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Damage in structures may be identified and quantified by using measured frequency 

response functions (FRFs) or identified modal properties as a basis for updating. The 

main shortcoming of these methods is that if they are used individually the methods using 

modal properties do not necessarily predict the measured FRFs and vice versa. 

A Multiple Criterion Method (MCM) which uses the measured FRFs and identified 

modes simultaneously in an optimisation fashion, is developed in this study. The 

Euclidean norm of the error vector resulting from the integration of the mass and stiffness 

matrices from the Finite Element Model (FEM) and the measured FRFs in the equation of 

motion is minimised. The same procedure is performed using identified modal 

properties. The modulus of elasticity of each element in the FEM of the structure is used 

as design variables. 

The new procedure is tested on a simple beam, a complex beam (with drilled holes that 

are hard to model) and an irregular H-shaped structure. The effectiveness of MCM was 

compared to other methods that use FRFs and modal properties individually. The 

comparison was made by using methods such as Modal Assurance Criterion (MAC), Co­

ordinate Modal Assurance Criterion (COMAC) and the Frequency Response Functions 

Assurance Criterion (FRF AC), which is a new procedure developed specifically as part 

this work. 
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It was found that the method is capable of obtaining an updated model which assimilates 

the two sets of data from the FRFs and modal properties. It was also discovered that the 

method is more successful in determining the presence of damage on the structure; its 

location; and its the extent of damage. 

Ill 
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'n MULTI-KRITERIUM OPDA TERINGSMETODE FOR SKADE-OPSPORING 

OPSTRUKTURE 

deur 

Tshilidzi Marwala 

Studieleier: Prof P S Heyns 

Departement Meganiese en Lugvaartkundige lngenieurswese 

Graad waarvoor die verhandeling voorgele word: 

Meester in Ingenieurswese 

Samevatting 

Skade in strukture kan geYdentifiseer en gekwantifiseer word deur die meting van 

frekwensieresponsiefunksies (FRFs) of deur die identifikasie van modale parameters as 'n 

basis vir opdatering. Die belangrikste tekortkoming van hierdie metodes is dat as hulle 

individueel gebruik word, die metodes wat modale parameters gebruik nie noodwendig die 

gemete FRFs voorspel nie, en omgekeerd. 

'n Multi-kriterium metode wat die gemete FRFs en die geYdentifiseerde modusse gelyktydig 

in 'n optimeringsmodus gebruik, word in hierdie studie ontwikkel. Die Euklidiese norm 

van die foutvektor wat resulteer uit die integrasie van die massa- en styfheidsmatrikse van 

die eindige-elementmodel en die gemete FRFs, in die bewegingsvergelyking word 

geminimecr. Diesclfdc prosedure word dcurgcvoer met gebruik van die gei'dcntifisecrde 

modale eienskappe. Die elastisiteitsmodulus van elke element in die eindige-elementmodel 

word as ontwerpveranderlikes gebruik. 

Die nuwe prosedure word getoets op 'n eenvoudige balk, 'n komplekse balk (met geboorde 

gate wat moeilik is om te modelleer) en 'n onreelmatige H-vormige struktuur. Die 

effektiwiteit van die multi-kriterium metode is vergelyk met ander metodes wat FRFs en 

modale parameters afsonderlik gebruik. Die vergelyking is gedoen deur gebruik te maak 

van metodes soos die modale korrelasiekriterium, die koordinaat modale 

korrelasiekriterium en die frekwensieresponsiefunksie korrelasiekriterium, 'n nuwe 

prosedure wat spesiaal ontwikkel is as deel van hierdie werk. 
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Daar is gevind dat hierdie metode in staat is om 'n opgedateerde model te vind wat die twee 

stelle data uit die FRFs en die modale parameters assimileer. Daar is verder gevind dat die 

metode meer suksesvol is in die bepaling van die teenwoordigeheid van skade in strukture, 

die posisie en omvang van die skade. 
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t. Introduction 

In this study, a multiple criterion updating method is proposed. This method uses 

measured frequency response functions (FRFs) and extracted modal properties 

simultaneously to update the finite element model. The method is proposed to solve the 

problem of uniqueness of the updated finite element model which the methods currently 

in use cannot solve (Ibrahim et al. 1989). It has been argued (Nobari et al. 1989), that to 

enhance the chances of getting a unique solution a number of restrictive conditions must 

be satisfied. The proposed multiple criterion method satisfies the measured FRFs and 

modal parameters. Ibrahim et al. (1989) uses two sets of structural responses to enforce a 

unique solution. The responses used were two identical modes. 

The proposed method is compared to the methods that use measured FRFs and modal 

properties. The comparison uses the Modal Assurance Criterion (MAC) (Allemang and 

Brown, 1982), Co-ordinate Modal Assurance Criterion (COMAC) (Lieven, 1988) and the 

FRF Assurance Criterion (FRF AC). The FRF AC is a new method which compares two 

sets of FRFs, and is also proposed as part of this study. The proposed updating method is 

applied using selective updating method to detect damage on a simple beam, a beam with 

holes and an irregular H-shaped structure. In this chapter different updating methods are 

discussed and some are chosen to detect damage on the structure. 

The development of modern computers which are capable of processing large matrices 

has led to the construction of large and sophisticated numerical models. One of these 

numerical models is the finite element model. The Cooley-Tukey algorithm, and related 

techniques, which are used to obtain Fourier transformations, has led to the development 

of sophisticated techniques in experimental modal analysis. The finite element model 

often gives results that are not the same as the results given by the experiment. The 

reasons for the discrepancy between finite element model and measured data include the 

difficulty in modelling damping, joints, welds and edges, and the linear assumption of the 

finite element model. Due to this discrepancy between measured and finite element data, 
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techniques have been developed to update the finite element model so that it can predict 

measured results. 

Techniques developed to update the finite element model can be divided into two 

categories: direct and iterative methods. Direct methods update the finite the element 

model without any regard to changes in physical parameters. Because of this reason, 

direct methods tend to give models that represent the measured parameters without any 

regard to the structure that is being analysed. This results in mass and stiffness matrices 

that have little physical meaning and cannot be related to physical changes to the finite 

elements of the original model. Furthermore, the connectivity of the nodes is not ensured 

and generally the matrices are fully populated and not sparse. When using iterative 

methods, physical parameters are changed until the finite element model reproduces 

measured data. Because of this nature of iterative methods, they give finite element 

models which ensure connectivity of nodes, and have mass and stiffness matrices that 

have physical meaning. Because of the objective of using the proposed updating method 

on damage detection, iterative techniques will be applied in this study. 

Before we go on with this study, it is advisable to investigate some of the updating 

methods that have been proposed and applied in the past so that suitable methods may be 

chosen. These methods are: 

Optimal Matrix Modification (Berman et al., 1971) 

This method updates the matrix in order to ensure that the modes and frequencies are 

reproduced. 

Lagrange Multipliers (Baruch, 1978) 

This method assumes that the mass matrix is correct and updates the stiffness matrix by 

minimising the distance between the updated and analytical stiffness matrices. 

Sensitivity Based Methods (Collins et al., 1974) 

These methods utilise the derivatives of eigenvalues and/or eigenvectors with respect to 

changes in physical and material parameters. These sensitivities are used to calculate 

changes in the parameters that would force the analysis frequencies and mode shapes to 

match those that were measured. 
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Eigenstructure Assignment Techniques (Zimmerman and Widengren, 1990) 

In these methods which are based on control system theory, a structure is forced to 

respond in a predetermined manner. In damage detection the desired eigenstructure is the 

one that is measured in the test. 

Minimum Rank Perturbation Methods (Chen et al., 1983) 

In these methods the mass and stiffness matrix are updated using the measured modes and 

natural frequencies. 

Error Matrix Methods (Sidhu and Ewins, 1984) 

The error matrix is the difference between measured stiffness or mass matrices and 

analytical ones. Updating is performed to ensure that the difference between measured 

and analytical matrices is minimised. 

Matrix Mixing Methods (Link, 1986 and Caesar, 1987) 

These methods combine the analytical and experimental mode shapes to obtain a 

complete eigenvector set. 

Methods Based on Force Balance (Berger, et al., 1984) 

These methods use the analytical mass and stiffness matrices and utilises the force 

balance method to locate the error given the measured modal properties and natural 

frequencies. 

Statistics and Sensitivity Methods (Collins, et al., 1974) 

The variance associated with structural parameters is minimised to determine those that 

reproduce measured modal properties. From this work sensitivity based methods were 

developed where an iterative process was used to produce modal properties. 

Updating Using Frequency Response Functions (Sestieri and D' Ambrogio, 1989) 

The FRFs are measured directly as opposed to modal properties which are extracted from 

the measured FRFs. Because of this reason, unnecessary errors introduced when modal 

properties are extracted from measured FRFs. Sestieri and D' Ambrogio in 1989 used the 

measured FRFs directly to update the finite element model. 

From the methods mentioned above, two approaches are chosen. The first approach uses 

the measured FRFs directly. Sestieri and D' Ambrogio (1989), minimise the equation of 

error to update the finite element model. The second approach minimises the error 
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obtained by pre-multiplying the eigenvalue equation by the transpose of the modal vector. 

Since these two approaches give error vectors, Euclidean norms of these vectors are 

minimised. The multiple criterion method minimises the sum of the Euclidean norms 

from these two approaches. Since these errors have different dimensions, the two 

equations are non-dimensionalised by dividing each one of them by a certain factor. In 

this study it is assumed that the accuracy of the FRF and modal data is the same. Because 

of this assumption, the Euclidean norms of errors from the two methods are given equal 

weighting functions. 

The method proposed is tested using real experimental data. The problem faced when 

comparing experimental data with numerically generated data is incompleteness. The 

response is measured at limited degrees of freedom and over a limited frequency range. 

In order to apply this proposed updating technique, two things may be done. Either the 

measured degrees of freedom may be expanded to the same number as the finite element 

model or the finite element model can he reduced to the same number of degrees of 

freedom as the measured ones. In this study all the available expansion and reduction 

methods are theoretically studied using computer generated data. The reduction methods 

are the Guyan reduction (Guyan, 1965), dynamic reduction (Paz, 1984), improved 

reduced system (IRS) (O'Callahan, 1989), and system equivalent reduction expansion 

process (SEREP) (O'Callahan et al., 1989). The expansion methods are: the expansion 

using mass and stiffness matrices, and expansion using modal data. From the results, the 

most suitable method is chosen for use in this study based on the following criterion: 

• the cost of each method in terms of speed 

• the accuracy of each method 

• the stability of each method 

Now that the method is fully proposed the next step is to apply this updating technique on 

damage detection. The sophistication of modern technology has caused structures to be 

designed to minimise the weight without compromising on the strength. However, the 

loads that are applied on the structure are usually unknown and consequently structures 

must be monitored and this information be used to ensure that structures are functioning 
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within certain safety parameter constraints. To ensure that the monitoring process is 

implemented for maximum benefit, the data obtained during monitoring process should 

be utilised to determine whether critical damage has occurred on the structure or not. 

For the proposed method to be utilised effectively, it is necessary to investigate the causes 

of damage. Typical causes of damage are corrosion, erosion, fatigue, wear, creep, time 

dependent changes in the boundary conditions, impact damage, substandard material and 

pitting. Some of the areas which often experience damage include spacecraft, composite 

materials and offshore structures. Some of the causes of damage in spacecraft include 

fatigue due to long exposure to extreme temperatures and temperature fluctuations of 

space environment, gravity gradient, aerodynamic, attitude control, and dynamic 

structural behaviour due to solar winds and impinging particles. Composite materials 

which are highly desirable when designing structures, experience failures due to 

debonding between skin and core, and delamination between laminae. Offshore 

structures experience damage due to chaotic impingement of water waves upon the 

structures, blowouts, fires, explosions, weather changes, and other time dependent 

changes. 

Having discussed the causes of damage, it is advisable to highlight some of the 

techniques developed to detect damage. Such techniques rely on monitoring structures 

after a period of time. The decreasing price of computers and an increase in their 

computational capabilities, will enable monitoring to he performed on a continual basis. 

Techniques employed in the past are visual inspection, liquid penetrant inspection, 

magnetic methods, radiographic techniques, ultrasonic testing, acoustic methods which 

include vibration, eddy current testing, potential drop techniques, acoustic em1ss1on 

technique, infrared thermography, laser holography and X-ray diffraction. 

Now that different methods have been highlighted, the advantages of the proposed 

multiple criterion method over the other techniques are discussed briefly. 

• Damage detection is not limited to a local area 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



6 

• Since natural frequencies can be measured from sensor located at a single point, 

access to the whole structure is not necessary 

• Because of recent developments in electronic technology, real time analysis of 

vibration response in frequency and time domain is facilitated. 

• Direct exposure of structural elements are not required which is useful for space 

structures 

• Can be applied to composite structures which are finding more usage. 

Even though the proposed method has many advantages, it is necessary to summarise 

some of the problems that the proposed method has. These are: 

• It is time consuming and therefore expensive 

• Difficult to apply to inaccessible structural components. 

• Difficult to quantify the extent of damage. 

Despite all these disadvantages, if the proposed method 1s implemented with several 

points in mind most of these problems are overcome. 

The next issue to be resolved is how the method will be implemented in a computer 

program. The optimisation toolbox (Grace, 1990) is implemented and all the parameters 

that have not been accurately modelled are used as design variables in conjunction with a 

finite element software structural toolbox (Balmes, 1995). 
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2. Formulation of The Problem 

2.1. Introduction 

In this study, a multiple criterion updating method is proposed and is used to detect 

damage on the structure. In order to fully understand how updating is performed it is 

appropriate to discuss the theoretical foundations of modal analysis. 

Any given vibrating structure may be described in terms of three models: spatial, modal 

and response models. Spatial, modal and response models entail the expression of a 

dynamic system in terms of mass, damping and stiffness matrices, natural frequencies and 

mode shapes as well as frequency or impulse response functions respectively. The 

schematic representation of the routes to vibration analysis is shown in figure 2.1. 

Description of Vibration Modes Response Propertie~ 

Structure 

a) 

Response Propertie• Vibration Modes Structural Model 

b) 

Figure 2.1. (a) and (b) Theoretical and experimental route to vibration (Ewins, 1984) 

Figure 2. 1 (a) is the theoretical route to vibration analysis. Figure 2. 1 (b) is the 

experimental route to vibration analysis and is called experimental modal analysis. The 

spatial model is usually obtained from the finite element model (FEM) while the response 

model is obtained from the experiment. FRFs are measured by artificially exciting the 

structure and measuring the corresponding responses. The set of FRF measurements may 

be used to determine the mode shapes at different resonant frequencies. Many methods 
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have been proposed and successfully used to extract modal properties from measured 

FRFs. 

The measured FRFs and mode shapes have been intensively used in finite element 

updating, by exploiting their characteristics. fRFs arc measured directly, and therefore a 

considerable amount of labour is saved by using them directly for finite element 

updating. The problem of updating may also be alternatively approached by using the 

measured mode shapes and natural frequencies. Even though both methods give the 

updated finite element model, it often occurs that the solutions that are given by the 

modal approach are different from the solution which is given by the FRFs approach. 

This is because the updating techniques do not give a unique solution. If the FRF and 

modal approaches are used simultaneously, the updated finite element model should 

reproduce the measured modal properties as well as measured FRFs. In this study, it was 

assumed that solving the problem of updating from two different perspectives: measured 

FRFs approach and measured modal properties approach, will increase the chances of 

obtaining a representative solution. 

In this study the measured FRFs will be substituted in the equation of motion obtained 

from the finite element model and the resulting error will be measured. The Euclidean 

norm (Burden and Faires, I 995) of the error will be minimised by employing an 

optimisation procedure and by engaging the physical parameters that are not accurately 

known as design variables. In the second phase of this work the measured mode shapes 

and natural frequencies will be substituted into the equation derived from the 

orthogonality properties where the mass and stiffness matrices from the finite element 

model will be used. The Euclidean norm error due to the combination of measured mode 

shapes and natural frequencies with finite element mass and stiffness matrices will be 

minimised by taking inaccurate physical parameters as design variables. In the third 

phase of this study the Euclidean norms of errors obtained from the FRF approach and 

the orthogonality approach will be added using equal weighting functions and the 

resulting error will be minimised by taking physical parameters as design variables. 
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The FRF approach will be based on the work done by (D' Ambrogio and Zobel, 1990) 

while the modal properties approach will be based on the modified version of the 

orthogonality properties. 

2.2. D' Ambrogio Method (DAM) 

DAM uses the measured FRFs directly, and therefore eliminates the error that is usually 

incurred during the extraction of modal properties from measured FRFs. D' Ambrogio 

and Zobel (1990) use the measured FRFs directly to update the finite element model by 

updating the stiffness matrices. In this study the stiffness matrices will be updated by 

varying the physical parameters such as the modulus of elasticity. The process of varying 

physical parameters will be repeated until the Euclidean norm of the error that is caused 

by the integration of the experimental results and the FEM computed parameters is 

minimised. The physical parameter that minimises the Euclidean norm of the error will 

be used to obtain the new mass and stiffness matrices. 

If damage was to occur on the structure, the new FRFs measured will have a Euclidean 

error norm even though the previously updated physical parameters are used. The 

physical parameters will then be varied iteratively until the Euclidean norm of the error is 

minimised. The newly updated physical parameters will be compared with the previously 

updated physical parameters to localise and quantify damage. 

The equation of motion describing the dynamic characteristics of a structure may be 

obtained using Newton's second law or by employing a suitable energy principle to 

obtain an N degree-of-freedom viscously damped system: 

[M] {x} + [CJ {x} + [K] {x} = {F(t)} 

where, 

[M] is the inertia matrix 

[C] is the damping matrix 

[K] is the stiffness matrix 

{F(t)} is the forcing function 

(2.1) 
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{x}, { x} and { x} are the displacement, velocity and acceleration vectors. 

The damping matrix will be assumed to be proportional and may be expressed in terms of 

mass and stiffness matrices as follows: 

[C] = a[M] + ~[K] (2.2) 

Equation 2.1 may be rearranged by taking all terms to the left hand side and may be 

rewritten as follows: 

[M] {x} + [C] {x} + [K] {x}- {F(t)} = {O} 

If it is assumed that 

{x} = {X( 0)) }eirot 

it follows, by taking the appropriate derivatives, that 

{~} = im{X(m)}eirot 

{~} = -0)2 {X(m) }eirot 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Substituting equations 2.5 and 2.6 into equation 2.3 the equation may be written in the 

frequency domain as follows: 

(-m 2 [M] + im[C] + [K]){X(m )}- {F( m )} = {O} (2.7) 

or 

[B(m )] {X(m) }- {F(m)} = {o} (2.8) 

where [B(m)] is the dynamic stiffness matrix of the structure. 

2.2.1 Getting the FRFs 

If periodic excitation of a system {F(t)} is at co-ordinate i, and the measurement {x(t)}is 

taken at co-ordinate j, then the FRF vector ( { au( m)}) of such a system may be obtained 

by performing the Fast Fourier Transform to obtain {F(m)} and {X(m)} respectively and 

then dividing to obtain: 

{X(m)} 
{a/co)}= {F(m)} 

(2.9) 
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For a random excitation the FRFs are obtained by first calculating the auto spectrum of 

the response and excitation signals and the cross spectrum between these two signals. 

The autocorrelation (Rff) is defined as the average of the product (F(t).F(t+r)) computed 

along the time axis and may be expressed as follows (Ewins, 1986) 

(2.10) 

This equation does satisfy the Dirichlet condition for the Fourier transform, unlike f(t) 

and therefore its Fourier transform equation may be obtained. The Power Spectral 

Density (PSD) may be calculated by using the following formula: 

1 "° . 
Rtr(co) = - f Rtr(-r)e-'°"d-r 

2n -co 

(2.11) 

A similar approach may be applied for cross correlation and cross spectral density. The 

cross correlation (Rr,J is defined as the average of the product (F(t).F(t+-r)) computed 

along the time axis and may be expressed as follows 

Rrx (-r) = E[F(t). F(t +-r)] (2.12) 

The Cross Spectral Density (CSD) may be calculated by using the following formula: 

Sxr (co) = _I "'s Rxr ( -r )e-i"" d-r 
2n -oo 

(2.13) 

The FRFs may be obtained from equations 2.11 and 2.13 by the following formulae: 

(2.14) 

Comparing the two estimates in equations 2.14 provides a means for ensuring that the 

quality of the FRF data. 

In equation 2.7 the {X(co)} and {F(co)} are measured quantities. The difficulty with 

equation 2.7 is that FRFs are measured instead of displacement and force individually. 

To solve this problem the excitation is assumed white, and hence the vector {F(co)} has a 

unit force magnitude at all frequencies, and the displacement is replaced by the FRFs. 

If the measured FRFs are substituted into equation 2.3, using the [M], [C] and [K] from 

the FE model, then there will be an error which will depend on the accuracy of the FE 
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model. This system error vector may be introduced on the right hand side of equation 2.8 

and the resulting equation is 

[B(ro)]{X(ro)}-{F(ro)} = {E(ro)} (2.15) 

Due to the cumbersome nature of investigating the elements of the error vector, the 

Euclidean norm (e) (Burden and Faires, I 995) which is the square root of the sum of the 

squares of the error vector elements will be used. If the error vector has zero elements, 

then e will be equal to zero. The equation of e is 

I 

e~ ( t.l•(ro /I)' (2.16) 

The stiffness and damping matrices amongst other things depend on the area (A), density 

(p ), Poisson ratio (v) and the modulus of elasticity (E) of each element. By varying one 

of these physical parameters, e can be minimised. The A, p, v, and E obtained by 

updating the FEM are called updated parameters. 

2.2.2 Damage Detection 

When damage is introduced into the system the stiffness and the damping matrices are 

changed and the new equation may be written as follows: 

(2.17) 

or 

(2.18) 

where subscript d refers to damage. 

If the FRFs of the damaged system are measured, and are substituted into the updated 

[M], [C], and [K] matrices of the undamaged structure, then the system will have a non­

zero e. The physical parameters which were updated previously may be updated again by 

changing physical parameters until e is minimised. The updated physical parameters will 

change. These changes that had to be introduced to the undamaged system to reproduce 

measured FRFs from the damaged system will be assumed to have resulted from damage. 
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2.3. Modal Properties Method (MPM) 

The measured FRFs may be used for the extraction of measured modal parameters. Some 

of the methods that are commonly utilised to achieve the conversion, are the peak­

peaking method and the circle fitting method. The peak-picking method uses the peak of 

the graph of the FRF magnitude versus frequency to identify the modes. The circle­

fitting method uses the geometrical properties of the Nyquist plot to identify the natural 

frequencies, mode shapes and damping information. Mode shapes have several special 

properties such as orthogonality. The MPM uses orthogonality approach to update the 

finite element model. The modified version of the eigenvalue equation will be developed 

in the next few paragraphs. 

If the equation of motion for a dynamic system ( equation 2.1) is modified by setting 

{F(t)}={O}, then the resulting free vibration equation may be written as follows: 

[M]{x} +[C]{x} +[K]{x} = {O} (2.19) 

Using the differential equation theory, the solution may be assumed to be of the form: 

{x} = {X(ro)}eirot (2.20) 

By differentiating appropriately equations 2.5 and 2.6 may be obtained. If these 

equations are substituted into equation 2.19 then the resulting equation 

(-ro 2 [M]+iro[C]+[K]){x} = {O} 

By substituting {X}={ \JI} 

(-ro~[M] + [K]){\lf i} = {O} 

(2.21) 

(2.22) 

Equation 2.22 is a set of simultaneous equations with unknowns roj and { \Jfj} for j= 1,N 

where N is the number of degrees of freedom. From the theory of differential equations, 

to obtain the non-trivial equation, the determinant of the coefficient matrix must be equal 

to zero. 

l-ro 2 [M]+iro[C]+[K]I = 0 (2.23) 

If equation 2.23 is expanded a polynomial which is in terms of ro is obtained and is called 

the characteristic equation. 

(2.24) 
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where A= ro 2 

The roots of the polynomial may be solved for roj and are called eigenvalues and 

correspond to the natural frequencies. Using roj the non-unique {'-!'j} may be obtained. 

