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Abstract

In this thesis, we study the representation of dynamic risk measures based

on backward stochastic differential equations (BSDEs) and ergodic-BSDEs,

and capital allocation. We consider the equations driven by the Brownian

motion and the compensated Poisson process. We obtain four results.

Firstly, we consider the representation of dynamic risk measures defined

under BSDE, with generators that have quadratic-exponential growth in the

control variables. Under this setting, the dynamic capital allocation of the

risk measure is obtained via the differentiability of BSDEs with jumps. In

this case, we introduce the Malliavin directional derivative that generalises

the classical Gâteaux-derivative. Using the capital allocation results and the

full allocation property of the Aumann-Shapley, we obtain the representation

of the dynamic convex and coherent risk measures. The results are illustrated

for the dynamic entropic risk and static coherent risk measures.

Secondly, we consider the representation of dynamic convex risk mea-

sure based on the ergodic-BSDEs in the diffusion framework. The maturity-

independent risk measure is defined as the first component to the solution of

a BSDE whose generator depends on the second component of the solution

to the ergodic-BSDE. Using the differentiability results of BSDEs, we deter-

mine the capital allocation. Furthermore, we give an example in the form of

the forward entropic risk measure and the capital allocation.

Thirdly, we investigate the representation of capital allocation for dy-

namic risk measures based on BSVIEs from Kromer and Overbeck 2017 and

extend it to risk measures based on BSVIEs with jumps. The extension of

dynamic risk measure based on BSVIEs with jumps is studied by Agram

2019. In our case, we study capital allocation for dynamic risk measures

based on BSVIEs with jumps. In particular, we determine the capital allo-

cation of the dynamic risk measures based on BSVIEs with jumps.



Finally, we study the representation for a forward entropic risk measure

using ergodic BSDEs under the jump-diffusion framework. In this case, we

notice that when the ergodic BSDE includes jump term the forward entropic

risk measure does not satisfy the translation property.

Keywords— Dynamic risk measure, Dynamic entropic risk measure,

Capital allocation, Quadratic-exponential BSDE, Ergodic BSDE, Jump-diffusion
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Glossary
We introduce the notation of the spaces of random variables or processes:

Let p ≥ 2.

• L0(Ft) is the space of all finite valued Ft-measurable random variables.

• L1(Ω,F , P ) is the space of real valued random variable X such that

||X||1 = E[|X|] <∞.

• L2(FT ) is the space of FT -measurable, square integrable random vari-

able ξ.

• Let Lp(Ft) be the space of all real-valued Ft-measurable, p-integrable

random variables.

• Sp(R) is the space of R-valued adapted processes Y : Ω × [0, T ] with

càdlàg paths such that

sup
t∈[0,T ]

|Y (t)|p] <∞.

• S∞(R) is the space of R-valued essentially bounded càdlàg processes Y

such that

||Y ||S∞ := || sup
t∈[0,T ]

|Y (t)| ||∞ <∞.

• H2
W (R) is the space of predictable processes Z : Ω × [0, T ] → R such

that

E[

∫ T

0

|Z(s)|2ds] <∞.

• H2
N (R) denotes the space of predictable processes Υ : Ω× [0, T ]×R0 →

R, satisfying

E
[ ∫ T

0

∫

R0

|Υ(t, ζ)|2ν(dζ)dt
]
<∞.

• L2
ν(R0) is the space of R-valued measurable functions satisfying v(dζ)-

almost everywhere (a.e.), which is equipped with the topology of con-

vergence measure (Morlais (2009b)).
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• Let P denote the F-predictable σ-algebra on Ω× [0, T ].

• Let Di
s and D

j
s,ζ be the Malliavin derivatives with respect to Wi(t) and

Ñj(dt, dζ) respectively for i = 1, . . . , d, j = 1, . . . , k and 0 ≤ s ≤ t ≤ T .

• We denote by D1,2 the Banach space which is the closure of smooth

random variables with norm

‖F‖21,2 := E

[
|F |2+

d∑

i=1

∫ T

0

|Di
sF |

2ds+
k∑

j=1

∫ T

0

∫

R0

|Dj
s,ζF |

2ζ2νj(dζ)ds
]
.

• The space L2
[BMO][0, t] is given by

L2
[BMO][0, t] := {πs, s ∈ [0, t] : π is Ft − progressively measurable

and ess sup
τ

EP

(∫ t

τ

|πs|
2ds|Fτ

)
<∞ for any F − stopping time

τ ∈ [0, t]}.

• Consider L to be the space of all bounded random variables with finite

maturity, i.e.

L := ∪t≥0L
∞(Ft).
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Chapter 1

Introduction

1.1 Overview

The quantification of financial risk is a crucial task for both researchers and

practitioners, as it provides a comprehensive description of the riskiness of a

financial position. It is a tool that determines the minimum capital required

to be held by a company in order to be financially stable. At the same time,

capital allocation is an essential application of risk measures. More so if one

is interested in decomposing the overall portfolio risk capital into a sum of

the risk contributions by the respective sub-portfolios.

The method of quantifying risk is obtained by assigning a functional to

the future payoffs, which are first modelled as a random variable. This func-

tional is called a risk measure. Different types of risk measures are pro-

posed and used in the literature and the finance industry, with Value-at-Risk

(VaR) being the most popular. VaR quantifies the maximum possible finan-

cial losses over a given time horizon and confidence level. However, Artzner

et al. (1999) identified the shortcomings of VaR. It fails to recognise diver-

sification and it is not time consistent. To counter the weaknesses of VaR,

Artzner et al. (1999), proposed coherent risk measure and described it as a

function that satisfies four properties: translation invariance, monotonicity,
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sub-additivity and positive homogeneity. (See also Delbaen (2002) for coher-

ent risk measures in the general probability space). Corehent risk measures

promote diversification because the risk of a portfolio of assets is less than

the risk of holding individual assets. Later, Föllmer and Schied (2002) and

independently Frittelli and Gianin (2002) showed that the risk of a portfo-

lio increases nonlinearly with the size of the position because of additional

liquidity. As a result, they extended the work of Artzner et al. (1999) by

relaxing the properties of positive homogeneity and subadditivity to intro-

duce the concept of convex risk measures. A convex risk measure takes into

consideration that the risk of a position may increase in a nonlinear way as

a position multiplies by a large factor.

In the abovementioned papers, the authors consider risk measure in a

single-period setting. The ideal situation is to measure the risk of a financial

position continuously throughout the investment period. Consequently, there

is a need for the concept of dynamic risk measures. In a dynamic setting,

the risk measure is updated over time according to available information.

An important property of dynamic risk measure is time consistency, which

describes how risk quantifications at different times are interrelated. Various

authors have extended the concept of static risk measure to dynamic risk

measure. Peng (1997) introduced g-expectations as nonlinear expectations

based on a BSDE

dY (t) = −g(t, Y (t), Z(t))dt+ Z(t)dW (t),

Y (T ) = ξ, (1.1.1)

where the solution is a pair of Ft-adapted processes (Y (t), Z(t)). Gianin

(2006) showed that conditional g-expectations represents dynamic risk mea-

sures under the diffusion BSDE (see also Barrieu and Karoui (2007), Frittelli

and Gianin (2002), Peng (2004)). Jiang (2008) proved that g-expectation sat-

isfies the translation invariance property if and only if the generator g(t, y, z)

is independent of y and is convex with respect to z for all t. Quenez and

Sulem (2013) studied properties of dynamic risk measures based on BSDEs
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with jumps (see also Øksendal and Sulem (2015) for applications). An ex-

tension of quadratic BSDE to jumps was studied by Karoui et al. (2016) and

they include an application to entropic risk measures. Part of the thesis con-

siders dynamic risk measures that arise as the solution of quadratic BSDE

with jumps.

Further, Zariphopoulou and Žitković (2010) argue that in practice, the

maturity associated with a risky position might not be fixed. They intro-

duced maturity-independent risk measure, where the risk measurement of

the financial position does not depend on any given time horizon. They

incorporate maturity independence and replace its domain by a general do-

main. As a result, the axioms of the maturity-independent risk measures

are the same to the axioms of a replication-invariant convex risk measure.

Furthermore, the formulation uses the notion of the forward-performance

process. Musiela and Zariphopoulou (2006) was the first to propose the con-

cept of forward-performance (see for instance Musiela and Zariphopoulou

(2007), Musiela, Zariphopoulou, et al. (2008), Musiela and Zariphopoulou

(2010b)). Zariphopoulou and Žitković (2010) showed that every exponential

forward-performance process can be used to construct a dynamic maturity-

independent risk measure as the market unfolds over an arbitrary time hori-

zon. Chong et al. (2019) provided a general representation maturity-independent

risk measure that satisfies the solution of a BSDE with a generator that de-

pends on the solution of the ergodic BSDE. Liang and Zariphopoulou (2017)

proposed the ergodic BSDEs to construct the forward-performance processes.

Fuhrman et al. 2009 introduced the notion of ergodic BSDE and devel-

oped further by Debussche et al. 2011. The ergodic BSDEs are an asymptotic

limit of the infinite horizon BSDEs (as shown by Fuhrman et al. 2009 and

Debussche et al. 2011) and are represented as follows

dYt = (−g(Vt, Zt) + λ)dt+ ZtdWt,

where λ ∈ R is part of the solution. Cohen and Fedyashov 2014 and
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Fedyashov 2016 extended the ergodic BSDE to a jump-diffusion framework

and is represented as follows

dYt = (−g(Vt, Zt,Ψt) + λ)dt+ ZtdWt +

∫

R\0

ΨtÑ(dt, dζ),

where 0 ≤ t ≤ T <∞. We adapt this jump model with a different generator.

In our analysis, we extend and study with a quadratic growth in the control

variable. We further study the behaviour of a forward entropic risk measure

as the terminal time of the investment period goes to infinity.

Risk measures are used to determine the amount required to hold as

a buffer against unexpected losses for a portfolio. Risk measures can be

further used to measure the risk contribution of a subportfolio in a overall

portfolio (see for example Cherny (2009), Buch and Dorfleitner (2008), De-

nault (2001), Kalkbrener (2005) and Tasche (2004)). Capital allocation is

the problem of measuring the risk contribution of sub-portfolio in the overall

portfolio risk. The methods that are mostly used and studied are the full

allocation property of the Aumann-Shapley and Gradient allocation method.

Denault (2001) provided the properties of coherent capital allocation. These

are the symmetry and riskless allocation, which together justify the gradient

allocation principal. The gradient allocation is the Gâteaux derivative of

the risk measure of a portfolio in the direction of the subportfolio. Tasche

(2004) showed that if the risk measure is smooth, then the partial derivative

of the risk measure with respect to the underlying asset is the unique gradi-

ent allocation principle. As a result, the risk measure needs to be Gâteaux-

differentiable for the gradient allocation to exist. Denault (2001) showed that

the Aumman Shapley value is coherent and a practical approach to capital

allocation. Kalkbrener (2005) further provided the properties for gradient

allocation principle, and shows that the properties are satisfied if and only

if the risk measure is positive homogeneous and sub-additive. The gradient

allocation properties provided by Denault (2001) are shown to be equivalent

to the risk measure axioms of positive homogeneity, sub-additivity and trans-

lation invariance respectively (see Buch and Dorfleitner (2008)). For more
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analysis on the gradient allocation method, see e.g., Tasche (2007).

1.2 Aims and Objectives

The aim of this thesis is to provide and analyse the representation of risk

measures and capital allocation. We consider capital allocation because most

companies have several subdivisions and would like to allocate their aggre-

gate capital to the underlying subdivisions. There are several motivations

for allocate capital. For example, a company would want to redistribute the

cost of holding capital equitably across different subdivisions. Moreover, the

allocation of capital provides a tool for assessing and comparing subdivisions

by determining the return of allocated capital for each division. See Dhaene

et al. (2012) for further motivation for studying capital allocation. We further

extend the capital allocation to include jumps. The reason for this extension

is that jump-diffusion model is essential to capture the extreme movements

in a risky asset, for example, caused by the announcement of an important

decision made by a company or change in economic policy to the financial

market (Rong (2006)).

We first analyse and derive the representation of risk measures and capi-

tal allocation constructed using BSDEs under the jump-diffusion setting and

apply the results to the entropic risk measure. For the diffusion case, Kromer

and Overbeck (2014) derived and analysed the dynamic capital allocation of

BSDE based dynamic risk measure. Dynamic risk measures for BSDE with

jumps are studied and analysed by Quenez and Sulem (2013) and Øksendal

and Sulem (2015). However, the authors did not consider the capital alloca-

tion of the risk measure under the jumps framework.

Second, we study the representation of a dynamic maturity-independent

risk measure and derive its capital allocation under the diffusion framework.
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Maturity-independent risk measures are constructed using BSDEs whose gen-

erator depends on the solution of the ergodic-BSDEs. In this case, we extend

the works of Chong et al. (2019) to derive the representation of the capital

allocation.

We further provided the representation of dynamic capital allocation us-

ing dynamic risk measures that occur as a solution to backward stochastic

Volterra integral equations (BSVIEs) under the jump setting. These dynamic

risk measures allow for the terminal value to be position processes and not

only FT -measurable random variables. The study of dynamic risk measures

constructed using BSVIEs with jumps is done by Agram (2019). Further-

more, Kromer and Overbeck (2017) derived the capital allocation of these

dynamic risk measures under the diffusion case.

Lastly, we study risk measure representation for the forward entropic risk

measure in the jump-diffusion setting. We investigate the behaviour of the

forward entropic risk measure when the underlying stock price process is

driven by an independent Brownian motion and the Poisson processes. This

risk measure is in a category of maturity-independent risk measures intro-

duced by Zariphopoulou and Žitković 2010. The weakness of the classical

coherent or dynamic risk measures is that of the fixed time horizon, which is

determined at the beginning of the investment period. If not, this presents

a challenge to determine whether the risk measure is still the same after the

fixed time horizon. This was the focus of the discussion by Chong et al. 2019,

and we want to revisit and discuss it in a jump-diffusion framework.

1.3 Structure of the thesis

This thesis constitutes six chapters described as follows:

In this chapter, we outline the introduction and objective of the thesis.
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Chapter 2 provides the notations and definitions that we use throughout the

thesis. We give a review on concepts of stochastic calculus such as proba-

bility spaces, Martingales and Lèvy processes. The chapter also covers the

theoretical concepts on BSDEs, risk measures and capital allocation.

Chapter 3, we study the representation of dynamic risk measures under

the jump-diffusion process. Moreover, we derive the dynamic risk measure

using BSDEs with jumps. By employing Malliavin derivatives of the BSDEs

and Gâteaux-derivative, we obtain the capital allocation. We apply the re-

sults to derive the representation of the entropic risk measure.

In Chapter 4, we examine the representation of maturity-independent

risk measures. We derive the representation from BSDEs whose generator

depends on the solution of ergodic BSDEs. We also cover the capital alloca-

tion of the maturity-independent risk measures from the Gâteaux-derivative

of the underlying risk measure.

Chapter 5 is devoted to the representation of maturity-independent risk

measures under the jump-diffusion setting. We use Itô-Ventzell formula to

determine the stochastic partial differential equation of the forward perfor-

mance process to decide the form of the generator of our ergodic BSDE.

Hence, we construct the maturity-independent risk measures representation

as a solution to the BSDE with a generator that depends on the solution of

the ergodic BSDE. We also study the behaviour of a forward entropic risk

measure under jumps when we hold a financial position for a longer maturity.

Chapter 6 is another representation of risk measure using BSVIE with

jumps. We derive the representation of the capital allocation by differenti-

ating underlying risk measure.

Finally, in Chapter 7, we conclude by providing a summary of our findings.
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1.4 Published papers and preprints

The thesis constitutes of four papers on the representation of risk measure

and capital allocation listed as follows:

1) Lesedi Mabitsela, Calisto Guambe, and Rodwell Kufakunesu. “A note

on representation of BSDE-based dynamic risk measures and dynamic

capital allocations”. Published in Communications in Statistics-Theory

and Methods (2020): pp 1-20, doi: 10.1080/03610926.2020.1768405.

2) Lesedi Mabitsela, Rodwell Kufakunesu and Calisto Guambe. “An er-

godic BSDE risk representation in a jump-diffusion framework”. Sub-

mitted.

3) Lesedi Mabitsela, Rodwell Kufakunesu and Calisto Guambe. “A note

on the ergodic BSDE-based risk representation and dynamic capital

allocation”. Submitted.

4) Lesedi Mabitsela and Rodwell Kufakunesu. “A note on BSVIE-based

dynamic capital allocations in a jump framework.” Submitted.
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Chapter 2

Stochastic Calculus and Jump

Diffusion Processes

2.1 Introduction

In this chapter, we introduce the concepts and notations that we will use

throughout this thesis. We start by giving a review on some of the stochastic

calculus concepts that we require for our study. There are great books on

Stochastic calculus for example, see Øksendal (2010), Yong and Zhou (1999),

Karatzas and Shreve (1998), Cohen and Elliott (2015) and Evans (2012). We

consider a filtered probability space (Ω,F , {Ft}t≥0, P ), satisfying the usual

conditions whenever:

(i) (Ω,F , P ) is complete. A probability space (Ω,F , P ) is complete when

A, B ∈ F and A is a P -measure zero event, then B ⊆ A.

(ii) F0 contains all P -measure zero events in F . A P -measure zero event

is defined as an event A ∈ F with P (A) = 0; and

(iii) {F}t≥0 is right continuous, that is Ft+ = Ft.

The set of all events is denoted by Ω, and F is called a σ-algebra on Ω. It is

a family of all subsets of Ω, having the following properties:

9



(i) ∅ ∈ F ;

(ii) A,AC ∈ F , where AC is the complement of A in Ω;

(iii) If Ai ∈ F for i = 1, 2, . . . then ∪∞
i=1Ai ∈ F .

The filtration {Ft}t≥0 is an increasing collection of sub σ−algebra of F , that

is for s < t, Fs ⊂ Ft. We denote by B, to be the smallest σ−algebra

of subsets of Rn containing all open set. The probability measure P on a

measure space (Ω, F ) is a function P : F → [0, 1] such that

(i) P (∅) = 0 and P (Ω) = 1.

(ii) If Ai ∈ F and Ai ∩ Aj for i 6= j then ∪∞
i=1P (Ai) =

∑∞
i=1 P (Ai).

The mapping t 7→ X(t, ω) is called a sample path of the stochastic process

for any ω ∈ Ω. A stochastic process X(t) is said to be adapted if it is

Ft−measurable for all t ≥ 0. Ft−measurable implies the values of the process

X(t) will be revealed at time t. Furthermore, a stochastic process X(t) is

progressively measurable with respect to {Ft}t≥0, if for all 0 ≤ s < t the

mapping ω 7→ X(s, ω) belongs to the product of σ−algebra B([0, t]) ⊗ Ft.

All available information on an event X(t) up to time t is contained in F :=

{F}t≥0. That is FX ⊂ Ft for all t, where FX = σ(X(t) | 0 ≤ s < t) is the

natural filtration of X(t). For the rest of the thesis, we consider stochastic

processes that are driven by the Brownian motion and Jump process.

2.2 Brownian Motion and Jump Processes

In this section, we present basic concepts relating to the Brownian motion

and Jump process. The definitions in this Section are from Protter (2003),

Øksendal and Sulem (2005), Applebaum (2009), Tankov 2003 and Delong

2013.

We proceed to define a Lévy process.
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Definition 2.2.1. Let (Ω,F ,F, P ) be a filtrated probability space. An Ft

adapted process X(t) with X(0) = 0 a.s. is a Lévy process if

(i) X(t) has increments independent of the past, i.e., X(t)−X(s) is inde-

pendent of Fs for all 0 ≤ s < t <∞.

(ii) X(t) has stationary increments, i.e., X(t)−X(s) has the same distri-

bution as Xt−s for all 0 ≤ s < t <∞.

(iii) X(t) is continuous in probability, i.e., ∀ǫ > 0,

lim
t→s

P (|X(t)−X(s)| > ǫ) = 0,

for all 0 ≤ s < t <∞.

Important example of Lévy process includes the Brownian motion and

the Poisson process, which are both defined below.

Example 2.2.1. The Brownian motion. Let (Ω,F ,F, P ) be a filtrated

probability space. Then an Ft adapted R-valued process W (t) is called a

one-dimensional F−Brownian motion over [0,∞] if

(i) W (0) = 0 a.s.,

(ii) W (t) has continuous sample paths, for any ω ∈ Ω,

(iii) for all 0 ≤ s < t < ∞, the increments of W (t) are independent of the

past i.e., W (t)−W (s) is independent of Fs,

(iv) for all 0 ≤ s < t <∞, W (t)−W (s) is normally distributed with mean

0 and covariance (t− s), i.e., ∼ N(0, (t− s)).

Example 2.2.2. The Poisson process. The Poisson process N(t) of in-

tensity λ > 0 is a Lévy process taking values in N ∪ {0} and so that

P (N(t) = n) =
(λt)n

n!
e−λt,

for each n = 0, 1, 2, . . . ,.
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Assume the Lévy process X(t) is càdlàg i.e., rights continuous with left

limits. We define the jump of a Lévy process X(t) at t ≥ 0 as ∆X(t) =

X(t) − X(t−). Our interest is on the number of jumps of a specific size.

Hence, we define a random measure by taking A ∈ B(R\{0}), then

N(t, A) = N(t, A, ω) =
∑

0<s≤t

1A(∆X(t)).

Here, N(t, A) is a Poisson random measure of X(t). It counts the number of

jumps of size ∆X(t) ∈ A that occur before or at time t. Therefore, N(t, A) is

a Poisson process of intensity ν(A) = E[N(1, A)], i.e., the intensity gives an

average value of the Poison random measure N . The Lévy measure satisfies

the following condition:
∫

R0

(1 ∧ |ζ |2)ν(dζ) <∞,

and it is positive. The function ν(A) is also called the Lévy measure of X(t),

it is a σ-finite measure on R0 := R\{0}. The derivative of N(t, A) is given by

N(dt, dζ). We denote by Ñ(dt, dζ) := N(dt, dζ)− ν(dζ)dt the compensated

Poisson measure of N(dt, dζ). A process Ñ(dt, dζ) is a martingale, that is

E[Ñt|Fs] = Ñs for all t > s.

We now, recall from Applebaum (2009) and Øksendal and Sulem (2005)

an essential result in stochastic calculus, that is Itô’s formula.

Theorem 2.2.1 (Itô formula). If X is an Itô-Lèvy process of the form

dX(t) = µ(t, ω)dt+ σ(t, ω)dW (t) +

∫

R0

Υ(t, ζ)Ñ(dt, dζ) (2.2.1)

where µ : [0, T ]× Ω → R, σ : [0, T ]× Ω → R and Υ : [0, T ] × Ω × R0 → R

are predictable processes with respect to the filtration F such that the solution

X(t) exists. Then for f ∈ C2(R), t ≥ 0 and define Y (t) = f(t, X(t)). Then

Y (t) is again an Itô-Lèvy process and

dY (t) =
∂f

∂t
(t, X(t))dt+

∂f

∂x
(t, X(t))

[
µ(t, ω)dt+ σ(t, ω)dW (t)

]

12



+
1

2
σ2(t, ω)

∂2f

∂x2
(t, X(t))dt+

∫

R0

(
f(t, X(t−) + Υ(t, ζ))− f(t, X(t−))

−
∂f

∂x
(t, X(t−))Υ(t, ζ)

)
ν(dζ)dt

+

∫

R0

(
f(t, X(t−) + Υ(t, ζ))− f(t, X(t−))

)
Ñ(dt, dζ). (2.2.2)

Proof. See Øksendal and Sulem (2005) (Theorem 1.14).

Remark: The Itô formula for the diffusion is a particular case of Equa-

tion (2.2.2), i.e., by removing the jumps from the Itô-Lévy process (2.2.1),

we obtain the diffusion case.

We now state the Itô-Ventzell formula for jump-diffusion process. The

Itô-Ventzel for diffusion is studied by Ocone and Pardoux (1989) (Theorem

3.1 page 50) and jump process is stated and proved by Øksendal, Zhang, et al.

(2007). We apply the Itô-Ventzell formula in Chapter 5 to a forward process

U to determine the form of the generator to our ergodic BSDE. Suppose we

have two forward processes

dX(t) = µ(t, ω)dt+ σ(t, ω)dW (t) +

∫

R0

Υ(t, ζ)Ñ(dt, dζ)

and

dU(t, x) = b(t, ω, x)dt+ a(t, ω, x)dW (t) +

∫

R0

H(t, ζ, x)Ñ(dt, dζ),

where b : [0, T ] × Ω × R → R, a : [0, T ] × Ω × R → R are progressively-

measurable processes and H : [0, T ] × R0 × R → R is a stochastic process

such that the solution U(t, x) exists.

Theorem 2.2.2 (Itô-Ventzell Formula). We assume that U(t, x) is C1 with

respect to the space variable x ∈ R. Then

dU(t, X(t)) = b(t, X(t))dt+ a(t, X(t))dW (t)

+
∂U

∂x
(t, X(t))

[
µ(t)dt+ σ(t)dW (t)

]

13



+
1

2
σ2(t)

∂2U

∂x2
(t, X(t))dt+ σ(t)

∂

∂x
a(t, X(t))dt

+

∫

R0

[
U(t, X(t) + Υ(t, ζ))

−U(t, X(t))−
∂U

∂x
(t, X(t))Υ(t, ζ)

]
ν(dζ)

+

∫

R0

[
H(t, X(t) + Υ(t, ζ))−H(t, X(t))

]
ν(dζ)

+

∫

R0

[
U(t, X(t) + Υ(t, ζ))− U(t, X(t))

+H(t, X(t) + Υ(t, ζ))
]
Ñ(dt, dζ).

(2.2.3)

Proof. See Ocone and Pardoux (1989) (Theorem 3.1) and Øksendal, Zhang,

et al. (2007) (Theorem 3.1).

2.3 BMO martingales and Change of mea-

sure

The theory of change of measures and Girsanov transformation are important

concept in the application of stochastic process in finance. We recall the

concept of uniformly integrability from Cohen and Elliott (2015) (Section

2.5).

Definition 2.3.1. Let D ⊂ L1(Ω,F , P ). Then D is said to be uniformly

integrable subset of L1(Ω,F , P ) if

∫

{|X|≥c}

|X(ω)|dP (ω) (2.3.1)

converges to zero uniformly in X ∈ D as c→ ∞.

The concept of uniformly integrable martingales refers to all martingales

such that the collection of random variables is uniformly integrable. We re-

call that a random variable T : Ω → [0,∞) is called a stopping time when
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an event (T ≤ t) ∈ Ft for each t ≥ 0 (Applebaum (2009)).

The Girsanov Theorem illustrates what happens to a stochastic process

when the probability measure is replaced by a new equivalent probability

measure. We first, recall the Girsanov Theorem for an Itô process from

Øksendal and Sulem (2005).

