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ABSTRACT

This thesis develops a skewing methodology for the formulation of two-piece families of distri-

butions that can be defined through their cumulative distribution functions (CDFs), probability

density functions (PDFs) or quantile functions. The advantage of this methodology is that the

families of distributions constructed have skewness-invariant measures of kurtosis, allowing for

the independent analysis of the skewness and kurtosis of a distribution.

The central contribution of this thesis is in the development of the quantile function of

the two-piece family of distributions. This quantile function is constructed through the use of

the quantile functions of half distributions developed from symmetric univariate distributions

(henceforth referred to as the parent distribution). This quantile function is the used to derive

a general formula for the rth order L-moments of the two-piece family of distributions. The

results of these L-moments will be in terms of the L-moments of both the parent distribution

and the half distribution. The parameters of this new family of distributions can be estimated

through the method of L-moments since closed form expressions exist for the L-moments and

subsequently the estimators.

The results from the skewing methodology as well as from the formula for the rth order

L-moments will be applied to well-known symmetric univariate distributions. These include

the arcsine, uniform, cosine, normal, logistic, hyperbolic secant and Student’s t(2) distributions,

which do not have a shape parameter, as well as the quantile-based Tukey lamba distribution

which has a kurtosis parameter.

KEYWORDS : Two-piece distribution, Half distribution, Quantile function, L-moment, Skewness-

invariant kurtosis measure.
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INTRODUCTION

1.1 Aims and Objectives

The aim of this thesis is to develop a methodology that can be used to formulate of two-piece

families of distributions that possess skewness-invariant measures of kurtosis. This methodol-

ogy is demonstrated in Theorem 3.2.1, where the quantile function of a two-piece distribution is

obtained by joining the quantile functions of two half distributions obtained from a univariate

symmetric distribution at the median, with an asymmetry parameter being introduced to the

quantile function left of the median. The piece-wise quantile function that is generated exhibits

asymmetry below the median, with symmetry being attained when the asymmetry parameter

has a unit value. This methodology will allow for the generalization of a distribution is either

quantile-based or classically defined through the probability density functions (PDFs) and/or

cumulative distribution functions (CDFs).

Furthermore, the results from the methodology are used to construct a general formulae

for the rth order L-moments that will be used to characterize a two-piece distribution. These

L-moments will be functions of the L-moments of the parent distribution as well as the half

distribution.

The methodology is used to develop two-piece families of distributions for the arcsine, uni-

form, cosine, normal, logistic, hyperbolic secant and Student’s t(2) distribution in Chapter 3, as

well as for the quantile-based Tukey lambda distribution in Chapter 4.

1
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1.2 The Evolution of Quantile Splicing

Quantile splicing is a term that was conceived to better describe the methodology proposed and

developed in this thesis. Albeit splicing definitively means to join or intertwine, the integrated

term in this case implies that two quantile functions are joined together.

The methodology was necessitated from the work of Balakrishnan et al. (2017), who proposed

a skew logistic distribution as an alternative to the model proposed by van Staden and King

(2015). Balakrishnan et al. (2017) used the CDF of the half logistic distribution as the building

block to construct the CDF of the skew logistic distribution. This was achieved by joining the

CDFs of the half logistic distribution to the right and left of the median, with the CDF to the

left of the median possessing a single asymmetry parameter. In order to further characterize

the skew logistic distribution, they made use of moments of order statistics from the standard

half logistic distribution to obtain the single and product moments of order statistics. These

results were then used to compute the means, variances and covariances of order statistics from

the skew logistic distribution for any sample size, n.

The technique proposed by Balakrishnan et al. (2017) sought to introduce asymmetry to

univariate distributions with the exemption of those from the quantile statistical universe, also

referred to as quantile-based distributions. In order to alleviate this exclusion, the idea of

using the quantile functions of half distributions arose. This would ensure that the method of

introducing asymmetry would be used for distributions defined through their CDFs, PDFs or

quantile functions. The result is a piecewise quantile function, joined at the point 0 < k < 1, and

consequent emergence of the two-piece family of distributions. The thesis will begin with the

construction of the method of quantile splicing for the case k = 1
2 , whereas future research will

consider the general form for k 6= 1
2 .

Furthermore, quantile splicing led to the derivation of the general formula for the rth order

L-moments. This allows for the characterization of the two-piece families of distributions in

terms of L-moments as opposed to the moments of order statistics. The implication is on

the computational ease with which results can be obtained especially with respect to parameter

estimation, since the L-moments obtained are expressed in closed form and are simple in nature,

as well as in the exploration of the properties of the distributions. Likewise, an estimation

algorithm can be developed through the method of L-moments.
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Another added advantage of using this method arises in the nature of its measures of kurtosis.

Since asymmetry is introduced to essentially one side or piece of the distribution, the level of

kurtosis of the two-piece distribution remains the same as that of the parent distribution. This

means that the measures of kurtosis are skewness-invariant. This benefit enables the skewness

and kurtosis of distributions to be analysed and reported seperately.

1.3 Outline of the Thesis

Chapter 2 takes a comprehensive look at the methods that have been used to introduce asym-

metry in univariate distributions. These methods make use of the CDFs, PDFs or quantile

functions as the kernels in the building of new distributional models. The main focus will be

on the techniques used as well as the strengths and weaknesses of the results obtained.

Chapter 3 focuses on the development of the method of quantile splicing. This will entail

constructing the two-piece quantile function of the resulting families of distributions from the

quantile functions of the half distributions developed from their parent distributions. Emanat-

ing from this methodology will be a general formulae for the rth order L-moments as mentioned

in Section 1.1. This will comprise of the L-moments of both the parent and half distribution. In

addition, this formulae can also be presented in terms of order statistics of the half distribution.

Well-known quantile measures of distributional form are discussed, and their general forms for

two-piece distributions are derived. These measures will also prove that the distributions con-

structed through the method of quantile splicing have skewness-invariant measures of kurtosis.

An estimation algorithm is developed using the method of L-moments since we’re able to obtain

L-moments that are closed-form and simple in nature.

Chapter 4 makes use of the results in Chapter 3 to develop two-piece families of distributions

for symmetric univariate distributions that do not have a shape parameter. Specifically, the arc-

sine, uniform, cosine, normal, logistic, hyperbolic secant and Student’s t(2) will be studied.

Chapter 5 uses the method of quantile splicing to construct the two-piece Tukey lambda

distribution. This quantile-based parent distribution has a shape parameter that governs its

level of kurtosis as compared to those in Chapter 3 that do not have any shape parameter.

Chapter 6 aims to summarise the techniques developed in the thesis as well as present

possible areas for future research.
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1.4 Contributions of the Thesis

The thesis aims to introduce a new methodology that can be used to construct two-piece families

of distributions with skewness-invariant measures of kurtosis. Moreover, a general formula for

the rth order L-moments is derived. Other contributions from each chapter are hereby outlined.

Chapter 3

• An integral for calculating the rth order L-moment of distributions that are split at a

scaling point 0 < k < 1 is derived in Section 3.3.3.

• The rth order shifted scaled polynomials are derived in Section 3.3.3, with the first 4

polynomials being presented.

• In Section 3.3.4, the rth order L-moments of half distributions are derived and also pre-

sented in terms of order statistics.

• Formula for the quantile measures of distributional form for the location, spread and

shape for two-piece families of distributions are presented. As indicated, the quantile-

based kurtosis measures are skewness-invariant.

• An estimation algorithm for two-piece families of distributions is developed in Section 3.5.

Chapter 4

• The quantile splicing methodology is used to derive the quantile functions, CDFs and

PDFs of the two-piece distributions constructed from the Student’s t(2), hyperbolic secant,

logistic, normal, cosine, uniform and arcsine distributions in Sections 4.2.2, 4.3.2, 4.4.2,

4.5.2, 4.6.2, 4.7.2 and 4.8.2, respectively.

• The quantile measures of distributional form for location, spread and shape for the Stu-

dent’s t(2), hyperbolic secant, logistic, normal, cosine, uniform and arcsine distributions

are derived in Sections 4.2.2, 4.3.2, 4.4.2, 4.5.2, 4.6.2, 4.7.2 and 4.8.2, respectively.

• The rth order L-moments for the half distributions from the Student’s t(2), hyperbolic

secant, logistic, normal, cosine, uniform and arcsine distributions are presented in Sections

4.2.2, 4.3.2, 4.4.2, 4.5.2, 4.6.2, 4.7.2 and 4.8.2, respectively. The results are derived in full

in Section 4.9.
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• The rth order L-moments together with the L-skewness and L-kurtosis ratios for the two-

piece families of distributions constructed from the Student’s t(2), hyperbolic secant, lo-

gistic, normal, cosine, uniform and arcsine distributions are presented in Sections 4.2.2,

4.3.2, 4.4.2, 4.5.2, 4.6.2, 4.7.2 and 4.8.2, respectively. The results are derived in full in

Section 4.9.

Chapter 5

• The quantile function for the two-piece Tukey lambda distribution is derived in Section

5.3.

• The quantile measures of distributional form for location, spread and shape for the two-

piece Tukey lambda distribution are derived in Section 5.4

• In Sections 5.5 and 5.6 the support and classes of the two-piece Tukey lambda distribution

are presented.

• The rth order L-moments for the half Tukey lambda distribution as well as the two-piece

Tukey lambda distribution are derived in Section 5.7

• The values for the density and slope of the density curve for the two-piece Tukey lambda

distribution are presented in Section 5.8.

• An estimation algorithm for two-piece Tukey lambda distribution is developed in Section

5.9.

Chapter 6

• The quantile function, CDF and PDF for the piecewise distribution constructed using the

extended quantile splicing technique is derived.

• The general formula for the rth order shifted scaled polynomials are derived in Section

6.3.2, with the first 4 polynomials being presented.

• In Section 6.3.2, the general formula for the rth order L-moments of piecewise distributions

are derived. These are presented in terms of order statistics as well as the L-moments of

the kth and (1� k)th-piece distributioins.



METHODS OF SKEWING UNIVARIATE DISTRIBUTIONS

2.1 Introduction

In an effort to model asymmetric data, Pearson (1895) introduced procedures that made use of

differential equations to generate univariate distributions. Different distributions were obtained

from this Pearson system of differential equations that depended on the solutions obtained for

each probability density function. Pearson then presented the various distributions obtained

using this system.

Numerous asymmetric distributional families and skewing mechanisms have since been pro-

posed and studied since the introduction of the Pearson system. These inculde the Burr types I

- XII distributions (Burr (1942, 1968, 1973)), also studied in detail by Fry (1993) and Johnson

et al. (1994). Johnson (1949) proposed a system of distributions by transforming (translating)

the normal distribution, which yielded the lognormal family, a family of bounded distributions

and a family of unbounded distributions. Some common univariate distributions that arise from

these families are the normal, lognormal, gamma, beta and exponential distributions.

In the event a distribution is quantile-based, that is there is no closed-form expression for the

cumulative distribution function (CDF) or probability density function (PDF) resulting in a dis-

tribution being defined through its quantile function, then quantile methods are applied. These

methods were first documented on the early works on the lambda distribution (Hastings Jr et al.

(1947), Tukey (1960)). Ramberg and Schmeiser (1972) and Ramberg and Schmeiser (1974) gen-

eralized those results to create the generalized lambda family of distributions (GLDs).

There are many methods that have since arisen with the aim of generating asymmetric dis-

tributions or skewing existing distributions. Depending on the existence of the PDF, CDF or

quantile function of a distribution, these methods made use of them as the building blocks in

the methodologies. The aim would be to increase the flexibility of distributions with regards to

6
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its distributional form, thereby improving the fit of the models to data sets.

Some of the existing methods of skewing univariate distributions will be discussed in this

chapter, showing what has been done to introduce asymmetry, as well as the properties attained

with each method.

2.2 Combining symmetric distributions

The skew normal distribution was introduced by Azzalini (1985) with the intention of introduc-

ing skewness to distributions through the combination of two symmetric distributions.

Definition 2.2.0.1. A random variable X is said to follow a skew normal distribution, denoted

as X ⇠ SN(�), if its probability density function is given as

f(x; �) = 2�(x)�(�x), �1 < x < 1, (2.1)

where �(x) and �(x) are the standard normal probability density and cumulative distribution

functions, respectively, whilst � 2 R is the asymmetry parameter.

⌅

Let F and G be two independent standard normal random variables. X can be expressed in

terms of F and G as

X =
(�|U |+ V )p

1 + �2
.

2.2.1 Distributional properties of the skew normal distribution

The inclusion of a location parameter, µ, and scale parameter, �, allows for X to be translated

to Y = µ + �X. Some of the properties associated with the skew normal distribution are listed

below.

Property 1: When � = 0, the PDF in Eq.(2.1) reduces to that of the standard normal distribu-

tion, N(0, 1).

Property 2: The random variable X2 with parameter � follows a �2-distribution with one degree

of freedom.

Property 3: The moment generating function of X is MX(t) = 2 exp(t2/2)� (t), where t 2 R and

 = �p
1+�2

.
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Property 4: The characteristic function of X is  (t) = 2 exp(t2/2)i⌧(t), where

⌧(r) =

R
r

0

q
2
⇡
exp(y2/2)dy and ⌧(�r) = �⌧(r) for r � 0.

This distribution can be used to fit data that exhibits unimodal behaviour with the presence of

skewness.

2.2.2 Extensions on the combination of two symmetric distributions

The proposed method used to obtain the skew normal distribution was such that f(x; �) took on

the form 2h(·)H(·), where X is symmetric at 0 and H(·) is absolutely continuous, with h and H

as the PDF and CDF of X, respectively. Since this proposed method catered to distributions

with lighter tails than the normal distribution, a general form of Eq.(2.1) was introduced by

Azzalini (1986), in order to accommodate heavy-tailed distributions as well.

The probability density functions of this broader class of distributions would be defined

through the general form given as

f(x;!, �) = 2g(x;!)G(x; �), ! > 0, (2.2)

where g(·) and G(·) are the PDF and CDF of any symmetric random variable, respectively, with

! > 0 as an additional shape parameter. This means that the new generalization can be used to

obtain different skewed distributions.

Extensive studies continued on Eq.(2.2) by Azzalini (2005) and even further advanced by

Abtahi et al. (2012), whose results were used to generate the generalized skew t and the gener-

alized skew Cauchy distributions.

Wang et al. (2004) also defined skew symmetric distributions as functions whose PDF takes on

the form

f(x) = 2g(x)⇠(x), (2.3)

where ⇠(x) is a non-constant asymmetry function, such that ⇠(�x) + ⇠(x) = 1 where ⇠ : R ! [0, 1].

This implies that a CDF can be chosen as the asymmetry function. The skew family of distri-

butions is symmetric when ⇠ = 1
2 .

Arnold and Beaver (2000) and Arnold et al. (2002) have made further progress on Azza-

lini’s work by suggesting the use of two non-normal symmetric densities to created a skewed

distribution.
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Definition 2.2.2.1. Suppose U and V are two random variables with ⇢1, P1 and ⇢2, P2 as their

probability density and cumulative distribution functions, respectively. Then if the conditional

distribution of U given �0 + �1U > V is considered, the probability density function of U can be

defined as

f(u; �0, �1) =
⇢1(u)P2(�0 + �1u)

P (�0 + �1U > V )
,

where �0 2 R and �1 2 R are shape parameters.

⌅

Kim (2005) introduced the two-piece skew normal as a further extension of the skew normal

distribution.

Definition 2.2.2.2. A random variable X� is said to have a two-piece skew normal distribution

with parameter � 2 R, denoted by X� ⇠ TPSN(�), if its probability density function is given as

f(x; �) =
2⇡

⇡ + 2 tan�1(�)
�(x)�(�|x|), � 2 R, x 2 R. (2.4)

⌅

Eq.(2.4) reduces to the standard normal PDF when � = 0. The distribution exhibits unimodal

and bimodal behaviour, and has been shown to be a mixture of two truncated skew normal

distributions.

Through the introduction of two additional parameters, Jamalizadeh et al. (2011) pro-

posed the three parameter generalized two-piece skew normal distribution, denoted as X�1,�2,⇢ ⇠

GSTPSN(�1, �2, ⇢) if the PDF is defined as

f(x; �1, �2, ⇢) =
1

b(�1, �2, ⇢)
�(x)�1(�1x, �2|x|; ⇢), �1, �2 2 R, |⇢| < 1, x 2 R, (2.5)

where �1(·, ·; ⇢) denotes the PDF of a standard bivariate normal random variable with correlation,

⇢, and

1

b(�1, �2, ⇢)
=

1

4⇡

(
cos�1

 
�(⇢+ �1�2)p
1 + �21

p
1 + �22

!
+ cos�1

 
�(⇢� �1�2)p
1 + �21

p
1 + �22

!
+ 2 tan�1 �2

)
.

The PDF is unimodal when �2  2, else it is bimodal when �2 > 2.

2.3 Inverse Scaling Procedures

Fernández et al. (1995) introduced skewness to distributions by extending the work of Box and

Tiao (1973). Skewness was introduced to the exponential power distribution in their attempt to



CHAPTER 2. METHODS OF SKEWING UNIVARIATE DISTRIBUTIONS 10

tackle the problem of axial symmetry while modeling a new class of multivariate distributions.

This resulted in their proposal of the so-called ⌫-spherical distributions, which was a solution

to any impediment when it came to using them in actual modeling.

Let � 6= 1 be defined as the spread parameter. When � is split, two different density functions

for positive and negative values of the random variable are obtained, despite sharing the same

absolute values.

The PDF of a random variable from this proposed distribution would be defined as

f(x; �,) =

8
>><

>>:

k exp(� 1
2 (x/�)

), if x � 0,

k exp(� 1
2 (��x)

), if x < 0,

(2.6)

where � > 0, > 0 and k = 1
21/�(1+ 1

 )(�+ 1
� )

is an integrating constant that ensures f(x; �,) is a

valid function. The exponential power class is obtained when � = 1, else skewness is observed

in the distribution.

Fernández and Steel (1998) introduced a general method of transforming symmetric distri-

butions, by extending the results from Eq.(2.6). Consider a univariate random variable X that

is symmetric around 0. Furthermore, let the probability density function, f(x), be such that

f(x) = f(|x|), with f(|x|) decreasing in |x|. Then a family of skewed distributions is generated if

the PDF is given as

f�(x) =
2

1 + 1
�

✓
f

✓
x

�

◆
I+(x) + f(�x)I�(x)

◆
, � > 0,

where I+ and I� are indicator functions on R+ and R�, respectively.

Distributional properties

A few of the properties of this class of skewed distributions are:

Property 1: The mode of the scaled distribution is retained at 0.

Property 2: The distribution exhibits asymmetry when � 6= 1.

Property 3: f�(x) = f(x) when � = 1, the original probability density function of the parent

distributions.

Property 4: f�(x) = f 1
�
(�x), such that a mirror image of the two scaled density functions is

obtained at 0.



CHAPTER 2. METHODS OF SKEWING UNIVARIATE DISTRIBUTIONS 11

Fernández and Steel (1998) and Castillo et al. (2011) studied the class of skew normal distribu-

tions obtained when f(x) is from a normal distribution.

The skew generalized secant hyperbolic (SGSH) distribution by Fischer and Vaughan (2002)

was proposed as a skew generalization of the generalized secant hyperbolic (GSH) distribution

of Vaughan (2002), by splitting the scale parameter. In order to introduce asymmetry into the

GSH distribution, the half moments of the GSH are first computed. The procedure introduced

by Gottschalk (1948) was used by Fischer and Vaughan (2002) to propose the half moments of

the GSH. The full proof is documented in Fischer and Vaughan (2002)(p 8-11).

Definition 2.3.0.1. Let � > 1 be defined, while I+ and I� denote the indicator functions of x on

R+ and R� respectively. The PDF of a random variable X from the SGSH distribution is defined

as

fSGSH(x; t, �) =
2

� + 1
�

(
fSGSH(x/�)I�(x) + fSGSH(x�)I+(x)

)

=
2c1
� + 1

�

(
exp(c2x/�) · I�(x)

exp(2c2x/�) + 2a exp(c2x/�) + 1
+

exp(c2�x) · I+(x)
exp(2c2�x) + 2a exp(c2�x) + 1

)
(2.7)

whilst the CDF and quantile functions are given in closed-form as

FSGSH(x; t, �) =
2�2

�2 + 1

(
FGSH(x/�)I�(x) + �2 � 1 + 2FGSH(x�)

2�2
I+(x)

)
(2.8)

and

F�1
SGSH

(x; t, �) = �F�1
GSH

 
x · �

2 + 1

2�2

!
IA(x) + 1

�
F�1
GSH

 
x · �

2 + 1

2
� �2 � 1

2

!
IĀ(x)

)
(2.9)

respectively, where

IA(x) =

8
>><

>>:

1, if x < �
2

�+1

0, if x � �
2

�+1

and IĀ(x) =

8
>><

>>:

0, if x < �
2

�+1

1, if x � �
2

�+1

(2.10)

⌅

Vicari and Kotz (2005) suggested that a more generalized form of f�(x) can be obtained when

using �1 and �2, instead of � and 1
�
. This will make the density functions more flexible in terms

of their distributional shape through the inclusion of an additional shape parameter.

2.4 Beta-generated families of distributions

The beta-generated families of distributions were first introduced by the work of Eugene et al.

(2002) when they presented the beta-normal distribution and its properties. This mechanism
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was intended to extend the flexibility of the distributional shape of both symmetric and skewed

distributions. The skewness is attributed to a combination of shape parameters and not a single

parameter as seen in the other methods already discussed.

Definition 2.4.0.1. The CDF and PDF of a random variable from a beta-generated distribution

takes the general forms

G(x) =

Z
F (x)

0
r(t)dt

and

g(x) =
1

Beta(↵,�)f(x)F
↵�1(x)(1� F (x))��1,

respectively.

⌅

G(x) and g(x) are termed the beta-generated CDF and PDF, whereas F (x) and f(x) are the CDF

and PDF of the parent distribution. The function r(t) is the PDF of a Beta(↵,�), otherwise

known as the generator distribution.

There have been many beta-generated distributions proposed and studied since this method

was introduced. These distributions arose from their ability to model skewed, heavy-tailed as

well as bimodal data. These include but are not limited to

• The beta-normal (BN) distribution (Eugene et al. (2002), Famoye et al. (2004)) which has

both unimodal and bimodal behaviour.

• The beta generalized logistic (BGL) distribution, introduced by Morais et al. (2013),

compounds the beta distribution and the type IV generalized logistic distribution.

• The beta-Gumbel (BG) distribution (Nadarajah and Kotz (2004)) which was introduced

with the hope that it would attract greater applicability in the engineering field where

the Gumbel distribution is widely used. The hazard function of the BG distribution is an

increasing function of the random variable.

• The beta-Weibull distribution (Famoye et al. (2005), Lee et al. (2007)) which has been

applied to censored failure rate data. Famoye et al. (2005) showed that it is a unimodal

distribution and presented some of its results on the non-central moments. Cordeiro and

de Castro (2011) derive expansions for this distribution function and explicit closed form

expressions for its moments.
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• The beta-Pareto distribution (Akinsete et al. (2008)) whose hazard rate function

presents unimodal and or decreasing behaviour.

• The beta-Cauchy distribution (Alshawarbeh et al. (2012) Alshawarbeh et al. (2013)) which

has been found to model symmetric and skewed heavy-tailed distributions very well due

to its flexibility.

• The beta-Student’s t distribution by Jones and Faddy (2003) is proposed as a manageable

skew t-distribution on the real line.

Distributional properties

This family of distributions displays various general properties, which are common to all of

them.

Property 1: The values of the random variable X from a beta-generated family of distributions

can be obtained from the inverse CDF, F�1(y), where Y ⇠ Beta(↵,�).

Property 2: The PDF of g(x) exhibits symmetry when ↵ = �, if f(x) is symmetric. g(x) is

positively skewed when ↵ > � and negatively skewed when ↵ < �.

Property 3: g(x) is unimodal when ↵ = � � 1 and if f(x) is also unimodal.

Property 4: The hazard function is defined as hg(x) =
F

↵�1(x)(1�F (x))��1

I1�F (x)(�,↵)
where Ix(↵,�) is the in-

complete Beta function and Ix(↵,�) = B(↵,�)� I1�x(�,↵).

Property 5: The Shannon entropy of the density function g(x) is obtained as

nx = �EX(log(g(x)), which for beta-generated distributions equates to

logB(↵,�) + (↵� 1)(↵,�) + (� � 1)(�,↵)� EY (log(F�1(y))), where

(↵,�) =  (↵+ �)�  (↵),  (·) is the digamma function and Y ⇠ Beta(↵,�).

Generalizations of the beta-generated distributions

The initial results of Eugene et al. (2002) were then generalized to consider using any other

generator other than the beta distribution. This generator would be defined on [a, b] where

a, b 2 R, and the domain then normalized to (0, 1).

The Kumaraswamy distribution (Kw-distribution), proposed for doube-bounded random
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processes (Kumaraswamy (1980)), was used as the generator distribution in Eq.(2.11), giving

rise to the Kw-generated (Kw-G) distribution.

Definition 2.4.0.2. A random variable, X, from the Kw-G distribution is defined as having a

probability density function, g(x), that takes on the form

g(x) = ↵�f(x)F↵�1(x)(1� F↵(x))��1, ↵,� > 0, x 2 (0, 1), (2.11)

where f(x) = ↵�x↵�1(1 � x↵)��1 and F (x) = 1 � (1 � x↵)� are the PDF and CDF of the Kw-

distribution, respectively.

⌅

Cordeiro and de Castro (2011) and Nadarajah et al. (2012) studied distributions generated

from this generalization. These included the Kw-normal, Kw-gamma, Kw-Weibull, Kw-Pareto

and Kw-inverse gaussian distributions.

Another generalization known as the generalized beta-generated (GBG) distribution has also

been studied by Alexander et al. (2012). This family of distributions uses the generalized beta

Type I as the generator function.

Definition 2.4.0.3. The PDF of a real-valued random variable, X, from the GBG distribution

is defined as

g(x) =
�

B(↵,�)
f(x)F↵��1(x)(1� F �(x))��1, ↵,�, � > 0, x 2 (0, 1), (2.12)

where f(x) = �

B(↵,�)x
↵��1(1�x�)��1 and F (x) are the PDF and CDF of the beta Type I distribution,

respectively.

⌅

The properties of the generated distributions were studied and documented by Alexander

et al. (2012). When � = 1, the GBG density function reduces to the beta generated density

function, whereas the Kw-G density is obtained when ↵ = 0.

2.5 Asymmetric families of densities

Nassiri and Loris (2013) presented a general form of obtaining asymmetric density functions

from distributions that were symmetric about zero. Two scale parameters, �1 �2 2 R+, were
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introduced with the intention of retaining 0 as the mode to the symmetric density function as

follows:

f�1,�2(x) =
2�1�2
�1 + �2

8
>><

>>:

fX(�1x), x  0

fX(�2x), x > 0.

(2.13)

With the introduction of a location parameter µ 2 R, and scale parameter � > 0, Eq.(2.13)

can be redefined as

f�1,�2(x;µ,�) =
2�1�2

�(�1 + �2)

8
>><

>>:

fX
�
�1
�
µ�x

�

��
, x  µ

fX
�
�2
�
x�µ

�

��
, x > µ.

(2.14)

Some of the properties from this family of distributions are:

Property 1: The PDF of f�1,�2(x;µ,�) exhibits symmetry when �1 = �2, is positively skewed when

�1 > �2 and negatively skewed when �1 < �2.

Property 2: The special case f�1,�2(x;µ,�) = f(x;µ,�) when �1 = �2.

Property 3: The PDF in Eq.(2.6) is a special case when �1 = 1
�
, �2 = � 1

�1
and  = 1.

The CDF and quantile function are obtained as

F�1,�2(x;µ,�) =

8
>><

>>:

2�2
(�1+�2)

FX

�
�1
�
µ�x

�

��
, x  µ

�2��1
(�1+�2)

+ 2�1
(�1+�2)

FX

�
�2
�
x�µ

�

��
, x > µ

(2.15)

and

F�1
�1,�2

(p) =

8
>><

>>:

µ+ �

�1
F�1
X

⇣
p (�1+�2)

2�2

⌘
, p  �2

�1+�2

µ+ �

�2
F�1
X

⇣
p(�1+�2)+(�1��2)

2�1

⌘
, p > �2

�1+�2
,

(2.16)

respectively.

Nassiri and Loris (2013) extensively used these results to derive the asymmetric Laplace and

normal densities. Furthermore, they were able to prove that �1 and �2 control the allocation of

mass to the density of the left and right tails, respectively. The rth order finite moments exist

for the asymmetric generalization if and only if the moments of the symmetric building block

exist.

Arellano-Valle et al. (2005) introduced a general family of asymmetric distributions which
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includes the model by Fernández and Steel (1998) as a special case. The PDF and CDF are of

the form

g(x|�) = 2

a(�) + b(�)

✓
f

✓
x

a(�)

◆
I{x � 0}+ f

✓
x

b(�)

◆
I{x < 0}

◆
(2.17)

and

G(x|�) =

8
>><

>>:

2b(�)
a(�)+b(�)F

⇣
x

b(�)

⌘
, for x < 0

b(�)�a(�)
a(�)+b(�) +

2a(�)
a(�)+b(�)F

⇣
x

a(�)

⌘
, for x � 0,

(2.18)

respectively, where � is an asymmetry parameter and a(�) and b(�) are known positive asymmetry

functions. If a(�) = b(�), then the whole class of symmetric densities is a special case of Eq.(2.17).

From the PDF and CDF defined above, the following properties hold for this family of

asymmetric densities.

Property 1: The median of this family of distributions is:

G�1

 
1

2

������
!