The solutions { '-l'j} are called eigenvectors and correspond to mode shapes. Due to their 

non-uniqueness, eigenvectors {'-!'j} have to be scaled. If one of the elements of the vector 

{ '-1') is given a specific value, then the vector has a unique value. The process of scaling 

modal vector to obtain a unique vector is called normalisation. When the mass matrix is 

pre-multiplied by a transpose of the normalised vector and post-multiplied by a 

normalised vector, then the modal mass is obtained. When the stiffness matrix is pre­

multiplied by a transpose of the normalised vector and post-multiplied by a normalised 

vector, then the modal stiffness is obtained. 

(2.25) 

If equations 2.25 are scaled such that mj= 1, then the vector { '-l'j} becomes orthonomalised 

and may be replaced by {~j}, and the new equation is: 

{~)T[M]{~) = 1 and {~)T[K]{~) =ro~ 

By setting { '-1')={ ~j} in equation 2.22 then, 

(-ro~[M]+[K]){~) = 0 

If equation 2.26 is pre-multiplied by { ~j} T then the resulting expression is 

{~)\-ro~[M]+[K]){~) = 0 

This equation may be rewritten as follows: 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

When an experiment is conducted and modal properties of the system are extracted from 

the measured FRFs, it is often the case that the measured properties differ with the finite 

element predictions (Friswell and Mottershead, 1995). The measured modal properties, 

the mass and the stiffness matrices from the finite element model may be substituted in 

equation 2.29. In this case the left hand side of equation 2.29 is often different from the 

right hand side. Because of this reason, equation 2.29 may be written in terms of an error 

scalars as follows: 
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(2.30) 

Equation 2.30 gives an error for a given measured mode j. If more than one modes are 

measured then the e (see equation 2.16) of all the measured modes may be computed. 

Since the mass and stiffness matrices depend on the modulus of elasticity and other 

parameters, these parameters may be varied iteratively thereby updating the mass and 

stiifoess matrices until the e is minimised. The physical parameters that will give rise to 

the minimum e will give the updated finite element model. 

2.3.1 Damage Detection 

The idea of using changes in modal properties to detect damage has been used by many 

researchers (Cawley and Adams, 1979; Rizas et al., 1990; Ju and Mimovitch, 1988; 

Wolff and Richardson, 1989). If damage is introduced on the system, the modal 

properties will change. If the modal properties are substituted together with updated 

matrices, then e will be non-zero. The stiffness matrices may be updated again by 

varying the physical parameters until the e is minimised. The discrepancy between the 

previously updated parameters and the newly updated parameters will be assumed to have 

resulted from the presence of damage. 

2.4. Multiple Criterion Method (MCM) 

The method based on the DAM and MPM work well except for the fact that they do not 

give a unique solution. In order to increase the probability of obtaining a unique solution 

a new method which will be the combination of the two methods will be used. The error 

obtained in equations 2.18 and 2.30 may be combined together using equal weighting 

functions to obtain the equation. 

(2.31) 

where M is the number of frequency points measured and N is the number of modes 

measured. 
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It was discovered that the method works better if a normalisation factor is introduced to 

equation 2.30. 

(2.32) 

where 

M 

f1 = Il[B0 (ro)]{X0 (ro)}j-{F(ro)}jJ 
j=I 

(2.33) 

and 

M 

f2 = z)ro~j{~o) T[MH~o) ]-[ {~oj} T[KoH~o)] (2.34) 
j=I 

In equations 2.33 and 2.34 the subscript O indicates the parameters of the initial design 

variables of the optimisation technique. 

Equation 2.32 is minimised subject to the following constraint 

[Kt -[K] = [O] (2.35) 

which ensures that the stiffness matrix remain symmetrical. 

The design variable which was used in this optimisation problem is the modulus of 

elasticity of each element. 

2.5 Conclusion 

Several techniques will be required to solve the MCM. These techniques will be fully 

discussed in the next chapter. 

This study will satisfy the foilowing objectives: 

• The method proposed will be implemented in a computer program that will utilise the 

Structural Dynamics Toolbox (Balmes, 1994), and Optimisation Toolbox (Grace, 

1990 ) which run in a MATLAB environment. 

• The updating problem will be solved using D' Ambrogio; Modal Properties and 

Multiple Criterion approaches, and the results will be compared. 

• The new method will be applied on the simple beam, a beam with holes and an 

irregular H-shaped structure. 
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3. Computational Techniques 

3.1 Introduction 

In order to successfully complete this study, several computational techniques need to be 

fully analysed. The first logical issue to be resolved in updating, is making the 

comparison between experimental and computational results. To make this comparison, 

several techniques have been developed and successfully used. Most of these methods 

use the modal properties to make the comparison. Since mode shapes are extracted from 

measured FRFs, methods using FRFs for comparison purposes save time and money. As 

part of this study, a new technique was proposed in the previous chapter and uses the 

measured FRFs and modal properties to update the finite element model to the measured 

data. Several methods have been developed to compare experimental and computational 

results. These methods will be discussed in detail in the following sections. All 

comparison methods that have been developed so far, use the modal properties and not 

measured FRFs directly. In this work a new method that uses the FRFs directly was fully 

developed and is called the Frequency Response Functions Assurance Criterion 

(FRF AC). This method will be fully explained in the next few sections. 

The new updating technique introduced in the previous chapter will not be complete 

unless it is evaluated by using experimental results. The experimental and computational 

results are incompatible in the sense that the measured modes and co-ordinates are less 

than the computed modes and co-ordinates. Consequently, techniques that may be used 

to either reduce the computational results to the same number of degrees of freedom or 

expand the measured degree of freedom, to the computed results have been developed 

and will be explained in this chapter. These methods are programmed to determine the 

most effective ones when the new updating technique introduced in the previous chapter 

is used. 

The problem that was developed in the previous chapter is an optimisation problem. The 

MATLAB Optimisation Toolbox (Grace, 1990) is implemented to solve the problem. 
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This toolbox uses a Sequential Quadratic Programming procedure and the procedure will 

be discussed in this chapter. 

3.2. Comparison of Experiment and Prediction 

The most important aspect of modal testing is the comparison between the computed 

dynamic properties and those actually observed in practice. This process is often referred 

to as 'validating' a theoretical model and it involves several steps. The first step is to 

compare the specific dynamic properties, measured vs. predicted. The second step is to 

quantify the extent of the differences (or similarities) between the two sets of data. The 

third phase is to bring the theoretical model closer to the measured data. When this is 

achieved, the theoretical model is said to have been updated. In this section we will take 

a closer look at the computational techniques used in the first, second and third stages. 

In most cases a great deal of effort goes into deriving the theoretically based model on 

one hand, and the experimentally derived model on the other hand. Because of this 

reason, it is sensible to make as many different levels of comparison as possible. In the 

previous chapter it was discussed that the dynamic model of a structure may be classified 

into Spatial, Modal, and Response models. It now becomes convenient to return to this 

classification and try to make the comparison between the experiment and the theoretical 

model at each of these. Therefore we shall make comparisons of response properties as 

well as modal properties. Comparisons between spatial properties are difficult and shall 

therefore not be considered. 

In usmg whichever medium of comparison, the model will have to be developed 

extensively from the original form. In conclusion it is recommended that as many 

different methods of comparison should be used as possible. 
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3.2.1 Direct Comparison 

A) Comparisons of Natural Frequencies 

The easiest mode of comparison between the experimental and theoretical model is by 

comparing the natural frequencies. This may be done by tabulating the experimental and 

theoretical natural frequencies. The most convenient way of comparison is to plot the 

graph of the experimental natural frequencies against the analytical ones for all available 

modes. If the slope of the best straight line passing through the points is close to zero, 

then the correlation between the experiment and computed model is good. If the points 

lie scattered widely about a straight line, then there is a serious failure of the model in 

representing the theoretical model's ability to predict the measured natural frequencies 

and consequently the theoretical model should be re-evaluated. If the points deviate 

slightly from the straight line but in a systematic fashion, then this situation suggests that 

there is a specific characteristic responsible for the deviation. The comparison between 

natural frequencies is illustrated by figure 3 .1. (Ewins, I 984) 
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Figure 3.1 Comparison between experimental and analytical natural frequencies 
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B) Comparisons of Mode Sit apes 

The mode shapes may also be compared by plotting the analytical modes against the 

experimental ones. For a simple structure with well separated modes, this method of 

comparison may be used very easily. However, for a complicated structure with modes 

that are close to one another this method often becomes difficult to implement. Therefore 

it is appropriate to make comparisons of mode shapes at the same time as those of the 

natural frequencies. 

In the case where we have more data to handle for each mode, the comparison may be 

done by plotting the deformed shape for each model, experimental and theoretical, 

overlaying one plot on another. The disadvantage of this method is that even though the 

differences show up, they are difficult to interpret and plots are often confused because 

there is so much information. A convenient method of comparison which is along the 

lines of the natural frequency plot, is to plot each element in the mode shape vector, 

experimental and theoretical, on an x-y plot as shown in Graphs 3.2. a and b from (Ewins, 

1984). 
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The indiYidual points on this graph relate to modal co-ordinates, and it is expected that 

they should lie close to a straight line. If the mode shape vectors are mass-normalised, 

this straight line should have a slope of ca. 1. If the points lie close to a straight line with 

a slope that is not ca. I then either one of the mode shapes is not mass-normalised or 

there is scaling error in the data. If the points are v.idely scattered about the line, then 

there is inaccuracy in one or the other set. If the scatter is excessive, then it may be that 

the eigenvectors that are being compared do not relate to the same mode. 

The slope of the best straight line, passing through the points plotted in figure 3.2. 1s 

called the Modal Scale Factor and is defined as (Ewins, 1991): 

~1Sf(cb .. cb )= {~.}T{~m}' 
,.,,m {~JT{t}' (3. l) 

where { ¢a} and { ¢m} are the analytical and experimental mode shape vectors 

respectively. 

This parameter gives no indication of the quality of the measured points v.ith respect to 

the straight line fit. 

3.2.2 The Use of Frequency Response Functions (FRF AC) 

The advantage of using FRFs directly is that they are measured directly. The easiest way 

in which measured FRFs may be compared to the computed FRFs is by plotting the 

measured and theoretical FRFs in one graph as shov.'11 in figure 3.3 (Ev.·ins, 1984) 
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Since for particular FRF measurements there are many measurements to be compared, it 

becomes necessary to introduce a scalar factor (FRF AC) that gives the correlation 

between measured and theoretical FRFs. This new scalar factor was developed 

specifically for this work and uses the measured FRFs directly: 

(3.2) 

where N is the number of degrees of freedom; j is the number of the measured frequency; 

Hm is the measured FRF; and Ha is the analytical FRF. 

A FRF AC of 1 indicates that the measured FRFs perfectly reflects the analytical FRFs; 

the FRF AC which is greater than 1 indicates that the magnitude of the analytical FRF is 

on average greater than the experimental ones and the FRF AC which is less than 1 

indicates that the magnitude of the experimental FRF are on average greater than the 

analytical ones. 

The ability of the FRF AC to give the correlation between experimental and theoretical 

FRFs is investigated carefully in this chapter. 

3.2.3. The Modal Assurance Criterion (MAC) 

The MAC compares the measured and the computed mode shapes and can be 

summarised by the following equation (Allemang and Brown, 1982): 

MAC. = 1~:j~al 
Jk (~:~ak)(~:j~m) 

(3.3) 

The MAC is a measure of the least squares deviation of the points from the straight line 

correlation. A value close to 1 suggests that the two mode shapes are well correlated, 

while a value close to O indicates that the mode shapes are not correlated. If equation 3.3 

is substituted by a mode shape vector, then the MAC becomes an identity matrix. Due to 
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the graphical nature of investigating the MAC matrix an expression which 1s a 

simplification of the MAC may be defined as follows: 

[MAC0 ] = [I]-[MAC] 

where [I] is the identity matrix. 

(3.4) 

If the modal vectors that are being analysed are a perfect correlation then the matrix 

[MAC0] will have zero entries. A factor which is the sum of the squares of the elements 

of [MAC0] may be defined as follows: 

J I 

MACO =II MACO~ (3.5) 
j i 

If the scalar MAC0 is equal to zero, then the two mode shape vectors are well correlated. 

The shortcoming with this method is that it does not discriminate between random scatter 

being responsible for the deviations or systematic deviations. The main causes of less 

than perfect MAC results are: non-linearity in the test structure, noise on the measured 

data and poor modal analysis of the measured data. 

3.2.4 The Co-ordinate Modal Assurance Criterion (COMAC) 

The COMAC method is based on the same principle as the MAC, and is essentially an 

indication of the correlation between the measured and the computed mode shapes for a 

given common co-ordinate. The COMAC for co-ordinate j is given by (Lieven and 

Ewins, 1988). 

( ~ 1°$a,)(j$:,f 
COMAC(j) = _r_=_l _____ _ 

L 2 L * 2 
I (_j~ar) I (.j~mr) 

r=l r=l 

(3.6) 

Unlike the MAC, the COMAC does not have any difficulty comparing modes that are 

close in frequency or that are measured at insufficient transducer locations. L is the total 

number of well-correlated modes as indicated by the MAC. A value close to I suggests 

good correlation. If the mode shape vectors are used then the CO MAC becomes a vector. 
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For a perfect co-ordinate correlation, the entries of the CO MAC vector are all equal to 1. 

The product of the elements of the entries of the vector may be defined as follows: 

N 

b = IT COMAC(i) (3.7) 
i=I 

where N is the number of measured co-ordinates, and the IT represent the following 

multiplication: 

b = COMAC(l) x COMAC(2)x ... xCOMAC(N) (3.8) 

3.3 Model Expansion and Reduction Procedures 

Two approaches may be pursued to ensure that the measured co-ordinates and modes are 

equal to the computed ones and these are: 

• The experimental data may be expanded to the same number of degrees of freedom as 

the computed ones. 

• The computed results may be reduced to the same number of co-ordinates as the 

measured ones. 

Several techniques may be employed and as part of this study, the methods are 

programmed and their effectiveness are evaluated with respect to each method. The 

reduction methods applied are: Guyan Static Reduction Method, Guyan Dynamic 

Reduction Method, Improved Reduced System (IRS) and System Equivalent Reduction 

Expansion Process (SEREP). The expansion methods applied are: expansion using mass 

and stiffness matrices and expansion using modal data 

3.3.1 Model Reduction 

A) Guyan Static Reduction Method (GSR) 

In this method the state and force vectors, { x} and { f}, and the mass and stiffness 

matrices [M] and [K] are partitioned into the measured (master) and unmeasured (slave) 

co-ordinates. 
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(3.9) 

where the subscripts m and s correspond to master and slave co-ordinates respectively. 

The inertia terms are neglected to obtain the equation 

(3.10) 

This equation may be used to eliminate the slave co-ordinate to remain with the following 

equation (Guyan, 1965): 

{Xm}-[ [I] ]{x }- [T.] x } 
XS - -[K]~l[KSITI] Ill - s { Ill 

(3 .11) 

The T5 denotes the static transformation between full state vector and master co-ordinates. 

The reduced mass [MR] and stiffness [KR] matrices are as follows: 

[MR]= [T5 t[M][T5 ] 

and 

(3 .12) 

(3.13) 

The frequency response function generated by the reduced mass matrices are exact at zero 

frequency because the inertia matrices were neglected. 

BJ Guyan Dynamic Reduction Method (GDR) 

The Guyan Static Reduction method neglected the effects of inertia. The Guyan dynamic 

reduction method takes the inertia effect into account, assuming a particular frequency. 

The choice of frequency affects the accuracy of the reduced model. In the dynamic 

reduction method the mass and stiffness matrices are partitioned into slaves and master 

co-ordinates. The modified transformation matrices are as follows (Paz, 1984): 

(3 .14) 

The transformation may then be used in the same way as the static transformation, [Ts], 

to obtain the reduced mass and stiffness matrices similar to equations 3 .12 and 3. 13. 
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C) Improved Reduced System (IRS) 

The IRS is an improvement of the Guyan static reduction method. This method uses the 

transformation, the reduced mass and stiffness matrices from the Guyan reduction method 

together with the [S] matrix which is made out of the zeros and the inverse of the slave 

partition of the stiffness matrix, to obtain a new transformation matrix (O'Callahan, 

1989): 

[Tr]= [Ts]+[S][M][Ts][MRr1[KR] (3.15) 

are 

[ 
[0][0] ] 

[S] = [0][Kssr' 
(3 .16) 

Friswell et al., (1994) extended this method by introducing the iterated IRS method that 

converges to the same transformation as the SEREP. 

DJ System Equivalent Reduction Expansion Process (SEREP) 

The System Equivalent Reduction Expansion Process (SEREP) ( 0' Callahan et al., 1989) 

partitions the analytical mode shapes into measured and unmeasured co-ordinates, and 

obtains the transformation by multiplying that with the generalised pseudo inverse (see 

equations 3 .17 and 3 .18). 

{$}-[:~] (3.17) 

[Tu]={~}~: (3.18) 

where 

(3. I 9) 

The transformation may then be used in the same way as the static transformation, [Ts], 

to obtain the reduced mass and stiffness matrices similar to equations 3 .12 and 3. 13. 
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3.3.2 Model Expansion 

A) Expansion using Mass and Stiffness Matrices (EMS) 

This method is in essence the inverse of the Guyan reduction method. Suppose comj and 

~mj are the measured natural frequencies and mode shapes of co-ordinates i. Then the 

mass and the stiffness matrices from the finite element analysis may be partitioned into 

measured and unmeasured co-ordinates. The equation of motion may then be written as 

follows: 

(3.20) 

where ~sj represents the mode shape at the slave or the unmeasured co-ordinates. By 

rearranging the lower part of the matrix equation produces a solution for the unknown 

part of the measured mode shape vector. Thus 

(3 .21) 

Other estimates of the unmeasured degrees of freedom may be obtained by using the 

upper part of equation 3 .16. This calculation will involve the pseudo inverse; using the 

upper part is satisfactory if the number of measured degrees of freedom exceeds the 

number of unmeasured degrees of freedom. Similarly, the unmeasured FRF may be 

calculated using the following equation: 

(3.22) 

The details on how equation 3.22 is obtained may be viewed in the appendix B. 

BJ Expansion using Modal Data (EMD) 

This method uses the modal data obtained from the finite element model to estimate the 

modes at the unmeasured degrees of freedom. The measured modes are assumed to be a 

linear combination of the analytical modes at measured degrees of freedom and a 

transformation T as indicated by the following equation: 

where [ $a]m represents the analytical mode shapes at measured degrees of freedom. 

Applying the pseudo inverse to equation 3.23 gives the transformation as: 

(3.23) 
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(3.24) 

where + indicates the pseudo inverse. This transformation may be used to estimate the 

modes at unmeasured degrees of freedom from the finite element analysis. It may also be 

used to smooth out the measured modes. Thus 

{~J = [~JJT] 

(3.25) 

(3.26) 

where [ q>a]s represents the analytical mode shapes at the unmeasured degrees of freedom. 

The transformation may be obtained by using only the analytical modal data or the 

combination of measured and analytical data. This method is like the inverse of the 

SEREP method. Similarly the measured FRFs may be expanded and the details for such 

an expansion may be viewed in the appendix B. 

3.4 Optimisation 

In an optimisation problem, some function is minimised subject to certain bounds and 

constraints. To illustrate this a mathematical expression may be written as follows: 

minimise f( { x}) 

subject to g/ { x} )<0 

where {a}<{x}<{b} 

(3.27) 

(3.28) 

(3.29) 

The function to be minimised is f( { x} ); the design variables are the vector { x}; the 

constraint equations are g/ { x} )<0 (where i= 1 :M and M is the number of constraint 

equations) and the bounds are defined as vector { x} being between vectors {a} and {b}. 

The initial design parameters have to be chosen carefully because they influence the 

accuracy of the answer. This improves the efficiency of the execution and helps locate a 

global minimum instead of a local minimum. Optimisation problems may take many 

iterations to converge and are sensitive to numerical problems such as truncation and 

round-off errors in the calculation of finite difference gradients. 
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The quadratic sequential programming which is implemented in the Optimisation 

Toolbox (Grace, 1990) which runs on MATLAB uses a quadratic cost function and linear 

constraints. 

3.5 Comparison of Methods 

Having discussed the computational tools, the next step is to apply the computational 

procedures using a simple structure. The structure chosen for this study is a simple beam 

(see figure 3.4). The details of the beam are shown in figure F.1 (appendix F). 

The finite clement model of the beam was obtained usmg the Structural Toolbox 

(Balmes, 1995) which runs in a MATLAB environment. The 'measured' data was 

computationally simulated through the Structural Toolbox. The 'measured' data had 

fewer degrees of freedom, than the finite element data. Consequently, the finite element 

data was reduced to the same number of degrees of freedom as the 'measured' data. All 

the reduction procedures discussed above were implemented. The other approach was to 

expand the 'measured' data to the same number of degrees of freedom as the finite 

element data. All the expansion methods discussed above were implemented in order to 

select one good expansion or reduction method. To achieve this computationally 

simulated experimental data was used to update the finite element method using different 

expansion or reduction techniques and their effectiveness was evaluated using the popular 

comparisons MAC; CO MAC and the newly proposed FRF AC. 

The 'experimental' FRFs were obtained by modelling the beam in figure 3.4 with a 

modulus of elasticity of 7.0x10 10MPa for each element. The beam was divided into 10 

elements and the modulus of elasticity of each element was used as a design variable. 

The initial design variable for each element in the finite element model was 

3.0xl0 10MPa. The initial design variables were used to obtain the initial finite element 

model. 
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All the reduction and expans10n methods were implemented in the program. The 

simulated FRFs were used to extract the 'measured' modal properties. The 'measured' 

FRFs and modal properties were incorporated into the MCM. the DAM and the MPM. 

The results obtained from each method were used to generate the updated FRFs and 

modal properties. The 'measured' FRFs and modal properties were compared to the 

FRFs and modal properties of the initial finite element model and that of the updated 

finite element model by applying the FRF AC, the CO MAC and the MAC0. The results 

of the comparisons are shown in table 3.1. Also shown in table 3.1 are the number of 

iterations and the magnitude of the objective function at the optimum point. 

From this study it was found that the reduction methods are more reliable than the 

expansion methods. This is because the expansion methods are more computationally 

intensive than the reduction methods. It was found that the SEREP method tends to be 

unstable by giving the inertia and stiffness matrices that are close to singular especially if 

the design variables are not scaled properly. The rest of the study utilises the IRS 

procedures to reduce the finite element results. The FRF AC before updating was on 

average 0. 7046 and after updating it was close to 1. It was also found that the results 

given by the three methods DAM, MPM and MCM were good and therefore the three 

approaches were successfully able to update the simulated data. 

3 4 5 6 7 8 9 10 11 

Figure 3.4 The schematic diagram of a beam which is fixed at the end 
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Table 3.1 Results obtained from using expansion and reduction methods 

Method No. of Objective FRFAC MAC0 COMAC 

iterations functions 

GSRandDAM 298 2.1930 1.0050 0.0980 1.0000 

GSRandMPM 1148 3.7730 0.9931 0.0980 0.9996 

GSRandMCM 612 9.1390 1.0212 0.0990 1.0000 

GDRandDAM 552 3.8760 1.0014 0.0980 1.0000 

GDRandMPM 1235 1.0645 1.0060 0.0980 1.0000 

GDRandMCM 481 6.7220 1.0203 0.0990 1.0000 

IRS and DAM 457 2.7220 1.0110 0.0980 1.0000 

IRS and MPM 898 0.2720 1.0330 0.0990 0.9996 

IRS and MCM 324 5.00 1.0201 0.0990 1.0201 

SEREP and MPM 171 6.0E-11 0.9761 0.1007 0.9761 

SEREP and DAM 324 4.397 1.0200 0.0992 1.0200 

SEREP and MCM 670 288.773 0.9464 0.0995 0.9464 

EMS and DAM 598 22.9130 1.0149 0.0980 1.0000 

EMS andMPM 1248 13.7370 0.9824 0.0970 0.9996 

EMS andMCM 812 19.9310 1.0234 0.0998 1.0000 

EMDandDAM 493 50.378 1.0100 0.0998 1.0230 

EMDandMPM 781 6.092 0.9861 0.1027 0.9869 

EMDandMCM 524 14.937 1.0300 0.0998 1.0224 
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4. Updating of Finite Element Model 

4.1. Introduction 

In this study, a new multiple criterion optimisation method (MCM) was formulated. This 

method incorporates the measured FRFs and identified modal properties. In this chapter 

this method is tested using three different examples; a beam, a beam with holes and an 

irregular H-shaped structure. The proposed method is compared with the D' Ambrogio 

method (DAM) and Modal Property Method (MPM) using the Modal Assurance 

Criterion (MAC), Co-ordinate Modal Assurance Criterion (COMAC), and the Frequency 

Response Function Assurance Criterion (FRF AC). 

