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ABSTRACT

In this work, we consider the heat equation coupled with Stokes equations under
threshold type boundary condition. The conditions for existence and unigueness of the
weak solution are made clear. Next we formulate the finite element problem, recall the
conditions of its solvability, and study its convergence by making use of Babuska-Brezzi's
conditions for mixed problems. Third we formulate an Uzawa's type iterative algorithm
that separates the fluid from heat conduction, study its feasibility, and convergence.
Finally the theoretical findings are validated by numerical simulations.

1. INTRODUCTION

In this work, we study the convergence of the finite element solution associated to the
system of equations modeled by

—2divi(hDu +Vp=f in 0,
divie =100 n £2,
kA LV =bh in Q, (1.1)

where Q is a bounded open set in &2, with a Lipschitz-continuous boundary 8Q divided

in two parts S and r = a0\ § with Tn 5 = 4. A more complex model has been derived and
studied in 1, 2. In (1.1), w is the velocity and 8 the temperature, while p stands for the
pressure. b is the external heat source, while fis the external body force per unit volume
acting on the fluid. « is positive and stands for the thermal conductivity. The first equation in
(1.1) represents the balance of forces in the system, while the second equation is the
incompressibility of the fluid. The third equation is the heat exchange in the system. The
force within the fluid is the Cauchy stress tensor T given by the relation

T=2vithDu —pl.



with v, positive and representing the viscosity of the fluid and depending on temperature 3./
is the identity tensor, and Du is the symmetric part of the velocity gradient which is defined

by
2Du = Vu +(Vu)'.

The unknowns in the system (1.1) are the velocity u, the pressure p, and the temperature
of the fluid. From the modeling point of view the first two equations of (1.1) stand for the
Boussinesq approximation in a steady approximation. We recall that the Boussinesq
approximation means that the density of the fluid is everywhere constant except for the
buoyancy term which of course appears in the right-hand side of the first equation. The
coupling in (1.7) is represented through; the convective term (u- v)8 and the expression
W(B)Du. The system (1.1) is a simplified model for a number of incompressible fluids when
some variations are observed in the temperature and we refer to 4 for one of the first
analyses of this simplification. The system of Equation (1.1) is supplemented by the
boundary conditions on the velocity and temperature. For that purpose, we assume that

u=0 on " and #=468; on 402, (1.2)

6y being given, and nonnegative. On the other part of the boundary S, the velocity is
decomposed following its normal and tangential part; that is

M=y + g, =(1-mn+(u-1)r,

where n is the normal outward unit vector to § and ris the tangent vector orthogonal to n.
We first assume the impermeability condition

w-n =10 on S (1.3)

Just like the velocity, the traction 7= on 5 is decomposed following its normal and
tangential part; that is

Tn=(Tn-nn+(Tn- 1)1
={—p+2vn-Numn+ 2vit - DNun)t
=(Tn), + (Tn);.
Let g: S — (0, =) be a nonnegative function called threshold slip or barrier function, the

nonlinear slip boundary condition we consider in this work was presented in Leroux 5 and
reads as follows:

[(Tn)e| > g = we # 0. ~(Tn), = g

[z

[(Tn)| <g=u,=0, }
on 5,

where |v* =»-v is the Euclidean norm. It can be shown following & that the nonlinear slip
boundary condition is equivalent to

—(In), € gdu,| on S, (1.4)



where @ | - | is the subdifferential of the real-valued function | - |. We recall thatif 2 is a
Hilbert space with scalar product (-, ), and for x, e 2, and ye 2,

v € d¥ixy) means that ¥ix) — ¥ = (rr—x) Yred.

At this point it is important to note that the motion of a fluid under nonlinear slip boundary
condition had been formulated first by Fujita 7, in which slip occurs if |(Tn):| = g and no slip if
|(Tm);| < g. For the mathematical investigations of (1.1)-(1.4) we assume that ) is a bounded
continuous function defined on (0, =) satisfying for some vg, vq, v2

ve & RYY andfor seRY. 0<w <vis)<v and Vis)| < va. (1.5)

It is worth noting that in 8, Navier-Stokes equations coupled with the heat equation

under Dirichlet boundary condition are thoroughly analyzed, and the following had been
established; construction of a unique weak solution for the continuous and discrete
problems, analysis of the convergence of the approximate solution and finally numerical
simulations that exhibit qualitative properties of the discretization are highlighted. We have
not considered the Navier-Stokes equations in our work because its nonlinearity is similar ta
the coupling (« - v)¢. Hence from the analytical perspectives the difficulties are the same.
Thus our work combined the difficulties of the “Navier-Stokes equations” and the
nonclassical boundary conditions (1.4) which is responsible of the inequality symbol in the
weak formulation of the problem.

Many research works have dealt with the analysis and computations of fluid flow with
Tresca's boundary condition (see 9-13 just to cite a few). But to the best of our knowledge,
the researchers in numerical analysis have not yet considered a heat flow driven by
nonlinear slip boundary condition.

The literature of heat convection in a liquid medium whose motion is described by the
Navier-Stokes or Darcy equations coupled with the heat equation under Dirichlet boundary
condition is rich and we refer the reader among others to &, 14-16.

We address two interesting issues in this work. First, we construct the unique weak solution
of the continuous problem and its finite element counterpart. Next, we discuss the
convergence of the finite element formulation associated to the weak formulation. In fact we
show that the convergence is dominated by the interpolation error for #. on the slip zone S.
This result is not a surprise since we are dealing with variational ineguality of second type
and similar result for different applications had been derived in 17. The technique of proof
uses Babuska-Brezzi's tricks for mixed methods 18, 19, even though it is worth mentioning
at this juncture that the presence of the temperature equation and the related nonlinear
coupling terms bring more complications in the analysis. The second theoretical question we
address in this work is the convergence of the algorithm we formulate for the numerical
realization of the finite element approximation. Although the algorithm is a Uzawa's type
iterative scheme 17, its convergence analysis is complicated due to the nonlinearities in the
model. We use the energy method to derive the conditions under which the algorithm
converges. The third contribution in this work is the numerical experiments exhibited.
Indeed, we demonstrate by means of simulations the reliability of the algorithm (in fact its



discrete analog). A companion paper of this work has been accepted for publication in 20,

and to the best of our knowledge these are the first contributions toward the mathematical

understanding of fluid flow under nonlinear slip boundary condition coupled with the heat.

The rest of the paper is organized as follows:

* Section 2 is concerned with the weak formulation, the construction of weak solution, and
its finite element approximation.

* Section 3 is devoted to the convergence analysis of the finite element discretization.

* Section 4 is devoted to the formulation of the iterative scheme and its convergence
analysis.

* Section 5 is devoted to numerical simulations, discussions, and conclusions.

2. MATHEMATICAL SETTING AND FINITE ELEMENT FORMULATION
2.1 Variational formulation

To write the system (1.1)-(1.4) in a variational form, we need some preliminaries. We adopt
the standard definitions 21 for the Sobolev spaces H*(D) and their associated inner products
(+)s, o nOrms [l-llwo, and semi-norms ||w for s 20, and their subspaces H;(D). For each s =
0, H5(D) denotes the dual space of Hy®). The space H%(D) coincides with [%(D), for which the
norm and inner product are denoted as Il and (-, -)p, respectively. If D = Q, we drop D.

Throughout this work, boldface characters denote vector quantities, and H'(Q) = H'(Q)? and
L) = 14(Q)2.

The following spaces are important in the analysis of (1.1)-{1.5)

V=(veH Q) : vlr=0. v-nls=0},
M={gelQ) : (g.1)=0} (2.1.)

We introduce the following functionals that will be used to write the weak form on the
problem in abstract setting.

ay: H'(Q) x H'(Q) SR
(v.u) —a(d v, u) =2/ufH}Dv s Dudx,
axt H'(Q) x H'(£2) —~R ’
(8. m —aalf, p) = K/QFH- Vodx
b H'(Q)x M SR
v.q) —=biv.g) = —/qdiwdx,
JTH') —R ’
v =) = [svelde.



d H'Q) % HY Q) x H(Q) =]

v. 8. p) —div.8.p) =ffv-F’}de1',
ir

do being the measure on the surface S. We consider the variational problem: For
8o € H' 0%, feH ' and be H(Q)

Find (u.p.0)e VxMxH'(€Q). such that

#=48 on dEX

and forall (v.q.p) € Vx M x H[L [£2),

a(fw v —w)+ by —a, p) +jiv) —jiu) = {fov —u),

blu.g) = 0,

ax (0, p) + d(u. 8. p) = {b. p). (2.2)

with H'2(80) being the space of trace for elements of H'(Q), {-, -) being the duality
pairing between H™'(Q) and #/(«. It can be shown that 6

(1.p.8) € Vx M x H' () is a solution of (1.1)=(1.4) in the sense of distribution if and only if it is a
solution of (2.2).

