 2002).  

The bi-allelic nature of SNPs lead to low individual locus information and therefore many 

more SNPs compared to microsatellites need to be used in population analyses (Aitken et 

al., 2004). Depending on the frequency of the alleles, when SNPs are used for parentage 

analyses and individual identification, it is estimated that 30-50 SNPs are needed compared 

to only 10-15 microsatellites to allow for equal statistical power (Aitken et al., 2004). SNPs 

are genotyped using high-throughput methods such as allele-specific hybridization, DNA 

arrays and pyrosequencing (Koopaee & Koshkoiyeh, 2014). SNPs are better suited for high-

throughput genetic analysis compared to microsatellites and the inheritance of SNPs is more 

stable compared to other DNA markers. Therefore, it is more appropriate to be used as long 

time selection markers (Koopaee & Koshkoiyeh, 2014). SNPs are highly abundant and can 

therefore be found closer to the loci of interest compared to other DNA markers (Koopaee & 

Koshkoiyeh, 2014).  

The Bovine Hapmap consortium discovered that SNPs occur approximately every 300 base 

pairs in Bos indicus and every 700 base pairs in B. taurus cattle breeds (The Bovine 

HapMap Consortium, 2009; Seidel, 2010). It is estimated that the B. taurus genome has 

approximately 4 milllion SNPs (The Bovine HapMap Consortium, 2009). Due to SNPs being 

discovered in the bovine genome, Affymetrix and Illumina were able to develop several SNP 

arrays for B. indicus and B. taurus cattle breeds (Table 2.1).  
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Table 2.1 Available bovine SNP arrays with various numbers of SNPs from Illumina and 
Affymetrix. 

Platform SNP chip name Number of SNPs 

Affymetrix ® Axiom ® Genome-Wide BOS 1 >640 000 

 
  

Illumina ® BovineSNP50 53 714 

 

BovineHD BeadChip > 777 000 

 

BovineLD Genotyping BeadChip 200 

 

GGP Bovine 150K Array > 134 000 

 

GGP Bos Indicus HD Array 74 000 

  GGP Bovine LD Array 26 000 

(https://www.affymetrix.com/products_services/arrays/specific/axiom_gwas_bovine.affx; 

https://www.illumina.com/products/all-products.html) – Accessed October 2019 

High-density SNP markers are used in genomic prediction in livestock, due to higher linkage 

disequilibrium (LD) being observed in physically close loci compared to distant loci and 

therefore family structures are not required (Garrick, 2011). Parentage validation, breed 

assignment and screening for lethal mutations or congenital defects in beef breeding 

programs were facilitated by the use of genomic information (Berry et al., 2016). Multiplex 

SNP genotyping technology can be used to improve animal production, health and selection  

accuracy within genetic improvement programs that use a modified genome-wide approach 

known as genome-wide selection (Meuwissen et al., 2001). SNP markers were therefore the 

most appropriate for application in genomic selection. 

 

2.2.3 Genomic selection  

 

Genomic selection (GS) can be defined as the prediction of  breeding values of animals 

using dense marker maps across the genome (Meuwissen et al., 2001; Calus, 2010; 

Goddard, 2012). Meuwissen & Goddard (1996) predicted that including marker information 

in the breeding value estimation as opposed to only using phenotypic information could 

increase genetic gain by 8% to 38%, which led to Meuwissen et al. (2001) introducing the 

concept of GS. However, GS could not be implemented at the time, due to it requiring a 

large number of SNPs and an affordable manner to genotype animals (Meuwissen et al., 

2001; Goddard & Hayes, 2007; Calus, 2010; Goddard, 2012; Boichard et al., 2016). The 

sequencing of livestock genomes led to thousands of SNPs being available for livestock 

species (Hillier et al., 2004; Matukumalli et al., 2009). The development of commercial SNP 

arrays made it affordable to genotype animals, resulting in the inclusion of SNPs in breeding 

https://www.illumina.com/products/all-products.html
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value predictions and GS (Meuwissen et al., 2001; Goddard & Hayes, 2007; Calus, 2010; 

Goddard, 2012; Boichard et al., 2016).  

GS has several advantages such as increasing the rate of genetic improvement and 

enabling breeders to preselect animals with high genetic potential based on genomic 

information which, in turn, reduces the costs related to progeny testing (Meuwissen et al., 

2001; Schaeffer, 2006). It is a valuable method used in animal breeding that provides a 

higher accuracy (~0.31) compared to traditional pedigree indices (Meuwissen et al., 2001; 

Calus, 2010; Goddard, 2012). GS is the most advantageous for the selection of young 

animals with no phenotypic information for the trait at a young age or when the phenotype is 

difficult and costly to measure (Goddard, 2012). For example, sex-limited traits such as milk 

production can only be measured in females and meat quality traits such as meat 

tenderness can only be observed once the animal is slaughtered (Goddard, 2012).  

GS is based on a statistical method that requires thousands of SNP markers across the 

genome without identifying the genes or regions that are responsible for the variation in the 

trait (Goddard & Hayes, 2007; Goddard, 2012). The statistical method used for GS entails 

estimating the genetic effects of each marker and using this information together with 

phenotypic and genotypic information to predict the overall breeding value of any animal 

(Boichard et al., 2016). A reference population is required to estimate the marker effects and 

this information is applied to selection candidates with genotypic marker information with no 

phenotypic information (Figure 2.1) (Calus, 2010; Boichard et al., 2016). 

 

 

 

 

 

 

 

 

 

Figure 2.1. A brief overview of the genomic selection process (Adapted from Boichard et al., 

2016). 

SNP genotyping 

SNP genotyping 
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The reference population consists of animals with known genotypes and reliable phenotypic 

information which can be obtained from several sources such as phenotypic recording, 

deregressed proofs, daughter yield deviations or the average performance of the offspring 

(González-Recio et al., 2008; Berry et al., 2009; VanRaden et al., 2009; Calus, 2010; 

Boichard et al., 2016). The reference population should ideally be comprised of animals that 

represent all the phenotypes and genotypes that are present in the breed for the traits of 

interest (Calus, 2010). The characteristics of the reference population, which include the 

number of animals and markers as well as the heritability of the phenotype of interest, 

influence the accuracy of the genomic predictions (Calus, 2010). The accuracy of GS 

increases as the size of the reference population increases (Goddard, 2012). The reference 

population should consist of approximately 1000 animals or more, depending on the 

heritability of the trait of interest (Blasco & Toro, 2014). In order to obtain the same GS 

accuracies for lowly and highly heritable traits, a larger reference population is required for 

low heritability traits compared to highly heritable traits when the GEBV is estimated using 

only genomic information (Oldenbroek & Van der Waaij, 2015) (Figure 2.2). 

 

Figure 2.2. The relationship between the size of the reference population and the accuracy 

of genomic selection for lowly, moderately and highly heritable traits (Oldenbroek & Van der 

Waaij, 2015).  

The predictive ability of the genomic predictions are influenced by the number of SNPs that 

is used to estimate the marker effects in the reference population (Blasco & Toro, 2014). An 

increase in the number of SNPs that are used to estimate marker effects leads to an 
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increase in the predictive ability of genomic predictions (Blasco & Toro, 2014). The standard 

amount of SNPs that are currently used are 50 000 SNPs, due to a insignificant increase in 

the predictive ability of genomic predictions when more than 50 000 SNPs are used 

(VanRaden et al., 2011; Blasco & Toro, 2014).  

There are a variety of statistical methods that can be used for GS such as the non-linear 

Bayesian approach and an extension of the BLUP method known as the Genomic Best 

Linear Unbiased Prediction (GBLUP) method (Table 2.2) (Goddard, 2012; Meuwissen et al., 

2016). 

Table 2.2. A comparison between the non-linear Bayesian method and linear Genomic Best 

Linear Unbiased Prediction (GBLUP) method (Goddard, 2012; Meuwissen et al., 2016).   

Methods Appropriate use Assumption Breeds Examples 

Bayesian Small number of QTL 
with large effects 

Only a fraction of the 
SNPs have an effect 

Across 
breeds 

BayesR, 
BayesC, 
BayesB 

GBLUP Large number of QTL 
with small effects 

All SNPs have small 
effects 

Within 
breeds 

 G-BLUP, 
ssGBLUP 

GBLUP – Genomic Best Linear Unbiased Prediction, ssGBLUP – single-step Genomic Best Linear 

Unbiased Prediction, QTL – Quantitative Trait Loci 

The genetic architecture of the traits determines which method is the best to use (Hayes et 

al., 2010). Non-linear Bayesian methods have a higher accuracy than the GBLUP method 

when computer simulations are used instead of real data (Meuwissen & Goddard, 2010). In 

some cases when real data is used to compare the accuracy of the methods, non-linear 

methods do not always have the highest accuracy compared to the GBLUP method (Erbe et 

al., 2012). This is due to economically important traits being influenced by several genes and 

the GBLUP method assuming that all SNPs have an effect on the trait (Meuwissen et al., 

2016). Additionally, many SNPs are associated with a gene due to LD being present across 

large regions in livestock genomes and the effect of a QTL can only be explained by using 

several SNPs (Meuwissen et al., 2016). 