Theorem 2.3.1. Let X(t) ∈ R be an Itô process of the form

dX(t) = µ(t, ω)dt+ σ(t, ω)dW (t), 0 ≤ t ≤ T (2.3.2)

Assume there exists a process θ(t, ω) ∈ R such that

σ(t, ω)θ(t, ω) = µ(t, ω) for a.a. (t, ω) ∈ [0, T ]× Ω (2.3.3)

such that the process M(t) defined for 0 ≤ t ≤ T by

M(t) := exp{−

∫ t

0

θ(s, ω)dW (s)−
1

2

∫ t

0

θ2(t, ω)ds} (2.3.4)

exists. Define a measure Q on FT by

dQ(ω) =M(T )dP (ω) on FT . (2.3.5)

Assume that

E[M(T )] = 1.

Then Q is a probability measure on FT , Q is equivalent to P and X(t) is a

local martingale with respect to Q.

Proof. See Øksendal and Sulem (2005) (Theorem 1.30).

We now recall the Girsanov Theorem for Lévy process following from Di

Nunno et al. (2009) (Theorem 12.21) (see also Øksendal and Sulem (2005)

Section 1.4).

Theorem 2.3.2 (Girsanov’s Theorem). Let θ(t, ζ) ≤ 1, t ∈ [0, T ], ζ ∈ R0

and µ(t) ∈ R be F− predictable processes such that

∫ T

0

∫

R0

{| ln(1 + θ(s, ζ))|+ θ2(s, ζ)}ν(dζ)ds <∞, P − a.s., (2.3.6)
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∫ T

0

µ2(s)ds <∞, P − a.s. (2.3.7)

Let

M(t) = E

(∫ t

0

µ(s)dW (s) +

∫ t

0

∫

R0

(θ(s, ζ)− 1)Ñ(ds, dζ

)

T

= exp

{
−

∫ t

0

µ(s)dW (s)−

∫ t

0

µ2(s)ds

+

∫ t

0

∫

R0

{ln(1− θ(s, ζ)) + θ2(s, ζ)}ν(dζ)ds

+

∫ t

0

∫

R0

ln(1− θ(s, ζ))Ñ(ds, dζ)

}
, t ∈ [0, T ], (2.3.8)

where E denotes the stochastic exponential or Doléans-Dade exponential. De-

fine a measure Q on FT by

dQ(ω) =M(ω, T )dP (ω). (2.3.9)

Assume that M(T ) satisfies the Novikov’s Criterion, that is

E

[
exp

(
1

2

∫ T

0

µ2(s)ds+

∫ t

0

∫

R0

{(1− θ(s, ζ)) ln(1− θ(s, ζ))

+θ(s, ζ)}ν(dζ)ds

)]
<∞. (2.3.10)

Then E[M(T )] = 1 and hence Q is a probability measure on FT . Define

ÑQ(dt, dζ) = θ(t, ζ)ν(dζ)dt+ Ñ(dt, dζ)

and

dWQ(t) = µ(t)dt+ dW (t).

Then ÑQ(·, ·) andWQ(·) are compensated Poisson random measure of N(·, ·)

and Brownian motion under Q, respectively.

Proof. see Øksendal and Sulem (2005) (Section 1.4).

Under the Novikov’s Criterion, the stochastic exponential Z(t) is a pos-

itive uniformly integrable martingale (Cohen and Elliott (2015) Theorem
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15.4.20). This ensures that probability laws applied to the stochastic process

still hold under the new probability measure. Next, we introduce the notion

of Bounded Mean Oscillation (BMO) martingales. A local martingale M is

in the class of BMO-martingales if there exists a constant K, K > 0, such

that, for all F -stopping times T ,

ess sup
Ω

E[〈M(T )〉 − 〈M(T )〉 | FT ] ≤ K2 and |∆M(T )|2 ≤ K2 .

We say a process {M(t)|t ≥ 0} is a local martingale if there exists a sequence

of stopping times {Tn}n∈N such that as Tn → ∞, M(τn) is a martingale.

For the diffusion case, the BMO-martingale property follows from the first

condition, whilst in a jump-diffusion case, we need to ensure the boundedness

of the jumps of the local martingale M . Now we recall the Kazamaki’s

Criterion from Morlais (2009b) (also see Kazamaki (2006) Theorem 2.3 for

the continuous case) in the next lemma.

Lemma 2.3.3. Let δ be such that: 0 < δ < ∞ and M a BMO martingale

satisfying ∆M(t) ≥ −1 + δ, P -a.s. and for all t, then the Doléans-Dade

exponential of M denoted by E(M) is a uniformly integrable martingale.

Proof. See Kazamaki (1979).

2.4 Malliavin Calculus

In this section we provide properties of Malliavin calculus (see Di Nunno et al.

(2009), Nualart (2006), Delong and Imkeller (2010) and Fujii and Takahashi

(2018) and reference therein on more properties and theory on Malliavin cal-

culus). Malliavin calculus (also known as stochastic calculus of variations)

was first introduced by Paul Malliavin (1978) as an infinite dimensional dif-

ferential calculus on the Wiener space. It uses the theory of integration by

parts to study the derivatives of functions on this space. (For an extension

of Malliavin calculus to jump process see Bichteler et al. (1987), Carlen and

Pardoux (1990) and Di Nunno et al. (2009)). Using Malliavin derivative, we
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can obtain the representation of the BSDE-based capital allocation of the

underlying risk measure under the jump-diffusion framework (this is done in

Chapter 3).

We note that a smooth random variable F is Malliavin differentiable if

and only if F ∈ D1,2 ⊂ L2(P ) (Fujii and Takahashi (2018)). The respective

norm is defined as follows

‖F‖21,2 := E

[
|F |2 +

d∑

i=1

∫ T

0

|Di
sF |

2ds+

k∑

j=1

∫ T

0

∫

R0

|Dj
s,ζF |

2ζ2νj(dζ)ds
]
.

We first recall the Itô representation property, for which the diffusion case

is provided by Øksendal (2003) (Theorem 4.3.3).

Theorem 2.4.1 (The Itô representation Theorem). Suppose F ∈ L2(FT ),

then F has the following representation

F = E[F ] +

∫ t

0

Z(s)dW (s) +

∫ t

0

∫

R0

K(s, z)Ñ(ds, dζ) 0 ≤ t ≤ T, (2.4.1)

where Z(·) and K(·, ·) are predictable processes, integrable with respect to W

and Ñ .

Proof. See Applebaum (2009) (Theorem 5.3.5).

By the Itô representation Theorem, we can represent a random variable

in terms of stochastic integrals with respect to W and Ñ .

We recall from Di Nunno et al. 2009 the Clark-Ocone formula and the

chain rule on the Brownian and Poisson probability space (Ω,F , P ).

Theorem 2.4.2 (The Clark-Ocone Formula). Let F ∈ D1,2 be FT−measurable.

Then

F = E[F ] +

∫ T

0

E[DsF |Ft]dW (t) +

∫ T

0

∫

R0

E[Ds,ζF |Ft]Ñ(ds, dζ).

Proof. See Di Nunno et al. (2009) (Theorem 4.1 and Theorem 12.16).
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The Clark-Ocone Formula (2.4.2) provides an explicit representation of

the processes in the Itô representation theorem (2.4.1), Z and K in terms of

the Malliavin derivatives as follows

Z(s) = E[DsF |Ft] ,

K(s, ζ) = E[Ds,ζF |Ft]. (2.4.2)

The next theorem states the chain rule for evaluating Malliavin derivatives

(see Di Nunno et al. (2009) Section 12.2 and Øksendal (1997)).

Theorem 2.4.3 (Chain Rule). Let F = F1, . . . , Fm ∈ D1,2, and let ϕ be a real

continuous function on R. Suppose ϕ(F ) ∈ L2(P × dt) and ϕ(F +Ds,zF ) ∈

L2(P × dt× ν). Then ϕ(F ) ∈ D1,2,

Dsϕ(F ) =

m∑

i=1

∂

∂xi
ϕ(F )DsFi

and

Ds,ζϕ(F ) = ϕ(F +Ds,ζF )− ϕ(F ) t ≥ 0 a.s.

Proof. See Nualart (2006) (Proposition 1.2.3) and Di Nunno et al. (2009)

(Theorem 12.8).

The following examples are generic and can be found in Øksendal (1997)

and Di Nunno et al. (2009).

Example 2.4.1. Let t1 ∈ [0, T ]. The derivative of ϕ(W (t1)) = eW (t1) is

Dsϕ(W (t1)) = exp(W (t1))X[0,t1](t).

Example 2.4.2. The derivative of K = exp

(∫ T
0

∫
R0
h(t)ζÑ(dt, dζ)

)
is

Ds,ζK = exp

(∫ T

0

∫

R0

h(t)ζÑ(dt, dζ) + h(t)ζ

)
−K

= K exp(h(t)ζ − 1).

(2.4.3)
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The following definition from Di Nunno et al. (2009) (Definition A.9), we

will use in Chapter 3 to determine the representation of the capital allocation

under the jump-diffusion framework.

Definition 2.4.1. Let F : Ω → R be random, choose h ∈ L2([0, T ]), and

consider

η(t) =

∫ t

0

h(s)ds ∈ Ω. (2.4.4)

Then we define the directional derivative of F at the point ω ∈ Ω in direction

η ∈ Ω by

DηF (ω) =
d

dǫ
[F (ω + ǫη)]|ǫ=0,

if the derivative exists.

Note that the set of η ∈ Ω formulated in the form (2.4.4) for some

h ∈ L2([0, T ]), is called the Cameron-Martin space and is denoted by H .

2.5 Backward Stochastic Differential Equa-

tions (BSDEs)

In this section we recall BSDEs driven by two independent stochastic pro-

cesses - the Brownian motion and Poisson random measure. We consider

BSDEs where the generator has a quadratic growth in the Brownian motion

component and exponential growth in the jump component.

The BSDE driven by the Brownian motion is an equation of the form

Y (t) = ξ +

∫ T

t

g(s, ω, Y (s), Z(s))ds−

∫ T

t

Z(s)dW (s), 0 ≤ t ≤ T

(2.5.1)

where (W (t))0≤t≤T is a standard Brownian motion on a probability space

(Ω,F ,F, P ). The function g : [0, T ]×Ω×R×R → R is called the generator or
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drive and terminal value, ξ, is a real-valued FT−measurable random variable.

The BSDE is expressed in the differential form as

dY (t) = −g(t, ω, Y (t), Z(t))dt+ Z(t)dW (t),

Y (T ) = ξ. (2.5.2)

In this thesis, we will consider BSDEs studied by Kobylanski et al. (2000)

(see also Tevzadze (2008) and Barrieu, Karoui, et al. (2013)) that have a

quadratic growth generator, that is, |g(t, y, z)| ≤ K(1+ |y|+ |z|2). Quadratic

growth refers to the quadratic feature of the control term, z, which appears

in the generator.

The next definition, recalls (from Cohen and Elliott (2015) and Delong

(2013)) the BSDE under a jump-diffusion process.

Definition 2.5.1. Given an FT−measurable R−valued random variable ξ

and function g : [0, T ] × Ω × R × R × L2
ν(R0) → R, a backward stochastic

differentiable equation (BSDE) with jumps is an equation of the form

dY (t) = −g(t, ω, Y (t), Z(t),Υ(t, ζ))dt+ Z(t)dW (t) +

∫

R0

Υ(t, ζ)Ñ(dt, dζ),

Y (T ) = ξ, (2.5.3)

for t ∈ [0, T ] and g(t, ω, Y, Z,Υ) := g(t, Y, Z,Υ). The integral form on [t, T ]

is

Y (t) = ξ +

∫ T

t

g(s, ω, Y (s), Z(s),Υ(s, ζ))ds−

∫ T

t

Z(s)dW (s)

−

∫ T

t

∫

R0

Υ(s, ζ)Ñ(ds, dζ). (2.5.4)

The function g is the generator and the pair (ξ, g) are the data of the BSDE.

The solution to the BSDE (2.5.4) with data (ξ, g) is the triple of processes

(Y, Z,Υ), with an adapted and càdlàg Y , predictable R-valued process Z and

a predictable process Υ taking values from L2
ν(R0).
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The data (ξ, g) of the BSDE (2.5.4) is said to be standard if the following

standard conditions hold:

(i) E[||ξ||2] <∞,

(ii) E[
∫ T
0
||g(t, ω, 0, 0, 0)||2dt] <∞,

(iii) There exists a constant K such that dP × dt− a.s.

||g(t, ω, y, z, υ)− g(t, ω, y′, z′, υ′)|| ≤ K
(
||y − y′||2 + ||z − z′||2

+||υ − υ′||2
)

(2.5.5)

for all y, y′ ∈ R, z, z′ ∈ R and υ, υ′ ∈ L2
ν(R0).

This type of model is introduced by Becherer et al. (2006) and Morlais

(2009b) in the context of utility maximization. Other existing results on

BSDEs with jumps can be found in Delong (2013), Cohen and Elliott (2015)

and Karoui et al. (2016). Becherer et al. (2006) (in Lemma 3.4) showed that

the martingale components of the BSDE (2.5.4) are BMO-martingales. The

BMO property of the martingale components will be useful later when we

apply the Girsanov Theorem. The quadratic-exponential BSDE with jumps

that we will be working with in Chapter 3 is from Karoui et al. (2016),

Antonelli and Mancini (2016) and Fujii and Takahashi (2018), where the

data (ξ, g) of the BSDE in addition to the standard conditions satisfy the

following conditions:

(i) The map (t, ω) 7→ g(t, ω, ·, ·, ·) is F-progressively measurable. For every

(y, z, υ) ∈ R× R× L2
ν(R0), there exist two constants ϑ ≥ 0 and γ > 0

and a positive F-progressively measurable process (ℓt, t ∈ [0, T ]) such

that

−ℓt − ϑ|y| −
γ

2
|z|2 −

∫

R0

jγ(−υ(t, ζ))ν(dζ) ≤ g(t, y, z, υ)

≤ ℓt + ϑ|y|+
γ

2
|z|2 +

∫

R0

jγ(υ(t, ζ))ν(dζ), (2.5.6)

dt⊗ dP -a.e. (ω, t) ∈ Ω× [0, T ], where jγ(υ) :=
1
γ
(eγυ − 1− γυ).
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(ii) |ξ|, (ℓt, t ∈ [0, T ]) are essentially bounded i.e., ||ξ||∞, ||ℓ||S∞ <∞.

The existence and uniqueness of the solution to the quadratic-exponential

BSDE (2.5.4), is proved in Fujii and Takahashi (2018), Antonelli and Mancini

(2016) and Morlais (2009b). The exponential refers to the exponential ex-

pression appearing in the generator because of the jump coefficient (Karoui

et al. (2016)).

A valuable tool in BSDEs is the comparison theorem, which we state here

from Cohen and Elliott (2015) and Delong (2013). It lets us compare the

solutions of two BSDEs. For example, if the data of two BSDEs satisfy an

inequality, then also will their solutions.

Theorem 2.5.1 (The Comparison Theorem). Let (ξ, g) and (ξ′, g′) be stan-

dard Lipschitz data for two BSDEs, with solutions (Y, Z,Υ) and (Y ′, Z ′,Υ′)

respectively. Suppose

(1) ξ ≥ ξ′ P−a.s.,

(2) g(ω, t, y, z, υ) ≥ g(ω, t, y′, z′, υ′) dt× dP− a.s.

(3) g(t, y, z, υ)− g(t, y, z, υ′) ≤
∫
R0

Θy,z,υ,υ′(t, ζ)[υ(t, ζ)− υ′(t, ζ)]ν(dζ) a.s.,

a.e., (ω, t) ∈ Ω × [0, T ], for all y ∈ R, z ∈ R, υ, υ′ ∈ L2
ν(R0) and there

exists a predictable process Θy,z,υ,υ′ : Ω × [0, T ] × R → (−1,∞) such

that t 7→
∫
R0

|Θy,z,υ,υ′(t, ζ)|2ν(dζ) is uniformly bounded in (y, z, υ, υ′).

Then Y (t) ≥ Y ′(t) for t ∈ [0, T ]. Furthermore, if for some A ∈ Ft we also

have (Y (t)−Y ′(t))XA
= 0, then Y = Y ′ on A× [t, T ], i.e., if Y and Y ′ meet,

they remain the same from then onwards.

Proof. See Cohen and Elliott (2015) (Theorem 19.3.4) and Delong (2013)

(Theorem 3.2.2).

2.5.1 Ergodic BSDEs

In this section, we consider ergodic BSDEs, which we use to study forward

entropic risk measures. Ergodic BSDEs are an extension to BSDEs, which
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takes the form

Y (t) = Y (T )+

∫ T

t

(g(X(s), Z(s))−λ)ds−

∫ T

t

Z(s)dW (s), 0 ≤ t ≤ T <∞.

(2.5.7)

The solution to the ergodic BSDE (2.5.7) is a triple (Y, Z, λ), where Y and

Z are adapted real valued processes and λ is a real number. The process, X ,

is the stock price process (or the forward process) (this will be explained in

Chapter 4). The ergodic BSDE’s solution is derived as a limit of solutions to

the infinite horizon BSDE. In ergodic BSDEs, there is no terminal condition

given at some determined terminal time T . Also, the ergodic BSDE system

solves for the backward component by first valuing the forward process over

a long enough time instead of a finite deterministic time (Fedyashov (2016)).

This long running behaviour is captured in the component λ, which is part

of the solution.

The ergodic BSDEs (2.5.7) was first introduced by Fuhrman et al. (2009),

where they applied the ergodic BSDE to an optimal control problem. Further

research on ergodic BSDE is by Fedyashov (2016), Allan and Cohen (2016)

and Debussche et al. (2011).

The ergodic BSDEs are extended to jumps by Cohen and Fedyashov

(2014). Given the function g the ergodic BSDE with jumps is given by

Y (t, x) = Y (T, x) +

∫ T

t

[g(X(s, x), Y (s, x), Z(s, x),Υ(s, x, ζ))− λ]ds

−

∫ T

t

Z(s, x)dW (s)−

∫ T

t

∫

R0

Υ(s, x, ζ)Ñ(ds, dζ), (2.5.8)

where 0 ≤ t ≤ T < ∞, Y is a real valued càdlàg process, Z and Υ are

predictable processes. Cohen and Fedyashov (2014) have shown that there

exists a Markovian solution to the ergodic BSDE with jumps.

Theorem 2.5.2. Define

Y (t, x) = v(t, X(t)),
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there exist processes Z(x) and Υ(x) such that the quadruple (Y (x), Z(x),Υ(x), λ)

solves the ergodic BSDE

Y (t, x) = Y (T, x) +

∫ T

t

[g(X(s, x), Y (s, x), Z(s, x),Υ(s, x, ζ))− λ]ds

−

∫ T

t

Z(s, x)dW (s)−

∫ T

t

∫

R0

Υ(s, x, ζ)Ñ(ds, dζ), (2.5.9)

for 0 ≤ t ≤ T <∞ Moreover, if there exists any other solution (Y ′, Z ′,Υ′, λ′)

that satisfies

|Y ′(t)| < cx(1 + ||X(t, x)||2), (2.5.10)

for some constant c that may depend on x, then λ = λ′.

Proof. See Cohen and Fedyashov (2014) (Theorem 10).

Cohen and Fedyashov (2014), further proved that there exist a unique

Markovian solutions for the ergodic BSDE (2.5.8) with jumps.

Theorem 2.5.3. Let (Y, Z,Υ, λ) and (Y ′, Z ′,Υ′, λ′) be two Markovian solu-

tions to the ergodic BSDE. If Y, Y ′ satisfy the growth condition (2.5.10), v, v′

satisfies

v(t, x) = v(t+ T ∗, x), ∀t > 0

and v′(0, 0) = v(0, 0), then v = v′ a.e., for some T ∗ > 0.

Proof. See Cohen and Fedyashov (2014) (Theorem 11).

2.6 Risk Measures

In this section, we define and discuss the properties a risk measure. We also

study the connection between risk measures and BSDEs. Risk measures are

tools to quantify the riskiness of a financial position held by an investor.

We utilise the quantification to decide if the risk is acceptable or not. Risk

measures are tools to quantify the riskiness of a financial position held by

an investor. We utilise the quantification to decide if the risk is acceptable

or not. The risk measure aids the investor to manage the capital required
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to cushion the risk in unfavourable market conditions. Once, we decide on

the required capital, and this then leads us to allocate it to the varies sub-

divisions or sub-portfolios.

2.6.1 Definition and properties

We define by X ⊂ L2(FT ) the space of financial positions ξ.

Definition 2.6.1. (see Artzner et al. (1999), Gianin (2006)) A mapping

ρ : X → R is a static risk measure if, for any ξ1 and ξ2 in X , it satisfies the

following axioms:

A1) Monotonicity: ρ(ξ1) ≤ ρ(ξ2), ∀ ξ2 ≤ ξ1;

A2) Translation invariance: ρ(ξ1 +m) = ρ(ξ1)−m, m ∈ R;

A3) Subadditivity: ρ(ξ1 + ξ2) ≤ ρ(ξ1) + ρ(ξ2);

A4) Positive homogeneity ρ(kξ1) = kρ(ξ1), k ≥ 0;

A5) Convexity: ρ(λξ1 + (1− λ)ξ2) ≤ λρ(ξ1) + (1− λ)ρ(ξ2), λ ∈ (0, 1).

The functional ρ(ξ) quantifies the risk of a financial position ξ ∈ X . The

position ξ is acceptable when ρ(ξ) ≤ 0, and unacceptable otherwise (Artzner

et al. (1999)). The functional ρ(ξ) represents the capital amount that an in-

vestor can withdraw without changing the acceptability of ξ. Monotonicity

implies that ρ is non-increasing with respect to ξ ∈ X . The financial meaning

is that if a position ξ1 is always higher than ξ2, then the capital required to

support ξ1 should be less than capital required for ξ2. Subadditivity allows

for risk to be reduced by diversification since the risk of a portfolio ξ1 + ξ2

is bounded by the sum of individual risk of position ξ1 and ξ2. Translation

invariance states that if you add a certain amount m to the initial investment

position, then the risk of that investment will decrease by that amount m.

Note that, if a position ξ is not acceptable, then adding an amount ρ(ξ) to it

will make the position acceptable, i.e. ρ(ξ+ρ(ξ)) = ρ(ξ)−ρ(ξ) = 0. Positive
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homogeneity tells us that the capital required to support k identical posi-

tions is equal to k times the capital required for one position. The convexity

property illustrates how the risk of a position might increase in a nonlinear

way as the position is multiplied by a factor, due to liquidity risk of a large

financial position.

A convex risk measure ρ whose domain includes X such that ρ(ξ) < ∞

where ξ ∈ X , satisfies property 5) see Föllmer and Schied (2002) and Frittelli

and Gianin (2002), while a coherent risk measure satisfies properties 1) to 4)

see Artzner et al. (1999) and Delbaen (2002).

2.6.2 Dynamic Risk Measures

In this subsection, we define a dynamic risk measure, which measures risk at

an intermediate time t ∈ [0, T ] while considering all information available up

to time t. Firstly, we recall the time-consistent property from Delong (2013)

A6) Time-consistency ρs(ξ) = ρs(−ρt(ξ)) 0 ≤ s ≤ t ≤ T , ξ ∈ L2(FT ).

Put simple, time-consistence means a risk measure is consistent at different

times. Measuring risk at time s should be the same as first measuring risk at

an intermediate time t > s and then quantify it at time t to time s. We state

from (Gianin (2006)) the following definition of a dynamic risk measure:

Definition 2.6.2. A mapping (ρt)t∈[0,T ] is a dynamic risk measure for all

ξ ∈ X and t ∈ [0, T ], if the following properties are satisfied:

(a) ρt : X → L0(Ft).

(b) ρ0 is a static risk measure.

(c) ρT (ξ) = −ξ for all ξ ∈ X .

The risk measure ρt(ξ) provides us with the value that is at risk at time

t for holding a financial position ξ, which will be liquidated at time T . A

dynamic risk measure is called coherent if it satisfies, positive homogeneity,

27



monotonicity, translation invariance and subadditivity. A dynamic convex

risk measure satisfies the convexity property and assume ρt(0) = 0 for any

t ∈ [0, T ] (Gianin (2006)).

The following from Delong (2013) defines dynamic risk measures con-

structed as a solution of BSDEs.

Theorem 2.6.1. Let ρgt (ξ) := Y −ξ(t), t ∈ [0, T ]. Then ρ is monotone,

time-consistent dynamic risk measure. In addition,

(a) if g is sublinear in (z, υ) and independent of y, then ρ is a coherent

dynamic risk measure.

(b) If g is convex in (y, z, υ), then ρ is a convex dynamic risk measure

Proof. See Delong (2013) (Theorem 6.2.1 and Proposition 6.2.3).

The component Y ξ is the solution of the BSDE (2.5.4). The driver g

plays an essential role in the construction of risk measures by BSDE. The

dynamic entropic risk measure defined by

ρt(ξ) =
1

γ
lnE

[
e−γξ | Ft

]
, γ > 0, t ∈ [0, T ]

is a classic example of a time-consistent dynamic risk measure that can

be constructed using quadratic BSDE

Y (t) = −ξ +

∫ T

t

γ

2
|Z|2ds−

∫ T

t

Z(s)dW (s), 0 ≤ t ≤ T.

See Barrieu and Karoui (2007) (Proposition 6.4).

In the jump-diffusion framework the dynamic entropic risk measure is

defined as

ρgt (ξ) = Y −ξ(t) for all t ∈ [0, T ], (2.6.1)

with Y (t) as the first component to the solution (Y (t), Z(t),Υ(t, ζ)) of

the BSDE

Y (t) = −ξ +

∫ T

t

(γ
2
|Z(s)|2 +

1

γ

∫

R0

(
exp(γΥ(s, ζ))− γΥ(s, ζ)− 1

)
ν(dζ)

)
ds
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−

∫ T

t

Z(s)dW (s)−

∫ T

t

∫

R0

Υ(s, ζ)Ñ(ds, dζ) .

The generator

g(t, Z,Υ) =

∫ T

t

(γ
2
|Z(s)|2 +

1

γ

∫

R0

(
exp(γΥ(s, ζ))− γΥ(s, ζ)− 1

)
ν(dζ)

)
ds,

(2.6.2)

and the terminal value ξ satisfying the standard condition and condition

(2.5.6).

Theorem 2.6.2. Suppose ρ and g are defined as in (2.6.1) and (2.6.2) re-

spectively then ρ is a convex dynamic risk measure, this means the following

axioms hold:

(a) Convexity If g is convex, i.e.,

g(t, λz1+ (1− λ)z2, λυ1+ (1−λ)υ2) ≤ λg(t, z1, υ1) + (1− λ)g(t, z2, υ2),

λ ∈ (0, 1) and (t, z1, υ1), (t, z2, υ2) ∈ [0, T ]× R× L2
ν(R0)

then ρ is convex, i.e.,

ρgt (λξ1 + (1− λ)ξ2) ≤ λρgt (ξ1) + (1− λ)ρgt (ξ2), t ∈ [0, T ].