The following standard results will be used for the analysis of problem (2.2) and its
corresponding finite element discretization 6, 21, 22.

The following Poincaré-Friedrich's inequality holds: there is a positive constant ¢ depending
on the domain Q such that

forall v eV, Ivll = clvlm . (2.3)

which ensures that the norms ll-llime and |-l are equivalent on V.
Given Q as described, then there exists ¢(Q) such that for all v e #'(

Il sy < ORIV 117140 (2.4)
We also recall Korn's inequality 6: there exists ¢(Q) such that
D] = c(2)||Fw]|  forall ve V. (2.5)

Since vis bounded from below and above (1.5), we deduce that a4(-, -) is continuous and
elliptic on V; this means that for (v, w) element of Vx ¥,

.
af(@v.w) < villvllmglwllmg,.  a(@v.v) = veellvllg g, (2.6)

From (2.3}, we deduce that as(-, -} is continuous and elliptic on #l(<); this means that for
(6, p) element of Hl() x Hliw),

.
a8, p) < kel llolman.  axipp) z kellpllza, (2.7)



The trilinear form d{-, -, -) enjoys the standard properties 22: for all
(v. 8, p) e H'(2) x H) ) x HL(£)

div.8.p) < lvpllIVEll < Wil llpllzs IV E. (2.8)

and if » is such that divwln = 0, then
df'l",vf?',,ﬂ‘}l = _dh’rs ps'ﬁ}s

div, p.p) = 0. (2.9)

The compatibility condition between the velocity and pressure is very important for the
study of (2.1), its proof can be seen in 18, 19: there exists ¢(Q) such that

cllgll = supM forall veV.
vev [l (2.10)

The kernel of b(-,-) in v is

Vay = veV: blr.gi=0 Ygel*Q)},

which is characterized by
Vaue={re V¥V divw|g =0}

One easily check that b(;, -) is continuous; that is

forall (v.q)€ H' (Q)x L Q). biv.q) < vl gl (2.11)

The functional j{-) is convex, lower semi continuous (continuous) on v but not
differentiable at zero. It can be shown that the solution («.p) of (2.2) is characterized by

Find (w.p. 8 e VxMx HIfSZ}I ®» A, such that
#=8; on gL,

and forall (v,g,p) e Vx M x H[!,fﬂ}l,

s ai(fu, v+ blv, p) +J|";|.g1 vedo = (f.v),

biu.q) = 0,

d-we = |ug| zein§,

alf, p) +diu, 8, p)={b, g}

(2.12)
with
A={alaeL™(8), |a|/=<] aein §}.

The existence of A in the formulation (2.12) can be proved either by using the Hahn-Banach
Theorem (see 17, p. 70, Theorem 5.3), or one can make used of a more constructive
approach based on regularization (see 17, p. 82, Theorem 6.3).



2.2 Variational formulation

In what follows, c is a positive constant that may vary from one line to the next, we assume
that

FEH Q). gel™s). beH'(Q) and 8 e H Q). (2.13)

We claim that
Proposition 2.2. For any data (f.b.8. g) satisfying (2.13), there exist three positive constants cy, ¢z,
3 such that if (w.8.p) js given by (2.2), then

|
Noell ey < — WP 3102y
¥y
| 2
N8 |z < €2 (1 + ;) 80 llr2gany, + ;ll-‘?lln-lcm,

Wiy

el = (1 +-:‘3ﬂ) 1zt

Proaf. We take successively in (2.2) v = 0 and v = 2« . Comparing the two inequalities, we
obtain

ay(@u,u) + jw) = {f.u)

which after dropping the positive term j(w), and application of Holder's inequality and (2.7)
yields

(&
Nl ey € =HIF Nl
Wiy

Next, we state the following result 19 (see Chapter 4, Lemma 2.3): for any 0> 0, there exists a
lifting &, of 8y which satisfies

0ol zcn < dllBollinpaey  and (8ol < cllfollin iz (2.14)

where cis a positive constant independent of 8. We set & = # — &, note that 4|, = 0 and
take ;=4 in(2.2). Noticing that (@ - v)d,d) = 0, we obtain

ax(8.8) = —ax(Bh. 0) — ((u - V)8, 8) + (b.8)
= —ay(fy. 0) + (e - V)6, 8y) + (b, ).

Using Holder's inequality on the right-hand side yields

kPO < clITEIITEl + Nubo IV + 1Bl o IVE)

= kTN 4+ e llzs o NN 23 IV AN+ WEN -1, IV E

< xe ||l e IV O + edllulls o IVE 180l i 2 + 181|100 IV E]I.
this is
K IVEN < xcllBollmzan + ool 2w 1 @oll e + NBli-1g).

Using Poincaré Friedrichs's inequality (2.3) and choose & = 1/llxli««;, we obtain the following
inequality



- [ & (&
NNz = cll@oll mizgay + = 1o llen 2 oo + = 100 a-1).
K 'y (2.15)

The desired inequality is obtained by combining (2.15) and the triangle’s inequality.As
for the pressure, we take v -« = 2w with w € /(). Replacing itin (2.2) and comparing the
resulting inequalities, we obtain

bliw.p) = (f.w) —a(B0.w),

which with the inf-sup condition gives

biv. )

- = W ler-ren + 2 e e gy
ety [Vl

Allpll =

Hence the proof is complete after utilization of the bound on the velocity.

The variational problem (2.2) is a mixed variational inequality of second kind and we refer in
general to 6, one of the first treatise dealing in a systematic manner of mathematical
analysis of variational inequalities. The existence of solution of problem (2.2) will be
analyzed by making uftilizing; regularization, Galerkin approximation, Brouwer's fixed point,
and passage to the limit. For the implementation of the steps mentioned above, we recall
that with the lifting &, introduced earlier, (2.2) is rewritten as follows

Find (u,p.0) € Vx M x H}(€), such that for all (v,q.p) € V x M x H}(€).
a (84 8y, —u) +b(v — u.p) + j(v) — jw) = {f.v —u),

Blu.g) =10,

as(8 + By, p) + d(u, 8 + 8y, p) = (b.p). (2.16)

We claim that
Proposition 2.3. The variational problem (2.16) admits at least one solution (u.p.8) € V x M x H} ()

Proof. It is done in several steps.

Regularization. Note that the functional j is nondifferentiable at zero. Hence we introduce
the parameter € >0, approaching zero and define the functional j. : V=& as follows

Jov) = fg v, +e do.
.

One observes that
|iFI[I:U¢ (v —jivy =1
The functional j; is convex, lower semi-continuous, and twice Gateaux-differentiable with

Uy - Vg

g—F——— do.
5 o |ue|* +£* (2.17)

Note that Dj, is monotone, that is

Djiuy-v =



(D () — Dj,(v)u—vy =0 forall vueV.

The regularized problem reads:

Find (o, p.. e Ve Mx HJ,(EZ}, such that for all (v, g.p) €V x M x HA(EZ},

ﬂ|f9e +Ei:uu"r—"e} +bf"r—"e spe} +_I'-e f'l-"::l _jefue} = {f;"—ﬂe}s

bila..q) =10,

ﬂlf'ﬁe +Eh p}‘l_dfu”!’: +Eh P‘} = {_bs P:*. (2.18)

Since j; is differentiable, then (2.18) is equivalent to the variational problem

Find (u.,8.) € Vg, x H}(€2) such that for all (v, p) € Vi % HY Q)
(6. + Bg;ue,v) + (Dj (u:).v) = (f.),
a8, + By, p) +d(u.. 0, + 0. p) = {b. p). (2.19)

Galerkin approximation. First, since v, is separable, there are w,.y..... elements of
Vay, linear independent to each other such that

Jtwat € Vi Twiws v = Vi

n=l

Let Vi, = {w,.ws....w, . Next since Hj() is separable then there are ¢y, ..., ¢, elements of
H}«), linear independent to each other such that

it cHy@). .o b} = HYQ).

n=1

Let W™= {@,, ¢, ..., ®,}. The Galerkin problem associated to (2.19) reads

Find (ul, &) e Vi, x W" such that for all (v, p) e Vi x W",
ay (02 + By;ul vy + (D (ul).v) = {f.v).
ax (82 + 8o, p) +d(ul, 02 + 8. p) = (b. p). (2.20)

To prove the existence of (. ), we will apply the fixed point of Brouwer.
Brouwer's fixed point. Let (v, p) € Vi, x Hy(€), we define the mapping & from V., x Hy(Q) into
its dual as follows

F (w0000, p) = a0, + Opiue.v) + (D), (w).v) +aa(B, +80.p) + dlw, .0, +8y.p)
- {bs ,ﬂ‘:f - {.!", V:’-
* Fis continuous. Indeed let (. 6).1 be a sequence of functions in v, x Hl@) such that

wy — u,  stromgly in Wy,

o — @, strongly in H'(Q).