The GBLUP method uses the genomic relationship matrix (G-matrix) to estimate GEBVs 

(Meuwissen et al., 2016). The G-matrix utilises genotypic data obtained from SNPs across 

the genome to determine genomic relationships between animals by estimating the 

proportion of DNA that is shared between two individuals (VanRaden, 2007; Meuwissen et 

al., 2016). Several different methods that rely on the M-matrix, P-matrix and Z-matrix can be 

used to obtain the G-matrix.  
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The M-matrix and the P-matrix is needed to obtain the Z-matrix. The M-matrix specifies the 

marker alleles that were inherited by each individual (VanRaden, 2008). The rows of the M-

matrix represent the number of individuals (n) and the columns represent the number of loci 

(m) (VanRaden, 2008). Marker information can be included in the equations to obtain matrix 

MM’ (n x n) and matrix M’M (m x m) (Legarra & Misztal, 2008). If the homozygote, 

heterozygote and other homozygote is defined as -1, 0, and 1, respectively in the M-matrix, 

the diagonals of MM’ count the number of homozygous loci for each individual and the off-

diagonals measure the number of alleles shared by relatives (VanRaden, 2007; Legarra & 

Misztal, 2008). Whereas the diagonals of M’M count the number of homozygous individuals 

for each locus, and the off-diagonals measure the number of times alleles at different loci 

were inherited by the same individual (VanRaden, 2007; Legarra & Misztal, 2008).   

For the P-matrix, column i of P is 2(pi – 0.5) with pi representing the frequency of the 

second allele at locus i and the P-matrix contains the allele frequencies expressed as a 

difference from 0.5 and multiplied by 2 (VanRaden, 2008). In order to obtain the Z-matrix, 

the P-matrix is subtracted from the M-matrix which sets the mean values of the allele effects 

to 0 (VanRaden, 2008). The allele frequencies that are used in the P-matrix should be from 

the unselected base population (VanRaden, 2008).  

The base population that is used influences the number of relationships between the 

individuals and the level of inbreeding (VanRaden, 2008). When the P-matrix is subtracted 

from the M-matrix there is a bias towards rare alleles compared to common alleles when 

genomic relationships are determined (VanRaden, 2008). The genomic inbreeding 

coefficient differs between individuals that are homozygous for rare alleles and those that 

are homozygous for common alleles (VanRaden, 2008). If an individual is homozygous for 

rare alleles then the genomic inbreeding coefficient is greater than for an individual that is 

homozygous for common alleles (VanRaden, 2008). 

The formula of the first G-matrix method is as follows: 

𝐆 =
𝒁𝒁′

𝟐Ʃ𝒑𝒊(𝟏 − 𝒑𝒊)
 

with Z representing the Z-matrix and pi representing the frequency of the second allele at 

locus i (VanRaden, 2008). The division by the elements, 𝟐Ʃ𝒑𝒊(𝟏 − 𝒑𝒊), scales G to be 

analogous to A (VanRaden, 2008). The G-matrix is semi-definite but can be singular 

(VanRaden, 2007). The G-matrix is singular when the total number of alleles is less than the 

number of genotyped individuals (VanRaden, 2007). 
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The second method is mainly used in human genetics studies (Leutenegger et al., 2003; 

Amin et al., 2007). The formula is G = ZDZ’ and D is the Diagonal with 𝑫𝒊𝒊 =
𝟏

𝒎[𝟐𝒑𝒊(𝟏−𝒑𝒊)]
 

(Leutenegger et al., 2003; Amin et al., 2007). The formula for the third method is, 

𝑮 =  
𝑴𝑴′ − 𝒈𝟎 (𝟏𝟏′)

𝒈𝟏
 

and uses the model MM’ = g011’ + g1A + E, which adjusts the mean homozygosity by 

regressing MM’ on the A-matrix to obtain the G-matrix. The elements g0 represents the 

intercept and g1 represents the slope. The E-matrix includes the differences between true 

and expected fractions of DNA in common as well as measurements error (VanRaden, 

2008). MM’ is the dependent variable and the A-matrix is the independent variable in the 

regression (VanRaden, 2008).  

Although traditional animal breeding models assume that the individuals in a base population 

are not related, genomic analyses have determined that genes are always shared between 

the base population individuals due to common ancestors (VanRaden, 2007). Additionally, 

pedigree relationships assume that siblings with the same parents share 50% of their 

genomic information, however siblings can share more or less than 50% of their genetic 

material (Meuwissen et al., 2016). Therefore, GEBVs have a higher accuracy compared to 

EBVs due to the GBLUP method using genomic relationships to build the relationship matrix 

as opposed to the traditional BLUP method relying on pedigree relationships (Meuwissen et 

al., 2016). The estimation of the extent of heterozygosity and the number of alleles shared 

between individuals is not always accurately calculated in the BLUP method and therefore it 

is important to include genomic information in the breeding value estimation (VanRaden, 

2007; Meuwissen et al., 2016).  

GS predictions using the GBLUP method can be performed using a multiple-step or a single-

step approach (Meuwissen et al., 2016). The multiple-step approach firstly calculates 

pseudo-phenotypes for the genotyped animals, which includes information on their relatives 

that do not have genotypic information, thereafter the pseudo information together with the 

animals genotypes are used for the genomic prediction and finally breeding values are 

estimated by combining the traditional EBV and GEBV (VanRaden, 2008). This multiple-step 

method leads to loss of information, inaccuracy and bias (Legarra et al., 2014). 

The single-step genomic best linear unbiased prediction (ssGBLUP), includes all the data in 

one single estimation step (Meuwissen et al., 2016). The relationship matrix that is used in 

the calculation is most correct when the genotyped animals’ relatedness is taken into 

account (Meuwissen et al., 2016). The genomic relationships are taken into account first and 
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then pedigree information is used to determine the remaining relationships of non-genotyped 

offspring of the genotyped animals (Meuwissen et al., 2016).  

The matrix that is used in this method is the inverse of the H-matrix which includes the 

difference between the inverse of the A-matrix and the inverse of the G-matrix, due to 

constraints that prevent the genotyping of all animals in a population (Forni et al., 2011). The 

inverse of the H-matrix is expressed as follows,  

H-1 = A-1 + [
𝟎 𝟎

𝟎 G
-1

-A22
-1 ], 

with G-1 representing the inverse of the G-matrix and A22
-1 representing the inverse of the A-

matrix for the genotyped animals (Forni et al., 2011). The development of GBLUP and 

software packages that focus on mixed model equations such as MiX99 and BLUPF90 suite 

facilitated the estimation of GEBVs (Table 2.3) (Garrick et al., 2018). 

Table 2.3. A summary of available software packages for genetic and genomic evaluations. 

Software Website Main use 
Free 

resource 
Reference 

DMU https://omictools.com/dmu-tool  Analysis of multivariate 
mixed models using 
Restricted Maximum 
Likelihood 

No Madsen et 
al., 2006 

BLUPF90 
suite 

http://nce.ads.uga.edu/software/  Collection of software 
for mixed model  
analyses and can be 
used for ssGBLUP 

Yes Aguilar et al., 
2018 

TASSEL https://www.maizegenetics.net/tassel  Implements general 
linear model and mixed 
model approaches for 
controlling population 
and family structure 

Yes Bradbury et 
al., 2007 

ASREML http://www.vsn-intl.com/asreml General mixed models 
analysis program 
focusing on the 
estimation of variance 
components 

No Gilmour et 
al., 2002 

MiX99 https://www.luke.fi/en/business-
solutions/expertise-areas/livestock-and-
feed/mix99-solving-large-mixed-model-
equations/  

Solves large mixed 
model equations  

No Lidauer et 
al., 2015 

 

In order to measure the precision of the breeding values, the reliability of the breeding values 

is estimated using the prediction error variance (PEV) (Henderson, 1975, 1984). The PEV is 

calculated as part of the genetic evaluation and the reliability of the estimations are derived 

https://omictools.com/dmu-tool
http://nce.ads.uga.edu/software/
https://www.maizegenetics.net/tassel
http://www.vsn-intl.com/asreml
https://www.luke.fi/en/business-solutions/expertise-areas/livestock-and-feed/mix99-solving-large-mixed-model-equations/
https://www.luke.fi/en/business-solutions/expertise-areas/livestock-and-feed/mix99-solving-large-mixed-model-equations/
https://www.luke.fi/en/business-solutions/expertise-areas/livestock-and-feed/mix99-solving-large-mixed-model-equations/
https://www.luke.fi/en/business-solutions/expertise-areas/livestock-and-feed/mix99-solving-large-mixed-model-equations/
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from the PEV by using the calculation 1 minus the ratio between PEV and the additive 

genetic variance (Gorjanc et al., 2015). The reliability of the breeding values also give an 

indication of the potential response to selection (Gorjanc et al., 2015) and can be expressed 

as the square of the accuracy (Mrode, 1996; Meuwissen et al., 2001).  