(b) Translation invariance If generator g is independent of y, then

ρgt (ξ) is translation invariant, i.e.,

ρgt (ξ +m) = ρgt (ξ)−m t ∈ [0, T ], m ∈ R.

(c) Monotonicity If ξ1 ≤ ξ2, then ρ
g
t (ξ2) ≤ ρgt (ξ1), t ∈ [0, T ] and ξ1, ξ2 ∈

L2(FT ).

(d) Time-consistency If ξ ∈ L2(FT ), then ρs(ξ) = ρs(−ρt(ξ)) for all

0 ≤ s ≤ t ≤ T .

Proof. (See Delong (2013) (Chapter 6), Agram (2019) and Barrieu and Karoui

(2007) (Section 6)). We provide the sketch of the proof for completeness.
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(a) Convexity: To prove that

ρgt (λξ1 + (1− λ)ξ2) ≤ λρgt (ξ1) + (1− λ)ρgt (ξ2), t ∈ [0, T ],

we have to show that

Y −(λξ1+(1−λ)ξ2)(t) ≤ λY −ξ1(t) + (1− λ)Y −ξ2(t), t ∈ [0, T ].

We fix λ ∈ (0, 1) and consider the BSDE

Ŷ −(λξ1+(1−λ)ξ2)(t) = −(λξ1 + (1− λ)ξ2) +

∫ T

t

g(s, Ẑ(t), Υ̂(s, ζ))ds

−

∫ T

t

Ẑ(s)dW (s)−

∫ T

t

∫

R0

Υ̂(s, ζ)Ñ(ds, dζ),

with the solution (Ŷ , Ẑ, Υ̂) ∈ R× R× L2
ν(R0). We define

Ȳ (t) = λY −ξ1(t) + (1− λ)Y −ξ2(t)

Z̄(t) = λZ−ξ1(t) + (1− λ)Z−ξ2(t)

Ῡ(t) = λΥ−ξ1(t) + (1− λ)Υ−ξ2(t) .

(2.6.3)

Then, we look at the following BSDE

Ȳ (t) = −(λξ1 + (1− λ)ξ2) +

∫ T

t

λg(s, Z−ξ1(s),Υ−ξ1(s, ζ))ds

+

∫ T

t

(1− λ)g(s, Z−ξ2(s),Υ−ξ2(s, ζ))ds

−

∫ T

t

Z̄(s)dW (s)−

∫ T

t

∫

R0

Ῡ(s, ζ)Ñ(ds, dζ)

≥ −(λξ1 + (1− λ)ξ2) +

∫ T

t

g(s, Z̄(s), Ῡ(s, ζ))ds

−

∫ T

t

Z̄(s)dW (s)−

∫ T

t

∫

R0

Ῡ(s, ζ)Ñ(ds, dζ) .

The last inequality is a result of the convexity of g in Z and Υ. Then

by the Comparison Theorem (2.5.1) we conclude that

Ŷ −(λξ1+(1−λ)ξ2)(t) ≤ Ȳ (t),
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for each t ∈ [0, T ]. Thus

ρgt (λξ1 + (1− λ)ξ2) ≤ λρgt (ξ1) + (1− λ)ρgt (ξ2), t ∈ [0, T ].

(b) Translation invariance: We take two BSDEs

Y −ξ+m(t) = −ξ +m+

∫ T

t

g(s, Z−ξ+m(s),Υ−ξ+m(s, ζ))ds

−

∫ T

t

Z−ξ+m(s)dW (s)−

∫ T

t

∫

R0

Υ−ξ+m(s, ζ)Ñ(ds, dζ)

and

Y −ξ(t) = −ξ +

∫ T

t

g(s, Z−ξ(s),Υ−ξ(s, ζ))ds

−

∫ T

t

Zξ(s)dW (s)−

∫ T

t

∫

R0

Υξ(s, ζ)Ñ(ds, dζ) .

We note that

Y −ξ+m(t) = Y −ξ(t) +m.

Consequently

ρgt (ξ +m) = Y −ξ+m(t)

= Y −ξ(t) +m

= ρgt (ξ)−m for each t ∈ [0,T]. (2.6.4)

(c) Monotonicity: If ξ1 ≤ ξ2, then by the Comparison Theorem (2.5.1)

we have Y −ξ1(t) ≥ Y −ξ2(t). Hence,

ρgt (ξ2) = Y −ξ2(t) ≤ ρgt (ξ1) = Y −ξ1(t).

(d) Time-consistency: We want to prove that

ρs(ξ) = ρs(−ρt(ξ)),

i.e.,

Y −ξ(s) = Y Y −ξ(t)(s),
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for three bounded stopping times 0 ≤ s ≤ t ≤ T . a.s., We note that

Y Y −ξ(t)(s) = Y −ξ(t) +

∫ T

s

g(u, Z(u),Υ(u, ζ))du

−

∫ T

s

Z(u)dW (u)−

∫ T

s

∫

R0

Υξ(u, ζ)Ñ(du, dζ)

= −ξ +

∫ T

t

g(u, Z(u),Υ(u, ζ))du

−

∫ T

t

Z(u)dW (u)−

∫ T

t

∫

R0

Υξ(u, ζ)Ñ(du, dζ)

+

∫ T

s

g(u, Z(u),Υ(u, ζ))du

−

∫ T

s

Z(u)dW (u)−

∫ T

s

∫

R0

Υξ(u, ζ)Ñ(du, dζ)

= −ξ +

∫ T

s

g(u, Z(u),Υ(u, ζ))du−

∫ T

s

Z(u)dW (u)

−

∫ T

s

∫

R0

Υξ(u, ζ)Ñ(du, dζ)

= Y −ξ(s), (2.6.5)

the process defined by Y Y −ξ(t)(u) on [0, t] and by Y −ξ(u) on [t, T ] is the

solution of the BSDE (ξ, g, T ). Therefore, the uniqueness of the solution

implies the time-consistency property (Barrieu and Karoui (2007) Theorem

6.7). Hence,

ρs(ξ) = ρs(−ρt(ξ)).

2.6.3 Capital Allocation

In this subsection we discuss the capital allocation properties. LetX1, X2, . . . ,

Xn ∈ X be the financial positions, with the corresponding risk contribution

to the overall portfolio denoted by ρ(Xi|X), i = 1, 2, . . . , n. Consider a port-

folio X ∈ X , consisting of Xi, subportfolios, that is

X =

n∑

i=1

Xi.
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The portfolio risk is given by ρ(X). The capital allocation problem is allo-

cating the overall risk ρ(X) of the portfolio X to the individual subportfolios

in the portfolio. That is, we require a mapping such that

ρ(X) =
n∑

i=1

ρ(Xi|X). (2.6.6)

Such a relation is called the full allocation property, since the overall portfolio

risk is fully allocated to the individual subportfolios in the portfolio (Tasche

(2007)).

Let ρ be a risk measure that is Gâteaux differentiable at X in its domain,

then the gradient allocation ρ(Xi|X) is determined by

ρ(Xi|X) = ∇Xi
ρ(X)

= lim
ǫ→0

ρ(X + ǫXi)− ρ(X)

ǫ

=
d

dǫ
ρ(X + ǫXi)

∣∣∣∣
ǫ=0

. (2.6.7)

Equation (2.6.7) defines the static gradient allocation principle, which is

the Gâteaux-derivative of X in the direction of Xi, for i = 1, 2, . . . , n (see

Kromer and Overbeck (2014) and Kromer and Overbeck (2017)). The static

Aumann-Shapley allocation is represented by:

∇Xi
ρ(X) =

∫ 1

0

∇Xi
ρ(βX)dβ, i = 1, 2, . . . , n, (2.6.8)

where β ∈ [0, 1] is taken to be portfolio weights. If the risk measure ρ

is positive homogeneous, then the Aumann-Shapley allocation reduces to

the gradient allocation principle (2.6.7) (Denault (2001)). For the Aumann-

Shapley, we do not require the risk measure to be positively homogeneous to

satisfy full allocation property. However, the gradient allocation does need

the risk measure to be positive homogeneous to satisfy the full allocation

property. According to Kromer and Overbeck (2014), the Aumann-Shapley

and Gâteaux-derivative can be jointly used to risk measures that do not
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satisfy the positive homogeneity property. Hence, the combination can be

used for convex risk measures that do not satisfy the positive homogeneity

property.
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Chapter 3

Representation of BSDE-based

dynamic risk measures and

dynamic capital allocations

3.1 Introduction

In this section, we derive a representation for dynamic capital allocation

when the underlying price process includes extreme random price movements.

Moreover, we consider the representation of dynamic risk measures defined

under BSDEs with generators that grow quadratic-exponentially in the con-

trol variables. Dynamic capital allocation is derived from the differentiability

of BSDEs with jumps. The results are illustrated by deriving a capital allo-

cation representation for dynamic entropic risk measure and static coherent

risk measure.

The remainder of the chapter is organised as follows. In Section 3.2,

we present the notations and define concepts that will be used throughout

the chapter. Section 3.3, we derive the representation of dynamic risk capital

allocation based on the BSDE with jumps. From dynamic risk capital alloca-

tion results we derive the representation of the BSDE based dynamic convex
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and coherent risk measures. We conclude in Section 3.4 with applications of

our results to the entropic risk measures.

3.2 BSDE-based dynamic risk representation

In this chapter, we let our source of randomness be modelled by two inde-

pendent processes: the one-dimensional standard Brownian motion, W =

{W (t),F(t); 0 ≤ t ≤ T}, defined on a probability space (ΩW ,FW , PW ),

and the independent compensated Poisson random measure, Ñ(dt, dζ) :=

N(dt, dζ) − ν(dζ)dt defined on the probability space (ΩÑ ,F Ñ , P Ñ), with ν

on R0 = R\{0} as the Lévy measure of N(·, ·). If we let B(R0) denote the

family of Borel sets A ⊂ R. Then the Poisson random measure N(A, t),

counts the number of jumps of size ∆X ∈ A that occur on or before time t

and its derivative is given by N(dζ, dt) (Øksendal and Sulem (2005)).

Let (Ω,F , P ) be the product of the canonical filtered probability spaces

(ΩW × ΩÑ ,FW ⊗ F Ñ , PW ⊗ P Ñ ) and the filtration F := (Ft)t∈[0,T ] is the

canonical filtration. Let X be the space of financial positions with maturity

T , i.e., X is consider to be the space L∞(Ω,FT , P ) with essentially bounded

random variables with norm ||X||∞ = ess sup |X|, or the space Lp(Ω,FT , P ),

for 1 ≤ p < ∞ of p-integrable random variables. The components of X

represent the terminal value or net worth at maturity T of an investment

portfolio. The goal is to summaries the financial riskiness of a position ξ ∈ X

in a single number at any time t ∈ [0, T ], i.e., a dynamic risk measure denoted

by ρt(ξ).

Definition 3.2.1. We call a mapping ρt : X → L0(Ft), where ρt(ξ) = −ξ, a

dynamic convex risk measure if the properties of monotonicity, translation in-

variance, convexity and time-consistency are satisfied (see Sub-section 2.6.2).

The quantity ρt(ξ) provides us with a single value that summaries the

riskiness at time t ∈ [0, T ] of the financial position ξ. The position ξ is said

36



to be acceptable whenever ρt(ξ) ≤ 0, and unacceptable otherwise.

In this work, the dynamic risk measures are constructed using BSDEs. We

consider a quadratic-exponential BSDE, (defined as in Karoui et al. (2016))

for t ∈ [0, T ] of the form

Y (t) = −ξ +

∫ T

t

g(s, Y (s), Z(s),Υ(s, ζ))ds−

∫ T

t

Z(s)dW (s)

−

∫ T

t

∫

R0

Υ(s, ζ)Ñ(ds, dζ), 0 ≤ t ≤ T , (3.2.1)

where ξ : Ω → R and g : Ω × [0, T ] × R × R × L2
ν(R0) → R. The solu-

tion to Equation (3.2.1) is given by the triple (Y (t), Z(t),Υ(t)) ∈ S2(R) ×

H2
W (R) × H2

N(R), where the adapted process Y (t) is controlled by the con-

trol processes Z(t) and Υ(t), such that Y (T ) = ξ. For the existence and

uniqueness of such BSDEs, the driver and terminal condition are subject to

the standard condition stated in Chapter 2 and the following assumptions.

We adapt the assumptions from Fujii and Takahashi (2018) (see also Briand

and Hu (2006), Karoui et al. (2016), Royer (2006), Delong (2013)).

Assumption 1. For m > 0 and (y, z, υ), (y′, z′, υ′) ∈ R× R× L2
ν(R0) satis-

fying

|y|, |y′|, ||υ||L2
ν
, ||υ′||L2

ν
≤ m,

there exists some positive constant Km depending on m such that

|g(t, y, z, υ)− g(t, y′, z′, υ′)| ≤ Km(|y − y′|+ ||υ − υ′||L2
ν
)

+Km

(
1 + |z|+ |z′|+ ||υ||L2

ν
+ ||υ′||L2

ν

)
|z − z′| (3.2.2)

dt⊗ dP a.e. (ω, t) ∈ Ω× [0, T ].

Assumption 2. For all t ∈ [0, T ], m > 0 and y ∈ R, z ∈ R, υ, υ′ ∈ R with

|y|, ||υ||L2
ν
, ||υ′||L2

ν
≤ m, there exists a P ⊗ B(R)-measurable process Θy,z,υ,υ′

satisfying dt⊗ dP -a.e.

g(t, y, z, υ)− g(t, y′, z′, υ′) ≤

∫

R0

Θy,z,υ,υ′(t, ζ)[υ(t, ζ)− υ′(t, ζ)]ν(dζ)(3.2.3)
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and C1
m(1 ∧ |ζ |) ≤ Θy,z,υ,υ′

t (ζ) ≤ C2
m(1 ∧ |ζ |). Here C1

m and C2
m are two

constants satisfying the following conditions C1
m > −1 and C2

m > 0 and are

dependent on m.

Fujii and Takahashi (2018) (in Theorem 3.1) proved the existence of a

unique bounded solution (Y, Z,Υ) ∈ S2 × H2
W × H2

N of the BSDE (3.2.1).

Moreover, Z belongs to the set of progressively measurable real valued func-

tions denoted by H2
BMO(W ) satisfying

∣∣∣∣
∣∣∣∣
∫ .

0

Z(s)

∣∣∣∣
∣∣∣∣
2

BMO(W )

= ess supE

[ ∫ T

τ

|Z(s)|2ds
∣∣Fτ

]
≤ K2, P − a.s.

and Υ belongs to the set of predictable processes, denoted by H2
BMO(N) sat-

isfying the following

∣∣∣∣
∣∣∣∣
∫ .

0

∫

R0

Υ(s, ζ)Ñ(ds, dζ)

∣∣∣∣
∣∣∣∣
2

BMO(N)

= ess supE
[ ∫ T

τ

∫

R0

|Υ(s, ζ)|2ν(dζ)ds
∣∣Ft

]

+|∆M(T )| ≤ K2.

We consider dynamic risk measures constructed using BSDEs with jumps,

where the generator g is independent of Y . That is, we define:

ρgt (ξ) := Y −ξ(t), for t ∈ [0, T ], (3.2.4)

where Y −ξ(t) is the first component of the solution (Y (t), Z(t),Υ(t, ζ)) to

the BSDE

Y (t) = −ξ +

∫ T

t

g(s, Z(s),Υ(s, ζ))ds−

∫ T

t

Z(s)dW (s)

−

∫ T

t

∫

R0

Υ(s, ζ)Ñ(ds, dζ), 0 ≤ t ≤ T , (3.2.5)

where ξ : Ω → R and g : Ω× [0, T ]×R×L2
ν(R0) → R satisfying the standard

conditions and Assumptions 1 - 2, such that

g(t, z,Υ(t, ζ)) := ℓ(t, z,Υ) +
1

2
γ|z|2 +

1

γ

∫

R0

(eγΥ − 1− γΥ)ν(dz) (3.2.6)
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and is a special case of the generator in the standard condition (Equation

(2.5.6)), because it is independent of the process Y (·). For the risk measure

to satisfy the translation invariance property, the BSDE generator should be

independent of Y (·) (Quenez and Sulem (2013)). Similar to Subsection 2.6.2,

ρgt defined in (3.2.4) with generator in (3.2.6) is a dynamic convex risk mea-

sure satisfies the properties of convexity, translation invariance, monotonicity

and time-consistency defined in Chapter 2.

3.3 BSDE differentiability

To define the gradient allocation, we need the differentiability for BSDE with

jumps. In the Brownian case, Kromer and Overbeck (2014) used classical

differentiability results for BSDEs adopted from Ankirchner et al. (2007).

In our case, we use Malliavin’s differentiability of the quadratic-exponential

BSDE with jumps (see Ankirchner et al. (2007), Fujii and Takahashi (2018)).

As in Fujii and Takahashi (2018), we consider the following quadratic-

exponential BSDE:

Y (t) = ξ −

∫ T

t

Z(s)dW (s)−

∫ T

t

∫

R0

Υ(s, ζ)Ñ(ds, dζ)

+

∫ T

t

g

(
s, Y (s), Z(s),

∫

R0

p(ζ)G(s,Υ(s, ζ))ν(dζ)

)
ds .(3.3.1)

for t ∈ [0, T ] where ξ : Ω → R, g : Ω × [0, T ] × R × R × R → R, and

pi : R → R, Gi : [0, T ] × R → R for each i = 1, . . . , k. The driver

g

(
t, Y (t), Z(t),

∫
R0
p(ζ)G(t,Υ(t, ζ))ν(dζ)

)
, satisfies the standard conditions

and Assumption (2), where the last arguments denotes a k-dimensional vec-

tor whose i-th element is given by
∫
R0
pi(ζ)Gi(s,Υi(s, ζ))νi(dζ). Fujii and

Takahashi (2018) assume that for every i ∈ {1, . . . , k}, the functions pi and

Gi(t,Υ) are continuous, with pi satisfying
∫
R0

|pi(ζ)|2νid(ζ) <∞. The func-

tion Gi(t, v) is continuous in both arguments and one-time continuously dif-

ferentiable with respect to v.
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Assumption 3. (Fujii and Takahashi (2018)) Let vt =
∫
R0
p(ζ)G(t,Υ(t, ζ))ν(dζ)

and v′t =
∫
R0
p(ζ)G(t,Υ′(t, ζ))ν(dζ).

(i) The terminal value is Malliavin differentiable; ξ ∈ D1,2.

(ii) For eachm > 0 and for every (y, z,Υ) ∈ R×R×R satisfying |y|, ||Υ||L∞(ν) ≤

m, the driver g(t, y, z,Υt), t ∈ [0, T ] belongs to D1,2 and its Malliavin deriva-

tives are denoted by Dsg(t, y, z, vt) and Ds,ζg(t, y, z, vt). Furthermore, the

driver g is continuously differentiable with respect to its state variables.

(iii) For every m > 0 and (y, z,Υ), (y′, z′,Υ′) ∈ R×R×R, satisfying |y|, |y′|,

||Υ||L2
ν
, ||Υ′||L2

ν
≤ m, the Malliavin derivative of the driver satisfies the fol-

lowing local Lipschitz conditions;

|Di
sg(t, y, z, vt)−Di

sg(t, y
′, z′, v′t)| ≤ Km,i

s (|y − y′|+ |vt − v′t|+ (1 + |z|

+|z′|+ |vt|+ |v′t|)|z − z′|)

for ds-a.e. s ∈ [0, T ] with i ∈ 1, . . . , d, and

|Di
s,ζg(t, y, z, vt)−Di

s,ζg(t, y
′, z′, v′t)| ≤ Km,i

s,ζ (|y − y′|+ |vt − v′t|+ (1 + |z|

+|z′|+ |vt|+ |v′t|)|z − z′|)

for ds-a.e. s ∈ [0, T ] with i ∈ 1, . . . , k. For everm > 0 and (s, ζ), (Km,i
s (t), t ∈

[0, T ])i∈1,...,d and (Km,i
s,ζ (t), t ∈ [0, T ])i∈1,...,d are R+-valued Ft-progressively

measurable processes.

(iv) There exists some positive constant r ≥ 2 such that

∫

[0,T ]×Rk

(
E
[
|Ds,ζξ|

rq +
( ∫ T

0

|Ds,ζg(t, 0)|dt
)rq

+ ||Km||2rq
]) 1

q

Ñ(dt, dζ) <∞

hold for ∀q ≥ 1 and ∀m > 0.

Fujii and Takahashi (2018) (in Theorem 5.1), proved that under the above

assumptions the solution (Y, Z,Υ) ∈ S2×H2
BMO(W )×H2

BMO(N) of the BSDE

(3.3.1) is Malliavin differentiable with respect to W and Ñ . i.e.
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(i) There exists a unique solution (DsY,DsZ,DsΥ) ∈ S2 ×H2 ×H2 to the

BSDE

DsY (t) = Dsξ −

∫ T

t

DsZ(u)dW (u)−

∫ T

t

∫

R0

DsΥ(u, ζ)Ñ(du, dζ)

+

∫ T

t

[
Dsg(u,Θ) + ∂yg(u,Θ)DsY (u) + ∂zg(u,Θ)DsZ(u)

+∂vg(u,Θ)

∫

R0

p(ζ)∂ΥG(u,Υ(u, ζ))Ds(Υ(u, ζ))ν(dζ)

]
du,

(3.3.2)

for 0 ≤ s ≤ t ≤ T where Θ := (Y (t), Z(t),
∫
R0
p(ζ)G(u,Υ(u, ζ))ν(dζ)).

The solution satisfies
∫ T
0
||DsY,DsZ,Ds,ζΥ||2ds <∞.

(ii) There exists a unique solution (Ds,ζY,Ds,ζZ,Ds,ζΥ) ∈ S2 ×H2 ×H2 to

the BSDE

Ds,ζY (t) = Ds,ζξ −

∫ T

t

Ds,ζZ(u)dW (u)

−

∫ T

t

∫

R0

Ds,ζΥ(u, ζ)Ñ(du, dζ)

+
1

ζ

[ ∫ T

t

g

(
u, Y (u) + ζDs,ζY (u), Z(u) + ζDs,ζZ(u),

∫

R0

p(ζ)G
(
u,Υ(u, ζ) + ζDs,ζΥ(u, ζ)

)
ν(dζ)

)

−g(u,Θ)

]
du,

(3.3.3)

where 0 ≤ s ≤ t ≤ T , ζ 6= 0 and for ζ2ν(ζ)ds− a.e. (s, ζ) ∈ [0.T ]×R0.

The solution satisfies
∫ T
0

∫
R0

||DsY,DsZ,Ds,ζΥ||2ζ2ν(ζ)ds <∞.

3.4 Capital allocation

For this chapter, we consider the terminal condition ξ of the form ξ(ǫ) =

ξ+ ǫη, where ξ, η ∈ L∞(FT ). We will also focus on Malliavin derivative with
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respect to the Brownian motion W . Hence, there exists a constant c ∈ R

such that

sup
ǫ∈U

||ξ(ǫ)||∞ ≤ ||ξ||∞ + ||η||∞ sup
ǫ∈U

|ǫ| < c,

for every compact set U ⊂ R. In addition, the functional ǫ 7→ ξ(ǫ) is dif-

ferentiable and the derivative is given by Dsξ(ǫ) = η. The BSDE version of

the dynamic gradient allocation is defined as the directional derivative of the

risk measure ρt at the point ξ in the direction of ηi, that is:

lim
ǫ→0

ρt(ξ + ǫηi)− ρt(ξ)

ǫ
:= Dηiρt(ξ) i = 1, 2, . . . , n . (3.4.1)

and from Definition 3.2.4 we have that

Dηiρt(ξ) = DηiY
ξ(t) i = 1, 2, . . . , n .

The Malliavin derivative given in Di Nunno et al. (2009) (in Definition A.10)

is as follows

DηiY
ξ(t) = 〈DsY (t), h〉 =

∫ T

0

DsY hi(s)ds

for all

ηi =

∫ t

0

hi(s)ds,

is a Malliavin directional derivative in the direction of ηi with respect to the

Brownian motion, with hi ∈ D ⊆ L2([0, T ]), i = 1, . . . , n. See the Appendix

Section for the meaning of D. We observe that the Malliavin directional

derivative generalizes the classical Gâteaux-derivative. The inner product

〈DsY, h〉H1 is given by

〈DsY (t), h〉 = 〈Dsξ, h〉 −

∫ T

t

〈DsZ(u), h〉dW (u)

−

∫ T

t

∫

R0

〈DsΥ(u, ζ), h〉Ñ(du, dζ)

+

∫ T

t

[
∂zg(u, Θ̂)〈DsZ(u), h〉

1Note that H is the Cameron-Martin space defined in Chapter 2.
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+∂vg(u, Θ̂)

∫

R0

p(ζ)∂ΥG(u,Υ(u, ζ))〈DsΥ(u, ζ), h〉ν(dζ)

]
du,

(3.4.2)

for 0 ≤ t ≤ T where Θ̂ := (Z(t),
∫
R0
p(ζ)G(u,Υ(u, ζ))ν(dζ)). Equation

(3.4.1) is the directional derivative of the risk measure ρt at the point ξ (the

portfolio) in the direction of ηi (subportfolio i). It generalizes the concept

given in (2.6.7). We also suppose that ξ =
∑n

i=1 ηi, that is the total sum

of the subportfolio should equal to the overall portfolio. Now we are in a

position to provide the main result on the representation of the dynamic risk

capital allocations as a dynamic gradient allocation.

3.5 Representation of dynamic risk capital

allocations

In this section, we derive the dynamic risk capital allocation induced from

BSDEs with jumps. We also obtain the representation of BSDE based dy-

namic convex and dynamic coherent risk measures. We follow the approach

of Kromer and Overbeck (2014) in deriving the representation of capital al-

location, BSDE based dynamic convex and coherent risk measures.

Theorem 3.5.1. Let ξ, ηi ∈ L∞(FT ), such that ξ =
∑n

i=1 ηi for each i =

1, 2, . . . , n and DηiY (t) exists. Suppose that ∂zg(t, Θ̂) and

∂vg(t, Θ̂)p(ζ)∂ΥG(t,Υ(t, ζ)) belong to BMO(P ). Then the dynamic gradient

allocations can be represented by:

DηiY (t) = Dηiρt(ξ) = EQξ

[−ηi | Ft] , n = 1, 2, . . . , n ,

where Qξ is given by

dQξ

dP
:= E

(∫ t

0

∂zg(u, Θ̂)dW+

∫ t

0

∫

R0

p(ζ)∂vg(u, Θ̂)∂ΥG(u,Υ(u, ζ))Ñ(du, dζ)

)
(t) .