We would like to show that & . 8. p) — F (w.. 8. )v. p).

Due to strong convergence of ¢ and the property of W), for any v € v, the sequence
(W82 + By)Dv), CONVErges to (g, + 4, almost everywhere in Q and |vwe: +8,0v|| < v ||IDv)|- Thus
from the Lebesgue dominated convergence theorem

forall v & Vg, lim v(8 + 80)Dv = vi#l, + 8,)Dv  strongly in L*(Q). (2.21)

Thus

for all v & Vo limoa (82 + ﬁ,:ui‘,v} = a(vif, +E,}:u_.,v}l. (2 22)

passing to the limit in ax(-, -) is direct because it is a linear term. Finally, passing to the
limit in the trilinear form d(-, -) followed from the strong convergence in [4(Q) x [*(Q) for the
terms (u - v)8; . Finally since Dj¢(-) is monotone then we have

fim (Djj.(ul).v) = (Dj.(w.).v).

We then conclude that #is continuous.
e thereis a constant r for which & . p)(v.p) is positive outside the ball B(0, r).

Indeed,

F (v, p)v.p) = aylp+ o v.v) + (D 0).v) = (f.v) + aalp + By, p) — div. p.8g) — (b, p)
2 2wpelv |15 + xellplls — cllBoll @ (VIT + lpll)
— el - vl — sell@allzn 2 e Ll y — NB -1 el
> c{min(2vg, ) — 816l VI + el
— (el W= gy + (ellBo 2 oy + DB NE-r )™ 2UWNT + ol 2.

We take & and r such that
minf?w,, K'::l —5"&; ||H”1l;u'ﬂ] = [}, and

C[Eﬂiﬂf?'b‘(;, K'}I - 15"3(; ||”I .u,;u.ﬂ]lr— fcll.lrllir-l.;ﬂ] + fK’(‘ |I'HII:I|IH|"1WE!] + |Ib|lﬂ'||;ﬂ]}2}|'ﬂ =2 {}.

Hence for any v.» elements of vy, x Hji), with /w75 |pIF = ». we have & (v, piiv.p) = 0.We
recall that u,Vj, x W" is dense in Vg, x Hj(€2), and the properties established for #are valid for
Vai % Hi() replaced by Vi, x W"_Thus the Brouwer's fixed point is applicable. Hence there is
ul. ! elements of Vi, x W such that # @, 62)v.p) =0 for all v.p € Vi, x W, This is to say that

forall (v, p) € Vi, x W,
ai (8 +8o; ul . v) + (Dj, vy = {f.v).

@ (0 +00, p) + d(l 02 + o p) = (b, p). (2.23)

A priori estimates and passage to the limit. The a priori estimates obtained in
Proposition will also hold in the discrete setting Vi, x W". These are

10



cy
e Mooy < — PN -y
iy
i 1 [ ]
N Ny <2 | 1+ ;) I W2 gacyy + ?|Ib||n-'cm

I 1"
Pl = (1 +f3v—') a1y

4]

Then we can find a subsequence, denoted also (#...#..), such that

uy = u, in Vg weakly

O — @, in H}(L) weakly.

Now owing to the compactness of the imbedding of H'(Q) into L4(Q), there exits a
subsequence, still denoted by (u....#..), such that

(!, 8 — (u..8,) weakly in H'(Q) x H'(Q2)

and

(el By = (.. 0,)  strongly in L(€) x LYQ).

Hence one can pass to the limitin (2.23). We note that passing to the limit for linear term is

direct and only necessitate the weak convergence, but for the nonlinear terms, we need the
arguments used for the continuity of # We then deduce that fore,

Find (w80 Vg, x HJ,(.EE}, such that
and for all (v, p) € Vg, x HI(€2),
ar(f, + Bz, v) + (Dj (. ).v) = (f.v),

ﬂlf'ﬁe +Eh p}‘l_dfu”ae +§Js P} = {_bs p}s (2 24)

which is equivalent to (2.18). Again the a priori estimates obtained in Proposition are
valid for the solution of (2.24). Hence we repeat the process of passing to the limit with
respect to . We should re-write (2.18) in the form

forall (v, p) € Vi, x HL (),
ar(By + O u,) + o) € (B, + O uev) +jv)— (fov —u),
(6, + o p) +d (.. 0, + 8. p) = (b, p). (2.25)

Let v € V4, the application v — j:(v) is continuous and convex, together with the
properties of a4(, "), a2(-,-) and d(-, -, -) implies that

forall (v, p) € Vi x HL(€2),
ay (0 + Opsu.a) + j(w) < liminf[a) (0, + 0y w00 ) + jo(w)] < @ (0 + Gy, v) +j0v) — (f.v — u),

ax(0 +Bg.p) + d(u, 0 + . p) = (b.p). (2.26)
Hence the proaof of Proposition is now complete.

The pressure is obtained by regularization and then following the usual procedure described
in 19.

11



About the uniqueness of solutions (. #) of (2.26) we claim that

Proposition 2.4. let pq, p2 two positive constants greater than one such that FI. + Pi = 3. Assume
that u e w'+: (), and choose either vg, va, or k such that the relation

1 1 4
(r - [(1 + —) 1€ollz2 a0 + = ||b||f.r-'c£.‘!]] i||ﬂ‘f’lr||,nu) =10
K K iy (2.27)

is satisfied for a positive constant ¢ depending only on Q. Then the solution of (2.26) is
unigue.

Proof. Let
{2y, 1)

and (u..8,) be two solutions of (2.26). We proceed in two steps.

First, we recall that since 8; — 83| s = 0, the temperature equation and property of d(-, -,-)
give

ar(fh — bt 8 — ) =dluy —wa, 88— ) < cllag —ual 180 — Sl 18

which from coercivity on a2+, -) and a priori estimates on @ gives

1 1
wlley — il = clleey — w2l [(1 + —) % |z 2 oy + — ||-‘?||n-'cm]-
K K (2.28)

Next, the velocity equation leads to
a0 + Biuy —ua. g —uy) < (0 + g tea. s —a0)) — @y (02 + Ogs w10 — uy)

= frvrm +80) — v(f2 +85)Dus © Dius — uy),
L]
from which we deduce that

20D — )] < vs [ 101 — 0] |Duta| 1Dz — ).
LA ]

(2.29)
To estimate the right-hand side of (2.29), we recall or introduce the following
facts:Generalized Holder's inequality. Let 1 =i=n, 1 <p; <= with fi € /() and
I !
2l Pu P
Then [1., f € sy and
I fi < [Tl
i=1 Lrign) =1 (2.30)
Sobolev inequalities. If Q is an open set of class C' with I bounded then
L_1_ 1
ft}r;—P dlfp{d,
W) is embedded in L9(Q) 4 or
for all g € [p,oe) il p=d. (2.31)

12



Making use of (2.30) with p = 2 and -+ - = 5, (2.29) gives

1
)

v || D(eey — w2)|| < vall@y — 82|z | Deia [l - (2.32)

We apply Korn's inequality on the left-hand side of (2.18), while on the right-hand side
we make use of (2.31) ford =2 =p and g = p,. We find

v

& — &l 1 Deea |- -

leey —wall) = —
ot Il » (2.33)

Returning to (2.28) with (2.33), one has

1 1 Cua
(»c —c [( T+ =) UBollron + ~ ||-’?||n-lqsn] 2 |1 Dus - ) 16y — 61l < 0.
K K vy

from which we immediately deduce the uniqueness criteria.