The MAC is the measure of the least square deviation of the points from the expected 

straight line obtained when experimentally measured mode shape is compared to the 

theoretically predicted one. The MAC0 however is a theoretical simplification of the 

MAC (see equation 3.5) and is obtained by setting the MAC to zero. A MAC0 value of 

zero indicates that the least squares deviation of the points from the straight line is zero 

(perfect correlation). 

The COMAC method is based on the same principle as the MAC. It is essentially an 

indication of the correlation between the measured and the computed mode shapes for a 

given common co-ordinate. The COMAC scalar of 1 represents a perfect correlation 

between measured modal co-ordinates and the theoretically predicted ones. 

The FRF AC is a proposed method used for comparing the FRFs. This criterion gives the 

ratio between the magnitudes of the analytical FRFs to the magnitudes of the measured 

FRFs. The FRF AC of 1 indicates that the measured FRFs are the same as the analytical 

FRFs. 

In this chapter the experimental data are used to update the FEM by using the DAM 

approach. Thereafter, modal analysis is used to identify modal properties from measured 

FRFs. The MPM is then used to update the FEM. The proposed MCM 
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that uses the measured FRFs and modal approach simultaneously is used to update the FEM. 

Examples used are a simple beam; a complex beam with holes and therefore difficult to 

model; and an irregular H-shaped structure. The summary of this chapter may be viewed in 

the diagram in figure 4.1. 

In this chapter results are presented in tabular form and the corresponding graphs are 

demonstrated in Appendix E. A tabular comparison is made using COMAC, MAC0 and 

FRF AC between the theoretically predicted data and measured data before and after updating. 

Furthermore, the natural frequencies before and after updating are compared for each damage 

case. All these comparisons are made to evaluate the effectiveness of the DAM, MPM and 

MCM. 

Modal Property 
Method 

Measured Modal 
Properties 

Updated 
Model I 

Finite Element 
Model 

D'Ambrogio 
Method 

Measured 
FRFs 

Updated 
Model 2 

Figure 4.1 The structure of the updating procedure 

Multiple 
Criterion 
Method 

Measured FRFs 
& 

Modal Properties 

Updated 
Model 3 
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A vital preliminary step in modal analysis is the preparation of the structure. The 

decision was taken to test a structure in an approximated free condition. This means that 

the structure is not attached to the ground at any or its co-ordinates but freely suspended 

in space. In this study the simple beam, beam with holes and an irregular H-shaped 

structure were tested free by suspending the structures using elastic bands. In the free 

suspension, the structures exhibit rigid body modes which are determined by their mass 

and inertia properties and in which there are no bending or flexing. 

4.2. Example 1: Freely suspended beam 

In this example an aluminium beam of length 1.0 m, width of 25.4 mm and thickness of 

13.4 mm was used. The beam is depicted in figure 4.2 (detailed drawing in figure F.2 in 

appendix F) and was modelled discretely by 12 elements. The implemented program (see 

Appendix C) was written in a MATLAB environment and uses the Euler-Bernoulli FEA. 

Damping was assumed to be proportional because the damping levels were assumed to be 

low. The modulus of elasticity of each element (E), the Poison ratio (v), the cross­

sectional area of each element (A) and the density of the beam (p) and the damping 

coefficients, a and p, were used as design variables. After the first updating only E was 

used as a design variable. 

When beam elements are used adjusting E effectively ensures that the factor EI 1s 

changed. I represents the second moment of area. Figure 4.2 illustrates this. 

small EI 

I 
/ normalEI 

.-----,---., 

Figure 4.2 Illustration of the change in E 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



35 

t Excitation j Accelerometer 

~1 __ 2_~3-~4~_5_!;-6;..__7~~8-~9 __ 1....:....0_.::....:11;____,,...::.;12::.............13 

t t t t t t t t t t t 

Figure 4.3 The discretised beam tested freely suspended 

The beam was excited at node 6 as shown in figure 4.3 and the responses were measured 

for 11 cases using an accelerometer placed in succession at node 2 to 12. From the 

measurements a set of 11 FRFs was obtained. These measurements were used to identify 

modal parameters. Section 2.3 highlights simple techniques developed to identify these 

parameters. The Structural Toolbox uses an algorithm based on the pole or complex 

residue parametrization to extract the modal properties from the FRFs. The DAM, MPM 

and MCM were used to update the FEM. Figures E.4 and E.5 (in appendix E) show the 

FRFs and the phase diagrams of example 1 before and after updating respectively. The 

graphical illustration of the FRFs of the undamaged structure and the three damage cases 

may be viewed in figure E.1 (appendix E). 

4.2.1 Updating The Beam Before Damage 

The initial FEM was updated using experimental data obtained as explained in section 

4.2. The DAM, MPM and the MCM were used (see Appendix C) and the results 

obtained are given in table 4.1. The DAM gives v of 0.34 and p of 2702 kg.m-3
; the 

MPM gives v of 0.34 and p of 2650 kg.111·3 and the MCM gives v of 0.34 and p of 2650 

kg.m·3
. The values for a and p were both found to be approximately 0.0005. These 

parameters are taken as constant when updating of damaged structure is performed. The 

CO MAC, the MAC0 and the FRF AC were used to compare the results and may be 

viewed in table 4.1. The 'COMAC before' updating compares the normalised modes 
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obtained from the experiment to the normalised modes obtained from the initial FEM. 

The 'COMAC after' compares the normalised modes obtained from the experiment to the 

normalised modes obtained from the FEM after updating. The 'MAC0 before' compares 

the normalised modes obtained from the experiment to the normalised modes obtained 

from the initial FEM and the 'MAC0 after' compares the modes obtained from the 

experiment to the modes obtained from the FEM after updating. The 'FRF AC before' 

compares the FRFs of the initial FEM to the FRFs obtained from the experiment. The 

'FRF AC after' compares the measured FRFs to the FRFs obtained from the FEM after 

updating. 

Table 4.1 The CO MAC, MAC0 and FRF AC results for example 1 before damage 

Method COMAC COMAC MAC0 MAC0 FRFAC FRFAC 

(before) (after) (before) (after) (before) (after) 

DAM 0.9940 0.9998 0.0313 0.0311 0.7479 0.7778 

MPM 0.9940 1.0000 0.0313 0.0313 0.7479 0.7756 

MCM 0.9940 0.9999 0.0313 0.0311 0.7479 0.7762 

Table 4.1 shows that the DAM, MPM and MCM were able to update the COMAC, 

MAC0 and FRF AC factors. The CO MAC factor was best updated when the MPM was 

used followed by the MCM and then the DAM. The MAC0 was virtually not updated by 

any of the three approaches. The FRF AC was best updated when the DAM was used 

followed by the MCM and then the MPM. The results demonstrate that the FRFs based 

approach (DAM) updated the FRF AC better than the modal property based approaches 

(MPM). Furthermore, the results show that the MCM updated both the FRF AC and 

COMAC simultaneously better than the two methods. 

The natural frequencies of the three measured modes from the experiment were compared 

to the natural frequencies from the initial FEM, the DAM updated FEM, the MPM 

updated FEM and the MCM updated FEM. The results of these comparisons are shown 

in table 4.2. 
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Table 4.2 Table showing natural frequencies in Hz ( example I before damage) 

Mode Experimental Initial Updated Updated Updated 
Number Natural Natural Natural Natural Natural 

Frequencies Frequencies Frequencies Frequency Frequency 
(1-Iz) (I lz) (Hz) (DJ\M) (Hz) (MPM) (Hz) 

(MCM) 

Mode 1 70.1 64.9 69.0 70.1 70.0 

Mode2 193.6 179.0 192.9 193.2 193.1 

Mode3 380.5 351.0 378.8 379.1 379.2 

All the three methods displayed improvements in the updating of natural frequencies for 

the better. The MPM followed by the MCM displayed the best approximation of the first 

natural frequency than the DAM. The MPM displayed the best approximation for the 

second natural frequency, followed by the MCM and then the DAM. The third natural 

frequency was best approximated when the MCM was used followed by the MPM and 

then the DAM. These results demonstrate that the method using modal properties 

(MPM) tends to give better approximation of the measured modes and natural 

frequencies. It can also be concluded that the ability of the MCM to demonstrate better 

approximation than the MPM is because the MCM takes into account the modal 

properties as well as measured FRFs. 

4.2.2. The Beam With Damage Case 1 

The beam which may be viewed in figure 4.4 was damaged at element 3. The damage 

introduced was a thin saw cut that went half way through the cross-section of beam. The 

same experimental procedures that were performed in section 4.2.1 were repeated and the 

same procedures used for extracting modal properties from FRFs were implemented. 

t Excitation I Accelerometer 

1 2 3 4 5 
6~ 

7 8 9 10 11 12 13 

t t t t t t t t t t 
Figure 4.4 Graph of a structure with damage at element 3 
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By using the measured FRFs and modal properties the DAM, MPM and MCM were 

implemented. The modal properties of the updated FEM were compared to the modal 

properties of the FEM. The FRFs of the updated FEM were compared to the FRFs before 

updating. The results of these comparisons are displayed in table 4.3. 

Table 4.3 The COMAC, MAC0 and FRFAC for damage case 1 (example 1) 

Method COMAC COMAC MAC0 MAC0 FRFAC FRFAC 

(before) (after) (before) (after) (before) (after) 

DAM 0.9855 0.9878 0.0335 0.0334 0.9704 1.0255 

MPM 0.9855 0.9944 0.0335 0.0327 0.9704 1.0374 

MCM 0.9855 0.9971 0.0335 0.0330 0.9704 1.0322 

The results in table 4.3 indicate that the COMAC factor shows the MCM giving the best 

updating followed by the MPM and then the DAM. The MAC0 factor, shows the MPM 

giving the best results followed by the MCM and then the DAM. The FRF AC factor 

shows that the DAM gives the best results followed by the MCM. These results 

demonstrate that the methods which use FRFs directly (DAM and MCM) tend to update 

the FRF AC more than the methods that do not use the FRFs directly (MPM). 

Furthermore, the results show that the methods that use the modal properties approach 

directly (MPM) tend to update the COMAC and the MAC0 more effectively than the 

methods that use measured FRFs only (DAM). The results show that the method that 

uses both the measured FRFs and modal properties simultaneously (MCM) gives results 

that take into account the measured modal properties and the measured FRFs. The level 

in which the method takes into account the FRFs and modal properties depends entirely 

on the weighting functions chosen. 

The natural frequencies for the three measured modes were compared to the natural 

frequencies of the same modes obtained from the initial FEM, the DAM updated FEM, 

MPM updated FEM and the MCM updated FEM. The results of these comparisons arc 

shown in table 4.4. 
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Table 4.4 Table showing natural frequencies in Hz for damage case 1 (example 1) 

Mode Experimental Initial Updated Updated Updated 
Number Natural Natural Natural Natural Natural 

Frequencies Frequencies Frequency Frequency Frequency 
(Hz) (Hz) (Hz) (DAM) (Hz) (MPM) (Hz) (MCM) 

Mode 1 63.8 69.3 64.1 63.7 63.7 

Mode2 183.8 191.1 186.1 183.7 183.6 

Mode3 349.2 373.9 348.1 349.1 349.3 

Table 4.4 shows that the MPM and MCM were better able to update the first natural 

frequency to the measured one than the DAM. It further demonstrates that the MPM was 

best able to reproduce the second and the third natural frequencies followed by the MCM 

and then the DAM. For the third mode, the MCM and the MPM were better able to 

reproduce the measured natural frequency than the DAM. 

4.2.3 The Beam With Damage Case 2 

The second damage case considered in example 1, was obtained by introducing a saw cut 

at elements 3 and 5. This case is in essence a multiple damage detection problem. Care 

must be taken in performing this experiment to avoid exogenous disturbances. The 

schematic diagram of this example may be viewed in Figure 4.5. 

j Accelerometer t Excitation 

2 3 4 7 8 9 10 11 12 13 

f f f f f f f f f 

Figure 4.5 Freely suspended beam with damage at elements 3 and 5 
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The beam was excited at node 6 as shown in figure 4.5. The response was measured 

using an accelerometer placed consecutively at nodes 2 to 12. From the measurements, a 

set of 11 FRFs was obtained. This set of FRFs was used to update the FEM (see 

Appendix C). The measured modal properties were identified and were also used to 

update the FEM. Thereafter, the measured FRFs and modal properties were used 

simultaneously to update the model. The CO MAC, MAC0 and the FRF AC before and 

after updating were computed and may be viewed in table 4.5. 

Table 4.5 The CO MAC, MAC0 and FRF AC for damage case 2 

Method COMAC COMAC MAC0 MAC0 FRFAC FRFAC 

(before) (after) (before) (after) (before) (after) 

DAM 0.9779 0.9849 0.0344 0.0321 0.9514 0.9934 

MPM 0.9779 0.9884 0.0344 0.0302 0.9514 0.9914 

MCM 0.9779 0.9872 0.0344 0.0302 0.9514 0.9924 

The COMAC factor shows that the MPM gives best results followed by the MCM and 

then the DAM. The MAC0 factor shows that the MCM and the MPM give better results 

than the DAM. The FRF AC approach shows that the DAM approach gives the best 

results followed by the MCM and then the MPM. 

Table 4.6. shows that the MPM gives the best approximation for the first natural 

frequency followed by the MCM and then the DAM. For the second and the third natural 

frequencies, the MPM and the MCM give better results than the DAM. 
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Table 4.6 Table showing natural frequencies in Hz for damage case 2 ( example 1) 

Mode Experimental Initial Updated Updated Updated 
Number Natural Natural Natural Natural Natural 

Frequencies Frequencies Frequency Frequency Frequency 
(Hz) (Hz) (Hz) (DAM) (Hz) (MPM) (Hz) (MCM) 

Mode 1 64.7 69.2 64.1 64.4 65.3 

Mode2 175.1 190.5 176.1 176.0 176.0 

Mode3 340.2 372.8 339.0 339.1 339.1 

4.2.4 The Beam With Damage Case 3 

In the third case damage was introduced at element 6 in addition to the previously 

introduced damage at elements 3 and 5. The schematic representation for this case is 

illustrated in figure 4.6. 

j Accelerometer t Excitation 

1 2 3 4 5 7 8 9 10 11 12 14 

f f f f i f f f f f f 

Figure 4.6 Freely suspended beam with damage at elements 3 and 5 

From the measurements a set of 11 FRFs was obtained. This set of FRFs was used to 

update the FEM. The measured modal properties were extracted from a set of FRFs and 

were also used to update the FEM. Thereafter, the MCM was used to update the model. 

The results showing the CO MAC, the MAC0, and the FRF AC before and after updating 

when three updating techniques are implemented may be viewed in table 4.7. 
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Table 4. 7 The CO MAC, MAC0 and FRF AC for damage case 3 ( example 1) 

Method COMAC COMAC MAC0 MAC0 FRFAC FRFAC 
(before) (after) (before) (after) (before) (after) 

DAM 0.9654 0.9987 0.0296 0.0288 1.0212 0.9929 

MPM 0.9654 0.9999 0.0296 0.0203 1.0212 0.9913 

MCM 0.9654 0.9998 0.0296 0.0288 1.0212 0.9920 

The COMAC factor shows that the MPM gives the best results followed by the MCM 

and then the DAM. The MAC0 factor shows that the MPM gives better results than the 

DAM and MCM methods. The FRF AC factor shows that the DAM gives the best results 

followed by the MCM then the MPM. These results show that the MPM gives the 

updated FEM which reproduces the modal properties the best followed by the MCM and 

then the DAM. The DAM gives the updated FEM which predicts the measured FRFs the 

best, followed by the MCM and then the MPM. 

The comparisons of natural frequencies before and after updating using three different 

updating methods are shown in table 4.8. The three updating techniques were able to 

update the first natural frequency. The DAM gave the best results, followed by the MPM 

and then the MCM. The ability to reproduce the third mode, however, was in the 

following order: the MCM and the MPM and then the DAM. 

Table 4.8 Table showing natural frequencies in Hz for damage case 3 ( example 1) 

Mode Experimental Initial Updated Updated Updated 
Number Natural Natural Natural Natural Natural 

Frequencies Frequencies Frequency Frequency Frequency 
(Hz) (Hz) (Hz) (Hz) (Hz) (MCM) 

(DAM) (MPM) 

Mode 1 64.9 65.4 67.3 65.0 65.0 

Mode2 184.2 176.0 184.5 184.2 184.0 

Mode3 356.0 339.1 355.2 355.8 355.8 
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4.3. Example 2: Freely Suspended Beam With Holes 

This example is closely related to the previous one, except that the beam had holes and 

therefore was more difficult to model. The aluminium beam has the following 

dimensions: length: 1. 1 m, width: 29.2 mm and thickness: 9.6 mm. The beam has holes 

of diameter 5.8 mm located at nodes 2 to 9 which are separated by 10 cm equal spacing 

(see details in figure F.3 in appendix F). The same procedure is followed as in section 4.2 

and the programs implemented are written in a MATLAB environment and may be 

viewed in Appendix C (section 2). The beam was modelled by 11 elements and the 

structure was excited at node 4 (see figure 4.7). The picture of this beam may be viewed 

in figure D.2 (in appendix D). The responses were measured by placing the 

accelerometers consecutively at nodes 2 to 12. The DAM; MPM and MCM were 

implemented and the results were compared by using the CO MAC, MAC0 and FRF AC. 

j Accelerometer ± Excitation 

1 2 3 

4~ 
5 6 7 8 9 11 12 13 

t t t t t t t t t 
Figure 4. 7 A beam with holes 

4.3.1. Updating Before Damage 

The optimisation procedure was performed with E, v, p, a, and p used as design 

variables. It was found that the v was 0.34, p was 2650 kg m-3 and a was 0.00043, and p 

was 0.000082. The values of v, p, a and p were stored for later use. 

The CO MAC, MAC0, and FRF AC before and after updating were compared and the 

results are displayed in table 4. 9. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



44 

Table 4.9 The CO MAC, MAC0 and FRF AC for undamaged case ( example 2) 

Method COMAC COMAC MAC0 MAC0 FRFAC FRFAC 

(before) (after) (before) (after) (before) (after) 

DAM 0.8326 0.8919 0.0420 0.0419 1.7281 1.6089 

MPM 0.8326 0.9859 0.0420 0.0419 1.728 I 1.6862 

MCM 0.8326 09087 0.0420 0.0420 1.7281 1.6183 

The COMAC factor shows that the MPM gives the best results followed by the MCM 

and then the DAM. The MAC0 factor shows virtually no updating. The FRF AC factor 

shows that the DAM gives the best results followed by the MCM then by the MPM. 

These results show that the MPM gives the updated FEM which reproduces the modal 

properties the best followed by the MCM and then the DAM. The DAM gives the 

updated FEM which predicts the measured FRFs the best, followed by the MCM and then 

theMPM. 

The natural frequencies before and after updating are displayed in table 4.10. 

Table 4.10 Table showing natural frequencies in Hz for undamaged case (example 2) 

Mode Experimental Initial Updated Updated Updated 
Number Natural Natural Natural Natural Natural 

Frequencies Frequency Frequency Frequency Frequency 
(Hz) (Hz) (Hz) (DAM) (Hz) (MPM) (Hz) (MCM) 

Mode 1 40.9 38.5 41.9 41.3 41.4 

Mode2 115.4 106.1 113.0 115.8 113.0 

Mode3 224.6 208.8 221.3 227.0 221.3 

Mode4 376.1 347.1 377.2 376.0 377.2 

The MPM gives the FEM which best predicts the measured natural frequencies, followed 

by the MCM and then the DAM. None of the three methods could give an FEM that 

gives the third natural frequency closer to the measured one. 
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4.3.2. The Beam With Damage Case 1 

In this case, damage was introduced at element 2. The same procedures as in section 

4.3.1 were applied and the results are shown in tables 4.11 and 4.12. 

Table 4.11 The COMAC, MAC0 and FRFAC for damage case 1 (example 2) 

Method COMAC COMAC MAC0 MAC0 FRFAC FRFAC 

(before) (after) (before) (after) (before) (after) 

DAM 0.8326 0.9019 0.0419 0.0421 1.7870 1.1433 

MPM 0.8325 0.9259 0.0419 0.0421 1.7870 1.6979 

MCM 0.8326 09187 0.0419 0.0421 1.7870 1.5423 

The COMAC factor shows that the MPM gives the best updating, followed by the MCM 

and then the DAM. The MAC0 scalars demonstrate no updating for any of the three 

approaches. The FRF AC indicated that the best updating was performed by the DAM, 

followed by the MCM and then the MPM. 

Table 4.12 Table showing natural frequencies in Hz for damage case 1 ( example 2) 

Mode Experimental Initial Updated Updated Updated Natural 
Number Natural Natural Natural Natural Frequency (Hz) 

Frequencies Frequency Frequency Frequency (MCM) 
(Hz) (Hz) (Hz) (DAM) (Hz) (MPM) 

Mode 1 41.5 37.9 40.8 40.7 40.2 

Mode2 114.5 107.7 112.5 112.5 113.5 

Mode3 224.5 206.7 220.6 220.6 221.3 

Mode4 371.6 351.4 363.4 366.4 365.6 

Table 4.12 demonstrates that the three approaches work well. For all the measured 

natural frequencies, the MPM gives the best results, followed by the MCM and then the 

DAM. For the second natural frequency the three methods give same results. 
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4.3.3. The Beam With Damage Case 2 

In this case, damage is introduced at elements 2 and 3. The structure which was used is 

the same as in figure 4.5. The same procedures as in section 4.3.1 were implemented. 

The results obtained may be viewed in tables 4.13 and 4.14. 

Table 4.13 The CO MAC, MAC0 and FRF AC for damage case 2 ( example 2) 

Method COMAC COMAC MAC0 MAC0 FRFAC FRFAC 

(before) (after) (before) (after) (before) (after) 

DAM 0.6324 0.7326 0.0486 0.0498 1.8340 1.6979 

MPM 0.6324 0.8453 0.0486 0.0495 1.8340 1.7734 

MCM 0. 6324 0.8126 0.0496 0.0496 1.8340 1.7432 

Table 4.13 shows that the COMAC and the MAC0 scalars were most updated when the 

MPM was used followed by the MCM and then the DAM. The FRF AC approach 

demonstrated that the best updating is obtained when using DAM, then MCM and then 

the MPM. 

The corresponding changes in natural frequencies may be viewed in table 4.14. 

Table 4.14 Table showing natural frequencies in Hz for damage case 2 (example 2) 

Mode Experimental Initial Updated Updated Updated 
Number Natural Natural Natural Natural Natural 

Frequencies Frequency Frequency Frequency Frequency 
(Hz) (Hz) (Hz) (DAM) (Hz) (MPM) (Hz) (MCM) 

Mode 1 41.5 40.2 41.3 41.7 41.3 

Mode2 114.5 113.5 113.0 114.2 113.0 

Mode3 224.5 221.3 221.7 225.6 221.9 

Mode4 371.6 365.6 363.0 373.3 368.1 
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Table 4.14 shows that all the three approaches update the first, second and third natural 

frequencies well. I lowever, the MPM on average gives best approximation, followed by 

the MCM and then DAM. 

4.3.4. The Beam With Damage Case 3 

In the third case, damage is introduced in elements 2, 3 and 4. The same procedure as in 

section 4.3 .1 was followed and the results are in Tables 4.15 and 4.16. 