(3.5.1)
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Proof. Since belong to BMO(P ), then the stochastic integrals in (3.5.1) are

said to be BMO(P )-martingales and the stochastic exponential is a true mar-

tingale (Morlais (2009b)). From (Di Nunno et al. (2009) Theorem 12.21,) a

new equivalent probability measure Qξ is defined by equation (3.5.1). Fur-

thermore, the processes

dWQξ

(t) = dW (t)− ∂zg(t, Θ̂)dt

and

ÑQξ

(dt, dζ) = Ñ(dt, dζ)− p(ζ)∂vg(t, Θ̂)∂ΥG(t,Υ(t, ζ))ν(dζ)dt

are the Qξ-Brownian motion and Qξ-compensated random measure respec-

tively. We define a function Φi(t) by Φi(t) := EQξ

[−ηi | Ft] for each

i = 1, . . . , n and t ∈ [0, T ]. Then from the martingale representation property

there exists predictable processes Zηi(t) and Υηi(t, ζ) integrable with respect

to WQξ

and ÑQξ

respectively such that

Φi(t) = Φi(T )−

∫ T

t

Zηi(u)dW (u)Q
ξ

−

∫ T

t

∫

R0

Υηi(u, ζ)ÑQξ

(du, dζ) 0 ≤ t ≤ T

= −ηi −

∫ T

t

Zηi(u)dW (u) +

∫ T

t

Zηi(u)∂zg(u, Θ̂)du

−

∫ T

t

∫

R0

Υηi(u, ζ)Ñ(du, dζ)

+

∫ T

t

∫

R0

p(ζ)∂vg(u, Θ̂)∂ΥG(u,Υ(u, ζ))Υηi(u, ζ)ν(dζ)du 0 ≤ t ≤ T .

Comparing the above equation with the BSDE representing the gradient

allocation (3.4.2) and we know that under the Assumptions 1 to 4 that (3.4.2)

has a unique solution, we can conclude that the dynamic gradient allocation

has the representation

DηiY (t) = Dηiρt(ξ) = EQξ

[−ηi | Ft] , i = 1, 2, . . . , n . (3.5.2)
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Remark: This result generalizes Theorem 3.1 in Kromer and Overbeck

(2014).

From the above theorem, we can immediately obtain the representation

result for BSDE based dynamic convex and dynamic coherent risk measures.

The results of the representation of BSDE based dynamic convex and co-

herent risk measures are established from the full allocation property of

the Aumann-Shapley allocation (the static case given in Equation (2.6.8))

(Kromer and Overbeck (2014)).

Corollary 3.5.2. Let ξ ∈ L∞(FT ). Suppose that ℓ is convex in z and Υ and

∂Zβξg(s, Θ̂), ∂vg(t, Θ̂)p(ζ)∂ΥβξG(t,Υβξ(t, ζ)) belong to the class of BMO(P ),

for any β ∈ [0, 1], where Zβξ(t), Υβξ(t, ·) are the controls to the quadratic-

exponential BSDE (3.3.1), with terminal condition ρt,β(ξ) = −βξ. Then, the

corresponding quadratic-exponential BSDE-based dynamic convex risk mea-

sure can be represented by

ρt(ξ) = E[−Λξ(T, t)ξ | Ft] ,

where

Λξ(T, t) =

∫ 1

0

E(Mβξ(T ))

E(Mβξ(t))
dβ , ∀t ∈ [0, T ] , (3.5.3)

for Mβξ defined by

Mβξ(t) =

∫ t

0

∂Zβξg(s, Θ̂)dW (s)+

∫ t

0

∫

R0

∂vg(s, Θ̂)p(ζ)∂ΥβξG(s,Υβξ(s, ζ))Ñ(ds, dζ) .

Proof. Following Kromer and Overbeck (2014), we consider the following

ρt(ξ) = ρt(1ξ)− ρt(0ξ) =

∫ 1

0

d

dβ
ρt(βξ)dβ

=

∫ 1

0

lim
ǫ→0

ρt((β + ǫ)ξ)− ρt(βξ)

ǫ
dβ

=

∫ 1

0

Dξρt(βξ)dβ .

From the previous theorem, we have

ρt(ξ) =

∫ 1

0

EQβξ

[−ξ | Ft]dβ . (3.5.4)
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Then since ξ ∈ L∞(FT ), Q
βξ is an equivalent probability measure, ∀β ∈ [0, 1].

Hence ξ is Qβξ-a.s. bounded. This implies that
∫ 1

0
EQβξ

[−ξ | Ft]dβ < ∞.

Define Λξ(t) = E(Mβξ(t)). Then, (3.5.4) can be written by

ρt(ξ) =

∫ 1

0

EQβξ

[−ξ | Ft]dβ =

∫ 1

0

1

Λβξ(t)
EP

βξ

[−Λβξ(T )ξ | Ft]dβ

= E

[
−
(∫ 1

0

Λβξ(T )

Λβξ(t)
dβ
)
ξ | Ft

]

= E[−Λξ(T, t)ξ | Ft],

which completes the proof.

Corollary 3.5.3. Let ξ ∈ L∞(FT ). Suppose that g is of the form g(t, z,Υ) =

ℓ(t, z,Υ) is convex and positively homogeneous in both z and Υ. More-

over, suppose that ∂zℓ(t, Z
βξ(t),Υβξ(t, ·)), ∂Υℓ(t, Zβξ(t),Υβξ(t, ·)) belong to

the class of BMO(P ), for any β ∈ [0, 1], which represent the portfolio

weights. Then, the corresponding BSDE-based dynamic coherent risk mea-

sure can be represented by

ρt(ξ) = EQβξ

[−ξ | Ft] ,

where the Qβξ-measure is given by

dQβξ

dP

∣∣∣∣
Ft

= exp

{
−

∫ t

0

∂zℓ(t, Z
ξ(s),Υξ(s, ζ))dW

−
1

2

∫ t

0

∂zℓ(s, Z
ξ(t),Υξ(s, ζ))2ds

+

∫ t

0

∫

R0

(
ln
(
1− ∂Υℓ(s, Z

ξ(s),Υξ(s, ζ))
)

+∂Υℓ(s, Z
ξ(s),Υξ(s, ζ))

)
ν(dζ)ds

+

∫ t

0

∫

R0

ln
(
1− ∂Υℓ(s, Z

ξ(t),Υξ(s, ζ))
)
Ñ(ds, dζ)

}
.

(3.5.5)

Proof. From Corollary 3.5.2, we have the following representation

ρt(ξ) = E[−Λξ(T, t)ξ | Ft],
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with Λ defined in (3.5.3). Given that g(t, z,Υ) = ℓ(t, z,Υ) and ℓ is convex

and positively homogeneuos, this implies that the corresponding BSDE-based

dynamic risk measure ρ(·) satisfies

Y βξ(t) = ρt(βξ) = βρt(ξ) = βY ξ(t) dt⊗ dP − a.s.

for c > 0 and 0 ≤ t ≤ T . We show this by considering two BSDEs given by

Y βξ(t) = −βξ −

∫ T

t

Zβξ(s)dW (s)−

∫ T

t

∫

R0

Υβξ(s, ζ)Ñ(ds, dζ)

+

∫ T

t

g
(
s, Zβξ(s),Υβξ(s, ζ))

)
ds ,

and

Y ξ(t) = −ξ −

∫ T

t

Zξ(s)dW (s)−

∫ T

t

∫

R0

Υξ(s, ζ)Ñ(ds, dζ)

+

∫ T

t

g
(
s, Zξ(s),Υξ(s, ζ))

)
ds .

Then, from the proof of Proposition 6.2.3(b) in Delong Delong (2013) we

conclude that Y βξ(t) = βY ξ(t), Zβξ(t) = βZξ(t) and Υβξ(t, ζ) = βΥξ(t, ζ).

The above results imply that for the representation of the BSDE coherent

risk measure, the process E(Mβξ(t))(·) appearing in (3.5.3) becomes

E

(∫ t

0

∂zg(s, Z
βξ(s),Υβξ(s, ζ))dW (s)+

∫ t

0

∫

R0

∂Υg(s, Z
βξ(s),Υβξ(s, ζ))Ñ(ds, dζ)

)
(t)

= exp

{
−

∫ t

0

∂zg(s, βZ
ξ(t), βΥξ(t, ζ))dW −

1

2

∫ t

0

∂zg(s, βZ
ξ(s), βΥξ(s, ζ))2ds

+

∫ t

0

∫

R0

(
ln
(
1− ∂Υg(s, βZ

ξ(s), βΥξ(s, ζ))
)
+ ∂Υg(s, βZ

ξ(s), βΥξ(s, ζ))

)
ν(dζ)ds

+

∫ t

0

∫

R0

ln
(
1− ∂Υg(s, βZ

ξ(s), βΥξ(s, ζ))
)
Ñ(ds, dζ)

}
,

= exp

{
−

∫ t

0

∂zg(s, Z
ξ(s),Υξ(s, ζ))dW −

1

2

∫ t

0

∂zg(s, Z
ξ(s),Υξ(s, ζ))2ds

+

∫ t

0

∫

R0

(
ln
(
1− ∂Υg(s, Z

ξ(s),Υξ(s, ζ))
)
+ ∂Υg(s, Z

ξ(t),Υξ(s, ζ))

)
ν(dζ)ds
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+

∫ t

0

∫

R0

ln
(
1− ∂Υg(s, Z

ξ(t),Υξ(s, ζ))
)
Ñ(ds, dζ)

}

= E

(∫ t

0

∂zg(s, Z
ξ(s),Υξ(s, ζ))dW (s) +

∫ t

0

∫

R0

∂Υg(s, Z
ξ(s),Υξ(s, ζ))Ñ(ds, dζ)

)
(t)

= E(M ξ(t)) ,

because of the positive homogeneity of g in z and Υ. In the case of dynamic

coherent risk measure, Λξ(T, t) is given by

Λξ(T, t) =

∫ 1

0

E(Mβξ(T ))

E(Mβξ(t))
dβ =

E(M ξ(T ))

E(M ξ(t))
. (3.5.6)

Hence, the BSDE-based coherent risk measure is given by

ρt(ξ) = EQβξ

[−ξ | Ft] ,

where the Q-measure is defined in (3.5.5).

We obtain similar results as Kromer and Overbeck (2014), where the ex-

ponential martingale of the BSDE based convex risk measure is dependent

on all portfolio weights β ∈ [0, 1]. The representation of coherent risk mea-

sure is dependent only on β = 1. The difference between these two risk

representations is emphasized in Equation (3.5.6).

3.6 Example

In this section we apply the results presented early to dynamic entropic risk

measure and static coherent entropic risk measures to obtain the gradient

capital allocation for each risk measure under the jump framework.

Example 3.6.1. We consider the well known dynamic entropic risk measure

given by

ρt(ξ) =
1

γ
lnE

[
e−γξ | Ft

]
, γ > 0, t ∈ [0, T ] .
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This example was also considered in Kromer and Overbeck (2014). It has

been proved that the above entropic measure is a unique solution of the so

called canonical quadratic-exponential BSDE (g, ξ) of the form (See Karoui

et al. (2016))

ρt(ξ) = −ξ +

∫ T

t

(γ
2
|Zξ(s)|2 +

1

γ

∫

R0

(
exp(γΥξ(s, ζ))− γΥξ(s, ζ)− 1

)
ν(dζ)

)
ds

−

∫ T

t

Zξ(s)dW (s)−

∫ T

t

∫

R0

Υξ(s, ζ)Ñ(ds, dζ) . (3.6.1)

Note that the generator is given by

g(t, Z,Υ(ζ)) =
γ

2
|Z|2 +

1

γ

∫

R0

(
exp(γΥ(t, ζ))− γΥ(t, ζ)− 1

)
ν(dζ).

From the partial derivatives

∂zg(t, Z,Υ(ζ)) = γZ

and

∂Υg(t, Z,Υ(t, ζ)) =

∫

R0

(
exp(γΥ(t, ζ))− 1

)
ν(dζ)

.

Suppose that ξ is from a class of smooth functions such that Di
s(ξ),

Di
s,ζ(ξ), for 0 ≤ s ≤ t ≤ T , belong to BMO(P ) and ‖ξ‖1,2 exists and is

finite for i = 1, . . . , d and t ∈ [0, T ]. We define a function ϕ(ξ) = e−γξ.

Then from the boundedness of ξ and of any β ∈ [0, 1], we have that ϕ(ξ) is

Malliavin differentiable and the generalized Clark-Ocone formula (Di Nunno

et al. (2009), Theorem 12.20)

e−γβξ = E[e−γβξ] +

∫ T

0

E[Ds(e
−γβξ) | Ft]dW (t) +

∫ T

0

∫

R0

E[Ds,ζ(e
−γβξ) | Ft]Ñ(dt, dζ) .

Define Γβξ(t) := E[e−γβξ | Ft] is a positive bounded martingale for ξ ∈ FT .

Then

Γβξ(t) = Γβξ(0) +

∫ t

0

E[−γβe−γβξDs(ξ) | Fs]dW (s)

+

∫ t

0

∫

R0

E[−γβe−γβξDs,ζ(ξ) | Fs]Ñ(ds, dζ)
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= Γβξ(0) + γ

∫ t

0

Γβξ(s)Zβξ(s)dW (s) + γ

∫ t

0

∫

R0

Γβξ(s)Υβξ(s, ζ)Ñ(ds, dζ) ,

where

Zβξ(t) =
−βE[e−γβξDs(ξ) | Ft]

E[e−γβξ | Ft]
and Υβξ(s, ζ) =

−βE[e−γβξDs,ζ(ξ) | Ft]

E[e−γβξ | Ft]
,

(3.6.2)

are the predictable control processes for the entropic risk measure defined by

the BSDE (3.6.1). Furthermore, Zβξ(·) and Υβξ(·, ζ) belong to the class of

BMO(P ), hence Γβξ(t) satisfies the following

Γβξ(t) = Γβξ(0) exp
{
γ

∫ t

0

Zβξ(s)dW (s)−
γ2

2

∫ t

0

|Zβξ(s)|2ds

+

∫ t

0

∫

R0

[ln(1 + γΥβξ(s, ζ))− γΥβξ(s, ζ)]ν(dζ)ds

+

∫ t

0

∫

R0

ln(1 + γΥβξ(s, ζ))Ñ(ds, dζ)
}
.

As a result, the process N (t) := Γβξ(t)/Γβξ(0) corresponds to the stochas-

tic exponential E to the process Mβξ(t) in (3.5.1) defined by

Mβξ(t) =

∫ t

0

∂zg(s, Z
βξ(s),Υβξ(s, ζ))dW (s)+

∫ t

0

∫

R0

∂Υg(s, Z
βξ(s),Υβξ(s, ζ))Ñ(ds, dz) ,

for t ∈ [0, T ].

Now we define the equivalent probability measure under Qβξ as

dQβξ

dP

∣∣
Ft

= N (t).

Under the new probability measure Qβξ, the processes

dWQβξ

(t) = dW (t)− γZβξ(t)dW (t)

and

ÑQβξ

(dt, dζ) = Ñ(dt, dζ)− γ

∫

R0

Υβξ(t, ζ)ν(dζ)dt

are the Q- Brownian motion and Q-compensated random measure respec-

tively. Define a function Φi(t) by Φi(t) := EQβξ

[−ηi | Ft] for each i = 1, . . . , n.
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Let Zηi(t) and Υηi(t, ζ) be predictable processes, then from the martingale

representation theorem we have,

Φi(t) = −ηi −

∫ T

t

Zηi(s)dWQβξ

(s)−

∫ T

t

∫

R0

Υηi(s, ζ)ÑQβξ

(ds, dζ)

= −ηi −

∫ T

t

Zηi(s)dW (s) +

∫ T

t

Zηi(s)γZβξ(s)ds−

∫ T

t

∫

R0

Υηi(s, ζ)Ñ(ds, dζ)

+

∫ T

t

∫

R0

Υηi(s, ζ)γΥβξ(s, ζ)ν(dζ)ds .

Moreover,

Φi(t) = EQβξ

[−ηi | Ft] =
1

N (t)
EP [−ηiN (T ) | Ft]

=
Γ(0)

Γ(t)
EP
[
− ηi

Γ(T )

Γ(0)

∣∣∣∣Ft

]

=
1

Γ(t)
EP [−ηiΓ(T )|Ft]

=
EP [−ηie−γβξ|Ft]

EP [e−γβξ|Ft]

= −EP
[
ηi

e−γβξ

EP [e−γβξ]

∣∣∣∣Ft

]
. (3.6.3)

Therefore, the gradient capital allocation of the entropic risk measure un-

der the jump framework is given by (3.6.3). If ξ is the portfolio and ηi is

the subportfolio. Then Equation (3.6.3) describes the dynamic capital risk

contribution of the subportfolio ηi to the risk of portfolio ξ at time t, i.e.,

Dηiρt(βξ) = −EP
[
ηi

e−γβξ

EP [e−γβξ]

∣∣∣∣Ft

]
.

In addition, based on the full allocation property of the Aumann-Shapely

allocation introduced in Section 2.6.3 holds and applying the results of Corol-

lary 3.5.2, we can represent the BSDE-based dynamic entropic risk measure

by

ρt(ξ) =

∫ 1

0

Dηiρt(βξ)dβ = EP
[
−

∫ 1

0

(
e−γβξ

EP [e−γβξ]

)
dβ ηi

∣∣∣∣Ft

]
i = 1, 2, . . . , n.
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Example 3.6.2. In the second example we consider the static entropic co-

herent risk measure at level c defined by (Föllmer and Knispel (2011) in

Definition 3.1) as follows

ρ(ξ) = inf
γ>0

( c
γ
+

1

γ
lnE

[
e−γξ

])
(3.6.4)

for c > 0 and the risk aversion constant γ > 0. From Proposition 3.1 by

Föllmer and Knispel (2011) there exists a unique γc > 0 such that c =

EQ[
∫

dQ
dP

ln( dQ
dP

)] and the infimum of Equation (3.6.4) is attained, i.e.

ρ(ξ) =
c

γc
+

1

γc
lnE

[
e−γcξ

]
.

The Gâteaux-differentiable of ρ is given by

∇ρ(βξ) = −
e−γcβξ

E[e−γcβξ]
. (3.6.5)

Since the entropic coherent risk measure satisfies the property of positive

homogeneity (Föllmer and Knispel (2011)), then the full allocation property

of Aumann-Shapley holds. Hence, ∇ρ(βξ) will reduce to ∇ρ(ξ) and Λβξ for

this case will be given by

Λβξ =

∫ 1

0

∇ρ(ξ)dβ = −

∫ 1

0

e−γcξ

E[e−γcξ]
dβ,

and applying the results of Corollary 3.5.2, we have that ρ form Equation

(3.6.4) can be represented by

ρ(ξ) = E

[
−

(∫ 1

0

e−γcξ

E[e−γcξ]
dβ

)
ξ
]
.

3.7 Conclusion

We studied the capital allocation of risk measures constructed from solu-

tions of BSDE with jumps. From the differentiability results of BSDE with

jumps and the martingale representation property, we were able to provide

the capital allocation representation of the risk measures. We applied the
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representation obtained in Theorem 3.5.1 to entropic risk measure to achieve

the allocation in terms of conditional expectation under the equivalent Q

measure. The current results are based on a fixed time horizon, future work

can study capital allocation representation of maturity independent risk mea-

sures.
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Chapter 4

Ergodic BSDE risk

representation and capital

allocation

4.1 Introduction

In this chapter, we study the ergodic BSDE-based risk representation and

dynamic capital allocation, where we consider the maturity-independent risk

measure. We use the differentiability results of BSDEs to determine capital

allocation. Moreover, we give an example in the form of a forward entropic

risk measure. Chong et al. (2019) applied the ergodic BSDEs to risk mea-

sure. In their work, Chong et al. (2019) provided a general representation of

maturity independent risk measures using ergodic BSDE.

In this Chapter, we extend the work of Chong et al. (2019) to obtain cap-

ital allocation for maturity-independent risk measure. The dynamic capital

allocation problems studied in literature are on a fixed time horizon. See, for

example, Kromer and Overbeck (2014). They provided a representation of

dynamic capital allocation using dynamic risk measures that arise as a solu-

tion to BSDEs. Later, Kromer and Overbeck (2017), considered dynamic risk
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measures that occur as a solution to backward stochastic Volterra integral

equations, which allows for position processes and not only FT -measurable

random variables. In both these papers, Kromer and Overbeck extended the

capital allocation problem from static to the continuous-time dynamic case.

(See, Cherny (2009) for dynamic allocation in discrete-time and Mabitsela

et al. (2018) for extension of dynamic allocation to jumps).

We organise this chapter as follows: in Section 4.2, we provide the tools

that we will use throughout. We state the market conditions and under-

lying assumptions we working under, and provide definitions of a forward

performance process, maturity-independent risk measure and capital alloca-

tion method. In Section 4.3 and 4.4 we give a brief review of ergodic BSDEs

and forward entropic risk measures. We present the representation of capital

allocation based on maturity-independent risk measures. Finally, apply the

maturity-independent capital allocation results to the forward-entropic risk

measure and draw up with concluding note.

4.2 Preliminaries

In this section, we state the definitions and notations we use throughout the

chapter. We consider a filtered probability space (Ω,F , {Ft}t≥0, P ) satisfying

the usual conditions (completeness and right-continuity). The filtration Ft, is

generated by a d-dimensional Brownian motion denoted by W = (W (t))t≥0,

that is Ft := σ(W (s) : 0 ≤ s ≤ t). We assume the financial market consists

of a risk-free bond earning a zero interest rate and n risky assets. The price

process of the n risky assets solves for each i = 1, . . . , n, with n ≤ d,

dSi(t) = Si(t)µ(V (t))dt+ Si(t)σ(V (t))dW (t), Si(0) > 0, (4.2.1)

where µ(V (t)) and σ(V (t)) are continuous functions on the interval t ≥

0, representing the price appreciation rate (or the drift) and the volatility

respectively. Both the appreciation rate and the volatility are affected by a
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stochastic factor, which is modelled by the d-dimensional process V satisfying

the following

dV (t) = ν(V (t))dt+ κdW (t). (4.2.2)

We make the following model assumptions on the coefficients of the assets

and factor processes.

Assumption 4. (i) The drift and volatility coefficients, µi(v) ∈ R and

σi(v) ∈ R1×d respectively, are uniformly bounded for v ∈ Rd .

(ii) Let σ(v) := (σ1(v), . . . , σn(v))tr, be the volatility matrix with a full row

rank n.

(iii) Define the market price of risk as

θ(v) := σ(v)tr[σ(v)σ(v)tr]−1µ(v), (4.2.3)

for v ∈ Rd, is uniformly bounded and Lipschitz continuous (Chong et

al. (2019)).

Assumption 5. (i) The coefficients, ν(v) ∈ Rd, of the drift term satisfy

a dissipative condition, that is, there exists a large enough constant

Cν > 0, for v1, v2 ∈ Rd such that the drift coefficient ν(v) ∈ Rd of the

factor model satisfies:

(ν(v1)− ν(v2))(v1 − v2) ≤ −Cν |v1 − v2|
2.

(ii) The volatility matrix κ ∈ Rd×d is positive definite and normalized to

|κ| = 1.

According to Chong et al. (2019), Assumption 5 allows for the stochastic

factor process V to have a unique invariant measure. Hence, making the

stochastic factor process to be ergodic and hence, any two paths will con-

verge to each other exponentially fast.

Next, we consider π̃ = (π̃1, π̃2, . . . , π̃n)tr to represent the amount of wealth

invested in the stocks, where π̃i is self-financing and represent the amount
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of wealth invested into asset i. Consider an investor with initial wealth

X0 = x ∈ R and current wealth process X(t), satisfying

dX(t) =
n∑

i=1

π̃it
dSi(t)

Si(t)
= π̃tσ(V (t))θ(V (t))dt+ π̃tσ(V (t))dW (t). (4.2.4)

Similar to Liang and Zariphopoulou (2017) and Chong et al. (2019), we

rescale the investment strategy by the volatility throughout this chapter,

πt = π̃tσ(V (t)). (4.2.5)

Consequently, the wealth process satisfies

dX(t) = π̃t
[
θ(V (t))dt+ dW (t)

]
. (4.2.6)

We define the set of admissible investment strategies for any t ≥ 0 by

A[0,t] := {πt ∈ L2
BMO[0, t] : πs ∈ Π for s ∈ [0, t]},

where Π is a closed and convex set in Rd. Denote by A = ∪t≥0A[0,t] the

set of admissible investment strategies for all t ≥ 0. In the next subsection

we recall the definition and properties of maturity-independent risk measure

introduced by Zariphopoulou and Žitković (2010).

4.2.1 Maturity-independent risk measures

At time t ∈ [0, T ], the dynamic risk measure evaluates the risk of a financial

position that expires at time T (Delong (2013)). Hence, the investment time

horizon is fixed for t ∈ [0, T ]. Furthermore, at time t = 0, the financial

positions considered are both introduced and mature within the pre-defined

investment horizon. However, Chong et al. (2019) point out that we fre-

quently have to assess the risk of different financial position without complete

knowledge of when they will be introduced, when will they mature, and their

sizes. Zariphopoulou and Žitković (2010), introduce the dynamic risk mea-

sures which are maturity-independent to accommodate arbitrary upcoming
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risk positions.

We start with defining the natural domain of the maturity-independent

risk measures, that is the space that contains all risk positions that are

Ft measurable and bounded for all times t > 0. We recall the definition

of maturity-independent convex risk measures from Chong et al. (2019).

These properties of maturity-independent risk measures are proven by Za-

riphopoulou and Žitković (2010) (in Theorem 4.14).

Definition 4.2.1. A functional ρ : L → R is a maturity-independent convex

risk measure if it satisfies the following properties, for all ξ, ξ̄ ∈ L and ̟ ∈

[0, 1]:

(i) Anti-positivity: ρ(ξ) ≤ 0, ∀ξ ≥ 0.

(ii) Convexity: ρ(̟ξ + (1−̟)ξ̄) ≤ ̟ρ(ξ) + (1−̟)ρ(ξ̄).

(iii) Translation invariance: ρ(ξ −m) = ρ(ξ) +m, ∀m ∈ R.

(iv) Replication and maturity independence: For all t ≥ 0 and admissible

investment strategies π ∈ A,

ρ(ξ) = ρ

(
ξ +

∫ t

0

πs
dS(s)

S(s)

)
.

The convexity property takes into account the nonlinearity of a risk mea-

sure associated with the liquidity of a large financial position. Suppose the

standard normalization ρ(0) = 0, then together with the translation invari-

ance property mean that ρ(ξ) is the minimum capital required to the position

in ξ acceptable. As asserted in Zariphopoulou and Žitković 2010, the differ-

ence between maturity independent and standard risk measure is the choice

of the domain L and the case that Property 4.2.1(iv) is valid for all maturi-

ties t ≥ 0.

Maturity-independent risk measures are constructed using forward perfor-

mance processes, developed by Musiela and Zariphopoulou (2006), Musiela
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and Zariphopoulou (2007), Musiela, Zariphopoulou, et al. (2008). Consid-

ering that, the forward performance processes are defined for all t ∈ [0,∞].

Thus, maturity-independent risk measures are computed for all times.

We recall the definition of the forward performance process found in Za-

riphopoulou and Žitković (2010) (see also Chong et al. (2019), Musiela and

Zariphopoulou (2010b), Musiela and Zariphopoulou (2006), Musiela and Za-

riphopoulou (2007) and Musiela, Zariphopoulou, et al. (2008)).