Remark 2.1. It is not immediate to obtain the regularity assumption

u e W)

required just by observing the equations. In fact this condition appears when one analyses
the term f,#Du : Dv _ In fact that regularity was already required in the works by 8, 15, 16,

where Dirichlet condition is applied on the boundary.

The condition (2.27) required for uniqueness of solutions obtained in Proposition is
restrictive, but for nonlinear problems, it is very rare to obtain unigqueness of solutions
without restrictions.

The analysis presented can be extended to the following situations:

a. onereplaces (1.3) and (1.4) by the leak boundary conditions 23
u-n=0 on § and—(Tn), €gdlu,] on S

a. The Dirichlet boundary condition on @ is replaced by the mixed one

Blr =8y and ﬁ=.‘;‘| on 5.
dan

2.3 Finite Element approximation

From now on, we assume that Q is a polygon. In order to approximate the problem (2.2), we
introduce a regular family (5. of triangulations of Q by closed triangles, in the usual sense
that

13



a. For each h, g is the union of all elements of 7.

b. For each h, the intersection of two different elements of 5, if not empty, is a corner, a
whole edge of both elements.

¢. The ratio of the diameter hy of an element K in 5, to the diameter of its inscribed circle or
sphere is bounded by a canstant independent of K and h.

As standard, h stands for the maximum of the diameters of the elements of 5, . For each
nonnegative integer n and any K in &, let (k) denote the space of restrictions to K of
polynomials with two variables and total degree less than or equal to /.

We define then the following finite dimensional spaces which approximate v,ar, and H'(Q),
respectively;

Vi=lwme®@QYnV. foral K€ T, vy|g € PAKY ),
Jlr'f;, = |'erI| Elr_-:fsz} I“I‘ﬁ’fﬂ_}, forall K e 'Ea-_l'ls i |K E'@]I”{}'}s
H = vy e HQ)NE(Q), forall Ke Ty wile € P UK}

We let
Hyy, = Hy 1 H(€).

The finite element approximation of problem (2.2) reads;

-

Find  (ay, pr. 03) € Vi X My x HY,  such that

B =8y, on 40,

and for all  (vi.qs., pr) € Vi % My, H:I:.r.s

ay (O, vy — )+ bvy — g, py) +j0v) — jlug ) = (Fovy — ),

blju:l sqll} = U;
az fHIu p.l'l} + d.l'l fu.l'l !HII 5 p.l'l::' = {_bs Ph }s
i (2.34)
with

| .
dIII:VII ] HII 3 p.l'l}l = dfv.l'l ] HII ] p.l'l}l + ; ffdl‘!’l’;,}lﬂ;l, Ph ::I- (2 35)

The trilinear form dg(-, -, -) enjoys the properties (2.8) and (2.9) 22, this is to say that for

a” (¥ B prd € Vy jl(‘L'rlf!!.ﬁ jl(‘L"I[!hl'l

dII fVII! HII& le}I = _dh fVIls i !HII }Is
dJI fVJn HJI! pJI::I 5 |IVJ| |If_" |IPJ| |If_" |I I'?'Hll |I- (2.36)

We recall that the discrete version of inf-sup condition (2.11) holds: there exists 8
independent of h such that

ﬁ"‘h. |I = sup M for all in € ﬂ"f.l'l-
we¥, [villin (2.37)
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Remark 2.2. 1t should be made clear that other choice of elements for the couple
velocity/pressure can be adopted as long as the compatibility condition (2.19) is satisfied.
The reader may consult 18, 19 for a thorough mathematical discussion of the inf-sup
condition (2.19), its implications and elements that satisfied the “test.”

The solvability of (2.17) can be obtained by following to the line the proof presented in the
continuous version (Propositions and ). In fact we state that

Theorem 2.1. Let (f, b, By, g) satisfying (2.13). Let (uy, B, pr) given by (2.17) then the following
holds

lezallzr gy, < €lF N1z,
1 A
N&llzr iy = € (1 + - ) Il 6 2 a0 + ?—llbllﬂ"cﬂ]s

el = cllf Ne-rigey- (2.38)

Let p1, p2 two positive constants greater than one such that ;- + ;- = 3. Assume that
u, € W' ), and choose either v, v2 or k such that the relation

1 1 y
(f - [(1 += ) Boll i 2 aey + — ||b||ﬂ"n:ﬂ]] )y N e ) =0
K K Y (2-39)

holds. Then problem (2.17) admits a unique solution (u,. 8y, py) € Vi x H! x M,

Similar to the continuous problem, the following characterization of the solution (uy, py, 6x)
of the problem (2.17) holds:

Lemma 2.1. There exists i, € A such that if (uy,, py, 8) is the solution of the problem (2.17) then

for ail (voq.p) e Vix Myx H,.

ay (6 + By as v) + biv, p) + JogAn ve = (f.v),
1 blas. q) = 0,

Mep - Ay = |tey] aein 8,

ax( By, p) + dluy. 0 + By p) = (b, py—as (B, ).

(2.40)

Proof. We recall that the finite element problem reads;

Find (s, pr. 04) € Vi X My, x HY,.  such that

and for all  (vg.gp, gr) € Vi x My, x H:I:.r.s
3 ﬂ|f'l,5'.l'| + Eﬁ: Wy, Vy— u.l'l}l +bfVI| _uJ'nPIl} +_I;I:VI|} __ll-fuh} 2 {)r:- ¥y — u.l'l:":-

bf".fl!nq.rl} = {},

ﬂJfHIu p.l'l::' + d.l'l fu.l'l !HII s p.l'l::' = {_bs p.l'l} — 32 [’El;h p.l'l}' _d.l'lfu.l'ls Eh pll}s

| (2.41)

We need to show that (u.ps. 8 is the solution of (2.41) if and only if there is i, € A such

that (uIlspllsHIls AII} 50|VES (24ﬂ).
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We follow the proofin 17, p. 70, Theorem 5.3, with the difference that we will be working
with the discrete velocity space.

We first assume that (u.pw 8 is the solution of (2.41) and we would like to construct 4, € A
with (. pe. 85, 4s) solution of (2.40).

We take successively v, = 0 and v, = 2u; in (2.41). Comparing the resulting relations and
making use of (2.41);, we obtain

ay (0 + O ) + jlug) = (foug). (2.42)
Now adding (2.42) and (2.41); we find

forall vy € Vio  {(fova) — a8 + Oz g vi) — Bvi. i) < jiv).

which implies that

Yovw € Vi (o) — @@+ Bos s, vi) — bivi, pid| < i) < Nlgllz=gs v |- (2.43)

Hence the mapping », — {f. v} — a1(8 + 8y uy. vi) — biv,, py) 1S @ linear and continuous

functional on Vj, | 5. But ¥, | s € HY%(S) c L'(S). Thus the Hahn Banach theorem applies, so the
above mapping can be extended to L'(5). Hence from Riesz's representation result there is
AnelLl™(S), | Aw | =1 a.e on Swith

ay (B, + By:uv) + bv.p,) + f gredy = (f.v) WeV,
g

which is the first relation announced.

Next, for 4, € A, one has |4 < 1, and from Schwarz's inequality one obtains

Ues - Ay < |teplldn] < luesl  aeon S (2.44)
For v =u; in (2.40) one obtains

(0 + B .10, + j gdn -ty = (Fotty). s

From (2.42) and (2.45) one deduces that

/ g(lten] — Ay ttgy) = 0.
s (2.46)

From (2.46) and (2.44) it follows that
|tees| — g -tipy, =0 aeon 8

which is the second relation announced in (2.40).

MNow, we want to show that if 4, € A with (us. pi. 6. 4:) solution of (2.40) then (u. pi. 84) is the
solution of (2.41).

From (2.40) it follows that for all ve V,

16



a (8 + Ogi g,y —up) + by —uy.py) = /gi:. My — /gﬁl:. ve+ifov—uy)
5 5

= fﬁ|ﬂr,:u| —fgln v+ (o — ).
5 5

Butsince 4] £ 1 a.e on S, then 4 -v: = |v¢| a.e on 5. We then deduce that

forall v € Vi ai(8 + 8oty —up) + bv —ug.py) +j0v) — j(uy) 2 {f.v —ug).

Hence (U, pg, By) is the solution of (2.41), which ends the proof of the assertion.