The predictive ability of the models are validated by the correlation between the EBV or 

GEBV and the adjusted phenotypes, deregressed EBVs or yield deviations (YDs) using 

validation populations (Legarra et al., 2008; Legarra & Reverter, 2018). The YD of an animal 

is the phenotype of the animal adjusted for all the model effects excluding the additive 

genetic effects and the errors (Lourenco et al., 2015). The YD of an animal is therefore 

based on its own phenotypic performance (Lourenco et al., 2015). The equation used to 

calculate the YD is expressed as follows,   

YD = y - Xb̂ - Zp̂, 

where y represents the phenotypic measurements, b̂ represents all the fixed effect factors 

and p̂ represents the non-genetic animal effect factors (Lidauer et al., 2017). 

Validation studies have been performed to determine the influence that genotypes have on 

the breeding value estimation (Bolormaa et al., 2013; Ni et al., 2017). There are two types of 

studies that can be performed, a random cross-validation and a forward prediction. The 

forward prediction validation method divides the population into two groups, a reference or 

training population and a validation population (Ni et al., 2017). In this method, the youngest 

individuals are used as the validation set (Ni et al., 2017). In contrast, the random cross-

validation method divides the population into smaller groups (Bolormaa et al., 2013; Ni et al., 

2017). A few of the groups are used as the training population and one group is used as the 

validation population (Bolormaa et al., 2013; Ni et al., 2017). This process is repeated until 

all the groups have been used as a validation population and a training population, 

respectively (Bolormaa et al., 2013). 

 

2.3. The application of genomic selection methods in dairy and beef cattle 

 

Performance and pedigree data of dairy cattle obtained before the development of 

genotyping technologies together with the adoption of AI in the 1940’s have been essential  

for the implementation of GS in dairy cattle (Weigel et al., 2017). Selection in dairy cattle 

mainly focussed on sex-limited traits which can’t be measured on a bull, therefore progeny 

testing, which aimed to estimate a bull’s genetic merit based on its offspring, was 
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implemented (Weigel et al., 2017). However, progeny testing was time consuming, since the 

genetic merit of the bull was based on the performance of his daughters, which took several 

years to obtain and AI was costly to implement (Schefers & Weigel, 2012).  

The study by Schaeffer (2006) demonstrated that selecting bull calves at 2 years of age 

using GS could potentially double the rate of genetic gain compared to selecting bulls at 5 

years of age or older using progeny testing. If progeny testing was not necessary anymore it 

would save the bull breeding companies 92% of their expenses and some of the saved costs 

could be spent on genotyping the bulls (Schaeffer, 2006). A simulation study on dairy cattle 

also indicated that the GEBV accuracy for a bull calf could be as high as the EBV accuracy 

after a progeny test (Meuwissen et al., 2001).  

Additionally, GS in dairy cattle would allow the breeders to identify genetically superior 

animals for sex-limited traits at a young age before sexual maturity, decrease the generation 

interval needed to obtain performance information and increase selection intensity (Schefers 

& Weigel, 2012). Therefore, when the bovine SNP array became available, thousands of 

progeny tested Holstein bulls were genotyped to allow the establishment of a reference 

population for the breed which facilitated the application of GS in dairy cattle (Taylor et al., 

2016). Since GS has been implemented in dairy cattle, several studies have demonstrated 

that GEBVs have a higher reliability compared to parent averages and EBVs obtained from 

progeny tests (Table 2.4) (Harris et al., 2008; Hayes et al., 2009; VanRaden et al., 2009). 
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Table 2.4. A summary of studies that focused on the reliabilities of GEBVs compared to EBVs and/or parent averages for genomic selection in 

dairy cattle. 

Country Aim 
Number of 

animals 
genotyped 

SNP array Methods 
Summary 
of traits 

Main outcome Reference 

        

Australia Determining the 
reliability of the GEBVs 
compared to the EBVs 
from progeny tests 

798 SNP50TM 
array 

BLUP, 
BayesA 

Fertility, 
milk 
protein 
yield 

Fertility had the lowest GEBV reliability 
(0.18) compared to the other traits such 
as milk protein yield that had a GEBV 
reliability of 0.45. 

Hayes et al., 
2009 

        

New 
Zealand 

Determining the effect of 
genomic information on 
the accuracy of 
breeding values in dairy 
cattle by comparing the 
reliabilities of GEBVs 
and parent averages for 
unproven sires 

4500 Bovine SNP50 
BeadChip 

BLUP, 
BayesA, 
BayesB 

Milk 
production 
traits, 
fertility, 
somatic 
cell count, 
longevity, 
live weight 

Reliabilities of the GEBVs varied 
between 50% to 67% for production 
traits compared to an average of 34% 
for parent averages. GEBV reliabilities’ 
for the linear type traits varied between 
40% to 50% compared to an average of 
31% for parent averages.  

Harris et al., 
2008 

        

USA Determining the gain in 
the reliability of genomic 
evaluations compared 
to traditional parent 
average evaluations  

3576 
(Training 

population), 
1759 (Test 
population) 

BovineSNP50 
BeadChip  

BLUP, 
Bayesian  

Milk 
production 
traits and 
linear type 
traits 

Average reliability of the GEBVs 
averaged across all the traits was 50%, 
compared to an average reliability of 
the parent averages of 27%. 

VanRaden et 
al., 2009 

BLUP – Best Linear Unbiased Prediction, EBV - Estimated Breeding Value, GEBV – Genomic Enhanced Breeding Value 
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A subsequent study optimised the method used to estimate GEBVs for the application of 

genomic evaluations in dairy cattle in New Zealand, which could lead to further success in 

the application of GS in dairy cattle (Winkelman et al., 2015). The success of GS in dairy 

cattle over time was confirmed when García-Ruiz et al., (2016) reviewed two decades of 

genomic selection data in Holstein cattle and determined that annual rates of genetic gain 

increased from approximately 50% to 100% for highly heritable traits and increased 3 to 4 

times for traits with low heritability such as fertility traits (Figure 2.3). 

  

 

 

 

 

 

 

 

Figure 2.3. The genetic gain per year as a result of genomic selection for milk yield and 
productive life in Holstein cattle. (Adapted from García-Ruiz et al., 2016). 
Four Paths = selection based on the four paths which include sires of bulls, sires of cows, dams of bulls and 
dams of cows. All cows and Reg cows = segmented regressions of predicted breeding values on birth year for all 
cows and cows that are registered in the national herd book, respectively.  

 

In South Africa, dairy cattle receive genetic breeding values as part of the Multiple Across 

Country Evaluation (MACE) for several traits such as fertility and longevity (Van der 

Westhuizen & Mostert, 2020). A South African state-funded Dairy Genomic Programme 

(DGP) was established in 2016 with the aim to genotype as many animals as possible to 

ensure that South African reference populations could be established (Van Marle-Köster & 

Visser, 2018b). The DGP made it possible to start establishing reference populations for the 

Jersey and Holstein breeds and these reference populations will aid the implementation of 

GS using South African reference populations (Van der Westhuizen & Mostert, 2020). 

The success of GS in dairy cattle populations across the world led to the development and 

implementation of GS in beef cattle (Garrick, 2011; Berry et al., 2016). However, the 

development and implementation of genomic selection in beef cattle was more challenging 

compared to dairy cattle as a result of several differences between dairy and beef cattle 

populations (Garrick, 2011; Berry et al., 2016). Beef cattle consist of several pure breeds as 

well as crossbreeds that are bred to withstand several different environments and 
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temperatures across the world as opposed to the dairy cattle industry that is mainly 

dominated by one breed, the Holstein-Friesan (Berry et al., 2016).   

The small effective population size of close to 100 of the Holstein breed easily facilitated the 

establishment of a reference population (McParland et al., 2007; De Roos et al., 2008). In 

contrast, larger reference populations were required for beef breeds due to their large 

effective population sizes (Berry et al., 2016). Obtaining larger reference populations for beef 

breeds were challenging and more expensive due to the number of animals that had to be 

genotyped (Goddard, 2012; Berry et al., 2016). Additionally, the lack of AI in beef cattle 

proved challenging due to poor genetic relation between similar breeds in different countries 

(Berry et al., 2016). Therefore, the accuracy of GS was higher in dairy cattle compared to 

beef cattle (Goddard, 2012).  

Another aspect that played a role was that daughter averages are used as phenotypes in 

dairy cattle whereas in beef cattle phenotypes of both sexes are used for many traits of 

importance (Goddard, 2012). The different ways of determining the phenotypes lead to dairy 

cattle having a higher heritability value compared to beef cattle (Goddard, 2012). In beef 

cattle it is also a common occurrence to use a mixture of breeds in genomic selection 

calculations, which decreases the LD (Goddard, 2012; Berry et al., 2016). However, in dairy 

breeds with a small effective population size only one breed is used in genomic selection 

calculations and therefore the LD is higher in dairy cattle compared to beef cattle (Goddard, 

2012).  

 

The American Angus Association was the first beef breed society to include genomic 

information in their genetic evaluations in North America, because the Angus breed had 

contributed significantly to the North American performance recordings and investments in 

genotyping were made to establish a reference population for the breed (Garrick, 2009; 

Berry et al. 2016). Initially, due to the Hereford breed not having enough genotypes to 

establish a reference population of its own, the prediction equations used for the Angus 

breed was tested on the Hereford breed, but the prediction equations had no predictive 

power in the Hereford breed (Garrick, 2009; Berry et al. 2016). Across-breed predictions are 

not ideal to implement, but can be used to either increase the reference population or 

account for composite breeds (Kizilkaya et al., 2010; Bolormaa et al., 2013). 