Definition 4.2.2. A process U(t, x), (t, x) ∈ [0,∞) × R, is a forward per-

formance process if:

(i) for each x ∈ R, U(t, x) is Ft−progressively measurable,

(ii) for each t ≥ 0, the mapping x 7→ U(t, x) is strictly increasing, strictly

concave, continuously differentiable and satisfies the Inada conditions, i.e.,

limx→∞U ′(x) = 0 and limx→−∞ U ′(x) = +∞.

(iii) for all π ∈ A and 0 ≤ t ≤ s,

U(t, Xπ
t ) ≥ EP [U(s,X

π
s )|Ft],

and there exists an optimal π̃ ∈ A such that,

U(t, X π̃
t ) = EP [U(s,X

π̃
s )|Ft],

with Xπ, X π̃ solving Equation (4.2.4).

Unlike the traditional utility function, the forward performance processes

are not bound down to a specific time horizon. One can define them at the

initial time and generate them throughout the time horizon t ∈ [0,∞). These

forward performance processes permit one to be able to measure investment

positions over t ∈ [0,∞).
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4.2.2 Capital allocation

In this subsection we recall the capital allocation method and property.

Consider a portfolio ξ with the risk of ρ(ξ) and sub-portfolios ξi ∈ L,

i = 1, 2, . . . , n such that ξ =
∑n

i=1 ξi. Then the capital allocation problem

is to determine the risk contribution of each sub-portfolio ξi to the overall

portfolio risk. That is we require the following

ρ(ξ) =
n∑

i=1

ρ(ξi). (4.2.7)

Equation (4.2.7) is known as the capital allocation property, where the port-

folio risk is fully distributed to each sub-portfolio (described in Chapter 3 of

this thesis). The frequently used method for capital allocation is the gradient

allocation. This method is given by the Gâteaux derivative of ρ at ξ in the

direction of ξi (see also Kromer and Overbeck (2014) and Tsanakas (2009)),

that is

∇ξiρ(ξ; ξi) = lim
u→0

ρ(ξ + uξi)− ρ(ξ)

u
=

d

du
ρ(ξ + uξi)

∣∣∣∣
u=0

. (4.2.8)

4.3 The Ergodic BSDE

This section, provide a brief review of ergodic BSDE and the assumptions im-

posed on its generator. Consider the following ergodic BSDE also considered

in Chong et al. (2019)

dYt = (−g(Vt, Zt) + λ)dt+ ZtdW (t), 0 ≤ t ≤ T <∞, (4.3.1)

where λ ∈ R is part of the solution and the generator function g : Rd×Rd →

R is defined as

g(v, z) :=
1

2
γ2dist2

{
Π,

z + θ(v)

γ

}
−

1

2
|z + θ(v)|2 +

1

2
|z|2. (4.3.2)

The notation dist{Π, z} represents the distance function from z ∈ Rd to Π.

The generator g satisfies the following assumption.
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Assumption 6. There exist constants K̂ > 0 Cv > 0 and Cz > 0 such that

|g(v, z)| ≤ K
(
1 + |v|+ |z|2), (4.3.3)

|g(t, 0, 0)| ≤ K̂ , (4.3.4)

|g(v1, z)− g(v2, z)| ≤ Cv(1 + |z|)|v1 − v2|, (4.3.5)

and

|g(v, z1)− g(v, z2)| ≤ Cz(1 + |z1|+ |z2|)|z1 − z2| (4.3.6)

for any v1, v2, z1, z2 ∈ Rd.

Let the Assumptions 4 and 5 hold. Liang and Zariphopoulou (2017)

showed in Proposition 10 that Equation (4.3.1) has a unique Markovian so-

lution (Yt, Zt, λ), t ≥ 0. More specifically, there exists a unique λ ∈ R, and

functions y : Rd 7→ R and z : Rd 7→ Rd such that

(Yt, Zt) = (y(Vt), z(Vt)). (4.3.7)

The function y(·) has at most linear growth and is unique up to a constant,

while the function z(·) is bounded with |z(·)| ≤ Cv

Cν−Cv
, where Cν and Cv

appear in Assumption 5 and Assumption 6 respectively.

4.4 Forward entropic risk measures

We recall the definition of forward entropic risk measures introduced by Za-

riphopoulou and Žitković (2010), Chong et al. (2019).

Definition 4.4.1. Let (Yt, Zt, λ) be a solution of ergodic BSDE (4.3.1) and

consider the forward exponential performance process given by

U(x, t) = −e−γx+Yt−λt, (4.4.1)

with (t, x) ∈ [0,∞)×R and γ > 0 is a given constant. In addition, we consider

a risk position ξT ∈ L∞(FT ), where T > 0 is arbitrary and the risk position
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is entered into at the initial time t = 0. Then, the forward entropic risk

measure ρt(ξT , T ), t ∈ [0, T ], is the unique Ft-measurable random variable

that satisfies the indifference condition:

ess sup
π∈A[t,T ]

EP

[
U(x+ ρu(ξT ;T ) +

∫ T

t

π̃t
(
θ(Vt)dt+ dW (t)

)
+ ξT , T )

∣∣∣∣Ft

]

= ess sup
π∈A[t,T ]

EP

[
U(x+

∫ T

t

π̃t
(
θ(Vt)dt+ dW (t)

)
, T )

∣∣∣∣Ft

]
, (4.4.2)

for all (t, x) ∈ [0, T ]× R.

If we take ξ ∈ L and let Tξ := inf{T ≥ 0 : ξ ∈ FT}, then the forward

entropic risk measure of ξ is defined, for t ∈ [0, Tξ], as

ρt(ξ) := ρt(ξ;Tξ).

Consequently, for ξT ∈ L∞(FT ), we have ρt(ξ) := ρt(ξT ;T ).

We emphasise that the forward performance process, U is constructed us-

ing the ergodic BSDE (4.3.1). In addition, the forward performance process

is defined for all t ∈ [0,∞). As a result, the entropic risk measure defined

above can be used to measure risk for investment position with arbitrary

maturities (Chong et al. (2019)).

Chong et al. (2019) (in Theorem 6), studied the representation of forward

entropic risk measures based on BSDE. They showed that if we suppose that

Assumptions 4 and 5 hold and the process Z in the ergodic BSDE (4.3.1)

is uniformly bounded. Then the forward entropic risk measure of a risk

position ξT ∈ L∞(FT ), with an arbitrary maturity T > 0, is defined as the

first component to the solution of the following BSDE:

Y T,ξ
t = −ξT +

∫ T

t

G(Vs, Zs, Z
T,ξ
s )ds−

∫ T

t

ZT,ξ
s dW (s). (4.4.3)

The generator G : Rd × Rd × Rd 7→ R is defined as G(v, z, z̃) := 1
γ

(
g(v, z +

γz̃)−g(v, z)
)
, where g(·, ·) given by Equation (4.3.2). The BSDE (4.4.3) has a
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unique solution (Y T,ξ
t , ZT,ξ

t ), t ∈ [0, T ], where Y T,ξ
t is uniformly bounded and

ZT,ξ
t ∈ L2

BMO[0, T ]. Hence, the forward entropic risk measure of a position

in ξT is given by

ρt(ξT ) = Y T,ξ
t , (4.4.4)

for t ∈ [0, T ].

4.5 Capital Allocation of maturity-independent

risk measure

In this Section, we provide our main results. We derive the capital allocation

of a maturity-independent risk measure by first considering an exponential

forward performance process of the form

U(x, t) = −e−γx+y(Vt)−λt , (4.5.1)

where (Yt, Zt, λ) = (y(Vt), z(Vt), λ) is the solution to the ergodic BSDE

(4.3.1), with the generator g defined in (4.3.2) and the associated optimal

portfolio π∗ ∈ A is given by

π∗
t = min

π∈A

1

2
γ2
[
π −

θ(Vt) + Zt
γ

]2
. (4.5.2)

Consider the following BSDE

Y T,ξ
t = −(ξT + uηi) +

∫ T

t

G(Vs, Zs, Z
T,ξ
s )ds−

∫ T

t

ZT,ξ
s dW (s), (4.5.3)

with a unique solution (Y T,ξ
t , ZT,ξ

t ), where t ∈ [0, T ], Y T,ξ
t is uniformly bounded

and ZT,ξ
t ∈ L2

BMO[0, t]. From the definition of the gradient allocation we need

the differentiability results to the BSDE (4.5.3).

We use the classical differentiability results of BSDEs from Ankirchner

et al. (2007). In their article, Ankirchner et al. (2007), they showed that

under the following conditions on the terminal value and the generator.

63



(C1) Suppose G : Ω × [0, T ]× Rn × Rd × Rd × Rd → R is an adapted mea-

surable function so that G(u, v, z, z̃) = l(ω, t, u, v, z, z̄) + γ2|z|2 where

l(ω, t, u, v, z, z̄) + γ2|z|2 is Lipschitz continuous in (u, v, z, z̃) and con-

tinuously differentiable in (u, v, z, z̃). For all r ≥ 1 and (u, v, z, z̃), the

mapping Rn 7→ Lr, u 7→ l(u, v, z, z̃) is differentiable for all u ∈ Rn,

lim
u′→u

EP

[(∫ T

0

(l(u′, V u′

s , Z
u′

s , Z̃
u′

s )− l(u, V u
s , Z

u
s , Z̃

u
s ))ds

)r ]
= 0

and

lim
u′→u

EP

[(∫ T

0

( ∂
∂u
l(u′, V u′

s , Z
u′

s , Z̃
u′

s )−
∂

∂u
l(u, V u

s , Z
u
s , Z̃

u
s )
)
ds

)r ]
= 0.

(C2) the random variables ξ(u) are FT−adapted and for every compact set

K ⊂ Rn there exists a constant c ∈ R such that supu∈K ||ξ(u)||∞ < c.

For all p ≥ 1 the mapping Rn 7→ Lp, u 7→ ξu is differentiable with

derivative given by ∇ξ.

With these assumptions and the differentiability of the solution of the

ergodic BSDE (Fuhrman et al. (2009)), we have that

∇Y T,ξ
t = −ηi +

∫ T

t

[
∂uG(Vs, Zs, Z

T,ξ
s ) + ∂vG(Vs, Zs, Z

T,ξ
s )∇Vs

+∂zG(Vs, Zs, Z
T,ξ
s )∇Zs + ∂z̃G(Vs, Zs, Z

T,ξ
s )∇ZT,ξ

s

]
ds

−

∫ T

t

∇ZT,ξ
s dW (s) . (4.5.4)

Let ξ =
∑n

i=1 ηi. Then from the above results, the definition of the forward

gradient allocation will be

d

du
ρt(ξ + uηi)

∣∣
u=0

= ∇ηiY
T,ξ
t i = 1, . . . , n.

Inspired by the steps in Kromer and Overbeck (2014), we derive the next the-

orem, which is an extension of their results to dynamic maturity independent

case.

64



Theorem 4.5.1. Suppose Assumption 6 holds and let ξT ∈ L∞(FT ) be the

risk position with an arbitrary maturity T > 0 and ηi ∈ L∞(FT ) for each i =

1, 2, . . . , n. We assume the processes (∂uG(Vs, Zs, Z
T,ξ
s ))t≥0, (∂vG(Vs, Zs, Z

T,ξ
s )∇Vs)t≥0,

(∂zG(Vs, Zs, Z
T,ξ
s )∇Zs)t≥0 and

(∂z̃G(Vs, Zs, Z
T,ξ
s )∇ZT,ξ

s )t≥0 are from BMO(P ) and consider ξ =
∑n

i=1 ηi and

the process Z is part of the solution to the ergodic BSDE (4.3.1). Then, the

gradient capital allocation exists as a unique solution to (4.5.4) and can be

represented by

∇ηiY
T,ξ
t = ∇ηiρ

T,ξ
t = EQ[−ηi|Ft] i = 1, . . . , n, (4.5.5)

with the equivalent martingale measure Q is given by

dQ

dP

∣∣∣∣
Ft

:= E

(∫ ·

0

[
D(Vs, Zs, Z

T,ξ
s )

∇ZT,ξ
s

+ ∂z̃G(Vs, Zs, Z
T,ξ
s )

]
dW (s)

)
(t),

(4.5.6)

where

D(Vs, Zs, Z
T,ξ
s ) := ∂uG(Vs, Zs, Z

T,ξ
s ) + ∂vG(Vs, Zs, Z

T,ξ
s )∇Vs

+∂zG(Vs, Zs, Z
T,ξ
s )∇Zs.

Proof. Since we assume that the processes (∂uG(Vs, Zs, Z
T,ξ
s ))t≥0,

(∂vG(Vs, Zs, Z
T,ξ
s )∇Vs)t≥0 and (∂zG(Vs, Zs, Z

T,ξ
s )∇Zs)t≥0 are from BMO(P ),

we are able to define a probability measure Q as in (4.5.6) (see Barrieu and

Karoui (2007), Theorem, 7.2 and the Kazamaki’s criterion Lemma 2.1). Then

if Wt is the Brownian motion under P , we define

dWQ(t) = dW (t)−

∫ t

0

[
D(Vs, Zs, Z

T,ξ
s )

∇ZT,ξ
s

+ ∂z̃G(Vs, Zs, Z
T,ξ
s )

]
ds,

(4.5.7)

to be a Brownian motion under Q, for t ≥ 0. For each i = 1, . . . , n we define

N i
t = EQ[ηi|Ft]. Using the martingale representation theorem, there exists a

predictable process ZT,ηi
t so that

N i
t = N i

T −

∫ T

t

ZT,ηi
s dWQ(s).
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Therefore, under the P measure we get

N i
t = −ηi +

∫ T

t

Zηi
s

[
D(Vs, Zs, Z

T,ξ
s )

∇ZT,ξ
s

+ ∂z̃G(Vs, Zs, Z
T,ξ
s )

]
ds−

∫ T

t

ZT,ηi
s dW (s).

(4.5.8)

Hence, comparing equation (4.5.8) to the gradient allocation BSDE (4.5.4),

we can conclude that equation (4.5.8) has unique solution under the assump-

tions of this theorem. The gradient capital allocation is therefore represented

as in (4.5.5).

In the next example, we study the capital allocation representation of a

forward entropic risk measure.

Example 4.5.1. We consider the explicit expression of the forward entropic

risk measure derived by Chong et al. (2019) as

ρt(ξT ) =
1

γ|κ|2
lnEQ

[
eγ|κ2|

2Y T
T |Ft

]
. (4.5.9)

In this case, the financial market is considered to have a single stock whose

coefficients depend on a stochastic factor driven by 2-dimensional Brownian

motion, that is

dSt = Stµ(Vt)dt+ Stσ(Vt)dW
1(t)

dVt = ν(Vt)dt+ κ1dW
1(t) + κ2dW

2(t), (4.5.10)

where κ1 and κ2 are positive constants. The generator of the ergodic BSDE

(4.3.1) is given by

g(v, z1, z2) = −
1

2

∣∣θ(v) + z1
∣∣2 + 1

2
|z1|

2 +
1

2
|z2|

2,

while the generator of the BSDE (4.5.3) is given by

G(v, z1, z2, z̃1, z̃2) =
1

γ

(
g(v, z1 + γz̃1, z2 + γz̃2)− g(v, z1, z2)

)

= −θ(v)z̃1 + z2z̃2 +
γ

2
|z̃2|

2. (4.5.11)
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If we define Y T
T = ξT = h(VT ) and let ZT

1,t = κ1Z
T
t and ZT

2,t = κ2Z
T
t , for

some predictable process ZT
t . Then, ρt(ξT ) for t ≥ 0 is the first component

of the solution to the BSDE

ρt(ξT ) = −h(ξT ) +

∫ T

t

(
(−κ1θ(Vs) + κ2Z2,s)Z

T
s +

γ|κ2|2

2
|ZT

s |
2

)
dt

−

∫ T

t

ZT
s (κ1dW

1(s) + κ2dW
2(s)). (4.5.12)

Note that the process ZT
t is the second component of the solution to the

BSDE (4.5.12). The processes Z1 and Z2 appear in the ergodic BSDE (4.3.1)

representation of the forward performance process (4.5.1).

The generator of the BSDE (4.5.12) satisfies the differentiability condition

(C1). Additionally, the terminal condition ξT = h(VT ) satisfy condition (C2),

we can apply Theorem 4.5.2. Consequently, the derivative of the generator

with respect to each variable will be

∂vG(v, z1, z2, z̃1, z̃2) = −κ1Z
T
t ∂vθ(v)∇V,

∂z2G(v, z1, z2, z̃1, z̃2) = κ2Z
T
t ,

∂z̃G(v, z1, z2, z̃1, z̃2) = −κ1θ(Vt) + κ2Z2,t + γ|κ2|
2ZT

t .

(4.5.13)

Therefore, the forward gradient allocation with respect the forward en-

tropic risk measure is defined as

d

du
ρt(h(VT ) + uη)

∣∣
u=0

= ∇ηY
T,ξ
t ,

where the component ∇ηY
T,ξ
t is the first part of the solution to the BSDE

∇ηY
T,ξ
t = −(∂vh(Vt)∇(VT ) + η) +

∫ T

t

[
− κ1Z

T
s ∂vθ(v)∇V + κ2Z

T
s

−κ1θ(Vs) + κ2Z2,s + γ|κ2|
2ZT

s

]
ds

−

∫ T

t

ZT
s (κ1dW

1(s) + κ2dW
2(s)).
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(4.5.14)

Let ψ(ξ) = eγ|κ2|
2ξ and under the assumption that ξ is a smooth func-

tional and is bounded, such that the gradient Dsψ(ξ) := ψ′(ξ)Ds(ξ) =

γ|κ2|2eγ|κ2|
2ξDsξ is from BMO(P ). We can use the Clark Ocone formula (see

Ocone and Karatzas (1991) and Di Nunno et al. (2009)) and for β ∈ (0, 1),

so that we have

eγ|κ2|
2βξ = E[eγ|κ2|

2βξ] +

∫ T

0

E[Dse
γ|κ2|2βξ|Fs](κ1dW

1(s) + κ2dW
2(s)).

In turn, by taking the conditional expectation of the above equation and

applying the chain rule we have

Λβξ(t) = E[eγ|κ2|
2βξ|Ft]

= E[eγ|κ2|
2βξ] +

∫ T

0

E[βγ|κ2|
2eγ|κ2|

2βξDsξ|Ft](κ1dW
1(s) + κ2dW

2(s)),

(4.5.15)

where Ds(·) is the Malliavin derivative. We note, that the process Λβξt is a

positive martingale and can be represented as

Λβξ(t) = Λβξ(0)+γ|κ2|
2

∫ t

0

Λβξ(s)
βE[eγ|κ2|

2βξDsξ|Ft]

Λβξ(s)
(κ1dW

1(s)+κ2dW
2(s))

Λβξt = Λβξ(0) + γ|κ2|
2

∫ t

0

Λβξ(s)Zβξ
s (κ1dW

1
s + κ2dW

2
s )

with

Zβξ
t =

βE[eγ|κ2|
2βξDsξ|Ft]

E[eγ|κ2|2βξ|Ft]
. (4.5.16)

Furthermore, the process Λβξ(·) satisfies

Λβξ(t) = Λβξ(0) exp

(∫ t

0

(
− κ1θ(Vt) + κ2Z2,t + γ|κ2|

2ZT
t

)

×(κ1dW
1(s) + κ2dW

2(s))

−
1

2

∫ t

0

(
− κ1θ(Vt) + κ2Z2,t + γ|κ2|

2ZT
t

)2
ds

)
. (4.5.17)

Hence, the process (Λβξ(t)/Λβξ(0)) corresponds to the stochastic exponential

process

E

(∫ t

0

∂z̃G(v, z1, z2, z̃1, z̃2)ds

)
.
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4.6 Conclusion

We have shown the representation of the ergodic BSDE-based dynamic risk

and capital allocation of a maturity-independent risk measure. We studied

maturity-independent risk measures, which generalises the classical dynamic

risk measures. We applied our results to the case of the forward entropic risk

measure. Our results may be considered as a generalisation of Chong et al.

(2019), Kromer and Overbeck (2014), Kromer and Overbeck (2017). In the

next chapter, we continue with the maturity-independent risk measure by

constructing them using BSDEs with jumps.
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Chapter 5

An Ergodic BSDE risk

representation in a

jump-diffusion framework.

5.1 Introduction

We consider the representation of forward entropic risk measures using the

theory of ergodic backward stochastic differential equations in a jump-diffusion

framework. Our work can be viewed as an extension of the work considered

by Chong et al. 2019 in the diffusion case. We also study the behaviour of a

forward entropic risk measure under jumps when a financial position is held

for a longer maturity.

Zariphopoulou and Žitković 2010 proposed maturity-independent risk

measures to help address how to assess risk positions when the time hori-

zon is not fixed. They formulated the forward entropic risk measures using

the forward exponential performance processes. These forward performance

processes are introduced and developed by Musiela and Zariphopoulou 2007

(see also Musiela, Zariphopoulou, et al. 2008, Musiela and Zariphopoulou

2009, Musiela and Zariphopoulou 2010a for further improvements) to mea-
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sure investment performance across all times t ∈ [0,∞), which makes the

forward entropic risk measures to be defined for all times. Recently, Liang

and Zariphopoulou 2017 proposed the use of the ergodic backward stochastic

differential equation (ergodic BSDE) to construct the forward performance

processes.

Kobylanski et al. 2000 introduced BSDEs with the quadratic growth and

random terminal time in and her work was developed by Briand and Con-

fortola 2008. Later, Morlais 2009b proved existence and uniqueness results

for the BSDEs with quadratic growth in a jump framework (see also Morlais

2009a, Morlais 2010 for further contributions).

The rest of the chapter is organized as follows. In Section 5.2, we in-

troduce the jump-diffusion model and all the notations that will be using

in the rest of the chapter. Section 5.3, we provide the representation of the

forward entropic risk measure using the classic BSDE and the ergodic BSDE

in a jump model setting. Section 5.4 analyzes the behaviour of a forward

entropic risk measure over a long-term horizon. Finally, we conclude the

chapter.

5.2 Problem Formulation

Suppose that (Ω,F , {Ft}t≥0,P) is the filtered probability space satisfying the

usual conditions 1. The filtration is generated by two independent processes,

d-dimensional standard Brownian motion {Wt, t ≥ 0} defined on Ω× [0,∞)

and the compensated Poisson random measure Ñ(dt, dζ) = N(dt, dζ) −

ν(dζ)dt defined on Ω × [0,∞) × R0. Here, N(dt, dζ) counts the number of

jumps that occur on or before t, and ν is a positive Lévy measure satisfying

1The usual conditions are completeness and right-continuous ( Yong and Zhou 1999).
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the conditions ∫

|ζ|≤1

|ζ2|ν(dζ) <∞

and ∫

|ζ|≥1

ν(dζ) <∞.

The last condition implies that the stock process has finite number of jumps

with absolute value greater than one (Tankov 2003). Maturity-independent

convex risk measure is defined in Chapter 4, Definition 4.2.1. The only

difference is on the dynamics of the stock price S(t). We consider a financial

market with n risky investments, with price processes, Sit for i = 1, . . . , n,

satisfying the following stochastic differential equation (SDE)

dSi(t)

Si(t)
= µi(Vt)dt+ σi(Vt)dW (t) +

∫

R0

Υi(Vt, ζ)Ñ(dt, dζ), Si(0) > 0.

(5.2.1)

The coefficients of the stock price Si are affected by a stochastic factor,

which is modelled by a d-dimensional stochastic process V, with n ≤ d,

satisfying:

dVt = η(Vt)dt+ κdW (t). V0 = v0 > 0. (5.2.2)

We impose the following assumptions to the coefficients so that Equations

(5.2.1) and (5.2.2) have solutions.

Assumption 7. The drift µi(v) ∈ R, volatility σi(v) ∈ R1×d and jump

rate Υi(v, ζ) > −1 are Ft-predictable and bounded processes for v ∈ Rd,

satisfying the following condition
∫ T

0

(
|µ(vt)|+ σ2(vt) +

∫

R0

(Υi)2(vt, ζ)ν(ζ)
)
dt <∞, a.s.

Assumption 8. There exists a large enough constant Cη > 0, for v1, v2 ∈ Rd

such that the drift coefficient η(v) ∈ Rd of the factor model satisfies:

(η(v1)− η(v2))(v1 − v2) ≤ −Cη|v1 − v2|
2.

Furthermore, the volatility matrix κ ∈ Rd×d is positive definite and normal-

ized to |κ| = 1.
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Let πit be a self-financing portfolio representing the amount of wealth

invested in stock i. The wealth process X solves

dXt =
n∑

i=1

πitdS
i(t)

Si(t)
= πt

(
µ(Vt)dt+σ(Vt)dW (t)+

∫

R0

Υ(Vt, ζ)Ñ(dt, dζ)
)
, X0 > 0,

(5.2.3)

where the initial wealth is given by X0 = x ∈ R. An investment strategy

πt ∈ Rn is said to be admissible if it is Rn valued Ft-progressively measurable

satisfying E(
∫ t
0
|π2
t |ds <∞). The process Xt is a unique solution of Equation

(5.2.3) using πt, such that Xt ≥ 0 for all t ≥ 0, a.s. The set of all admissible

strategies is denoted by A.

We now recall from Chong et al. 2019 the notion of forward performance

process.

Definition 5.2.1. A process U(t, x), (t, x) ∈ [0,∞) × R, is a forward per-

formance process if:

(i) for each x ∈ R, U(t, x) is Ft−progressively measurable,

(ii) for each t ≥ 0, the mapping x 7→ U(t, x) is strictly increasing, strictly

concave, continuously differentiable and satisfies the Inada conditions, i.e.

limx→∞U ′(x) = 0 and limx→−∞ U ′(x) = +∞.

(iii) for all π ∈ A and 0 ≤ t ≤ s,

U(t, Xπ
t ) ≥ EP[U(s,X

π
s )|Ft],

and there exists an optimal π̃ ∈ A such that,

U(t, X π̃
t ) = EP[U(s,X

π̃
s )|Ft],

with Xπ, X π̃ solving Equation (5.2.3).