Remark 2.3. We are not able to construct A, in a discrete space A, such that (2.40) holds.
Nevertheless, the formulation (2.40) will be very important later for the actual computation
of the solution (u 8. 4,),

Because A is not constructed in a finite element space (for example /), then the
formulation (2.40) is not strictly speaking a discrete approximation of (2.12), but on the other
hand since the construction of A, make use of the discrete quantity uy, then it is not an
“abstract element” like A.

3. A PRIORI ERROR ANALYSIS
In this section, we would like to find the limit of the sequence (uy, pp, 6;) solution of (2.17)
when h — 0. We recall that the continuous formulation reads;

=

Find (u.p.8) € VxMxHNQ), suchthat

and forall  (v.q.p) € Vx M x H} ().

S a e +E;:u,v—u}+bfv—u,p} + vy — ) = (f oy —u),
blu.q) = 0.

ax(0. p) + d(u. 0, p) = (b, p) —ax(Bh. p) — d(w. 8. p).

(3.1)

The main result on this paragraph is stated as follows.

Thearem 3.1. Let (u.p.¢) be the solution of (3.1) defined in Proposition with « e w'v:(g) such that
Proposition is valid. Let (us.ps. 84 the solution of (2.41) such that u, e w'*@) and (2.39) is valid.

Then there exists c independent of h such that for all (v qu.5) € Vi x My x H]

iy

letw — el gny = llae —willggg + llves — e ||_<\-Jr +cllp — gull + <18 — snllgp gy
12

16 — & llen oy < ell€ — snllzn g + ellee — vl + cllves — e ||_‘,-'Ir +cllp —qull.

152
e —pall = cllee —villegg + cllves — el _q“r + cllp — gull + c 18 — 55 lleig.

Proof. We will use (2.30) and (2.31) with the same parameters as before.
Let w e B2, we take v—u = 2w in (3.1) and obtain

ay(8+ ty:u,w) +biw.p) = {f.w). (3.2)
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We denote by H), a conforming finite element discretization of #}i«). In a similar way
using (2.41) we have

forall wy, € H(I,;, a8y +;?'::: vy Wi )+ Blws ) = (fowg ) (3.3)
Since H}, is a subset of H!(), from (3.2) and (3.3) one has; for all w; e H],
Blws.p — pr) = ay (B + By:tep wi) — ay (6 + Bos . wy)
= ay (B + Oyt wy) —ay (0 + gt wy) —ay (0 + Bgsu — g wy),
which by linearity gives; for all g, e My,

bf"'r.l'lsq.l'l _PII::I = ﬂ|fH;, +'§l;:l: HII!"III} - ﬂlf'H + El;i: u.l'ls"'rl'l} - 'ﬂlfH + EII:I:M - qus"'rIl}
+ b(wg. gn — p). (3.4)

Now, from the discrete inf-sup condition on b(-, -) and (3.4), we have

ﬁ |I.|DII — i |I
lbf'“'".l'l sk — PII::I
weetl,  Wallagy
sup (ay (8 + Bt wi) — a (8 + By wgw i) — @y (0 + Ogsu — 1 wy) + b{wy. gy — p)
(v i sz

h'.;,EH,I“
= vac|| V8 — 8|l Dug |l + vill Vi — wp )|l + e llp — gl
e " Vi — u.l'l}" + 1'.:{-|Il;r'[’3 _HJI::I" |Iu.l'| "W'{'Jqﬂ] + 'C".P — ik "s

where we have used the generalized Holder's inequality and the Sobolev's inequality. Thus

using the triangle inequality yields
|I.|D — Ph |I = 2|I.||'J' - "?I." + v |Iu — Iy "H'l;ﬂ] + ijll?fﬂ _HJ]}" ||H';| |le.|11,:ﬂ]. (3.5)
Second, we let successively in (3.1) v =ux and v = 2u — v, and obtain

a0 + 0y wuy, — ) + by, — w.p) + jlug) — jw) = (o, —u),
a (g +."-?':,: o — v+ b — v )+ 20— ) — ) = (o — )

Adding these relations gives
ai(@ + 8y u g —vi) +bluy — vi.p) + ) — 2 +j2u —vi) = {f g — i) (3.6)
Putting together (3.6) and the velocity equation of (2.34), one obtains

ay(8 + Og;u,wy — vi) — ay (8 + Oo; wy. uy, — vy) + blay, — Vi =)
2 () — O d) + (ile ) — j(20 —vi)). (3.7)

but
a (8 + sty —vi) = @y (0 + ozt — gty —vi) +ay (0 + By s, ey — vi ).

Hence (3.7) becomes
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'ﬂll’H + Ei:u — Mj. Uy — VI|}+ ﬂlfH +§l;:l:u.l'|su.l| _Vll} _'ﬂll-lﬂ.l'l + ﬁc::“m“n _"'r.l'l::I

+h(ty — v p— prd 2 () — jv)) + Gl ) — j(2u — vy ). (3.8)
Now, by linearity one has
ay (B + 0w —upuy —vi) = ay(0+ Bu — vy —vi) —ay (84 Bty — vy —vy).
Thus (3.8) becomes

iy I:H + 'a-l;:l: My — Vi Wj— VII}
Za g +E:i o= V.t — Vi) + (8 + Ex:: Wyt — Vil —a (8 + E::“m By — Vi)

+bfu.l'| — Vi _Pll} + Uﬁrﬁ}' _Jl-fu}} + [;.'f?ﬂ' - VII} _Jl-fu}}- (3.9)

We recall that
lbfﬂ'.l’l — Vi P2 _PII::I = lbf“.l’l — = -f!n}' + lbf“.l’l — M. qh _PJ'l} + b(ﬂ' — Vi 2 _PII::I
= bluy — u,p— gp) + Bl — vy p— o).

Thus (3.9) yields

ar(8 + By wy, — vy — vy)
Za# +E:Z o= Vit — v+ a8+ E:: Bty — Vi) —ay (B + E::“ns By — V)
+ by —w,p—qp)+ Blu— vy p—pyl
+(va) — ) 4+ (20 — i) — jlu)). (3.10)

Third, we have the following bounds

ai (8 + Byt — ity — vi) = voll DG — vi)ll* = vocllus — vill3n -

a (8 + By — vyt — vi) < v | D — vl 1D —vid |l < ville = vyl e — vl g
ai (8 + it s —vi) — a0y + 0ottty — vir) < vacll PO — B )l et s g Nlen — v illizr
bluy—w,p—qy) = ey — wllzp oy lle — gl

B —vi.p—p) < e —villz o llp — pall.

v) — )+ (20 —vg) —jlu)) < (v — u) + (il —vi) < 2ellgllsllven — wells-

So returning to (3.10) one gets

)
'I.-(:,C'"u;, — ¥ ||,_rj|.;ﬂ]
= villee — villgn o lten — villzggy + vaellP 8 — ndIlees e o lees — willg oy

+ lls — wllm lle —gull + lla = vallaglle — pall + 2cllgllslhy en — e lls- (3.11)

But application of the Young's inequality yields

2
”i:‘f'"un — Vi |I”I.;ﬂ]

1 4

Vi ] ¥y ] =

= C; |IH’ — Vi |I}j|qﬂ] + 'f'v(__ |Il'?”?. - 'E"..l'l::I "_ |Iu.l'| "E;'lfu.;ﬂ] + |Iu.l'| - u"”'l;ﬂ] |IP — i |I
{] ]

+ llee — villaniany llp — pall + 2l gl sllves — weells. (3.12)
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Applying the triangle inequality on the term llus —ullng;, one obtains

2
”i:‘f'"un — Vi |I”I.;ﬂ:|
1 'l

= C; |IH’ — Vi ||H|qﬂ_| + 'C |IFfH HII} " |IHII "Wlm.;ﬂ_, + |Iu.l'| — Vi ||H|liﬂj |IP i "

+ lvn — wllaanllp — gn || + Nl — villagnlle — pall + 2ellgllslhven —aeclls. (3.13)