=

8
>><

>>:

b(�)F�1
⇣

a(�)+b(�)
4b�

⌘
a(�) < b(�)

a(�)F�1
⇣

3a(�)�b(�)
4a�

⌘
a(�) � b(�).

Property 2: When x = 0, then G(0|�) = b(�)
a(�)+b(�) .

Property 3: If X is a random variable from the skew family of distributions, then

P (X � 0|�)
P (X < 0|�) =

a(�)

b(�)
.

.

2.6 Quantile modelling

2.6.1 Quantiles

Suppose X is a random variable defined by FX(x), such that FX(x) is right continuous. It follows

that a quantile function, QX(p), is defined such that

QX(p) = F�1
X

(p) = inf {x : FX(x) � p} , (2.19)

where 0 < p < 1 and �1 < x < 1. It can be observed that FX(QX(p)) = p is a composite function

if X is a continuous random variable. Various quantile-based functions can be derived from the

quantile function, and subsequently used to define a distribution.
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• Quantile density function

The quantile-density function is also known as the sparsity function (Tukey (1965)). It is

obtained as the first derivative of the quantile function with respect to p.

It is defined as

qX(p) =
d(QX(p))

dp
= Q0

X
(p), 0 < p < 1. (2.20)

• Density quantile function

As a result of the composite function FX(QX(p)) = p that arises from continuous random variables,

the density quantile function is derived by taking derivatives on both sides of the function, such

that

d(FX(QX(p)))

dp
=

dp

dp
= 1

) fX(QX(p))qX(p) = 1

) fX(QX(p)) =
1

qX(p)
(2.21)

It can be denoted as fP (p) since it’s derivative was obtained in terms of p and not X.

Quantile modelling rules

Gilchrist (2000) documented quantile modeling rules that can be used to construct quantile-

based distributions. These rules include the addition, multiplication and reflection of quantile

functions, while obtaining monotone non-decreasing quantile functions.

• Addition rule

Let X and Y be two random variables defined by their non-decreasing quantile functions QX(p)

and QY (p), respectively. Then QZ(p) = QX(p) + QY (p), is also non-decreasing and hence the

quantile function of the random variable Z.

• Reflection rule

Consider X 2 (0,1) with quantile function QX(p) and Y 2 (�1, 0) with quantile function QY (p) =

�QX(1� p). Therefore, X and Y have distributions that are reflective of each other. Therefore,
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let QZ(p) be the quantile function obtained from the sum of QX(p) and QY (p) such that

QZ(p) = QX(p) +QY (p)

= QX(p)�QX(1� p)

= �QY (1� p)�QX(1� p)

= �QZ(1� p). (2.22)

This result shows that the sum of the quantile functions of two distributions which are reflective

of each other gives rise to the quantile function of a symmetric distribution. Therefore, Z is

symmetric.

2.6.2 Quantile-based distributions

Some well-known examples of quantile-based distributions include Tukey lambda distribution

(Tukey (1960)), various types of lambda distributions (Ramberg and Schmeiser (1972); Freimer

et al. (1988); van Staden (2014)) and the Davies distribution (Hankin and Lee (2006)).

van Staden and King (2015) made use of the quantile modeling techniques and developed

the quantile-based skew logistic distribution (SLDQB) by introducing a weighting parameter to

the quantile function of the logistic distribution. They considered the quantile function of the

logistic distribution, QX(p) = log
h

p

1�p

i
, as the sum of the quantile functions of the standard

reflected exponential and the standard exponential distributions, i.e.

QX(p) = log


p

1� p

�
= log(p)� log(1� p), 0 < p < 1,

afterwhich they then introduced an skewness parameter, 0 < � < 1. The quantile function of the

standard quantile-based skew logistic distribution was then defined as

QX(p) = (1� �) log(p)� � log(1� p), 0 < p < 1. (2.23)

With the inclusion of a location and scale parameter, �1 < µ < 1 and � > 0, respectively,

Eq.(2.23) was generalized.

Definition 2.6.2.1. A real-valued random variable X is said to follow the quantile-based skew

logistic distribution, denoted X ⇠ SLDQB(µ,�, �), if its quantile function is given as

QX(p) = µ+ � ((1� �) log(p)� � log(1� p)) , 0 < p < 1. (2.24)
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⌅

The distributional properties of the SLDQB are:

Property 1: The distribution is symmetric for � = 1
2 , positively skewed for � > 1

2 and negatively

skewed for � < 1
2 .

Property 2: The SLDQB possesses infinite support (�1;1) when (0 < � < 1), half-infinite support

(�1,↵] for � = 0, and half-infinite support [↵,1) for � = 1.

Property 3: The reflected exponential, logistic and exponential distributions are special cases

of the SLDQB when � = 0, � = 1
2 and � = 1, respectively.

Property 4: The range of values for the L-skewness, ⌧3, is [� 1
3 ,

1
3 ], while the L-kurtosis, ⌧4, remains

constant at 1
6 .

Balakrishnan and So (2015) presented a generalization of the SLDQB model in Eq.(2.24)

by van Staden and King (2015). This was done by introducing an additional shape parameter

 > 0, also termed the power parameter, to aid in increasing the flexibility of the distribution by

providing a wider range of L-kurtosis values. This gave rise to the generalized quantile-based

skew logistic distribution.

Definition 2.6.2.2. A real-valued random variable X is said to have the generalized quantile-

based skew logistic distribution, denoted X ⇠ GSLDQB(µ,�, �,), if its quantile function is given

as

QX(p) = µ+ � ((1� �) log(p)� � log(1� p)) , 0 < p < 1, (2.25)

where �1 < µ < 1 and � > 0 are the location and scale parameters, respectively, whereas 0 < � < 1

and  > 0 are the shape parameters.

⌅

The distributional properties of the SLDQB are:

Property 1: The distribution is positively skewed as  ! 0. As  increases, the skewness of the

GSLDQB decreases for � < 1
2 and increases then decreases for 1

2 < � < 1.

Property 2: The GSLDQB is positively skewed for � > 1
2 and negatively skewed for � < 1

2 .

Property 3: The GSLDQB will be reduced to the GSLDQB in Eq.(2.24) when  = 1.
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Property 4: The range of values for the L-skewness, ⌧3, is [�1, 1], which is the widest possible

range.

Property 5: The range of values for the L-kurtosis, ⌧4, is [0.1504, 1].

2.6.3 Combining half distributions

Balakrishnan et al. (2017) introduced an alternative model to the skew logistic distribution

proposed by van Staden and King (2015). They proposed taking the PDF of the half logistic

distribution to the right of its location parameter, µ, and joining it to the PDF of the half

logistic distribution to the left of µ. A single asymmetry parameter, ↵ > 0, was introduced to

obtain the skew logistic distribution.

Definition 2.6.3.1. A real-valued random variable from the skew logistic distribution, denoted

as X ⇠ SL(µ,�,↵), is defined by its PDF, CDF and quantile function as

fX(x) =

8
>>>>><

>>>>>:

e
� x�µ

�

�

✓
1+e

�x�µ
�

◆2 , x � µ

e

x�µ
↵�

↵�

✓
1+e

x�µ
↵�

◆2 , x  µ,

FX(x) =

8
>>><

>>>:

1

1+e

�x�µ
�

, x � µ

1

1+e

x�µ
↵�

, x  µ,

QX(p) =

8
>><

>>:

µ� �(log(1� p)� log(p)), p � 1
2

µ� ↵�(log(1� p)� log(p)), p < 1
2 ,

respectively, while the PDF and CDF of the standard half logistic random variable, Y , is given

by Balakrishnan (1985) as

fY (x) =
2e�x

(1 + e�x)2
, x > 0 (2.26)

and

FY (x) =
1� e�x

1 + e�x
, x > 0,

respectively.

⌅

Balakrishnan et al. (2017) indicated existing relationships between X and Y , through their PDFs

and CDFs, as follows:
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Property 1: FX(x) = 1� FX(x/↵)

Property 2: fX(�x) = 1
↵
fX(x/↵)

Property 3: FX(x) = 1+FY (x)
2

Property 4: fX(x) = fY (x)
2

The single and product moments of the order statistics of the skew logistic distribution were then

obtained for any sample size, and were used to compute the means, variances and covariances

of all the order statistics.



QUANTILE SPLICING

3.1 Introduction

This chapter presents the quantile splicing methodology. This method involves the joining of

the quantile functions of two half distributions at the median, resulting in two-piece families of

distributions. Balakrishnan et al. (2017) introduced a skew logistic distribution by taking the

half logistic distribution to the right of its location parameter and joining it to the half logistic

distribution to the left of the location parameter which has an inclusion of a single asymmetry

parameter, ↵ > 0.

The methodology made use of the CDF and PDF of the logistic distribution, as the kernel to

obtain the skew logistic distribution. They then made use of order statistics from the half logistic

distribution and their moments to obtain the single and product moments of the proposed skew

logistic distribution. Furthermore, those results were used to obtain the means, variances and

covariances of order statistics for any sample size.

This chapter proposes a technique that generalizes the results of Balakrishnan et al. (2017).

The quantile functions of half distributions of symmetric parent distributions are used as kernels

in place of the CDFs and PDFs of parent distributions to be skewed. This mechanism results

in two-piece families of distributions that can be defined through closed-form expressions for

the CDF and PDF if they exist, or through the quantile function in the case of quantile-based

distributions. In essence, the methodology allows for either the CDF, PDF or quantile function

of a half distribution from a symmetric distribution to be used as a kernel to obtain asymmetric

distributions.

Moreover, the results from the proposition have led to the derivation of a general form for

the rth order L-moments of two-piece distributions. These results will make use of the rth order

L-moments from both the half distribution as well as the parent distribution. The results will

22
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enable the avoidance of tedious computations in obtaining single and product moments for the

distributions.

The skewing mechanism used to obtain the two-piece family of distributions will be presented

and discussed in Section 3.2. The process will begin with the derivation of the quantile function

of the half distribution for any symmetric univariate distribution. This result is then used as

the kernel for the mechanism that generates the two-piece families of distributions.

The general formulae for the rth order L-moments of the two-piece distributions are derived

in Section 3.3. This formulae is expressed in terms of the L-moments of the half distributions as

well as the parent distributions. It will be used to obtain the first four L-moments of a two-piece

distribution as well as the L-skewness and L-kurtosis moment ratios. In addition, the rth order

shifted scaled polynomials needed to derive the L-moments of the half distributions are also

derived.

General results for the quantile measures of distributional form for the location, spread and

shape of two-piece distributions are derived in Section 3.4. Conventional measures such as the

median for location, the spread function for spread and the �-functional for shape will be used

to summarise the properties of these distributions. Skewness-invariant measures of kurtosis will

also be derived.

In Section 3.5, the method for L-moments will be used to estimate the parameters for the

two-piece distributions. This is because the results in Section 3.3 enable the derivation of L-

moments that are simpler in form in comparison to the central moments.

The model validation procedures of these two-piece families of distributions when fitted to

data sets will be studied in Section 3.6. In Section 3.7, the investigation of the tail behaviour

of these families of distributions is presented. Finally, the conclusion of this chapter is given in

Section 3.8.
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3.2 Method of Quantile Splicing

Suppose X is a real-valued random variable from any univariate symmetric distribution, with a

defined CDF, PDF or quantile function. X is standardized such that the first two L-moments,

that is L1 (L-location) and L2 (L-scale) are equal to 0 and 1, respectively. If L1 and L2 depend on

the location and scale parameters, then the parameters are subsequently redefined to account for

the standardizing requirements imposed. This will ensure that any symmetric distribution can

be generalized into a two-piece distribution, despite being centered at a location point other than

0. In the case of bounded distributions, the boundaries of the distribution are reparametrized

such that the condition of L1 = 0 and L2 = 1 are also achieved.

Theorem 3.2.1. Suppose Y is a folded random variable such that Y = |X|, where 0 < y < 1,

and Z = �Y . The quantile functions of Y and Z are obtained as

QY (p) = QX

 
1 + p

2

!
, 0 < p < 1

and

QZ(p) = QX

⇣p
2

⌘
, 0 < p < 1

respectively.

Proof. The CDF of Y follows from the results below as

GY (y) = P (Y  y)

= P (|X|  y)

= P (�y  X  y)

= FX(y)� FX(�y)

= FX(y)� (1� FX(y))

= 2FX(y)� 1.

This implies that FX(y) = 1+p

2 , where p is the depth in G, yielding the corresponding quantile

function of Y as

QY (p) = F�1
X

 
1 + p

2

!
= QX

 
1 + p

2

!
, (3.1)

where 0 < p < 1. Through the use of the reflection rules of quantile functions documented by

Gilchrist (2000), the quantile function of Z is QZ(p) = �QY (1� p).
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Therefore,

QZ(p) = �QY (1� p)

= �QX

 
1 + (1� p)

2

!

= �QX

 
2� p

2

!

= QX

 
1� 2� p

2

!

= QX

⇣p
2

⌘
, (3.2)

where 0 < p < 1. ⌅

Remark. Eq.(3.2) and Eq.(3.1) are the quantile functions of two half distributions, from a

standard symmetric parent distribution, whose domains are both 0 < p < 1.

Since Theorem 3.2.1 makes use of the quantile functions of half distributions as the kernels,

the method can be used for any symmetric univariate distribution in the event that it has an

unknown CDF. In order for quantile splicing to be established, the domains of the quantile

functions have to be obtained for both the left side of the location parameter, �1 < µ < 1, as

well as the right side.

Consider Eq.(3.2) whose range of values is 0 < p < 1. Let s = p

2 , hence Eq.(3.2) yields QX(s)

where 0 < s  1
2 . In the same way, by replacing 1+p

2 with s, the range of values for the quantile

function in Eq.(3.1) is 1
2 < s < 1.

Definition 3.2.0.1. A real-valued random variable T, denoted as T⇠TP(µ,�,↵), follows a two-

piece distribution if its quantile function is defined as

QT (s) =

8
>><

>>:

µ+ ↵�QX:0(s), s  1
2 ,

µ+ �QX:0(s), s > 1
2 ,

(3.3)

where QX:0 is the standard quantile function of X, �1 < µ < 1, � > 0 and ↵ > 0 are the location,

spread and asymmetry parameters, respectively.

⌅
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3.3 rth Order L-moments

L-moments, as defined by Hosking (1990), are expectations of linear combinations of order

statistics. They can be defined for any distribution that has an existing mean, even when all its

other conventional moments do not exist. Moreover, they summarize a wider range of univariate

distributions.

L-moments form the basis for general theory with regards to existing procedures, such as the

use of order statistics and the Gini’s mean difference statistic (Gini (1912)). The use of these

results range from uniquely defining and summarizing the properties of a probability distribution

in terms of location, spread and shape, to creating estimation procedures for parameters, as well

as hypothesis tests.

Since they are linear functions of data, L-moments tend to be more robust to the effects

of sampling variability in comparison to the conventional moments. Moreover, when estimated

from a sample, they tend to exhibit more robustness to outliers. L-moments sometimes yield

more efficient parameter estimates that are less subject to bias through estimation procedures

such as the method of L-moments, as compared to the conventional maximum likelihood or

method of moments estimates.

The general formulae for the rth order L-moment of a two-piece distribution will consist of

the L-moments of both the parent distribution as well as the half distribution. As a result

of the domain intervals for the quantile functions in Eq.(3.3), the conventional L-moments

developed by Hosking (1990) will have to be adapted to accomodate this new change. This will

include deriving rth order shifted scaled Legendre polynomials that will be used to obtain the

L-moments of half distributions, which in turn will be used to develop the L-moments of the

two-piece distribution.

3.3.1 Definition of L-moments

Definition 3.3.1.1. Suppose that X is a real-valued random variable with CDF, FX(x), and

quantile function, QX(p), where 0 < p < 1. Let X1:n  X2:n  X3:n · · ·  Xn:n be given as the order

statistics of a random sample of size n. The L-moments can be defined in terms of the order

statistics as

Lr = r�1
r�1X

k=0

(�1)k
✓
r � 1

k

◆
E(Xr�k:r), r 2 Z+. (3.4)
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⌅

Hosking (1990) defined the expectation of order statistics in terms of a distribution’s quantile

function as

E(Xj:r) =
r!

(j � 1)!(r � j)!

Z 1

0
QX(p)pj�1(1� p)r�jdp, 0 < p < 1, (3.5)

by using the definition of an expectation of an order statistic by David (1981).

The first four L-moments are obtained by combining the results obtained from substituting

the respective value of r � 0 into Eqs.(3.4 and 3.5) to obtain

L1 = E(X1:1) =

Z 1

0
Q(p)dp

L2 =
1

2
E(X2:2 �X1:2) =

Z 1

0
Q(p)(2p� 1)dp

L3 =
1

3
E(X3:3 � 2X2:3 +X1:3) =

Z 1

0
Q(p)(6p2 � 6p+ 1)dp

L4 =
1

4
E(X4:4 � 3X3:4 + 3X2:4 �X1:4) =

Z 1

0
Q(p)(20p3 � 30p2 + 12p� 1)dp. (3.6)

L1 is referred to as the L-location and it is equivalent to the mean. L2 is referred to as the

L-scale since it’s a measure of spread. It is also the expectation of the Gini’s mean difference

statistic by Gini (1912). It is related to the ”totaltimetotest” statistic of Gail and Gastwirth

(1978), which they used to test for exponentiality in distributions against other alternatives

such as the sample Lorenz statistic.

Gilchrist (2000) showed that L-moments of an order r > 2 have an increased susceptibility

to large variability. For this reason, they are transformed into L-moment ratios so that they are

independent of the measurement units of the random variable.

The L-moment ratios are defined as

⌧r =
Lr

L2
, r � 3. (3.7)

When r = 3, ⌧3 = L3
L2

is obtained as a measure of skewness, referred to as the L-skewness

ratio. Similarly, when r = 4, ⌧4 = L4
L2

is defined as the L-kurtosis ratio, which is a measure

of kurtosis. Hosking (1989) and Jones (2004) showed these two L-moment ratios are bounded

by the constraints �1 < ⌧3 < 1 and 1
4 (5⌧

2
3 � 1) < ⌧4 < 1, respectively.

By making use of (Sillitto (1951),Eq.(3.9)), ⌧3 can be rewritten in terms of order statistics
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as

⌧3 =
E(X3:3 � 2X2:3 +X1:3)

E(X3:3 �X1:3)
. (3.8)

The L-skewness ratio has an advantage over the conventional skewness moment-ratio due to

its extreme sensitivity in the extreme tail weight of a distribution. Due to its boundaries of

(�1, 1), it also yields smaller values of skewness as compared to the conventional moments which

can take on values that tend to infinity. The closer ⌧3 is to 1, the more positively skewed the

distribution is. Similarly, the distribution will exhibit negative skewness when �1 < ⌧3 < 0, with

extreme cases being noted when it is closest to �1. Symmetric distributions have a value of

⌧3 = 0.

3.3.2 rth Order Shifted Legendre Polynomials

Legendre polynomials were first introduced by Legendre (1786) as a sequence of orthogonal

polynomials that are obtained as solutions to the Legendre differential equations. Rodrigues’

formula (Rodrigues (1816)) was used to redefine the Legendre polynomials such that

Pr�1(p) =
1

2r�1(r � 1)!

dr�1

dpr�1
(p2 � 1)r�1, r 2 Z+. (3.9)

The rth order shifted Legendre polynomials are obtained by adding a scale parameter value

of 2 and a location-shifting value of �1 in order to obtain their general form from the ordinary

Legendre polynomials. As a result, the relationship between the shifted Legendre polynomials

and the Legendre polynomials is

P ⇤
r�1(p) = Pr�1(2p� 1). (3.10)

Lemma 3.3.1. The rth order shifted Legendre polynomials, for r 2 Z+, are defined as

P ⇤
r�1(p) =

1

(r � 1)!

dn

dpr�1
(p2 � p)r�1, 0 < p < 1. (3.11)

The first 4 shifted Legendre polynomials are obtained as

P ⇤
0 (p) = 1,

P ⇤
1 (p) = 2p� 1,

P ⇤
2 (p) = 6p2 � 6p+ 1

P ⇤
3 (p) = 20p3 � 30p2 + 12p� 1, (3.12)

respectively.
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Proof. Through the use of Eq.(3.9) and P ⇤
r�1(p) = Pr�1(2p � 1), the rth order shifted Legendre

polynomials are derived as

P ⇤
r�1(p) = Pr�1(2p� 1)

=
1

2r�1(r � 1)!

dr�1

d(2p� 1)r�1
((2p� 1)2 � 1)r�1

=
1

2r�1(r � 1)!

dr�1

2r�1dpr�1
(4p2 � 4p+ 1� 1)r�1

=
1

2r�1(r � 1)!

dr�1

2r�1dpr�1
(4p2 � 4p)r�1

=
1

2r�1(r � 1)!

dr�1

2r�1dpr�1
(4(p2 � p))r�1

=
1

2r�1(r � 1)!

dr�1

2r�1dpr�1
4r�1(p2 � p)r�1

=
1

(r � 1)!

dr�1

dpr�1
(p2 � p)r�1.

In order to generate the polynomials in Eq.(3.12), the positive integer values for r are se-

quentially substituted into Eq.(3.11). These shifted Legendre polynomials in Eq.(3.12) were

used to derive the rth order L-moments as shown by Hosking (1990). ⌅

Definition 3.3.2.1. The rth order L-moments can be defined in terms of a quantile function as

Lr =

Z 1

0
QX(p)P ⇤

r�1(p)dp, r 2 Z+, (3.13)

where

P ⇤
r�1(p) =

r�1X

k=0

(�1)r�k�1

✓
r � 1

k

◆✓
r + k � 1

k

◆
pk (3.14)

is the rth order shifted Legendre polynomial. The first four L-moments are subsequently obtained

as

L1 =

Z 1

0
QX(p)dp,

L2 =

Z 1

0
QX(p)(2p� 1)dp,

L3 =

Z 1

0
QX(p)(6p2 � 6p+ 1)dp,

and

L4 =

Z 1

0
QX(p)(20p3 � 30p2 + 12p� 1)dp, (3.15)

respectively. ⌅
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Applications of the rth order shifted Legendre polynomials

Some applications of the rth order shifted Legendre polynomials are presented.

Application 1: Multipole function expansions:

Multipole functions are mathematical expansions of functions that are defined

in terms of angles. Legendre polynomials can be used to expand functions that

are of the form:
1p

1 + ⌘2 � 2⌘p
=

1X

k=0

⌘kpk(p).

Application 2: Trigonometry:

The Chebychev polynomials, Tr(cos(✓)) = cos(r✓) can also be expanded by the

Legendre polynomials, Pr(cos(✓)), for r 2 Z�0.

3.3.3 rth Order Shifted Scaled Polynomials

The integrals for the rth order L-moments, as can be seen from Eq.(3.15), yield the respective

results for a random variable when the boundaries are from 0 to 1. In the event that an integral

with the same structure as that of Eq.(3.13) does not have the required boundaries to be termed

an L-moment, the following results can be utilized to account for the difference in boundaries.

Lemma 3.3.2. Let X be a real valued random variable with a quantile function defined as QX(p),

where 0 < p < 1 and 0 < k < 1. It follows that:
Z

k

0
QX(p)P ⇤

r�1(p)dp = k

Z 1

0
QX (ku)P ⇤

r�1 (2ku� 1) du (3.16)

Proof. Since the integrals of L-moments are bounde on (0, 1), consider the transformation u = p

k
,

such that du = dp

k
. Therefore it follows that

Z
k

0
QX(p)P ⇤

r�1(p) dp = k

Z 1

0
QX (ku)P ⇤

r�1 (2ku� 1) du

= k

Z 1

0
QX (ku)P ⇤

r�1 (2ku� 1) du. (3.17)

⌅

Remark. The results in Lemma (3.3.2) imply that the transformation used also affects the rth

order shifted Legendre polynomials presented in Eq.(3.15). A scaling factor is introduced that

decreases the domain over which the integral is to be obtained, ultimately affecting the shifted

Legendre polynomials.
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Theorem 3.3.3. The rth order shifted Legendre polynomials, with a scaling factor 0 < k < 1, is

denoted as

P ⇤
r�1 (ku) = Pr�1 (2ku� 1) =

1

(r � 1)!

dr�1

dur�1

�
ku2 � u

�r�1 (3.18)

where r = 1, 2, 3, ..., with the first 4 shifted scaled polynomials obtained as

P ⇤
0 (ku) = 1,

P ⇤
1 (ku) = 2 (ku)� 1,

P ⇤
2 (ku) = 6 (ku)2 � 6 (ku) + 1,

and

P ⇤
3 (ku) = 20 (ku)3 � 30 (ku)2 + 12 (ku)� 1, (3.19)

respectively.

Proof. Eq.(3.18) follows from Eq.(3.11) by replacing ku in place of p to obtain

P ⇤
r�1 (ku) =

1

(r � 1)!

dr�1

d(ku)r�1

⇣
(ku)2 � (ku)

⌘r�1

=
1

(r � 1)!

dr�1

(k)r�1dur�1

�
k
�
ku2 � u

��r�1

=
1

(r � 1)!

dr�1

(k)r�1dur�1
kr�1

�
ku2 � u

�r�1

=
1

(r � 1)!

dr�1

dur�1

�
ku2 � u

�r�1 (3.20)

The shifted scaled polynomials are obtained when values of r = 1, 2, 3 and 4 are substituted

into Eq.(3.20) and the rth derivative obtained accordingly. The first polynomial, when r = 1 is

P ⇤
0 (ku) =

1

(1� 1)!

d1�1

d(ku)1�1

⇣
(ku)2 � (ku)

⌘1�1

=
1

0!

d0

d(ku)0

⇣
(ku)2 � (ku)

⌘0

= 1.

The second polynomial , when r = 2, is

P ⇤
1 (ku) =

1

(2� 1)!

d2�1

d(ku)2�1

⇣
(ku)2 � (ku)

⌘2�1

=
1

1!

d1

d(ku)1

⇣
(ku)2 � (ku)

⌘1

=
d1

d(ku)1

⇣
(ku)2 � (ku)

⌘1

=
d

k du

⇣
(ku)2 � (ku)

⌘

=
1

k

�
2k2u� k

�

= 2 (ku)� 1.
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The third polynomial is obtained when r = 3 as

P ⇤
2 (ku) =

1

(3� 1)!

d3�1

d(ku)3�1

⇣
(ku)2 � (ku)

⌘3�1

=
1

2!

d2

d(ku)2

⇣
(ku)2 � (ku)

⌘2

=
1

2k2
d2

du2

⇣
(ku)2 � (ku)

⌘2

=
1

2k2
d

du

�
2
�
k2u2 � ku

� �
2k2u� k

��

=
1

k2

⇣�
2k2u� k

�2
+
�
2k2
� �

k2u2 � ku
�⌘

=
1

k2
�
4k4u2 � 4k3u+ k2 + 2k4u2 � 2k3u

�

= 6 (ku)2 � 6 (ku) + 1.

Finally, to obtain the fourth polynomial, r = 4 is substituted into Eq.(3.20) to obtain

P ⇤
3 (ku) =

1

(4� 1)!

d4�1

d(ku)4�1

⇣
(ku)2 � (ku)

⌘4�1

=
1

3!

d3

d(ku)3

⇣
(ku)2 � (ku)

⌘3

=
1

6k3
d3

du3
k3
�
ku2 � u

�3

=
1

6

d2

du2

⇣
3
�
ku2 � u

�2
(2ku� 1)

⌘

=
1

2

d

du

⇣
2
�
ku2 � u

�
(2ku� 1)2 + (2k)

�
ku2 � u

�2⌘

= (2ku� 1)3 + 2 (2k)
�
ku2 � u

�
(2ku� 1) + (2k)

�
ku2 � u

�
(2ku� 1)

= (2ku� 1)
�
10k2u2 � 10ku+ 1

�

= 20 (ku)3 � 30 (ku)2 + 12 (ku)� 1.

⌅

3.3.4 rth order L-moments for Two-piece Distributions

Theorem 3.3.4. Let T be a random variable from a two-piece distribution, denoted as T ⇠

TP (µ,�,↵), and defined by the quantile function, QT (s). The general expression for the rth order

L-moment is given as

LT :r = µ⇤ + �
⇣
LX:r � 0.5(1� ↵)⇥

rX

j=1

c(r�1)
j�1

µj:j

j

⌘
, (3.21)

where µ⇤ is a location parameter that takes on the value of �1 < µ < 1 if r = 1, and zero for all

values of r > 1. c(r�1)
j�1 is the (j � 1)th coefficient of the rth order shifted Legendre polynomial, and

µj:j is the expectation of the jth order statistic from a sample of size n from a half distribution.
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Proof. The expressions for the rth order L-moments of T can be obtained by using Hosking

(1990)’s definition, where the product of the quantile function and shifted Legendre polynomials

is integrated over its piecewise domain. Therefore,

LT :r =

Z 1
2

0
(µ+ ↵�QX:0(s))P

⇤
r�1(s)ds+

Z 1

1
2

(µ+ �QX:0(s))P
⇤
r�1(s)ds

=

Z 1
2

0
(µ+ ↵�QX:0(s))P

⇤
r�1(s)ds+

(Z 1

0
(µ+ �QX:0(s))P

⇤
r�1(s)ds�

Z 1
2

0
(µ+ �QX:0(s))P

⇤
r�1(s)ds

)

=

Z 1

0
(µ+ �QX:0(s))P

⇤
r�1(s)ds� �(1� ↵)

Z 1
2

0
QX:0(s)P

⇤
r�1(s)ds

=

Z 1

0
µP ⇤

r�1(s)ds+ �

 Z 1

0
QX:0(s)P

⇤
r�1(s)ds� (1� ↵)

Z 1
2

0
QX:0(s)P

⇤
r�1(s)ds

!