Thereafter, the Hereford breed association invested in genotyping animals to allow the 

establishment of a reference population for the breed (Garrick, 2009; Berry et al. 2016). The 

initial development of reference populations for the Angus and Hereford breeds and the 

implementation of GS in these breeds led to other breed societies also investing in the 
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establishment of reference populations (Garrick, 2009; Berry et al. 2016). Thereafter, studies 

analysed the influence of genomic information on the breeding value estimation in beef 

breeds to determine if the results obtained in dairy cattle could also be obtained in beef 

cattle (Table 2.5) (Garrick, 2009; Onogi et al., 2014; Neves et al., 2014; Chen et al., 2015; 

Júnior et al., 2016).  
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Table 2.5. A summary of several studies performed to determine the accuracy of genomic predictions in beef breeds.   

Breed Aim 
Number of 
animals 
genotyped 

SNP array 
Genomic 
prediction 
method 

Validation 
method 

Traits Outcome Reference 

Angus Determining the 
accuracy of 
genomic 
predictions in 
Angus cattle 

2100 50k SNP 
panel 

BayesC Cross-
validation 

Scrotal 
circumference, 
Weaning 
weight direct, 
Yearling 
weight 

Breeding values were correlated 
with deregressed expected progeny 
differences of the validation 
population; 0.5 to 0.7, depending on 
the trait. Correlations were a guide 
to accuracy, not applied to breeding 
values of animals without progeny 
tests. 

Garrick, 2009 

Japanese 
Black  

Determining the 
differences in the 
accuracies 
between EBVs 
and GEBVs 

1,576 Illumina 
BovineSNP50 
beadchip 

BLUP, 
ssGBLUP 

Cross-
validation 

Beef marbling 
score, carcass 
weight, ribeye 
area  

GEBV accuracies were 5% to 8% 
higher compared to EBV accuracies 
for all the traits.  

 Onogi et al., 
2014 

Nellore Implementing  
genomic 
predictions in 
Nellore cattle  
determining the 
empirical 
accuracies of the 
predictions 

685 Illumina 
Bovine HD 
Chip  

GBLUP, 
Bayesian 

Forward 
prediction 

Traits such as 
scrotal 
circumference, 
weight and 
carcass traits  

The empirical accuracies of the 
genomic predictions ranged from 
0.17 to 0.74. 

Neves et al., 
2014 

Nellore Evaluate the 
accuracy of 
genomic 
predictions in 
Nellore cattle 

1756 Illumina 
Bovine HD 
chip  

Bayesian Cross-
validation 

Carcass traits 
such as hot 
carcass weight 
and rib eye 
area  

Genomic predictions had a 
moderate to high accuracy and 
could be applied to improve carcass 
traits in Nellore cattle. 

Júnior et al., 
2016 
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Breed Aim 
Number of 
animals 
genotyped 

SNP array 
Genomic 
prediction 
method 

Validation 
method 

Traits Outcome Reference 

         

Angus 
and 
Charolais 

To evaluate the 
breeding value 
accuracies in 
Angus and 
Charolais cattle 
using within 
breed, across 
breed and 
combined 
analyses 

543 (Angus 
steers), 400 
(Charolais 
steers) 

Illumina 
Bovine 
SNP50 
beadchip  

BLUP, 
GBLUP, 
Bayesian  

Cross-
validation 

Carcass traits Average accuracy of the GEBVs 
using within-breed training 
populations were 0.35 (Angus) and 
0.36 (Charolais) whereas using 
across-breed training populations 
lead to accuracies of close to 0. The 
results emphasised the importance 
of genetic relation between 
selection candidates and the 
training population.   
  

Chen et al., 
2015 

        

Angus 
and multi-
breed  

To determine 
whether a  
purebreed beef 
cattle training 
population can be 
used for multi-
breed genomic 
selection 
performance and 
vice versa  

1086 
(Purebred 
Angus), 924 
(Multi-breed, 
representing 
breeds such 
as Angus, 
Brahman, 
Hereford 
and 
Shorthorn) 

50k SNP 
panel 

Bayesian Cross-
validation 

Simulated 
traits 

Results indicated that using the 
purebred Angus cattle as the 
training population to predict 
breeding values in the multi-breed 
population were more successful 
compared to using the multi-breed 
training population to predict 
breeding values for the Angus 
population. 

Kizilkaya et 
al., 2010 

        

Bos 
taurus, B. 
indicus 
and 
composite 
beef cattle 

Determining 
the accuracy 
of GEBV 
predictions for 
several traits 
such as meat 
quality and 
carcass traits  

10,181 Five different 
panels with 
varying 
number of 
SNPs from 7K 
to 800K 

GBLUP, 
BayesR 

Cross-
validation 

Feed 
efficiency, 
growth, 
carcass and 
meat quality 
traits 

Accuracy of the GEBVs varied 
between traits. Higher number of 
animals with genotypic and 
phenotypic information and traits 
with high heritability had the highest 
GEBV accuracies. 

Bolormaa et 
al., 2013 

BLUP – Best Linear Unbiased Prediction, EBV – Estimated Breeding Value, GBLUP – Genomic Best Linear Unbiased Prediction, GEBV – Genomic 

Enhanced Breeding Value
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The successful implementation of GS in dairy and beef cattle populations across the world 

initiated the establishment of the BGP in South Africa which aimed to genotype several beef 

breeds in order to establish reference populations (SA Stud Book, 2017). The BGP 

facilitated the establishment of reference populations for the Bonsmara and Beefmaster 

breeds in South Africa, which allowed the estimation of GEBVs for these breeds (Table 2.6) 

(SA Stud Book, 2018). 

Table 2.6. A summary of the major beef cattle breeds in South Africa participating in the 
Beef Genomic Programmme (BGP) (SA Stud Book, 2018). 

Breed  Classification GEBVs estimated 

Bonsmara Composite  

Beefmaster Composite  

Drakensberger Indigenous x 

Hereford British x 

Charolais Continental European x 

Nguni Indigenous x 

Tuli Indigenous x 

GEBVs – Genomic Enhanced Breeding Values 

For a number of beef breeds that participated in the BGP, relatively high costs of genotyping  

and incomplete recording have been limiting the estimation of GEBVs (Van Marle-Köster et 

al., 2013; Van Marle-Köster et al., 2018a; Van Marle-Köster et al., 2018b). 

 

2.4 Conclusion 

 

The development of genotyping technologies such as SNP arrays had a significant impact 

on selection of cattle. The development of SNP technology made it possible to include 

genomic information in genetic evaluations, which, in turn, increased the accuracy of 

breeding values and facilitated the implementation of GS in dairy and beef cattle. In order to 

implement GS in cattle breeds, reference populations needed to be established. Reference 

populations were first successfully established in dairy cattle breeds and led the way for the 

implementation of GS in beef cattle breeds across the world. Although South Africa has 

limited resources they have managed to establish a reference population for the Bonsmara 

breed, which made it possible to estimate GEBVs for production and fertility traits in the 

breed.  
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Chapter 3: Materials and methods  

 

3.1 Introduction 

 

EBVs and GEBVs and the associated accuracy metrics for direct weaning weight, maternal 

weaning weight, average daily gain and height were estimated. Analysis I focussed on 

correlating EBVs and GEBVs to determine if including genomic information in the traditional 

breeding value estimation would influence the ranking of the animals. Additionally, the mean 

EBV and GEBV accuracies were compared to determine if genomic information increased 

the accuracy of the estimated breeding values. Analysis II used a forward prediction scheme 

to determine if genomic information increased the predictive abilities of the breeding value 

models. Phenotypic and genotypic data were obtained with consent from the South African 

Bonsmara Breed Society and ethical approval was granted by the Ethical Committee of the 

University of Pretoria for use of external datasets (NAS156/2019).  

 

3.2 Materials 

 

Genotypic and phenotypic information 

 

The genotypic data for these analyses were generated using the GeneSeek® Genomic 

Profiler Bovine HD™ (GGP-HD) Chip 150K (Neogen,Lincoln, NE, USA) as part of the BGP 

over a period of three years. Additional genotypes were also provided by a research project 

(Bosman et al., 2017) as well through private investment of the South African Bonsmara 

Breed Society. The additional genotypes were generated using either the 80K GGP-HD Chip 

(Neogen,Lincoln, NE, USA) or the IDB 53K SNP array (Table 3.1).  
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Table 3.1. A summary of the available genotypes for the study. 

SNP array Number of genotypes Funding 

GGP-HD 80K 597 
RMRDT (Bosman et al. 2017) & SA 
Bonsmara Breed Society 

Bovine 150K 1949 BGP 

IDB 53K 1643 SA Bonsmara Breed Society 

RMRDT – Red Meat Research and Development Trust, BGP – Beef Genomic Programme, SA – 

South African 

 

The Bonsmara phenotypic datasets contained 2 018 052 phenotypic records as well as 

pedigree information. Separate datasets were used for analysis I and II. The total number of 

available phenotypes and genotypes for the traits investigated in analysis I and II are 

summarised in Table 3.2 and Table 3.3, respectively. The shoulder height of the animals are 

referred to as height in the study. Height and average daily gain were measured post-

weaning when the animals were approximately 12 months old.   