We derive the associated stochastic partial differential equation (SPDE)

for the performance process by applying the Itô-Ventzell formula to U(t, x)

for any strategy π ∈ A (see Musiela and Zariphopoulou 2010b on deriving
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the SPDE and Øksendal, Zhang, et al. 2007 for the Itô-Ventzell formula for a

jump process). We first assume that U(t, x) admits the Lêvy decomposition

dU(t, x) = b(t, x)dt + a(t, x)dW (t) +

∫

R0

Φ(t, x, ζ)Ñ(d−t, dζ),

where the processes b(t, x), a(t, x) and Φ(t, x, ζ) are Ft−progressively mea-

surable processes and Ñ(d−t, dζ) represents a forward integral. Then we

obtain

dU(t, Xt)

= b(t, Xt)dt+ a(t, Xt)dW (t) + Ux(t, Xt)dXt +
1

2
Uxx(t, Xt)d〈X〉t

+ax(t, X)d〈W,X〉t +

∫

R0

[U(t, Xt + πΥ(t, ζ))− U(t, Xt)

−Ux(t, Xt)πΥ(t, ζ)]ν(dζ)dt+

∫

R0

[Φ(t, Xt + πΥ(t, ζ))

−Φ(t, Xt)]ν(dζ)dt+

∫

R0

[
U(t−, Xt− + πΥ(t, ζ))− U(t−, Xt−)

+Φ(t−, Xt− + πΥ(t, ζ))
]
Ñ(d−t, dζ)

=

[
b(t, Xt) + πµ(Vt)Ux(t, Xt) + πσ(Vt)ax(t, Xt) +

1

2
π2σ2(Vt)Uxx(t, Xt)

+

∫

R0

(
[U(t, Xt + πΥ(t, ζ))− U(t, Xt)− Ux(t, Xt)πΥ(t, ζ)]

+[Φ(t, Xt + πΥ(t, ζ))− Φ(t, Xt)]ν(dζ)

]
dt

+

(
a(t, Xt) + πσ(Vt)Ux(t, Xt)

)
dW (t) +

∫

R0

[
U(t−, Xt− + πΥ(t, ζ))

−U(t−, Xt−) + Φ(t−, Xt− + πΥ(t, ζ))
]
Ñ(d−t, dζ). (5.2.4)

The volatility a(t, x) and the process Φ(t, x, ζ) for t ≥ 0 are model inputs

determined by the investor’s preference.

From Definition 5.2.1, we know that the process U(t, Xπ
t ) is a super-

martingale for any admissible investment strategy π, that is

U(t, Xπ) ≥ E[U(t, x)].
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Hence, there exists an optimal strategy π̃ when the process U(t, Xπ
t ) is a true

martingale. The process U(t, Xπ
t ) is a true martingale when the drift term

in Equation (5.2.4) is zero. Therefore the optimal strategy is given by

π̃ = inf
π∈A

[
πµ(Vt)Ux(t, Xt) + πσ(Vt)ax(t, Xt) +

1

2
π2σ2(Vt)Uxx(t, Xt)

+

∫

R0

(
[U(t, Xt + πΥ(t, ζ))− U(t, Xt)− Ux(t, Xt)πΥ(t, ζ)]

+[Φ(t, Xt + πΥ(t, ζ))− Φ(t, Xt)]

)
ν(dζ)

]
.

We consider an exponential forward performance process given by

U(t, x) = −e−γx+f(t,Vt), (t, x) ∈ [0,∞)× R (5.2.5)

where γ > 0 and a function f : [0,∞) × Rd → R. By application of Itô to

U(t, x) and setting the resulting drift term to zero, we see that the function

f solves a semi-linear partial differential equation of the form

0 =
∂

∂t
f + η(Vt)∇f +

1

2
κ2∇2f + g(v, κ∇f,Υ),

with g defined as

g(v, κ∇f,Υ) =
1

2
γ2σ2(v)

[
π −

µ(v)− 1
2
σ(v)κ∇f

γσ2(v)

]2
+

1

2

(
µ(Vt)−

1

2
σ(v)κ∇f

)

+
1

2
κ2(∇f)2 +

∫

R0

[
e−γπΥ(t,ζ) − 1 + γπΥ(t, ζ)

]
ν(dζ). (5.2.6)

We consider the following ergodic backward stochastic differential equa-

tion

dYt = (−g(Vt, Zt,Ψt) + λ)dt+ ZtdW (t) +

∫

R0

Ψ(Vt, ζ)Ñ(dt, dζ), (5.2.7)

for 0 ≤ t ≤ T < ∞ and a given function g : Rd × Rd × Rd → R and

Zt ∈ H2
W (R), Ψ(Vt, ζ) ∈ H2

N(R). To ensure the solution to (5.2.7) exists and

it is unique we have to impose certain assumptions on g.

75



Assumption 9. There exist constants K > 0, K̂ > 0 Cv > 0 and Cz > 0

such that the generator g satisfy

|g(t, 0, 0, 0)| ≤ K̂. (5.2.8)

|g(v1, z, ψ)− g(v2, z, ψ)| ≤ Cv(1 + |z|)|v1 − v2|, (5.2.9)

and

|g(v, z1, ψ)− g(v, z2, ψ)| ≤ Cz(1 + |z1|+ |z2|)|z1 − z2| (5.2.10)

for any v1, v2, z1, z2 ∈ R.

Furthermore, there exists −1 < K1 ≤ 0 and K2 ≥ 0 such that

g(v, z, ψ1)− g(v, z, ψ2) ≤

∫

R0

(ψ1 − ψ2)ϕ
v,z,ψ1,ψ2(ζ)ν(dζ) (5.2.11)

where ϕv,z,ψ1,ψ2 : Ω× [0, T ]× Rd × Rd × R0 → [−1,∞) is P ⊗ B-measurable

and satisfies K1(1∧|ζ |) ≤ ϕ(ζ) ≤ K2(1∧|ζ |) (Royer 2006). With P denoting

the predictable σ-field and B the Borel σ-field on R.

Theorem 5.2.1. Suppose Assumption (7), (8) and (9) hold. Then, the

ergodic BSDE (5.2.7) with generator given by

g(v, z(vt),Ψ(vt, ζ)) =
γ2

2

[
πσ(v)−

µ(vt)/σ(vt)− z(vt)

γ

]2

+
1

2

(
µ(vt)/σ(vt)− z(vt)

)2
+

1

2
z2(vt)

+

∫

R0

[
e−γπΥ(vt,ζ)+Ψ(vt,ζ) − 1− γπΥ(v, ζ)

+Ψ(v, ζ)

]
ν(dζ),

(5.2.12)

has a unique Markovian solution

(Y, Z,Ψ, λ) = (y(Vt), z(Vt), ψ(Vt), λ),

for 0 ≤ t ≤ T <∞, with

|Yt| ≤
K

α
, |Zt| ≤ Cz :=

Cv
Cη − Cv

and |Ψ(vt, ζ)| ≤
2K

α
. (5.2.13)
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Proof. For the proof, we adapted the method in Liang and Zariphopoulou

2017 to jump framework. We start by establishing that the driver g satisfies

Assumptions (9). We consider truncation functions q̃ : Rd → Rd, defined as

q(z) :=
min(|z|, Cz)

|z|
z1{z 6=0}, and q̃(ψ) := 1|ψ|≤1.

and define a truncated ergodic BSDE

dYt = (−g(Vt, q(Zt), q̃(Ψt)) + λ)dt+ ZtdW (t) +

∫

R0

Ψ(Vt, ζ)Ñ(dt, dζ),

(5.2.14)

for t ≥ 0. We verify that the generator g(v, q(z), q̃(ψ)) satisfies Assumption

(9), i.e.

|g(v1, q(z), q̃(ψ))− g(v2, q(z), q̃(ψ))| ≤ Cv(1 + Cz)|v1 − v2|, (5.2.15)

|g(v, q(z1), q̃(ψ))− g(v, q(z2), q̃(ψ))| ≤ Cz(1 + 2Cz)|z1 − z2| (5.2.16)

and

|g(v, q(z), q̃(ψ1))− g(v, q(z), q̃(ψ2))| ≤

∫

R0

(ψ1 − ψ2)ϕ
v,z,ψ1,ψ2(ζ)ν(dζ).

(5.2.17)

We now, have to prove that there exists a Markovian solution (Yt, Zt,Ψt, λ) to

the truncated ergodic BSDE (5.2.14) that satisfies |Zt| ≤ Cz and |Ψ(vt, ζ)| ≤
2K
α

for t ≥ 0, then q(Zt) = Zt and q̃(Ψt) = Ψt. As a result, this solution

(Yt, Zt,Ψt, λ), will also solve the ergodic BSDE (5.2.7). For this part of the

proof, we consider a strictly monotonic BSDE with a constant of monotonic-

ity α > 0, on a finite horizon [0, n], i.e.

Y v,α,n
t =

∫ n

t

(g(Vu, q(Z
v,α,n
u ), q̃(Ψv,α,n

u ))− αY v,α,n
u )du+

∫ n

t

Zv,α,n
u dW (u)

+

∫ n

t

∫

R0

Ψv,α,n(Vu, ζ)Ñ(du, dζ).

(5.2.18)

We deduce from Cohen and Fedyashov Cohen and Fedyashov 2014, The-

orem 8, (see also Briand and Hu 1998 for the diffusion case), that BSDE
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(5.2.18) has a unique solution (Y v,α,n
t , Zv,α,n

u ,Ψv,α,n
u ) satisfying |Yt| ≤

K
α
with

Zv,α,n
u ∈ H2

W (R) and Ψv,α,n
u ∈ L2

ν(Ñ). Moreover, we conclude that (Y v,α,n
t ,

Zv,α,n
u ,Ψv,α,n

u ), is a unique adapted square integrable solution to the BSDE

(5.2.18) for t ≥ 0. Hence, there exists an adapted square integrable limiting

processes (Y v,α
t , Zv,α

u ,Ψv,α
u ) such that

lim
n→∞

(Y v,α,n
t , Zv,α,n

u ,Ψv,α,n
u ) = (Y v,α

t , Zv,α
u ,Ψv,α

u ),

with |Yt| ≤
K
α
. Furthermore, the solution is Markovian, that is, there exist

functions yα(·), zα(·) and ψα(·) such that

(Y v,α
t , Zv,α

t ,Ψv,α
t ) = (yα(Vt), z

α(Vt), ψ
α(Vt)),

is a solution to the infinite horizon BSDE

dY v,α
t = (−g(V v

t , q(Z
v,α
t ), q̃(Ψv,α

t ))+αY v,α
t )+Zv,α

t dW (t)+

∫

R0

Ψv,α
t Ñ(dt, dζ).

(5.2.19)

The next part of the proof is to demonstrate that the Lipschitz continuity

property

|yα(V v1
t )− yα(V v2

t )| ≤ Cz|V
v1
t − V v2

t | ,

for all v1, v2 ∈ Rd with the Lipschitz constant Cz. Let δYt = Y α,v1
t −Y α,v2

t ,

δZt = Zα,v1
t − Zα,v2

t and δΨt = Ψα,v1
t −Ψα,v2

t , for t ≥ 0. Subsequently

dδYt = −(g(V v1
t , q(Zα,v1

t ), q̃Ψ(V α,v1
t ))− g(V v2

t , q(Zα,v2
t ), q̃Ψ(V α,v2

t )))dt

+αδYtdt+ δZtdW (t) +

∫

R0

δΨtÑ(dt, dζ)

= −(g(V v1
t , q(Zα,v1

t ), q̃Ψ(V α,v1
t ))− g(V v2

t , q(Zα,v2
t ), q̃Ψ(V α,v2

t )))dt

+αδYtdt+ δZt(dW (t)− βtdt)

+

∫

R0

δΨt(N(dt, dζ)− ϕv,z,ψ1,ψ2ν(dζ)dt), (5.2.20)

where

βt =
g(V v1

t , q(Zα,v1
t ), q̃Ψ(V α,v1

t ))− g(V v2
t , q(Zα,v2

t ), q̃Ψ(V α,v2
t ))

|δZt|2
δZt1δZt 6=0
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By Inequality (5.2.15), β is bounded. From the Girsanov’s theorem we define

W β(t) = W (t) −
∫ t
0
βudu and Ñϕ(dt, dζ) = N(dt, dζ)−

∫ t
0
ϕv,z,ψ1,ψ2ν(dζ)du,

for 0 ≤ t ≤ T , where ϕv,z,ψ1,ψ2 is defined in Assumption (5.2.11). Therefore

taking conditional expectation with respect to Q on Ft for 0 ≤ t < T < ∞,

we get

δYt = e−α(T−t)EQ[δYT |Ft] + EQ

[ ∫ T

t

e−α(u−t)δgudu|Fu

]
.

From condition (5.2.13), we note that the first expectation is bounded by

2K/α, and therefore will converges to zero as T → ∞. We deduce from

(5.2.15) that the second expectation is bounded by

EQ

[ ∫ T

t

e−α(u−t)δgudu|Fu

]
≤ Cv(1 + Cz)EQ

[ ∫ T

t

e−α(u−t)|V v1
u − V v2

u |du|Fu

]

≤ Cv(1 + Cz)
eαt(e−(α+Cη)t − e−(α+Cη)T )

α + Cη
|v1 − v2|.

(5.2.21)

The last inequality is based on the Grownwall Inequality. Hence, as T → ∞

yields

|yα(V v1
t )− yα(V v2

t )| ≤ Cz|V
v1
t − V v2

t |. (5.2.22)

To obtain the third inequality in Condition (5.2.15), we consider a stochas-

tic factor with a jump term 2, this yields

dVt = η(Vt)dt+ κdW (t) +

∫

R0

ζÑ(dt, dζ) ,

where the coefficients satisfy Assumptions (7) and (8). Suppose that yα(·) ∈

C2(Rd). By Itô’s formula to yα(V v
t ) we get

dyα(V v
t ) = ∇yα(V v

t )η(V )dt+∇yα(V v
t )κdW (t) +

1

2
∇2yα(V v

t )κ
2dt

2Note that for this work we consider a stochastic factor in the diffusion case throughout

the paper. If we include a jump term in the stochastic factor then our generator will be

dependent on the Y variable. Hence, the stochastic factor with jumps will not be ideal

for risk representation using BSDE, because the translation invariance property will not

hold.
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∫

R0

(yα(V v
t + ζ)− yα(V v

t )−∇yα(V v
t )ζ)ν(dζ)dt

+

∫

R0

(yα(V v
t + ζ)− yα(V v

t ))Ñ(dt, dζ).

(5.2.23)

Comparing terms in the infinite horizon BSDE (5.2.19) and Equation (5.2.23),

we deduce that

Zα,v
t = ∇yα(V v

t )κ, (5.2.24)

αY v,α
t = ∇yα(V v

t )η(V ) +
1

2
∇2yα(V v

t )κ
2 +

∫

R0

(yα(V v
t + ζ)− yα(V v

t )

−∇yα(V v
t )ζ)ν(dζ) + g(V v

t , q(Z
v,α
t ), q̃(Ψv,α

t )) (5.2.25)

and

Ψ(Vt, ζ) = yα(V v
t + ζ)− yα(V v

t ), (5.2.26)

for v ∈ Rd. Equation (5.2.25) is a Partial Integro-Differential Equation

(PIDE) with a unique bounded solution, yα(·) ∈ C2(Rd). We conclude that

|yα(v)| ≤ K
α
. Furthermore, using Assumption (8) and Equation (5.2.24) and

from condition (5.2.22), we conclude that for t ≤ 0, |Zα,v
t | ≤ Cz. From Equa-

tion (5.2.26), we have that |Ψ(Vt, ζ)| ≤
2K
α
.

To show that λ is a constant, the proof follows similarly as in Liang and

Zariphopoulou 2017.

In the following theorem, we connect the solution of the ergodic BSDE

with jumps (5.2.7) to the exponential forward performance process (5.2.5).

To do this, we adopt the procedure by Liang and Zariphopoulou 2017 in

Theorem 3, where they made the same connection under the diffusion case.

Theorem 5.2.2. Suppose that Assumptions 7 and 8 hold, and let (Yt, Zt,Ψt, λ),

t ≥ 0 be a unique Markovian solution to Equation (5.2.7). Then,
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(i) the process U(t, x), (t, x) ∈ [0,∞)× R, is an exponential forward per-

formance process defined as

U(t, x) = −e−γx+Yt−λt, (5.2.27)

with volatility

a(t, x) = −e−γx+Yt−λtZt

and jump rate

Φ(t, x, ζ) = −e−γx+Yt−λt(e−Ψ − 1).

(ii) The optimal investment strategy is given by

π̃ = inf
π∈A

(
γ2

2

[
πσ(v)−

µ(vt)/σ(vt)− z(vt)

γ

]2
+

1

2

(
µ(vt)/σ(vt)− z(vt)

)2

+
1

2
z2(vt) +

∫

R0

[
e−γπΥ(vt,ζ)+Ψ(vt,ζ) − 1− γπΥ(v, ζ)

+Ψ(v, ζ)

]
ν(dζ)

)
.

(5.2.28)

Proof. We start by first showing that U(t, x) satisfies the super-martingale

property for any admissible investment strategy π ∈ A for all 0 ≤ t ≤ s, that

is

EP[−e
−γx+Ys−λs|Ft] ≤ −e−γx+Yt−λt,

and for an optimal investment strategy π̃, U(t, x) is a martingale, that is,

EP[−e
−γXπ̃+Ys−λs|Ft] = −e−γX

π̃+Yt−λt.

Based on the wealth process (5.2.3), e−γX can be written as

e−γXs = e−γXu exp

{
−

∫ s

t

γπµ(Vu)du−

∫ s

t

γπσ(Vu)dW (u)

−

∫ s

u

∫

R0

γπΥ(u, ζ)Ñ(du, dζ)

}
.

(5.2.29)
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On the other hand, the ergodic BSDE (5.2.7) is given by

Ys − λs = Yt − λt−

∫ s

t

g(Vu, Zu,Ψu)du+

∫ s

t

ZudW (u)

+

∫ s

t

∫

R0

Ψ(u, ζ)Ñ(du, dζ). (5.2.30)

Combining the above expressions yields

e−γXs+Ys−λs = e−γXt+Yt−λt exp

{
−

∫ s

t

(
γµ(Vu)π + g(Vu, Zu,Ψu)

)
du

−

∫ s

t

(γπσ(Vu)− Zu)dW (u)−

∫ s

t

∫

R0

(γπΥ(v, ζ)

−Ψ(v, ζ))Ñ(du, dζ)

}
.

(5.2.31)

Then we take expectation under the probability measure P, given Ft, i.e.,

EP[e
−γXs+Ys−λs | Ft] = e−γXt+Yt−λtEP

[
exp

{
−

∫ s

t

(
γµ(Vu)π

+g(Vu, Zu,Ψu)
)
du−

∫ s

t

(γπσ(Vu)− Zu)dW (u)

−

∫ s

t

∫

R0

(γπΥ(v, ζ)−Ψ(v, ζ))Ñ(du, dζ)

}∣∣∣∣Ft

]
.

(5.2.32)

We define a new probability measure Q, for s ≥ 0 and π ∈ A using the

process M̃u, u ∈ [0, s] defined as the Radon-Nikodym derivative of Q with

respect to P, therefore

M̃u =
dQ

dP

∣∣∣∣
Ft

= E(M)u,

where

Mu = exp

{
−

∫ s

t

(γπσ(Vu)−Zu)dW (u)−

∫ s

t

∫

R0

(γπΥ(v, ζ)−Ψ(v, ζ))Ñ(du, dζ)

}
.

Since the processes Zu, πu and Ψu belong to BMO(P), the process Mu is a

BMO-martingale, and consequently the stochastic exponential E(M)u is a
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true martingale (Morlais 2009b). Hence

EP

[
exp

(∫ s

t

(
gπ(Vu, Zu,Ψu)− g(Vu, Zu,Ψu)

)
du

)
M̃s

M̃t

∣∣∣∣Ft

]

= EQ

[
exp

(∫ s

t

(
gπ(Vu, Zu,Ψu)− g(Vu, Zu,Ψu)

)
du

)∣∣∣∣Ft

]
, (5.2.33)

with

gπ(v, z(vt), ψ(vt, ζ)) :=
γ2

2

[
πσ(v)−

µ(vt)/σ(vt)− z(vt)

γ

]2

+
1

2

(
µ(vt)/σ(vt)− z(vt)

)2
+

1

2
z2(vt)

+

∫

R0

[
e−γπΥ(vt,ζ)+ψ(vt,ζ) − 1− γπΥ(v, ζ)

+ψ(v, ζ)

]
ν(dζ).

(5.2.34)

Since gπ(v, z(Vt), ψ(v, ζ)) ≤ g(v, z(Vt), ψ(v, ζ)), we can conclude that

EP[−e
−γXπ+Ys−λs|Ft] ≤ −e−γX+Yt−λt.

Further, for π = π̃ defined in (5.2.28), we have

gπ̃(v, z(Vt), ψ(vt)) = g(v, z(Vt), ψ(vt))

and hence

EP[−e
−γXπ̃+Ys−λs|Ft] = −e−γX

π̃+Yt−λt.

To show the second part of the theorem, we apply Itô’s formula to Equa-

tion (5.2.27) that yields,

dU(t, x) = (· · · )dt+U(Zt−γπσ(Vt))dW (t)+U

∫

R0

(e−γπΥ(v,ζ)+Ψ(v,ζ)−1)Ñ(dt, dζ).

We then, compare the above equation to Equation (5.2.4) and obtain the

following

a(t, x) = −e−γx+Yt−λtZt,
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and

Φ(t, x, ζ) = −e−γx+Yt−λt(e−Ψ − 1).

It is not difficult to see that the infimum function in Equation (5.2.28)

is convex with respect to π that is the second derivative respect to π of the

infimum function is positive. Therefore the minimum in Equation (5.2.28)

exists.

5.3 Forward entropic risk measure and er-

godic BSDE with jumps

In this section, we recall the definition of forward entropic risk measure. We

then provide the representation of a forward entropic risk measure as the

solution of a BSDE and ergodic BSDE.

Definition 5.3.1. Consider the forward exponential performance process

U(x, t) = −e−γx+Yt−λt, with (t, x) ∈ [0,∞) × R. Consider a risk position

ξT ∈ L∞(FT ), where T > 0 is arbitrary and the risk position is entered

into at the initial time t = 0. Then, the forward entropic risk measure

ρt(ξT , T ), t ∈ [0, T ], is the unique Ft-measurable random variable that satis-

fies the indifference condition

ess sup
π∈A[t,T ]

EP

[
U(Xπ

u + ρu(ξT ;T ) + ξT , T )

∣∣∣∣Ft

]
= sup

π∈A[t,T ]

EP

[
U(Xπ

u , T )

∣∣∣∣Ft

]

(5.3.1)

for all (t, x) ∈ [0, T ]× R.

If we let ξ ∈ L and consider Tξ := inf{T ≥ 0 : ξ ∈ FT}, then the forward

entropic risk measure of ξ is defined, for t ∈ [0, Tξ], as

ρt(ξ) := ρt(ξ;Tξ).

Therefore, for ξT ∈ L∞(FT ), we have ρt(ξ) := ρt(ξT ;T ).
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The next theorem gives a representation of the forward entropic risk mea-

sure as a solution of an associated BSDE, with a generator that depends on

a solution of the ergodic BSDE.

Theorem 5.3.1. Let ξT ∈ L∞(FT ) be a risk position with an arbitrary ma-

turity T > 0. Supposes that Assumptions 7, 8 and 9 hold, and the processes

Z and Ψ in the ergodic BSDE (5.2.7) are uniformly bounded. Consider, the

BSDE

Y T,ξ
t = −ξT +

∫ T

t

G(Vu, Zu, Z
T,ξ
u ,Ψu,Ψ

T,ξ
u )du−

∫ T

t

ZT,ξ
u dW (u)

−

∫ T

t

∫

R0

ΨT,ξ
u Ñ(du, dζ), (5.3.2)

where the generator G(v, z, z̃, ψ, ψ̃) = 1
γ

(
g(v, z + γz̃, ψ + γψ̃) − g(v, z, ψ)

)
,

with g(·, ·, ·) given by (5.2.34). Then the following statements hold:

(i) The BSDE (5.3.2) has a unique solution (Y T,ξ
t , ZT,ξ

t ,ΨT,ξ
t ) ∈ S∞(R) ×

H2
W (R)× L2

ν(Ñ), for t ∈ [0, T ].

(ii) The forward entropic risk measure of a position in ξT is given by

ρt(ξT ) = Y T,ξ
t ,

for t ∈ [0, T ].

Proof. Since the associated parameters are bounded and Lipschitz continuous

(Assumption (7) and (8)), and the generator g in (5.2.34) satisfies Assump-

tion (9). These assumptions imply that g is Lipschitz continuous in z and

υ, a.s.. Therefore, we know from Morlais 2009b (see also Royer 2006 and

Guambe and Kufakunesu 2018) that there exists a unique solution to the

BSDE (5.3.2) with a generator given by g in (5.2.34) and the risk position

ξT ∈ L∞(FT ).
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(i) For t ∈ [0, T ], the generator G(v, Z, z̃,Ψ, ψ̃) is Lipschitz continuous in

z and ψ, that is,

|G(v, Zt, z̃1,Ψt, ψ̃)−G(v, Zt, z̃2,Ψt, ψ̃)| ≤ Cz(1+2Zt+γ|z̃1|+γ|z̃2|)|z̃1−z̄2|

and

|G(v, Zt, z̃,Ψt, ψ̃1)−G(v, Zt, z̃,Ψt, ψ̃2)| ≤

∫

R0

|ψ̃1 − ψ̃2|ϕ
v,z,ψ1,ψ2ν(dζ)

where Zt and Ψt are uniformly bounded in H2
W (R) × L2

ν(Ñ). Consid-

ering that G is a linear combination of g, we deduce that G has the

same form as g in (5.2.34). Therefore, using the fact that ξT ∈ L∞(Ft),

we conclude (following Morlais 2009b, Royer 2006 and Guambe and

Kufakunesu 2018) that Equation (5.3.2) has a unique solution for t ∈

[0, T ].

(ii) We consider the forward performance process in (5.2.27) and that

ρt(ξT ) ∈ Ft, t ∈ [0, T ]. Then we have

ess sup
π∈A[t,T ]

EP

[
U(Xπ

u + ρu(ξT ;T ) + ξT , T )

∣∣∣∣Ft

]

= e−γρt(ξT )ess sup
π∈A[t,T ]

EP

[
− exp

{
− γ

(
x+

∫ T

t

πuµ(Vu)dt

+

∫ T

t

πσ(Vu)dW (u) +

∫ T

t

∫

R0

πuΥuÑ(du, dζ)

)
+ YT

−λT − γξT

}∣∣∣∣Ft

]
.

(5.3.3)

In order to prove the second part of the theorem, we define for s ∈ [t, T ],

the process

P π
s := − exp

{
− γ

(
x+

∫ s

t

πsµ(Vs)dt+

∫ s

t

πσ(Vs)dW (s)
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+

∫ s

t

∫

R0

πsΥsÑ(ds, dζ)

)
+ Ys − λs+ γY T

s

}
. (5.3.4)

As in Chong et al. 2019, we will show that the process P π
s is a super-

martingale for all π ∈ A[t,T ] and that there exists π̃ ∈ A[t,T ] such that

P π̃
s is a martingale.

For 0 ≤ t ≤ r ≤ s ≤ T , the exponent of P π
s satisfies

−γ

(
x+

∫ s

t

πuµ(Vu)du+

∫ s

t

πσ(Vu)dW (u)

+

∫ s

t

∫

R0

πuΥuÑ(du, dζ)

)
+ Ys − λs+ γY T

s

= −γ

(
x+

∫ r

t

πuµ(Vu)du+

∫ r

t

πuσ(Vu)dW (u)

+

∫ r

t

∫

R0

πuΥuÑ(du, dζ)

)
+ Yr − λr + γY T

r

−γ

(
x+

∫ s

r

πuµ(Vu)du+

∫ s

r

πuσ(Vu)dW (u)

+

∫ s

r

∫

R0

πuΥuÑ(du, dζ)

)
+ (Ys − Yr)

−(λs− λr) + γ(Y T
s − Y T

r ).