= µ⇤ + �

✓
LX:r � 0.5(1� ↵)

Z 1

0
QZ:0 (p)P

⇤
r�1 (p) dp

◆
,

(3.22)

such that P ⇤
r�1 (p) is a polynomial of degree (r�1) expressed as P ⇤

r�1 (p) = c(r�1)
0 + c(r�1)

1 p+ c(r�1)
2 p2+

...+c(r�1)
r�1 pr�1. QZ:0 (p) is the standard quantile function of the half parent distribution in Eq.(3.2)

and LX:r is the rth order L-moment of the parent distribution, X. The final step is attained by

using the results in Lemma 3.3.2, where the scaling factor for the integral k = 1
2 and Eq.(3.2)

where s = p

2 .

In order to further simplify the results in Eq.(3.22), let Ir�1 be defined as

Ir�1 =

Z 1

0
QZ (p)P ⇤

r�1 (p) dp =

Z 1

0
QZ (p)

⇣
c(r�1)
0 + c(r�1)

1 p+ c(r�1)
2 p2 + ...+ c(r�1)

r�1 pr�1
⌘
dp. (3.23)

The polynomial coefficients of P ⇤
r�1 (p) are summarised in Table 3.1, for j = 1, 2, ..., r � 1.

0 1 2 3 · · · j

0 c(0)0

1 c(1)0 c(1)1

2 c(2)0 c(2)1 c(2)2

3 c(3)0 c(3)1 c(3)2 c(3)3

: : : : :
. . .

r � 1 c(r�1)
0 c(r�1)

1 c(r�1)
2 c(r�1)

3 c(r�1)
j

Table 3.1: The coefficients of a polynomial of degree (r � 1).
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Consider
R 1
0 QZ(p)prdp where r 2 Z+. By setting p = FZ(z), QZ(p) = z and subsequently

dp = fZ(z)dz. Therefore,
Z 1

0
QZ(p)p

rdp =

Z 1

0
z(FZ(z))

rfZ(z)dz

= (r + 1)

Z 1

0

z(FZ(z))rfZ(z)

r + 1
dz

=
E(Zr+1:r+1)

r + 1

=
1

r + 1
µr+1:r+1, (3.24)

where µr+1:r+1 is the expected value of the (r+ 1)th largest observation in a sample of size (r+ 1)

from the half distribution, Z, of the parent distribution, X.

Hence by making use of the result in Eq.(3.24) and Eq.(3.26), Eq.(3.22) can be rewritten as

LT :r = µ⇤ + �

✓
LX:r � 0.5(1� ↵)

Z 1

0
QZ(p)P

⇤
r�1(p)dp

◆

= µ⇤ + �

✓
LX:r � 0.5(1� ↵)

Z 1

0

⇣
QZ(p)c

(r�1)
0 +QZ(p)c

(r�1)
1 p+ ...+QZ(p)c

(r�1)
r�1 pr�1

⌘
dp

◆

= µ⇤ + �

 
LX:r � 0.5(1� ↵)

⇥
(Z 1

0
QZ(p)c

(r�1)
0 dp+

Z 1

0
QZ(p)c

(r�1)
1 p dp+

Z 1

0
QZ(p)c

(r�1)
2 p2dp+ ...+

Z 1

0
QZ(p)c

(r�1)
r�1 pr�1dp

)!

= µ⇤ + �

✓
LX:r � 0.5(1� ↵)

n
c(r�1)
0 E(Z1:1) + c(r�1)

1

E(Z2:2)

2
+ c(r�1)

2

E(Z3:3)

3
+ ...+ c(r�1)

r�1

E(Zr:r)

r

o◆

= µ⇤ + �

0

@LX:r � 0.5(1� ↵)⇥
rX

j=1

c(r�1)
j�1

E(Zj:j)

j

1

A

= µ⇤ + �

0

@LX:r � 0.5(1� ↵)⇥
rX

j=1

c(r�1)
j�1

µj:j

j

1

A

(3.25)

⌅

Lemma 3.3.5. Let Zr:n denote the rth order statistic in a random sample of size n from a half

distribution. Then E(Zr:n) can be expressed as

E(Zr:n) =
1

B(r, n� r + 1)

Z 1

0
QX

⇣p
2

⌘⇣p
2

⌘r�1 ⇣
1� p

2

⌘n�r

dp (3.26)

where QX

�
p

2

�
is the quantile function of Z. This result is adopted from Eq.(3.5), which was first

defined by Hosking (1990).

⌅
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Theorem 3.3.6. The expressions for the first 4 L-moments for T, a real-valued random variable

from the two-piece family of distributions, are

LT :1 = µ+ �
⇣
LX:1 � 0.5(1� ↵)c(0)0 LZ:1

⌘

LT :2 = �

 
LX:2 � 0.5(1� ↵)⇥

⇣
c(1)0 LZ:1 +

c(1)1

2
(LZ:1 + LZ:2)

⌘!

LT :3 = �

 
LX:3 � 0.5(1� ↵)⇥

⇣
LZ:1

⇣
c(2)0 +

c(2)1

2
+

c(2)2

3

⌘
+ LZ:2

⇣c(2)1

2
+

c(2)2

2

⌘
+ LZ:3

c(2)2

6

⌘!

and

LT :4 = �

 
LX:4 � 0.5(1� ↵)⇥

⇣
LZ:1

⇣
c(3)0 +

c(3)1

2
+

c(3)2

3
+

c(3)3

4

⌘
+

LZ:2

2
(c(3)1 + c(3)2 +

9

10
c(3)3 )

+
LZ:3

2
(
c(3)2

3
+

c(3)3

2
) +

LZ:4

20
c(3)3

⌘!
, (3.27)

respectively.

Proof. The values of r = 1, 2, 3 and 4 are substituted into Eq.(3.25), respectively. This results in

the first 4 L-moments of a two-piece distribution being defined in terms of order statistics as

LT :1 = µ+ �
⇣
LX:1 � 0.5(1� ↵)⇥ c(0)0 µ1:1

⌘

LT :2 = �
⇣
LX:2 � 0.5(1� ↵)⇥

n
c(1)0 µ1:1 + c(1)1

µ2:2

2

o⌘

LT :3 = �
⇣
LX:3 � 0.5(1� ↵)⇥

n
c(2)0 µ1:1 + c(2)1

µ2:2

2
+ c(2)2

µ3:3

3

o⌘

and

LT :4 = �
⇣
LX:4 � 0.5(1� ↵)⇥

n
c(3)0 µ1:1 + c(3)1

µ2:2

2
+ c(3)2

µ3:3

3
+ c(3)3

µ4:4

4

o⌘
, (3.28)

respectively.

The expected values of the order statistics of the half distribution, Z, in Eq.(3.28) can be

expressed in terms of its L-moments. Thus

LT :1 = µ+ �(LX:1 � 0.5(1� ↵)c(0)0 µ1:1)

= µ+ �(LX:1 � 0.5(1� ↵)c(0)0 LZ:1), (3.29)

where LZ:1, L-location, is the first L-moment of Z.

In the case of r = 2, LT :2 in Eq.(3.28) can be transformed and presented in terms of Hosking’s

results. By making use of these results, the second L-moment of Z, referred to as L-scale can

be given as

LZ:2 =
1

2
E(Z2:2 � Z1:2) =

1

2
(µ2:2 � µ1:2). (3.30)
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To further simplify Eq.(3.30), consider LZ:r to be the rth row in an infinite triangular array,

where µi:r is a point in the row, for 1  i  r, with r > 1. The triangle rule for order statistics,

developed by Arnold and Meeden (1975), indicates that the expected values and moments of

order statistics of samples from an arbitrary distribution are known to satisfy the recursive

relationship iµi+1:r+(r� i)µi:r = rµi:r�1. This enables the expected values of the order statistics in

the form µi:r to be represented in terms of µi:i, µi+1:i+1, ..., µr:r, ultimately resulting in the results

in Eq.(3.28) being fully represented in terms of the L-moments of X and Z.

Therefore µ1:2 in Eq.(3.30) can be solved by setting i = 1 and r = 2 to give

µ2:2 + µ1:2 = 2µ1:1

) µ1:2 = 2µ1:1 � µ2:2. (3.31)

From Eq.(3.31), LZ:2 can be expressed as

LZ:2 =
1

2
(µ2:2 � µ1:2)

=
1

2
(µ2:2 � 2µ1:1 + µ2:2)

= µ2:2 � µ1:1

)µ2:2 = LZ:2 + µ1:1 = LZ:2 + LZ:1. (3.32)

Consequently,

LT :2 = �
⇣
LX:2 � 0.5(1� ↵)⇥

n
c(1)0 µ1:1 + c(1)1

µ2:2

2

o⌘

= �
⇣
LX:2 � 0.5(1� ↵)⇥

n
c(1)0 LZ:1 +

c(1)1

2
(LZ:1 + LZ:2)

o⌘
. (3.33)

For r = 3, the expression for LT :3 from Eq.(3.28) can be given in terms of the L-moments of

Z, by using the triangle rule to evaluate

I2 = c(2)0 E(Z1:1) +
c(2)1

2
E(Z2:2) +

c(2)2

3
E(Z3:3)

= c(2)0 µ1:1 +
c(2)1

2
µ2:2 +

c(2)2

3
µ3:3.

Hosking’s rules are used to present the 3rd L-moment of Z as

LZ:3 =
1

3
E(Z3:3 � 2X2:3 + Z1:3)

=
1

2
(µ3:3 � 2µ2:3 + µ1:3). (3.34)

In order to represent µ3:3 as a function of the L-moments, the triangle rule dictates, with

r = 2 and n = 3, that

2µ3:3 + µ2:3 = 3µ2:2

) µ2:3 = 3µ2:2 � 2µ3:3. (3.35)
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Similarly, with r = 1 and n = 3, the triangle rule gives

µ2:3 + 2µ1:3 = 3µ1:2

) µ1:3 =
1

2

⇣
3µ1:2 � µ2:3

⌘

=
1

2

⇣
3
⇣
2µ1:1 � µ2:2

⌘
�
⇣
3µ2:2 � 2µ3:3

⌘⌘

=
1

2

⇣
6µ1:1 � 3µ2:2 � 3µ2:2 + 2µ3:3

⌘

= 3µ1:1 � 3µ2:2 + µ3:3. (3.36)

By taking both Eqs.(3.35 and 3.36) and substituting in Eq.(3.34), the 3rd L-moment for Z

can be denoted as

LZ:3 =
1

3

⇣
µ3:3 � 2(3µ2:2 � 2µ3:3) + 3µ1:1 � 3µ2:2 + µ3:3

⌘

=
1

3

⇣
6µ3:3 � 9µ2:2 + 3µ1:1

⌘

= 2µ3:3 � 3µ2:2 + µ1:1.

This implies that

µ3:3 =
1

2

⇣
LZ:3 + 3µ2:2 � µ1:1

⌘

=
1

2

⇣
LZ:3 + 3LZ:1 + 3LZ:2 � LZ:1

⌘

=
1

2

⇣
LZ:3 + 3LZ:2 + 2LZ:1

⌘
. (3.37)

Therefore LT :3 can be rewritten as

LT :3 = �
n
LX:3 � 0.5(1� ↵)⇥

⇣
c(2)0 LZ:1 +

c(2)1

2
(LZ:1 + LZ:2) +

c(2)2

3

1

2
(LZ:3 + 3LZ:2 + 2LZ:1)

⌘o

= �
n
LX:3 � 0.5(1� ↵)⇥

⇣
LZ:1

⇣
c(2)0 +

c(2)1

2
+

c(2)2

3

⌘
+ LZ:2

⇣c(2)1

2
+

c(2)2

2

⌘
+ LZ:3

c(2)2

6

⌘o
. (3.38)

In the case of LT :4 the same procedure is considered. For r = 4, I3 is defined as

I3 =
4X

j=1

c(3)
j�1

E(Zj:j)

j

= c(3)0 E(Z1:1) +
c(3)1

2
E(Z2:2) +

c(3)2

3
E(Z3:3) +

c(3)3

4
E(Z4:4). (3.39)

The 4th L-moment of Z in terms of order statistics is given as

LZ:4 =
1

4
E(Z4:4 � 3Z3:4 + 3Z2:4 � Z1:4)

=
1

4
(µ4:4 � 3µ3:4 + 3µ2:4 � µ1:4). (3.40)
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In order to represent µi:4, for 1  i < 4, in terms of L-moments, the triangle rule is used once

again. Hence, with r = 3 and n = 4,

3µ4:4 + µ3:4 = 4µ3:3

) µ3:4 = 4µ3:3 � 3µ4:4. (3.41)

Next, with r = 2 and n = 4, it follows that

2µ3:4+2µ2:4 = 4µ2:3

) µ2:4 = 2µ2:3 � µ3:4

= 2(3µ2:2 � 2µ3:3)� 4(µ3:3 � 3µ4:4)

= 6µ2:2 � 4µ3:3 � 4µ3:3 + 3µ4:4

= 6µ2:2 � 8µ3:3 + 3µ4:4. (3.42)

Finally, with r = 1 and n = 4, we obtain

µ2:4 + 3µ1:4 = 4µ1:3

) µ1:4 =
1

3
(4µ1:3 � µ2:4)

=
1

3
(4(3µ1:1 � 3µ2:2 + µ3:3)� 6µ2:2 + 8µ3:3 � 3µ4:4)

=
1

3
(12µ1:1 � 18µ2:2 + 12µ3:3 � 3µ4:4)

= 4µ1:1 � 6µ2:2 + 4µ3:3 � µ4:4. (3.43)

Through the substitution of Eqs.(3.41-3.43) into Eq.(3.40), LZ:4 is obtained as

LZ:4 =
1

4
(µ4:4 � 3(4µ3:3 � 3µ4:4) + 3(6µ2:2 � 8µ3:3 + 3µ4:4)� (4µ1:1 � 6µ2:2 + 4µ3:3 � 4µ4:4))

=
1

4
(20µ4:4 � 40µ3:3 + 24µ2:2 � 4µ1:1)

= 5µ4:4 � 10µ3:3 + 6µ2:2 � µ1:1,

which yields µ4:4 as

µ4:4 =
1

5
(LZ:4 + 10µ3:3 � 6µ2:2 + µ1:1)

=
1

5
(LZ:4 + 5(LZ:3 + 3LZ:2 + 2LZ:1)� 6(LZ:1 + LZ:2) + �1)

=
1

5
(LZ:4 + 5LZ:3 + 9LZ:2 + 5LZ:1). (3.44)

In conclusion, LT :4 in Eq.(3.28) is rewritten by making use of Eqs.(3.32), (3.37) and (3.44)
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to give the final result as

LT :4 = �
n
LX:4 � 0.5(1� ↵)⇥

⇣
c(3)0 LZ:1 +

c(3)1

2
(LZ:1 + LZ:2) +

c(3)2

3

1

2
(LZ:3 + 3LZ:2 + 2LZ:1)

+
c(3)3

4
· 1
5
(LZ:4 + 5LZ:3 + 9LZ:2 + 5LZ:1)

⌘o

= �
n
LX:4 � 0.5(1� ↵)⇥

⇣
LZ:1

⇣
c(3)0 +

c(3)1

2
+

c(3)2

3
+

c(3)3

4

⌘
+

LZ:2

2

✓
c(3)1 + c(3)2 +

9

10
c(3)3

◆

+
LZ:3

2

 
c(3)2

3
+

c(3)3

2

!
+

LZ:4

20
c(3)3

⌘o
. (3.45)

⌅

Considering that the expressions of the two-piece L-moments, LT :r, are in terms of the L-

moments of the parent and half distributions, Z and X, respectively, the coefficients in Table 3.1

can then be given for r = 1, 2, 3 and 4, in Table 3.2. These will be equivalent to the coefficients

of the rth order shifted Legendre polynomials in Eq.(3.12).

r � 1

j � 1
0 1 2 3

0 1

1 -1 2

2 1 -6 6

3 -1 12 -30 20

Table 3.2: The coefficients of a polynomial of degree (r � 1) for r = 1, 2, 3 and 4.

3.4 Quantile Measures of Distributional Form

The methodology in Section3.2 is used to generate two-piece families of distributions whose

quantile functions can be expressed in closed-form. This permits the construction of quantile

measures of distributional form to explore their properties with respect to the location, scale

and shape of a two-piece distribution. The measures that will be used to explore the properties

of these distributions exist for all parameter values of a distribution.
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3.4.1 Location

The median is well-known for its ability to uphold the property of robustness. As such, it is the

chosen measure of location. It is defined as

me = Q

 
1

2

!
. (3.46)

3.4.2 Spread

The spread function, by MacGillivray and Balanda (1988), is the measure of choice to summarise

the spread of the two-piece families of distributions that have been generated. It is location-

invariant and a strictly increasing function. It is defined as

S(s) = Q(s)�Q(1� s),
1

2
< s < 1. (3.47)

It can be noted Q(s) > Q(1 � s) for all values of 1
2 < s < 1, therefore S(s) > 0. This implies it

meets the requirements for it to be a valid spread function. Special cases of the spread function

include the inter-quartile range, (IQR), and the inter-decile range, (IDR), for which the values

of s are set as 3
4 and 9

10 , respectively.

3.4.3 Shape

�-functional

The �-functional is an asymmetry functional that was defined by MacGillivray (1986) as

�(s) =
Q(s) +Q(1� s)� 2Q( 12 )

Q(s)�Q(1� s)
=

Q(s) +Q(1� s)� 2me

S(s)
,

1

2
< s < 1. (3.48)

As can be seen, the �-functional is a function of the difference between the quantile function

evaluated at s and (1 � s), and twice the median in the numerator. It is however scaled by the

spread function in Eq.(3.47) in the denominator. As the numerator increases, the functional

value increases and vice versa. The functional is bounded by �1 and 1. A special case is Bowley’s

quartile-based measure of skewness proposed by Bowley (1902), which is obtained by setting

s = 3
4 .
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Ratio-of-spread function

MacGillivray and Balanda (1988) introduced the ratio-of-spread functions as an additional mea-

sure of kurtosis. It describes the position of the probability mass in the tails of the distribution

and is measured for any pairs of values u and v. This function is denoted as

R(u, v) =
S(u)

S(v)
,

1

2
< v < u < 1. (3.49)

Since S(u) > S(v), for 1
2 < v < u < 1, it then follows that R(u, v) > 1.

3.4.4 Skewness-invariant Measures of Kurtosis

Kurtosis, in statistical terms, is used to measure the heaviness of the tails of a probability

density curve of a random variable from an existing distribution. In most cases, it has been

summarised in terms of its conventional standardized fourth central moment, known as the

kurtosis moment-ratio. It is commonly denoted as

↵4 =
E(X � µ)4

�4
,

where �1 < µ < 1 and � > 0 are the location and scale parameters, respectively, of the random

variable, X.

The normal distribution, with ↵4 = 3 as the theoretical kurtosis moment-ratio value, is used

as the standard against which other distributions are compared. Distributions with ↵4 > 3 are

called leptokurtic or heavy-tailed, ↵4 < 3 are termed platykurtic or light-tailed, whilst those with

↵4 = 3 are referred to as mesokurtic as they resemble the normal distribution. These terms were

first used by Pearson (1905).

This measure has its own drawbacks that limits its use in comparison to other measures of

kurtosis. It is a difficult measure to define in cases where any of the first 4 central moments

of a random variable do not exist. Furthermore, since the peakedness attains clarity when it

is relative to the weights of the tails in a distribution, it implies that ↵4 cannot be used to

accurately measure the kurtosis of leptokurtic distributions.

Pearson (1916) showed that ↵4 � ↵2
3 + 1, where ↵3 is the skewness moment-ratio of a dis-

tribution. The implication of an increase in the value of ↵3 is that ↵4 also increases. This

becomes progressively difficult to elaborate on the kurtosis of an asymmetric distribution. The

solution proposed by Jones et al. (2011) was to define kurtosis measures that were independent
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of skewness parameters of a random variable. The objective was to better the description of

the kurtosis of both symmetric and asymmetric distributions regardless of whether or not they

were heavy-tailed. In effect, this measure would be termed skewness-invariant.

Moreover, in order to deal with the dilemma of the inexistence of any of the first 4 central

moments of a random variable, this measure would make use of the quantile function, Q(s),

where 0 < s < 1. The measure proposed would be a ratio of linear combinations of differences

between quantile functions, of the form Q(s) � Q(1 � s), for values 0 < s < 1. The result is a

scale-invariant measure which reduces the variability of the overall kurtosis measure.

Definition 3.4.4.1. A skewness-invariant kurtosis measure will then be identified if it takes on

the general form
P

n1

i=0 gi(Q(si)�Q(1� si)P
n2

j=0 hj(Q(sj)�Q(1� sj))
, (3.50)

where n1, n2 2 Z+, whereas gi = 1, 2, ..., n1 and hj = 1, 2, ..., n2 are constants.

⌅

From Eq.(3.47), S(s) = Q(s)�Q(1� s), culminating in Eq.(3.50) being redefined as
P

n1

i=0 giS(si)P
n2

j=0 hjS(sj)
=

P
n1

i=0 gi(Q(si)�Q(1� si))P
n2

j=0 hj(Q(sj)�Q(1� sj))
. (3.51)

Special cases of Eq.(3.51) arise for specific values of 0 < s < 1.

• The p-indexed measure was mentioned by MacGillivray and Balanda (1988) as one of the

early occuring measures of kurtosis. It is given as

t(s) =
Q(0.5 + s)�Q(0.5� s)

Q(0.75)�Q(0.25)
, 0 < s <

1

2
.

• Moor’s kurtosis (Moors (1988)) which is based on octiles is defined as

M =
Q( 78 )�Q( 58 ) +Q( 38 )�Q( 18 )

Q( 34 )�Q( 14 )
.

• The quintile-based measure is seen to be an extension of Bowley (1902)’s measure of

skewness. It is presented by Jones et al. (2011) as

J =
Q( 45 )� 3Q( 35 ) + 3Q( 25 )�Q( 15 )

Q( 45 )�Q( 15 )
.
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Theorem 3.4.1. Let T be a two-piece distribution denoted by T⇠TP(µ, �, ↵), where �1 < µ < 1,

� > 0 and ↵ > 0 are the location, spread and skewness parameters, respectively. The median,

spread function, �-functional and ratio-of-spread functions for T are

me = QT

✓
1

2

◆
= µ, (3.52)

ST (s) = �(1 + ↵)QX:0(s), (3.53)

�T (s) =
(1� ↵)

(1 + ↵)
, (3.54)

and

RT (u, v) =
QX:0(u)

QX:0(v)
, (3.55)

respectively. The skewness-invariant quantile-based measures of kurtosis, with respect the ↵,

takes on the general form
P

n1

i=1 giST (ui)P
n2

j=1 hjST (uj)
=

P
n1

i=1 gi(QX:0(ui))P
n2

j=1 hj(QX:0(uj))
, (3.56)

where n1, n2 2 Z+, whereas gi : i = 1, 2, ..., n1 and hj : j = 1, 2, ..., n2 are constants.

Proof. Through the substitution of the quantile functions from Eq.(3.3) into Eqs.(3.52 - 3.56),

the median is attained as

me = QT

✓
1

2

◆

= µ+ �QX:0

✓
1

2

◆

= µ+ � · 0

= µ,

since the quantile function of a symmetric distribution is zero when evaluated at 1
2 .

The spread function ST (s) in Eq.(3.53) is obtained by replacing Eq.(3.3) into Eq.(3.54), to

give rise to

ST (s) = QT (s)�QT (1� s)

= µ+ �QX:0(s)� (µ+ �↵QX:0(1� s))

= �QX:0(s) + �↵QX:0(s)

= �(1 + ↵)QX:0(s),
1

2
< s < 1.
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The �-functional will make use of Eq.(3.48) to obtain

�T (s) =
QT (s) +QT (1� s)� 2QT (

1
2 )

QT (s)�QT (1� s)

=
µ+ �QX:0(s) + (µ+ �↵QX(1� s))� 2µ

�(1 + ↵)QX:0(s)

=
2µ+ �(1� ↵)QX:0(s)� 2µ

�(1 + ↵)QX:0(s)

=
(1� ↵)

(1 + ↵)
,

1

2
< s < 1.

The value of the �-functional tends to 1 when ↵ approaches 0, while it tends to �1 when ↵ tends

to 1. The results of the spread function will be used to obtain the ratio-of-spread functions as

R(u, v) =
ST (u)

ST (v)

=
�(1 + ↵)QX:0(u)

�(1 + ↵)QX:0(v)

=
QX:0(u)

QX:0(v)
,

1

2
< v < u < 1

The general form of a skewness-invariant quantile-based measure of kurtosis follows directly

from Eq.(3.56) as
P

n1

i=1 giST (ui)P
n2

j=1 hjST (uj)
=

P
n1

i=1 gi(�(1� ↵)QX:0(ui))P
n2

j=1 hj(�(1� ↵)QX:0(uj))
=

P
n1

i=1 gi(QX:0(ui))P
n2

j=1 hj(QX:0(uj))
.

⌅

Remark. The ratio-of-spread functions is independent of the skewness parameter, ↵, hence

deemed skewness-invariant. This implies that the kurtosis value of the two-piece distribution is

constant for all values of ↵, according to van Zwet’s ordering s (Zwet (1964)).

3.5 Parameter Estimation

Gilchrist (2000) discussed the essence of parameter estimation and its intended outcome. He

described it as the process of matching the fitted model to a data set in order to obtain param-

eter estimates that gave a good fit or a good match, before proceeding to document the most

commonly used methods.

The method of moments developed by Pafnuty Chebychev in 1887, yields estimators that

are biased, in as much as they are simple to construct. The method of likelihood estimation

yields aims to obtain estimators from the maximisation of a likelihood function. Both methods
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can be used in cases where the CDF or the PDF of a model exists.

The challenge of matching a data set to a model with no closed-form expressions for neither

the CDF or PDF presented a platform for other methods to be considered. In order to define

and generalize these methods, consider H(✓) to be a set of functions that describes the popu-

lation’s properties. H(✓) will depend on the quantile function, Q(s; ✓), of the model as well as

its parameters, ✓. Innately, the number of functions in H(✓) will correspond to the number of

sample quantities needed to be matched to it.

The advantage of using quantile functions is that they become very handy in cases where

the model is a quantile-based distribution. This has led to the development and use of methods

such as the method of percentiles or quantiles for selected percentiles (Bury (1975)), where

H(✓) = median (me), interquartile range (IQR) or the quantile function (Q(s; ✓)) itself.

Another technique is the method of probability weighted moments (Landwehr et al. (1979)),

where the set of functions are weights,

wk,j for k = i and j = 0 or k = 0 and j = I,

with i=the number of sample quantities.

In the case of the method of L-moments (Hosking (1990)), the function (H(✓)) to be matched

to the sample quantities will correspond to the L-moments of the model while the sample

quantities will be the sample L-moments. This method of estimation will be used to estimate

the parameters for two-piece families of distributions because of the closed-form expression for

the L-moments in Eq.(3.25). Moreover, these estimators are not susceptible to large variability

where higher orders of polynomial functions are used in the matching procedure.

The procedure will consider four sample quantities that will be used to match the population

functions that are to be estimated. These will be depicted by Li, where i = 1, 2, 3 and 4. The first

two, L1 and L2, will be matched for the location and scale functions, respectively, while L3 and

L4 will be used to give matches for the L-skewness (⌧3) and L-kurtosis (⌧4) ratios, respectively.

These quantities are defined in terms of order statistics of a sample of size n. That being

said, U-statistics (Hoeffding (1948)) will be used to estimate these quantities. U-statistics entail

defining functions as the average of the combinatorial sub-samples of size r, which are obtained

from the observed data of size n.
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Lemma 3.5.1. If X1, X2, X3, . . . , Xn is a sample of size n, and X(1)  X(2)  · · ·  X(n) is the

ordered sample, then the rth sample `-moment as defined by Hosking (1990) is given as

`r =

✓
n

r

◆�1 X

1<i1<

X

i2<

X

i3<

· · ·
X

<ir

X

<n

r�1
r�1X

k=0

(�1)k
✓
r � 1

k

◆
xir�k:n , (3.57)

for r = 1, 2, 3, · · · , n.

⌅

Lemma 3.5.2. The first four sample `-moments are obtained from Eq.(3.57), as

`1 =
1

n

nX

i=1

xi = x̄,

`2 =
1

2

✓
n

2

◆�1 nX

i>j

X
(xi � xj),

`3 =
1

3

✓
n

3

◆�1 nX

i>j>k

XX
(xi � 2xj + xk)

and

`4 =
1

4

✓
n

4

◆�1 nX

i>j>k>l

XXX
(xi � 3xj + 3xk � xl), (3.58)

respectively.

The sample L-skewness and L-kurtosis ratios are defined as

t3 =
`3
`2

and t4 =
`4
`2
, (3.59)

respectively.

⌅

The sample estimates in Lemma 3.5.2 will be matched to population quantities to give parameter

estimates for a univariate two-piece distribution in the following steps:

STEP 1:

The results in Eq.(3.58) are used to obtain the first four sample L-moments from the observed

data set. Thereafter, the sample L-moment ratios, t3 and t4, are obtained using Eq.(3.59). In

order to determine if the proposed two-piece distribution can be fit to the data set, the values

of t3 and t4 are verified if they lie in the (⌧T :3, ⌧T :4)-space of the two-piece distribution.

In the case of a two-piece distribution whose symmetric parent distribution has no shape
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parameter, the (⌧T :3, ⌧T :4)-space will consist of a horizontal line transversing the theoretical L-

kurtosis ratio value at ⌧4. The limits of t3 will be the corresponding |⌧3| of the two-piece dis-

tribution. The value of t4 should be equivalent to ⌧4. If the values are found to lie on the line,

then the estimation procedures can continue, else the two-piece distribution cannot be fitted to

the data.

In the event that the proposed two-piece distribution has a parent distribution with an

additional shape parameter, the (⌧T :3, ⌧T :4)-space will be a region covered by the possible combi-

nations obtained by the presence of the two shape parameters. Similarly, if the values of t3 and

t4 lie in this region, then the next estimation step can follow.