Table 3.2. Number of phenotypes and genotypes used in analysis I. 

Trait Genotypes(N) Phenotypes(N) *Heritability 

Direct weaning weight 4128 1 242 158 0.24 

Maternal weaning weight 4128 1 242 158 0.15 

Height 4128 221 042 0.33 

Average daily gain 4128 225 779 0.26 

*Heritability calculated by the South African Stud Book and Animal Improvement Association for the Bonsmara 

breed 

Table 3.3. Number of genotypes and the number of animals with phenotypic and genotypic 

information for the traits in analysis II. 

Trait Genotypes(N) 
Animals with phenotypes 

and genotypes(N) 
*Heritability 

Direct weaning weight 4189 3955 0.24 
Maternal weaning weight 4189 3955 0.15 
Height 4189 1747 0.33 
Average daily gain 4189 1748 0.26 

*Heritability calculated by the South African Stud Book and Animal Improvement Association for the Bonsmara 

breed 

 

Models 

 

The single- and multi-trait models used in the present study are part of routine models used 

by the South African Stud Book and Animal Improvement Association. A summary of the 

fixed effects, random effects and covariates in the models are shown in Table 3.4. 
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Table 3.4. Fixed effects, random effects and covariates included in the models.  

 
Models 

 
WW and MWW ADG Height 

Fixed effects 
   Sex of animal  x x 

Contemporary group of 
animal    

Random effects 
   sire of animal  x x 

dam of animal  x x 

genotype of animal    

herd of the animal x   

Covariates 
   Age of animal when 

measured    

Age of cow    

Animal born to heifer or cow  x x 
WW – Direct weaning weight, MWW – Maternal Weaning Weight, ADG – Average Daily Gain 

 

BLUP and ssGBLUP models were used to estimate breeding values and reliabilities.  BLUP 

was based on the linear model,                                                                                                                                                                                                                                                                                                                                                                                                                                              

y = Xβ + Zu + e, 

where Xβ defined the fixed effects, Zu defined the random effects and e represented the 

random error vector (n x 1) with null means (Henderson, 1984; VanRaden, 2008). X was an 

incidence matrix (n x p) that was known and fixed and β was a fixed vector (p x 1). Z was a 

known incidence matrix (n x q) and u was a random vector (q x 1) with null means 

(Henderson, 1984).  

The relationship matrix used in the BLUP model was the inverse of the A–matrix whereas in 

ssGBLUP the inverse of the H–matrix was used. The inverse of the H-matrix can be written 

as follows, 

H-1 = A-1 + [
𝟎 𝟎

𝟎 G
-1

-A22
-1 ], 

with G-1 representing the inverse of the G-matrix among genotyped animals and A22
-1 

representing the inverse of the A-matrix for the genotyped animals (Forni et al., 2011).  
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3.3 Methodology 

 

Breeding values and reliabilities were estimated using MiX99 software (Lidauer et al., 2015) 

for analysis I and II. For analysis I, multi-trait models were used for the breeding value 

estimation while single-trait models were used to calculate the associated reliabilities.  For 

analysis II, single-trait models were used for the breeding value estimation as well as the 

reliabilities. The MiX99 package Apaxx was used to calculate all the reliabilities of both 

analyses using Misztal and Wiggans type accuracies (Lidauer et al., 2015). The reliabilities 

were converted to accuracies using the formula; accuracy = √reliability (Mrode, 1996). 

 

3.3.1 Comparing breeding value accuracies and animal rankings based on 

EBVs and GEBVs 

 

BLUP was performed for each trait to estimate the breeding values of the animals as well as 

the reliabilities. In order to estimate the GEBVs of the animals and the associated 

reliabilities, ssGBLUP was performed for each trait. Pearson correlations were performed 

between the EBVs and GEBVs of the genotyped animals. The top twenty animals with the 

largest GEBVs for each trait were selected and ranked accordingly, thereafter, each animal’s 

GEBV ranking was compared to their EBV ranking to determine if the ranking of the animals 

changed when genomic information was included in the breeding value estimation. 

Additionally, the mean EBV and GEBV accuracies were calculated for each trait using the 

individual accuracies of each breeding value. The EBV and GEBV accuracies were also 

plotted against each other to compare the EBV and GEBV accuracies for each trait. RStudio 

(v1.1.456) was used for all correlation steps. 

 

3.3.2 Comparing the predictive abilities of the breeding value models 

 

Selecting the validation populations 

 

In order to select the validation populations, the following steps were followed: A forward 

prediction scheme was used where the youngest animals with phenotypic and genotypic 

information were identified as the validation population (Ni et al., 2017). The 500 youngest 

animals with phenotypic and genotypic information for each trait was identified and extracted 

from the file containing all the genotyped individuals using Perl (v5.31003). 
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Breeding value estimation 

 

For each trait, a series of breeding values were estimated using different sources of 

information in order to determine the impact of genomic information on the breeding values. 

The Traditional Parental Average (TPA) of the validation population was estimated using 

only the phenotypic data and pedigree information of the parents. The Genomic-based 

Parental Average (GPA) was estimated using only the phenotypic data, pedigree and SNP 

information of the parents. The Parental Average with Genomic information (PAG) was 

estimated using the phenotypic data, pedigree and SNP information of the parents as well as 

the SNP information of the validation animals themselves. The EBV was estimated using the 

pedigree and measurements of the parents, the validation animal and their offspring. The 

GEBV was estimated using the measurements, pedigree and SNP information of the 

parents, the validation animals and their offspring. A summary of the breeding values and 

different sources of information are shown in Table 3.5. 

Table 3.5. Summary of the sources of information included in the breeding value estimation 

using validation populations. 

Breeding 
value 

Validation animal  
Offspring of validation 

animal 
Parents of validation animal 

Measurements 
SNP 

information 
Measurements 

SNP 
information 

Measurements 
SNP 

information 

TPA x x x x  x 

GPA x x x x  

PAG x  x x  

EBV  x  x  x 

GEBV      

TPA – Traditional Parental Average, PAG - Parental average with Genomics, GPA – Genomic-based 
Parental Average, EBV – Estimated Breeding Value, GEBV – Genomic Enhanced Breeding Value, 
SNP – Single Nucleotide Polymorphisms 

*Pedigree information included in each breeding value estimation 

 

In order to estimate TPA and GPA all the measurements for the trait of interest of the 

validation population were removed from the data file and replaced with missing values 

using Perl (v5.31003).  The validation populations’ relationships with their offspring were also 

removed using Perl (v5.31003). BLUP was performed to determine the TPA of the validation 

population. Additionally, to determine the GPA using ssGBLUP, the SNP information of the 

validation population was removed. The reliabilities were also performed for TPA and GPA 

using the edited files.  
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ssGBLUP was performed to determine the PAG. The same procedure used to determine the 

GPA was followed, but the validation populations’ SNP information was not removed during 

the estimation procedure. Lastly, in order to estimate EBVs and GEBVs, all the 

measurements and the relationships with the parents and offspring were restored and BLUP 

and ssGBLUP was performed. Thereafter, Perl (v5.31003) was used to extract the breeding 

values of the validation population from the files containing the breeding values of all the 

animals. Pearson correlations were performed between all of the breeding values of the 

validation populations for each trait. The correlations were performed between the TPA, 

GPA, PAG, EBVs and GEBVs.  

Yield deviations (YDs) were also calculated for direct weaning weight, maternal weaning 

weight, average daily gain and height using the formula, 

YD = y - Xb̂ - Zp̂, 

where y represented the phenotypic measurements, b̂ represented all the fixed effect 

solutions and p̂ represented the non-genetic animal effect solutions (Lidauer et al., 2017). 

The yield deviations were calculated by adjusting the phenotypes of the animals for non-

genetic random effects and fixed effects (Lidauer et al., 2017) as shown in Table 3.4. The 

yield deviations were correlated with each breeding value (TPA, GPA, PAG, EBVs and 

GEBVs) in order to determine the predictive ability of the models using Pearson correlations 

(Legarra et al., 2008; Legarra & Reverter, 2018).  
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Chapter 4: Results 

 

4.1 The rankings of the animals according to EBVs and GEBVs for four traits   

 

The ranking of the animals were determined by estimating the EBVs and GEBVs for height, 

average daily gain, direct and maternal weaning weight and correlating the estimated 

breeding values using Pearson correlations. Additionally, the mean EBV and GEBV 

accuracies were also estimated and compared. 

The Pearson correlations of the EBVs and the GEBVs for height and average daily gain, 

respectively, was significantly different from 0 (r = 0.96 ± 0.002, p<0.001) as well as for 

direct weaning weight and maternal weaning weight (r = 0.95 ± 0.003, p<0.001). The R2 for 

the regression of GEBVs onto EBVs for all the traits were ≥ 0.8977 (Figure 4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Pearson correlations between EBVs and GEBVs for (a) height, (b) average daily 

gain, (c) direct weaning weight and (d) maternal weaning weight in South African Bonsmara 

cattle with phenotypic and genotypic information. 
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Although the Pearson correlations were close to 1, the ranking of the animals did not remain 

consistent between the GEBVs and the EBVs for the traits (Table 4.1). The top animals 

tended to remain in the first place for all traits except for height. 