Now Young's inequality leads to
A
'l-'c:f'"fl:. — Vi ||,_r;| oy

|
{(‘T'J“T) = V:.Ilnuqﬂﬁc ||!:fnf:r 8] A
0 =

(s 1 5
(£ +3) Ip =l + b=l ollp—pall + 2l s — el

Vo (3.14)
Replacing the relations (3.5) in (3.14), one has
i ||HI| — Vi ||ir|.;ﬂ]
1-,3 1 [ 1
= Ct.'_ + ; |IH' ¥ |IH|.;Q_| +C |IF”?. H;,::lll ||H';| |I W) +1 — ; |lp h ||
(] < £
+ 2flee = vill ol — gl + vy ||H =ty |l N2 — v gy
+vacller — vall g IV O — B bl leell wt vy + 2l gll sllven — teells. (3.15)
Applying the triangle's inequality followed by the Young's inequality ane abtains
W:F"Hn — ¥ ||ir|.;ﬂ]
1,.--]l = 'I.-'-':l a 5
E a2 + ¥ +{"; + 1 |IH’ — Vi ||Fjl.;ﬂ] +c 'I.-'__ + V2 |IV“} _'H.l'l}"_ |Iu.l'| |IE5'|-|1'|_.;Q:|
] 0
+2c||gllslIves — uells + (i + 1) lp = aull*.
viy (3.16)

It is manifest that to close the estimate (3.16) we need to estimate the error on the
temperature, and this is what we do next.We take the difference between the temperature

equations in (3.1) and (2.41) for p = p. One finds
az (HII _Hs pl'l} +dI|fuI|s 'H.l'u p.l'l} - d.l'l fﬂ', Hs pll} = dJ’lfu _ullsah p.l'l}'s
which is re-writing as follows; for all s, € H), and v, € v,

iz (HII — Sk PR ::I + d.l'lf".l'n HII — Sy p.l'l::' =z fﬂ — &k PR }I + d.l'l (HII ] - ks Ph ::I
+ dIlfu — Vi Hs p.l'l} + d.l'l ﬁr.l'l — Uj. 'Hs p.l'l}

+ dJ'lfu — Vi, g‘:h p.l'l} + d.l'l I:VII — M, 'El;h Ph ::I- (3.17)

Thus 8y, - 54 is the solution a the temperature equation of the form (2.41). Thus
application of Theorem and Proposition leads to

Vi@ — s )l + W - V08 — 501
Wity — sl €cf +lee —va g N8l mom oy + 18N )
+lvi — e e oy Ol @0l gz any + e -1 (3.18)
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Thus from the inequality of the triangle we obtain

IFie — &l
= c|IVie = spdll + <l a1 IV 08 — i) | + cllee — wille o U@l 2000 + N8I -1
+ ellvr — e ||z 180l a0 2acy + 1B e o) (3.19)

e replace (3.19) in (3.16) and apply Young inequality's with appropriate constant
leads to

lletss = vallipg < clle —villipg, +cllves — wells + cllp — gl + <P — s,

from which we deduce that

Nty — vallen gy < ellae —vallmiy + cllves — uelly™ + ellp — gall + <18 — sallimea. (3.20)
Finally application of the triangle inequality lead to the first result announced.

Second from (3.19).and (3.20) one obtains

108 — 8)ll <ellv (0 — sl +ella = vl + cllves —uell ™ +cllp = aull-
The a priori error on the pressure is obtained by making use of (3.5).

Remark 3.1. In 9, Stokes equations under Tresca's condition is analyzed using mini-element
for the couple velocity-pressure and a rate of convergence of order h*# is derived.

In 10, error estimates for Stokes equations under slip boundary condition using Pz x Py-
element and rate of convergence is derived according to the regularity of the tangential
velocity on 5.

In 13, penalty finite element are formulated and analyzed for the Stokes equations under
Tresca's condition using P, x P;. Optimal rate is derived provided that the velocity is H2-up to
the boundary.

One notes that, the error in these studies is dominated by the interpolation error on the slip
zone S.

Remark 3.2. From the error estimate obtained it is manifest that the rate of convergence is
dominated by the term appearing on the boundary S, and for actual computation of the rate
of convergence we recall (see 24, p. 39) that for 1= p ==, there exists ¢ such that

IWllzrany < ellvlmgr IVl g, forall ve w'¥@). (3.21)
Thus if (u, p.#) e H* @) x H' (@) x H2(©), then using (3.21), one has

llees —aellinegy + 10 — Bl iy + o — pall < ™.

If moreover u|; € H*(5), then

leen — e lleiisey + 18 — s llin o + e — pall = che
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It should be noted that if one replaces in the finite element approximation j(v) by its
Simpson's approximation ji(v), then it can be shown 10, 17 that

Natn — el zngeyy + 1€ — Bl + e — pall < ch.

4. ITERATIVE SCHEME

Since the discrete problem (2.41) or (2.40) is nonlinear, it can be solved by an iterative
scheme. Considering that we are dealing with two physical processes (fluid flow and
canvection diffusion), the need to separate these processes for easy computation is very
important. Hence our goals in this paragraph are twofold. First, propose an iterative scheme
that decoupled these two processes, next study the convergence of the proposed algorithm.

Before addressing these issues, it is worth noting that one of the difficulties in implementing
(2.40) is the relation 4i -u. s = lu-4| a.e.in S which is difficult to enforce. We provide next an
equivalent characterization of that relation for a better derivation of iterative schemes. We
claim that

Lemma 4.1. 17. The following propositions are equivalent

a. dehand A-u. =|u:| g.e.0n S,
b. ien and fu:-(u—4de =0 forall e .

Next, adding and subtracting i , the relation in (b) is re-written as follows

/(1 +yt,— A)-(u— Ade =0 forall gy e AxE,
5

which with the help of projection theorem on A (since it is closed and convex) is equivalent
to

A= d+yus)  forall y =0, (4.1)

with @, : L(5) — A the projection operator defined as follows 17

alx)

Pulayn) = — D
ala)ix) max(1, (o))

We claim that.

Lemma 4.2. The operator = is a contraction.

Proof. Indeed, for
e LF(Q)
, we readily obtain the result if max(l.|al) =1, because #ala)(x) = a(x). But if max(1.|a|) = |a(x)],
then #a(a)) = ==, From 17, p. 89 one has
a_ b

la| 1B

<2 |"_b|.
= al + b
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Remark 4.1. It should be noted that since g is nonnegative, the following statements are
equivalent

a. Find i e suchthat 4-u. = |u:] 3a.e.in§,
b. Find 1 e A such that figu. -(u—Ayde <0 forall pea.
€. A=Fud+ygue) forally=0.

From Remark, the following equivalent problem can be formulated (more suitable for the
derivation of iterative methods)

=

Find (w.p.0.4) € VX Mx H){Q) x A such that,
forall (v.g.plE VXM xH(',fSZ}I and all p =0
ai(0+ Bosu,v) +b(v.p) + [gd -ve = (f.v)

blu.g) = 0,

A= (A+ygu,) aein §,

ax(®, p) +d(w, 8+ By, p) = (b, p} — ax(Bo. p).

(4.2)

The formulation (4.2) has many numerical advantages and will be used later in the

design of the numerical strategy. The new unknown i is not strictly speaking a Lagrange nor
Kuhn Tucker multiplier but has some common properties with such vectors. Hence it is
called multiplier by many researchers.We shall consider the following algorithm based on
Uzawa iteration.

Initialization: Given 3° e A, we compute (¢°.4°.p%) such that

forall (p.v.q) € HYQ)x Vx M,
as(8°. p) = {b. p) — ax(By. p).
ay(6° + By; u® vy + biv, p%) = (f.v).
biu", g) = 0.

(4.3)
By induction, knowing {«".p", 4".0"}, we compute jg«+! g+ g1 37 by solving.
forall v.g)eVxm

ay (0" + B " vy + biv, p"tYy = (fv) — ‘;gﬂ." cved o,

bu"t', q) = 0. - (4.4)
for all p e Hli©)
ax (@™, p) + d(a 0" 8y, p) = (b, p) — aaiby. p). (4.5)
forall y >0, A" =" +yguit!). (4.6)

Remark 4.2. In the algorithm (4.4)-(4.6), the fluid has been decoupled from the heat
convection. We shall prove that this Uzawa's type algorithm is convergent by using the kind
of energy method presented in Glowinski 17.
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The approximate version of (4.4)-(4.6) is described as follows.
Initialization: Given i = (., 1) € A, we compute (#.x{.p}) such that

forall (p.v.q) & HY % Vi x Mj,
ax(6).p) = (b. p) — ax(fy. p)
a8 +8o;ul vy +bv.pl) = {f.v).
biuj. q) = 0. 4.7)
By induction, knowing {uj. . 4;.8} 1, we compute (&« gt 23} by solving

for all (v.q) € Vi x M,

ay (@ + B vy + bv pity = (Fovy— [ gdl - vedo.
s

blui*'.q) = 0. (4.8)
for all p e H),
ax(@t o)+ du(u M8 + By, p) = (b. p) — a2 (8. p). (4.9)
forall ¥ >0, A =2 +yguth). (4.10)

We recall that dy(-, -, -) has the same properties as d(-, -, -), and because we are dealing '
with conforming finite element, the study of the convergence of the algorithm (4.8)-(4.10) is
not different its continuous counterpart (4.4)-(4.6).