STEP 2:

The two-piece distributional shape exhibits the presence of skewness. However, the L-kurtosis

ratio value of the two-piece distribution is expected to remain the same as that of the parent

distribution. If the theoretical expression of ⌧4 of the parent distribution is dependent on another

shape parameter, then set the value of t4 to be equivalent to the theoretical result of ⌧4 and solve

for the unknown shape parameter estimate. The solutions for the estimates should be checked

against the range of possible values they can assume to see if they are valid.

STEP 3:

Using the result from Step 2, solve for ↵̂, the asymmetry parameter estimate. Set t3 equal to

the theoretical expression of ⌧T :3.

STEP 4:

The solution for the scale parameter estimate, �̂, can be found by substituting the parameter

estimate results from Steps 2 and 3 into the theoretical expression of LT :2. Equate this function

to `2 and solving for it accordingly.

STEP 5:

The final estimate, µ̂, the location parameter estimate, is similarly obtained by substituting the

parameter estimates from Steps 2� 4 into the theoretical expression of LT :1 from the two-piece

distribution, then equating that to `1 and solving for µ̂.

STEP 6:

The standard errors for the parameter estimates obtained in Steps 2�5 are then computed using
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the parametric bootstrap procedure. In this thesis, N = 10000 samples will be used.

3.6 Model Validation

This section presents the various methods that can be used to substantiate the fit of a model

to a data set. Though there are numerous aspects of validation that can be considered, only

those with respect to quantile modelling will be taken into consideration.

3.6.1 Graphical displays

Histograms

The primary form of visual validation that will be used to address the fit of a model are

histograms with superimposed probability density curves. The probability density curves are

obtained by plotting f̂P (p) against Q̂X(p), which are the fitted density quantile and quantile

function values, for 0 < p < 1.

Q-Q Plots

Q-Q (quantile-quantile) plots graphically illustrate the observed data points plotted against the

empirical observations. In this context, xi:n, which is the ith order statistic from a sample of

size n, is plotted against Q̂(si:n), the empirical quantile function. The plotting points, si:n, are

defined as

pi:n =
i� c

n+ 1� 2c
. (3.60)

.

In this thesis, c = 1
3 is used as it provides a plotting point that closely approaches the median

value. This enables the ordered statistic to be compared to any quantile value.

3.6.2 Goodness-of-fit measures

Castillo and Hadi (1997) introduced the average scaled absolute error (ASAE) as a measure

that can be used to compare the fit of various models to a data set. It is defined as

ASAE =
1

n

nX

i=1

|xi:n � Q̂(Si:n)|
(xn:n � x1:n)

, i = 1, · · · , n, (3.61)
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where Q̂(Si:n) is the empirical quantile function of the fitted distribution.

This measure can either be used for models that are quantile-based or that are defined

through their CDF or PDF. The smaller the ASAE value, the better the fit of distribution to

the data. In this thesis, pi:n from Eq.(3.60) will be used, as opposed to pi:n = i

n+1 which was

proposed by Castillo and Hadi (1997).

3.7 Tail Behaviour

The tail behaviour of the probability density curve of a continuous distribution is classically

evaluated through its probability density function, fX(x), should it exist. However, in the case

of quantile-based distributions, the tail behaviour is evaluated through the density quantile

function, fS(s), since no closed-form expression of the probability density function exists.

The tail behaviour investigation involves determining the value that the probability density

curve approaches at the endpoints. This is explored through computing lim
s!0

fS(s) for the left tail,

and lim
s!1

fS(s) for the right tail. Depending on the results obtained for the two-piece distribution,

either the two-piece PDF or two-piece density quantile functions will be used for evaluation.

Furthermore, the slope of the density curve at these two tails is also evaluated to further

determine the behaviour of this distribution. This can be done through obtaining expressions

for the slope and taking its limits for each tail respectively.

King (1999) derived a formula for obtaining the slope of the density curves for quantile-based

distributions. This measure is defined as

⇠ = �dqS(s)

ds
· 1

(qS(s))3
, 0 < s < 1. (3.62)

3.8 Conclusion

The method of quantile splicing was proposed in Section 3.2 with the aim of presenting tech-

niques that can be used to introduce asymmetry to univariate symmetric distributions. This

technique makes use of the quantile functions of half distributions as the kernels to generate

families of two-piece distributions. It was shown that the method can be used on univariate

distributions that are either quantile-based or defined through their CDF or PDF.

A general expression for the rth order L-moments of two-piece distributions was derived in
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Section 3.3.4. This expression results in the rth order L-moments of two-piece distributions being

expressed in terms of the L-moments of both the half distributions and the parent symmetric

distributions, Z and X, respectively. The L-moments derived proved to be closed-form and

simplistic in nature.

The results in Section 3.4.4 indicate that the level of kurtosis for the two-piece distributions

will be the same as that of the parent distribution, but extended levels of skewness are at-

tained. Through the various measures of kurtosis presented, it can be seen that they are indeed

skewness-invariant.

The method of L-moments estimation in Section 3.5 is developed for parameter estima-

tion since the rth order L-moments obtained take on closed forms. The parametric boostrap

procedure is used to obtain the asymptotic standard errors for the parameter estimates.
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4.1 Introduction

Univariate symmetric distributions have been used in literature as building blocks to generate

skewed families of distributions. Various skewing techniques have been discussed in Chapter

3, where distributional differences and advantages have been highlighted. These methods have

made use of CDFs or PDFs as the building blocks of the univariate distributions to obtain the

skewed families, with the intent of increasing their flexibility with regards to distributional form.

In this chapter, the quantile splicing technique proposed in Section 3.2 is applied to univariate

symmetric distributions that do not have any shape parameter. The asymmetry parameter

introduced will increase the flexibility of the density curves with respect to distributional form.

The arcsine, uniform, cosine, logistic, normal, hyperbolic secant and Student’s t(2) distributions

are selected as the parent distributions that will be generalized to obtain two-piece families of

distributions. They have different levels of kurtosis, with the arcsine distribution exhibiting the

lowest level whilst the Student’s t(2) distribution has the highest level.

Since the quantile functions of the above-mentioned distributions are used as the building

blocks to obtain the two-piece distributions, they will require standardizing first. This will be

achieved when the first two L-moments, that is the L-location and L-scale are set to 0 and 1,

respectively. Subsequently, the location and scale parameters are then solved under these new

specifications. For the cosine, uniform and arcsine distributions, the reparametrization of these

distributions with respect to their lower boundaries will ensure the condition of L1 = 0 and

L2 = 1 are met. The proposed two-piece distributions are then derived, as well as their quantile

measures of distributional form for location, spread and shape. The results in Eq.(3.27) will be

used to derive the rth order L-moments for the distributions.

51
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4.2 Two-piece Student’s t(2) Distribution

The Student’s t-distribution was presented by Student (1908) as the model to be used in the

event that underlying data is not normally distributed. In such a case, the population standard

deviation has to be estimated by the sample standard deviation.

In addition to having a location and scale parameter, it has an additional parameter which

determines the shape of the distribution. This parameter, termed the degrees of freedom, is

denoted by ⌫ > 0. When ⌫ ! 1, the t-distribution tends to the normal distribution which is its

limiting case. This distribution has been widely used in robust statistical modeling of data sets

(Lange et al. (1989)), where the errors have extended tails.

Definition 4.2.0.1. A random variable, X, from the Student’s t-distribution is defined by the

following probability density function, presented by Johnson et al. (1995), as

fX(x) =
�( 12 (⌫ + 1))
p

(⇡⌫)�( 12⌫)

1

(1 + x2

⌫
)(

⌫+1
2 )

, �1 < x < 1, ⌫ > 0. (4.1)

⌅

The concern that arises with this distribution is in the complexity of the general form, which

makes it difficult and less suited to depict basic calculations. Therefore, a need arises for the

use of one of its special cases. The Student’s t(2) distribution, first introduced by Jones (2002b),

highlights the tractability of this distribution due to its more simplistic form and nature. Its

PDF, CDF and quantile functions are simpler in structure as compared to the Student’s t-

distribution.

Lemma 4.2.1. The probability density function of a Student’s t(2) distribution, with µ 2 R and

� > 0, as given by Jones (2002b), is obtained by substituting ⌫ = 2 into Eq.(4.1) to obtain

fX(x) =
1

�

 
2 +

✓
x� µ

�

◆2
!� 3

2

, �1 < x < 1. (4.2)

The CDF and quantile function attained in closed form, respectively, as

FX(x) =
1

2

 
1 +

x�µ

�q
2 +

�
x�µ

�

�2

!
, �1 < x < 1, (4.3)

and

QX(p) = F�1(p) = µ+ �

✓
2p� 1

(2p(1� p))
1
2

◆
, 0 < p < 1, (4.4)

respectively.

⌅
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4.2.1 Distributional properties of the Student’s t(2) distribution

Shape

The probability density curve of the Student’s t(2) distribution exhibits a unimodal shape, with

the mode at µ. Furthermore, the mean value of the distribution is µ, whilst higher order moments

do not exist.

Variability

Various measures of variability such as the mean absolute deviation, the median absolute de-

viation, the interquartile range and the Gini’s mean difference can be used to summarise the

spread. Jones (2002b) was able to obtain the values of these measures as:

• Mean absolute deviation ) E(|T |) =
p
2 ' 1.414.

• Median absolute deviation ) QX( 34 ) =
q

2
3 ' 0.816.

• Interquartile range ) 2QX

�
3
4

�
= 2
q

2
3 ' 1.633.

• Gini’s mean difference ) E(|T1 � T2|) = ⇡p
2
' 2.221.

T , T1 and T2 are independent random variables from the Student’s t(2) distribution, whereas

QX

�
3
4

�
is the quantile function in Eq.(4.4), evaluated at p = 3

4 .

Kurtosis

The quantile function in Eq.(4.4) is used to obtain quantile-based measures of kurtosis since

the moment-based measures cannot be obtained apart from the mean. Jones (2002b) studied

Groeneveld (1998)’s measure, Moors’ kurtosis (Moors (1988)), as well as the L-kurtosis ratio of

Hosking (1990), ⌧4, which is obtained through the use of order statistics. These results were

found to be easier to obtain since the quantile function took on a simpler nature.

The results obtained are as follows:

• Groeneveld’s kurtosis measure ) QX( 7
8 )�2QX( 3

4 )+QX( 5
8 )

QX( 7
8 )�QX( 5

8 )
= 0.271.

• Moors’ kurtosis measure ) QX( 7
8 )�QX( 5

8 )

QX( 3
4 )

= 1.517.

• L-kurtosis ratio ) ⌧4 = 3
8 = 0.375.
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These results were compared to similar results for the normal and logistic distributions. The

Student’s t(2) distribution had higher values than the normal and logistic distributions for all 3

measures. This is an indication that it is more leptokurtic (heavier-tailed) than the other two

distributions.

Student’s t(2) and other distributions

There are numerous relationships that can be drawn between the Student’s t(2) distribution and

other univariate distributions.

• Since t = Zp
Xv/v

, where Z ⇠ N(0, 1) and Xv ⇠ �2(v), then t(2) ' Zp
X2/2

, where Z ⇠ N(0, 1) and
X2
2 ⇠ exp(1).

• The standard uniform distribution is used to generate random variables from the Student’s

t(2) through the probability integral transform. A single uniform variate, denoted by

U ⇠ UNIF (0, 1), is substituted in Eq.(4.4) to generate the variables as

t(2) =
2U � 1

(2U(1� U))
1
2

.

• Let S and T be standard exponential distribution random variables. Then

t(2) ' S � Tp
2ST

.

Order statistics and rth order L-moments

Lemma 4.2.2. Suppose Xi:n, i = 1, ..., n is the ith order statistic of a Student’s t(2) random

variable from a sample of size n. Then the probability density function of Xi:n is defined as

fXi:n(x) =
1

B(i, n� i+ 1)2n+1/2

✓
1 +

xp
2 + x2

◆i+1/2✓
1� xp

2 + x2

◆n�i+3/2

(4.5)

Lemma 4.2.3. The rth order L-moments function for the Student’s t(2) distribution, for r � 2,

is given by Jones (2002b) as

Lr =
1

2
3
2

r�2X

j=0

(�1)j
�(r)�(j + 1

2 )�(r � j � 3
2 )

�(j + 1)�(j + 2)�(r � j � 1)�(r � j)
, (4.6)

with the first four corresponding L-moments as

LX:1 = 0, LX:2 =
⇡

2
p
2
, LX:3 = 0, and LX:4 =

3⇡

16
p
2
, (4.7)
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respectively.

The subsequent L-skewness and L-kurtosis ratios are

⌧X:3 = 0 and ⌧X:4 =
3

8
,

respectively.

The standard Student’s t(2) distribution is obtained when µ = 0 and � = 2
p
2

⇡
.

⌅

4.2.2 Proposed two-piece Student’s t(2) distribution.

Definition 4.2.2.1. A real-valued random variable is said to have a two-piece Student’s t(2)

distribution if its quantile function is defined as

QT (s) =

8
>>><

>>>:

µ+ ↵� 2s�1

(2s(1�s))
1
2
, s  1

2 ,

µ+ � 2s�1

(2s(1�s))
1
2
, s > 1

2 ,

(4.8)

where �1 < µ < 1, � > 0 and ↵ > 0 are the location, scale and shape parameters, respectively.

Its CDF and PDF are given as

FT (x) =

8
>>>><

>>>>:

1
2

 
1 +

x�µ
↵�q

2+( x�µ
↵� )2

!
, x  µ,

1
2

 
1 +

x�µ
�q

2+( x�µ
� )2

!
, x > µ,

and

fT (x) =

8
>><

>>:

1
↵�

⇣
2 +

�
x�µ

↵�

�2⌘� 3
2
, x  µ,

1
�

⇣
2 +

�
x�µ

�

�2⌘� 3
2
, x > µ,

,

respectively.

⌅

It can be seen from the probability density curves from Fig.4.1 that the distribution ex-

hibits negative skewness when ↵ > 1 (dotted curve), symmetry when ↵ = 1 (solid curve) and

subsequently positive skewness when 0 < ↵ < 1 (dot-dashed).
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Figure 4.1: The probability density curves for the two-piece Student’s t(2) distribution with

L1 = 0 and L2 = 1, for varying values of ↵ > 0.

Quantile measures of distributional form

The quantile measures of distributional form for location, shape and spread for the two-piece

Student’s t(2) distribution are obtained by substituting Eq.(4.8) into Eqs.(3.46-3.49), respec-

tively.

• Location

The median is obtained as

me = QT

⇣1
2

⌘

= µ+ �

 
2 · 1

2 � 1

(2 · 1
2 (1�

1
2 ))

1
2

!

= µ.

• Spread

The spread function is derived as

ST (s) = QT (s)�QT (1� s)

=

(
µ+ �

 
2s� 1

(2s(1� s))
1
2

!)
�
(
µ+ ↵�

 
(2(1� s)� 1

(2(1� s)(1� (1� s)))
1
2

!)

= �

 
2s� 1

(2s(1� s))
1
2

!
+ ↵�

 
2s� 1

(2s(1� s))
1
2

!

= �(1 + ↵)

 
2s� 1

(2s(1� s))
1
2

!
,

1

2
< s < 1.
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• Shape

The �-functional is obtained as

�T (s) =
QT (s) +QT (1� s)� 2me

ST (s)

=

µ+ �

 
2s�1

(2s(1�s))
1
2

!
+ µ+ ↵�

 
2(1�s)�1

(2(1�s)(1�(1�s)))
1
2

!
� 2µ

�(1 + ↵)

 
2s�1

(2s(1�s))
1
2

!

=
1� ↵

1 + ↵
,

1

2
< s < 1.

• Ratio-of-spread functions

The ratio-of-spread functions, for 1
2 < v < u < 1, is derived as

RT (u, v) =
QT (u)

QT (v)
=

 
2u�1

(2u(1�u))
1
2

!

 
2v�1

(2v(1�v))
1
2

! =
(2u� 1) · (2v(1� v))

1
2

(2v � 1) · (2u(1� u))
1
2

.

rth order L-moments

Theorem 4.2.4. The first four L-moments for the standard half Student’s t(2) distribution are

LZ:1 = �
p
2,

LZ:2 =
⇡

2
p
2
,

LZ:3 = � 1p
2
,

and

LZ:4 =
3⇡

16
p
2
, (4.9)

respectively.

Proof. See Section 4.9.1 for detailed proofs. ⌅

Theorem 4.2.5. The first four L-moments for the standard two-piece Student’s t(2) distribution



CHAPTER 4. UNIVARIATE TWO-PIECE DISTRIBUTIONS 58

are given as

LT :1 =
2

⇡
(1� ↵),

LT :2 =
1

2
(1 + ↵),

LT :3 =
1

⇡
(1� ↵),

and

LT :4 =
3

16
(1 + ↵), (4.10)

respectively.

Proof. See Section 4.9.1 for detailed proofs. ⌅

It can be noted that the results above are simplistic in nature, keeping in line with the

advantage of the Student’s t(2) L-moments functions which are simple in form. The resulting

L-skewness and L-kurtosis ratios are

⌧T :3 =
LT :3

LT :2
=

2

⇡

(1� ↵)

(1 + ↵)
= 0.63662

(1� ↵)

(1 + ↵)
and ⌧T :4 =

LT :4

LT :2
=

3

8
= 0.375,

respectively.

Fig.4.2(a) shows the skewness range of the two-piece Student’s t(2) distribution which is

(� 2
⇡
; 2
⇡
) for ↵ > 0, whereas Fig.4.2(b) shows a constant level of kurtosis for all values of ↵ at

⌧T :4 = 3
8 .

(a) L-skewness ratio plot (b) L-kurtosis ratio plot

Figure 4.2: The L-skewness and L-kurtosis ratio plots for the two-piece Student’s t(2) distri-

bution.
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The space covered by the two-piece Student’s t(2) distribution is indicated on the L-moment

ratio diagram in Fig.4.3 by the horizontal line. The symmetric Student’s t(2) distribution is

obtained at (⌧T :3, ⌧T :4)=
�
0, 3

8

�
when ↵ = 1.

Figure 4.3: The L-moment ratio diagram for the two-piece Student’s t(2) distribution.

The dotted curve at ⌧T :4 = 1
4 (5⌧

2
T :3 � 1) is the lower boundary for all probability distributions.

4.3 Two-piece Hyperbolic Secant Distribution

The hyperbolic secant distribution (HSD) is a heavy-tailed, bell-shaped distribution that was

first studied by Baten (1934) and later on by Talacko (1956). It is a generator distribution of the

sixth natural exponential family (Morris (1982)), and it possesses a quadratic variance function

(NEF-QVF). This means that the variance is at most a quadratic function of the mean. The

HSD does not receive the same amount of attention as the other symmetric distributions due

to its lack of connectivity to other commonly known distributions.

Perks (1932) derived a family of generalized HSD which could fit the data in mortality

statistics. Talacko (1956) derived the properties of the HSD, as well as showed its role in the

theory of Wiener’s stochastic function. Since the CDF exhibits a closed-form, it can be used

extensively in the financial sector to obtain option prices quickly and precisely. Furthermore,

Vaughan (2002) presented two studies which revealed the HSD fitted data better than the

normal distribution due to its heavier tails.
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The solid curve in Fig.4.4 indicates that the HSD exhibits heavier tails than both the normal

(dashed curve) and logistic (dot-dashed curve) distributions.

Figure 4.4: The probability density curves of the HSD, logistic and normal distribution.

Definition 4.3.0.1. A real-valued random variable X is said to have a standard hyperbolic secant

distribution, denoted X ⇠ HSD(0, 1), if it’s CDF, PDF and quantile function are respectively

defined as

FX(x) =
2

⇡
arctan(ex), x 2 (�1,1), (4.11)

fX(x) =
2

⇡

ex

1 + e2x
, x 2 (�1,1), (4.12)

and

Q(p) = log

 
tan

 
⇡p

2

!!
, p 2 (0, 1). (4.13)

⌅

4.3.1 Distributional properties of the HSD

Moments

The moment generating function of the HSD is given as

MX(t) = sec(t), |t| < ⇡

2
. (4.14)

The mean and variance follow from Eq.(4.14) as

µ = E(X) = M 0
X
(0) = 0 and � = E(X)2 � (E(X))2 = M 00

X
(0)� (M 0

X
(0))2 = 1,

respectively.
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Shape

The probability density curve of the HSD is unimodal and symmetric around 0. The skewness

moment-ratio ↵3 = 0 and kurtosis-moment ratio is ↵4 = 5 Since ↵4 > 3, it indicates the HSD is

more leptokurtic than the normal distribution .

HSD and other distributions

• The HSD arises from the Cauchy distribution or the ratio of two independent Gaussian

distributions.

• Vaughan (2002) studied a symmetric family of distributions with varying levels of kurtosis

ranging from 1 to 1. They include thick and thin-tailed members, expanding the versatil-

ity of their use in modelling various data. Moreover, all the moments of these distributions

are finite.

• Esscher’s transformation, by Esscher (1932), was applied to Vaughan (2002)’s generalized

secant hyperbolic (GSH) distribution, giving rise to the skew generalized secant distribu-

tion (SGSH) which was proposed by Fischer (2006).

• The sin-arcsinh (SAS) transformation of Jones and Pewsey (2009) was used to develop

asymmetric families of distributions that have the HSD as a special case.

Order statistics and rth order L-moments

Definition 4.3.1.1. Suppose Xi:n, i = 1, ..., n is the ith order statistic of a HSD random variable

from a sample of size n. The probability density function of Xi:n is defined as

fXi:n(x) =
1

B(i, n� i+ 1)2n+1/2

✓
1 +

xp
2 + x2

◆i+1/2✓
1� xp

2 + x2

◆n�i+3/2

(4.15)

⌅

Lemma 4.3.1. Suppose X is characterized by the functions in Eqs.(4.11-4.13). The rth-order
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L-moments are

LX:r = 0 for odd values of r,

LX:2 =
7⇣[3]

⇡2
,

and

LX:4 =
42⇡2⇣[3]� 465⇣[5]

⇡4
, (4.16)

with the L-skewness and L-kurtosis ratios as

⌧X:3 = 0 and ⌧X:4 =
42⇡2⇣[3]� 465⇣[5]

⇡27⇣[3]
= 0.193977,

respectively.

The standard HSD is obtained when µ = 0 and � = ⇡
2

7⇣[3] .

⌅

4.3.2 Proposed two-piece hyperbolic secant distribution

Definition 4.3.2.1. A real-valued random variable is said to have a two-piece hyperbolic secant

distribution if its quantile function, CDF and PDF are defined as

QT (s) =

8
>><

>>:

µ+ �↵ log(tan(⇡s2 )), s  1
2 ,

µ+ � log(tan(⇡s2 )), s > 1
2 ,

(4.17)

FT (x) =

8
>><

>>:

2
⇡
arctan(e

x�µ
↵� ), x  µ,

2
⇡
arctan(e

x�µ
� ), x > µ,

(4.18)

and

fT (x) =

8
>>><

>>>:

2
⇡↵�

e
( x�µ

↵�
)

1+e
2( x�µ

↵�
)
, x  µ,

2
⇡�

e
( x�µ

�
)

1+e
2( x�µ

�
)
, x > µ,

(4.19)

respectively.

⌅
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Figure 4.5: The probability density curves for the two-piece hyperbolic secant distribution

with L1 = 0 and L2 = 1, for varying values of ↵ > 0.

The probability density curves for the two-piece distribution with varying values of ↵ > 0

is displayed in Fig.4.5. When ↵ < 1, the two-piece HSD exhibits positive skewness as depicted

by the dashed-curve. In this case, the values of ⌧T :3 and �T (s) are positive. The distribution is

negatively skewed when ↵ > 1, as shown by the dot-dashed curve, with the corresponding values

for ⌧T :3 and �T (s) negative.

The symmetric HSD, when ↵ = 1, is represented by the solid curve. It is obtained and its

values for the L-skewness ratio and the �T (s) are zero.

Quantile measures of distributional form

The quantile measures of distributional form for location, spread and shape for the two-piece

HSD are obtained by substituting Eq.(4.17) into Eqs.(3.46-3.49), respectively.

• Location

The median is obtained as

me = QT

⇣1
2

⌘

= µ+ � log
⇣
tan

⇣⇡
4

⌘⌘

= µ+ � log(1)

= µ.
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• Spread

The spread function is

ST (s) = QT (s)�QT (1� s)

=
n
µ+ � log

⇣
tan

⇣⇡s
2

⌘⌘o
�
n
µ+ ↵� log

⇣
tan

⇣⇡(1� s)

2

⌘⌘o

= � log
⇣
tan

⇣⇡s
2

⌘⌘
+ ↵� log

⇣
tan

⇣⇡s
2

⌘⌘

= �(1 + ↵) log
⇣
tan

⇣⇡s
2

⌘⌘
,

1

2
< s < 1.

• Shape

Through the substitution of Eq.(4.17) into Eq.(3.48), the �-functional is attained as

�T (s) =
QT (s) +QT (1� s)� 2me

ST (s)

=
µ+ � log

⇣
tan

⇣
⇡s

2

⌘⌘
+ µ+ ↵� log

⇣
tan

⇣
⇡(1�s)

2

⌘⌘
� 2µ

�(1 + ↵) log
⇣
tan

⇣
⇡s

2

⌘⌘

=
� log

⇣
tan

⇣
⇡s

2

⌘⌘
� ↵� log

⇣
tan

⇣
⇡s

2

⌘⌘

�(1 + ↵) log
⇣
tan

⇣
⇡s

2

⌘⌘

=
1� ↵

1 + ↵
,

1

2
< s < 1.

• Ratio-of-spread functions

The ratio-of-spread functions is given as

RT (u, v) =
S(u)

S(v)
=
�(1 + ↵) log

⇣
tan(⇡u2 )

⌘

�(1 + ↵) log
⇣
tan(⇡v2 )

⌘ =
log
⇣
tan(⇡u2 )

⌘

log
⇣
tan(⇡v2 )

⌘ , 1

2
< v < u < 1.

Order statistics and rth order L-moments

Theorem 4.3.2. The first four L-moments of a standard half HSD random variable are obtained

as

LZ:1 = � 4

⇡
G,

LZ:2 =
7⇣(3)

⇡2
,

LZ:3 =
1

32⇡3

✓
64G⇡2 +  (3)

✓
1

4

◆
�  (3)

✓
3

4

◆
� 672⇣(3)⇡

◆

and

LZ:4 =
1

⇡4

�
42⇣(3)⇡2 � 465⇣(5)

�
. (4.20)

respectively.
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Proof. See Section 4.9.2 for detailed proofs. ⌅

Theorem 4.3.3. The first four L-moments of a two-piece HSD random variable are obtained

as

LT :1 =
2⇡

7⇣(3)
G(1� ↵),

LT :2 =
1

2
(1 + ↵),

LT :3 =
1

448⇣(3)⇡

✓
64G⇡2 +  (3)

✓
1

4

◆
�  (3)

✓
3

4

◆
� 672⇣(3)⇡

◆
(1� ↵),

and

LT :4 =
1

14⇣(3)⇡2

�
42⇣(3)⇡2 � 465⇣(5)

�
(1 + ↵), (4.21)

respectively.

Proof. See Section 4.9.2 for detailed proofs. ⌅

Subsequently, the L-skewness and L-kurtosis ratios are

⌧T :3 =
LT :3

LT :2
=

1

224⇣(3)⇡

✓
64G⇡2 +  (3)

✓
1

4

◆
�  (3)

✓
3

4

◆
� 672⇣(3)⇡

◆
(1� ↵)

(1 + ↵)
= 0.520306

(1� ↵)

(1 + ↵)

and

⌧T :4 =
LT :4

LT :2
=

1

7⇣(3)⇡2

�
42⇣(3)⇡2 � 465⇣(5)

�
= 0.193977,

respectively.

The graphs depicting the L-skewness and L-kurtosis ratios are represented in Fig.4.6. It can

be noted from Fig.4.6(a) that ⌧T :3 is bounded on (�0.52; 0.52) for ↵ > 0, whilst ⌧T :4 is constant for

↵ > 0 at 0.193977. The L-moment ratio diagram, represented by Fig 4.7, shows the extended level

of skewness that is possessed by the new distribution. The level of kurtosis remains constant at

⌧T :4 = 0.193977
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(a) The L-skewness ratio diagram (b) The L-kurtosis ratio diagram

Figure 4.6: The L-skewness and L-kurtosis ratio plots for the two-piece HSD.

Figure 4.7: The L-moment ratio diagram for the two-piece hyperbolic secant distribution.
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4.4 Two-piece Logistic Distribution

The logistic function was first proposed in population demographic modeling where Verhulst

(1838) showed that the population growth rate is a function of the transient population and a

proportion of the resources available. When those properties are incorporated into the growth

model, the population exhibits sigmoid growth patterns. The logistic function has been used in

population growth modeling (Pearl and Reed (1920)), survival data analysis (Plackett (1959))

as well as income distribution studies (Fisk (1961)).

Definition 4.4.0.1. A real-valued random variable X is said to have a logistic distribution,

denoted by X⇠ L(µ,�), if its CDF, PDF, quantile function are given as

FX(x) =
e(

x�µ
� )

1 + e(
x�µ
� )

, �1 < x < 1, (4.22)

fX(x) =
e

x�µ
�

�(1 + e
x�µ
� )2

, �1 < x < 1, (4.23)

and

QX(p) = µ+ � log

 
p

1� p

!
, 0 < p < 1, (4.24)

respectively, where �1 < µ < 1 and � > 0 are the location and scale parameters, respectively.

Since Eq.(4.23) can be rewritten as f(x) = 1
4sech

2 �x
2

�
, the logistic distribution can also be

referred to as the sech-squared distribution.