Table 4.1. The top ranking animals based on their GEBVs compared to the ranking of the 

same animals according to their EBVs for the four traits.  

WW Rank 
GEBV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

EBV 1 2 3 12 9 18 5 7 54 4 8 19 15 21 13 34 22 17 45 28 

                       

MWW Rank 
GEBV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

EBV 1 3 2 8 11 5 7 6 9 10 20 4 13 15 14 23 12 29 38 26 

                       

Height Rank 
GEBV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

EBV 4 2 1 12 33 27 11 14 13 15 3 5 18 102 16 6 60 22 21 19 

 
                      

ADG Rank 
GEBV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

EBV 1 3 4 2 6 16 12 5 9 8 19 7 11 10 23 14 17 24 20 18 

                       

ADG - Average daily gain, EBV – Estimated breeding value, GEBV – Genomic enhanced breeding 

value, MWW - Maternal weaning weight, WW - Direct weaning weight 

 

For all traits there was an improvement in the accuracies of the GEBVs compared to the 

EBVs (Table 4.2).  

Table 4.2. The mean EBV and GEBV accuracies for height, average daily gain, direct 

weaning weight and maternal weaning weight for all the animals. 

 

 

 

 

 

 

 

 

 

 

 

Trait 
Mean accuracy 

EBV GEBV 

Direct weaning weight 0.629 (0.156) 0.656 (0.144) 

Maternal weaning weight 0.519 (0.207) 0.564 (0.185) 

Height 0.678 (0.140) 0.721 (0.112) 

Average daily gain 0.633 (0.137) 0.686 (0.110) 
EBV – Estimated breeding value, GEBV – Genomic enhanced breeding 
values 
*Standard deviation is represented in the brackets 
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The EBV accuracies plotted against the GEBV accuracies, followed the same trend as seen 

in Table 2.4 (Figure 4.2). 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 4.2. EBV accuracies plotted against GEBV accuracies for (a) height, (b) average daily 

gain, (c) direct weaning weight and (d) maternal weaning weight in South African Bonsmara 

cattle with phenotypic and genotypic information. 
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4.2 The predictive abilities of the models for four traits 

 

The predictive abilities of the breeding value models were determined by estimating TPA, 

GPA, PAG, EBVs, GEBVs and YDs for height, average daily gain, direct and maternal 

weaning weight and correlating these breeding values using Pearson correlations.  

The Pearson correlations between all the breeding values for average daily gain for the 

validation population was significantly different from 0 (p<0.001) (Table 4.3). The relationship 

between the GEBVs and the PAG was stronger compared to the relationship between the 

GEBVs and the TPA or GPA (Table 4.3). In contrast, the relationship between the YDs and 

TPA was stronger than the relationship between the YDs and the GPA or the PAG (Table 

4.3). The YDs had the strongest relationship with the GEBVs compared to all the breeding 

values (Table 4.3). The results are summarised in table 4.3. 

Table 4.3. Pearson correlations (r) between breeding values and yield deviations (YDs) for 

average daily gain.  

TPA – Traditional Parental Average, GPA – Genomic - based Parental Average, PAG – Parental average with 

Genomics, EBV – Estimated Breeding Value, GEBV – Genomic Enhanced Breeding Value, YD – Yield Deviation 

* r = Pearson correlation coefficient 

 

Similar to the results for average daily gain, the Pearson correlations between all the 

breeding values for height for the validation population was significantly different from 0 

(p<0.001) (Table 4.4). The same trend was observed in height where the relationship 

between the GEBVs and PAG was stronger compared to the relationship between the 

GEBVs and the TPA or GPA (Table 4.4). However, in contrast to the results observed in 

average daily gain, the relationship between the YDs and the PAG was stronger compared 

to the relationship between the YDs and the TPA or GPA for height (Table 4.4).  

 

 r* 

 
EBV GEBV YD 

TPA 0.713 0.646 0.196 

GPA 0.687 0.644 0.189 

PAG  0.637 0.710 0.188 

EBV 
 

0.953 0.799 

GEBV 0.953   0.807 
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Table 4.4. Pearson correlations (r) between breeding values and yield deviations (YDs) for 

height.  

TPA – Traditional Parental Average, GPA – Genomic - based Parental Average, PAG – Parental average with 

Genomics, EBV – Estimated Breeding Value, GEBV – Genomic Enhanced Breeding Value, YD – Yield Deviation 

* r = Pearson correlation coefficient 

 

The results for direct weaning weight is summarised in table 4.5. The Pearson correlations 

between all the breeding values for direct weaning weight for the validation population was 

significantly different from 0 (p<0.05) (Table 4.5). For direct weaning weight there was no 

significant relationship between the YDs and TPA or GPA (p>0.05) (Table 4.5).  

 Table 4.5. Pearson correlations (r) between breeding values and yield deviations (YDs) for 

direct weaning weight.  

 TPA – Traditional Parental Average, GPA – Genomic - based Parental Average, PAG – Parental average with 

Genomics, EBV – Estimated Breeding Value, GEBV – Genomic Enhanced Breeding Value, YD – Yield Deviation 

* r = Pearson correlation coefficient 

 

The maternal weaning weight correlations followed the same trend as direct weaning weight 

and height. However, the relationship between the YDs and the EBVs for maternal weaning 

weight was stronger compared to the relationship between the YDs and the GEBVs. 

Furthermore, there was a significant relationship between the YDs and the EBVs (p<0.05) 

and no significant relationship between the GEBVs, PAG, GPA, TPA and YDs of the 

validation population (p>0.05) for maternal weaning weight (Table 4.6). Additionally, the 

 r* 

  EBV GEBV YD 

TPA  0.710 0.630 0.305 

GPA 0.702 0.641 0.307 

PAG 0.697 0.734 0.368 

EBV 
 

0.966 0.880 

GEBV 0.966   0.893 

  r* 

  EBV GEBV YD 

TPA 0.599 0.471 -0.004 

GPA 0.532 0.489 0.011 

PAG 0.556 0.660 0.106 

EBV 
 

0.924 0.756 

GEBV 0.924   0.777 
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Pearson correlations between the breeding values for maternal weaning weight for the 

validation population was significantly different from 0 (p<0.05) (Table 4.6). The results are 

summarised in table 4.6. 

Table 4.6. Pearson correlations (r) between breeding values and yield deviations (YDs) for 

maternal weaning weight. 

 TPA – Traditional Parental Average, GPA – Genomic - based Parental Average, PAG – Parental average with 

Genomics, EBV – Estimated Breeding Value, GEBV – Genomic Enhanced Breeding Value, YD – Yield Deviation 

* r = Pearson correlation coefficient 

All the Pearson correlations referred to in the results were visualised using graphs (see 

Addendum A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  r* 

  EBV GEBV YD 

TPA 0.965 0.789 -0.0343 

GPA 0.917 0.829 0.00001 

PAG 0.816 0.979 0.019 

EBV 
 

0.825 0.097 

GEBV 0.825   0.05 
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Chapter 5: Discussion 

 

5.1 Introduction 

 

Traditionally breeding values for animals were estimated using only pedigree and phenotypic 

information (Meuwissen et al., 2001; Goddard & Hayes, 2007). Once SNP information 

became available, it was expected that including SNP information in the breeding value 

estimation would accelerate genetic gain compared to only using pedigree information 

(Meuwissen et al., 2001). GS has several advantages such as reducing the cost of progeny 

testing, increasing the accuracy of breeding values and being able to estimate the breeding 

values of animals that do not have phenotypic information (Meuwissen et al., 2001; 

Schaeffer, 2006; Goddard, 2012). GS has been implemented in dairy and beef cattle and  

several studies across the world have demonstrated the advantages of using genomic 

information to estimate GEBVs in dairy and beef cattle breeds (Meuwissen et al., 2001; 

Schaeffer, 2006; Harris et al., 2008; Garrick, 2009; Hayes et al., 2009; VanRaden et al., 

2009; Bolormaa et al., 2013; Onogi et al., 2014; Júnior et al., 2016). 

In South Africa, the Bonsmara breed is one of the primary breeds used in feedlots (Scholtz 

et al., 2008). Therefore, due to the economic importance of growth traits in Bonsmara cattle, 

the breeding value accuracies play an important role in the selection and genetic progress in 

the breed (SA Stud Book, 2017). Growth traits such as average daily gain, direct weaning 

weight, maternal weaning weight and height are measured in the Bonsmara breed and EBVs 

and GEBVs form part of the genetic evaluation of the breed (SA Stud Book, 2017). 