Table 4.15 The COMAC, MAC0 and FRFAC for damage case 3 (example 2) 

Method COMAC COMAC MACo MAC0 FRFAC FRFAC 

(before) (after) (before) (after) (before) (after) 

DAM 0. 6072 0.7036 0.0419 0.0419 1.8638 1.6528 

MPM 0.6072 0.7474 0.0419 0.0419 1.8638 1.7483 

MCM 0. 6372 0.7128 0.0419 0.0419 1.8638 1.7074 

This case demonstrates that the MAC0 did not offer any improvement. The COMAC 

demonstrates that the MPM gives better results, followed by the MCM and then the 

DAM. The FRF AC shows that the best improvements due to updating are obtained when 

the DAM is used, followed by the MCM, and then MPM. 

Table 4.16 Table showing natural frequencies in Hz for damage case 3 (example 2) 

Mode Experimental Initial Updated Updated Updated 
Number Natural Natural Natural Natural Natural 

Frequencies Frequency Frequency Frequency Frequency 
(Hz) (Hz) (Hz) (DAM) (Hz) (MPM) (Hz) (MCM) 

Mode 1 35.4 41.3 38.4 35.9 36.4 

Mode2 110.3 113.0 113.3 109.8 112.3 

Mode3 209.3 221.9 219.3 210.9 219.3 

Mode4 352.7 368.1 359.7 351.8 353.7 
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Table 4.16 demonstrates that the three approaches work well. On average, it was 

discovered that the MPM gives better approximation of the natural frequency, followed 

by the MCM and then the DAM. 

The results that show the effect of damage on the measured FRFs for example 2 may be 

viewed in appendix E (figure E.2). 
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4.4. Example 3: Freely suspended H-shaped structure 

The third example is an irregular H-shaped structure which may be viewed in Figure 4.8. 

_l 
5 

l 13 
4 ' 

6 7 8 9 10 
3 - 11 -

2 i Excitation ~2 

1 
T j Accelerometer 

Figure 4.8 An irregular H-shaped structure 

The structure displayed in figure 4.8 is made out of aluminium. The dimensions of the 

structure are shown in figure F.4 (appendix F). The structure was divided into 12 

elements. The structure was excited at node 6 and the accelerometer was placed at 15 

locations as shown figure 4._8. The picture of the set-up may be viewed in figure D.3 

(appendix D). The structure was tested free and a set of 15 FRFs was obtained and used 

for updating. 

4.4.1. The Updating Case Before Damage Occurs 

The FRFs obtained as explained in section 4.4. were utilised to update the FEM. The 

initial updated FEM was updated using experimental data obtained by following the same 

procedure as in section 4.2. The DAM, MPM and the MCM were used (see Appendix C) 

and the results obtained are as given in table 4.1. The DAM gives v of 0.33 and p of 

2700 kg.m-3
; the MPM gives v of 0.34 and p of 2690 kg.m-3 and the MCM gives v of 

0.33 and p of 2700 kg.m-3
. The values for a and 0 were found to be approximately equal 

to 0.0004. 
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The results in table 4.17 show the comparison of CO MAC, MAC0 and FRF AC before 

and after updating. 

Table 4.17 The COMAC, MAC0 and FRFAC for undamaged case (example 3) 

Method COMAC COMAC MAC0 MAC0 FRFAC FRFAC 

(before) (after) (before) (after) (before) (after) 

DAM 1.4281 1.1230 0.2643 0.0658 0.9446 0.9947 

MPM 1.4281 1.2630 0.2643 0.0653 0.9446 0.9942 

MCM 1.4281 1.1800 0.2643 0.0657 0.9446 0.9947 

The results shown in table 4.17 demonstrate that the COMAC was improved the most 

after updating when DAM was used, then MPM and then MCM. The MAC0 factor was 

improved the most by the MPM, then the MCM and then DAM. The FRF AC was 

improved the most by the DAM and the MCM followed by the MPM. 

Table 4.18 shows the comparison between natural frequencies. 

Table 4.18 Table showing natural frequencies in Hz for undamaged case (example 3) 

Mode Experimental Initial Updated Updated Updated 
Number Natural Natural Natural Natural Natural 

Frequencies Frequency Frequency Frequency Frequency 
(Hz) (Hz) (Hz) (DAM) (Hz) (MPM) (Hz) (MCM) 

Mode 1 55.37 51.26 55.26 55.40 55.28 

Mode2 125.30 116.01 125.00 124.97 125.30 

Mode 3 225.18 208.48 226.68 224.70 225.39 

Mode4 259.71 240.44 258.67 258.70 259.30 

Mode 5 446.04 412.96 444.41 444.63 445.55 

Table 4.18 demonstrates that all three approaches were capable of reproducing the 

measured natural frequencies. The results show that the MPM approximated the 

measured parameters the best, followed by the MCM and then the DAM. 
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4.4.2. The Damage Case 1 

In this case damage was introduced in element 3 of figure 4.8. The same procedure 

followed in section 4.4.1 is followed in this case. When updating was performed the 

results in table 4.19 were obtained. 

Table 4.19 The natural frequencies in Hz for damage case 1 (example 3) 

Mode Experimental Initial Updated Updated Updated 
Number Natural Natural Natural Natural Natural 

Frequencies Frequency Frequency Frequency Frequency (Hz) 
(Hz) (Hz) (Hz) (Hz) (MPM) (MCM) 

(DAM) 

Mode 1 55.16 55.38 56.00 55.18 54.26 

Mode2 123.69 125.30 125.74 123.72 120.11 

Mode 3 206.76 225.39 208.67 207.85 209.39 

Mode4 258.55 259.30 258.54 259.98 257.77 

Mode5 443.22 445.55 448.35 442.93 442.92 

Table 4.19 demonstrates that the MPM was best able to approximate the natural 

frequencies, then the MPM then the DAM. 

Table 4.20 The COMAC, MAC0 and FRFAC for damage case 1 (example 3) 

Method COMAC COMAC MAC0 MAC0 FRFAC FRFAC 

(before) (after) (before) (after) (before) (after) 

DAM 1.4281 1.2407 0.2526 0.0724 1.0920 1.0820 

MPM 1.4281 1.1020 0.2526 0.0721 1.0920 1.0907 

MCM 1.4281 1.1710 0.2526 0.0723 1.0920 1.0902 

Table 4.20 demonstrates that the MPM gives the best updated approximation of the 

COMAC and the MAC0 scalar, then the MCM and then the DAM. The FRFAC was best 

updated by the DAM, then the MCM and then the MPM. 
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4.4.3. The Damage Case 2 

In this case, damage was introduced at elements 2 and 3 of the structure shown in figure 

4.8. The same procedure in section 4.4.1 was used in this section. The results obtained 

are shown in table 4.21. 

Table 4.21 Table showing natural frequencies in Hz for damage case 2 (example 3) 

Mode Experimental Initial Updated Updated Updated 
Number Natural Natural Natural Natural Natural 

Frequencies Frequency Frequency Frequency Frequency 
(Hz) (Hz) (Hz) (DAM) (Hz) (MPM) (Hz) (MCM) 

Mode 1 55.15 54.26 55.17 55.48 54.27 

Mode2 123.61 120.11 125.74 123.73 120.11 

Mode3 205.82 209.39 206.28 207.85 206.93 

Mode4 258.52 257.77 259.99 258.46 257.77 

Mode 5 445.98 442.92 445.55 443.94 442.92 

Table 4.21 demonstrates that the DAM gives best results, then the MCM and then the 

MPM. 

When the comparison methods were implemented the following results were shown in 

table 4.22 were obtained. 

Table 4.22 The COMAC, MAC0 and FRFAC for damage case 2 (example 3) 

Method COMAC COMAC MAC0 MAC0 FRFAC FRFAC 

(before) (after) (before) (after) (before) (after) 

DAM 0.7436 0.9022 0.2738 0.0166 1.2641 1.0263 

MPM 0.7436 0.9232 0.2738 0.0119 1.2641 1.1297 

MCM 0.7436 0.9191 0.2738 0.0161 1.2641 1.1262 
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The results demonstrate that the MPM gives the best COMAC and MAC0 scalars 

approximation, then the MCM and then the FRF approach. The FRF AC gives the best 

results when the DAM is used, followed by the MCM, then the MPM. 

4.4.4. The Damage Case 3 

In this case damage was introduced in elements 3, 4 and 5 of the structure in figure 4.8. 

The same procedure as in the previous section was implemented and the results are 

shown in table 4.23. 

Table 4.23 Table showing natural frequencies in Hz for damage case 3 (example 3) 

Mode Experimental Initial Updated Updated Updated 
Number Natural Natural Natural Natural Natural 

Frequencies Frequency Frequency Frequency Frequency 
(Hz) (Hz) (Hz) (Hz) (MPM) (Hz) (MCM) 

(DAM) 

Mode 1 53.88 54.27 53.89 53.23 53.27 

Mode2 117.32 120.11 117.27 118.66 118.11 

Mode3 208.40 206.93 208.26 208.71 208.93 

Mode4 253.99 257.77 253.85 250.26 254.77 

Mode5 445.17 442.92 445.02 437.89 445.92 

Table 4.23 shown that all the three methods give good results. However, it may be 

observed that the MPM experienced difficulty in updating higher natural frequencies. 

The MCM gives the best updated approximation of the measured natural frequencies, 

followed by the DAM and then MPM. 

When the comparison methods were implemented, the results in table 4.24 were obtained. 

Table 4.24 The COMAC, MAC0 and FRFAC for damage case 3 (example 3) 

Method COMAC COMAC MAC0 MAC0 FRFAC FRFAC 
(before) (after) (before) (after) (before) (after) 

DAM 0.7918 0.9114 0.2787 0.0309 1.2723 1.0246 

MPM 0.7918 0.9890 0.2787 0.0304 1.2723 1.2360 

MCM 0.7918 0.9373 0.2787 0.0299 1.2723 1.0254 
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Table 4.24 demonstrates that the MPM gives best updating of the COMAC value, 

followed by the DAM and then the MCM. The MAC0 value was best updated when 

MCM was implemented, then MPM and then DAM. The FRF AC approach was best 

updated when DAM was used, then MCM and then MPM. 

The results showing the effects of damage on the FRFs for this example are shown in 

figure E.3 ( appendix E). The results showing the qualities of modes measured are shown 

in figure E.6. The results demonstrating the effect of updating on the FRFs are in figure 

E.4 and E.5. 

4.5. Conclusion 

The MPM and the DAM give a good approximation to the measured FRFs and modal 

parameters. The MCM approximates both the measured FRFs and modal properties well. 

It tended to find the middle ground between the measured FRFs and modal properties. 

In this chapter it was discovered that the FRF AC factor is a good criterion for comparing 

measured FRFs. When the FRF AC was used, the frequency range was chosen on the 

region with minimal noise. It is suggested that for future use of the FRF AC, the FRFs 

must be smoothed out to minimise the effect of noise. 

The MAC0 scalar was not a very good factor to compare modes. In the future it is 

suggested that the MAC be normalised by multiplying the elements in its diagonal. This 

will ensure that perfect correlation gives I. 

The assumption of proportional damping worked well for this study. If the structure 

being analysed is heavily damped, then proportional damping will not be a good 

assumption. This may compromise on the effectiveness of the method. For future 

research, it is suggested that the effect of heavy damping on the effectiveness of the 

MCM be investigated. 
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5. Damage Detection Using Updating Procedure 

5.1. Introduction 

In chapter 4, a new iterative updating method was developed and applied to three 

examples. In this chapter this new updating method is applied in conjunction with the 

philosophy of selective updating to detect damage on three different structures. The 

method is compared to the DAM and MPM. The idea of selective updating was 

introduced by Ben-Haim in 1992. Ben-Haim reduced the number of updating parameters 

by applying excitations which produce strong sensitivities. In this study instead of using 

the E vector of the structure as a design variable, the structure is divided into two halves. 

Each half is assumed to have the same E. Then the MCM, the DAM and the MPM 

methods are applied. The half that experiences the least updating of E is restricted by 

applying a relatively stringent bounds and the other half is further divided into halves. 

The procedure is repeated until damage is completely located. 

In chapter 4, the FEM was updated iteratively by varying the modulus of elasticity of 

each element of the FEM. Several damage cases were introduced and their respective 

FEMs were identified. As an extension to the previous work, the results of the updated 

models for each damage case are compared to the results of the updated model before 

damage had been introduced. Damage is detected by analysing the difference between 

the updated damaged model and the updated undamaged model. In this study the extent 

of damage is represented by the changes in modulus of elasticity. It is argued that a 

relationship exists between the changes in modulus of elasticity and the amount of 

damage in the structure. However, to quantify this relationship, a separate study will 

have to be conducted. In this study it is postulated that the relationship between the 

changes in modulus of elasticity and the amount of damage that has occurred is a function 

of the material property of the structure. 

Photographs of the structures that were used may be viewed in appendix D. The structure 

was damaged by introducing saw cuts on several selected elements. The cuts went 
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further than the centre of the cross-section of the structure. The programs implemented 

for detection of damage are the same as those used for updating and may be viewed in 

appendix C. 

5.2. Example 1 

5.2.1. Damage Case 1 

j Accclcromctcrs i Excitation 

1 2 3 4 5 6t 
t t I t t 

7 8 9 10 11 12 13 

t t t t t t 

Figure 5.1 Experimental set-up damage was imposed on element 3 as indicated 

The beam depicted in figure 5 .1 was excited at node 6 and the response measured by an 

accelerometer placed consecutively at node 2 to 12. From the measurements one set of 

11 Frequency Response Functions (FRF's) was obtained. This set of FRFs was used to 

identify each element's modulus of elasticity of the FEM. The modulus of elasticity of 

the newly updated model was subtracted from the modulus of elasticity of the previously 

updated model. The results may be viewed in figure 5 .2. 

Damage Detection Using FRF's 
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Figure 5.2 Damage detection using DAM ( example 1, case 1) 
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Figure 5.2 shows that when the DAM was used the modulus of elasticity of element 3 

was updated by approximately 190.0x 108 MPa. These results indicate the presence of 

damage at element 3. 

From the FRFs measurements the modal properties were extracted and were used in the 

MPM to update the FEM. The modulus of elasticity vector of the newly updated model 

was subtracted from the modulus of elasticity vector of the previously updated model. 

The results may be viewed in Figure 5.3. 

Damage Detection Using Modal Properties 
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Figure 5.3 Damage detection using MPM ( example I, case I) 

The results show that the MPM updated the FEM by changing the modulus of elasticity 

of element 3 by about 180.0x 108 MPa. The results indicate the presence of damage 

(significant updating was performed), its location at element 3 and its extent (180.0x 108 

MPa). 

The MCM was implemented to detect damage. The modulus of elasticity vector obtained 

after updating was compared to the modulus of elasticity vector before updating. The 

results are shown in figure 5.4. 
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Damage Detection Using Multiple Criterion Method 
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Figure 5.4 Damage detection using MCM ( example 1, case 1) 

The results show that the MCM updated the FEM by changing the modulus of elasticity 

of element 3 by 180.0x 108 MPa. The other elements were not updated significantly. The 

fact that significant updating was performed indicates that the structure was damaged. 

This MCM predicts the presence of damage (significant updating was performed), its 

location at element 3 and its extent (180.0x 108 MPa). 

The results obtained by the three methods are consistent with each other. These three 

approaches were able to indicate the presence of damage (significant updating was 

performed), its location (at element 3) and its extent (180.0x 108 MPa). It must be noted 

that the three approaches give slightly different changes in modulus of elasticity. This is 

due to the presence of error in the measured parameters. 

5.2.2. Damage Case 2 

In this case damage was introduced at elements 3 and 5. This case is a multiple damage 

detection problem. It was discovered that this case is difficult to analyse since it requires 

experimental data of a higher degree of accuracy. Care must therefore, be taken to 

minimise exogenous disturbances when performing this experiment. The schematic 

diagram of this example may be viewed in figure 5.5. 
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Figure 5.5 Damage at elements 3 and 5 

When the DAM was implemented and the updated FEM was obtained and compared to 

the updated FEM in section 5.2.1. The results obtained may be viewed in figure 5.6. 

Damage Detection Using FRF's 
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Figure 5.6 Damage detection using DAM ( example 1, case 2) 

Figure 5.6 shows that elements 3 and 5 were updated by about 180.0xl08 MPa. The fact 

that significant updating was performed on the previously updated FEM indicates 

existence of further damage. The location of damage at elements 5 and 6 and the extent 

for each is 180.0x 108 MPa. 

By applying modal analysis techniques, modal properties of the system were extracted 

and subsequently used to detect the location and the extent of damage on the structure. 
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The results of the MPM are shown by figure 5. 7. 

Damage Detection Using Modal Properties 
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Figure 5. 7 Damage detection using MPM ( example 1, case 2) 

As it can be viewed in figure 5. 7 updating was performed in elements 3 and 5 and this 

demonstrates the existence of damage. These results further show the location of damage 

to be at elements 3 and 5 and the extent of damage to be 190.0x 108 MPa and 

180.0x 108MPa respectively. 

The MCM was implemented and the results of the process may be viewed in figure 5.8. 

Damage Detection Using Multiple Criterion Method 
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Figure 5.8 Damage detection using MCM (example!, case 2) 
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The results indicate that updating was performed at elements 3 and 5. This figure 

indicates that damage has occurred in elements 3 and 5 and the extent for both is 

180.0x 108 MPa. 

In this case it was found that the three methods give results that are consistent with one 

another. The three methods were able to detect the presence of damage, its location and a 

factor ( change in modulus of elasticity) that can be used to determine its extent. 

5.2.3. Damage Case 3 

In the third damage case an additional damage was introduced at element 6. The 

schematic representation for such a case may be viewed in figure 5. 9. 

t Excitation j Accelerometer 

1 2 3 4 5 
6i 

7 8 9 10 11 12 13 

f f f t t t t t t t 

Figure 5.9 Damage at 3, 5 and 6 

The DAM approach was implemented to detect damage on the structure. The results 

obtained may be viewed in figure 5.10. This figure shows that the FEM was updated in 

elements 3, 5 and 6. From these results it may be deduced that the location of damage 

occurred at elements 3, 5 and 6 and the extent is 190.0x 108 MPa for all three. 
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Damage Detection Using FRF's 
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Figure 5.10 Damage detection using DAM approach 

The MPM was then used to detect damage. The results may be viewed on figure 5.11. 

Damage Detection Using Modal Properties 
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Figure 5.11 Damage detection using MPM ( example I , case 3) 

Figure 5.11 shows that updating was performed in elements 3, 5 and 6. Therefore 

damage has occurred in elements 3, 5 and 6 and the extent is approximately 

180.0x 108MPa for each. 
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Finally the MCM was implemented to detect damage. The results are shown in figure 

5.12. 

i-- -- ··- -,n~;,:ge Detection Using Multiple Criterion Method 
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Figure 5.12 Damage detection using MCM (example 1, case 3) 

The changes in modulus of elasticity vector when the MCM was used are in elements 3, 5 

and 6. From this it may be deduced that damage had occurred in these elements. 

The three techniques were able to detect the presence of damage at elements 3, 5 and 6 

and its extent to be approximately 180.0x 108 MPa. As explained in section 5.3 a 

relationship between the amount of damage that has occurred and changes in modulus of 

elasticity vector will have to be found and is beyond the scope of this work. 

5.3. Example 2 

In this example a beam with holes drilled at randomly spaced positions is considered. 

The picture of the structure may be viewed in Appendix D. The FEM was applied by 

dividing the beam into 11 elements. Three updating procedures; the DAM, the MPM and 

the MCM were applied as in example 1. The structure used may be viewed in Figure 

5.13. 
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j Accelerometer ± Excitation 

I 2 3 4 5 6± 7 8 9 10 11 12 
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Figure 5.13 The schematic representation of the beam with holes 

The accelerometer was placed consecutively from element 2 to 11 and a set of 10 FRFs 

was obtained. This set FRFs was incorporated into the DAM and was used to update the 

FEM. The results were stored for later use. Similarly, the MPM and the MCM were 

used to update the FEM. 

5.3.1. Damage Case 1 

Damage was introduced at element 2 in the beam depicted in figure 5.13. The set of 

FRFs measured was used to update the FEM. The modulus of elasticity vector of the 

FEM before damage was compared to the modulus of elasticity of the newly updated 

FEM. The changes in modulus of elasticity of each element are illustrated in figure 5.14. 
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Damage Case 1 Using Measured FRF's 
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Figure 5.14 Damage detection using DAM (example 2, easel) 

Figure 5.14 indicates that updating was performed in elements 2, 4 and 5. However, the 

most significant updating was performed in element 2. The fact that significant updating 

was obtained is an indication that damage has occurred its location at element 2 and its 

extent is 50.0x 108MPa. 

This approach demonstrated the loss in stiffness at element 3 because of the presence of 

excessive measurement errors. 

The MPM was implemented and the FEM updated. The difference between the modulus 

of elasticity vector of the updated FEM and the modulus of elasticity before damage was 

compared. This difference is illustrated in figure 5.15 . 
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Damage Detection Using Modal Property 
Approach 

60 . 
50 . 

40 
30 
20 . 
10 . 

0 - -- --1- -;-----t· 

-10 ~ C") 

-20 

Bement 

L _____ _ 

Figure 5.15 Damage detection using MPM ( example 2, case 1) 

Figure 5.15 indicates that the MPM updated elements 2, 4 and 5 of the FEM. It may also 

be observed that element 2 was updated more significantly than the other elements. The 

results indicate that the MPM shows that element 2 to be the location of damage. The 

extent of damage is about 50.0x 108 MPa. Figure 5.15 demonstrates that element 4 

experienced significant stiffness loss. This is an indication of high noise level in the 

FRFs which resulted with an error in the measured modes. 

When the MCM was applied the difference between the modulus of elasticity vector of 

the of the updated FEM before and after damage is illustrated in figure 5.16. 

Damage Case1 Multiple Criterion Method 

60 ,------------------------, 

50 

40 

Bement 

Figure 5.16 Damage detection using MCM (example 2, case 1) 
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Figure 5.16 indicates that updating was performed in elements 2, 4, 5, 8 and 9. However, 

the most significant updating was performed in element 2. The MCM shows that damage 

has occurred in element 2 and its extent is approximately 55.0x 108 MPa. The FEM 

obtained from the MCM also experienced loss of stiffness at element 4. 

The DAM, the MPM and the MCM were able detect the presence of damage, its location 

( element 2) and a factor which can be used to determine its extent ( change in modulus of 

elasticity 55.0x 108 MPa). 

5.3.2. Damage Case 2 

In the second case damage was introduced at elements 2 and 3 and the FRF 

measurements were obtained. These measurements were used to update the FEM. The 

difference between the newly updated model and the updated model before damage is 

illustrated in Figure 5.17. 

1------ - ·-·-- - ------ -··--

' Damage Case 2 Using Measured FRF's 

100 -,-----..--------------, 

Figure 5.17 Damage detection using DAM ( example 2, case 2) 

Figure 5.17 indicates that significant updating was performed in elements 2 and 3. The 

DAM shows that damage has occurred in elements 2 and 3 and the extent of both are 

80.0x 108 MPM and 100.0x 108 MPM respectively. The modal parameters of the structure 

were extracted from the measured FRFs. These parameters were used to update the FEM. 

The difference between the newly updated FEM and the updated FEM before damage is 

illustrated in Figure 5.18. 
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Figure 5.18 Damage detection using MPM (example 2, case 2) 

Figure 5. I 8 indicates that significant damage occurred in elements 2, 3, 9 and 10. This 

approach was able to detect the presence of damage in the structure (by the virtue of the 

change in modulus of elasticity). This approach is very weak in locating damage or 

showing its extent. It should be noted, however, that this approach was able to achieve an 

updated model. This approach was unable to display any meaningful detection of 

damage because there is no way to uniquely determine its location. 

The MCM was implemented and the results are demonstrated in Figure 5.19. 
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Figure 5.19 Damage detection using MCM (example 2, case 2) 
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The MCM predicts that damage has occurred in element 2 and 3 and the extent for both 

are 70.0x108 and 90.0x108 MPa respectively. The extent of damage in element 2 is 

closer to damage that was obtained in case I. 