4.4.1 Distributional properties of the logistic distribution

Moments

The moment generating function of the logistic distribution is defined as

MX(t) = eµtB(1� �t)(1 + �t), |t| < 1

�
. (4.25)

The mean and variance can be derived from Eq.(4.25) as

µ = E(X) = M 0
X
(0) = 0 and � = E(X)2 � (E(X))2 = M 00

X
(0)� (M 0

X
(0))2 =

�3⇡2

3
,
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Shape

The logistic distribution is symmetric about �1 < µ < 1, exhibiting a unimodal shape. The

skewness moment-ratio, ↵3 = 0, whilst the kurtosis moment-ratio ↵4 = 4.2. This shows that the

logistic distribution is more leptokurtic than the normal distribution since ↵4 > 3.

Logistic and other distributions

The logistic distribution has shown its relationship to other univariate continuous distributions.

• If X ⇠ L(µ,�), then kX + d ⇠ L(kµ+ d, k�).

• If X ⇠ UNIF (0, 1) then µ+ � log(X)
log(1�X) ⇠ L(µ,�).

• Let X ⇠ exp(1). Then µ+ � log
�
expX �1

�
⇠ L(µ,�).

• If X,Y ⇠ exp(1), then µ� � log
�
X

Y

�
⇠ L(µ,�).

• The logistic distribution closely approximates the Student’s t-distribution with 9 degrees

of freedom (Mudholkar and George (1978)).

• The logistic distribution is a special case of both Tukey’s lambda distribution and the

generalised hyperbolic secant family of distributions (Perks (1932)).

rth order L-moments

Lemma 4.4.1. The rth order L-moments, LX:r, for a standard random variable X from the

logistic distribution are presented by Hosking (1986) as

LX:r =

8
>><

>>:

0, for odd values of r

2
r(r�1) , for even values of r.

(4.26)

with the L-skewness and L-kurtosis ratios as

⌧X:3 = 0 and ⌧X:4 =
1

6
,

respectively.

The standard logistic distribution is obtained when µ = 0 and � = 1.

⌅
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4.4.2 Proposed two-piece logistic distribution

Definition 4.4.2.1. A real-valued random variable is said to have a two-piece logistic distribu-

tion if its quantile function, CDF and PDF are defined as

QT (s) =

8
>><

>>:

µ+ ↵� log( s

1�s
), s  1

2 ,

µ+ � log( s

1�s
), s > 1

2 ,

(4.27)

FT (X) =

8
>>><

>>>:

e
( x�µ

↵�
)

1+e
( x�µ

↵�
)
, x  µ

e
( x�µ

�
)

1+e
( x�µ

�
)
, x > µ

(4.28)

and

fT (X) =

8
>>><

>>>:

e

x�µ
↵�

↵�(1+e

x�µ
↵� )2

, x  µ,

e

x�µ
�

�(1+e

x�µ
� )2

, x > µ

(4.29)

respectively.

⌅

Fig.4.8 displays the probability density curves for the two-piece logistic distribution with

varying values of ↵ > 0. When ↵ < 1, the distribution is positively skewed as illustrated by the

dashed-curve, negatively skewed when ↵ > 1, as shown by the dotted curve, and symmetric as

represented by the solid curve when ↵ = 1.

Figure 4.8: The probability density curves for the two-piece logistic distribution with L1 = 0

and L2 = 1, for varying values of ↵ > 0.
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Quantile measures of distributional form

The quantile measures of distributional form for location, spread and shape for the two-piece

logistic distribution are obtained by substituting Eq.(4.27) into Eqs.(3.46-3.49), respectively.

• Location

The median is obtained as

me = QT

⇣1
2

⌘

= µ+ � log
⇣ 1

2

1� 1
2

⌘

= µ+ � log(1)

= µ

• Spread

The spread function is

ST (s) = QT (s)�QT (1� s)

=
n
µ+ � log

⇣ s

1� s

⌘o
�
n
µ+ ↵� log

⇣ 1� s

1� (1� s)

⌘o

= �(1 + ↵) log
⇣ s

1� s

⌘
,

1

2
< s < 1.

• Shape

The �-functional is obtained by substituting Eq.(4.27) into Eq.(3.48) such that

�T (s) =
QT (s) +QT (1� s)� 2me

ST (s)

=
µ+ � log

⇣
s

1�s

⌘
+ µ+ ↵� log

⇣
1�s

1�(1�s)

⌘
� 2µ

�(1 + ↵) log
⇣

s

1�s

⌘

=
� log

⇣
s

1�s

⌘
� ↵� log

⇣
s

1�s

⌘

�(1 + ↵) log
⇣

s

1�s

⌘

=
1� ↵

1 + ↵
,

1

2
< v < u < 1.

• Ratio-of-spread functions

The ratio-of-spread functions is given as

RT (u, v) =
ST (u)

ST (v)
=
�(1 + ↵) log

⇣
u

1�u

⌘

�(1 + ↵) log
⇣

v

1�v

⌘ =
log
⇣

u

1�u

⌘

log
⇣

v

1�v

⌘ ,

where 1
2 < v < u < 1. Note that, akin to the L-kurtosis ratio, the ratio-of-spread functions is

skewness-invariant with respect to ↵.
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rth order L-moments

Theorem 4.4.2. The first four L-moments of a standard half logistic random variable are given

as

LZ:1 = �2 log(2),

LZ:2 = 1,

LZ:3 = �1

2
,

and

LZ:4 =
1

6
, (4.30)

respectively.

Proof. See Section 4.9.3 for detailed proofs. ⌅

Theorem 4.4.3. The first four L-moments of a standard two-piece logistic random variable are

given as

LT :1 = log(2)(1� ↵)

LT :2 =
1

2
(1 + ↵)

LT :3 =
1

4
(1� ↵)

and

LT :4 =
1

12
(1 + ↵). (4.31)

respectively.

Proof. See Section 4.9.3 for detailed proofs. ⌅

Therefore, the L-skewness and L-kurtosis ratio ratios are

⌧T :3 =
LT :3

LT :2
=

1

2

(1� ↵)

(1 + ↵)
and ⌧T :4 =

LT :4

LT :2
=

1

6
,

respectively. These expressions for the L-moments and L-moment ratios correspond to those

obtained by Balakrishnan et al. (2017), who made use of expectations of order statistics. The

value of ⌧T :4 is equivalent to the L-kurtosis ratio of the logistic distribution. The special case of

the two-piece logistic is the logistic distribution which is obtained when ↵ = 1.

In Fig.4.9(a), it can be seen that 0 < ⌧T :3 < 0.5 when ↵ < 1, and it tapers off at �0.5 as ↵ tends

to 1. Fig.4.9(b) indicates that the level of kurtosis which is depicted by ⌧T :4 is a constant at 1
6 .
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(a) The L-skewness ratio plot (b) The L-kurtosis ratio plot

Figure 4.9: The L-skewness and L-kurtosis ratio plots for the two-piece logistic distribution.

The L-skewness and L-kurtosis ratio values are used to obtain an L-moment ratio diagram,

represented by Fig. 4.10, will show the increased level of skewness that is acquired by the

new distribution, as compared to the logistic distribution, for a given level of kurtosis. The

logistic distribution is obtained as a special case when (⌧T :3, ⌧T :4) =
�
0, 1

6

�
. The dotted curve is

the boundary for all distributions.

Figure 4.10: The L-moment ratio diagram for the two-piece logistic distribution with ↵ > 0.

4.5 Two-piece Normal Distribution

The discovery of the normal distribution, also referred to as the bell-curve or the Gaussian

distribution, was first attributed to De Moivre during his early studies on the coefficients of the
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binomial expansion in 1738. The distribution was introduced by Gauss (1809) whilst presenting

the concepts of the method of maximum likelihood and the method of least squares. In addition,

Laplace proved the central limit theorem in 1810 which further solidified the importance of the

normal distribution and its applications. The normal distribution has been widely used in

natural and social sciences, where the underlying distribution of data may be unknown.

Definition 4.5.0.1. Let X be a real-valued random variable from the normal distribution, de-

noted X ⇠ N(µ,�2), where �1 < µ < 1 and � > 0 are the location and spread parameters,

respectively. The CDF, PDF and quantile function are defined as

FX(x) =
1

2

✓
1 + erf�1

✓
x� µ

�
p
2

◆◆
, (�1 < x < 1), (4.32)

fX(x) =
1

�
p
2⇡

e
�(x�µ)2

2�2 , (�1 < x < 1)

and

QX(p) = µ+ �
p
2erf�1

(2p� 1), 0 < p < 1, (4.33)

respectively.

⌅

4.5.1 Distributional properties of the normal distribution

Symmetry

• The normal distribution is symmetric about the location parameter, µ, which is the mean.

The mean is equivalent to the median and the mode.

• The probability density curve exhibits unimodality and has two inflection points at |x�µ| =

�. It is also log-concave.

Moments

The moment generating function of the normal distribution is given as

MX(t) = eµt+
1
2�

2
t
2

, t 2 R. (4.34)

All the moments for the normal distribution exist and are finite. Therefore, the mean and
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variance can be found by taking the first and second derivatives of Eq.(4.34) and setting t = 0,

such that

E(X) = M 0
X
(0) = µ and V ar(X) = M 00

X
(0)� (M 0

X
(0))2 = �2.

The central moments about the mean are given as

µk = E((X � µ)k) =

8
>><

>>:

0 if k is odd

�k(k � 1)!! if k is even.
(4.35)

From Eq.(4.35), the skewness and kurtosis moment-ratios can be obtained as ↵3 = 0 and ↵4 = 3,

respectively.

Maximum entropy

The normal distribution has maximum entropy over all probability distributions in its class with

known mean and variance. It is obtained as

H(X) =
1

2

�
1 + log

�
2�2⇡

��
.

Infinite divisibility

A random variable from the normal distribution, with mean µ and variance �2, can be seen as

the sum of n random variables with mean µ

n
and variance �

2

n
, so long as n 2 Z+. This implies

that the normal distribution is infinitely divisible.

Central limit theorem

Suppose that X1, X2, ..., Xn is a sample of i.i.d. random variables from the same distribution,

with known mean, µ, and variance �2. The distribution of the sample mean scaled by p
n is

approximately normally distributed as the sample size becomes larger. This property allows for

other distributions to be approximated by the normal distribution, as presented in Table 4.1.
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Distribution Parameter(s) Normal approximation

Binomial n, p µ = np �2 = np(1� p)

Bin(n, p) n ! 1

Poisson � µ = � �2 = �

Poi(�) �! 1

Chi-Square k µ = k �2 = 2k

�2
k

k ! 1

Student’s t ⌫ µ = 0 �2 = 1

t(⌫) ⌫ ! 1

Table 4.1: Univariate distributions approximated by the normal distribution.

Normal and other distributions

If X ⇠ N
�
µ,�2

�
, then:

• eX ⇠ LN
�
µ,�2

�
.

• |X| ⇠ Nf

�
µ,�2

�
. If µ = 0, then |X| has a half normal distribution.

• |X�µ|
�

⇠ �2
1.

•
�
X

�

�2 ⇠ �2
1

⇣
µ
2

�2

⌘
. It reduces to �2

1 when µ = 0.

• X has a truncated normal distribution if it bounded on the interval [a, b].

If X1, X2 ⇠ N (0, 1), then:

• X1
X2

⇠ Cauchy (0, 1).

• X1 ±X2 ⇠ N (0, 2).

• P
n

i=1 Xi ⇠ �2
n
.

If X1, ..., Xn ⇠ N (0, 1) and Y1, ..., Yn ⇠ N (0, 1), then F =
Pn

i=1 X
2
i /nPm

i=1 Y
2
i /m

⇠ Fn,m.
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rth order L-moments

Lemma 4.5.1. The first four corresponding L-moments for a standard normal random variable

are

LX:1 = 0, LX:2 =
1p
⇡
, LX:3 = 0, and LX:4 =

1p
⇡

 
30

⇡
arctan(

p
2)� 9

!
(4.36)

The L-skewness and L-kurtosis ratios are

⌧3 = 0 and ⌧4 =
30

⇡
arctan(

p
2)� 9, (4.37)

respectively.

The standard normal distribution is obtained when µ = 0 and � =
p
2.

⌅

4.5.2 Proposed two-piece normal distribution

Definition 4.5.2.1. A random variable is said to have a two-piece normal distribution if its

quantile function, PDF and CDF are defined as

QT (s) =

8
>><

>>:

µ+ ↵�
p
2erf�1

(2s� 1), s  1
2 ,

µ+ �
p
2erf�1

(2s� 1), s > 1
2 ,

(4.38)

fT (s) =

8
>><

>>:

1
↵�

p
2⇡

e
�(x�µ)2

2↵2�2 x  µ,

1
�
p
2⇡

e
�(x�µ)2

2�2 x > µ,

and

FT (s) =

8
>><

>>:

1
2

⇣
1 + erf�1

⇣
x�µ

↵�
p
2

⌘⌘
x  µ,

1
2

⇣
1 + erf�1

⇣
x�µ

�
p
2

⌘⌘
x > µ,

respectively.

⌅

The probability density curves for the two-piece normal distribution, with varying values of

↵ > 0, are illustrated in Fig.4.11. The distribution is positively skewed as shown by the dashed-

curve when ↵ < 1, negatively skewed when ↵ > 1 as shown by the dotted curve, and symmetric

as represented by the solid curve when ↵ = 1.
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Figure 4.11: The probability density curves for the two-piece normal distribution with L1 = 0

and L2 = 1, for varying values of ↵ > 0.

Quantile measures of distributional form

The quantile measures of distributional form for of location, spread and shape for the two-piece

normal distribution are obtained by substituting Eq.(4.38) into Eqs.(3.46-3.49), respectively.

• Location

The median is obtained as

me = QT

⇣1
2

⌘

= µ+ �
p
2erf�1

(2 · 1
2
� 1)

⌘

= µ.

• Spread

The spread function is derived

ST (s) = QT (s)�QT (1� s)

=
n
µ+ �

p
2erf�1

(2s� 1)
o
�
n
µ+ ↵�

p
2erf�1

(2s� 1)
o

=
p
2�(1� ↵)

⇣
erf�1

(2s� 1)
⌘
,

1

2
< s < 1.
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• Shape

The shape functional is obtained as

�T (s) =
QT (s) +QT (1� s)� 2me

ST (s)

=
µ+ �

p
2erf�1

(2s� 1) + µ+ ↵�
p
2erf�1

(2s� 1)� 2µ

�(1� ↵)erf�1
(2s� 1)

=
1 + ↵

1� ↵
,

1

2
< v < u < 1.

• Ratio-of-spread functions

The ratio-of-spread functions, for 1
2 < v < u < 1, is derived as

RT (u, v) =
QT (u)

QT (v)
=

p
2�(1� ↵)

⇣
erf�1

(2u� 1)
⌘

p
2�(1� ↵)

⇣
erf�1

(2v � 1)
⌘ =

erf�1
(2u� 1)

erf�1
(2v � 1)

.

rth order L-moments

The order statistics from the half normal distribution will be derived and be used to obtain the

L-moments of the two-piece normal distribution.

Theorem 4.5.2. The first four L-moments for the standard half normal distribution are

LZ:1 = �
r

2

⇡

LZ:2 =
1p
⇡

LZ:3 = 0.264252

LZ:4 =
1p
⇡

✓
30

⇡
arctan(

p
2)� 9

◆
, (4.39)

respectively.

Proof. See Section 4.9.4 for detailed proofs. ⌅

Theorem 4.5.3. The first four L-moments of the two-piece normal distribution is given by

LT :1 =
1p
2
(1� ↵)

LT :2 =
1

2
(1 + ↵)

LT :3 = 0.2341872(1� ↵)

LT :4 =
1

2

✓
30

⇡
arctan(

p
2)� 9

◆
(1 + ↵), (4.40)

respectively.
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Proof. See Section 4.9.4 for detailed proofs. ⌅

In effect, the L-skewness and L-kurtosis ratios are given as

⌧T :3 = 0.468373
(1� ↵)

(1 + ↵)
and ⌧T :4 =

30

⇡
arctan(

p
2)� 9 = 0.122602,

respectively.

Fig.4.12(a) shows the L-skewness range of the two-piece normal distribution which is (�0.468373; 0.468373)

for ↵ > 0, whereas Fig.4.12(b) shows a constant level of L-kurtosis, for ↵ > 0, at 0.122602.

(a) The L-skewness ratio plot (b) The L-kurtosis ratio plot

Figure 4.12: The L-skewness and L-kurtosis plots for the two-piece normal distribution

The (⌧T :3, ⌧T :4)-space covered by the two-piece normal distribution is indicated on Fig.4.13

below by the solid horizontal line.

The symmetric normal distribution is obtained at (⌧T :3, ⌧T :4)=(0, 0.122602), when ↵ = 1. When

↵ > 1, the distribution is less heavy-tailed, and subsequently more heavy-tailed when 0 < ↵ < 1.

The dashed curve at ⌧T :4 = 1
4 (5⌧

2
T :3 � 1) is the lower boundary for all probability distributions.
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Figure 4.13: The L-moment ratio diagram for the two-piece normal distribution with ↵ > 0.

4.6 Two-piece Cosine Distribution

The cosine distribution is a special case of the incomplete beta distribution which was proposed

by Jones (2002a). The complementary beta distribution exhibits more tractable computational

results with respect to the expectations of order statistics and L-moments. As a result, it may

be used to model data where the order statistics may be of primary interest.

Definition 4.6.0.1. Suppose X is a real-valued random variable from the cosine distribution

denoted X ⇠ COS(µ� �, µ+ �). Its CDF, PDF and quantile functions are respectively defined as

FX(x) =

8
>>>>>>><

>>>>>>>:

0, x  µ� �

sin2
⇣

⇡

2

⇣
x�(µ��)

2�

⌘⌘
, µ� � < x < µ+ �,

1, x � µ+ �,

(4.41)

fX(x) =

8
>><

>>:

⇡

4� sin
⇣
⇡
⇣

x�(µ��)
2�

⌘⌘
, µ� � < x < µ+ �,

0, elsewhere

(4.42)

and

QX(p) = µ+ �

✓
4

⇡
arcsin (

p
p)� 1

◆
, 0 < p < 1, (4.43)

where µ,� > 0 are the location and spread parameters, respectively.

⌅
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4.6.1 Distributional properties of the cosine distribution

Symmetry

The cosine distribution is symmetric for µ = � > 0.

Shape

The proability density curve of the cosine distribution is unimodal if µ,� < 1 and has a bath-tub

shape when µ,� > 1. The density curve is J-shaped when µ < 1 and � > 1, whereas it is reversed

J-shaped when µ > 1 and � < 1.

rth order L-moments

Lemma 4.6.1. The rth order L-moments function for the cosine distribution, for r = 1, ..., 4, are

LX:1 = 0, LX:2 =
1

4
, LX:3 = 0, and LX:4 =

1

64
, (4.44)

respectively.

The subsequent L-moment skewness and kurtosis ratios are

⌧X:3 = 0 and ⌧X:4 =
1

16
,

respectively.

The standard cosine distribution is obtained when µ = 0 and � = 4.

⌅

4.6.2 Proposed two-piece cosine distribution.

Definition 4.6.2.1. A real-valued random variable is said to have a two-piece cosine distribution

if its quantile function is defined as

QT (s) =

8
>><

>>:

µ+ ↵�
�
4
⇡
arcsin(

p
s)� 1

�
, s  1

2 ,

µ+ �
�
4
⇡
arcsin(

p
s)� 1

�
, s > 1

2 ,

(4.45)
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where µ, � and ↵ > 0 are the location, scale and shape parameters, respectively, and its CDF and

PDF are given as

FT (x) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

0, x  µ� ↵�

sin2
⇣

⇡

2

⇣
x�(µ�↵�)

2↵�

⌘⌘
, µ� ↵� < x < µ,

sin2
⇣

⇡

2

⇣
x�(µ��)

2�

⌘⌘
, µ < x < µ+ �,

1, x � µ+ �

and

fT (x) =

8
>>>>>>><

>>>>>>>:

⇡

4↵� sin
⇣
⇡
⇣

x�(µ�↵�)
2↵�

⌘⌘
, µ� ↵� < x < µ,

⇡

4� sin
⇣
⇡
⇣

x�(µ��)
2�

⌘⌘
, µ < x < µ+ �,

0, elsewhere

,

respectively.

⌅

The two-piece cosine probability density curves are illustrated in Fig.4.14. The distribution

exhibits negative skewness when ↵ > 1 as indicated by the dotted curve. The solid curve is

indicative of symmetry when ↵ = 1. Positive skewness is obtained when 0 < ↵ < 1 as can be seen

on the dashed curve where ↵ = 0.8.

Figure 4.14: The probability density curves for the two-piece cosine distribution with L1 = 0

and L2 = 1, for varying values of ↵ > 0.
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Quantile measures of distributional form

The quantile measures of distributional form for location, shape and spread for the two-piece

cosine distribution are obtained by substituting Eq.(4.8) into Eqs.(3.46-3.49), respectively.

• Location

The median is obtained as

me = QT

⇣1
2

⌘

= µ+ �

 
4

⇡
arcsin

 r
1

2

!
� 1

!

= µ+ �

✓
4

⇡
· ⇡
4
� 1

◆

= µ.

• Spread

The spread function is derived as

ST (s) = QT (s)�QT (1� s)

=

✓
µ+ �

✓
4

⇡
arcsin

�p
s
�
� 1

◆◆
�
✓
µ+ ↵�

✓
4

⇡
arcsin

�p
1� s

�
� 1

◆◆

=
4

⇡
�
⇣⇣

arcsin
�p

s
�
� ↵

⇣⇡
2
� arcsin

�p
s
�⌘⌘⌘

� �(1� ↵)

=
4

⇡
� (1 + ↵) arcsin

�p
s
�
� �(1 + ↵)

= �

✓
4

⇡
arcsin

�p
s
�
� 1

◆
(1 + ↵) ,

1

2
< s < 1.

• Shape

The �-functional is obtained as

�T (s) =
QT (s) +QT (1� s)� 2me

ST (s)

=

�
µ+ �

�
4
⇡
arcsin (

p
s)� 1

��
+
�
µ+ ↵�

�
4
⇡
arcsin

�p
1� s

�
� 1
��

� 2µ

�
�
4
⇡
arcsin(

p
s)� 1

�
(1 + ↵)

=
4
⇡
�
��
arcsin (

p
s) + ↵

�
⇡

2 � arcsin (
p
s)
���

� �(1� ↵)

�
�
4
⇡
arcsin(

p
s)� 1

�
(1 + ↵)

=
4
⇡
(arcsin (

p
s) + ↵ arccos (

p
s))� (1 + ↵)

�
�
4
⇡
arcsin(

p
s)� 1

�
(1 + ↵)

=
�
�
4
⇡
arcsin(

p
s)� 1

�
(1� ↵)

�
�
4
⇡
arcsin(

p
s)� 1

�
(1 + ↵)

=
1� ↵

1 + ↵
,

1

2
< v < u < 1.
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• Ratio-of-spread functions

The ratio-of-spread functions, for 1
2 < v < u < 1, is derived as

RT (u, v) =
ST (u)

ST (v)
=
�
�
4
⇡
arcsin (

p
u)� 1

�
(1 + ↵)

�
�
4
⇡
arcsin (

p
v)� 1

�
(1 + ↵)

=
4
⇡
arcsin (

p
u)� 1

4
⇡
arcsin (

p
v)� 1

.

Order statistics and rth order L-moments

Theorem 4.6.2. The first four L-moments for the standard half cosine distribution are

LZ:1 =
2

⇡
� 1,

LZ:2 =
1

4
,

LZ:3 = � 1

3⇡
,

and

LZ:4 =
1

64
, (4.46)

respectively.

Proof. See Section 4.9.5 for detailed proofs. ⌅

Theorem 4.6.3. The first four L-moments for the two-piece cosine distribution are given as

LT :1 =

✓
2� 4

⇡

◆
(1� ↵),

LT :2 =
1

2
(1 + ↵),

LT :3 =
2

3⇡
(1� ↵),

and

LT :4 =
1

32
(1 + ↵), (4.47)

respectively.

Proof. See Section 4.9.5 for detailed proofs. ⌅

The resulting L-skewness and L-kurtosis ratios are

⌧T :3 =
LT :3

LT :2
=

4

3⇡

(1� ↵)

(1 + ↵)
= 0.42441

(1� ↵)

(1 + ↵)
and ⌧T :4 =

LT :4

LT :2
=

1

16
,

respectively.

Fig.4.15(a) shows the L-skewness range of the two-piece cosine distribution which is (� 4
3⇡ ;

4
3⇡ )

for ↵ > 0, whereas Fig.4.15(b) shows a constant level of L-kurtosis for all values of ↵ > 0 at

⌧T :4 = 1
16 .
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(a) L-skewness ratio plot (b) L-kurtosis ratio plot

Figure 4.15: The L-skewness and L-kurtosis ratio plots for the two-piece cosine distribution.

The (⌧T :3, ⌧T :4)-space covered by the two-piece cosine distribution is indicated on the L-

moment ratio diagram in Fig.4.16 by the solid horizontal line. The symmetric cosine distribution

is obtained when ↵ = 1 at (⌧T :3, ⌧T :4)=(0, 1
16).

Figure 4.16: The L-moment ratio diagram for the two-piece cosine distribution.

The dotted curve at ⌧4 = 1
4 (5⌧

2
3 � 1) is the lower boundary for all probability distributions.
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4.7 Two-piece Uniform Distribution

The uniform distribution, also referred to as the rectangular distribution (Balakrishnan and

Nevzorov (2003)), is the simplest of all continuous distributions. It arises as the limiting case

of the discrete uniform distribution (Johnson et al. (1995)). This distribution has been used in

hypothesis testing, random sampling from arbitrary distributions and also in finance.

Definition 4.7.0.1. A random variable X is said to follow the uniform distribution, denoted

X ⇠ UNIF (µ� �, µ+ �), if its PDF is defined as

fX(x) =

8
>><

>>:

1
2� , µ� �  x  � + µ

0, elsewhere,

(4.48)

where µ > 0 and � > 0 are the location and scale parameters, respectively.

⌅

The CDF and quantile function of the uniform distribution follow from Eq.(4.48) as

FX(x) =

8
>>>>>>><

>>>>>>>:

0, x < µ� �

x�(µ��)
2� , µ� �  x  µ+ �

1, x > µ+ �.

(4.49)

and

QX(p) = µ+ �(2p� 1), 0 < p < 1, (4.50)

respectively.

4.7.1 Distributional properties of the uniform distribution

Balakrishnan and Nevzorov (2003) documented the distributional properties for the uniform

distribution.

Moments

• The central moments about the origin are given as

µ
0

n
= E(Xn) =

(� + µ)n+1 � (µ� �)n+1

2�(n+ 1)
, n 2 N. (4.51)
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When µ = 0 and � = 1, then E(Xn) = 1
2(n+1) .

• The central moments about the mean are given as

µn = E(X � E(X))n =
�n(1� (�1)n+1)

(n+ 1)2n+1
, n 2 N. (4.52)

• The mean and variance follow directly from Eqs.(4.51) and (4.52), by setting n = 1 and

n = 2, respectively to obtain

µ
0

1 = E(X) = µ and Var(X) = µ2 =
�2

3
.

Shape

The Pearson coefficient of skewness, ↵3, is equal to zero, which implies that the uniform dis-

tribution is symmetric. The Pearson coefficient of kurtosis, ↵4, is equal to 1.8. Therefore, the

uniform distribution is platykurtic (lighter-tailed) in comparison to the normal distribution,

whose theoretical value for ↵4 is 3.

Probability integral transform

Suppose that F and G are the CDF and inverse CDF of any continuous distribution. Then the

transformation Y = G(X), where X ⇠ UNIF (0, 1), yields a random variable Y whose CDF is F .

This property is used to simulate random samples from any continuous probability distribution.

Uniform and other distributions

There are numerous relationships that can be drawn between the uniform distribution and other

univariate distributions.

• If U ⇠ UNIF (0, 1), then 1� U ⇠ UNIF (0, 1).

• If X ⇠ UNIF (0, 1), then by the probability integral transform property, Y = � 1
�
ln(X) ⇠

exp(�).

• Let X ⇠ UNIF (0, 1). It follows that Y = Xn ⇠ Beta
�
1
n
, 1
�
. When n = 1, then X ⇠ UNIF (0, 1)

is the special case of the standard Beta(1, 1).
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• The distribution of the sum of n independent, identical, standard uniform random variables

is the Irwin-Hall distribution, (Irwin (1927), Hall (1927)), a name coined by Johnson et al.

(1995).

Order statistics and rth order L-moments

Definition 4.7.1.1. Suppose Xi:n, i = 1, ..., n, is the ith order statistic of a standard uniform

random variable from a sample of size n. The PDF of Xi:n is defined as

fXi:n(x) =
n!

(i� 1)!(n� i)!
xi�1(1� x)n�i (4.53)

while the expected value of Xi:n, which follows from Eq.(4.53) is

E(Xi:n) =
i

n+ 1
.

⌅

Lemma 4.7.1. The first 4 L-moments for the uniform distribution are

LX:1 = 0, LX:2 =
1

3
, LX:3 = 0, and LX:4 = 0. (4.54)

The subsequent L-skewness and L-kurtosis ratios are

⌧X:3 = 0 and ⌧X:4 = 0, (4.55)

respectively.

The standard uniform distribution is obtained when µ = 0 and � = 3.