Bonsmara breeders have made genetic progress for traits such as weaning weight without 

increasing birth weight and height, through the application of  breeding values and selection 

for functional efficiency (Bonsmara SA, 2019). Maternal weaning weight also plays an 

important role in direct weaning weight (University of Arkansas System, 2015). The ability of 

the mother to sufficiently feed her calves increases the direct weaning weight of the animal 

which in turn allows the farmer to increase their profit when selling weaners to the feedlot 

(University of Arkansas System, 2015). South African Bonsmara breeders have only been 

applying GEBVs in their herds since 2017 and they expressed interest in the validation of 

including genomic information in the breeding value estimation. The aim of this study was to 

assess the accuracies of EBVs and GEBVs in the selection of South African Bonsmara 

cattle. 
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5.2 The rankings of the animals vary between EBVs and GEBVs 

 

Breeding values are used to rank animals based on their estimated genetic potential 

(Bourdon, 2000). In analysis I, the EBVs and the GEBVs as well as the breeding value 

accuracies were estimated for all the animals that had genotypic information to determine 

whether inclusion of genomic information influenced the ranking of animals and the breeding 

value accuracies. In this study, the Pearson correlation coefficients were close to 1 and 

these results corresponded to values obtained in a previous study on dairy cattle 

(Winkelman et al., 2015). However, upon further investigation, the ranking of the animals did 

not remain consistent between the EBVs and GEBVs for all the traits and re-ranking was 

mostly observed for animals that were not placed in the top three positions based on their 

GEBV. For all the traits the top animal remained in the first place according to their GEBV 

and EBV except for height where re-ranking was observed. The re-ranking that was 

observed in height could most likely be due to only males being measured for height in the 

Bonsmara breed due to only a selection of males from the breed participating in growth tests 

that form part of the national beef cattle performance testing scheme (Bergh, 1999). 

Therefore, the EBVs are based on limited phenotypic information due to only being able to 

rely on measurements of the sires, grandsires or male offspring that participated in growth 

tests.  

Additionally, the re-ranking that was observed for most animals that were not in the top three 

positions for all the traits is most likely due to the inclusion of genomic information in the 

breeding value estimation providing higher calculated accuracies of the true potential of the 

animal within the group (Meuwissen et al., 2001; Calus, 2010; Goddard, 2012). These 

results highlighted the importance of including genomic information in the breeding value 

estimation to determine the most accurate ranking of an animal within a larger group. An 

animal with high breeding potential for a specific trait can be overlooked or culled based on 

its EBV, but could rank as one of the top 10 animals in the herd based on its GEBV.  

The accuracies of the GEBVs were higher compared to the EBVs. Improvement in the 

accuracies varied from 2.7% to 4.5% for direct weaning weight and maternal weaning 

weight, respectively and 4.3% to 5.3% for height and average daily gain, respectively. The 

results of this study are similar to previous studies that found that using genomic information 

to estimate breeding values increased the accuracies of the breeding values compared to 

only using pedigree relationships (Meuwissen et al., 2001; Calus, 2010; Goddard, 2012; 

Onogi et al., 2014). This is due to the different methods that are used to obtain EBVs and 

GEBVs. The ssGBLUP method that is used to estimate the GEBVs and the BLUP method 

that is used to estimate the EBVs use different relationship matrixes (Calus, 2010; Forni et 
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al., 2011; Meuwissen et al., 2016). The ssGBLUP method uses the inverse of the H-matrix 

which relies on genomic relationships whereas the BLUP method uses the inverse of the A-

matrix which relies on pedigree relationships (Calus, 2010; Forni et al., 2011; Meuwissen et 

al., 2016). Literature indicated that the ssGBLUP method leads to breeding values with a 

higher accuracy compared to using the BLUP method, because the genomic relationship 

matrix gives a more accurate representation of the genomic information that is shared 

between siblings (Meuwissen et al., 2016).  

Furthermore, heritability of a trait influences the accuracies of genomic predictions and 

should be considered in the breeding value estimations (Calus, 2010). In this study, maternal 

weaning weight with the lowest heritability also had the lowest mean breeding value 

accuracies whereas height with the highest heritability had the highest mean EBV and GEBV 

accuracies compared to the other traits. This corresponds to previous studies that indicated 

that traits with high heritabilities had higher GEBV accuracies and reliabilities compared to 

traits with low heritabilities (Hayes et al., 2009; Bolormaa et al., 2013). In this study, when 

the traits with similar reference population sizes were compared, the improvement in the 

mean breeding value accuracies from EBVs to GEBVs were larger for the traits with low 

heritabilities than for the traits with higher heritabilities.  

Height and average daily gain had similar reference population sizes with average daily gain 

having a lower heritability than height. Average daily gain had a 1% higher increase in the 

mean breeding value accuracies from EBVs to GEBVs compared to height. Additionally, the 

same pattern was observed when direct weaning weight and maternal weaning weight with 

the same reference population size was compared. Maternal weaning weight with the lowest 

heritability compared to direct weaning weight, had a 1.8% increase in the mean breeding 

value accuracies from EBVs to GEBVs compared to direct weaning weight. These results 

correspond to a previous study that also obtained results where the lower heritability trait 

had a larger increase in breeding value accuracies from EBVs to GEBVs compared to the 

trait with a higher heritability (Onogi et al. 2014). These results indicate that low heritability 

traits have a slightly larger increase in breeding value accuracies when genomic information 

is included in the breeding value estimation, which could be an indication that genomic 

information has a larger influence on the breeding value accuracies of low heritability traits 

compared to high heritability traits, emphasising the impact of genomic information on the 

breeding values of lowly heritable traits.  
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5.3 The predictive abilities of the models increased when genomic information 

was included 

 

Validation populations consisting of the 500 youngest animals with phenotypic and genotypic 

information were used in analysis II.  Analysis II aimed to determine the predictive abilities of 

the models of the four traits by estimating breeding values using various data sources (see 

Table 3.5) and comparing the various breeding values and the yield deviations. The 

predictive abilities of the TPA and GPA models for all the traits were the lowest compared to 

all the other breeding value models. These results correspond to a study performed on 

Northern American Holstein bulls that indicated that the average reliability of the parent 

averages were 23% lower compared to the reliability of GEBVs (Hayes et al., 2009; 

VanRaden et al., 2009). The TPA models only relied on phenotypic and pedigree information 

of the parents and the GPA models relied on phenotypic, genotypic and pedigree information 

of the parents to estimate breeding values and therefore the breeding values were based on 

parental information as opposed to the animals’ own information.   

When the model was adjusted to include genomic information of the validation animal using 

PAG, the predictive abilities of the models for height, direct weaning weight and maternal 

weaning weight increased. These results corresponded to literature that indicated that 

genomic information increases the reliability of breeding values (Harris et al., 2008; Hayes et 

al., 2009; VanRaden et al., 2009). However, a decrease in the predictive ability of the model 

for average daily gain was observed when genomic information of the animal was included 

in the model. In this study, the reference population for average daily gain consisted of only 

1748 animals and could be the limiting factor. The heritability for average daily gain was 

0.26. Literature indicated that a reference population of more than 4000 animals is required 

to increase the accuracy of genomic predictions for a trait with a heritability close to 0.2 

(Goddard, 2012; Oldenbroek & Van der Waaij, 2015). The size of the reference population 

for average daily gain is therefore a limiting factor for estimating the breeding values of 

genotyped animals without phenotypic information.  Average daily gain can only be recorded 

in intensive feeding tests which is part of central testing in the national beef cattle 

performance testing scheme (Bergh, 1999; Mokoena et al., 1999). Therefore, more animals 

should be included in intensive feeding tests where average daily gain can be recorded and 

animals can be genotyped. 

The EBV models for all the traits had higher predictive abilities than the TPA, GPA and PAG 

models. This was observed due to the animals’ phenotypes being added to the model. The 

predictive abilities of the GEBV models for height, average daily gain and direct weaning 

weight had the highest predictive abilities compared to all the other breeding value models. 
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This indicated that GEBVs are the most accurate in predicting the true genetic potential of an 

animal compared to all the other breeding values. The increase in the predictive ability when 

genomic information was added to the breeding value estimation is most likely due to the 

relationship matrix used to estimate the GEBVs. The ssGBLUP method used to estimate the 

GEBVs first take the genomic relationships between the animals into account followed by  

the pedigree information to determine the remaining relationships of non-genotyped offspring 

of the genotyped animals (Meuwissen et al., 2016).  The H-inverse matrix provides a more 

accurate representation of the relationships between animals compared to the inverse of the 

A-matrix (Meuwissen et al., 2016). Therefore when genomic information is used to estimate 

breeding values, the breeding values are a more accurate representation of the true genetic 

potential of the animal (Meuwissen et al., 2016).  

The predictive ability of the GEBV model for maternal weaning weight was lower compared 

to the EBV model’s predictive ability. This is due to the validation population consisting of the 

500 youngest animals with phenotypic and genotypic information. The maternal weaning 

weight of the youngest animals cannot be accurately estimated due to the validation 

population having a low number of offspring. Therefore, a different method should be used to 

study the influence that genomic information has on the predictive ability of the model for 

maternal weaning weight. The heritability of the traits also influenced the predictive abilities 

of the models. Traits with higher heritabilities such as height (h2 = 0.33) and average daily 

gain (h2 = 0.26) had higher predictive abilities for the EBV and GEBV models, compared to 

traits with lower heritabilities such as maternal (h2 = 0.15) and direct weaning weight (h2 = 

0.24). These results indicate that the heritability of a trait influences the predictive ability of 

the breeding value model which corresponds to literature indicating that heritability of a trait 

influences the accuracy of genomic predictions (Hayes et al., 2009; Calus, 2010; Bolormaa 

et al., 2013).   