The results demonstrate that the MCM was able to detect the location and the extent of 

damage better then followed by DAM. The MPM was able to detect the presence of 

damage but failed to locate its location. 

5.3.3. Damage Case 3 

In this case damage was introduced in elements 2, 3, and 4. The same procedure as in 

section 5.3.2 was repeated. The results obtained when the DAM was implemented is 

illustrated in figure 5.20. 
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Figure 5.20 Damage detection using DAM (example 2, case 3) 

Figure 5.20 demonstrates that damage has occurred in elements 2, 3 and 4. The extent of 

damage in elements 2, 3 and 4 were 75 .0x l 08
, I 00.0x I 08 and 70.0x 108 MPa respectively. 

The results obtained when the MPM was implemented are illustrated in Figure 5.21. 
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Damage Case 3 Using Modal Properties 
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Figure 5.21 Damage detection using MPM (example 2, case 3) 

Figure 5.21 shows that updating was performed in elements 2, 3, 8, 9 and 10. These 

results give the correct location of damage but not uniquely because they also show 

incorrect locations. 

When MCM was implemented the results in figure 5.22 were obtained. 
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Figure 5.22 Damage detection using the MCM (example 2, case 3) 

These results indicate that damage has occurred in elements 2, 3 and 4. The extent of 

damage are 70.0x108
, 80.0x108 and 45.0x108 MPa. 
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These results demonstrate that the MCM and the DAM are appropriate for multiple 

damage detection. The MPM was able to detect the presence of damage but failed to 

detect the location and extent especially for multiple damages. 

5.4. Example 3 

The third example is an H-shaped structure which may be viewed in Appendix D and 

figure 5 .23. The accelerometer and excitation were mounted as shown in the figure 5 .23. 

The FRF measurements were taken used to identify the measured modes. The DAM, the 

MPM and MCM were implemented and the FEM was updated. The results from the 

three models were stored. 

1 Accelerometer! Excitation 
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Figure 5.23 The schematic representation of the irregular H-shaped structure 
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5.4.1. Damage Case 1 

In this example damage was introduced in element 3. The measured DAM was used to 

detect damage on the structure and the results may be viewed in Figure 5.24. 
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Figure 5.24 Damage detection using DAM (example 3, case 1) 

The results indicate that the modulus of elasticity of all the elements were updated. 

Element 2 was updated most significantly than the other elements. The DAM indicate 

that damage has occurred in element 3 and its extent was 100.0x 108 MPa. 

The MPM was implemented and the results may be viewed in Figure 5.25. 
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Figure 5.25 Damage detection using MPM (example 3, case 1) 
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Figure 5.25 indicates that although all elements were updated, element 3 was updated 

most significantly than other elements. The results indicate that damage of magnitude 

160.0x108MPa has occurred in element 3. 

The MCM was implemented and the results are displayed in Figure 5.26. 

Damage Case 1 Using Multiple Criterion Method 
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Figure 5.26 Damage detection using MCM (example 3, case 1) 

Figure 5.26 indicates that element 3 was most significantly updated. From these results it 

is concluded that damage has occurred in element 3 and has a magnitude of 140.0x I 08 

MPa. 

The results from the DAM, MPM and MCM show that the three methods detect damage, 

its location and its extent at element 3. The magnitudes of the damage given by three 

methods, however, were not consistent with one another. The MCM gives the magnitude 

of damage which is more consistent with the level of damage introduced. 

5.4.2. Damage Case 2 

In this case damage was introduced in elements 3 and 4. The three approaches were 

applied as discussed before. The results obtained when the DAM was implemented may 

be viewed figure 5.27. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



-0 

74 

Damage Case 2 Using FRF's 
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Figure 5.27 Damage detection using DAM (example 3, case 2) 

Figure 5.27 indicates that elements 3 and 4 were more significantly updated than the 

other elements. This approach indicates that damage has occurred in elements 3 and 4 

and the respective magnitudes of damage are 200.0x108 and 225.0x108 MPa's. 

The MPM was employed and the results are shown in figure 5.28. 
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Figure 5.28 Dan1age detection using MPM (example 3, case 2) 

The MPM indicates that elements 2 and 3 were significantly updated. It should be noted, 

however, that other elements were updated. This method predicts damage to have 
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occurred in elements 2 and 3 with magnitudes of 110.0x 108 and 100.0x 108 MPa 

respectively. 

The MCM was implemented and the results are shown in Figure 5.29. 
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Figure 5.29 Damage detection using MCM (example 3, case 2) 

Figure 5.29 indicates that damage has occurred in elements 3 and 4 with 130.0x 108 MPa 

and 80.0x 1 OR MPa respectively. 

The results demonstrate that the DAM and the MCM were able to detect damage on 

elements 3 and 4. The MPM, though it detected damage on elements 3 and 4, did not 

explicitly or clearly detect the location of damage as the DAM and MCM (see figure 

5.28). 

5.4.3. Damage Case 3 

In this case damage was introduced in elements 3, 4 and 5 and the same procedure as in 

the previous section was implemented. 

The results obtained when the DAM was implemented are given in figure 5.30. 
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Damage Case 3 Using FRF's 
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Figure 5.30 Damage detection using DAM (example 3, case 3) 

Figure 5.30 indicates that the DAM updated elements 3, 4 and 5 more significantly than 

the other elements. The magnitudes of damage that have occurred are 200.0x 108
, 

225.0x 108 and 150.0x 108 MPa respectively. 

The MPM was employed and the results are displayed in Figure 5.31. 
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Figure 5.31 Damage detection using MPM (example 3, case 3) 

Figure 5.31 seems to indicate that damage has occurred in elements 2 and 3 with 

magnitudes 120.0x 108 and 90.0x 108 MPa respectively. The fact that significant updating 

was performed is an indication that damage was present. 
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When the MCM was implemented the results in figure 5.32 were obtained. 

Damage Case 3 Using Multiple Criterion Method 
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Figure 5.32 Damage detection using MCM (example 3, case 3) 

Figure 5.32 indicates that damage has occurred in elements 3, 4 and 5 and has magnitudes 

of 200.0x108
, 100.0x 108 and 150.0x108 MPa respectively. 

The results given by the MCM and the DAM were able to show that damage has occurred 

in elements 3, 4 and 5. The MPM could detect the presence of damage but failed to 

detect its extent and location. 

5.5. Conclusions 

In this chapter the new damage detection method was tested using three different results. 

The results show that the MCM gives the best results followed by the DAM then the 

MPM. This is because of the fact that the MCM satisfies the measured modal properties 

and FRF's. 
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6. Conclusion 

In this study a new Multiple Criterion Method (MCM) was proposed and tested using a 

simple beam, a beam with holes, and an irregular H-shaped structure. The MCM 

minimises the sum of the Euclidean norm of the error vector obtained from the equation 

of motion and that obtained from the modified eigenvalue equation. The DAM 

minimises the Euclidean norm of the error vector from the equation of motion. The 

MPM minimises the Euclidean norm of the error vector obtained from the modified 

eigenvalue equation. The results given by the MCM were compared to the results 

obtained by adding the DAM to the MPM. The three methods were compared using two 

criteria: the ability to reproduce the measured parameters and the ability to detect damage 

on the structure. Several issues had to be resolved before the comparisons could be 

made. 

The first issue resolved was how the weighting functions could be chosen. Initially the 

errors from the DAM and the MPM were added together using variable weighting 

functions. It was discovered that the optimisation procedure tends to give more weight to 

the MPM. This is because the MPM tends to give smaller error than the DAM since the 

DAM has more experimental data than the MPM. It was also discovered that in case of 

the use of variable weighting functions, the better the accuracy of the FRF data becomes, 

the more equal the weighting functions become. For the rest of this study it was assumed 

that the accuracy of the FRF was almost the same as that of the MPM. Because of this 

assumption it was decided that the DAM and MPM be given equal weights when the 

MCM was formulated. 

The assumption in the previous paragraph worked well, but for future research it is 

suggested that the rate of convergence be taken into account when the weighting 

functions are decided upon. In this study it was discovered that the DAM method shows 

a linear convergence rate, while the MPM. shows a quadratic rate of convergence. This 

may be achieved by computing the sensitivity of the error due to changes in physical 
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parameters for the MCM and the DAM. This will ensure that the results are not biased 

towards the MPM results. 

The second issue resolved was the problem of the FEM having more degrees of freedom 

than the measurements taken. Either the FEM had to be reduced or the measured co­

ordinates be expanded. The expansion and reduction methods were programmed. It was 

found that the time interval per iteration for the expansion method was longer than for the 

reduction method. Consequently, it was decided that one of the reduction methods would 

be chosen. In this study it was discovered that the SEREP gives the best accuracy, 

followed by IRS, then dynamic reduction which is followed by the static reduction. The 

SEREP method was found to be unstable and consequently, required careful scaling of 

design variables. Consequently, the IRS method was chosen for the rest of this study. 

For further research, it is suggested that the application of the SEREP method on an 

optimisation problem be investigated further, especially with regard to how the design 

variables must be scaled. 

As mentioned in the first paragraph, one of the criteria used to evaluate the effectiveness 

of the proposed method was its ability to give an updated model. The MAC and the 

COMAC are the methods that have been proposed before to compare the modes before 

and after updating. In this study an FRF AC factor was proposed to compare the 

measured FRFs with analytical ones. It was observed that this factor is a good criterion 

of comparing FRFs directly. Furthermore, it is suggested that this factor be used to 

update the FEM. It must also be taken into account that this factor works best when the 

measured data has a low level of noise. The FRF AC factor was applied selectively in the 

region with low noise. It was discovered that the presence of high noise level diminishes 

the significance of this factor as a comparison factor. When the FRF AC was compared 

with the COMAC and the MAC it was observed that it offered results that are on the 

same level of accuracy as the other two methods. 

The MCM experienced several problems. One of these problems was that it requires too 

many iterations and is therefore computationally expensive. It was also found that by 
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scaling the equations of motion in the MCM, the number of iterations may be reduced. In 

this study the equation of motion was non-dimensionalised by dividing the DAM 

formulation by the value of the error it gives at the initial design variables. The same was 

done to the MPM formulation. 

The second criterion used to evaluate the MCM was its ability to detect damage on the 

structures. The method of selective updating in conjunction with the MCM was used to 

detect damage. In selective updating the structure is divided into two components. Each 

component is assigned the same physical parameters. The component experiencing the 

most updating is further divided into smaller elements and the procedure is repeated until 

damage is located. The ability of the MCM in conjunction with selective updating 

method to detect damage was compared to the ability of the DAM and MPM. The MCM 

and DAM methods were generally better able to detect damage than the MPM. For 

further research, it is suggested that this method of selective updating be investigated. 

Furthermore, the nature of the damage introduced to the structure was a saw-cut. In real 

structures, the main causes of damage include fatigue. In fatigue damage, the presence of 

damage tends to increase the level of damping on the structure. Because of this, the 

proportional damping assumption might not hold any longer and consequently 

complicated modelling of damping may be required and may compromise the 

effectiveness of the MCM. 

The other issue pertaining to damage involves the location of damage. Damage was 

generally introduced only on one half of the structure. This was done purposefully to 

destroy the symmetry of the structure, thereby increasing the probability of the updating 

method detect the presence, location and the extent of damage. However, in reality the 

presence of damage might not necessarily destroy the symmetry of the structure. Because 

of this, the proposed updating method needs to be investigated for randomly introduced 

damage. 
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In the beginning of this study it was intended that the new method would detect the extent 

of damage. It was hoped that the extent in which physical parameters would change as a 

result of damage would correlate well to the extent of damage that occurred. It was 

discovered, however, that the issue of relating changes in physical parameters to the 

extent of damage was difficult since it requires highly accurate experimental data which 

could not be achieved in this study. It was observed that there does exist some 

relationship between the changes in modulus of elasticity and the amount of damage in 

the structure. Consequently, it is postulated that the relationship between the changes in 

modulus of elasticity and the amount of damage that has occurred is a function of the 

material property of the structure and requires further investigation. 

From the two criteria of evaluating the proposed method, it was discovered that the 

updated model which best approximates the measured parameters is not necessarily the 

FEM which predicts the position and extent of damage. In concluding this study, it is 

postulated that for the updated FEM to be unique, it must simultaneously approximate the 

measured parameters and detect the location of damage. For further research, it is 

suggested that the updating ability of the FEM be unified with the damage detection 

ability. 

Since this method is a multiple criterion method, other conditions may be added to the 

MCM equation so that the probability of obtaining a unique solution is increased. In this 

study it is concluded that the MCM does enhance the probability of getting a unique 

solution because it was better able to detect damage on the structure when compared with 

MPMandDAM. 
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Appendix A: The Expansion and Reduction Programs 

These programs are for investigating the expansion and reduction methods in 
order to determine which ones are appropriate for this type of work. 

The programs listed in this appendix apply the Guyan reduction, dynamic 
reduction, improved reduced system (IRS), the System Equivalent Reduction 
Expansion Process (SEREP), Expansion Using Mass and Stiffness Matrices and 
Expansion Using Modal Data. These methods were tested using the DAM, MP M and 
MCM 

% WRITTEN BY TSHILIDZI MAR WALA 
%24JANUARY 1997 
clear all; 
% initial values 
for i=l:10; 

E(i)=30.0; 
end; 
% DAMPING MA TRIX 
E(l l)=0; E(l2)=0; 

% LOWER BOUNDS 
for i=l:10; 

vlb(i)=60.0; 
end; 
vlb(l l)=0; vlb(l2)=0; 

% UPPER BOUNDS 
for i=l: 10; 

vub(i)=80.0; 
end; 
vub(I 1)=50; vub(l2)=50; 

options(!)=!; % DISPLAY TABULAR FORM 
options(l4)=4000; % MAXIMUM NUMBER OF ITERATIONS 
options(18)=1; % STEP SIZE 
options(3)=1e-2; % CONVERGENCE PARAMETER 

%THIS PART CALLS THE OPTIMIZATION ROUTINES WHICH HAVE IMPLEMENTED ALL THE 
%REDUCTION AND EXPANSION METHOD 
E=constr('fun _irs',E,options, vlb, vub ); 
% E=constr('fun_irs',E,options,vlb,vub); 
% E=constr('fun_guy',E,options,vlb,vub); % guyan reduction 
% E=constr('fun_dyn',E,options,vlb,vub); % dynamic reduction 
% E=constr('fun_egu',E,options,vlb,vub); % expansion based on guyan reduction 
% E=constr('fun_ser',E,options,vlb,vub); % serep method 
% E=constr('fun_sta',E,options,vlb,vub); % static reduction 
% E=constr('fun_ese',E,options,vlb,vub); % serep expansion 
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(a) Reduction Using Guyan Reduction
o/ofun_guy.m
function [ func,gJ=fun(E);
% load FRF
load frf;
dof=size(Ilxt);

dof_f=dof(2);

dof _ w=dof( 1 );
% LOAD COMPUTED MODES
load mod_gu_r;
% DEFINITION OF GEOMETRY
% Length (x) L [mJ

L=0.9;
% Width (y) b [mJ
b=0.0292;
% Thickness (z) h [mJ
h=0.0096;
% CONSIDER BEAM WITH 10 ELEMENTS
d=L/10;
Iz=(l/12)*b*h"'3;
Iy=(l/12)*h*b"'3;
Jx=(l /12)*b*h*(b"'2 + h"'2);

Area =b*h;
% CO-ORDINATES OF NODES
% node# unused X y z 
node=[ 10 0 0 0 0 

2 0 0 0 d 0 
3 0 0 0 2*d 0 
4 0 0 0 3*d 0 
5 0 0 0 4*d 0 
6 0 0 0 5*d 0 
7 0 0 0 6*d 0 
8 0 0 0 7*d 0 
9 0 0 0 8*d 0 

10 0 0 0 9*d 0 
11 0 0 0 I0*d 0 

12 0 0 0 0 
% USE BEAM ELEMENTS 

elt=[ Inf abs('beam 1 ') 
% n#l n#2 pl# ii# nr 0 

I 2 I 
2 3 2 
3 4 3 
4 5 4 
5 6 5 

6 7 6 
7 8 7 
8 9 8 
9 10 9 
10 11 10 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
OJ; 

12 0 
12 0 
12 0 
12 0 
12 0 
12 0 
12 0 
12 0 
12 0 
12 OJ; 

% MATERIAL PROPERTIES FOR ALUMINIUM 

91 

% Matid MatType E [N/m"'2] nu rho [kg/m"'3] 

pl=[ I 1 E( I)* I E8 0.35 2700 

2 E(2)* I E9 0.35 2700 

3 E(3)* I E9 0.35 2700 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



92 

4 E(4)*1E9 0.35 2700 
5 E(5)* I E9 0.35 2700 
6 E(6)* IE9 0.35 2700 
7 E(7)*1E9 0.35 2700 
8 E(8)* I E9 0.35 2700 
9 E(9)* IE9 0.35 2700 
10 E(IO)* IE9 0.35 2700]; 
% SECTION PROPERTIES 
% Secld SecType Jx [kgm"'2] Iz [kgm"'2] Iy [kgm"'2] A [m"'2] 
ii=[ I Jx Iy Iz Area]; 
% ASSEMBLE MASS AND STIFFNESS MA TRIX 
[M,K,mdof]=fe _ mk(node,elt,pl,il); 
% "ACTIVE" DEGREES OF FREEDOM CONSIDER y, z, Ty and Tz degrees of freedom 
% Node I is fixed in translation and rotation 
[adof,ind]=fe_c(mdof,(.02 .06]); 
mr=M(ind,ind);kr=K(ind,ind); 
[ adof,ind]=fe _ c(adof,[ I ],[],2); 
Ms=mr(ind,ind);Ks=kr(ind,ind); 
% COMPUTE MASS NORMALISED NORMAL MODES 
[ modeq,freq]=fe _ eig(Ms,Ks,[0],adof,adot); 
% CONDENSING THE DYNAMIC STIFFNESS MATRIX GUYAN STATIC REDUCTION 
master=[! 3 5 7 9 11 13 15 17 19]; 
slave=[2 4 6 8 IO 12 14 16 18 20]; 
% PARTITION STIFFNESS AND MASS MATRICES 
kmm=Ks(master,master); kms=Ks(master,slave); 
ksm=Ks(slave,master); kss=Ks(slave,slave); 
mmm=Ms(master,master); mms=Ms(master,slave); 
msm=Ms(slave,master); mss=Ms(slave,slave); 
% REARRANGE THE MASS AND STIFFNESS MATRICES 
Ms=[mmm mms;msm mss]; 
Ks=[kmm kms;ksm kss]; 
% COMPUTING THE T VECTOR 
dof=size(mmm); 
dof=dof(I ); 
identity=zeros(size(mmm)); 
for n= I :dof; 

identity(n,n)=l; 
end; 
Ts=[identity;-inv(kss)*ksm]; 
% REDUCED MASS AND STIFFNESS 
mrr=Ts'* Ms*Ts;krr=Ts'* Ks*Ts; 
%THIS PART OF THE PROGRAM COMPUTES THE ERROR USING MEASURED MODAL 
PROPERTIES 
dof=size(mode); dof_m=dof(2); 
for n=l :dof_m; 

e _rror=-(freqw(n). "'2 *mrr*mode( :,n)); 
error=e _rror+ (krr*mode( :,n)); 

end; 
func I =sqrt(sum(error."'2)); 
% DEFINING THE FORCE VECTOR 
F orce=zeros( dof _ f, I); 
Force(3)=1; 
% DAMPING FACTOR 
alfa=E(l l)/100; 
beta=E(l2)/l 00; 
for n= I :dof_ w; 

crr=j * ( alfa *mrr+beta *krr )*II w(n ); 
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er _ror= (-IIw(n)"2 *mrr+crr+krr)* Ilxf(n,: )'-Force; 
error(n)=sum( er _ror. "2); 

end; 
func2=sqrt(sum(error)); 
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% THIS PART OF THE PROGRAM ADDS THE ERROR 
func=func 1 +func2; 

(b) Using Dynamic Reduction 
¾fun_dyn 
function [func,g]=fun(E); 
load frf; 
dof=size(Ilxt); 
dof_f=dof(2); 
dof_ w=dof(l ); 
load modek; 
% DEFINITION OF GEOMETRY 
% Length (x) L [m] 
L=0.9; 
% Width (y) b [m] 
b=0.0292; 
% Thickness (z) h [m] 
h=0.0096; 
% CONSIDER BEAM WITH 10 ELEMENTS 
d=L/1 O; 
Iz=(l/12)*b*h"3; 
Iy=(l/12)*h*b"3; 
Jx=(l/12)*b*h*(b"2 + h"2); 
Area =b*h; 
% COORDINATES OF NODES 
% node# unused X y z 
node=[ 1 0 0 00 0 0 

2 0 0 0 d 0 0 
3 0 0 0 2*d 0 0 
4 0 0 0 3*d 0 0 
5 0 0 0 4*d 0 0 
6 0 0 0 5*d 0 0 
7 0 0 0 6*d 0 0 
8 0 0 0 7*d 0 0 
9 0 0 0 S*d 0 0 
10 0 0 0 9*d 0 0 
I I 0 0 0 IO*d 0 0 
12 0 0 0 0 O]; 

% USE BEAM ELEMENTS 
elt=[ Inf abs('beam I') 

% n#I n#2 pl# ii# nr 0 
1 2 1 12 0 
2 3 2 12 0 
3 3 3 12 0 
4 4 4 12 0 
5 6 5 12 0 
6 7 6 12 0 
7 8 7 12 0 
8 9 8 12 0 
9 JO 9 12 0 
10 11 10 12 O]; 
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% MATERIAL PROPERTIES FOR ALUMINIUM 
% Matid MatType E [N/m/\2] nu rho [kg/m/\3] 
pl=[ I 1 E(J)*JE8 0.35 2700 
2 I E(2)* I E9 0.35 2700 
3 I E(3)* I E9 0.35 2700 
4 E( 4)* 1 E9 0.35 2700 
5 E(5)* I E9 0.35 2700 
6 E(6)* 1 E9 0.35 2700 
7 E(7)* I E9 <U5 2700 
8 E(S)* I E9 0.35 2700 
9 E(9)* I E9 0.35 2700 
IO E( IO)* I E9 0.35 2700]; 
% SECTION PROPERTIES 
% Secid SecType Jx [kgm/\2] Iz [kgm/\2] Iy [kgm/\2] A [m/\2] 
ii=[ I I Jx Iy Iz Area]; 
% ASSEMBLE MASS AND STIFFNESS MATRIX 
[M,K,mdof]=fe _ mk(node,elt,pl,il); 
% "ACTIVE" DEGREES OF FREEDOM 
% Node I is fixed in translation and rotation 
% Consider y, z, Ty and Tz degrees of freedom 
[adof,ind]=fe_c(mdof,[.02 .06]); 
mr=M(ind,ind);kr=K(ind,ind); 
[ adof,ind]=fe _ c(adof,[ I ],[],2); 
Ms=mr(ind,ind);Ks=kr(ind,ind); 
% COMPUTE MASS NORMALISED NORMAL MODES 
[ modeq,freq]=fe _ eig(Ms,Ks, [OJ ,adof,adot); 
% CONDENSING THE DYNAMIC STIFFNESS MA TRIX 
% GUY AN DYNAMIC REDUCTION 
master=[! 3 5 7 9 11 13 15 17 19]; 
slave=[2 4 6 8 10 12 14 16 18 20]; 
% PARTITION STIFFNESS AND MASS MATRICES 
kmm=Ks(master,master); kms=Ks(master,slave); 
ksm=Ks(slave,master); kss=Ks(slave,slave ); 
mmm=Ms(master,master); mms=Ms(master,slave); 
msm=Ms(slave,master); mss=Ms(slave,slave); 
% REARRANGE THE MASS AND STIFFNESS MA TRICES 
Ms=[mmm mms;msm mss]; 
Ks=[kmm kms;ksm kss]; 
% COMPUTING THE T VECTOR 
dof=size(mmm); 
dof=dof(l ); 
identity=zeros(size(mmm)); 
for n= 1 :dof; 

identity(n,n)= 1; 
end; 
w0=2*pi*250; 
Ts=[identity;-inv(kss-w0/\2*mss)*(ksm-w0A2*msm)]; 
% REDUCED MASS AND STIFFNESS 
mrr=Ts'*Ms*Ts;krr=Ts'*Ks*Ts; 
% THIS PART OF THE PROGRAM COMPUTES THE ERROR BY USING MEASURED MODEAL 
PROPERTIES 
dof=size(mode ); 
dof_ m=dof(2); 
for n=l:dof_m; 

e _rror=-freqw(nY2 *mrr*mode(:,n); 
error=e_rror+(krr*mode(:,n); 

end; 
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func I =sqrt(sum(error. "2)); 
% THIS PART OF THE PROGRAM COMPUTES THE ERROR BY USING THE MEASURED FRF 
% DEFINING THE FORCE VECTOR 
Force=zeros(dof_f, l); 
Force(3)=1; 
% damping factor 
alfa=E(l l )/100; 
beta=E(l 2)/100; 
for n= l :dof_ w; 

crr=j *(alfa*mrr+beta*krr)* I lw(n); 
er _ror= (-llw(n)"2 *mrr+crr+krr)* llxf(n,: )'-Force; 
error(n)=sum( er _ror. "2); 

end; 
func2 =sqrt( sum( error)); 
% THIS PART OF THE PROGRAM ADDS THE ERROR 
func=func 1 +func2; 