⌅

4.7.2 Proposed two-piece uniform distribution

Definition 4.7.2.1. A real-valued random variable is said to have a two-piece uniform distri-

bution if its quantile function, CDF and PDF are defined as

QT (s) =

8
>><

>>:

µ+ ↵�(2s� 1), s  1
2 ,

µ+ �(2s� 1), s > 1
2 ,

(4.56)
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FT (x) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

0, x  µ� ↵�,

x�(µ�↵�)
2↵� , µ� ↵�  x < µ,

x�(µ�↵�)
2↵� , µ  x  µ� ↵�,

1, x > µ+ �,

(4.57)

and

fT (x) =

8
>><

>>:

1
2↵� , µ� ↵�  x < µ,

1
2� , µ  x < µ+ �,

(4.58)

where �1 < µ < 1, � > 0 and ↵ > 0 are the location, scale and asymmetry parameters, respec-

tively.

⌅

The probability density curves for the two-piece uniform distribution are shown in Fig.4.17.

Symmetry is obtained when ↵ = 1 as indicated on Fig.4.17(b).

(a) ↵ = 0.8 (b) ↵ = 1. (c) ↵ = 2

Figure 4.17: The probability density curves for the two-piece uniform distribution with L1 = 0

and L2 = 1, for ↵ > 0.

Quantile measures of distributional form

The quantile measures of distributional form for location, shape and spread for the two-piece

uniform distribution are obtained by substituting Eq.(4.56) into Eqs.(3.46-3.49), respectively.
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• Location

The median is obtained as

me = QT

⇣1
2

⌘

= µ+ �

✓
2 · 1

2
� 1

◆

= µ

• Spread

The spread function is derived as

ST (s) = QT (s)�QT (1� s)

= (µ+ �(2s� 1))� (µ+ ↵�(2(1� s)� 1))

= �(2s� 1� ↵(2� 2s� 1))

= �(2s(1 + ↵)� (1 + ↵))

= �(2s� 1)(1 + ↵),
1

2
< s < 1.

• Shape

The �-functional is obtained as

�T (s) =
QT (s) +QT (1� s)� 2me

ST (s)

=
(µ+ �(2s� 1)) + (µ+ ↵�(2(1� s)� 1))� 2µ

�(2s� 1)(1 + ↵)

=
�(2s� 1 + ↵(1� 2s))

�(2s� 1)(1 + ↵)

=
�(2s� 1)(1� ↵)

�(2s� 1)(1 + ↵)

=
(1� ↵)

(1 + ↵)
,

1

2
< v < u < 1.

• Ratio-of-spread functions

The ratio-of-spread functions, for 1
2 < v < u < 1, is derived as

RT (u, v) =
ST (u)

ST (v)
=
�(2u� 1)(1 + ↵)

�(2v � 1)(1 + ↵)
=

2u� 1

2v � 1
.
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rth order L-moments

Theorem 4.7.2. The first four L-moments of a standard half uniform random variable are

obtained as

LZ:1 = �1

2
,

LZ:2 =
1

3
,

LZ:3 = �1

8
,

and

LZ:4 = 0, (4.59)

respectively.

Proof. See Section 4.9.6 for detailed proofs. ⌅

Theorem 4.7.3. The first four L-moments of a two-piece uniform random variable are given

by

LT :1 =
3

4
(1� ↵),

LT :2 =
1

2
(1 + ↵),

LT :3 =
3

16
(1� ↵),

and

LT :4 = 0, (4.60)

respectively.

Proof. See Section 4.9.6 for detailed proofs. ⌅

The resulting L-skewness and L-kurtosis ratios are

⌧T :3 =
LT :3

LT :2
=

3

8

(1� ↵)

(1 + ↵)
and ⌧T :4 =

LT :4

LT :2
= 0,

respectively.

Fig.4.18(a) shows the L-skewness range of the two-piece uniform distribution which is
�
� 3

8 ;
3
8

�

for ↵ > 0, whereas Fig.4.18(b) shows a constant level of L-kurtosis at ⌧T :4 = 0.
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(a) The L-skewness ratio plot (b) The L-kurtosis ratio plot

Figure 4.18: The L-skewness and L-kurtosis ratio plot for the two-piece uniform distribution.

The (⌧T :3, ⌧T :4)-space covered by the two-piece uniform distribution is indicated on Fig.4.19

by the solid horizontal line. The uniform distribution is obtained at (⌧T :3, ⌧T :4)=(0, 0) when ↵ = 1.

Figure 4.19: The L-moment ratio diagram for the two-piece uniform distribution with ↵ > 0.

The dotted curve at ⌧T :4 = 1
4 (5⌧

2
T :3 � 1) is the lower boundary for all probability distributions.

4.8 Two-piece Arcsine Distribution

A random variable from the arcsine distribution, introduced by Balakrishnan and Nevzorov

(2003), is a bounded distribution whose support is [µ, µ + �], where µ,� > 0. The distribution
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has been used in Brownian motion as well as the Jeffrey’s prior in probability of success of the

Bernoulli trial.

Definition 4.8.0.1. Let X be a random variable from the arcsine distribution, denoted X ⇠

Arcsine(µ� �, µ+ �). The CDF, PDF and quantile function are given as

FX(x) =
2

⇡
arcsin

 r
x� (µ� �)

2�

!
µ� � < x < µ+ �, (4.61)

fX(x) =
1

2⇡�

1r⇣
x�(µ��)

2�

⌘⇣
1� x�(µ��)

2�

⌘ µ� � < x < µ+ �, (4.62)

and

QX(p) = µ+ �
⇣
2 sin2

⇣⇡p
2

⌘
� 1
⌘

0 < p < 1, (4.63)

respectively.

⌅

4.8.1 Distributional properties of the arcsine distribution

Moments

The moment generating function of the arcsine distribution is

MX(t) = 1 +
1X

k=1

 
k�1Y

r=0

2r + 1

2r + 2

!
tk

k!
, t 2 R. (4.64)

From Eq.(4.64), the mean and the variance of the standard arcsine distribution are obtained as
1
2 and 1

8 , respectively. For the general arcsine distribution, the mean and variance are µ+ �

2 and
�
2

8 , respectively.

Shape

• The probability density curve of the arcsine distribution exhibits a bath-tub shape.

• The skewness and kurtosis moment-ratios are ↵3 = 0 and ↵4 = 3
2 , respectively. Since ↵3 = 0,

the distribution is symmetric, whereas ↵4 = 3
2 indicates that the distribution has lighter

tails than the normal distribution (↵4 = 3).
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Arcsine and other distributions

• The standard arcsine distribution, X ⇠ Arcsine(0, 1), is a special case of the beta distribu-

tion such that X ⇠ Beta
�
1
2 ,

1
2

�
.

• If X ⇠ Arcsine(�1, 1), then X2 ⇠ Arcsine(0, 1).

• Suppose that a and b are positive values. Then if X ⇠ Arcsine(✓,�), it follows that aX+ b ⇠

Arcsine(a✓ + b, a� + b).

• If X and Y are identical and independent uniform random variables on the interval (�⇡,⇡),

then sin(X), sin(2X), � cos(2X), sin(X + Y ) and sin(X � Y ) all follow the Arcsine(�1, 1) distri-

bution (Arnold and Groeneveld (1980)).

rth order L-moments

Lemma 4.8.1. Suppose X is a random variable from the arcsine distribution. The first 4

L-moments are given as

LX:1 = 0, LX:2 =
4

⇡2
, LX:3 = 0, and LX:4 =

24

⇡2

⇣
1� 10

⇡2

⌘
, (4.65)

respectively.

The L-skewness and L-kurtosis ratios are obtained as

⌧3 = 0 and ⌧4 = 6� 60

⇡2
,

respectively.

The standard arcsine distribution is obtained when µ = 0 and � = ⇡
2

4 .

⌅

4.8.2 Proposed two-piece arcsine distribution

Definition 4.8.2.1. A real-valued random variable is said to be from the two-piece cosine dis-

tribution if its CDF, PDF and quantile function are given as

FT (X) =

8
>>><

>>>:

2
⇡
arcsin

✓q
x�(µ�↵�)

2↵�

◆
, µ� ↵� < x < µ,

2
⇡
arcsin

✓q
x�(µ��)

2�

◆
, µ < x < µ+ �,
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fT (X) =

8
>>>>>><

>>>>>>:

1
2⇡↵�

1s⇣
x�(µ�↵�)

2↵�

⌘⇣
1� x�(µ�↵�)

2↵�

⌘ , µ� ↵� < x < µ,

1
2⇡�

1s⇣
x�(µ��)

2�

⌘⇣
1� x�(µ��)

2�

⌘ , µ < x < µ+ �,

and

QT (s) =

8
>><

>>:

µ+ ↵�
⇣
2 sin2

⇣
⇡p

2

⌘
� 1
⌘
, s  1

2 ,

µ+ �
⇣
2 sin2

⇣
⇡p

2

⌘
� 1
⌘
, s > 1

2 ,

(4.66)

respectively.

⌅

The probability density curves from Fig.4.20 are illustrated for ↵ > 0. Symmetry is attained

when ↵ = 1 as depicted by the solid curve.

Figure 4.20: The probability density curves for the two-piece arcsine distribution with L1 = 0

and L2 = 1, for varying values of ↵ > 0.

Quantile measures of distributional form

The quantile measures of distributional form for location, shape and spread for the two-piece

arcsine distribution are obtained by substituting Eq.(4.66) into Eqs.(3.46-3.49), respectively.

• Location
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The median is obtained as

me = Q
⇣1
2

⌘

= µ+ �

✓
2 sin2

⇣⇡ · 1
2

2

⌘
� 1

◆

= µ.

• Spread

The spread function is derived as

ST (s) = QT (s)�QT (1� s)

=
⇣
µ+ �

⇣
2 sin2

⇣⇡s
2

⌘
� 1
⌘⌘

�
✓
µ+ ↵�

✓
2 sin2

⇣⇡(1� s)

2

⌘
� 1

◆◆

= �
⇣
2 sin2

⇣⇡s
2

⌘
� 1
⌘
� ↵�

⇣
2� 2 sin2

⇣⇡s
2

⌘
� 1
⌘

= �
⇣
2 sin2

⇣⇡s
2

⌘
(1 + ↵)� (1 + ↵)

⌘
,

= �(1 + ↵)
⇣
2 sin2

⇣⇡s
2

⌘
� 1
⌘
,

1

2
< s < 1.

• Shape

The �-functional is obtained as

�T (s) =
QT (s) +QT (1� s)� 2me

ST (s)

=

⇣
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⇣
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⇣
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2
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1

2
< v < u < 1.

• Ratio-of-spread functions

The ratio-of-spread functions, for 1
2 < v < u < 1, is derived as

RT (u, v) =
ST (u)

ST (v)
=
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�
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rth order L-moments

Theorem 4.8.2. The first four L-moments of a standard half arcsine random variable are

obtained as

LZ:1 = � 2

⇡
,

LZ:2 =
4

⇡2
,

LZ:3 =
1

⇡3
(⇡2 � 12⇡ + 24),

and

LZ:4 =
24

⇡2
(⇡2 � 10), (4.67)

respectively.

Proof. See Section 4.9.7 for detailed proofs. ⌅

Theorem 4.8.3. The first four L-moments of a standard two-piece arcsine random variable are

given as

LT :1 =
⇡

4
(1� ↵),

LT :2 =
1

2
(1 + ↵),

LT :3 =
1

8⇡

�
⇡2 � 12⇡ + 24

�
(1� ↵),

and

LT :4 =

✓
3� 30

⇡2

◆
(1 + ↵), (4.68)

respectively.

Proof. See Section 4.9.7 for detailed proofs. ⌅

Therefore, it follows that the L-skewness and L-kurtosis ratios are

⌧T :3 =
LT :3

LT :2
=

1

4⇡

�
⇡2 � 12⇡ + 24

� (1� ↵)

(1 + ↵)
= 0.3048

(1� ↵)

(1 + ↵)
(4.69)

and

⌧T :4 =
LT :4

LT :2
= 6� 60

⇡2
= �0.07927, (4.70)

respectively.

Fig.4.21(a) shows the L-skewness range of the two-piece arcsine distribution which is (�0.3048; 0.3048)

for ↵ > 0, whereas Fig.4.21(b) shows a constant level of L-kurtosis is achieved for ↵ > 0 at

⌧T :4 = �0.07927.
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(a) L-skewness ratio plot (b) L-kurtosis ratio plot

Figure 4.21: The L-skewness and L-kurtosis ratio plots for the two-piece Student’s t(2) distri-

bution.

The (⌧T :3, ⌧T :4)-space covered by the two-piece arcsine distribution is indicated by the hori-

zontal line on the L-moment ratio diagram in Fig.4.22. The symmetric arcsine distribution is

obtained at (⌧3, ⌧4)=(0,�0.07927) when ↵ = 1.

Figure 4.22: The L-moment ratio diagram for the two-piece arcsine distribution with ↵ > 0.

The dotted curve at (⌧T :3, ⌧T :4) =
1
4 (5⌧

2
T :3 � 1) is the lower boundary for all probability distri-

butions.
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4.9 Appendix

This section contains the derivations of the results for the standard two-piece univariate distri-

butions generated in Sections 4.2-4.8. Foremost, the L-moments for the half univariate parent

distributions are obtained using the results in Eq.(3.17) of Lemma 3.3.2 and the rth order shifted

scaled Legendre polynomials in Eq.(3.19) of Theorem 3.3.3. The scaling factor is set to k = 1
2 .

Subsequently, the results for the L-moments of the two-piece distributions are obtained by sub-

stituting the results of the L-moments for the half distributions into Eq.(3.27), for the respective

values of r = 1, ..., 4.

4.9.1 Two-piece Student’s t(2) distribution

Theorem 4.9.1. Suppose X is a real-valued Student’s t(2) random variable with µ 2 R and � > 0

as the location and scale parameters, respectively. Let Z be a real-valued standardized random

variable from the standard half Student’s t(2) distribution. The first 4 L-moments of Z are given

by Eq.(4.9).

Proof. The depth in the standard quantile function from Eq.(4.4) is set as p

2 , and substituted

into Eq.(3.17). The first L-moment of Z, where r = 1 and P0(
1
2 ) = 1, is obtained as

LZ:1 =

Z 1

0
QX:0

⇣p
2

⌘
dp

=

Z 1

0

p� 1q
p
�
1� p

2

� dp

= �
Z 1

0
(1� p) p�

1
2

⇣
1� p

2

⌘� 1
2
dp

= �B
✓
1

2
, 2

◆
2F1

✓
1

2
,
1

2
;
5

2
,
1

2

◆

= �4

3
⇥ 3

2
p
2

= �
p
2.



CHAPTER 4. UNIVARIATE TWO-PIECE DISTRIBUTIONS 100

When r = 2 and P1(
1
2 ) = p� 1, the second L-moment is obtained as

LZ:2 =

Z 1

0
QX:0

⇣p
2

⌘
(p� 1) dp

=

Z 1

0

0

@ p� 1q
p
�
1� p

2

�

1

A (p� 1) dp

=

Z 1

0

0

@ p� 1q
p
�
1� p

2

�

1

A p dp�
Z 1

0

0

@ p� 1q
p
�
1� p

2

�

1

A dp

=

Z 1

0
(1� p) p

1
2

⇣
1� p

2

⌘� 1
2
dp�

⇣
�
p
2
⌘

=

✓
B
✓
3

2
, 2

◆
2F1

✓
1

2
,
3

2
;
7

2
,
1

2

◆◆
�
⇣
�
p
2
⌘

=

✓
4

15
⇥ 15

8
p
2
(⇡ � 4)

◆
�
⇣
�
p
2
⌘

=
⇡

2
p
2
.

For the third L-moment, r = 3 and P2(
1
2 ) = 6

�
p

2

�2 � 6
�
p

2

�
+ 1. Therefore,

LZ:3 =

Z 1

0
QX:0

⇣p
2

⌘✓
6
⇣p
2

⌘2
� 6

⇣p
2

⌘
+ 1

◆
dp

=

Z 1

0

0

@ p� 1q
p
�
1� p

2

�

1

A
✓
6
⇣p
2

⌘2
� 6

⇣p
2

⌘
+ 1

◆
dp

=
6

4

Z 1

0

0

@ p� 1q
p
�
1� p

2

�

1

A p2dp� 3

Z 1

0

0

@ p� 1q
p
�
1� p

2

�

1

A p dp+

Z 1

0

0

@ p� 1q
p
�
1� p

2

�

1

A dp

=
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4

✓Z 1

0
(1� p) p

3
2

⇣
1� p
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⌘� 1
2
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◆
� 3

✓
�
✓
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15
⇥ 15

8
p
2
(⇡ � 4)

◆◆
+
⇣
�
p
2
⌘
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✓
�B

✓
5

2
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◆
2F1

✓
1

2
,
5

2
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9

2
,
1

2

◆◆
� 3

✓
�
✓

4

15
⇥ 15

8
p
2
(⇡ � 4)

◆◆
+
⇣
�
p
2
⌘

=
6

4

✓
�
p
2

✓
⇡

2
� 5
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◆◆
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✓
�
✓
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⇥ 15

8
p
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(⇡ � 4)
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⇣
�
p
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⌘

= � 1p
2
.
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The fourth L-moment is obtained when r = 4 and P3(
1
2 ) = 20

�
p

2

�3 � 30
�
p

2

�2
+ 12

�
p

2

�
� 1, as

LZ:4 =

Z 1

0
QX:0

⇣p
2

⌘✓
20
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2

⌘3
� 30
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� 1
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A
✓
20
⇣p
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2
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2

⌘
� 1

◆
dp

=
20

8

Z 1

0

0
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p
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A p3dp� 30
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Z 1
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=
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8

✓
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0
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5
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2
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�
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⇥ 15

8
p
2
(⇡ � 4)

◆◆
+

p
2

=
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8

✓
�B

✓
7

2
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◆
2F1

✓
1

2
,
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;
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2
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� 30
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✓
⇡
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⇥ 15

8
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(⇡ � 4)
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+
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8

✓
�
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✓
15

16
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� 30
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�
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� 5
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+
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16
p
2
.

The final results were obtained using Gradshteyn and Ryzhik (2007, 3.197.3). ⌅

Theorem 4.9.2. Suppose T is a real-valued standardized random variable from the two-piece

Student’s t(2) distribution, denoted as T⇠ t(2)TP (0, 2
p
2

⇡
, ↵), where 0 is the location parameter,

2
p
2

⇡
is the scale parameter and ↵ > 0 is the asymmetry parameter. The first 4 L-moments of T

are given in Eq.(4.10).

Proof. The results in Eq.(4.10) are obtained by substituting the L-moments of X in Eq.(4.7)

and the results of the L-moments of Z in Eq.(4.9) into Eq.(3.27), for r = 1, ..., 4.

For r = 1, the first L-moment of T is

LT :1 = µ+ �
⇣
LX:1 � 0.5(1� ↵)c(0)0 LZ:1

⌘

=
2
p
2

⇡

⇣
0� 0.5(1� ↵)

⇣
�
p
2
⌘⌘

=
2

⇡
(1� ↵).

The second L-moment of T , obtained when r = 2, is

LT :2 = �

 
LX:2 � 0.5(1� ↵)

 
c(1)0 LZ:1 +

c(1)1

2
(LZ:1 + LZ:2)

!!
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2
p
2

⇡

✓
⇡

2
p
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⇣
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p
2
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✓
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p
2 +

⇡
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p
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=
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CHAPTER 4. UNIVARIATE TWO-PIECE DISTRIBUTIONS 102

When r = 3, the third L-moment of T is

LT :3 =

 
LX:3 � 0.5(1� ↵)
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2
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The fourth L-moment of T , when r = 4, is

LT :4 = �
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⌅

4.9.2 Two-piece hyperbolic secant distribution

Theorem 4.9.3. Let X be a real-valued random variable from the hyperbolic secant distribution,

with µ 2 R and � > 0 as the location and scale parameters, respectively. Let Z be a real-valued

standardized random variable from the standard half hyperbolic secant distribution. The first 4

L-moments of Z are given by Eq.(4.20).

Proof. The depth in the standard quantile function from Eq.(4.13) is set as p

2 , and substituted

into Eq.(3.17). For the first L-moment of Z, r = 1 and P0(
1
2 ) = 1. Therefore,

LZ:1 =

Z 1

0
QX:0

⇣p
2

⌘
dp

=

Z 1

0
log
⇣
tan

⇣⇡p
4

⌘⌘
dp

=
4

⇡

Z ⇡
4

0
log (tan (t)) dt

= � 4

⇡
G.
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When r = 2 and P1(
1
2 ) = p� 1, the second L-moment of Z is obtained as

LZ:2 =
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The third L-moment of Z is obtained by setting r = 3 and P2(
1
2 ) = 6

�
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+ 1, such that
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For the fourth L-moment of Z, r = 4 and P3(
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The final results were obtained using Gradshteyn and Ryzhik (2007, 4.227.2) and some computed

from Wolfram Research, Inc. (2020). ⌅

Theorem 4.9.4. Let T be a real-valued standardized random variable from the two-piece hy-

perbolic secant distribution, denoted as T⇠ HSDTP (0, ⇡
2

7⇣(3) , ↵), where 0, 1 and ↵ > 0 are the

location, scale and asymmetry parameters, respectively. The first 4 L-moments of T are given

in Eq.(4.21).

Proof. The results in Eq.(4.21) are obtained by substituting the L-moments of X in Eq.(4.16)

and the results of the L-moments of Z in Eq.(4.20) into Eq.(3.27), for r = 1, ..., 4.

The first L-moment of T , for r = 1, is
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The second L-moment of T , when r = 2, is
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When r = 3, the third L-moment of T is
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The fourth L-moment of T is obtained when r = 4 as
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⌅

4.9.3 Two-piece logistic distribution

Theorem 4.9.5. Assume X is a real-valued logistic random variable, with µ 2 R and � > 0 as the

location and scale parameters, respectively. Let Z be a real-valued standardized random variable

from the standard half logistic distribution. The first 4 L-moments of Z are given by Eq.(4.30).

Proof. The depth in the standard quantile function from Eq.(4.24) is set as p

2 , and substituted

into Eq.(3.17). The first L-moment of Z, where r = 1 and P0(
1
2 ) = 1, is obtained as
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For r = 2 and P1(
1
2 ) = p� 1, the second L-moment of Z is
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The third L-moment of Z is obtained when r = 3 and P2(
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The fourth L-moment of Z, for r = 4 and P3(
1
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The final results were obtained using Gradshteyn and Ryzhik (2007, 2.723.1, 2.729.1-2.729.4).

⌅

Theorem 4.9.6. Assume T is a real-valued standardized random variable from the two-piece

logistic distribution, denoted as T⇠ LTP (0, 1, ↵), where 0 is the location parameter, 1 is the scale

parameter and ↵ > 0 is the asymmetry parameter. The first 4 L-moments of T are given in

Eq.(4.31).

Proof. The results in Eq.(4.31) are obtained by substituting the L-moments of X in Eq.(4.26)

and the results of the L-moments of Z in Eq.(4.30) into Eq.(3.27), for r = 1, ..., 4.

For r = 1, the first L-moment of T is

LT :1 = µ+ �
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The second L-moment of T , when r = 2, is given as
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For r = 3, the third L-moment of T is
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The fourth L-moment of T , for r = 4, is
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⌅

4.9.4 Two-piece normal distribution

Theorem 4.9.7. Let X be a real-valued random variable from the normal distribution, with µ 2 R

and � > 0 as the location and scale parameters, respectively, and Z be a real-valued standardized

random variable from the standard half normal distribution. The first 4 L-moments of Z are

given by Eq.(4.39).

Proof. The depth in the the standard quantile function from Eq.(4.33) is set as p

2 , and substi-
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tuted into Eq.(3.17). The first L-moment of Z, where r = 1 and P0(
1
2 ) = 1, is obtained as
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The fourth L-moment is obtained when r = 4 and P3(
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Final results were computed using Wolfram Research, Inc. (2020). The results were obtained

using Wolfram Research, Inc. (2020). ⌅

Theorem 4.9.8. Suppose T is a real-valued standardized random variable from the two-piece

normal distribution, denoted as T ⇠ NTP (0,
p
⇡,↵), where 0 is the location parameter, 1 is the

scale parameter and ↵ > 0 is the asymmetry parameter. The first 4 L-moments of T are given

in Eq.(4.40).

Proof. The results in Eq.(4.40) are obtained by substituting the L-moments of X in Eq.(4.36)

and the results of the L-moments of Z in Eq.(4.39) into Eq.(3.27), for the respective values of

r > 0.

For r = 1, the first L-moment of T is
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The second L-moment of T , for r = 2, is
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The third L-moment fo T is obtained when r = 3 as
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Finally, the fourth L-moment is obtained when r = 4 as
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⌅

4.9.5 Two-piece cosine distribution

Theorem 4.9.9. Let X be a real-valued cosine random variable, with µ 2 R and � > 0 as the

location and scale parameters, respectively, and Z be a real-valued standardized random variable

from the standard half cosine distribution. The first 4 L-moments of Z are given by Eq.(4.46).

Proof. The depth in the standard quantile function from Eq.(4.43) is set as p

2 , and substituted

into Eq.(3.17). Using the transformation of variables, let t = arcsin
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The first L-moment of Z, where r = 1 and P0(
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2 ) = 1, is obtained as
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When r = 2 and P1(
1
2 ) = p� 1, the second L-moment is obtained as
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For the third L-moment, r = 3 and P2(
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Final results were obtained using Gradshteyn and Ryzhik (2007, 1.321.1, 1.321.2, 1.323.2,

1.335.1, 2.633.1). ⌅
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Theorem 4.9.10. Suppose T is a real-valued standardized random variable from the two-piece

cosine distribution, denoted as T⇠ COSTP (0, 4, ↵), where 0 is the location parameter, 4 is the

scale parameter and ↵ > 0 is the asymmetry parameter. The first 4 L-moments of T are given

in Eq.(4.47).

Proof. The results in Eq.(4.47) are obtained by substituting the L-moments of X in Eq.(4.44)

and the L-moments of Z in Eq.(4.46) into Eq.(3.27), for the respective values of r > 0.

For r = 1, the first L-moment of T is
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When r = 3, the third L-moment of T is
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The fourth L-moment of T , when r = 4, is
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4.9.6 Two-piece uniform distribution

Theorem 4.9.11. Let X be a real-valued random variable from the uniform distribution, with

µ 2 R and � > 0 as the location and scale parameters, respectively, and Z be a real-valued

standardized random variable from the standard half uniform distribution. The first 4 L-moments

of Z are given by Eq.(4.59).

Proof. The depth in the standard quantile function from Eq.(4.50) is set as p

2 , and substituted

into Eq.(3.17). The first L-moment of Z, where r = 1 and P0(
1
2 ) = 1, is obtained as
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When r = 2 and P1(
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For the fourth L-moment of Z, r = 4 and P3(
1
2 ) = 20
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Theorem 4.9.12. Suppose T is a real-valued standardized random variable from the two-piece

uniform distribution, denoted as T⇠ UNIFTP (0, 3, ↵), where 0 is the location parameter, 3 is the

scale parameter and ↵ > 0 is the asymmetry parameter. The first 4 L-moments of T are given

in Eq.(4.60).

Proof. The results in Eq.(4.60) are obtained by substituting the L-moments of X in Eq.(4.54)

and the results of the L-moments of Z in Eq.(4.59) into Eq.(3.27), for the respective values of

r > 0.

For r = 1, the first L-moment of T is

LT :1 = µ+ �
⇣
LX:1 � 0.5(1� ↵)c(0)0 LZ:1

⌘

= 3

✓
0� 0.5(1� ↵)

✓
�1

2

◆◆

=
3

4
(1� ↵).

The second L-moment of T , when r = 2, is given as
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For r = 3, the third L-moment of T is
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The fourth L-moment of T , for r = 4, is
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4.9.7 Two-piece arcsine distribution

Theorem 4.9.13. Suppose X is a real-valued arcsine random variable, with µ 2 R and � > 0

as the location and scale parameters, respectively. Let Z be a real-valued standardized random

variable from the standard half arcsine distribution. The first 4 L-moments of Z are given by

Eq.(4.67).

Proof. The depth in the standard quantile function from Eq.(4.63) is set as p

2 , and substituted

into Eq.(3.17). The first L-moment of Z, where r = 1 and P0(
1
2 ) = 1, is obtained as
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When r = 2 and P1(
1
2 ) = p� 1, the second L-moment of Z is
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The third L-moment of Z is obtained when r = 3 and P2(
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Therefore,
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The final results were obtained using Gradshteyn and Ryzhik (2007, 1.321.1, 2.633.1). ⌅

Theorem 4.9.14. Suppose T is a real-valued standardized random variable that follows the

two-piece arcsine distribution, denoted as T⇠ ArcsineTP

⇣
0, ⇡

2

4 ,↵
⌘
, where 0, ⇡

2

4 and ↵ > 0 are the

location, scale and asymmetry parameters, respectively. The first 4 L-moments of T are given

in Eq.(4.68).

Proof. The results in Eq.(4.68) are obtained by substituting the L-moments of X in Eq.(4.65)

and the results of the L-moments of Z in Eq.(4.67) into Eq.(3.27), for the respective values of

r > 0. The first L-moment of T , for r = 1, is

LT :1 = µ+ �
⇣
LX:1 � 0.5(1� ↵)c(0)0 LZ:1

⌘

=
⇡2

4

✓
0� 0.5(1� ↵)

✓
� 2

⇡

◆◆

=
⇡

4
(1� ↵).
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For r = 2, the second L-moment of T is obtained as

LT :2 = �

 
LX:2 � 0.5(1� ↵)

 
c(1)0 LZ:1 +

c(1)1

2
(LZ:1 + LZ:2)

!!

=
⇡2

4

✓
4

⇡2
� 0.5(1� ↵)

✓
(�1)

✓
� 2

⇡

◆
+

2

2

✓
� 2

⇡

◆
+

4

⇡2

◆◆

= 1� 0.5(1� ↵)

=
1

2
(1 + ↵).