(5.3.5)

Furthermore, from the ergodic BSDE (5.2.7) and BSDE (5.3.2), we

have that

(Ys − Yr)− λ(s− r) = −

∫ s

r

g(Vu, Zu,Ψu)du+

∫ s

r

ZudW (u)

+

∫ s

r

∫

R0

ΨuÑ(du, dζ),

and

Y T
s − Y T

r = −
1

γ

∫ s

r

(
g(Vu, Zu + γZT

u ,Ψu + γΨT
u )− g(Vu, Zu,Ψu)

)
du

+

∫ s

r

ZT
u dW (u) +

∫ s

r

∫

R0

ΨT
u Ñ(du, dζ).
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Combining the above three equations and applying the conditional ex-

pectation, yields

EP

[
− exp

{
− γ

(
x+

∫ s

t

πuµ(Vu)du+

∫ s

t

πσ(Vu)dW (u)

+

∫ s

t

∫

R0

πuΥuÑ(du, dζ)

)
+ Ys − λs+ γY T

s

}∣∣∣∣Fr

]

= − exp

{
− γ

(
x+

∫ r

t

πuµ(Vu)du+

∫ r

t

πuσ(Vu)dW (u)

+

∫ r

t

∫

R0

πuΥuÑ(du, dζ)

)
+ Yr − λr + γY T

r

}

×EP

[
exp

{∫ s

r

(
− γπuµ(Vu)− g(Vu, Zu + γZT

u ,Ψu + γΨT
u )
)
du

+

∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)
dW (u)

+

∫ s

r

∫

R0

(
− γπuΥu +Ψu + γΨT

u

)
Ñ(du, dζ)

}∣∣∣∣Fr

]
.

(5.3.6)

We consider a process Ms := exp
{ ∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)
dW (u) +∫ s

r

∫
R0

(
− γπuΥu +Ψu + γΨT

u

)
Ñ(du, dζ)

}
, with −γπuΥu +Ψu + γΨT

u > −1

for a.s. (ω, t, ζ). From Assumptions (7)-(8) and the fact that (ZT,ξ
t ,ΨT,ξ

t ) ∈

H2
W (R) × L2

ν(Ñp), we conclude that the process Ms is a BMO-martingale.

Define a probability measure Qπ by

dQπ

dP
= E(M)T ,

on FT , where

E(M)T

= exp

{∫ T

0

(
− γπuσ(Vu) + Zu + γZT

u

)
dW (u)−

1

2

∫ T

0

(
− γπuσ(Vu) + Zu + γZT

u

)2
du

+

∫ T

0

∫

R0

[
e(−γπuΥu+Ψu+γΨT

u ) − 1 +
(
− γπuΥu +Ψu + γΨT

u

)]
ν(dζ)du
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+

∫ T

0

∫

R0

(
− γπuΥu +Ψu + γΨT

u

)
Ñ(du, dζ)

}
,

(5.3.7)

provided that
∫ T
0

∫
R0
(e(−γπuΥu+Ψu+γΨT

u ) − 1)2ν(dζ)du < ∞ {for more on ex-

ponential martingale see Applebaum 2009, Øksendal and Sulem 2005 and

Papapantoleon 2008}. Therefore, dQπ

dP
|FT

= E(M)T is uniformly integrable,

given that the process Ms is a BMO-martingale. Now, we have that

exp

{∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)
dW (u)

+

∫ s

r

∫

R0

(
e−γπuΥu +Ψu + γΨT

u

)
Ñ(du, dζ)

}

= exp

{
1

2

∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)2
du

−

∫ s

r

∫

R0

[
e(−γπuΥu+Ψu+γΨT

u ) − 1 +
(
− γπuΥu

+Ψu + γΨT
u

)]
ν(dζ)du

}
E(M)s
E(M)r

.

(5.3.8)

Hence, from (5.3.6),

EP

[
− exp

{
− γ

(
x+

∫ s

t

πuµ(Vu)du+

∫ s

t

πσ(Vu)dW (u)

+

∫ s

t

∫

R0

πuΥuÑ(du, dζ)

)
+ Ys − λs+ γY T

s

}∣∣∣∣Fr

]

= − exp

{
− γ

(
x+

∫ r

t

πuµ(Vu)du+

∫ r

t

πuσ(Vu)dW (u)

+

∫ r

t

∫

R0

πuΥuÑ(du, dζ)

)
+ Yr − λr + γY T

r

}

×EP

[
exp

{∫ s

r

(
− γπuµ(Vu)− g(Vu, Zu + γZT

u ,Ψu + γΨT
u )
)
du

+
1

2

∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)2
du−

∫ s

r

∫

R0

[
e(−γπuΥu+Ψu+γΨT

u )

−1 +
(
− γπuΥu +Ψu + γΨT

u

)]
ν(dζ)du

}
E(N)s
E(N)r

∣∣∣∣Fr

]
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= − exp

{
− γ

(
x+

∫ r

t

πuµ(Vu)du+

∫ r

t

πuσ(Vu)dW (u)

+

∫ r

t

∫

R0

πuΥuÑ(du, dζ)

)
+ Yr − λr + γY T

r

}

×EQπ

[
exp

{∫ s

r

(
− γπuµ(Vu)− g(Vu, Zu + γZT

u ,Ψu + γΨT
u )
)
du

+
1

2

∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)2
du

−

∫ s

r

∫

R0

[
e(−γπuΥu+Ψu+γΨT

u ) − 1 +
(
− γπuΥu +Ψu + γΨT

u

)]
ν(dζ)du

}∣∣∣∣Fr

]
.

(5.3.9)

Following the same procedure as in Chong et al. 2019, we show that for any

u ∈ [r, s],

−γπuµ(Vu) +
1

2

(
− γπuσ(Vu) + Zu + γZT

u

)2
−

∫ s

r

∫

R0

[
e(−γπuΥu+Ψu+γΨT

u ) − 1

+
(
− γπuΥu +Ψu + γΨT

u

)]
ν(dζ) ≥ g(Vu, Zu + γZT

u ,Ψu + γΨT
u ), (5.3.10)

then

EQπ

[
exp

{∫ s

r

(
− γπuµ(Vu)− g(Vu, Zu + γZT

u ,Ψu + γΨT
u )
)
du

+
1

2

∫ s

r

(
− γπuσ(Vu) + Zu + γZT

u

)2
du

−

∫ s

r

∫

R0

[
e(−γπuΥu+Ψu+γΨT

u ) − 1 +
(
− γπuΥu +Ψu + γΨT

u

)]
ν(dζ)du

}∣∣∣∣Fr

]
≥ 1.

(5.3.11)

As a result the super-martingale property

EP

[
− exp

{
− γ

(
x+

∫ s

t

πuµ(Vu)du+

∫ s

t

πσ(Vu)dW (u)

+

∫ s

t

∫

R0

πuΥuÑ(du, dζ)

)
+ Ys − λs+ γY T

s

}∣∣∣∣Fr

]

≤ − exp

{
− γ

(
x+

∫ r

t

πuµ(Vu)du+

∫ r

t

πuσ(Vu)dW (u)
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+

∫ r

t

∫

R0

πuΥuÑ(du, dζ)

)
+ Yr − λr + γY T

r

}

will hold. Note that the left hand side of the equation (5.3.10) can be

written as

−γπuµ(Vu) +
1

2

(
− γπuσ(Vu) + Zu + γZT

u

)2
−

∫ s

r

∫

R0

[
e(−γπuΥu+Ψu+γΨT

u )

−1 +
(
− γπuΥu +Ψu + γΨT

u

)]
ν(dζ)

=
γ2

2

∣∣πσ − (ZT +
Zu + µ(Vu)/σ(Vu)

γ
)
∣∣2 − 1

2

∣∣Zu + γZT
u + µ(Vu)/σ(Vu)

∣∣2

+
1

2
|Zu + γZT

u |
2 −

∫ s

r

∫

R0

[
e(−γπuΥu+Ψu+γΨT

u ) − 1

+
(
− γπuΥu +Ψu + γΨT

u

)]
ν(dζ).

(5.3.12)

In particular, for any πu ∈ A[t,T ],

γ2

2

∣∣πσ − (ZT +
Zu + µ(Vu)/σ(Vu)

γ
)
∣∣2 − 1

2

∣∣Zu + γZT
u + µ(Vu)/σ(Vu)

∣∣2 + 1

2
|Zu

+γZT
u |

2 −

∫ s

r

∫

R0

[
e(−γπuΥu+Ψu+γΨT

u ) − 1 +
(
− γπuΥu +Ψu + γΨT

u

)]
ν(dζ)

≥ inf
πu∈A[t,T ]

{
γ2

2

∣∣πσ − (ZT +
Zu + µ(Vu)/σ(Vu)

γ
)
∣∣2

−
1

2

∣∣Zu + γZT
u + µ(Vu)/σ(Vu)

∣∣2 + 1

2
|Zu + γZT

u |
2

−

∫ s

r

∫

R0

[
e(−γπuΥu+Ψu+γΨT

u ) − 1 +
(
− γπuΥu +Ψu + γΨT

u

)]
ν(dζ)

}
,

and using g(Vu, Zu + γZT
u ,Ψu + γΨT

u ) as in (5.2.6), we conclude that the

super-martingale property holds true.

The martingale property of the process P π̃, holds true if π̃ ∈ A[t,T ] and

π̃ = inf
πu∈A[t,T ]

{
γ2

2

∣∣πσ − (ZT +
Zu + µ(Vu)/σ(Vu)

γ
)
∣∣2

−
1

2

∣∣Zu + γZT
u + µ(Vu)/σ(Vu)

∣∣2 + 1

2
|Zu + γZT

u |
2

−

∫ s

r

∫

R0

[
e(−γπuΥu+Ψu+γΨT

u ) − 1 +
(
− γπuΥu +Ψu + γΨT

u

)]
ν(dζ)

}
.
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Combining the results from above, we obtain that EP[P
π
T |Ft] ≤ P π

t , and

hence, for any π ∈ A[t,T ],

EP

[
− e

−γ
(
x+

∫ T

t
πuµ(Vu)du+

∫ T

t
πσ(Vu)dWu+

∫ T

t

∫
R0
πuΥuÑ(du,dζ)

)
+YT−λT−γξT

∣∣∣∣Ft

]

≤ −e−γx+Yt−λt+γY
T
t ,

(5.3.13)

and for π = π̃ ∈ A[t,T ], we obtain

EP

[
− e

−γ
(
x+

∫ T

t
πuµ(Vu)du+

∫ T

t
πσ(Vu)dWu+

∫ T

t

∫
R0
πuΥuÑ(du,dζ)

)
+YT−λT−γξT

∣∣∣∣Ft

]

= −e−γx+Yt−λt+γY
T
t .

(5.3.14)

Subsequently,

ess sup
π∈A[t,T ]

EP

[
− e

−γ

(
x+

∫ T
t
πuµ(Vu)dt+

∫ T
t
πσ(Vu)dWu+

∫ T
t

∫
R0
πuΥuÑ(du,dζ)

)
+YT−λT−γξT

∣∣∣∣Ft

]
.

= −e−γx+Yt−λt+γY
T
t ,

(5.3.15)

and using condition (5.3.1), we obtain

−e−γρt(ξT )−γx+Yt−λt+γY T
t = −e−γx+Yt−λt,

and hence,

ρt(ξT ) = Y T
t ,

which concludes the proof.

Similar to Chong et al. 2019, the above representation also satisfies the

time-consistent property, which means any risk position defined at time T

can be evaluated indifferently at any intermediary time u for any 0 ≤ t ≤

u ≤ T <∞. See also Bion Bion-Nadal 2008 for construction of risk measures
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using BSDE with jumps. Chong Chong et al. 2019, highlights the difference

between the traditional entropic risk measure and the forward entropic risk

measure. The first difference is that the forward entropic risk measure is

defined for all time t ≤ 0, while the traditional entropic risk measure is

determined for a finite time t ∈ [0, T ]. The second difference is that the

generator of the BSDE (5.3.2), depends on the process Z, which is part of

the solution of the ergodic BSDE (5.2.7) that gives the forward exponential

process in (5.2.27).

5.4 Long-term maturity behaviour of the for-

ward entropic risk measure

We consider a contingent claim written on the stochastic factor, this position

is represented as follow

ξT = −h(VT ), (5.4.1)

where h : R 7→ R is uniformly bounded and is Lipschitz continuous function

with a Lipschitz constant Ch. From Theorem 5.3.1, we know that the risk

of the position is represented as the solution for the BSDE (5.3.2), that is

ρ(ξT ) = Y T,ξ
t , where Y T,ξ

t satisfies

Y T,h
t = h(VT ) +

∫ T

t

G(Vu, Zu, Z
T,h
u ,Ψu,Ψ

T,h
u )du−

∫ T

t

ZT,h
u dW (u)

−

∫ T

t

∫

R0

ΨT,h
u Ñ(du, dζ). (5.4.2)

To analyse the long term behaviour of the forward risk measure, we associate

the above BSDE to the ergodic BSDE given as

Ŷt = ŶT ′ +

∫ T ′

t

(
G(Vu, Zu, Ẑu,Ψu, Ψ̂u)− λ

)
du−

∫ T ′

t

ẐudW (u)

−

∫ T ′

t

∫

R0

Ψ̂uÑ(du, dζ), (5.4.3)
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for 0 ≤ t ≤ T ′ < ∞. We analyze the approximation of Y T,h
0 by Ŷ0 + λ̂T for

large T . In Chong et al. Chong et al. 2019 the driver of the ergodic BSDE

(5.4.3) depends only on the solution Zt of the ergodic BSDE (5.2.7) of the

forward performance process. In our case, the driver of the ergodic BSDE

(5.4.3) will depend on the solution Z and Ψ of the ergodic BSDE (5.2.7).

As was pointed by Chong et al. Chong et al. 2019, this creates technical is-

sues, which results in examining the Markovian and non-Markovian forward

processes separately. Following a similar route, we analyze the long-term

maturity behaviour in the Markovian case. The non-Markovian case follows

closely as in Chong et al. Chong et al. 2019.

5.4.1 Markovian forward performance process

Let us consider the case

U(t, x) = −e−γx+y(Vt)−λt (5.4.4)

where (Y (Vt), Z(VT ),Ψ(Vt)) = (y(Vt), z(Vt), ψ(Vt), λ), is the solution of the

ergodic BSDE (5.2.7). The driver G(Vu, Zu, Ẑu,Ψu, Ψ̂u) of the ergodic BSDE

(5.4.3) depends on z(Vt) and ψ(Vt). The functions z(·) and ψ(·) are bounded

and hence the driver G is Lipschitz continuous in ẑ and ψ̂ as in (5.2.10)

and (5.2.11). However, the generator G may not be Lipschitz continuous in

v, which affects the existence and uniqueness of the solution to the ergodic

BSDE (5.4.3). To overcome this problem, we consider an auxiliary quadratic

BSDE defined by,

Ŷ T,h
t = h(VT ) +

YT − λT

γ
+

∫ T

t

1

γ
g(Vu, γẐ

T,h
u , γΨ̂T,h

u )du−

∫ T

t

ẐT,h
u dW (u)

−

∫ T

t

∫

R0

Ψ̂T,h
u Ñ(du, dζ), (5.4.5)

with (Ŷ T,h
t , ẐT,h

t , Ψ̂T,h
t ) given as

(Ŷ T,h
t , ẐT,h

t , Ψ̂T,h
t ) :=

(
Y T,h
t +

Yt − λt

γ
, ZT,h

t +
Zt
γ
,ΨT,h

t +
Ψt

γ

)
,
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and g is given in (5.2.34).

We now recall from Chong et al. 2019 the following proposition with some

results for the stochastic factor model.

Proposition 5.4.1. (Chong et al. 2019) If Assumption 8 holds, then for all

t ≥ 0,

(i) the stochastic factor process satisfies |V v1
t − V v2

t |2 ≤ e−2Cηt|v1 − v2|2

where v1, v2 ∈ Rd.

(ii) If we assume that the process V v satisfies the following SDE

dV v
t = (η(V v

t ) +H(V v
t ))dt+ κdWH(t),

where H : R 7→ R is a measurable bounded function, QH and P are

equivalent probability measures, and WH is a QH-Brownian motion.

Then, for some constant C > 0, EQH [|V v
t |

2] ≤ C(1 + |v|2).

(iii) For any measurable function φ : Rd → R with polynomial growth rate

ϑ > 0, and v1, v2 ∈ Rd,

|EQH [|φ(V v1
t )− φ(V v2

t )|] ≤ C(1 + |v1|
1+ϑ + |v2|

1+ϑ)e−Ĉηt,

where the constants C and Ĉη depend on the function H only through

supv∈Rd |H(v)|.

The proof of (i) and (ii) follows from the Gronwall’s inequality and ap-

plication of the Lyapunov argument respectively (see Chong et al. 2019 and

Fleming and McEneaney 1995 Lemma 3.1). For the proof to the third part

of the proposition (basic coupling estimate) is given in Lemma 3.4 of Hu,

Madec, et al. 2015 and also see Theorem 2.4 from Debussche et al. 2011 and

Theorem 5 from Cohen and Fedyashov 2014.

Theorem 5.4.2. Let Assumption 7 and 8 hold, and assume that the forward

performance process U(t, x) is given by (5.2.27). Then
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(i) there exists a unique solution (Ŷ T,h
t , ẐT,h

t , Ψ̂T,h
t ) = (ŷT,h(Vt), ẑ

T,h(Vt), ψ̂
T,h(Vt))

of the quadratic BSDE (5.4.5) for t ∈ [0, T ].

(ii) For (t, v) ∈ [0,∞)× Rd, we have that

|ŷT,h(t, v)| ≤ CT (1 + |v|)

and ẑT,h, ψ̂T,g are uniformly bounded such that,

|ẑT,h(v, t)| ≤ Cz, |ψ(vt, ζ)| ≤
2K

α
.

Proof. The existence and uniqueness of the solution to the quadratic BSDE

(5.4.5) follows fromMorlais 2009b (Section 3.2, Theorem 1 and 2). Analogous

to Chong et al. 2019, the linear growth condition of the function ŷT,g(t, v)

follows from the boundedness of Y T,h
t and the linear growth condition of y(·).

Note that (Y T
u , Z

T
u ,Ψ

T
u ) = (Y T,t,v

u , ZT,t,v
u ,ΨT,t,v

u ) = (yT (V t,v
u , u), zT (V t,v

u , u),ΨT (V t,v
u , u))

for u ∈ [t, T ] with V t,v
t = v and some measurable functions yT (·, ·), zT (·, ·)

and ΨT (·, ·). We consider a truncated BSDE version of (5.4.5)

Ŷ T,h
t = h(VT ) +

YT − λT

γ
+

∫ T

t

1

γ
g(Vu, γq(Ẑ

T,h
u ), γq̃(Ψ̂T,h

u ))du

−

∫ T

t

ẐT,h
u dW (u)−

∫ T

t

∫

R0

Ψ̂T,h
u Ñ(du, dζ), (5.4.6)

where the truncation functions q(·) : Rd → Rd and q̃ : Rd → Rd are defined

as

q(z) :=
min(|z|, Cz)

|z|
z1{z 6=0}, and q̃(ψ) := 1|ψ|≤1.

Now, it then follows that the generator g of the truncated BSDE (5.4.6) is

Lipschitz i.e.

|g(v1, γq(z), γq̃(ψ))− g(v2, γq(z), γq̃(ψ))| ≤ Cv|v1 − v2|, (5.4.7)

|g(v, γq(z1), γq̃(ψ))− g(v, γq(z2), γq̃(ψ))| ≤ Cz|z1 − z2| (5.4.8)

and

|g(v, γq(z), γq̃(ψ1))− g(v, γq(z), γq̃(ψ2))| ≤

∫

R0

|ψ1 − ψ2|ϕ
v,z,ψ1,ψ2ν(dζ),

(5.4.9)
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for any v1, v2, z1, z2, ψ1, ψ2 ∈ Rd. Consequently, we have

Ŷ T,t,v1
t − Ŷ T,t,v2

t

= h(V t,v1
T )− h(V t,v2

T ) +
1

γ
(Y t,v1

T − Y t,v2
T )

+

∫ T

t

1

γ

[
g
(
V t,v1
u , γq(ẐT,t,v1

u ), γq(Ψ̂T,t,v1
u )

)
− g
(
V t,v2
u , γq(ẐT,t,v2

u ), γq(Ψ̂T,t,v2
u )

)]
du

−

∫ T

t

(
ẐT,t,v1
u − ẐT,t,v2

u

)
dW (u)−

∫ T

t

∫

R0

(
Ψ̂T,t,v1
u − Ψ̂T,t,v2

u

)
Ñ(du, dζ)

= h(V t,v1
T )− h(V t,v2

T ) +
1

γ
(y(V t,v1

T )− y(V t,v2
T ))

+

∫ T

t

1

γ

[
g
(
V t,v1
u , γq(ẐT,t,v1

u ), γq(Ψ̂T,t,v1
u )

)
− g
(
V t,v2
u , γq(ẐT,t,v2

u ), γq(Ψ̂T,t,v2
u )

)]
du

−

∫ T

t

(
ẐT,t,v1
u − ẐT,t,v2

u

)
(dW (u)− βdu)

−

∫ T

t

∫

R0

(
Ψ̂T,t,v1
u − Ψ̂T,t,v2

u

)
(Ñ(du, dζ)− ϕv,z,ψ1,ψ2ν(dζ)du)

(5.4.10)

and denote

βt :=

[
g
(
V t,v1
u , γq(ẐT,t,v1

u ), γq(Ψ̂T,t,v1
u )

)
− g
(
V t,v2
u , γq(ẐT,t,v2

u ), γq(Ψ̂T,t,v2
u )

)]

γ|ẐT,t,v1
u − ẐT,t,v2

u |2
×

×|ẐT,t,v1
u − ẐT,t,v2

u |1
{Ẑ

T,t,v1
u 6=Ẑ

T,t,v2
u }

Using the Girsanov’s theorem we can define W β(t) := W (t)−
∫ t
0
βdu and

Ñϕ(dt, dζ) := Ñ(dt, dζ)−
∫ t
0
ϕv,z,ψ1,ψ2ν(dζ)du for 0 ≤ t ≤ T , where ϕv,z,ψ1,ψ2

is defined in Assumption (5.2.11). For all t we define δZt := ẐT,t,v1
t − ẐT,t,v2

t

and δΨt := Ψ̂T,t,v1
t − Ψ̂T,t,v2

t and introduce

Mt =

∫ t

0

δZudW
β(u) +

∫ t

0

∫

R0

δΨuÑ
ϕ(du, dζ),

which is a local martingale under the measure Q, equivalent to P, defined

on FT . Thus, taking conditional expectation under the Q measure on Ft

and using the Lipschitz condition of h(v), in (5.4.1), y(v) in (5.2.13) and

97



g(v, γq(z), γq̃(ψ)) in (5.4.7) to (5.4.9), we obtain the following results

|Ŷ T,t,v1
t − Ŷ T,t,v2

t | = |ŷT,t,v1t − ŷT,t,v2t |

≤ ChEQ[|V
t,v1
T − V t,v2

T ||Ft] +
K

γ
EQ[|V

t,v1
T − V t,v2

T ||Ft]

+
Cv
γ
EQ

[ ∫ T

t

|V t,v1
u − V t,v2

u ||Ft

]
. (5.4.11)

Furthermore, using the results from Proposition 5.4.1 we conclude that

|Ŷ T,t,v1
t − Ŷ T,t,v2

t | ≤
(
Ch +

K

γ
+
Cv
γ

)
|v1 − v2|.

The proof of the asymptotic behaviour of the forward entropic risk mea-

sure is the same as the diffusion case in Theorem 10 from Chong et al. 2019,

where they show that the forward entropic risk measure converges to a con-

stant as the time horizon increases.

5.5 Conclusion

In this chapter, we introduced jumps into the ergodic BSDE with quadratic

growth in the control variable. We proved, under certain conditions, that

there exists a unique Markovian for a quadratic-exponential ergodic BSDE

with bounded jumps. Afterwards, we derived the representation of forward

entropic risk measure, which depends on the results from the ergodic BSDE.

We derived the connection between the ergodic BSDEs with jumps and the

PIDE. We noticed that when the stochastic factor includes jumps, the cor-

responding generator of the ergodic BSDE contains Yt and consequently the

translation invariance property is not satisfied.
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Chapter 6

BSVIE-based dynamic capital

allocations in a jump

framework

6.1 Introduction

In this chapter, we study the notion of capital allocation derived from dy-

namic risk measures constructed using Backward Stochastic Volterra Inte-

gral Equations (BSVIEs) with jumps. We prove the differentiability of the

BSVIEs with jumps. The capital allocation of the dynamic risk measure is

derived and an example is given.

Yong 2007 extended the work of risk measures of BSDEs to a specific type

of BSDE called backward stochastic volterra integral equations (BSVIEs).

BSVIEs are more general as compared to BSDEs because they consider po-

sition processes instead of FT−measurable random variables (see Section 6.2

for notation). Agram 2019, studied dynamic risk measures based on BSVIEs

with jumps. For more theory and applications of BSVIEs see amongst other

Yong 2013 and Kromer and Overbeck 2017, and BSVIEs with jumps see

Agram, Øksendal, et al. 2016, Agram, Øksendal, et al. 2018.
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This chapter is arranged as follows: in Section 6.2, we outline all the

relevant notations and concepts that we use throughout the Chapter. In

Section 6.3, we provide the main results. Finally, we apply the results from

Section 6.3 to an example and conclude. In Section 6.4, we conclude.

6.2 Preliminaries

Let T < ∞ be a finite time horizon. The source of randomness is mod-

elled through a probability space (Ω,F , P ) with the filtration F = (Ft)t≥0

generated by the one-dimensional Brownian motion Wt and an independent

Poisson random measure N(dt, dζ). Let the compensated Poisson random

measure of N be defined by Ñ(dt, dζ) = N(dt, dζ) − v(dζ)dt, with v(dζ)dt

denoting the Lévy measure of N on R0 := R\{0} so that
∫

R0

min{1, |ζ |2}ν(dζ) <∞.

Taking ∆ := {(t, s) ∈ [0, T ]2 : t ≤ s}. We define the following spaces of

variables or processes.

• L2(FT ) is the space of FT -measurable processes ψ : [0, T ]×Ω → R for

all t ∈ [0, T ], with norm

||ψ||2L2
FT

[0,T ] = E

[ ∫ T

0

|ψ(t)|2dt

]
<∞.

• Denote by H2
y the space of F-measurable cádlág processes Y : [0, T ]×

Ω → R, with the norm

||Y ||2H2
y
:= E

[ ∫ T

0

|Y (t)|2dt

]
<∞.