(c) Using Improved Reduced System 
%fun irs 
function [func,g]=fun(E); 
load frf; 
dof=size(llxf); 
dof _f=dof(2); 
dof_ w=dof(I ); 
load modek; 
% DEFINITION OF GEOMETRY 
% Length (x) L [m] 
L=0.9; 
% Width (y) b [m] 
b=0.0292; 
% Thickness (z) h [m] 
h=0.0096; 
% CONSIDER BEAM WITH IO ELEMENTS 
d=L/10; 
Iz=( 1/ l 2)*b*h"3; 
Iy=(l/12)*h*b"3; 
Jx=( I /I 2)*b*h*(b"2 + h"2); 
Area =b*h; 
% COORDINATES OF NODES 
% node// unused X y z 
node=[ I 0 0 00 0 0 

2 0 0 0 d 0 
3 0 0 0 2*d 0 
4 0 0 0 3*d 0 
5 0 0 0 4*d 0 
6 0 0 0 5*d 0 
7 0 0 0 6*d 0 
8 0 0 0 7*d 0 
9 0 0 0 8*d 0 
10 0 0 0 9*d 0 
11 0 0 0 l0*d 0 
12 0 0 0 0 I 

% USE BEAM ELEMENTS 
elt=[ Inf abs('beam 1 ') 

% n#l n#2 pl# ii# nr 0 
I 2 l 1 12 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0]; 
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2 3 2 12 0 
3 4 3 12 0 
4 5 4 12 0 
5 6 5 12 0 
6 7 6 12 0 
7 8 7 12 0 
8 9 8 12 0 
9 JO 9 I 12 0 
IO 11 JO I 12 0]; 

% MATERIAL PROPERTIES FOR ALUMINIUM 
% Matld MatType E [N/m/\2] nu rho [kg/m/\3] 
pl=[ I I E(l)*JE8 0.35 2700 
2 I E(2)* I E9 0.35 2700 
3 E(3)* I E9 0.35 2700 
4 E(4)* IE9 0.35 2700 
5 E(5)* I E9 0.35 2700 
6 E(6)*1E9 0.35 2700 
7 E(7)* I E9 0.35 2700 
8 E(8)* I E9 0.35 2700 
9 E(9)* I E9 0.35 2700 
IO E(I0)*IE9 0.35 2700]; 
% SECTION PROPERTIES 
% Secid SecType Jx [kgm/\2] Iz [kgm/\2] Iy [kgm/\2] A [m/\2] 
ii=[ I I Jx Iy Iz Area]; 
% ASSEMBLE MASS AND STIFFNESS MA TRIX 
[M,K,mdof]=fe_mk(node,elt,pl,il); 
% "ACTIVE" DEGREES OF FREEDOM 
% NODE I IS FIXED IN TRANSLATION AND ROT A TION 
% Consider y, z, Ty and Tz degrees of freedom 
[adof,ind]=fe_c(mdof,[.02 .06]); 
mr=M(ind,ind);kr=K(ind,ind); 
[ adof,ind]=fe _ c(adof,[ I ],[],2); 
Ms=mr(ind,ind);Ks=kr(ind,ind); 
% COMPUTE MASS NORMALISED NORMAL MODES 
[ modeq,freq]=fe _ eig(Ms,Ks, [0] ,adof,adot); 
% CONDENSING THE DYNAMIC STIFFNESS MA TRIX 
% IMPROVED REDUCED SYSTEM 
master=[! 3 5 7 9 I I 13 15 17 19]; 
slave=[2 4 6 8 JO 12 14 16 18 20]; 
% PARTITION STIFFNESS AND MASS MATRICES 
kmm=Ks(master,master); 
kms=Ks(master,slave); 
ksm=Ks(slave,master); 
kss=Ks(slave,slave ); 
mmm=Ms(master,master); 
mms=Ms( master,slave ); 
msm=Ms(slave,master); 
mss=Ms(slave,slave ); 
% REARRANGE THE MASS AND STIFFNESS MA TRICES 
Ms=[mmm mms;msm mss]; 
Ks=[kmm kms;ksm kss]; 
% COMPUTING THE T VECTOR 
dof=size(mmm); 
dof=dof( I); 
identity=zeros( size(mmm) ); 
for n=l :dof; 

identity(n,n)= I; 
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end; 
Ts=[identity;-inv(kss )* (ksm)]; 
% REDUCED MASS AND STIFFNESS 
mrr=Ts'*Ms*Ts;krr=Ts'*Ks*Ts; 
s I =[zeros(size(kmm))];s2=[zeros(size(kms))]; 
s3=[ zeros( size(ksm))] ;s4=inv(kss ); 
S=[s1 s2;s3 s4]; 
Ti=Ts+S*Ms*Ts*inv(mrr)*krr; 
mrr=Ti'*Ms*Ti;krr=Ti'* Ks*Ti; 

97 

% THIS PART OF THE PROGRAM COMPUTES THE ERROR BY USING MEASURED %MODEAL 
PROPERTIES 
dof=size(mode); 
dof_ m=dof(2); 
for n=I :dof_m; 

e _ rror=-freqw(n)."2*mrr*mode( :,n); 
error=e_rror+krr*mode(:,n); 

end; 
func I =sqrt(sum(error."2)); 
% THIS PART OF THE PROGRAM COMPUTES THE ERROR BY USING THE %MEASURED FRF 
% DEFINING THE FORCE VECTOR 
Force=zeros(dof_f, I); 
Force(3)=1; 
% DAMPING FACTOR 
alfa=E( 11 )/ I 00; 
beta=E( 12)/100; 
for n= I :dof_ w; 

crr=j *( al fa* mrr+beta * krr)* I I w( n ); 
er _ror=(-1Iw(n)"2 *mrr+crr+krr)* !Ixf(n,: )'-Force; 
error(n)=sum( er _ror. "2); 

end; 
func2=sqrt(sum(error)); 
% This part of the program adds the error 
func=func I +func2; 

( d) System Equivalent Reduction Expansion Process (SEREP) 

%fun ser 
function [ func,g]=fun(E); 
load modek; 
load frf; 
dof=size(llxf); 
dof_ w=dof(l ); % number of frequency measured 
dof_f=dof(2); % number of FRF measured 
% DEFINITION OF GEOMETRY 
% Length (x) L [m] 
L=0.9; 
% Width (y) b [m] 
b=0.0292; 
% Thickness (z) h [m] 
h=0.0096; 
% CONSIDER BEAM WITH IO ELEMENTS 
d=L/10; 
Iz=(l/12)*b*h"3; 
Iy=(l/12)*h*b"3; 
Jx=(l/12)*b*h*(b"2 + h"2); 
Area =b*h; 
% COORDINATES OF NODES 
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% node# unused X y z 
node=[ I 0 0 0 0 0 0 

2 0 0 0 d 0 0 
3 0 0 0 2*d 0 0 
4 0 0 0 3*d 0 0 
5 0 0 0 4*d 0 0 
6 0 0 0 5*d 0 0 
7 0 0 0 6*d 0 0 
8 0 0 0 7*d 0 0 
9 0 0 0 8*d 0 0 
IO 0 0 0 9*d 0 0 
11 0 0 0 I0*d 0 0 
12 0 0 0 0 I 0]; 

% USE BEAM ELEMENTS 
elt=[ Inf abs('beam I') 

% n#l n#2 pl# ii# nr 0 
I 2 I I 12 0 
2 3 2 12 0 
3 4 3 12 0 
4 5 4 12 0 
5 6 5 12 0 
6 7 6 12 0 
7 8 7 12 0 
8 9 8 12 0 
9 10 9 I 12 0 
IO 11 10 1 12 0]; 

% MATERIAL PROPERTIES FOR ALUMINIUM 
% Matld MatType E [N/m/\2] nu rho [kg/m/\3] 
pl=[ I I E( I)* I ES 0.35 2700 
2 I E(2)* 1 E9 0.35 2700 
3 E(3)*IE9 0.35 2700 
4 E(4)*1E9 0.35 2700 
5 E(5)* IE9 0.35 2700 
6 E(6)* 1 E9 0.35 2700 
7 E(7)* I E9 0.35 2700 
8 E(8)* I E9 0.35 2700 
9 E(9)* IE9 0.35 2700 
10 E(I0)* IE9 0.35 2700]; 
% SECTION PROPERTIES 
% Secld SecType Jx [kgm/\2] Iz [kgm"2] Iy [kgm/\2] A [m/\2] 
ii=[ I I Jx Iy Iz Area]; 
% ASSEMBLE MASS AND STIFFNESS MATRIX 
[M,K,mdof]=fe _ mk( node,elt,pl,il); 
% "Active" degrees of freedom 
% Node I is fixed in translation and rotation 
% Consider y, z, Ty and Tz degrees of freedom 
[adof,ind]=fe_c(mdof,[.02 .06]); 
mr=M(ind,ind);kr=K(ind,ind); 
[ adof,ind]=fe _ c( adof, [ 1 ], [] ,2 ); 
Ms=mr(ind,ind);Ks=kr(ind,ind); 
% COMPUTE MASS NORMALISED NORMAL MODES 
[mod_ e,freq]=fe _ eig(Ms,Ks,[0],adof,adof); 
% CONDENSING THE DYNAMIC STIFFNESS MA TRIX 
% SEREP REDUCTION 
% DEFINE MASTER AND SLAVE COORDINATES 
master=[! 3 5 7 9 11 13 15 17 19]; 
slave=[2 4 6 8 IO 12 14 16 18 20]; 
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% PARTITION STIFFNESS AND MASS MATRICES 
kmm=Ks(master,master); 
kms=Ks(master,slave ); 
ksm=Ks(slave,master); 
kss=Ks(slave,slave ); 
mmm=Ms(master,master); 
mms=Ms( master,slave ); 
msm=Ms(slave,master); 
mss=Ms(slave,slave ); 
% REARRANGE MASS AND STIFFNESS MA TRICES 
Ms=[mmm mms;msm mss]; 
Ks=[kmm kms;ksm kss]; 
% SELECT MODES TO BE CONSIDERED 
mi= I :4; % number of modes measured 
mod_ mas=mod _ e(master,m i); 
mod_ sla=mod _ e(slave,mi); 
mode_r=[mod_mas;mod_sla]; 
% CALCULATE PSEUDO INVERSE 
A=mod _mas'*mod _ mas; 
p_inverse=inv(A)*mod_mas'; 
% FIND T TRANSFORMATION 
T=mode _r*p _inverse; 
% REDUCED MASS AND STIFFNESS 
mrr=T'*Ms*T;krr=T'*Ks*T; 
% USING MODE SHAPES 
dof=sizc(modc); 
dof_ m=dof(2); 
for n=I :dof_m; 

e_rror=-freqw(n).A2*mrr*mode(:,n); 
error=e_rror+krr*mode(:,n); 

end; 
func I =sqrt(sum(error./\2)); 
% THIS PART OF THE PROGRAM USES THE MEASURED FRF 
% DEFINING THE FORCE VECTOR 
Force=zeros(dof_f, I); 
Force(3 )= I ; 
% DEFINING THE DAMPING COEFFICIENTS 
alfa=E(l l)/100; 
beta=E( I 2)/100; 
for n=l :dof_w; 

err= j * ( al fa* mrr+beta * krr )*II w( n ); 
er _ror=-1 lw(n)A2 *mrr+crr+krr)* Ilxf(n,: )'-Force; 
error(n)=sum( er _ror. /\2); 

end; 
func2=sqrt(sum(error)); 
% THIS PART OF THE PROGRAM COMBINES THE TWO METHODS WITH 
% EQUAL WEIGHTING FUNCTIONS 
func=func I +func2; 
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(e) Expansion Using Mass and Stiffness Matrices 
%fun sta 
function [ func,gJ=fun(E); 
load frf; 
dof=size(IIxf); 
dof_ f=dof(2); 
dof_ w=dof( 1 ); 
load modek; 
% DEFINITION OF GEOMETRY 
% Length (x) L [mJ 
L=0.9; 
% Width (y) b [mJ 
b=0.0292; 
% Thickness (z) h [m] 
h=0.0096; 
% CONSIDER BEAM WITH 10 ELEMENTS 
d=L/10; 
lz=( 1 /I 2)*b*h/\3; 
ly=( I /12)* h *b/\3; 
Jx=(l/12)*b*h*(b/\2 + h/\2); 
Area =b*h; 
% COORDINATES OF NODES 
% node# unused X y 
node=[ 1 0 0 00 0 0 

2 0 0 0 d 0 0 
3 0 0 0 2*d 0 0 
4 0 0 0 3*d 0 0 
5 0 0 0 4*d 0 0 
6 0 0 0 5*d 0 0 
7 0 0 0 6*d 0 0 
8 0 0 0 7*d 0 0 
9 0 0 0 8*d 0 0 
IO 0 0 0 9*d 0 0 
11 0 0 0 IO*d 0 0 
12 0 0 0 0 1 OJ; 

% USE BEAM ELEMENTS 
elt=[ Inf abs('beam I') 

% n#l n#2 pl# ii# nr 0 
1 2 1 1 12 0 
2 3 2 1 12 0 
3 4 3 12 0 
4 5 4 12 0 
5 6 5 12 0 
6 7 6 12 0 
7 8 7 1 12 0 
8 9 8 1 12 0 
9 10 9 1 12 0 
IO 11 IO 1 12 OJ; 

z 

% MATERIAL PROPERTIES FOR ALUMINIUM 
% Matid MatType E [N/m/\2J nu rho [kg/m/\3J 
pl=[ 1 1 E(1)*1E8 0.35 2700 
2 1 E(2)* 1E9 0.35 2700 
3 1 E(3)* 1 E9 0.35 2700 
4 E(4)* IE9 0.35 2700 
5 E(5)* I E9 0.35 2700 
6 E(6)* 1 E9 0.35 2700 
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7 E(7)* 1 E9 0.35 
8 E(8)*1E9 0.35 
9 E(9)*1E9 0.35 
10 E{l0)*1E9 0.35 
% SECTION PROPERTIES 

2700 
2700 
2700 
2700]; 

IOI 

% Secld SecType Jx [kgm/\2] Iz [kgm/\2] Iy [kgm/\2] A [mA2] 
ii=[ 1 1 Jx Iy Iz Area]; 
% ASSEMBLE MASS AND STIFFNESS MA TRIX 
[M,K,mdof]=fe _ mk(node,elt,pl,il); 
% "Active" degrees of freedom 
% Node 1 is fixed in translation and rotation. Consider y, z, Ty and Tz degrees of freedom 
[adof,ind]=fe _ c(mdof,[.02 .06]); 
mr= M(ind,ind);kr= K( ind, ind); 
[adof,ind]=fe_ c(adof,[I ],[],2); 
Ms=mr(ind,ind);Ks=kr(ind,ind); 
% COMPUTE MASS NORMALISED NORMAL MODES 
[modeq,freq]=fe_eig(Ms,Ks,[0],adof,adof); 
% EXPANDING USING MASS AND STIFFNESS MATRIX 
master=[! 3 5 7 9 11 13 15 17 19]; 
slave=[2 4 6 8 10 12 14 16 18 20]; 
% PARTITION STIFFNESS AND MASS MATRICES 
kmm=Ks(master,master); 
kms=Ks(master,slave ); 
ksm=Ks(slave,master); 
kss=Ks(slave,slave ); 
mmm=Ms(master,master); 
mms=Ms(master,slave); 
msm=Ms(slave,master); 
mss=Ms(slave,slave ); 
Ms=[mmm mms;msm mss];Ks=[kmm kms;ksm kss]; 
% COMPUTING THE MODES AT UNMEASURED COORDINATES 
dof=size(mode); 
dof=dof(2); 
for n= I :dof; 
unmeasured_ mode( :,n )=-inv( freqw( n ). /\2 * mss+kss )*( freqw( n ). /\2 *msm+ksm )* mode( :,n ); 
end; 
mode=[ mode;unmeasured _mode]; 
% THIS PART OF THE PROGRAM COMPUTES THE ERROR BY USING MEASURED %MODAL 
PROPERTIES 
dof=size(mode); 
dof=dof(2); 
for n= I :dof; 

e _rror=-freq( n )/\2 *Ms* mode(: ,n ); 
error=e_rror+ Ks*mode(:,n); 

end; 
func I =sqrt(sum(crror./\2)); 
% THIS PART OF THE PROGRAM COMPUTES THE ERROR BY USING THE %MEASURED FRF 
% DEFINING THE FORCE VECTOR 
Force=zeros(20, I); 
Force(3 )= 1 ; 
% DAMPING FACTOR 
alfa=E(l l)/100; 
beta=E{l2)/100; 
% EXPANDING THE MEASURED FRF 
dof=size(Ilxf); 
dof=dof{I ); 
for n= 1 :dof; 
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unmeasured_FRF(:,n)=-inv(-Ilw(n)."2*mss+kss)*(-Ilw(n)."2*msm+ksm)*Ilxf(n,:)'; 
end; 
Ilxf=[Ilxf ;unmeasured_FRF']; 
for n=l :dof_ w; 

crr=j*(alfa*Ms+beta*Ks)*llw(n); 
er _ror=-1 Iw(n). "2* Ms+crr+Ks)* I lxf(n,:)'-Forcc; 
error(n)=sum( er _ror."2); 

end; 
func2=sqrt( sum( error)); 
% THIS PART OF THE PROGRAM ADDS THE ERROR 
func=func I +func2; 

(t) Expansion Using Modal Data 
%fun ese 
function [ func,g]=fun(E); 
load frf; 
dof=size(Ilxf); 
dof_f=dot{2); 
dof_ w=dof( 1 ); 
load modek; 
% DEFINITION OF GEOMETRY 
% Length (x) L [m] 
L=0.9; 
% Width (y) b [m] 
b=0.0292; 
% Thickness (z) h [m] 
h=0.0096; 
% CONSIDER BEAM WITH 10 ELEMENTS 
d=L/10; 
Iz=( 1 /12)*b*h"3; 
Iy=( 1/12)*h*b"3; 
Jx=(l/12)*b*h*(b"2 + h"2); 
Area =b*h; 
% COO RD INA TES OF NODES 
% node# unused X y z 
node=[ 1 0 0 0 0 0 0 

2 0 0 0 d 0 0 
3 0 0 0 2*d 0 0 
4 0 0 0 3*d 0 0 
5 0 0 0 4*d 0 0 
6 0 0 0 S*d 0 0 
7 0 0 0 6*d 0 0 
8 0 0 0 7*d 0 0 
9 0 0 0 8*d 0 0 
10 0 0 0 9*d 0 0 
I 1 0 0 0 10*d 0 0 
12 0 0 0 0 1 O]; 

% USE BEAM ELEMENTS 
elt=[ Inf abs('beam I') 

% n#l n#2 pl# ii# nr 0 
1 2 I 1 12 0 
2 3 2 12 0 
3 4 3 12 0 
4 5 4 12 0 
5 6 5 12 0 
6 7 6 12 0 
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7 8 7 12 0 
8 9 8 12 0 
9 10 9 1 12 0 
1011101 120]; 

% MATERIAL PROPERTIES FOR ALUMINIUM 
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% Matld MatType E [N/m"2] nu rho [kg/m"3] 
pl=[ I I E(l)*1E8 0.35 2700 
2 l E(2)* 1E9 0.35 2700 
3 E(3)*1E9 0.35 2700 
4 E(4)*1E9 0.35 2700 
5 E(5)* 1E9 0.35 2700 
6 E(6)* I E9 0.35 2700 
7 E(7)* I E9 0.35 2700 
8 E(8)*1E9 0.35 2700 
9 E(9)* 1 E9 0.35 2700 
10 E(]0)*1E9 0.35 2700]; 
% SECTION PROPERTIES 
% Secld SecType Jx [kgm"2] Iz [kgm"2] Iy [kgm"2] A [m"2] 
ii=[ I I Jx Iy Iz Area]; 
% ASSEMBLE MASS AND STIFFNESS MATRIX 
[M,K,mdot]=fe _ mk(node,elt,pl, ii); 
% "Active" degrees of freedom 
% Node I is fixed in translation and rotation 
% Consider y, z, Ty and Tz degrees of freedom 
[adof,ind]=fe _ c(mdof,[.02 .06]); 
mr=M(ind,ind);kr=K(ind,ind); 
[adof,ind]=fe _ c(adof,[ 1 ],[],2); 
Ms=mr(ind,ind);Ks=kr(ind,ind); 
% COMPUTE MASS NORMALISED NORMAL MODES 
[ modeq,freq]=fe _ eig(Ms,Ks, [O] ,adof,adof); 
% EXPANSION USING MODAL DATA 
master=[! 3 5 7 9 I I 13 15 17 19]; 
slave=[2 4 6 8 10 12 14 16 18 20]; 
% PARTITION STIFFNESS AND MASS MATRICES 
kmm=Ks(master,master); 
kms= Ks(master,slave ); 
ksm=Ks(slave,master); 
kss=Ks(slave,slave ); 
mmm=Ms(master,master); 
111111s Ms(maslcr,slavc); 
msm=Ms(slave,master); 
mss=Ms(slave,slave ); 
Ms=[mmm mms;msm mss];Ks=[kmm kms;ksm kss]; 
% THIS METHOD IS THE EXPANSION VERSION OF SEREP 
% ANALYTICAL MODE AT MEASURED AND UNMEASURED CO ORDINATES 
modeq_ m=modeq(master, 1 :4); 
modeq_s=modeq(slave, 1 :4); 
% PSEUDO INVERSE 
p _ modeq=inv(modeq_ m'*modeq_ m)*modeq_ m'; 
T=p _ modeq*modeq_ m; 
mode_un=modeq_s*T; 
mode=[ mode;full(mode _ un)]; 
%THIS PART COMPUTES THE ERROR USING MEASURED MODAL PROPERTIES 
dof=size(mode); 
dof=dof(2); 
for n= l :dof; 

e_rror=- freq(n)"2*Ms*mode(:,n); 
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error=e_rror+Ks*mode(:,n); 
end; 
func=sqrt( sum( error. /\2) ); 
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% THIS PART OF THE PROGRAM COMPUTES THE ERROR BY USING THE %MEASURED FRF 
% DEFINING THE FORCE VECTOR 
% Force=zeros(20, I); 
% Force(3 )= I ; 
% DAMPING FACTOR 
alfa=E(I 1)/100; 
beta=E(l 2)/100; 
% EXPANDING THE MEASURED FRF 
dof=size(Ilxf); 
dof=dof(l); 
for n=I :dof; 

unmeasured _FRF( :,n)=-inv(-Ilw(n)*mss+kss)*(-Ilw(n)*msm+ksm)* Ilxf(n,:)'; 
end; 
IIxf=[IIxf unmeasured_ FRF']; 
for n=l :dof_w; 

crr=j*(alfa*Ms+beta*Ks)*Ilw(n); 
er _ror=(- IIw(n)A2 *Ms+crr+Ks)* Ilxf(n,: )'-Force; 
error(n)=sum( er _ror. /\2); 

end; 
func2=sqrt(sum( error)); 
% THIS PART OF THE PROGRAM ADDS THE ERROR 
func=func I +func2; 
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Appendix B: The Expansion of Measured FRFs 

Expansion using Mass and Stiffness Matrices 

This method is the inverse of the Guyan reduction method. Suppose mm and Hm are the 

frequencies and their corresponding frequency response functions (FRF's). Then the 

mass and the stiffness matrices from the finite element analysis may be partitioned into 

measured and unmeasured co-ordinates. The equation of motion may then be written as 

follows: 

where H5 represents the FRF's at the slave or the unmeasured co-ordinates. By 

rearranging the lower part of the matrix equation produces a solution for the unknown 

part of the measured mode shape vector. Thus 

(b.2) 

Other estimates of the unmeasured degrees of freedom may be obtained by using the 

upper part of equation b.1. This calculation will involve the pseudo inverse; using the 

upper part is satisfactory if the number of measured degrees of freedom exceeds the 

number of unmeasured degrees of freedom 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



106 

Appendix C: Programs used for the examples 

In this appendix the IRS is chosen in the implementation of the DAM, MP M and MCM 
The programs are written to test the MCM, DAM, and MP Mon the three examples. 