The third L-moment of T is obtained when r = 3 as

LT :3 = �

 
LX:3 � 0.5(1� ↵)

  
c(2)0 +

c(2)1

2
+

c(2)2

3

!
LZ:1 +

 
c(2)1

2
+

c(2)2

2

!
LZ:2 +

c(2)2

6
LZ:3

!!

=
⇡2

4

 
0� 0.5(1� ↵)

 ✓
1� 6

2
+

6

3

◆✓
� 2

⇡

◆
+

✓
�6

2
+

6

2

◆✓
4

⇡2

◆
� 6

6

✓
1

⇡3

�
⇡2 � 12⇡ + 24

�◆
!!

= 0.5(1� ↵)

✓
1

4⇡

�
⇡2 � 12⇡ + 24

�◆

=
1

8⇡

�
⇡2 � 12⇡ + 24

�
(1� ↵).

Finally, the fourth L-moment of T is obtained when r = 4 as

LT :4 = �

 
LX:4 � 0.5(1� ↵)

  
c(3)0 +

c(3)1

2
+

c(3)2

3
+

c(3)3

4

!
LZ:1 +

✓
c(3)1 + c(3)2 +

9

10
c(3)3

◆
LZ:2

2

+

 
c(3)2

3
+

c(3)3

2

!
LZ:3

2
+

LZ:4

20
c(3)3

!!

=
⇡2

4

 ✓
6� 60

⇡2

◆
� 1

2
(1� ↵)

 ✓
�1 +

12

2
� 30

3
+

20

4

◆✓
� 2

⇡

◆
+

1

2

✓
12� 30 +

9

10
· 20
◆✓

4

⇡2

◆

+
1

2

✓
�30

3
+

20

2

◆✓
1

⇡3

�
⇡2 � 12⇡ + 24

�◆
+

 
24

⇡2
� 240

⇡4

!!

=
⇡2

4

 ✓
24

⇡2
� 240

⇡4

◆
� 1

2
(1� ↵)

✓
24

⇡2
� 240

⇡4

◆!

= 3

✓
1� 10

⇡2

◆
(1 + ↵).

⌅
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5.1 Introduction

The skewing methodology developed in Section 3.2 as well as the expressions for the rth order

L-moments in Section 3.3.4, were applied to univariate symmetric distributions without a shape

parameter as shown in Chapter 4. The results obtained were synonymous with those derived in

Chapter 2, in that the two-piece distributions exhibit skewness-invariant measures of kurtosis.

Notably, the L-kurtosis ratio value of the proposed two-piece distributions would be the same

as that of their respective parent distributions.

In this chapter, the exploration of an extension of the results to a family of symmetric

distributions with a single shape parameter is considered. The Tukey lambda distribution,

introduced by Tukey (1960), will be used as the parent distribution in this chapter. It is a

symmetric quantile-based distribution with a single shape parameter that governs its kurtosis

levels. This distribution will be presented and discussed in detail in Section 5.2.

The results from Theorem 3.2.1 will be used to construct the two-piece Tukey lambda distri-

bution. Since this parent Tukey lambda distribution does not have closed-form expressions for

the CDF of PDF, the two-piece distribution will be characterized through its quantile function.

The quantile measures of distributional form for location, shape and spread will be derived

for the proposed two-piece family of distributions in Section 5.4. These results will highlight the

consistency governed by the methodology through the skewness-invariant measures of kurtosis

that are obtained.

The parameter space of the two-piece Tukey lambda distribution as well as the support for

the distribution is presented in Section 5.5. This is with regards to the extensive levels of flexi-

bility achieved through the different combinations of the two shape parameters that are present.

The classes and regions of the generalization are discussed in more detail in Section 5.6. The

120
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probability density curves of the distribution are also presented for different combinations of

the shape parameters.

In Section 5.7, the expression for the rth order L-moments of the two-piece Tukey lambda

distribution are derived by making use of the relationships between order statistics, and essen-

tially the L-moments of the Tukey lambda distribution and its corresponding half distribution.

The L-moment ratio diagram for each class as well as the two-piece generalization as a whole

are also illustrated in this section.

Section 5.8 will present the analysis of the tail behaviour of the distribution, by investigat-

ing the density of each tail, as well as the slope of the density on both the right and left tails.

The estimation algorithm for obtaining the method of L-moments estimates for the two-piece

generalization is presented in Section 5.9.

In conclusion, Section 5.10 will illustrate the fitting of the proposed two-piece Tukey lambda

distribution to two real data sets. The results obtained will be compared to those of the GPD

Type of the generalized lambda distribution (GLDGPD) of van Staden (2014).

5.2 Tukey Lambda Distribution

Tukey (1960) proposed a family of distributions known as the lambda distributions. These are

defined as distributions of the function p� � (1 � p)�, where p is uniformly distributed on (0, 1)

and � 2 R is a shape parameter that controls the level of kurtosis, resulting in the probability

density curves exhibiting extensive distributional shapes.

This symmetric family of distributions is defined entirely through its quantile function and

hence referred to as quantile-based, since it’s CDF and PDF do not exhibit closed forms. This

makes the use of conventional estimation procedures tedious and complicated to use.

5.2.1 Definition and special cases

Definition 5.2.1.1. The quantile function, quantile density and density quantile functions of

a real-valued random variable X, from the Tukey lambda distribution, are given as

QX(p) =

8
>><

>>:

µ+ �

�

⇣
p� � (1� p)�

⌘
� 6= 0, 0 < p < 1,

µ+ � log
⇣

p

1�p

⌘
� = 0, 0 < p < 1,

(5.1)
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qX(p) = �
⇣
p��1 + (1� p)��1

⌘
, 0 < p < 1,

and

fP (p) =
1

�
⇣
p��1 + (1� p)��1

⌘ , 0 < p < 1,

respectively, where �1 < µ < 1, � > 0 and � 2 R are the location, scale and shape parameters,

respectively.

⌅

5.2.2 Distributional properties

The probability density curves from the Tukey lambda family of distributions exhibit various

distributional shapes as a result of the kurtosis parameter, � 2 R.

Fig.5.1(a) indicates the curves are unimodal bell-shaped with infinite support when �  0,

and have bounded support when 0 < � < 1 as illustrated by Fig.5.1(b). The uniform distribution

is obtained when � = 1 or � = 2 as seen in Fig.5.1(c). When 1 < � < 2, the U-shaped or bath-tub

distributions are obtained in Fig.5.1(d), while Fig.5.1(e) shows unimodal truncated distributions

are obtained when � > 2. The logistic distribution is a special case that is obtained when � = 0.
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(a) � = �0.75,�0.5, and � 0.1. (b) � = 0.1, 0.5 and 0.8.

(c) � = 1 and 2. (d) � = 1.05, 1.5 and 1.8.

(e) � = 3, 4 and 5.

Figure 5.1: The probability density curves for the Tukey lambda distribution with L1 = 0 and

L2 = 1, for varying values of � 2 R.
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5.2.3 Generalizations of the lambda distribution

Ramberg-Schmeiser Type (GLDRS)

Ramberg and Schmeiser (1972) wished to simplify the difficulty in generating symmetric ran-

dom variables for univariate probability distributions. This was achieved through the use of the

inverse transformation method since some distributions have CDFs that did not have a closed-

form expressions or that were complicated in nature to use, such as the normal distribution.

Their proposed method would simplify this through the use of a simple form of the inverse

function that would approximate the inverse functions of many continuous distributions, even

when they do not exist in closed-form. The inverse CDF of the lambda distribution given in

Eq.(5.1), with parameters, was used to generate the values of the random variables from the

values of p, which are obtained from a uniform source of pseudo-random numbers. Ramberg and

Schmeiser (1974) subsequently created an algorithm to generate asymmetric unimodal random

variables by using the Tukey lambda distribution.

They introduced a generalized lambda distribution that included an additional shape pa-

rameter to accommodate the flexibility in distributional shape that these asymmetric random

variables would possess. This generalization, denoted as GLDRS, is defined through its quantile

function as

QX(p) = µ+
1

�

⇣
p�1 � (1� p)�2

⌘
, for 0  p  1, (5.2)

where �1 < µ < 1 and � > 0 are the location and scale parameters, respectively, whereas �1,

�22 R are the shape parameters. If the random variable is symmetric, then �1 = �2 and the mean

of the GLD is equal to µ. In the case of asymmetry, �1 6= �2.

Karian and Dudewicz (2000) and Karian (2010) presented an in-depth study on this family of

distributions, including its various functions, probabilistic properties and parameter estimation.

The doctoral theses of King (1999) and van Staden (2014) present additional results for the

GLDRS.

Some of the areas where the GLDRS has been applied to are in actuarial science (Balasooriya

and Low (2008)), biochemistry (Ramos-Fernández et al. (2008)), computer science (Gautama

and van Gemund (2006)), economics (Pacáková and Sipková (2007)), queuing theory (Robinson

and Chen (2003)) and signal processing (Karvanen et al. (2002)).
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Freimer-Mudholkar-Kollia-Lin Type (GLDFMKL)

The Freimer-Mudholkar-Kollia-Lin (FMKL) Type of the GLD was introduced by Freimer et al.

(1988) and is denoted as GLDFMKL. As with the GLDRS, this distribution is quantile-based

and defined through its quantile function given as

QX(p) = µ+
1

�

✓
p�1 � 1

�1
� (1� p)�2 � 1

�2

◆
, 0 < p < 1,

where �1 < µ < 1 and � > 0 are the location and scale parameters, respectively, while �1, �22 R

are the shape parameters.

The quantile density function and density quantile function of the GLDFMKL are respectively

qX(p) =
p�1�1 + (1� p)�2�1

�
, 0 < p < 1,

and

fP (p) =
�

p�1�1 + (1� p)�2�1
, 0 < p < 1.

The support of the distribution is bounded below by µ� 1
��1

when �1 > 0, bounded above by

µ + 1
��2

when �2 > 0 and has infinite support when �1 < 0 and �2 < 0. Although not shown by

Freimer et al. (1988), it is noted that the quantile function of the standard generalized Pareto

distribution (GPD) is used as the building block of the quantile function of the GLDFMKL.

Generalized Pareto Distribution Type (GLDGPD)

van Staden (2014) developed a methodology that was used to develop quantile functions of sym-

metric quantile-based distributions by making use of asymmetric quantile functions that either

has a bounded or half-infinite support. In the methodology, the quantile functions were obtained

by taking the weighted sum of the standard and reflected quantile functions of an asymmetric

distribution. In the case of the GLDGPD type, the quantile function of the generalized Pareto

distribution is used as the kernel.

Definition 5.2.3.1. A real-valued random variable X, denoted as X ⇠ GLDGPD(µ,�, ⌘,), is said

to have the GLDGPD type distribution if its quantile function is defined as

QX(p) =

8
>><

>>:

µ+ �
⇣
(1� ⌘)

⇣
p
�1


⌘
+ ⌘

⇣
(1�p)�1



⌘⌘
,  6= 0

µ+ � ((1� ⌘) log(p) + ⌘ log(1� p)) ,  = 0,

(5.3)

where �1 < µ < 1, � > 0, 0  ⌘  1 and  2 R are the location, scale and shape parameters,

respectively.
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⌅

The GLDGPD is symmetric when ⌘ = 1
2 , else it is asymmetric. The skew logistic distribution

of van Staden and King (2015) is the limiting distribution of the GLDGPD, when  = 0.

The quantile density and density quantile functions follow from Eq.(5.3) as

qX(p) = �
�
(1� ⌘)p�1 + ⌘(1� p)�1

�

and

fP (p) =
1

� ((1� ⌘)p�1 + ⌘(1� p)�1)
,

respectively.

This resulting generalization is highly flexible with respect to distributional shape. Akin to

the GLDRS and GLDFMKL, it exhibits uniform, unimodal, J-shaped, U-shaped and truncated

density curves. Some special cases of this distribution are the exponential, logistic, generalized

Pareto, uniform and the Tukey lambda distributions. van Staden (2014) has presented the

parameter space and support, as well as the regions and classes of this distribution in great

depth.

Lemma 5.2.1. If X ⇠ GLDGPD(µ,�, ⌘,), then the L-location, L-scale, L-skewness and L-kurtosis

ratios as derived by van Staden (2014), are

LX:1 =
(2⌘ � 1)

+ 1

LX:2 =
1

(+ 1)(+ 2)

⌧X:3 =
(2⌘ � 1)(1� )

+ 3

and

⌧X:4 =
(� 1)(� 2)

(+ 3)(+ 4)
, (5.4)

respectively.

⌅

Notably, the L-kurtosis ratio is only influenced by , whilst the L-skewness ratio is governed

by both shape parameters. This indicates that the L-kurtosis ratio of the GLDGPD is skewness-

invariant. Since the L-moments take on simple closed-form expressions, and there is evidence of

a skewness-invariant measure of L-kurtosis, the method of L-moments estimation can be used

for parameter estimation.
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5.3 Two-piece Tukey Lambda Distribution

Consider the first case of the Tukey lambda distribution when � 6= 0 in Eq.(5.1). By employing

the results of the quantile function in Eq.(3.3), the quantile function of the two-piece Tukey

lambda distribution is defined as

QT (s) =

8
>><

>>:

µ+ ↵�

�

⇣
s� � (1� s)�

⌘
, s  1

2 ,

µ+ �

�

⇣
s� � (1� s)�

⌘
, s > 1

2 .

(5.5)

Lemma 5.3.1. The quantile density and density quantile functions of the two-piece Tukey

lambda distribution are defined as

qT (s) =

8
>><

>>:

↵�
⇣
s��1 + (1� s)��1

⌘
, s  1

2 ,

�
⇣
s��1 + (1� s)��1

⌘
, s > 1

2 ,

(5.6)

and

fS(s) =

8
>>>>><

>>>>>:

1

↵�

⇣
s��1+(1�s)��1

⌘ , s  1
2 ,

1

�

⇣
s��1+(1�s)��1

⌘ , s > 1
2 ,

(5.7)

respectively.

Proof. The results follow directly from Eq.(5.5) since qT (s) = Q0
T
(s) and fS(s) = q�1

T
(s). ⌅

5.4 Quantile Measures of Distributional Form

The quantile measures of distributional form for location, spread and shape for the two-piece

Tukey lambda distribution are obtained by substituting Eq.(5.5) into Eqs.(3.52-3.56) respec-

tively.

5.4.1 Location

The median is obtained when s = 1
2 . Therefore

me = Q
⇣1
2

⌘

= µ+
�

�

⇣1
2

�

�
⇣
1� 1

2

⌘�⌘

= µ+
�

�
(0)

= µ.
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5.4.2 Spread

The spread function, for 1
2 < s < 1, is

ST (s) = QT (s)�QT (1� s)

=

(
µ+

�

�

⇣
s� �

⇣
1� s

⌘�⌘
�
⇣
µ+

↵�

�

⇣
(1� s)� �

⇣
1� (1� s)

⌘�⌘⌘
)

=
�

�

⇣
s� �

⇣
1� s

⌘�⌘
� ↵�

�

⇣
(1� s)� �

⇣
s
⌘�⌘

=
�

�
(1 + ↵)

⇣
s� �

⇣
1� s

⌘�⌘
.

5.4.3 Shape

�-functional

Following the substitution of Eq.(5.5) into Eq.(3.48), the �-functional is attained as

�T (s) =
QT (s) +QT (1� s)� 2me

ST (s)

=
µ+ �

�

⇣
s� �

⇣
1� s

⌘�⌘
+ µ+ ↵�

�

⇣
(1� s)� �

⇣
s
⌘�⌘

� 2µ

�

�
(1 + ↵)

⇣
s� �

⇣
1� s

⌘�⌘

=
1� ↵

1 + ↵
,

1

2
< s < 1.

Ratio-of-spread function

The ratio-of-spread function, for 1
2 < v < u < 1, is derived as

RT (u, v) =
ST (u)

ST (v)

=

�

�
(1 + ↵)

⇣
u� �

⇣
1� u

⌘�⌘

�

�
(1 + ↵)

⇣
v� �

⇣
1� v

⌘�⌘

=
u� � (1� u)�

v� � (1� v)�
.

5.4.4 Skewness-Invariant Measure of Kurtosis

The skewness-invariant measure of kurtosis for the two-piece Tukey lambda distribution will

follow from Eq.(3.56) if it takes the general form of
P

n1

i=1 gi(QT (ui))P
n2

j=1 hj(QT (uj))
=

P
n1

i=1 gi(u
�

i
� (1� ui)�)P

n2

j=1 hj(u�

j
� (1� uj)�)

,
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where n1, n2 2 Z+, and gi = 1, 2, ..., n1 and hj = 1, 2, ..., n2 are constants.

5.5 Parameter Space and Support

The parameter space of the two-piece Tukey lambda distribution can be divided into four distinct

regions that are based on the combinations of the two shape parameters, ↵ > 0 and � 6= 0, can

take. The support of the distribution in each region is also presented. Table 5.1 indicates the

different combinations of ↵ and �, as well as the corresponding parameter support.

Region Shape parameter values Support

I ↵ > 0,� > 2
⇣
�↵(�+1)(�+2)

2� , (�+1)(�+2)
2�

⌘

II ↵ > 0, 1 < � < 2
⇣
�↵(�+1)(�+2)

2� , (�+1)(�+2)
2�

⌘

↵ > 0,� = 1, 2 (�3↵; 3)

III ↵ > 0, 0 < � < 1
⇣
�↵(�+1)(�+2)

2� , (�+1)(�+2)
2�

⌘

IV ↵ > 0,� < 0 (�1,1)

Table 5.1: Parameter space and support of the two-piece Tukey lambda distribution, in terms

of Regions I, II, III and IV.

5.6 Classes

An alternative classification scheme can be used for the two-piece Tukey lambda distribution, in

which the (↵,�)-space is divided into four classes based on the distributional shape obtained by

the probability density curve of the distribution. The four classes are presented and graphical

examples of density curves from each class are given.
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Figure 5.2: The parameter space of the two-piece Tukey lambda distribution in terms of

Regions 1, 2, 3 and 4. The dot-dashed line, ↵ = 1, indicates symmetric distributions. The

logistic distribution (L) is attained when � = 0 whilst the uniform distribution (U1 and U2) is

obtained when � = 1 or 2, respectively.

Figure 5.3: The parameter space of the two-piece Tukey lambda distribution in terms of

Classes I, II, III and IV. The dot-dashed line, ↵ = 1, indicates symmetric distributions. The

logistic distribution (L) is attained when � = 0 whilst the uniform distribution (U1 and U2) is

obtained when � = 1 or 2, respectively.



CHAPTER 5. TWO-PIECE TUKEY LAMBDA DISTRIBUTION 131

5.6.1 Class I

In this class, the probability density curves are unimodal truncated since � > 2. The distri-

butional shapes of the two-piece Tukey lambda distribution are illustrated in Figure 5.4. The

values of ↵ are fixed while the values of � are changed in Fig. 5.4(a)-5.4(c). In Fig.5.4(d), the

values of ↵ > 0 are varied and � = 4.

(a) ↵ = 2 and � = 3. (b) ↵ = 2 and � = 4.

(c) ↵ = 2 and � = 5. (d) � = 4,↵ = 0.25, 0.75 and 2.

Figure 5.4: The probability density curves for the two-piece Tukey lambda distribution with

L1 = 0 and L2 = 1, for varying values of ↵ > 0 and � > 2.

The curves in Fig.5.4(d) indicate that the distribution is negatively skewed when ↵ > 1 and

positively skewed when ↵ < 1.
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5.6.2 Class II

Class II considers probability density curves obtained when 1  �  2, thereby having a bounded

support.. It is characterized by distributions that exhibit probability density functions termed

as U-shaped, as well as the uniform distribution. The curves in Fig.5.5(a)-5.5(c) represent

combinations of ↵ = 0.2 with 1 < � < 2, whereas Fig.5.5(d) illustrates the probability density

curves when � = 1.5 and ↵ > 0 is varied.

(a) ↵ = 0.2 and � = 1.25. (b) ↵ = 0.2 and � = 1.5.

(c) ↵ = 0.2 and � = 1.75. (d) � = 1.5,↵ = 0.25, 0.75 and 2.

Figure 5.5: The probability density curves for the two-piece Tukey lambda distribution with

L1 = 0 and L2 = 1, for varying values of ↵ > 0 and 1 < � < 2.

The two-piece uniform distribution is obtained when � = 1 or 2 for varying values of ↵ > 0.

The probability density curves can be seen in Fig.(4.17) in Chapter 4.
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5.6.3 Class III

The probability density curves in this class are unimodal with a bounded support, as illustrated

in Fig.5.6. This arises when 0 < � < 1 and ↵ > 0. In Fig.5.6(a)-5.6(c), ↵ = 2 while 0 < � < 1 is

varied, whereas Fig.5.6(d) the value of ↵ > 0 is varied while � = 0.5

(a) ↵ = 2 and � = 0.25. (b) ↵ = 2 and � = 0.5.

(c) ↵ = 2 and � = 0.75. (d) � = 0.5,↵ = 0.25, 0.75 and 2.

Figure 5.6: The probability density curves for the two-piece Tukey lambda distribution with

L1 = 0 and L2 = 1, for varying values of ↵ > 0 and 0 < �1 <.

Furthermore, the distribution is negatively skewed when ↵ > 1 and positively skewed when

↵ < 1.
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5.6.4 Class IV

The distributional shapes of the probability density curves in Class IV are unimodal bell-shaped

with infinite support, occurring when �  0 and ↵ > 0. Examples of density curves from Class

IV are shown in Figure 5.7, for selected values of ↵ and �  0.

In Fig.5.7(a)-5.7(c), ↵ = 2 while � < 0 is varied, whereas in Fig.5.6(d) the value of ↵ > 0 is

varied while � = �0.5 The two-piece logistic distribution is obtained as a special case when � = 0.

(a) ↵ = 2 and � = �0.25. (b) ↵ = 2 and � = �0.5.

(c) ↵ = 2 and � = �0.75. (d) � = �0.5,↵ = 0.25, 0.75 and 2.

Figure 5.7: The probability density curves for the two-piece Tukey lambda distribution with

L1 = 0 and L2 = 1, for varying values of ↵ > 0 and � < 0.
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5.7 rth Order L-moments

In order to characterize the two-piece Tukey lambda distribution through the rth order L-

moments, the results in Section 3.3.4 will be used. These results will make use of the L-moments

from the Tukey lambda distribution and its corresponding half distribution.

Lemma 5.7.1. The first 4 L-moments of a real-valued random variable X, from the Tukey

lambda distribution exist if � > �1. They are given as

LX:1 = 0, LX:2 =
2

(�+ 1)(�+ 2)
, LX:3 = 0 and LX:4 =

2(�� 1)(�� 2)

(�+ 1)(�+ 2)(�+ 3)(�+ 4)
, (5.8)

where �1 < µ < 1, � > 0 and � > �1 are the location, spread and shape parameters, respectively.

The L-skewness and L-kurtosis ratios are obtained as

⌧X:3 =
L3

L2
= 0 and ⌧X:4 =

L4

L2
=

(�� 1)(�� 2)

(�+ 3)(�+ 4)
, (5.9)

respectively.

⌅

The distribution is standardized when µ = 0 and � = (�+1)(�+2)
2 .

Theorem 5.7.2. The first 4 L-moments of a standard half Tukey lambda random variable Z,

denoted as LZ:1 to LZ:4, respectively, are

LZ:1 =
(1� 2�)

�2�
,

LZ:2 =
2

(�+ 1)(�+ 2)
,

LZ:3 =
��2 � 5�+ �2�+1(1� �)

2��(�+ 1)(�+ 2)(�+ 3)

and

LZ:4 =
2(�� 1)(�� 2)

(�+ 1)(�+ 2)(�+ 3)(�+ 4)
. (5.10)

Proof. The first 4 L-moments of Z are obtained by making use of the results in Lemma 3.3.2

and Theorem 3.3.3, where k = 2.
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For r = 1, P ⇤
0 (ku) = P ⇤

0 (
p

2 ) = 1. Therefore, LZ:1 is derived as

LZ:1 =

Z 1

0

1

�

✓⇣p
2

⌘�
�
⇣
1� p

2

⌘�◆
⇥ 1 dp

=
1

�

Z 1

0

⇣p
2

⌘�
dp� 1

�

Z 1

0

⇣
1� p

2

⌘�
dp

=
1

�
· p�

2�(�+ 1)

����
1

0

� (�2)
1

�
·
�
1� p

2

��+1

(�+ 1)

����
1

0

=
1

�(�+ 1)

✓
1

2�
+

1

2�
� 2

◆

=

�
1� 2�

�

�2��1(�+ 1)
. (5.11)

For r = 2, P ⇤
1 (ku) = P ⇤

1 (
p

2 ) = 2
�
p

2

�
� 1 = p� 1. Therefore, LZ:2 is derived as

LZ:2 =

Z 1

0

1

�

✓⇣p
2

⌘�
�
⇣
1� p

2

⌘�◆
⇥ (p� 1) dp
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dp�
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�
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⌘�◆
dp
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✓Z 1
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1� p
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dp

◆
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�(�+ 1)

✓
1� 2��1

2��1

◆

=
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�
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� 2�+2 � �� 3

2�(�+ 1)(�+ 2)

!
� 1

�(�+ 1)
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1� 2��1
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◆
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� 1

�(�+ 1)

✓
1� 2�
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◆
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�2�(�+ 1)(�+ 2)
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2�+ 4� 2�+2

�
� 1

�2�(�+ 1)

�
2� 2�+1

�

=
1

�2�(�+ 1)

 
2�+ 4� 2�+2 � (�+ 2)

�
2� 2�+1

�

�+ 2

!

=
1

�2�(�+ 1)(�+ 2)
·
�
�2�+1

�

=
2

(�+ 1)(�+ 2)
. (5.12)
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Similarly, for r = 3, P ⇤
2 (ku) = P ⇤

2 (
p

2 ) = 6
�
p

2

�2 � 6
�
p

2

�
+ 1. Therefore,

LZ:3 =

Z 1
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�

✓⇣p
2

⌘�
�
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1� p
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⌘�◆
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2
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2
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⇣
1� p

2

⌘�◆
dp
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✓
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2
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dp

=
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�

✓Z 1

0
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dp�
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0
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◆
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�

�2�(�+ 1)(�+ 2)

!
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�
2� 2�+1

�

�2�(�+ 1)

=
6
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p�+3

(�+ 3)

����
1

0

� 2�+4 � 7�� �2 � 14

(�+ 1)(�+ 2)(�+ 3)

!
+

�4�� 8 + 8 · 2� � 2� · 2�

�2�(�+ 1)(�+ 2)

=
6
�
(�+ 1)(�+ 2)� 2�+4 + 7�+ �2 + 14

�

2�+2�(�+ 1)(�+ 2)(�+ 3)
+

�4�� 8 + 8 · 2� � 2� · 2�

�2�(�+ 1)(�+ 2)

=
6(2�2 + 10�+ 16� 2�+4)

2�+2�(�+ 1)(�+ 2)(�+ 3)
+

�4�� 8 + 8 · 2� � 2� · 2�

�2�(�+ 1)(�+ 2)

=
3�2 + 15�+ 24� 24 · 2� + (�+ 3)

�
�4�� 8 + 8 · 2� � 2� · 2�

�

2��(�+ 1)(�+ 2)(�+ 3)

=
3�2 + 15�+ 24� 24 · 2� � 4�2 � 20�� 24 + 2� · 2� � 2�2 · 2� + 24 · 2�

2��(�+ 1)(�+ 2)(�+ 3)

=
��2 � 5�+ 2� · 2� � 2�2 · 2�

2��(�+ 1)(�+ 2)(�+ 3) (5.13)

Finally, in order to obtain LZ:4 when r = 4, P ⇤
3 (ku) = P ⇤

3 (
p

2 ) = 20
�
p

2

�3 � 20
�
p

2

�2
+ 12

�
p

2

�
� 1. Hence
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LZ:4 is derived as

LZ:4 =
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.

(5.14)

The final results in Eqs.(5.12), (5.13) and (5.14) were obtained using Gradshteyn and Ryzhik

(2007, 3.197.3). ⌅

Theorem 5.7.3. The rth order L-moments for a standard two-piece Tukey lambda random

variable, for 1  r  4, are given as

LT :1 =
(�+ 2)(2� � 1)

�2�+1
(1� ↵),

LT :2 =
1

2
(1 + ↵),

LT :3 =
�+ 5 + 2�+1(�� 1)

(�+ 3)2�+2
(1� ↵)

and

LT :4 =
(�� 1)(�� 2)

2(�+ 3)(�+ 4)
(1 + ↵), (5.15)
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whilst the L-skewness and L-kurtosis ratios are subsequently obtained as

⌧T :3 =
(1� ↵)

(1 + ↵)

�+ 5 + 2�+1(�� 1)

(�+ 3)2�+1
and ⌧T :4 =

(�� 1)(�� 2)

(�+ 3)(�+ 4)
, (5.16)

respectively.

Proof. The first 4 L-moments in Eq.(5.15) are obtained by making use of LX:1 to LX:4, and

L-moments LZ:1 to LZ:4 from Eqs.(5.8) and (5.10), respectively. To obtain LT :1, LX:1 and LZ:1, as

well as the polynomial coefficient c(0)0 in the first row of Table 3.2 are substituted into Eq.(3.29)

to obtain

LT :1 = µ+ �
⇣
LX:1 � 0.5(1� ↵)⇥ c(0)0 LZ:1

⌘

=
(�+ 1)(�+ 2)

2

✓
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✓
(1� 2�)

�2��1(�+ 1)

◆◆

= (1� ↵)
(�+ 2)(2� � 1)

�2�+1
.