4.1 A priori estimates

In this subsection, we discuss the feasibility of the algorithm (4.4)-(4.6) and establish some a
priori bounds.

The first step can be recast as follows; Given «".p* and 4", Find (w'*'.p"t!) such that for all
vgieVxM

ar (0" + By ™ v +bfv,p"+'} ={fvi— [gd" -vido,
B

biu""', gy = 0. (4.11)

The variational problem (4.11) is a perturbed Stokes equations. Hence the existence

and uniqueness of solution is obtained from the same conditions needed for the Stokes
equations 18, 19. Furthermore we claim that

Proposition 4.1. Let (w*!,pt'y be the solution of (4.11). There are ¢y, ¢3, ¢3 independent of n such
that the following a priori estimates hold for all nz=1
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[
e I> < (I W) + NS15)-
0

s 2 2 2
" Wiy < ﬁf"f"n-'cm + llglls).
[}
, 1
e || = c3 (1 + ;) CUFN -1y + Ng Nl s
]

The following relation will be used throughout this work

ab = EI!P-I- y B, forall a,b.e >0, with 1 + 1 =1.

qett? roq (4.12)
Proof of Proposition 4.1. We take
o= ZH"+|

in (4.11) and obtain

2ay(6" + Byt ) = 2{f ) —?fm*' cuitde.
g

(4.13)
The relation (2.6), the inequality of the trace and (2.5) gives
2f ™y < 20 Ny P < 200 1y D)
c 2 Yo sl g2
= — Wl i + = DI,
wo T (4.14)
and
?fé?l" witde < 2/@?Iﬁl" st |de < 2(lgll sl s
5 5
< 2l gllsl7u )
< 2cllgllsll D" ||
< gl + 2wt
g 2 (4.15)

Hence using the coercivity of ai(-, ) on the left hand side of (4.13), together with (4.14)

and (4.15), one obtains

wllDu" P < SN W0y + — 815
| | " Wil 1{41) 0 llglls (4.16)
We deduce the inequalities on the velocity after utilization of (2.5), (2.3) in (4.16).Next,
from the inf-sup condition (2.19) and the first relation in (2.1), one has
Ll bf ]
Bl < sup D
verty Wl
i i
< sup {fﬂ’} —a (B +H|;:.|!I“+ Y
eV |1 P
< W M1 + vall™ .
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thus the inequality is obtained by replacing the estimates on [lu"*' (|5 q;.
The second step within the iterative scheme is re-written as follows:

Find e+' e H)(@) such that
for all p e H)(Q), al(@ . py = £10p). (4.17)
with

ay (0", p) = ax(0"F', p) +d(u"t 8", ),
£1(p) = (b. p) — ax(By. p) — d (@™, B, p). (4.18)

It is readily checked that problem (4.17) has a unique solution as a consequence of the
properties of the trilinear form d(-, -, -) and the bilinear form as(-, ).
Proposition 4.2. Let 8"+ be the solution of (4.17). There are ¢, ¢; (both independent of n) such
that for n =1 then the following a priori estimates hold
9"11* < ey (iw 1B1152- 2y + 180l1 70 2, + £ ||9i=||,':r”1mn)*
K= K=

- 1 A - ]_ -
" 1|z iy =02 (F 1Bl un 120l 20 syt el ||1‘?'i:||,_r;|.u.;¢pm) .

Proof. We take p=26"*"in (4.17) and obtain
2cIve™ 1P = 20, 0"y — 2aa(fy. ") — 2d @™ By, 0.
By using the standard inequalities we have
2b.0*) < 2bll-@ V0" 1 < Wbl + 1 IVO™ I,

2ay (B, 8" < 2| VBT
< 2ex || 8ol e IVEH

[
— 100155 2oy + E2ATE .

1A

From the properties of d(-, -,-) and (2.14)

2d @™, B0, 0") < 2" G ITEH < 2l e 160 lls g IV O

< 25l | gy B0l 2oy IV O]
1 ol ol ol 4
= E_a_ ||u"+| |I;’_-I.;ﬂ:| ||H(:||:r;| 24 3y + &3 ||Fﬁrl+| ||'
3
We deduce for s = 1/Ju™ . £ =£3 = «/3 and e = 1/3 that
K'll vt ||: = i ||-;7||§;-| {0 + fK'"H(: |I§jl.'_‘.;,uiﬂ:| + l ||'|r?'£:||ir| By
LS s (4.19)

Hence we deduce the estimates on the temperature.

The next result indicate a “consistency” of the algorithm (4.4)-(4.6). In fact we claim that
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Lemma 4.3. The algorithm (4.4)-(4.6) is consistent with the problem (2.12) in the following sense.
If (w.0.p. ) js the solution of (2.12) and there exists an integer m such that (u". 8", p", ") = (. 8.p, 1),
then for allnzm, (", ¢".p". 1") = (w.8.p. A).

Proof. Itis done by induction and it suffice to show that if

(. 8" p", A" = (u.8.p. 1)

then @+, e p ! 4™ = w.0.p. 1) -

Using the induction hypothesis in (4.4), one has

al(@+ B v) +biv.p"™" ) = (fv)— [ gd - vede.
p
b, g) = 0. (4.20)
By subtracting (4.20) with the first two equations of (2.12) one has

ai(@ + o;u™ —u,v) +biv.p"t' —p) =0,
™! —u.g)= 0. (4.21)

At this junction we apply Proposition and obtain that 4+ =, and p"*" = p.
Next from (3.2) we have

ax(@ p) + diu, 0" 4 By, p) = (b, p) —aa(By. p).

while from (2.12)

ax(®, p) +d (w8 + 8. p) = (b, p) —ax(By. p).

Therefore

a (@ — 0, o+ diw. @ =0, ) =0

For p=6"*1 -6, we deduce that 81 = 6. We easily deduce that ;" - j .

4.2 Convergence

In this paragraph, we are interested on the convergence analysis of the algorithm (4.4)-(4.6)
when n tends to infinity. We claim that

Theorem 4.1. Let (', p+!, g1, i"+y be the solution of (4.4)-(4.6) with the regularity u" € W' ().
Let (u.8.p. 1) be the solution of (2.12) with u € W'+ (q).

There exists a positive constant ¢ independent of h such that if (v, k, 8y, b) are taken such that

ol ol
5 follD" "Ln_.;ﬂ-
cyllgll= + — )

(& [
+ cllBgll a2 oy + - Bl -1y + - 18l 1 2 gy < 2vips

[ & C
BN + = g + 1€ lazem <«
K_II -1 g rll&:llanmj 1% D 2o . (4.22)
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then the following properties hold

u" — u stronglvin V., 8" — 8 strongly in H'\(Q),

and the sequence [||A" — A5t converges.

Proof. We will adopt the following notation

E" =a"—a

We also recall that (2.30) together with (2.31) will be used here.

We let v = o' — u ="' and take the difference between the velocities equations in (3.1) and
(2.12). One obtains

/v( "+ o) D" =frvf9+ﬁa}—vm' + 8))Du : D!

- /gT' c#Mdo.
H (4.23)

Next, we take the difference between the temperatures equations in (3.2) and (2.12)
for , —=@™"'. We use the properties of d{-, -, -), Proposition , and (2.14) we find

cIVE 2 = —d@ e + 8. 8+ dw, 0+ 0.7
= —d@t o T — a8, 7). (4.24)

Adding (4.23) and (4.24), we find

- - — 4 =i+l A
/ga it = —/v[ "t B oa P = vE )
g

+f[1-f9 +8y) — vi0" + 8,))Du : Da"

_JI+|

—d@ e F ) —d@ 8. 0. (4.25)

We recall that for y=> 0, one has

A=Pald+ygug)., A = PuA"+ paulth.
Using the fact that P, is a contraction mapping, we obtain

—u|+|

177N < 13" + peaet!|)s.