(c.1) Example 1 (Freely suspended beam) 

(C.1.1) This Program Uses Measured FRFs And Modal Properties 

This program calls program funa _ bim which is listed in section c.1.2. 

% Written by Tshilidzi Marwala 
% 24 March 1997 
clear all; 
for n=l:14; 

E(n)=700; % initial design 
end; 
% Bounds 
forn=l:14; 

vlb(n)=300; % lower bounds 
end; 
vlb(l3)=0; 
vlb(l4)=0; 
forn=l:14; 

vub(n)=800; % upper bounds 
end; 
vlb(l3)=0; 
vlb(l4)=0; 
options( I)= I; 
options(2)=0. l; % accuracy of the design 
options(3)=0.0000 I;% accuracy of the objective functions 
options(l 4 )= I 00000; % maximum number of iterations 
%OPTIMISA TION ROUTINE IMPLEMENTING THE DAM, MPM and MCM 
E=constr('funa _ bim',E,options, vlb, vub ); 

(C.1.2) Programfuna_bim 

%funa bim 
function [func,g]=fun(E); 
load f_dame3; 
Ilw=Ilw; 
dof=size(Ilxe ); 
dof_f=dof(2); 
dof_ w=dof(l ); 
% DEFINITION OF GEOMETRY 
% Length (x) L [m] 
L=l.0; 
% Width (y) b [m] 
b=0.0254; 
% Thickness (z) h [m] 
h=0.0134; 
% CONSIDER BEAM WITH IO ELEMENTS 
Iz=(l /I 2)*b*h"3; 

Adjust Las required 

Adjust b as required 

Adjust h as required 

% See Meriam & Kraige p706 
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Iy=( l/12)*h*b/\3; 
Jx=(l/12)*b*h*(b/\2 + h/\2); 
Area =b*h; 
% COORDINATES OF NODES 
% node# unused x y z 
node=[ I O O O O O 0 

2 0 0 0 0.087 0 0 
3 0 0 0 0.177 0 0 
4 0 0 0 0.26 0 0 
5 0 0 0 
6 0 0 0 
7 0 0 0 
8 0 0 0 
9 0 0 0 
10 0 0 0 
I I O O 0 
12 0 0 0 
13 0 0 0 
14 0 0 0 

% USE BEAM ELE 
clt=f Inf abs('bcam I') 

% n#l n#2 pl# ii# nr 0 
1 2 I I 14 0 
2 3 2 14 0 
3 4 3 14 0 
4 5 4 14 0 
5 6 5 14 0 
6 7 6 14 0 
7 8 7 14 0 
8 9 8 14 0 
9 10 9 14 0 
10 11 10 I 14 0 
11 12 11 I 14 0 
12 13 12 I 14 0]; 

0.337 0 0 
0.42 0 0 
0.504 0 0 
0.586 0 0 
0.67 0 0 
0.752 0 0 
0.835 0 0 
0.917 0 0 
1.0 0 0 
0 I OJ; 
MENTS 

% MATERIAL PROPERTIES FOR ALUMINIUM 
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% Matld MatType E (N/m/\2] nu rho (kg/m/\3] 
pl=( I I E(l)*le8 0.35 2700 
2 I E(2)* 1 e8 0.35 2700 
3 E(3)* I e8 0.35 2700 
4 E(4)* I e8 0.35 2700 
5 E(5)* I e8 0.35 2700 
6 E(6)* le8 0.35 2700 
7 E(7)* I e8 0.35 2700 
8 E(8)* I e8 0.35 2700 
9 E(9)* I e8 0.35 2700 
10 E(I0)*le8 0.35 2700 
11 E(I I)* I e8 0.35 2700 
12 E(l2)* I e8 0.35 2700]; 
% SECTION PROPERTIES 
% Secld SecType Jx [kgm/\2] Iz [kgm/\2] Iy [kgm/\2] A [m/\2] 

ii=[ 1 I Jx Iy Iz Area]; 
% ASSEMBLE MASS AND STIFFNESS MA TRIX 
[ m,k,mdot]=fe _mk( node,e lt,pl,i I); 
% "Active" degrees of freedom 
% Node I is fixed in translation and rotation 
% Consider x, y, Tx and Ty degrees of freedom 
[ adof,ind]=fe _ c(mdof,[.02 .06]); 
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% COMPUTE MASS NORMALISED NORMAL MODES 
[ mode,freq]=fe _ eig(m,k,[0],mdof,adof); 
master=[3 5 7 9 11 13 15 17 19 21 23]; 
slave=[l 246810121416182022242526]; 
Ks=k(ind,ind);Ms=m(ind,ind); 
% PARTITION STIFFNESS AND MASS MATRICES 
kmm=Ks(master,master); 
kms=Ks(master,slave ); 
ksm= Ks( slave,master ); 
kss=Ks(slave,slave ); 
mmm=Ms(master,master); 
mms=Ms( master,slave ); 
msm=Ms(slave,master); 
mss=Ms(slave,slave ); 
% REARRANGE THE MASS AND STIFFNESS MA TRICES 
Ms=[mmm mms;msm mss]; 
Ks=[kmm kms;ksm kss]; 
% COMPUTING THE T VECTOR 
dof=size(mmm); 
dof=dof( 1 ); 
identity=zeros(size(mmm)); 
for n=l :dof; 

identity(n,n)= I; 
end; 
Ts=[identity;-in v(kss )* (ksm)]; 
% REDUCED MASS AND STIFFNESS 
mrr=Ts'*Ms*Ts;krr=Ts'*Ks*Ts; 
s 1 =[zeros(size(kmm))] ;s2=[ zeros(size(kms ))]; 
s3=[ zeros(size(ksm))] ;s4=inv(kss ); 
S=[sl s2;s3 s4]; 
Ti=Ts+S*Ms*Ts*inv(mrr)*krr; 
mrr=Ti'*Ms*Ti;krr=Ti'*Ks*Ti; 
dof_f=size(llxe); 
dof_ w=dof_f(I ); 
dof=dof_f(2); 
ZERO=zeros( dof, I); 
ZERO(5)=1; 
alfa=E(l 3)/1 000;beta=E(I 4)/1000; 
alfa=0;beta=0; 
for n=I :dof_w; 

end; 

crr=j *(alfa*mrr+beta *krr)* !Iw(n); 
er _ror I =real(-IIw(n). "2 *mrr+crr+krr)* Ilxe(n,:)'+ZERO; 
error(n)=sum((abs( er _ror I)). "2); 

func=sqrt(sum(error))/60.2983; % the function was normalised by using sqrt(sum(error(at initial design))) 
% func=0; 
% USING MODAL APPROACH 
% COMPUTE MASS NORMALISED NORMAL MODES 
[ mode I ,freq 1 ]=fe _ eig(mrr,krr); 
mode I =mode I (:,3:5); 
load m_dame3; 
mode=fe _ norm(mode,mrr); 
for rFI :3; 

error I (n)=mode I ( :,n)'*(-freqw(n). "2 *mrr+krr)*mode(:,n); 
end; 
func=sqrt(sum( error I ."2))/697976 t rune; % the function was normalised by using 
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(C.1.3) Program For Identifying The Measured Modes 
% Tshilidzi Marwala 
% 15 March 1997 
clear all; 
% THIS FUNCTION TAKES THE MEASURED FRF'S AND CONVERT THEM INTO 
% MODE SHAPES AND NATURAL FREQUENCIES AND THEN SA YES THEM 
% LOAD IIW, IIXF 
load c:\finalt\f_dame3; 
Ilxf=Ilxe; 
% DEFINE OPTIONS 
IDopt=[3 0 22 I size(Ilxf,l) 1 IO IO 0 0 I 3]; 
iigui 
idcom 
% cps=output shape matrix (describing sensors p 1-53) 
% pbs=input shape matrix (Describing actuators) 
% Note error p2-9 l 
[ freqw ,ga,pbs,cps ]=res2nor(l I res, I I po, I Dopt) 
% DEFINITION OF GEOMETRY 
% Lengte (x) L [m] 
L=I.0; 
% DIVIDE THE BEAM INTO IO ELEMENTS 
d=L/12; 
% COORDINATES OF NODES 
% node# unused x y z 
node=[ 1 0 0 0 0 0 0 

2 0 0 0 0.087 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0 
6 0 0 0 
7 0 0 0 
8 0 0 0 
9 0 0 0 

0.177 0 0 
0.26 0 0 
0.337 0 0 
0.42 0 0 
0.504 0 0 
0.586 0 0 
0.67 0 0 

10 0 0 0 0.752 0 0 
1 I 0 0 0 0.835 0 0 
12 0 0 0 0.917 0 0 
13 0 0 0 1.0 0 0 
14 0 0 0 0 I 0]; 

mdof=[2.02 3.02 4.02 5.02 6.02 7.02 8.02 9.02 10.02 I 1.02 12.02]'; 
figure(2) 
LDraw(l, 1 )=[IO]; 
LDraw(l,82+[1:LDraw(l)])=[2 3 4 5 6 7 8 9 IO 11]; 
mode=[cps]; 
opt=[2 2 40 0 0 I I] 
feplot( node,LDraw ,mode,mdof,opt) 
fecom NodeText 
f=freqw/(2*pi) 
save c:\fina 1 t\m _ dame3 mode freqw 

(C.1.4) Implementation of The Comparison Methods 
¾MAC.M 
% Tshilidzi Marwala 
% 13 March 1997 
% This program takes 2 FRF's compute modes compare using MAC and COMAC 
% as well as COFRF 
clear all; 
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% LOAD A PROCEDURE THAT CALCULATES THE MODES 
load f_dame2; 
IIxf=IIxe; 
get_mode; 
model=mode; 
freqw I =freqw; 
save c:\final t\modekl freqwl mode 1; 

clear all; 
% load the second set of FRF, compute modes and save them 
load frfc; % Original FRF which were used for updating 
llxf=Ilxh; 
get_mode; 
mode2=mode; 
freqw2=freqw; 
save c:\final t\modek2 freqw2 mode2; 
clear all 
load uf_dame02; 
IIxf=IIxe; 
get_mode; 
mode3=mode; 
freqw3=freqw; 
save c:\fina I f\modek3 frcqw3 mode3; 

clear all; 
load modek I; 
load modek2; 
load modek3; 
% COMPUTING THE "MAC" AND THE COMAC 
MACI=ii_mac(model,mode2); 
MAC=ii_ mac(mode I ,mode2,'plot'); 
CO MAC I =ii_ comac(mode l ,mode2); 
% COMPUTING THE "MAC" AND THE "COMAC" 
MAC2=ii_mac(model,mode3); 
MAC=ii_mac(mode l ,mode2,'plot'); 
COMAC2=ii_comac(model,mode3); 

% PRODUCT OF "CO MAC" 
bl=prod(COMACl) 
b2=prod(COMAC2) 
% REDUCING THE "MAC" 
dof=size(MAC I); 
mac=zeros( dot); 
dof=dof( I); 
for i=l :dof; 

mac(i,i)= 1; 
end; 
a=MAC I-mac; 
a=a/'2; 
al=sum(sum(a)) % The mac based scalar factor before updating 
% REDUCING THE "MAC" 
dof=size(MAC2); 
mac=zeros( dot); 
dof=dof( I); 
for i=I :dof; 

mac(i,i)=I; 
end; 
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a=MAC2-mac; 
a=a."2; 
a2=sum(sum(a)) % The mac based scalar factor after updating 
% COMP ARI SON OF THE FRF'S 
load uf_dame02; 
IIxf=IIxe; 
load frfc; 
load f_dame2; 
nume=sum( abs(IIxe) ); 
nume=sum(nume ); 
deno=sum(abs(IIxh)); 
deno=sum( deno ); 
COFRFl=nume*deno/(deno*deno) % before updating 
deno=sum( abs(Ilxt) ); 
deno=sum( deno ); 
COFRF2=nume*deno/(deno*deno) % after updating 
[freqwl freqw2 freqw3] 

(C.1.5) The Program Used for Downloading the Data 
% BEAM.M 
% Tshilidzi Marwala 20 March 1997 
clear all; 
% Definition of geometry 
% Length (x) L [m] 
L=l.0; 
% Width (y) b [m] 
b=0.0254; 
% Thickness (z) h [m] 
h=0.0134; 
% CONSIDER BEAM WITH 10 ELEMENTS 
Iz=(l/12)*b*h"3; 
Iy=(l/12)*h*b"3; 
Jx=(I/12)*b*h*(b"2 + h"2); 
Area =b*h; 
% COORDINATES OF NODES 
% node# unused X y z 
node=[ I 0 0 0 0 0 0 

2 0 0 0 0.087 0 
3 0 0 0 0.177 0 
4 0 0 0 0.26 0 
5 0 0 0 0.337 0 
6 0 0 0 0.42 0 
7 0 0 0 0.504 0 
8 0 0 0 0.586 0 
9 0 0 0 0.67 0 
IO 0 0 0 0.752 0 
11 0 0 0 0.835 0 
12 0 0 0 0.917 0 
13 0 0 0 1.0 0 
14 0 0 0 0 

% USE BEAM ELEMENTS 
elt=[ Inf abs('beam I') 

% n#I n#2 pl# ii# nr 0 

1 2 1 1 14 0 

2 3 14 0 
3 4 14 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
O]; 

Adjust L as required 

Adjust bas required 

Adjust h as required 

% See Meriam & Kraige p706 
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4 5 14 0 
5 6 14 0 
6 7 14 0 
7 8 14 0 
8 9 I 14 0 
9 IO I 14 0 
10 11 14 0 
11 12 14 0 
12 13 14 0]; 

% MATERIAL PROPERTIES FOR ALUMINIUM 
%, Matld MatTypc E [N/111"2] 
pl=[ I I 7.0e!0 0.35 
% SECTION PROPERTIES 

1rn rho lkg/111"3] 
2700]; 

'½, Sccld SccTypc .Ix lkgm"2] Iz lkgm"2] Iy lkgm"2] /\. [m"2J 
ii=[ I I Jx ly lz Area]; 
% ASSEMBLE MASS AND STIFFNESS MA TRIX 
[ 111,k,mdof]=fe _mk(nodc,elt,pl, ii); 
% "Active" degrees of freedom 
% Consider x, y, Tx and Ty degrees of freedom 
[adof,ind]=fe_c(mdof,(.02 .06]); 
% COMPUTE MASS NORMALISED NORMAL MODES 
[ mode,freq]=fe _ eig(m,k,[0],mdof,adot); 
% LOADING EXPERIMENT AL DAT A 
load t002.tra; 
a I =t002(5:20 I, I); 
Ilw=t002(5:201,2); 
load t002.trb; 
al 1 =t002(5:20 I, I); 
FRF2=al. *exp(i*a 11 *pi/180); 
load t003.tra; 
a I =t003(5:20 I, I); 
load t003.trb; 
al l=t003(5:201,I); 
FRF3=al.*exp(i*al I *pi/180); 
load t004.tra; 
al =t004(5:201, I); 
load t004.trb; 
al l=t004(5:201,l); 
FRF4=al. *exp(i*al I *pi/180); 

load t005.tra; 
al =t005(5:201, 1 ); 
load t005.trb; 
al 1=t005(5:201, I); 
FRF5=al. *exp(i*al 1 *pi/I 80); 

load t006.tra; 
al =t006(5:20 I, I); 
load t006.trb; 
al !=t006(5:201,I); 
FRF6=al. *exp(i*a 11 *pi/180); 

load t007. tra; 
al =t007(5:20 I, I); 
load t007.trb; 
al l=t007(5:201,l); 
FRF7=al.*exp(i*al I *pi/180); 
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load t008.tra; 
al =t008(5:20 I, I); 
load t008.trb; 
al I=t008(5:201,l); 
FRF8=al. *exp(i*al I *pi/180); 

load t009.tra; 
al =t009(5:201, I); 
load t009.trb; 
al I =t009(5:201, 1); 
FRF9=al .*exp(i*al I *pi/180); 

load t0 10.tra; 
al =t0 10(5:20 I, I); 
load tOI0.trb; 
al l=t010(5:201,l); 
FRF IO=a I. *exp(i*a 11 *pi/180); 

load t00 l.tra; 
a I =t00 I (5:201, I); 
load t00 I.trb; 
al l=t001(5:201,l); 
FRFl=al.*exp(i*al I *pi/180); 

load t0 1 I.tra; 
al=tOI !(5:201,l); 
load t0 11.trb; 
al I=tOI 1(5:201,1); 
FRFI l=al.*exp(i*al I *pi/180); 

llw=2*pi*llw; 
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FRF _ I =FRFl./(-1Iw./\2);FRF _2=FRF2./(-llw./\2);FRF _3=FRF3./(-1Iw. /\2); 
FRF _ 4=FRF4./(-IIw./\2);FRF _5=FRF5./(-Ilw./\2);FRF _6=FRF6./(-Ilw./\2); 
FRF _7=FRF7./(-Ilw./\2);FRF _8=FRF8./(-Ilw./\2);FRF _9=FRF9./(-llw./\2); 
FRF _IO=FRFI0./(-Ilw./\2);FRF _l l=FRFI 1./(-Ilw./\2); 
IIxe=[FRF _I FRF _2 FRF _3 FRF _ 4 FRF _5 FRF _6 FRF _7 FRF _8 FRF _9 FRF _10 FRF _11]; 
% INPUT/OUTPUT MA TRIX 
b=fe_c(mdof,[6.08])'; 
cd=fe_c(mdof,[2.02 3.02 4.02 5.02 6.02 7.02 8.02 9.02 10.02 I 1.02 12.02]); 
pb=modc'*b; % actuator 
cp=cd*mode; % mode shapes from sensors 
Ilxf=nor2xf(freq,0.0l,pb,cp,llw); % FE normal 2 complex data file 
save e:\final\f dame02 llw llxe 
llw=(llw/2/pi); 
% PLOTTING THE FRF'S TOGETHER 
IDopt = [3 0 22 I size(llxf, I) I 9 I 0 0 0 I 7]; 
iigui 
iicom('IlxeOn'); % commode('iicom','IlxeOn'); 
if exist('legend')==2 legend('Toolbox','Alternatief);iimouse; end 

(C.2) Example 2: Freely Suspended Beam With Holes 

(C.2.l)Program Used For Example 2 
% This program takes the measured FRF and use them to update 
% the FEA 
% Written by Tshilidzi Marwala 
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% 1 April 1997 
clear all; 
for n=l: 11; 

E(n)=700; 
end; 

% initial design 

for n= I: I I; 
vlb(n)=600; 

end; 
% upper bounds 

forn=l:I I; 
vub(n)=720; % upper bounds 

end; 
options( I)= I ; 
options(2)= 1; 
options(3)= I e-2; 
options( 14 )= 100000; 
%OPTIMISA TION ROUTINE IN SECTION C.22 
E=constr('funa _ bim',E,options, vlb, vub ); 

(C.2.2) Program funa_bim 
function [func,g]=fun(E); 
load f_dame2; 
!Ixf=!Ixe; 
% DEFINITION OF GEOMETRY 
% Length (x) L [m] 
L=l.l; 
% Width (y) b [m] 
b=0.0292; 
% Thickness (z) h [m] 
h=0.0096; 
% CONSIDER BEAM WITH 11 ELEMENTS 
d=L/11; 
Iz=(l/l 2)*b*h"3; 
Iy=(l/12)*h*b"3; 
Jx=(l/12)*b*h*(b"2 + h"2); 
Area =b*h; 
% COORDINATES OF NODES 
% node# unused X y z 

node=[ I 0 0 0 0 0 0 
2 0 0 0 d 0 
3 0 0 0 2*d 0 
4 0 0 0 3*d 0 
5 0 0 0 4*d 0 
6 0 0 0 5*d 0 
7 0 0 0 6*d 0 
8 0 0 0 7*d 0 
9 0 0 0 8*d 0 
10 0 0 0 9*d 0 
11 0 0 0 l0*d 0 
12 0 0 0 11 *d 0 
13 0 0 0 0 I 

% USE BEAM ELEMENTS 
elt=[ Inf abs('beam I') 

% n#I n#2 pl# ii# nr 0 
I 2 I I 13 0 
2 3 2 13 0 
3 4 3 13 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

O]; 
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Adjust L as required 

Adjust b as required 

Adjust h as required 

% See Meriam & Kraige p706 
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4 5 4 13 0 
5 6 5 13 0 
6 7 6 13 0 
7 8 7 13 0 
8 9 8 13 0 
9 10 9 13 0 
10 I I 10 I 13 0 
II 12 11 I 13 0]; 

% MATERIAL PROPERTIES FOR ALUMINIUM 

I 15 

% Matld MatType E [N/m/\2] nu rho [kg/m/\3] 
pl=[ I I E(I )* I e8 0.35 2700 
2 I E(2)* I e8 0.35 2700 
3 E(3)*1e8 0.35 2700 
4 E(4)*1e8 0.35 2700 
5 E(5)* I e8 0.35 2700 
6 E(6)* I e8 0.35 2700 
7 E(7)*1e8 0.35 2700 
8 E(8)* I e8 0.35 2700 
9 E(9)* le8 0.35 2700 
10 E(l 0)* I e8 0.35 2700 
11 E( 11 )* I e8 0.35 2700]; 
% SECTION PROPERTIES 
% Secld SecType Jx [kgm/\2] Iz [kgm/\2] Iy [kgm/\2] A [m/\2] 
ii=[ 1 I Jx Iy Jz Area]; 
% ASSEMBLE MASS AND STIFFNESS MA TRIX 
[ m,k,mdot]=fe _ mk( node,elt,pl,i I); 
% "Active" degrees of freedom 
% Consider y, z, Ty and Tz degrees of freedom 
[adof,ind]=fe _ c(mdof,[.02 .06]); 
% COMPUTE MASS NORMALISED NORMAL MODES 
[ mode,frcq]=fe _ cig(m,k,f 0],mdof,adof); 
% Condensing the dynamic stiffness matrix 
%IRS 
master=[3 5 7 9 11 13 15 17 19 21]; 
slave=[! 2 4 6 8 10 12 14 16 18 20 22 23 24]; 
Ks=k(ind,ind);Ms=m(ind,ind); 
% PARTITION STIFFNESS AND MASS MATRICES 
kmm=Ks(master,master); 
kms=Ks(master,slave ); 
ksm=Ks(slave,master); 
kss=Ks(slave,slave); 
mmm=Ms(master,master); 
mms=Ms(master,slave); 
msm=Ms(slave,master); 
mss=Ms(slave,slave ); 
% REARRANGE THE MASS AND STIFFNESS MA TRICES 
Ms=[mmm mms;msm mss]; 
Ks=[kmm kms;ksm kss]; 
% COMPUTING THE "T" VECTOR 
dof=size(mmm); 
dof=dof(I ); 
identity=zeros(size(mmm)); 
for n=l:dof; 

identity(n,n)=I; 
end; 
Ts=[identity;-inv(kss )*(ksm)]; 
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% REDUCED MASS AND STIFFNESS 
mrr=Ts'*Ms*Ts;krr=Ts'* Ks *Ts; 
% 
s I=[ zeros(size(kmm))];s2=[ zeros(size(kms))]; 
s3=[ zeros(size(ksm))] ;s4=inv(kss ); 
S=[sl s2;s3 s4]; 
Ti=Ts+S*Ms*Ts*inv(mrr)*krr; 
mrr=Ti'*Ms*Ti;krr=Ti'*Ks*Ti; 
% 
dof_f=size(Ilxf); 
dof_w=dof_f(I); 
dof=dof _f(2); 
ZERO=zeros( dof, I); 
ZERO(3)=1; 
% alfa=E(I3)/IO00;beta=E(I4)/I000; 
alfa=0;beta=O; 
for n=I :dof_w; 
crr=j *( alfa*mrr+beta*krr)* Ilw(n); 
er_rorl=(-Ilw(n):"2*mrr+crr+krr)*Ilxf(n,:)'+ZERO; 
error( n )=sum( ( abs( er _ror I ) ) . "2 ); 

end; 
func=sqrt( sum( error)); 
func=0; 
% USING MODAL APPROACH 
% COMPUTE MASS NORMALISED NORMAL MODES 
[mode I ,freq I ]=fe_eig(mrr,krr); 
model =model(:,3:6); 
freq I =freq I (3 :6); 
load m_dame2; 
mode=fe _ norm(mode,mrr); 
for n=l:4; 

error I (n )=-( freqw( n ). "2 * mode( :,n )'* mrr*mode(: ,n) )+( mode( :,n )'*krr*mode(: ,n) ); 
end; 
func=sqrt(sum(errorl ."2))+func; 