LT :2 is obtained when LX:2, LZ:1 and LZ:2, as well as c(1)0 and c(1)1 from the second row of Table

3.2 are substituted into Eq.(3.33) to give

LT :2 = �
⇣
LX:2 � 0.5(1� ↵)⇥

n
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1

2
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LT :3 is derived by using LX:3, LZ:1, LZ:2 and LZ:3, as well as c(2)0 , c(2)1 and c(2)2 from the third

row of Table 3.2. This yields
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The last L-moment derived, LT :4, will result from the substitution of LX:4, LZ:1, LZ:2, LZ:3

and LZ:4, as well as c(3)0 , c(3)1 , c(3)2 and c(3)3 from the fourth row of Table 3.2. Therefore

LT :4 = �
⇣
LX:4 � 0.5(1� ↵)⇥
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The subsequent L-skewness and L-kurtosis ratios are then obtained as

⌧T :3 =
LT :3

LT :2

=
(1� ↵) �+5+2�+1(��1)

(�+3)2�+2

(1 + ↵) 0.5

=
(1� ↵)

(1 + ↵)
· �+ 5 + 2�+1(�� 1)

(�+ 3)2�+1

and

⌧T :4 =
LT :4

LT :2

=
(1 + ↵) 0.5 (��1)(��2)

(�+3)(�+4)

(1 + ↵) 0.5

=
(�� 1)(�� 2)

(�+ 3)(�+ 4)
,

respectively. ⌅

It can be noted that the L-kurtosis in Eq.(5.16) is skewness-invariant with respect to ↵,

despite being a function of �. This implies the two-piece Tukey lambda distribution will have

varying levels of kurtosis with varying levels of skewness introduced by ↵. The special case of

this distribution, which is the two-piece logistic distribution of Balakrishnan et al. (2017), is

obtained when � = 0.
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5.7.1 L-moment ratio diagram

The L-skewness and L-kurtosis ratios in Eq.(5.16) are used to obtain an L-moment ratio dia-

gram, illustrated by Fig.5.8. It depicts the extended level of skewness that is acquired by the

new distribution, as compared to the parent Tukey lambda distribution, for varying levels of

kurtosis. Since the distribution has two shape parameters, the L-moment ratio disgram will

consist of a region as a result of the possible combinations of ↵ > 0 and � > �1.

The solid line represents the two-piece logistic distribution whose L-skewness values range

from �0.5 to 0.5, with a constant level of kurtosis at ⌧T :4 = 0.1667. The dot-dashed line is represen-

tative of the two-piece uniform distribution whose L-skewness range of values is (�0.375; 0.375),

with ⌧T :4 = 0. The dashed line represents the boundary for all distributions defined as ⌧T :4 =

0.25(5⌧2
T :3 � 1), where �1 < ⌧T :3 < 1.

Figure 5.8: The L-moment ratio diagram for the two-piece Tukey lambda distribution with

↵ > 0 and � > �1. The dashed line represents the boundary for all distributions. Note that the

vertical dotted line, where ↵ = 1, indicates symmetric distributions. The logistic and uniform

distributions are represented by L and U respectively.

In order to find the minimum point of �, the first derivative of ⌧T :4 will be obtained, set to
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0 and solved for � as follows:

d⌧T :4

d�
) (�� 1) + (�� 2)(�+ 3)(�+ 4)� (�+ 3) + (�+ 4)(�� 1)(�� 2)

(�+ 3)2(�+ 4)2
= 0

) (2�� 3)(�+ 3)(�+ 4)� (2�+ 7)(�� 1)(�� 2)

(�+ 3)2(�+ 4)2
= 0

) 2�3 + 14�2 + 24�� 3�2 � 21�� 36� 2�3 � 6�2 + 4�+ 7�2 � 21�+ 14

(�+ 3)2(�+ 4)2
= 0

) 10�2 + 20�� 50 = 0. (5.17)

In order to solve for the minimum value of �, the quadratic formula, will be used. Therefore

� =
�b±

p
b2 � 4ac

2a

=
�20±

p
202 � 4 · 10 ·�50

2 · 10

=
�20±

p
2400

20

) � = �3.44195 or 1.4495. (5.18)

Since ⌧4 is obtained when � > �1, then � = 1.4495 is chosen as the value which when substituted

gives the minimum point of ⌧T :4 as �0.0102.

5.7.2 L-moment ratio diagrams for the two-piece Tukey lambda classes

The L-moment ratio diagrams for the four classes are illustrated in Fig.5.9. The L-moments

exist in Class I, II, III, Class IV only if � > �1.
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(a) CLASS I (b) CLASS II

(c) CLASS III (d) CLASS IV

Figure 5.9: The L-moment ratio diagrams for Class I, II, III and IV for the two-piece Tukey

lambda distribution. The green, purple, blue and pink-shaded areas are the (⌧T :3, ⌧T :4) regions

covered by Class I, II, III and IV respectively. The logistic and uniform distributions are

indicated by L and U , respectively.

5.8 Tail Behaviour

The tail behaviour of the two-piece Tukey lambda distribution is evaluated through the density

quantile function fS(s) in Eq.(5.7), in order to determine the value that the probability density

curve as it approaches the endpoints. This is explored through computing lim
s!0

fS(s) for the left

tail, and lim
s!1

fS(s) for the right tail.

The slope of the probability density curve at these two tails is also evaluated by using

Eq.(3.62). In the case of the two-piece Tukey lambda distribution,

⇠ =

8
>><

>>:

� (��1)(p��2�(1�p)��2)
↵�2(p��1+(1�p)��1)3 , s  1

2

� (��1)(p��2�(1�p)��2)
�2(p��1+(1�p)��1)3 , s > 1

2 .

(5.19)
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The values obtained for the density and the slope of the density curve are summarized in

Table 5.2.

Class Shape parameter Density Slope Density Slope

values (Left) (Left) (Right) (Right)

I ↵ > 0,� > 2 1
↵�

��1
↵�2

1
�

-��1
�2

↵ > 0, 1 < � < 2 1
↵�

-1 1
�

1

II ↵ > 0,� = 1 1
2↵� 0 1

2� 0

↵ > 0,� = 2 1
↵�

0 1
�

0

↵ > 0, 0 < � < 0.5 0 0 0 0

III ↵ > 0,� = 0.5 0 1 0 -1

↵ > 0, 0.5 < � < 1 0 1
2↵�2 0 - 1

2�2

IV ↵ > 0,� < 0 0 0 0 0

Table 5.2: The values approached by the density curve and the slope of the density curve of

the two-piece Tukey lambda distribution at the end-points of the tails.

5.9 Parameter Estimation

The steps outlined in Section 3.5 will be used to estimate the location, spread and two shape

parameters from a sample, while adhering to any restrictions concerning the parameter estimates

that need to be met.

STEP 1:

The first four sample L-moments from the observed data set will be derived using the results in

Eq.(3.58). The sample L-moment ratios, t3 and t4, are obtained using Eq.(3.59). The two values

are then verified if they lie in the (⌧T :3,⌧T :4)-space of the two-piece Tukey lambda distribution

illustrated in Fig.(5.8). Should these values be found to lie in that space, then the estimation

procedures can continue, else the two-piece Tukey lambda distribution cannot be fitted to the

data set.

STEP 2:

Since the two-piece Tukey lambda distribution results indicate it is skewness-invariant with
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respect to ↵ > 0, then ⌧T :4 remains unchanged. Therefore, t4 will be used in the theoretical result

obtained for ⌧T :4 in Eq.(5.16) to solve for �̂. The minimum value for �̂ should be 1.4495, shown in

Eq.(5.18), in order for the estimate to be valid in the model fit. The Solve function in Wolfram

Research, Inc. (2020) or the quadratic formula can be used to obtain the valid solution for �̂ by

solving

�̂ =
�(7t4 + 3)±

p
(7t4 + 3)2 � 4(t4 � 1)(6t4 � 1)

2(t4 � 1)
. (5.20)

STEP 3:

An estimate for ↵̂ will be derived from the theoretical L-skewness ratio result in Eq.(5.16) as

well as the value of t3 from the sample. Let g be the coefficient for ⌧T :3, obtained when the value

of the valid �̂ estimated is substituted into the equation. The estimate is then obtained when

↵̂ =
1� t3

g

1 + t3
g

, (5.21)

is solved.

STEP 4:

Similarly, the value of `2, the theoretical result of L2 in Eq.(5.15) as well as the value of ↵̂ from

Step 3 will be required to obtain an estimate for �̂.

Therefore

�̂ =
`2

0.5(1 + ↵̂)
. (5.22)

STEP 5:

The final estimate, µ̂, will be calculated when ↵̂, �̂, �̂ and `1 are substituted into the theoretical

result for LT :1 in Eq.(5.15) and the estimate is then solved for.

Hence,

µ̂ = `1 � �̂(1� ↵̂)
(�̂+ 2)(2�̂�1)

�̂2�̂+1
. (5.23)

5.10 Application to Data Sets

The Tukey lambda distribution has been widely used in fitting various data sets due to the wide

range of distributional forms the probability density curves can take. These include the fields

of biochemistry, economics, computer science, among others. This section will present two data

set fittings of the two-piece Tukey lambda distribution. The fit of the model is compared to that
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of the GLDGPD of van Staden (2014) and the perfomance of each discussed. The first data set

consists of information on the albumin levels of cirrhosis patients from the Mayo Clinic, while

the second data set investigates the body mass index (BMI) levels of Australian athletes.

5.10.1 Albumin Levels of Cirrhosis Patients

Albumin is a protein produced by the liver that prevents the fluid in the bloodstream from

seeping into other tissues in the body. It also transports hormones, vitamins and enzymes

around the body. Low albumin levels are an indicator of possible liver or kidney failure. The

albumin (gm/dl) levels of 419 patients were obtained from the primary biliary cirrhosis data of

Mayo Clinic (Fleming and Harrington (1991)).

The first two sample L-moments, i.e. the L-location and L-scale, as well as the sample

L-skewness and L-kurtosis ratios, are calculated as `1 = 3.4974, `2 = 0.2365, t3 = �0.07395 and

t4 = 0.1504, respectively. It can be noted that the values of t3 and t4 lie in Class III of Region III.

Fig.5.10(a) gives a histogram of the albumin levels in the patients.

Figure 5.10: A histogram of the albumin levels of patients together with the probability

density curves of the fitted two-piece Tukey lambda (solid curve) and GLDGPD (dashed curve)

distributions.

The values of t3 and t4 fall in the (⌧T :3, ⌧T :4)-space of the two-piece Tukey’s lambda distribution

illustrated in Fig.5.8, and so the proposed two-piece distribution can be used to fit this data set.
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Since t3 < 0, the data is negatively skewed. The data also exhibits heavy tails since t4 > 0.122602,

the theoretical L-kurtosis ratio value of the normal distribution.

The parameter estimates of the fitted two-piece Tukey lambda distribution are obtained using

the method of L-moments. The estimates, together with their asymptotic standard errors, are

shown in Table 5.3.

µ̂ �̂ ↵̂ �̂

3.54743 0.200693 1.35678 0.048657

(0.02345) (0.01155) (0.12205) (0.05189)

Table 5.3: Parameter estimates with asymptotic standard errors (in parentheses) for the two-

piece Tukey lambda distribution fitted to the albumin levels of patients.

Since 0 < �̂ < 1, the distribution of the data will have a bounded support (�29.9525; 22.0762).

The parameter estimates and corresponding asymptotic standard errors for the GLDGPD fit are

displayed in Table 5.4.

µ̂ �̂ ↵̂ �̂

3.61226 0.508071 0.381509 0.048657

(0.0371525) (0.0445206) (0.035559) (0.052089)

Table 5.4: Parameter estimates with asymptotic standard errors (in parentheses) for the

GLDGPD fitted to the albumin levels of patients.

The standard errors for the location, scale and kurtosis parameter seem to be larger for the

GLDGPD estimates than for those of the two-piece Tukey lambda distribution. The Q-Q plots

for the fits of the two-piece Tukey lambda distribution and GLDGPD are illustrated in Fig.5.11.
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Figure 5.11: Q-Q plots for the two-piece Tukey lambda distribution and the GLDGPD fitted

to the albumin levels of patients.

It is evident that the comparison between the two Q-Q plots indicates the fitted GLDGPD

provides a slightly better fit, specifically in the lower tail. The ASAE value for the GLDGPD is

0.004142, which is lower than that of the two-piece Tukey lambda distribution which is 0.0096217.

It therefore seems the GLDGPD provides a better fit to the data set.

5.10.2 Body Mass Index Levels of Australian Athletes

The data set ais consists of various measurements on 202 Australian athletes (Cook and Weis-

berg, 2009). It is available in the R-package sn (Azzalini, 2014). Here we only consider the

variable measuring the athletes’ body mass index, BMI. The sample L-location and L-scale

values from the data are `1 = 22.9559 and `2 = 1.54562, respectively. The L-skewness ratio and

L-kurtosis ratio values are t3 = 0.110844 and t4 = 0.183603, respectively. These lie in Class IV of

Region IV as can be seen from Fig.5.9(c).

Fig.5.12 gives a histogram of the BMI, together with the probability density curves of the

two-piece Tukey lambda distribution (solid curve) and the GLDGPD (dotted curve).
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Figure 5.12: A histogram of the body mass index of Australian athletes together with the

probability density curves of the fitted two-piece Tukey lambda (solid curve) and GLDGPD

distributions.

Since t3 > 0, the data is positively skewed. The data exhibits heavy tails since t4 > 0.122602,

the theoretical L-kurtosis ratio value of the normal distribution. The parameter estimates of the

fitted two-piece Tukey lambda distribution obtained using the method of L-moments, and their

corresponding asymptotic standard errors, are summarised in Table 5.5, whilst the results for

GLDGPD are presented in Table 5.6. Since �̂ < 0, the distribution of the data will have infinite

support for both fits.

µ̂ �̂ ↵̂ �̂

22.4953 1.88033 0.64398 �0.04701

(0.20591) (0.20751) (0.10682) (0.07365)

Table 5.5: Parameter estimates with asymptotic standard errors (in parentheses) for the two-

piece Tukey lambda distribution fitted to the BMI of Australian athletes.
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µ̂ �̂ �̂ �̂

22.0122 2.8767 0.6563 �0.04701

(0.33605) (0.33333) (0.05307) (0.07382)

Table 5.6: Parameter estimates with asymptotic standard errors (in parentheses) for the

GLDGPD fitted to the BMI of Australian athletes.

The two Q-Q plots are similar with the fitted GLDGPD providing a slightly better fit espe-

cially in the upper tail.

Figure 5.13: Q-Q plots for the two-piece Tukey lambda distribution and the GLDGPD fitted

to the body mass index (BMI) of Australian athletes.

The ASAE value for the GLDGPD is 0.008346, which is lower than the two-piece Tukey lambda

distribution’s ASAE value of 0.014028. It therefore seems the GLDGPD provides a better fit to

the data set.

5.11 Conclusion

The results in Section 3.2 are applied to the two-piece Tukey lambda distribution. The quantile

function, quantile density function as well as the density quantile functions are derived. The

quantile measures of distributional form are also derived, indicating that the kurtosis measures

are skewness-invariant.
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The parameter space and support of the distribution is obtained for the classes of the dis-

tribution, based on the combinations of ↵ > 0 and � 2 R. Using the results in Section 3.3.4,

the rth order L-moments of the two-piece Tukey lambda distribution are derived in terms of the

L-moments of both the parent Tukey lambda distribution and the half Tukey’s lambda distri-

bution.

The tail behaviour of the two-piece distribution is also presented, as well as the parameter

estimation procedure. Finally, two data sets are used to compare the fit of the two-piece Tukey

lambda distribution to that of the GLDGPD.



CONCLUSION

This thesis is centered around a methodology that makes use of the quantile functions of half

distributions from symmetric univariate distributions, to develop asymmetric univariate distri-

butions.

6.1 Construction of two-piece families of distributions

Quantile splicing, as developed in Chapter 3, is aimed at generalizing symmetric distributions,

using the quantile functions of half distributions as the building blocks. The quantile functions

are spliced at the median point and an asymmetry parameter is introduced to the half of the

distribution whose domain is below the median point. This skewing mechanism can be imple-

mented for distributions defined through their CDF, PDF or quantile functions, as illustrated

in the examples in Chapters 3 and 4. Furthermore, the quantile measures of distributional form

for shape indicate that the level of kurtosis of the parent distribution remains constant. The

advantage is that the analysis of the distributional shape of the generalizations obtained, in

terms of skewness and kurtosis, can be done seperately.

6.2 Construction of the rth order L-moments

Quantile splicing is used to derive the general results for the rth order L-moments of these two-

piece families of distributions. This general form reveals a relationship between the L-moments

of the symmetric parent distribution and the half distribution. The order statistics are used to

achieve this relationship.

The results give rise to a simple relationship between the parameters of the distribution and

the L-moments. The benefit is that computational difficulty in parameter estimation is reduced

152
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when the method of L-moments estimation is used.

6.3 An Extension of the Quantile Splicing Technique

An extension of the quantile splicing technique in Section 3.3 is proposed, where a general

method of introducing asymmetry to univariate distributions through splicing the quantile func-

tions of symmetric distributions at location points other than the median is investigated. The

general forms of the CDF, PDF and quantile functions are also derived. Likewise, a general

form for the rth order L-moments could be derived in the same fashion as the results in Section

3.3.4, along with the first 4 L-moments.

6.3.1 Extended Piecewise Distributions

Suppose X is a continuous random variable from a symmetric distribution, defined on an interval

(�1;1), with the CDF, PDF and quantile function defined accordingly. Let 0 < k < 1 be defined.

From Eqs.(3.1) and (3.2), the quantile functions for the piecewise distribution, for any k, can

be defined as

QT (p) =

8
>><

>>:

µ+ ↵� (QX(p)�QX(k)) for p  k,

µ+ � (QX(p)�QX(k)) for p > k.

(6.1)

where �1 < µ < 1, � > 0 and ↵ > 0 are the location, scale and shape parameters, respectively.

It follows that for p  k, then

)x = µ+ ↵� (QX(p)�QX(k))

)x� µ

↵�
+QX(k) = QX(p)

)FX

✓
x� µ

↵�
+QX(k)

◆
= p.

Similarly, for p > k, then

)x = µ+ � (QX(p)�QX(k))

)x� µ

�
+QX(k) = QX(p)

)FX

✓
x� µ

�
+QX(k)

◆
= p.
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Hence the CDF of X follows as

FT (x) =

8
>><

>>:

FX

�
x�µ

↵�
+QX(k)

�
for x  µ,

FX

�
x�µ

�
+QX(k)

�
for x > µ.

(6.2)

The probability density function is obtained from Eq.(6.2) as

fT (x) =

8
>><

>>:

1
↵�

fX
�
x�µ

↵�
+QX(k)

�
for x  µ,

1
�
fX
�
x�µ

�
+QX(k)

�
for x > µ.

(6.3)

6.3.2 rth Order L-moments

The rth order L-moments will be derived for the piecewise families of distributions. They will

be used to further explore the features of the distributions in terms of the quantile measure of

distributional form. Moreover, estimation procedures can also be created for the parameters.

The shifted scaled polynomials to be used will first be derived, since both a scaling and shifting

factor are introduced to the quantile functions.

rth Order Shifted Scaled Polynomials

The results of the shifted scaled polynomials in Eq.(3.18) take into account that a scaling factor

is introduced into the Legendre polynomial. The polynomials obtained indicate that their

coefficients remain the same as those in Eq.(3.12). In the case of the piecewise distributions

obtained from the extended quantile splicing technique, the shifted Legendre polynomial has

both a scaling and a shifting factor introduced. The outcome is a factor that is a polynomial of

the variable of interest, p.

In order for the L-moments to be obtained, the shifted scaled polynomials will be obtained

by making use of Eq.(3.18).

Lemma 6.3.1. The rth order shifted Legendre polynomials, with constants �1 < a, b < 1, are

denoted as

P ⇤
r�1 (ap+ b) = Pr�1 (2 (ap+ b)� 1) =

1

(r � 1)!

dr�1

ar�1d(p)r�1
((ap+ b)(ap+ b� 1))r�1 , (6.4)
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where r > 1, such that the first 4 shifted scaled polynomials are obtained as

P ⇤
0 (ap+ b) = 1

P ⇤
1 (ap+ b) = 2 (ap+ b)� 1

P ⇤
2 (ap+ b) = 6 (ap+ b)2 � 6 (ap+ b) + 1

P ⇤
3 (ap+ b) = 20 (ap+ b)3 � 30 (ap+ b)2 + 12 (ap+ b)� 1. (6.5)

Proof. The results in Eq.(6.4) follows suit from Eq.(3.11) by replacing p with (ap+ b). Therefore,

P ⇤
r�1 (ap+ b) =

1

(r � 1)!

dr�1

d(ap+ b)r�1

�
(ap+ b)2 � (ap+ b)

�r�1

=
1

(r � 1)!

dr�1

ar�1d(p)r�1
((ap+ b)((ap+ b)� 1))r�1 .

By recursively substituting r = 1, 2, 3 and 4 into Eq.(6.4) and taking the respective derivative,

the first 4 shifted scaled polynomials will be obtained. For r = 1, the first polynomial is obtained

as

P ⇤
0 (ap+ b) =

1

(1� 1)!

d1�1

a1�1d(p)1�1
((ap+ b)((ap+ b)� 1))1�1

=
1

0!

d0

a0d(p)0
((ap+ b)((ap+ b)� 1))0

= 1.

The second polynomial is obtained when r = 2 as

P ⇤
1 (ap+ b) =

1

(2� 1)!

d2�1

a2�1d(p)2�1
((ap+ b)((ap+ b)� 1))2�1

=
d

a d(p)
((ap+ b)((ap+ b)� 1))

=
1

a
(a(ap+ b� 1) + a(ap+ b))

= 2(ap+ b)� 1.

By substituting r = 3 into Eq.(6.4), the third polynomial can be obtained as

P ⇤
2 (ap+ b) =

1

(3� 1)!

d3�1

a3�1d(p)3�1
((ap+ b)((ap+ b)� 1))3�1

=
1

2

d2

a2dp2
((ap+ b)((ap+ b)� 1))2

=
1

2a2
d

dp
2 ((ap+ b)((ap+ b)� 1)) (a (2(ap+ b)� 1))

=
1

a

d

dp
((ap+ b)((ap+ b)� 1)(2(ap+ b)� 1))

=
1

a
(a((ap+ b)� 1)(2(ap+ b)� 1) + a(ap+ b)(2(ap+ b)� 1) + 2a(ap+ b)((ap+ b)� 1))

= 2(ap+ b)2 � 3(ap+ b) + 1 + 2(ap+ b)2 � (ap+ b) + 2(ap+ b)2 � 2(ap+ b)

= 6(ap+ b)2 � 6(ap+ b) + 1.
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Finally, the fourth polynomial, obtained when r is set to 4 in Eq.(6.4) is

P ⇤
3 (ap+ b) =

1

(4� 1)!

d4�1

a4�1dp4�1
((ap+ b)((ap+ b)� 1))4�1

=
1

6

d3

a3dp3
�
(ap+ b)2 � (ap+ b)

�3

=
1

2a2
d2

dp2

⇣�
(ap+ b)2 � (ap+ b)

�2
(2(ap+ b)� 1)

⌘

=
1

a

d

dp

 
((ap+ b)2 � (ap+ b))(2(ap+ b)� 1)2 + ((ap+ b)2 � (ap+ b))2

!

= (2(ap+ b)� 1)
⇥
(2(ap+ b)� 1)2 + ((ap+ b)2 � (ap+ b))

⇤
+ (((ap+ b)2 � (ap+ b))

⇥
⇥
4(((ap+ b)2 � (ap+ b)) + (2(ap+ b)� 1))

⇤

= (2(ap+ b)� 1))3 + 6(2(ap+ b)� 1)((ap+ b)2 � (ap+ b))

= 8(ap+ b)3 � 12(ap+ b)2 + 6(ap+ b)� 1 + 12(ap+ b)3 � 12(ap+ b)2

� 6(ap+ b)2 + 6(ap+ b)

= 20(ap+ b)3 � 30(ap+ b)2 + 12(ap+ b)� 1.

⌅

Remark. The results in Eq.(6.5) satisfy the recursive relationship for any higher order polyno-

mial of p.

rth Order L-moments for Piecewise Distributions

Eq.(3.25) in Section 3.3.4 makes use of the expectation of the rth largest order statistic, as

defined in Eq.(3.24), to derive the general form of rth order L-moments function for the two-

piece distribution. Similarly, the general formula for the L-moments for families of distributions

obtained using the extended quantile splicing methodology, for any point 0 < k < 1, will be

derived using the same principle. The first 4 L-moments will also be derived by making use of

the triangle rule (Arnold and Meeden (1975)) and the relationship of order statistics in Eq.(3.6),

from Hosking (1990).

Theorem 6.3.2. Suppose T is a random variable from a piecewise distribution obtained from

the extended quantile splicing methodology denoted by T⇠TP(µ,�,↵), where �1 < µ < 1, � > 0

and ↵ > 0 are the location, spread and asymmetry parameters, respectively, and 0 < k < 1. The

general form of the L-moments is

LT :r = µ⇤ + � (LX:r �QX(k))� k�(1� ↵)

 P
r

j=1 c
(r�1)
j�1 µj:j

j
�QX(k)

P
r

j=1 c
(r�1)
j�1

j

!
, (6.6)
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where QX(k) is the quantile function of X evaluated at 0 < k < 1, µj:jis the expectation of the rth

largest observation in a sample of size r from the kth piece distribution obtained from the parent

distribution, X, and c(r�1)
j�1 for j = 1, . . . , r and r � 1, are equal to the coefficients of the shifted

scaled Legendre polynomials captured in Table (3.2).

Proof. The L-moments formula will be derived from the piecewise quantile function of T given

in Eq.(6.1) as follows:

LT :r =

Z
k

0
(µ+ ↵� (QX(p)�QX(k)))P ⇤

r�1(p)dp+

Z 1

k

(µ+ � (QX(p)�QX(k)))P ⇤
r�1(p)dp

=

Z
k

0
(µ+ ↵�QX(p))P ⇤

r�1(p)dp� ↵�

Z
k

0
QX(k)P ⇤

r�1(p)dp+

Z 1

k

(µ+ �QX(p))P ⇤
r�1(p)dp

� �

Z 1

k

QX(k)P ⇤
r�1(p)dp

=

Z 1

0
µP ⇤

r�1(p)dp+ ↵�

Z
k

0
QX(p)P ⇤

r�1(p)dp+ �

"Z 1

0
QX(p)P ⇤

r�1(p)dp�
Z

k

0
QX(p)P ⇤

r�1(p)dp

#

� ↵�

Z
k

0
QX(k)P ⇤

r�1(p)dp� �

 Z 1

0
QX(k)P ⇤

r�1(p)dp�
Z

k

0
QX(k)P ⇤

r�1(p)dp

!

= µ⇤ + k↵�

Z 1

0
QX(u)P ⇤

r�1(u)du+ �

✓
LX:r � k

Z 1

0
QX(u)P ⇤

r�1(u)du

◆
� k↵�

Z 1

0
QX(k)P ⇤

r�1(u)du

� �QX(k)

✓Z 1

0
P ⇤
r�1(p)dp� k

Z 1

0
P ⇤
r�1(u)du

◆

= µ⇤ + � (LX:r �QX(k))� k�(1� ↵)

✓Z 1

0
QX(u)P ⇤

r�1(u)du�QX(k)

Z 1

0
P ⇤
r�1(u)du

◆

= µ⇤ + � (LX:r �QX(k))� k�(1� ↵)

 Z 1

0
QX(u)

⇣
c(r�1)
0 + c(r�1)

1 u+ c(r�1)
2 u2 · · ·+ c(r�1)

r�1 u(r�1)
⌘
du

�QX(k)

Z 1

0

⇣
c(r�1)
0 + c(r�1)

1 u+ c(r�1)
2 u2 · · ·+ c(r�1)

r�1 u(r�1)
⌘
du

!

= µ⇤ + � (LX:r �QX(k))� k�(1� ↵)

 Z 1

0
QX(u)c(r�1)

0 du+

Z 1

0
QX(u)c(r�1)

1 u du+ . . .

+

Z 1

0
QX(u)c(r�1)

r�1 u(r�1)du�QX(k)

✓Z 1

0
c(r�1)
0 +

Z 1

0
c(r�1)
1 u du+ · · ·+

Z 1

0
c(r�1)
r�1 u(r�1)du

◆!

= µ⇤ + � (LX:r �QX(k))� k�(1� ↵)

 
c(r�1)
0 E (S1:1) +

c(r�1)
1 E (S2:2)

2
+ · · ·+
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3
+ · · ·+

c(r�1)
r�1

r

!!

= µ⇤ + � (LX:r �QX(k))� k�(1� ↵)

 P
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j
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Remark. The location parameter µ⇤ =
R 1
0 µP ⇤

r�1(p)dp is equal to µ when r = 1, and 0 for r > 1.

The coefficients c(r�1)
j�1 , for j = 1, . . . , 4 and r � 1, are equal to those captured in Table 3.2.

Theorem 6.3.3. The first 4 L-moments of a piecewise distribution constructed using the ex-

tended quantile splicing technique are

LT :1 = µ+ �
⇣
(LX:1 �QX(k))� k(1� ↵)c(0)0 (LS:1 �QX(k))

⌘
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and
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!!
, (6.7)

respectively, where LS:r is the rth order L-moments for the kth piece distribution.

Proof. The steps used in Section 3.3.4, where both (Arnold and Meeden (1975))’s triangle rule

and the relationship of order statistics in Eq.(3.6) are used in tandem, will be implemented to

obtain the results in Eq.(6.7) in the same manner.

For r = 1, then
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In the case r = 2, Eqs.(3.31) and (3.32) are used, such that
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For r = 3, the results in Eqs.(3.35-3.37) are made use of to derive the third L-moment as
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Finally, the fourth L-moment is obtained when Eqs.(3.41-3.44) are used such that
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