• Let H2
z be the space of F-predictable processes Z : ∆ × Ω → R such

that

||Z||2H2
Z
:= E

[ ∫ T

0

∫ T

t

|Z(t, s)|2dsdt

]
,

where s 7→ Z(t, s) is F-predictable on [t, T ].
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• L2
ν is the space of all Borel functions Υ : R0 → R equipped with the

norm

||Υ||2L2
ν
:=

∫

R0

Υ(t, s, ζ)2ν(dζ) <∞.

• Let H2
ν denote the space of F-predictable processes Υ : ∆×R0×Ω → R,

such that

E

[ ∫ T

0

∫ T

t

∫

R0

|Υ(t, s, ζ)|2ν(dζ)dsdt

]
<∞,

where s 7→ Υ(t, s, ·) is F-predictable on [t, T ]. The space H2
ν has the

norm

||Υ||2Hν
:= E

[ ∫ T

0

∫ T

t

∫

R0

|Υ(t, s, ζ)|2ν(dζ)dsdt

]
.

We consider the following BSVIE with unknowns Y , Z and Υ

Y (t) = −ψ(t) +

∫ T

t

g(t, s, Y (s), Z(t, s),Υ(t, s, ·))ds−

∫ T

t

Z(t, s)dW (s)

−

∫ T

t

∫

R0

Υ(t, s, ζ)Ñ(ds, dζ), t ∈ [0, T ], (6.2.1)

where ψ ∈ L2(FT ) is a position (wealth) process instead of a random variable

and g : ∆×R×R×R×Ω → R is the generator. From Yong 2007, we know

that ψ(·) can represent the total wealth process of a portfolio consisting of a

combination of contingency claims, some current cash flows (dividends), some

positions of shares and bonds at time t. Here ψ(·) is a stochastic processes

that is FT -measurable. We also consider the following Backward Stochastic

Differential Equation (BSDE)

Y (t) = −ξ +

∫ T

t

g(s, Y (s), Z(s),Υ(s, ·))ds−

∫ T

t

Z(s)dW (s)

−

∫ T

t

∫

R0

Υ(s, ζ)Ñ(ds, dζ), t ∈ [0, T ], (6.2.2)

where the terminal condition, ξ, is a square integrable random variable. The

difference between BSDE (6.2.2) and BSVIE (6.2.1) as stated in Yong 2007

(see page 4) are as follows:
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(i) The generator, g is dependent on both s and t.

(ii) The generator does depend on Z(t, s) and also on Z(s, t). Under the

jump BSVIE, the generator will depend on both Υ(t, s, ·) and Υ(s, t, ·)

(see Agram 2019).

(iii) The process ψ(·) is allowed to just B[0, T ] ⊗ FT -measurable (not nec-

essarily F-adapted), where B[0, T ] is the Borel σ-field on [0,T].

Next, we state the conditions that the generator and the position process

must satisfy in order for the solution of the BSVIE (6.2.1) to exist.

(H.1) (i) The function g : ∆ × R × R × R × Ω → R satisfies the following

integrability condition

E

[ ∫ T

0

(∫ T

t

g(t, s, 0, 0, 0)ds

)2

dt

]
<∞.

(ii) The function g satisfies the following Lipschitz condition. There

exists a constant C > 0 such that, for all t, s ∈ [0, T ]

|g(t, s, y, z, υ(·))− g(t, s, y′, z′, υ′(·))| ≤ C

(
|y − y′|+ |z − z′|

+

(∫

R0

|υ(ζ)− υ′(ζ)|2ν(dζ)

)1/2)

for all (t, s) ∈ ∆, y, y′, z, z′ ∈ R, υ(·), υ′(·) ∈ L2
ν .

(H.2) The terminal condition ψ(·) ∈ L2(FT ).

Under the assumptions (H.1) and (H.2), Agram, Øksendal, et al. 2016

showed that there exists a unique solution (Y, Z,Υ) ∈ Hy ×Hz ×Hυ of the

BSVIE (6.2.1) and the following estimate holds

||(Y, Z,Υ)||2Hy×Hz×Hυ
≤ CE

[
|ψ(t)|2 +

(∫ T

t

g(t, s, 0, 0, 0)ds

)2]
.

We refer to Hu and Øksendal 2019 for an explicit solution formula for a

special case of linear BSVIEs with jumps.
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The concept of dynamic risk measures constructed using BSVIE with

jumps is introduced by Agram 2019. Define

ρ(t, ψ(·)) = Y −ψ(·)(t), for all t ∈ [0, T ], (6.2.3)

where Y is the first component to the solution of the BSVIE given by:

Y (t) = −ψ(t) +

∫ T

t

g(t, s, Z(t, s),Υ(t, s, ·))ds−

∫ T

t

Z(t, s)dW (s)

−

∫ T

t

∫

R0

Υ(t, s, ζ)Ñ(ds, dζ), t ∈ [0, T ], (6.2.4)

with the terminal condition ψ(·) ∈ L2(FT ) and generator g : ∆×R×R×

Ω → R satisfying assumptions (H.1) and (H.2) respectively. The approach

of Agram, Øksendal, et al. 2018 is motivated by the work of Yong 2007

who studied dynamic risk measures induced by BSVIE in the continuous

framework. Agram 2019 (in Theorem 4.1 page 11) (also see Yong 2007 for

the diffusion case), they define a dynamic risk measure ρ : L2(FT ) → L2(F)

of the return process ψ(·) induced by BSVIE with jumps if the following

holds:

(i) Convexity: For any ψ1(·), ψ2(·) ∈ L2(FT ) and λ ∈ [0, 1]

ρ(t, λψ1(·) + (1− λ)ψ2(·)) ≤ λρ(t, ψ1(·)) + (1− λ)ρ(t, ψ2(·)).

(ii) Monotonicity: If ψ1(·) ≤ ψ2(·), then ρ(t, ψ1(·)) ≥ ρ(t, ψ2(·)).

(iii) Translation invariance: If ψ(·) ∈ L2(FT ) and for any c ∈ R, then

ρ(t, ψ(·) + c) = ρ(t, ψ(·))− c, a.s. t ∈ [0, T ].

(iv) Past independence: If ψ1(·), ψ2(·) ∈ L2(FT ) and ψ1(s) = ψ2(s) for

all s ∈ [t, T ] then ρ(t, ψ1(·)) = ρ(t, ψ2(·)).

Convexity demonstrates that the dynamic risk measure can increases in a

nonlinear way as the position process is multiplied by a factor, due to liquid-

ity risk of the large position. Monotonicity states that the capital required
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to support a large position process is smaller than the capital required to

support a small position. Translation invariance means that if you increase

a position by some constant then the capital required to maintain the new

position will decrease by that constant. Lastly, Past independence means

that the dynamic risk measure is only dependent on the current and future

information of the position process.

Now consider ψ(t) to be a portfolio process with the risk ρ(ψ(t)) and φ(t)

the sub-portfolio process such that
∑n

i=1 φi(t) = ψ(t). Then the capital allo-

cation problem is to determine the risk contribution of sub-portfolio process

φi(t) to risk of ψ(t). If the risk measure, ρ is Gâteaux-differentiable, then

the gradient allocation is given by

d

du
ρ(t;ψ(t) + uφi(t))

∣∣∣∣
u=0

:= lim
u→0

ρ(ψ(t) + uφi(t))

u
= ∇Y (t), (6.2.5)

The above expression represents the risk capital that the sub-portfolio process

φ(·) contributes to the portfolio process ψ(·). It describes the continuous-

time dynamic capital that should be allocated to the sub-portfolio process

φ(·) (see Kromer and Overbeck 2017).

In the next section we study dynamic capital allocation where the risk

measure is constructed using BSVIE with jumps.

6.3 Representation of dynamic risk capital

allocations

For the capital allocation, we need the differentiability results of the BSVIE

with jumps. The differentiability of the BSVIE with jumps will allow us to

define the gradient allocation. We consider the following BSVIE

Y u(t) = −(ψ(t) + uφ(t)) +

∫ T

t

g(t, s, u, Y u(s), Zu(t, s),Υu(t, s, ζ))ds
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−

∫ T

t

Zu(t, s)dW (s)−

∫ T

t

∫

R0

Υu(t, s, ζ)Ñ(ds, dζ), (6.3.1)

for any u ∈ R.

6.3.1 Differentiability of BSVIEs with jumps

To derive the differentiability results of BSVIE (6.3.1) we impose the follow-

ing set of assumptions.

(D1) The terminal process ψ : [0, T ] × R × Ω → R is continuous, ψ(t, u) ∈

L2(FT ), the map u 7→ ψ(t, u) is differentiable for all t ∈ [0, T ] and the

derivative is given by ∇ψ(t, x) ∈ L2(FT ).

(D2) The generator g : ∆×R×R×R×R×Ω → R is B(∆×R×R×R×

R) ⊗ FT measurable such that s 7→ g(t, s, u, y, z, υ) is F-progressively

measurable for all (t, u, z, υ) ∈ [0, T ]×R×R×R×R with the following

integrability condition holds

E

[ ∫ T

0

(∫ T

t

|g(t, s, u, 0, 0, 0)|ds

)2

dt

]
≤ ∞ ∀u ∈ R.

Furthermore, the generator g is such that the map (t, s, u, y, z, υ) 7→

g(t, s, u, y, z, υ) is continuously differentiable. In addition g is Lipschitz

continuous that is there exists a deterministic function L : ∆ → [0,∞)

satisfying

sup
t∈[0,T ]

∫ T

t

L(t, s)2+ǫds <∞

for some ǫ > 0 such that

|g(t, s, u, y, z, υ)−g(t, s, u, y′, z′, υ′)| ≤ L(t, s)(|y−y′|+||z−′z||+|υ−υ′|),

for all (t, s) ∈ ∆, (y, z, υ), (y′, z′, υ′) ∈ R × R× R. Moreover, the map

u 7→ g(t, s, u, y, z, υ) is differentiable and for all (u, u′) ∈ R

lim
u→u′

E

[ ∫ T

0

(∫ T

t

∣∣∣∣
∂

∂u
g(t, s, u′, Y u′ , Zu′(s),Υu′(s, ζ))

−
∂

∂u
g(t, s, u, Y u, Zu(s),Υu(s, ζ))

∣∣∣∣ds
)2

dt

]
= 0. (6.3.2)
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(D3) Let δ : ∆× Ω× R0 → R be a measurable process satisfying

∫

R0

|δ(t, s, ζ)|2ν(dζ) <∞,

for any (t, s) ∈ ∆.

The results of the differentiability of BSVIE (6.3.1) under the above assump-

tions is given by the following corollary. Our approach to the proof of the

corollary closely follows that of Overbeck and Röder 2018, (Theorem 3 page

21), differentiability results of the path-dependent BSVIEs with jumps.

Proposition 6.3.1. Let (D1) and (D2) hold, then the function

R → H2
y ×H2

z ×H2
ν , u 7→ (Y u(·), Zu(·, ·),Υu(·, ·, ·)),

is differentiable and the derivative is a unique adapted solution to the

BSVIE

∇Y u(t) = ∇ψ(t)−

∫ T

t

∇Zu(t, s)dW (s)−

∫ T

t

∫

R0

∇Υu(t, s, ζ)Ñ(ds, dζ)

+

∫ T

t

∂ug

(
t, s, Y u(s), Zu(t, s),

∫

R0

Υu(t, s, ζ)δ(t, s, ζ)ν(dζ)

)
∇Y u(s)ds

+

∫ T

t

∂zg

(
t, s, Y u(s), Zu(t, s),

∫

R0

Υu(t, s, ζ)δ(t, s, ζ)ν(dζ)

)
∇Zu(t, s)ds

+

∫ T

t

∫

R0

∂νg

(
t, s, Y u(s), Zu(t, s),

∫

R0

Υu(t, s, ζ)δ(t, s, ζ)ν(dζ)

)

×∇Υu(t, s, ζ)ν(dζ)ds. (6.3.3)

Proof. We define for all (t, s) ∈ ∆, u ∈ R and h ∈ R0 the following

Yh(t) =
1

h
(Y u+h(t)− Y u(t)), Zh(t, s) =

1

h
(Zu+h(t, s)− Zu(t, s)),

Uh(t, s, ζ) =
1

h
(Υu+h(t, s, ζ)−Υu(t, s, ζ)) and Ψh(t) =

1

h
(ψu+h(t)−ψu(t)).

We then have

Yh(t) = Ψh(t)−

∫ T

t

Zh(t)dW (s)−

∫ T

t

∫

R0

Uh(t, s, ζ)Ñ(ds, dζ)
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+

∫ T

t

1

h

(
g
(
t, s, u+ h, Y u+h(s), Zu+h(t, s),

∫

R0

Υu+h(t, s, ζ)δ(t, s, ζ)ν(dζ)
)

−g
(
t, s, u, Y u(s), Zu(t, s),

∫

R0

Υu(t, s, ζ)δ(t, s, ζ)ν(dζ)
))
ds.

(6.3.4)

Define a mapping lu,h : [0, 1] → R× R× R× R× R by

lu,h(θ) =

(
u+ θh, Y u(t) + θhYh(t), Zu(t, s) + θhZh(t, s),

∫

R0

(
Υ(t, s, ζ) + θhUh(t, s, ζ)δ(t, s, ζ)ν(dζ)

))
(6.3.5)

From the above notation if follows that

1

h

∂

∂θ
lu,h(θ) =

(
1,Yh(t),Zh(t, s),

∫

R0

Uh(t, s, ζ)δ(t, s, ζ)ν(dζ)

)

Equation (6.3.4) can be rewritten as

Yh(t) = Ψh(t)−

∫ T

t

Zh(t)dW (s)−

∫ T

t

∫

R0

Uh(t, s, ζ)Ñ(ds, dζ)

+

∫ T

t

(
ms,t
u,h

(
Y h(s), Zh(t, s),

∫

R0

Υh(t, s, ζ)δ(t, s, ζ)ν(dζ)
)

+Au,h(t, s)

)
ds,

(6.3.6)

where ms,t
u,h : R× R× R → R is a linear function defined by

ms,t
u,h = Bu,h(t, s)y + Cu,h(t, s)z +Du,h(t, s)υ,

with

Au,h(t, s) =

∫ 1

0

∂

∂u
g(lu,h(θ))dθ,

Bu,h(t, s) =

∫ 1

0

∂

∂y
g(lu,h(θ))dθ,

Cu,h(t, s) =

∫ 1

0

∂

∂z
g(lu,h(θ))dθ,
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Du,h(t, s) =

∫ 1

0

∂

∂υ
g(lu,h(θ))dθ.

From Hu and Øksendal 2019, there exists a unique solution (Y ,Z,U) to

the linear BSVIEs (6.3.6). It then follows that

E

[ ∫ T

0

|Yh(t)−Yh′(t)|2dt

]
≤ C

(
E

[ ∫ T

0

|Ψh(t)−Ψh′(t)|2dt

]

+E

[ ∫ T

0

(∫ T

t

(
Au,h(t, s)− Au,h′(t, s)

)2
ds

)
dt

])
.

(6.3.7)

Consequently, for h, h′ ∈ R0 and (D1), we have

lim
h→h′

E

[ ∫ T

0

|Ψh(t)−Ψh′(t)|2dt

]
= 0,

and (D2) yields

lim
h→h′

E

[ ∫ T

0

(∫ T

t

(
Au,h(t, s)− Au,h′(t, s)

)2
ds

)
dt

]
= 0.

Hence, if follows

lim
h→h′

E

[ ∫ T

0

|Yh(t)−Yh′(t)|2dt

]
= 0,

From the same argument, it follows that

lim
h→h′

E

[ ∫ T

0

∫ T

t

|Zh(t, s)− Zh′(t, s)|2dsdt

]
= 0,

and

lim
h→h′

E

[ ∫ T

0

∫ T

t

∫

R

|Uh(t, s, ζ)− Uh′(t, s, ζ)|2ν(dζ)dsdt

]
= 0.

Therefore, we conclude that

lim
h→h′

||(Yh,Zh,Uh)− (Yh′,Zh′,Uh′)||2H2
y×H

2
z×H

2
υ
= 0.

Considering thatH2
y , H

2
z andH

2
υ are Banach spaces the sequences Yh con-

verges to ∂
∂u
Y u(t), Zh converges to ∂

∂u
Zu(t, s) and∓h converges to ∂

∂u
Υu(t, s, ζ).

Under the above term by term convergence, ( ∂
∂u
Y u(t), ∂

∂u
Zu(t, s), ∂

∂u
Υu(t, s, ζ))

is a solution to the BSVIE with jumps (6.3.3).
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6.3.2 Gradient capital allocation

In this section we derive the dynamic capital allocation and it is given as the

first component of solution to the BSVIE with jumps.

Corollary 6.3.2. The dynamic capital allocation corresponding the dynamic

risk measure ρ(t, ψ(t)) in (6.2.3) exists and is given ∇Y (t), which is a unique

solution to Equation (6.3.3).

Proof. We can deduce that ρ(t;ψ(t) + uφ(t)) is the dynamic risk measure

for the position process ψ(t) + uφ(t). It follows from Equations (6.2.3) and

(6.2.4) that

ρ(t;ψ(t) + uφ(t)) = Y u(t) for all t ≥ 0

where the process Y (t) is the first component of the unique solution of fol-

lowing BSVIE

Y u(t) = −(ψ(t) + uφ(t)) +

∫ T

t

g(t, s, u, Y u(s), Zu(t, s),Υu(t, s, ζ))ds

−

∫ T

t

Zu(t, s)dW (s)−

∫ T

t

∫

R0

Υu(t, s, ζ)Ñ(ds, dζ), (6.3.8)

for any u ∈ R. It then follows from Corollary (6.3.1) that the dynamic

gradient allocation defined as

d

du
ρ(t;ψ(·) + uφ(·))

∣∣∣∣
u=0

= ∇Y (t),

exists, with ∇Y (t) being the first component of the unique solution to Equa-

tion (6.3.3).

If the jump term is removed the results of the Corollary (6.3.2) will be

the same as Kromer and Overbeck 2017.

Example 6.3.1. We consider the following BSVIE

Y (t) = −ψ(t)−

∫ T

t

Z(t, s)dW (s)−

∫ T

t

∫

R0

Υ(t, s, ζ)Ñ(ds, dζ) +

∫ T

t

(
Y (s)r(s)
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+ g0(t, s)

√
1 + |Z(t, s)|2 +

∫

R0

∣∣Υ(t, s, ζ)
∣∣2δ(t, s, ζ)ν(dζ)

)
ds, (6.3.9)

where the generator is given by

g(t, s, y, z, υ) = Y (s)r(s)+g0(t, s)

√
1 + |Z(t, s)|2 +

∫

R0

∣∣Υ(t, s, ζ)
∣∣2δ(t, s, ζ)ν(dζ)

∣∣2.

According to Yong 2007, the choice of the generator depends on the

agent’s appetite towards risk, the greater the generator the more conser-

vative the agent is towards the risk (see also Delong 2013 page 240 on the

economic interpretation of the generator). The generator satisfies condition

(H.1) and also condition (D2). By taking r(t) = 0, then the generator is in-

dependent of the Y process. Hence, the dynamic risk measure ρ(·), is given

by the first component of the solution to the BSVIE (6.3.9). We apply Corol-

lary (6.3.1) to obtain the corresponding dynamic gradient allocation of ψ(·),

which is given by ∇Y , the first component of the solution to the following

BSVIE

∇Y u(t) = ∇ψ(t)−

∫ T

t

∇Zu(t, s)dW (s)−

∫ T

t

∫

R0

∇Υu(t, s, ζ)Ñ(ds, dζ)

+

∫ T

t

r(s)∇Y u(s)ds

+

∫ T

t

g0(t, s)
Z(s, t)√

1 + |Z(t, s)|2 +
∫
R0

|Υ(t, s, ζ)|2δ(t, s, ζ)ν(dζ)
∇Zu(t, s)ds

+

∫ T

t

∫

R0

g0(t, s)
Υ(t, s, ζ)δ(t, s, ζ)ν(dζ)√

1 + |Z(t, s)|2 +
∫
R0

|Υ(t, s, ζ)|2δ(t, s, ζ)ν(dζ)

×∇Υu(t, s, ζ)ν(dζ)ds.

(6.3.10)

In general, the explicit solution of BSVIEs is hard to get. We would have

to use numerical methods to find the solution of the above BSVIE (6.3.10),

this is a subject of further research.
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6.4 Conclusion

In this chapter, we studied the capital allocation problem for dynamic risk

measures constructed using the solution of BSVIEs with jumps. We derived

the differentiability results of BSVIEs with jumps. Hence, the dynamic cap-

ital allocation is determined as the first component of the solution to the

BSVIE derivative. To obtain an approximation of solution to the BSVIE

derivative, we would need to employ numerical methods. This can be con-

sidered as a further research topic.
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Chapter 7

Conclusion

Summary and future research

In this research, we established the representation of dynamic risk measures

and capital allocation defined using BSDEs and their generalization (BSVIEs

and ergodic-BSDEs). Our framework was under the diffusion and jump-

diffusion case.

In addressing the main research question, we were able to determine the

representation of the capital allocation where the underlying risk measure is:

• represented using BSDE(s) with quadratic-exponential growth in the

control processes, that allowed us to determine the risk associated with

a final random variable investment outcome at any time during the

investment period;

• represented using ergodic-BSDE(s) that allowed us to determine the

risk associated with the final investment outcome where the final in-

vestment payout date is flexible;

• determine from the BSVIE with a generator that depends on (s, t) and

the control processes rely on both s and t for s ∈ [t, T ], the represen-
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tation of a dynamic risk measure when the terminal value is a position

(wealth) process.

The capital allocation was determined using the gradient allocation method,

(i.e. Gateaux Derivative and Malliavin directional derivative), as it allows

one to differentiate the risk measure of the portfolio in the direction of the

sub-portfolio. This is critical in ensuring that the overall portfolio risk has

been fully allocated to each sub-portfolio.

Our work determined the representation of capital allocation under the

full-allocation property, and we did not consider sub-allocation property (in-

troduced by Centrone and Rosazza (2018)). For further research work, we

will consider sub-allocation. Another area of interest is in determining an

optimal BSDE-based capital allocation where we formulate and solve an opti-

mization problem. (Dhaene et al. (2012) investigated optimal capital alloca-

tion based on well-known risk measures (such as conditional tail expectation)

but not on BSDE-based risk measures). The practical implementation of the

results herein is a possible future interest.
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Appendix A

Axioms of Capital Allocation

We provide the reader with some of the capital allocation axioms in literature

(see Kalkbrener (2005), Denault (2001) and Centrone and Rosazza (2018)).

We recall the three axioms for capital allocation proposed by Kalkbrener

(2005) and we will use similar notation from therein. Let Λ : X × X → R

denote the capital allocation, then Λ(Xi, X) defines the risk capital allocation

of Xi whenever Xi is considered a subportfolio of portfolio X . We say that

Λ is a capital allocation associated with the risk measure ρ if it satisfies

Λ(X,X) = ρ(X) this means the capital allocated to X , is its risk ρ(X),

whenever X is a portfolio that contains itself.

Definition A.1. Let ρ : X → R. A capital allocation (with respect to ρ) is

a function Λ : X ×X → R such that for every X ∈ X

Λ(X,X) = ρ(X).

The capital allocation Λ is called

(i) linear: Λ(aX+bY, Z) = aΛ(X,Z)+bΛ(Y, Z) ∀a, b ∈ R, X, Y, Z ∈ X .

(ii) diversifying: Λ(X, Y ) ≤ Λ(X,X) ∀X, Y ∈ X .

(iii) continuous at Y : limǫ→0 Λ(X, Y + ǫX) = Λ(X,X) ∀X, Y ∈ X .
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The linear axiom states that the risk capital allocated to the subportfolios

should add up to the overall portfolio risk, that is, if Z = aX + bY , then

ρ(Z) = Λ(Z,Z) = aΛ(X,Z) + bΛ(Y, Z).

Diversifying axiom says that the risk capital of a portfolio allocated to the

sub-portfolio should not exceed the risk capital of a portfolio allocated to it-

self. The last axiom, says that a small change to the portfolio has a minimal

effect on the risk capital allocated to the subportfolio.

The next theorem we recall from Kalkbrener (2005). The risk capital

allocated is uniquely determined by the directional derivative of the underly-

ing risk measure at the portfolio in the direction of sub-portfolio Kalkbrener

(2005).

Theorem A.1. Let Λ be a linear, diversifying capital allocation with respect

to ρ. If Λ is continuous at Y ∈ X then for all X ∈ X

Λ(X, Y ) = lim
ǫ→0

ρ(Y + ǫX)− ρ(Y )

ǫ
.

Proof. See Kalkbrener (2005) (Theorem 3.1).

We recall the definition of Aumann-Shapley capital allocation method

proposed by Tsanakas (2009) for convex risk measures.

Definition A.2. For a aggregate portfolio X ∈ X and a risk measure ρ

that is Gateaux differentiable at βX , β ∈ [0, 1], the Aumann-Shapley capital

allocation ΛAS is define by

ΛAS(Y,X) =

∫ 1

0

Λ(Y, βX)dβ.
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Appendix B

Malliavin Calculus

In this section, we recall the two definition of the derivatives of F presented

in Di Nunno et al. (2009). The first definition is the stochastic derivative

DtF of F ∈ D1,2.

Definition B.1. Assume that F : Ω → R has a directional derivative in all

directions of η of the form η ∈ H in the strong sense, that is

DηF (ω) := lim
ǫ→0

F (ω + ǫη)− F (ω)

ǫ
,

exists in L2(P ). Assume in addition that there exists φ(t, ω) ∈ L2(P × dt)

such that

DηF (ω) =

∫ T

0

ψ(t, ω)(t)dt for all η ∈ H.

Then we say that F is differentiable and we set

DtF (ω) := ψ(t, w).

We call D·F ∈ L2(P × dt) the stochastic derivative of F . The set of all

differentiable random variables is denoted by D1,2.

The set of η ∈ Ω, that is written in the above form for some h ∈ L2([0, T ]),

is called the Cameron −Martin space and it is denoted by H (Di Nunno

et al. (2009)).

The second definition provides the Malliavin derivative DtF of F ∈ D1,2.
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Definition B.1. Let F ∈ D1,2 so that there exists {Fn}∞n=1 ⊂ P such that

Fn → F in L2(P )

and {DtFn}
∞
n=1 is convergent in L2(P × dt). Then we define

DtF = lim
n→∞

DtFn in L2(P × dt)

and

DηF =

∫ T

0

DtF · h(t)dt

for all η(t) =
∫ t
0
h(s)ds ∈ H , with h ∈ L2([0, T ]). We call DtF the Malliavin

derivative of F .

Di Nunno et al. (2009) shows in Lemma A.18 page 358 that if F ∈

D1,2 ∩ D1,2, then the two derivatives coincide. In view of this, we use the

same symbol DtF for the derivative and DηF for the directional derivative

of all elements F ∈ D1,2 ∩D1,2.
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