(C.2.3) Program Used to Load Measured Data 
% BEAM.M 
% Programmed by Tshilidzi Marwala 
% 24 Frebruary I 997 
% 
clear all; 
% DEFINITION OF GEOMETRY 
% Length (x) L [m] 
L=l.I; 
% Width (y) b [m] 
b=0.0292; 
% Thickness (z) h [m] 
h=0.0096; 
% CONSIDER BEAM WITH I I ELEMENTS 
d=L/1 I; 
Iz=( I /I 2)*b*h"3; 
Iy=(I /12)*h *b"3; 
Jx=( I /I 2)*b*h *(b"2 + h"2); 
Area =b*h; 
% 

Adjust Las required 

Adjust bas required 

Adjust h as required 

% See Meriam & Kraige p706 
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% COORDINATES OF NODES 
% node# unused X y z 
node=[ I 0 0 0 0 0 0 

2 0 0 0 d 0 0 
3 0 0 0 2*d 0 0 
4 0 0 0 3*d 0 0 
5 0 0 0 4*d 0 0 
6 0 0 0 5*d 0 0 
7 0 0 0 6*d 0 0 
8 0 0 0 7*d 0 0 
9 0 0 0 8*d 0 0 
IO 0 0 0 9*d 0 0 
11 0 0 0 I0*d 0 0 
12 0 0 0 ll*d 0 0 
13 0 0 0 0 I O]; 

% 
% USE BEAM ELEMENTS 

elt=[ Inf abs('beam I') 
% n#I n#2 pl# ii# nr 0 

I 2 I I 13 0 
2 3 13 0 
3 4 13 0 
4 5 13 0 
5 6 13 0 
6 7 13 0 
7 8 13 0 
8 9 13 0 
9 10 13 0 
10 I I 13 0 
11 12 13 0]; 

% MATERIAL PROPERTIES FOR ALUMINIUM 
% Matld MatType E [N/m"2] nu rho [kg/m"3] 
pl=[ I 1 7.0el0 0.35 2700]; 
% SECTION PROPERTIES 
% Secld SecType Jx [kgm"2] Iz [kgm"2] Iy [kgm"2] A [m"2] 
ii=[ I 1 Jx Iy Iz Area]; 
% ASSEMBLE MASS AND STIFFNESS MA TRIX 
[ m,k,mdof]=fe _ mk(node,elt,pl,il); 
% "Active" degrees of freedom 
% Consider x, y, Tx and Ty degrees of freedom 
[adof,ind]=fe_c(mdof,[.01 .02 .06]); 
% COMPUTE MASS NORMALISED NORMAL MODES 
[mode,freq]=fe _ eig( m,k,[0],mdof,adof); 
% LOADING EXPERIMENTAL DATA 
load t002.tra; 
al =t002(5:201, I); 
1Iw=t002(5:201,2); 
load t002.trb; 
al l=t002(5:201,1); 
FRF2=al.*exp(i*al 1 *pi/180); 

load t003.tra; 
a 1 =t003(5:20 I, I); 
load t003.trb; 
al l=t003(5:201,l); 
FRF3=al. *exp(i*al 1 *pi/180); 
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load t004.tra; 
al =t004(5:20 l, 1 ); 
load t004.trb; 
al 1=t004(5:201, 1 ); 
FRF4=al. *exp(i*al 1 *pill SO); 

load t005.tra; 
al =t005(5:201, 1 ); 
load t005.trb; 
al l=t005(5:201,l); 
FRF5=al.*exp(i*al 1 *pi/180); 

load t006.tra; 
al =t006(5:201, 1 ); 
load t006.trb; 
al l=t006(5:201,I); 
FRF6=al. *exp(i*al I *pi/I SO); 

load t007.tra; 
al =t007(5:201, I); 
load t007.trb; 
al l=t007(5:201,l); 
FRF7=al. *exp(i*al I *pill SO); 

load t00S.tra; 
al =t008(5:201, 1 ); 
load tO0S.trb: 
al I=t008(5:201,I); 
FRFS=al. *exp(i*al I *pi/I SO); 

load t009.tra; 
al =t009(5:201, I); 
load t009.trb; 
al I=t009(5:201,l); 
FRF9=al. *exp(i*al I *pi/180); 

load tOI0.tra; 
a 1 =t0 10( 5: 2 0 1, 1); 
load t010.trb; 
al l=t010(5:201,I); 
FRFI0=al.*exp(i*al I *pi/ISO); 

load tO0 l.tra; 
al =t00 1(5:201, I); 
load tO0 1.trb; 
al l=t001(5:201,I); 
FRFl =a 1. *exp(i*a 11 *pi/I SO); 
Ilw=2*pi*llw; 
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FRF _l =FRFl ./(-1Iw./\2);FRF _2=FRF2./(-Ilw/'2);FRF _3=FRF3./(-Ilw./\2); 
FRF _ 4=FRF4./(-IIw./\2);FRF _5=FRF5./(-Ilw./\2);FRF _6=FRF6./(-Ilw./\2); 
FRF _7=FRF7./(-1Iw./\2);FRF _S=FRFS./(-Ilw./\2);FRF _9=FRF9./(-Ilw./\2); 
FRF _I0=FRFJ0./(-Ilw./\2); 
IIxe=[FRF_l FRF_2 FRF_3 FRF_4 FRF_5 FRF_6 FRF_7 FRF_S FRF_9 FRF_I0]; 

% INPUT/OUTPUT MA TRIX 
b=fe_ c(mdof,[ 4.08])'; 
cd=fe_c(mdof,[2.02 3.02 4.02 5.02 6.02 7.02 8.02 9.0210.0211.02]); 
pb=modc'*b; % actuator 
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cp=cd*mode; % mode shapes from sensors 
Ilxf=nor2xf(freq,0.0 I ,pb,cp,Ilw); % FE normal 2 complex data file 
save c:\final\f dame! I Ilw Ilxe 
% PLOTTING THE "FRF's" TOGETHER 
IDopt = [3 0 22 I size(!Ixf, I) l 9 I 0 0 0 I 7]; 
iigui 
iicom('IIxeOn'); % commode('iicom','IlxeOn'); 
if exist('legend')==2 legend('Toolbox','Alternatief);iimouse; end 

(C.3) EXAMPLE 3: Freely Suspended Irregular fl-Shaped Structure 

(C.3.1) Program Used For Damage 3 
This program takes the measured FRr and use them to update 
%the FEA 
% Written by Tshilidzi Marwala 
% 24 February 1997 
clear all; 
forn=l:12; 

E(n)=70; 
end; 
E(13)=0; 
E(l4)=0; 

for n=I: 12; 
vlb(n)=66; 

end; 
vlb(5)=54; 
vlb(13)=0; 
vlb(14)=0; 
for n=l:12; 

vub(n)=74; 
end; 
vub(13)=50; 
vub(14)=50; 
options(!)= I; 
options(2)=0. l; 
options(3)= 1 e-4; 
options(?)= 1; 
options(l 4)= 10000; 
options( 16)= I e-8; 
options( 17)=0 .1; 
% options(! 8)= 1; 
E=constr('funa _ bim',E,options, vlb, vub ); 

(C.3.1) Program funa_bim 
load f_ dame 1; 
a=0.4; 
b=0.6; 
c=0.2; 
E=E* l 0A9; 
% DEFINITION OF GEOMETRY 
% Width (y) b [m] 
br=0.0322; 

Adjust b as required 
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% Thickness (z) h [mJ 
h=0.0098; 
t=h/2; 
% 
% CONSIDER BEAM WITH 11 ELEMENTS 
Iz=(l/l 2)*br*h/\3; 
Iy=(l/l 2)*h*br/\3; 
Jx=(l/12)*br*h*(br-''2 + h'''2); 
Area =br*h; 
% 
% COORDINATES OF NODES 
% node# unused X y z 
node=[ 1 0 0 0 0 0 0 

2 0 0 0 0 a/4 0 
3 0 0 0 0 a/2 0 
4 0 0 0 0 3*a/4 0 
5 0 0 0 0 a 0 
6 0 0 0 (t+b/6) a/2 0 
7 0 0 0 (t+b/3) a/2 0 
8 0 0 0 (t+b/2) a/2 0 
9 0 0 0 (t+4*b/6) a/2 0 
10 0 0 0 (t+S*b/6) a/2 0 
11 0 0 0 (2*t+b) a/2 0 
12 0 0 0 (2*t+b) a/4 0 
13 0 0 0 (2*t+b) 3*a/4 OJ; 

% 
% USE BEAM ELEMENTS 

elt=[ Inf abs('beam 1 ') 
% n#l n#2 pl# ii# nr 0 

1 2 I 1 6 0 
2 3 2 6 0 
3 4 3 6 0 
4 5 4 6 0 
3 6 5 5 0 
6 7 6 5 0 
7 8 7 5 0 
8 9 8 5 0 
9 10 9 I 5 0 
IO I I IO I 5 0 
11 12 11 1 10 0 
11 13 12 1 10 OJ; 

% MATERIAL PROPERTIES FOR ALUMINIUM 
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% Matld MatType E [N/m/\2J nu rho [kg/m/\3J 
pl=[ I 1 E(l) 0.3 2700 

2 1 E(2) 0.3 2700 
3 E(3) 0.3 2700 
4 E(4) 0.3 2700 
5 E(5) 0.3 2700 
6 E(6) 0.3 2700 
7 E(7) 0.3 2700 
8 E(8) 0.3 2700 
9 1 E(9) 0.3 2700 
IO 1 E(I0) 0.3 2700 
11 E(l 1) 0.3 2700 
12 E(l2) 0.3 2700J; 

% SECTION PROPERTIES 
% Secid SecType Jx [kgm/\2J Iz [kgm/\2J ly [kgm/\2J 

Adjust h as required 

% See Meriam & Kraige p706 

A [m/\2J 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



121 

ii=[ I I Jx ly lz Arca]; 
% ASSEMBLE MASS AND STIFFNESS MATRIX 
[ m,k,mdofJ=fe _ mk(node,elt,pl, ii); 
% "Active" degrees of freedom 
% Consider x, y, Tx and Ty degrees of freedom 
[adof,ind]=fe_c(mdof,[.01 .02 .06]); 
% COMPUTE MASS NORMALISED NORMAL MODES 
[ mode,freq]=fe _ eig(m,k,[0],mdof,adof); 
Ms=m(ind,ind);Ks=k{ind,ind); 
master=[! 2 4 IO 13 14 17 20 23 26 29 34 35 37 38]; 
slave=(35678911121516181921222425272830313233 ... 
36 39]; 
% PARTITION STIFFNESS AND MASS MATRICES 
kmm=Ks(master,master); 
kms=Ks(master,slave ); 
ksm=Ks(slave,master); 
kss=Ks(slave,slave); 
mmm=Ms(master,master); 
mms=Ms( master,siave ); 
msm=Ms(siave,master); 
mss=Ms(slave,slave); 
% REARRANGE THE MASS AND STIFFNESS MATRICES 
Ms=[mmm mms;msm mss]; 
Ks=[kmm kms;ksm kss]; 
% COMPUTING THE T VECTOR 
dof=size(mmm); 
dof=dof( I); 
identity=zeros(size(mmm)); 
for n=J :dof; 

identity(n,n)= I; 
end; 
Ts=[ identity;-inv(kss )* (ksm)]; 
% Reduced mass and stiffness 
mrr=Ts'*Ms*Ts;krr=Ts'*Ks*Ts; 
s I =[zeros(size(kmm))] ;s2=[ zeros(size(kms))]; 
s3=[ zeros( size(ksm))] ;s4=inv(kss ); 
S=[sl s2;s3 s4]; 
Ti=Ts+S*Ms*Ts*inv(mrr)*krr; 
mrr=Ti'*Ms*Ti;krr=Ti'*Ks*Ti; 
dof_f=size(Ilxe ); 
dof_ w=dof_f(l ); 
dof=dof_f(2); 
ZERO=zeros( dof, I); 
ZERO(7)=1; 
alfa=E( 13)/1 00;beta=E(l4)/l 00; 
ZERO=zeros( dof, I); 
ZERO(7)=1; 
for n=I :dof_w; 

end; 

crr=j * ( al fa* mrr+beta * krr )*II w( n ); 
er _ror I =real((-Ilw(n). "2 *mrr+crr+krr)* Ilxe(n,:)')+ZERO; 
error(n)=sum((abs(er _rorl ))."2); 

func=sqrt(sum( error))/! 0.6272; 
% func=0; 
% USING MODAL APPROACH 
% COMPUTE MASS NORMALISED NORMAL MODES 
[mode I ,freq I ]=fe _ eig(mrr,krr); 
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mode I =mode 1 (:,4:7); 
load m_damel; 
mode=fe _ norm(mode,mrr); 
forn=l:4; 
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error 1 (n)=mode I (:,n)'*(-freqw(n). /\2 *mrr+krr)*mode(:,n); 
end; 
func=sqrt(sum(errorl ./\2))/100889+func; 

(C.3.2) Program Used Down-load Measured Data 
% BEAM.M 
% Tshilidzi Marwala July 1997 
clear all; 
a=0.4; 
b=0.6; 
c=0.2; 
% DEFINITION OF GEOMETRY 
% Width (y) b [m] 
br=0.0322; 
% Thickness (z) h [m] 
h=0.0098; 
t=h/2; 
% 
% CONSIDER BEAM WITH 11 ELEMENTS 
Iz=(l/12)*br*h/\3; 
Iy=(l/12)*h*br/\3; 
Jx=(l/12)*br*h*(br/\2 + h/\2); 
Area =br*h; 
% 
% COORDINATES OF NODES 
% node# unused X y z 
node=[ 1 0 0 0 0 0 0 

2 0 0 0 0 a/4 0 
3 0 0 0 0 a/2 0 
4 0 0 0 0 3*a/4 0 
5 0 0 0 0 a 0 
6 0 0 0 (t+b/6) a/2 0 
7 0 0 0 (t+b/3) a/2 0 
8 0 0 0 (t+b/2) a/2 0 
9 0 0 0 (t+4*b/6) a/2 0 
10 0 0 0 (t+5*b/6) a/2 0 
11 0 0 0 (2*t+b) a/2 0 
12 0 0 0 (2*t+b) a/4 0 
13 0 0 0 (2*t+b) 3 *a/4 OJ; 

% USE BEAM ELEMENTS 
elt=[ Inf abs('beam l ') 

% n#l n#2 pl# ii# nr 0 
1 2 1 1 6 0 
2 3 6 0 
3 4 6 0 
4 5 6 0 
3 6 5 0 
6 7 5 0 
7 8 5 0 
8 9 I 1 5 0 
9 IO 1 1 5 0 

Adjust b as required 

Adjust h as required 

% See Meriam & Kraige p706 
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10 11 5 0 
1112 100 
II 13 I I 10 0]; 

% MATERIAL PROPERTIES FOR ALUMINIUM 
% Matld MatType E [N/m/\2] nu rho [kg/m/\3] 
pl=[ I 1 7.0el0 0.3 2700]; 
% SECTION PROPERTIES 
% Secld SecType Jx [kgm/\2] Iz [kgm/\2] Iy [kgm/\2] A [m/\2] 
ii=[ I Jx Iy Iz Area]; 
% ASSEMBLE MASS AND STIFFNESS MA TRIX 
[ m,k,mdot]=fe _ mk(node,elt,pl,il); 
% "Active" degrees of freedom 
% Consider x, y, Tx and Ty degrees of freedom 
[adof,ind]=fe _ c(mdof,[.0 I .02 .06]); 
[adofl,indl]=fe_c(adof,[5.07 5.02 4.07 2.07 1.07 6.02 7.02 8.02 9.02 10.02 ... 
13.07 13.02 12.01 11.08]); 
% COMPUTE MASS NORMALISED NORMAL MODES 
[ mode,freq]=fe _ eig(m,k,[0],mdof,adof); 

% LOADING EXPERIMENTAL DATA 
load T02.tra; 
al =T02(5:201, I); 
Ilw=T02(5:201,2); 
load T02.trb; 
al l=T02(5:201,l); 
FRF2=al. *exp(i*al I *pi/180); 

load T03 .tra; 
al =T03(5:201, I); 
load T03.trb; 
al 1=T03(5:201, 1 ); 
FRF3=al.*exp(i*al I *pi/180); 

load T04.tra; 
al =T04(5:201, I); 
load T04.trb; 
al l=T04(5:201,l); 
FRF4=a 1. *exp(i*al I *pi/I 80); 

load T05.tra; 
al =T05(5:201, I); 
load T05.trb; 
al l=T05(5:201,1); 
FRF5=al.*exp(i*al I *pi/180); 

load T06.tra; 
al =T06(5:20 I, I); 
load T06.trb; 
al l=T06(5:201,I); 
FRF6=al. *exp(i*al I *pi/180); 

load T07.tra; 
al =T07(5:201, I); 
load T07.trb; 
al l=T07(5:201,1); 
FRF7=al. *exp(i*a 11 *pi/180); 
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load T08.tra; 
al =T08(5:201, I); 
load T08.trb; 
al I=T08(5:201,l); 
FRF8=al. *exp(i*a 11 *pi/I 80); 

load T09.tra; 
al =T09(5:201, I); 
load T09.trb; 
al I =T09(5:20 I, I); 
FRF9=al. *exp(i*a 11 *pi/180); 

load TIO.tra; 
a I =Tl 0(5:20 I, I); 
load TIO.trb; 
al I=T10(5:201,l); 
FRFIO=al.*exp(i*al I *pi/180); 

load TO I.tra; 
al=TOl(5:201,l); 
load TO 1.trb; 
al I =TO I (5:20 I, I); 
FRFI=al.*exp(i*al I *pi/180); 

load Tl l .tra; 
al=Tl 1(5:201,1); 
load Tl I .trb; 
al !=Tl 1(5:201, I); 
FRFI l=al.*exp(i*al l*pi/180); 

load Tl2.tra; 
al =Tl2(5:20 I,!); 
load Tl2.trb; 
al l=Tl2(5:201,l); 
FRF12=al. *exp(i*al I *pi/180); 

load T13.tra; 
al =Tl 3(5:20 I, I); 
load TI3.trb; 
al l=T13(5:201,I); 
FRF13=al.*exp(i*al I *pi/180); 

load Tl4.tra; 
al =Tl4(5:201, I); 
load Tl4.trb; 
al I=T14(5:201,l); 
FRF14=al. *exp(i*al 1 *pi/180); 

load Tl5.tra; 
al =Tl 5(5:20 I, I); 
load Tl5.trb; 
al l=T15(5:201,1); 
FRF15=al.*exp(i*al I *pi/180); 

load Tl6.tra; 
al =Tl6(5:20 I,!); 
load Tl 6.trb; 
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al l=T16(5:201,I); 
FRF l 6=a I. *exp(i*a I l *pi/ 180); 

Ilw=2*pi*IIw; 
FRF _I =FRFI ./(-Ilw/'2);FRF _2=FRF2./(-Ilw./\2);FRF _3=FRF3./(-llw/'2); 
FRF _ 4=FRF4./(-Ilw.A2);FRF _5=FRF5./(-Ilw./\2);FRF _6=FRF6./(-1Iw.A2); 
FRF _7=FRF7./(-Ilw./\2);FRF _8=FRF8./(-Ilw.A2);FRF _9=FRF9./(-1Iw./\2); 
FRF _ 1 0=FRFl 0./(-Ilw./\2);FRF _ 11 =FRFI I ./(-llw./\2);FRF _ 12=FRF12./(-llw./\2); 
FRF _13=FRFI 3./(-llw.A2);FRF _14=FRF14./(-Ilw.A2);FRF _15=FRFI 5./(-Ilw./\2); 
FRF _16=FRF16./(-Ilw./\2); 
Ilxe=[FRF _I FRF _2 FRF _3 FRF _5 FRF _6 FRF _7 FRF _8 FRF _9 FRF _10 FRF _11 FRF _12 ... 
FRF _13 FRF _15 FRF _16]; 

% INPUT/OUTPUT MA TRIX 
b=fe _ c(mdof,[6.08])'; 
cd=fe_c(mdof,[5.07 5.02 4.07 2.07 1.07 6.02 7.02 8.02 9.02 10.02 ... 
13.07 13.02 12.01 11.08]); 
pb=mode'*b; % actuator 
cp=cd*mode; % mode shapes from sensors 
IIxf=nor2xf(freq,0.0l,pb,cp,IIw); % FE normal 2 complex data file 
save c:\fina3\f undo 1 Ilw Ilxe 

% FIGURE(2) 
IIw=IIw; 
IDopt=[3022 lsize(Ilxf,1)1 910001 7]; 
iigui 
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Appendix D: Photographs of the Experiments Conducted 

Figure D.1 Freely suspended beam 
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Figure D.2 Freely suspended beam with holes 

Figure D.3 Freely suspended H-shaped structure 
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Appendix E: The Graphical Illustration oftlie Re.suits 

• The effect of damage on the FRFs (figures E.1, E.2, E.3). 

• Effect of updating on the FRFs (figures E.4 and E.5). 

• Illustration of the quality of modes measured. 

&an,pfe fFer All-Damage €a-9eS 

-1-00 

-1=5G 
- U,da111aged 

- ~r 
-Damage"2 

- fmnage-3-

-400 ~ -------------------' 

Figure E.1 The FRFs of the undamaged and the three damage cases (example 1) 
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Example 2 For All Damage Cases 
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--Damage2 
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Figure E.2 The FRFs of the undamaged and the three damage cases (example 2) 
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Example 3":For AU Damage Cases 

-160 ~ -------------------~ 
frequency (~l 
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Figure E.3 The FRFs of the undamaged and the three damage cases (example 3) 
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Illustration of Updating Using Example 1 Damage Case 2 
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Figure E.4 Illustration of updating on the FRFs (case 1, example 1) 
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Illustration ofUpdating·Using Example 1 :eamage Case 2 
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Figure E.5 Illustration of updating on phase ( damage case 1, example 1) 
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Modes of Example 1 Damage case 1 
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Figure E.6 The modes of damage case 1 of example 1 
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Appendix F: Details of the structures used 

--- A y --
Lx - I -..., B :: -

- 900mm 
_. 
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~ 
29.2 mm 

Figure F.1 The detailed diagram of a beam used to select a reduction/expansion method. 
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Figure F.2 The detailed diagram of a beam used in example I. 
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Figure F.3 The detailed diagram of a beam used in example 2. 
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Figure F.4 Details of an irregular H-shaped structure used in example 3 
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