A previous study predicted that implementing genomic selection at a young age could 

double the rate of genetic gain compared to implementing genomic selection at a later stage 

in life (Schaeffer, 2006). Additionally, it has also been shown that genomic selection is the 

most advantageous when the phenotype of interest cannot be observed at a young age 

when the animals become sexually mature (Goddard, 2012). Genomic information 

influenced the predictive abilities of the PAG models for height, direct weaning weight and 

maternal weaning weight. Therefore, genotyping young animals that do not have 

measurements for these traits and using the genomic information to estimate the breeding 

values for the Bonsmara breed will be beneficial. In the case where there is limited 

information available for young animals, the genomic information will provide a good 
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indication of the potential of the animal at a young age compared to only relying on the 

information of the parents.  

Additionally, the predictive abilities of the GEBV models for height, direct weaning weight 

and average daily gain indicated that estimating GEBVs for animals were the best measure 

of the true potential of the animal compared to the other breeding values. Therefore, in the 

Bonsmara breed it would be ideal to estimate GEBVs for animals of all ages using the 

information available. Although, the same was not true for maternal weaning weight, the age 

of the validation population may have played a role in these results and therefore a cross-

validation method may be necessary to show the importance of using genomic information to 

estimate breeding values for maternal weaning weight. 

 

5.4 Conclusion 

 

This study clearly confirmed the value of genomic information in the estimation of breeding 

values. Ranking of animals were influenced by including genomic information in the breeding 

value estimation and should be taken into account for accurate selection. An improvement in 

the accuracies of the breeding values was demonstrated. Additionally, genomic information 

also increased the predictive abilities of the breeding value models with the GEBV having 

the highest benefit for improvement of selection accuracy in the South African Bonsmara.  
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Chapter 6: Conclusion and recommendations 

 

6.1 Conclusion  

 

In South Africa, it is mandatory to register Bonsmara animals and to record the performance 

of each of these animals (Bosman et al., 2017). Therefore, large datasets containing 

phenotypic and pedigree data for the Bonsmara breed were available and facilitated the 

estimation of EBVs for the breed (SA Stud Book, 2017; Bosman et al., 2017; SA Stud Book, 

2019). However, studies indicated the value of genomic information for increased breeding 

value accuracies (Meuwissen et al., 2001; Schaeffer, 2006). Therefore, the BGP was 

founded in 2015 for establishing reference populations for 16 beef breeds in South Africa 

that would allow the estimation of GEBVs (SA Stud Book, 2017; Van Marle-Köster & Visser, 

2018a). The large datasets with phenotypic and pedigree data available for the Bonsmara 

breed and the genotypes from the BGP facilitated the establishment of the reference 

population for the Bonsmara breed (SA Stud Book, 2017). Once a reference population was 

established, GEBVs could be estimated for the Bonsmara breed (SA Stud Book, 2017). 

GEBVs was implemented and applied by the Bonsmara breeders since 2017 (SA Stud 

Book, 2017).  

This study was performed in order to assess the accuracies of EBVs and GEBVs for 

selection in Bonsmara cattle for traits with medium and high heritability. Analysis I focused 

on all the Bonsmara animals that had genotypic information available. EBVs and GEBVs 

together with breeding value accuracies were estimated for the growth traits with the aim to 

determine if genomic information influenced the ranking of animals and the breeding value 

accuracies. Additionally, analysis II was performed to determine if genomic information 

influenced the predictive ability of the models for the growth traits. In analysis II, validation 

populations made up of the 500 youngest animals with phenotypic and genotypic information 

for the growth traits were established. Breeding values using various data sources and yield 

deviations were estimated. The various breeding values and the yield deviations were 

correlated in order to determine how the absence and presence of genomic information 

influenced the predictive ability of the breeding value models for the growth traits.  

This study demonstrated that genomic information does influence the rankings of the 

animals, the accuracies of the breeding values and the predictive abilities of the breeding 

value models for the Bonsmara breed. Therefore, it is necessary to include genomic 

information in the breeding value estimation for Bonsmara cattle. The potential for genetic 
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gain is higher when genomic information is included in the breeding value estimation for 

growth traits of Bonsmara cattle. Breeders could also potentially make selection decisions 

using GEBVs at a younger age in their herds and could therefore increase the genetic gain 

compared to using traditional breeding values and EBVs. GS has the potential to accelerate 

genetic progress with more accurate selection at a younger age.  

Additionally, it would also be advantageous to genotype older animals and stud animals, to 

ensure that selection decisions are made using the most accurate breeding values. The 

influence of genomic information on the breeding value models for maternal weaning weight 

is not that clear and additional research will have to be performed to determine if genomic 

information improves the breeding value accuracy of maternal weaning weight. However, 

based on the results for the other three traits, the indication is that it is worthwhile to 

genotype animals of all ages and to include the genotypic information in the breeding value 

estimation for growth traits for Bonsmara cattle.  

 

6.2 Recommendations  

 

In future studies, more animals that have phenotypic information for average daily gain 

should be genotyped in order to determine how many animals with genotypic and phenotypic 

information is needed to ensure that the reference population size is conducive to estimate 

PAGs for young animals and GEBVs with higher accuracies. Based on the results for 

average daily gain with a medium heritability, it is expected that the current reference 

population for traits with low heritability such as fertility traits will also not be sufficient to 

estimate PAGs for young animals and GEBVs with high accuracies. Therefore, further 

investigations are necessary to determine the minimum reference population size that is 

conducive to estimate breeding values with genomic information for young Bonsmara 

animals without measurements for traits with low and medium heritabilities.  

Additionally, it would be informative to determine how the rate of genetic improvement varies 

between herds that are selected based on their EBVs compared to herds that are selected 

based on their GEBVs. This would give a clear indication whether the rate of genetic 

improvement increases when GEBVs are used for selection compared to EBVs. This 

information could also help the breeder to know which breeding values are worthwhile to use 

in order to reach the breeding goal at a faster pace within their herds. 
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Figure A1. Pearson correlations of (a) TPA and GEBVs, (b) GPA and GEBVs (c) PAG and 

GEBVs, (d) TPA and EBVs, (e) GPA and EBVs, (f) PAG and EBVs, (g) EBVs and GEBVs for 

average daily gain.   
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Figure A2. Pearson correlations of (a) GPA and YDs, (b) TPA and YDs, (c) PAG and YDs, 

(d) EBV and YDs, (e) GEBV and YDs for average daily gain. 
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Figure A3. Pearson correlations of (a) TPA and GEBVs, (b) GPA and GEBVs (c) PAG and 

GEBVs, (d) TPA and EBVs, (e) GPA and EBVs, (f) PAG and EBVs, (g) EBVs and GEBVs for 

height.  
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Figure A4. Pearson correlations of (a) TPA and YDs, (b) GPA and YDs, (c) PAG and YDs, 

(d) EBV and YDs, (e) GEBV and YDs for height. 

 

 

 

 

 



 

60 
 

y = 1.0574x + 0.3934 
R² = 0.4354 

-20

-10

0

10

20

30

-10 -5 0 5 10 15

G
EB

V
 

PAG 

y = 0.8972x + 1.8721 
R² = 0.3591 

-10

0

10

20

30

40

0 10 20 30

EB
V

 

TPA 

y = 0.7013x + 1.7189 
R² = 0.2388 

-20

-10

0

10

20

30

-10 0 10 20

G
EB

V
 

GPA 

y = 0.7062x - 3.5066 
R² = 0.2217 

-20

-10

0

10

20

30

0 10 20 30

G
EB

V
 

TPA 

y = 0.7621x + 8.912 
R² = 0.283 

-10

0

10

20

30

40

-10 0 10 20

EB
V

 

GPA 

y = 0.8892x + 8.3335 
R² = 0.309 

-10

0

10

20

30

40

-10 -5 0 5 10 15

EB
V

 

PAG 

y = 0.9254x - 6.5404 
R² = 0.8535 

-20

-10

0

10

20

30

-10 0 10 20 30 40

G
EB

V
 

EBV 

a. b. 

c. d. 

e. f. 

g. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A5. Correlations of (a) TPA and GEBVs, (b) GPA and GEBVs (c) PAG and GEBVs, 

(d) TPA and EBVs, (e) GPA and EBVs, (f) PAG and EBVs, (g) EBVs and GEBVs for direct 

weaning weight.  
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Figure A6. Correlations of (a) TPA and YDs, (b) GPA and YDs, (c) PAG and YDs, (d) EBV 

and YDs, (e) GEBV and YDs for direct weaning weight. 
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Figure A7. Correlations of (a) TPA and GEBVs, (b) GPA and GEBVs (c) PAG and GEBVs, 

(d) TPA and EBVs, (e) GPA and EBVs, (f) PAG and EBVs, (g) EBVs and GEBVs for 

maternal weaning weight.   
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Figure A8. Correlations of (a) TPA and YDs, (b) GPA and YDs, (c) PAG and YDs, (d) EBV 

and YDs, (e) GEBV and YDs for maternal weaning weight. 
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