Thus taking the square on both sides and making use of Holder's inequality, trace's
inequality and (4.25), one obtains
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—ti+1

1705 = 1705 < v et 15+ 27 f i@ do
ser "g"f‘“‘c‘ulw_nﬂ ||_ +21‘ﬂ31ﬂ i de

5 5 —t 5 it by it —it1 o
< ey llgli= s Ve +|||' -2y / V(8" + By | D +|| — 2k|I7E + I

-I—Zr/fvf.‘a' +8y) — V(0" +8))Du ¢ Dt

_2pd@t ot @y —2pa @t 8, 8. (4.26)

In order to close the inequality (4.26), we need to estimate the terms on the right-hand
side of (4.26). First, from the mean value theorem, (1.5), the generalized Holder's inequality
(2.30) (with the same parameters as before), one finds

frvf9+§u}—vw' + 8y))Du : D! gvgfﬂ‘ | Du || Dae" |
i1

<18 [l g || Dt g | DR .
Now using the Sobolev inequality (2.31) (with the same parameters as before), one has
18" lzm ) < clIVE Il
Thus

/fw‘f" +80) — V(8" +8,0Du : DI < vac|| Du | gy V8| | D).
0 (4.27)

Second the properties of d(-, -, -), Proposition, and (2.14) together lead to

t it i+1 —t = =it
di@ ot @y a8, 7
— it - i+ 1 —ait 1 e —ii+1
<N N IV ™ Neseay + M8 N IV BINE ™ N gy

—i+1
=c (— NNz + Nl 2o + = II&: ||f.|‘|-'11;u'!!]) Ivatve ||

—ii+1 it
+cllBoll s mqacy IVE VO (4.28)

Returning to (4.26) with (4.27), (4.28) and using (1.5), one has

—\l|+|

[ (P

< pleyllgliog — 29IVE 1 + 2pvaclDulln IV [IFE™ )
1 1 —si+1
+ ¢ (Bllg-1c00 + 100l + < 1ol Equgh) IwEiiva )

—i+1 1

—|||+|

+ ey 1Bollao IVE T IVE || = 2y ||VE

which with the help of Young's inequality implies that
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—i+1

T3 + 7@ 12 = AT + pelV@ 1)

v%c‘"Du ":_:."!qﬂ]

5 [ [ 5
<y (frllgll,?_aq_ﬂ;] — 2wy + + cllfo llin 200 + ;"bllﬂ-lqﬂ] + 160 llen ﬂwﬂ]) Ivat |

—\|I+| a

[ & [
+7 (S Wbllas + < 100lron + clollnen, - ) 1781, .29

Having in mind (4.22), it appears that the right hand side of (4.29) is nonpositive. Thus
the sequence (7|12 + ycIv@" "' |1%), is positive and decreasing. Hence the following hold true

—i+1

. i+l A A —i A —it 4
m {715 +pellv8 17 = (T 15+l 78 1) = 0. (4.30)

From (4.30) and (4.29), one deduces that

lim|va'|| =0, lim |78 = 0. @31)
Combining (4.31) and the fact that (|Z"|I3 + y«I¥8"|I*), converges, one deduces that

(17" 5, converges and

tim (17" lls — 17"lls] = 0

w10 TR (4.32)

Remark 4.3. Several observations about the convergence of the algorithm (4.4)-(4.6)
are in order.

First, choosing p through (4.22) is impractical because of the presence of several unknowns
expressions such as the constant ¢, IDulle=;. In our numerical experiments, we show that
only limited values of y are allowed to achieve convergence of the algorithm discussed.

Second, the convergence of (4,), is more complicated and we refer the interested reader to
25 (Chapter 4).

5. NUMERICAL EXPERIMENTS AND CONCLUSION

All computations were performed using Matlab on DELL i3 with 8 GB RAM. The test
problems used are designed to illustrate the behavior of the algorithm more than to model
an actual phenomenon. The algorithm described will be tested computationally. We stop the
computations when the following condition is satisfied

H'”+I _u..ll el + HJI-I-I _‘.’?UI a
o . "1 I 1 I < tol = 6.0e — 5.
"u.l'l "_ + |IHII "_

For the linear system (4.4) (see Step 1), an incomplete LU factarization (iLU) is performed and
the result is used as preconditioner in the GMRES solver. The linear system (4.5) (see Step2)
is solved by Gaussian elimination.
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5.1 Example 1: choice of y

The objective is to compute the relative error with respect to y in order to achieve the
convergence of algorithm for a value of g such that |(Tn).| > g. This will allow us to see a
range of admissible values of y. For that purpose, we consider the unit square Q = (0, 1)* and
we assume that its boundary consists of two portions I and S defined as follows

[ = {0} % 0. 1)U, 1)x {0}
§=50US and & =0.1)x {1}, S»={1}x(0.1).

We consider

(e, y) = 2001 — x ) w(2 — 3y),

s (x, v = —2002x — 6x2 + dxF 2 (1 —v),
plavy =(2x— 132y — 1),

B, v =29l —x)(1 — v, (5.1)

and

vidh = %f_a + i for which one has

| =
|

We adjust (f. ) such that

—2divi(@)Du +Vp = f in Q.

— kAP +(u-Vid=5F m L.

By direct computation and considering » = (0.1)" and « = (1.0)", one has

(Th)y = —80v(@* (1 —x)*t on § and max | (Tn)| =3.75.

We let k=1, and choose g such that g < maxs|(Tn).| = 3.75. Because we do not have the exact
solution of boundary value problem (1.1)-(1.5), we assume that the finite element solution
obtained for h = 1/128 is the reference solution. We compute the relative error

_ vt — e I + IV G0 — 07 I

RE nl i A
Ve |I- + IVE,I°

for different values of y. The results reported in Table 1 show the convergence of the
proposed algorithm with respect to y. It is also observable that we do not have convergence
fory=1,5,12 and g = 4.7. Hence the results obtained are in agreement with Theorem .
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Table 1. Convergence of the algorithm with respect to y

v ‘ 1072 ‘ 107 ‘ 0.25 ‘ 0.5 ‘ 0.75 ‘ 1 ‘ 5 ‘ 12
RE(g=0.8) 0.0993 0.0993 0.0992 0.0992 0.0992 0.0992 0.0992 0.0992
CPU time 74.15 40.25 14.55 8.75 7.25 6.33 2.29 1.75
Iterations 307 89 55 36 30 26 12 7
RElg=4.7) 0.0992 0.0992 0.0992 0.0992 0.0992 - - -

CPU time 71.32 17.80 0.75 5.46 3.81 - - -
lterations 295 75 a1 23 16 - - -

Next, we report in Table 2 the number of iterations and CPU time needed to achieve the
convergence for different values of g when y = 0.25, and for different values of h. It appears
that there is no direct correlation between the number of iterations required to rich
convergence of the algorithm and the mesh size.

Table 2. Number of iterations and CPU (s)

0.8 = g < maxg|({Th);| 3.75 = g = maxg|(Tn)| 4.7 = g > maxg|(Tn);|
h Iter CPU Iter CPU Iter CPU
174 56 0.31 31 0.21 48 0.24
1/8 51 1.28 48 1.16 43 1.54
1116 55 12,94 45 1071 41 9.80
1/32 51 139.43 41 113.62 42 116.2
1/64 51 825 45 313 43 284.6

5.2 Example 2: driven cavity flow

This is classical example that has been studied by among others 11, 12 using classical

Tresca's condition. The nonlinear slip condition we use is the one formulated by Leroux 5
(1.4).

We consider the problem described in Example 1, with y = 0.25 and the goal is to identify the
slipping/sticking zone depending on the values of g.

Figure 1 is concerned with the situation where maxs|(Tm).| > g = 0.8, It is apparent from the

graphs showing streamlines or velocity field that u<ls # 0 on 5= 5; U S;. Hence the nonlinear
slip occurs here.
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In Figures 2 and 3 one has maxs|(Tw)| < ¢ . It is apparent that there are no contact between
the fluid and the boundary éQ of the domain. Hence one can conclude that «, =0 on § =5, U
S;. Therefore no slip is noted. But on the other side, a direct computation reveal that for

u = (. ) defined in (5.1), u:ls # 0. Hence the velocity field given by (1.1)-(1.5) differ from the
velocity field defined in (5.1).

One notes through Figures 1-3 that the temperature is nonnegative and bounded from
above (this observation is not supported by the theory discussed). Finally, in these three
figures, the pressure distribution does not change too much. We believe that small variation
on the pressure is due to the fact that the slip condition (1.4) does not take into account the
pressure which is by the way only defined in the interior of the domain. Hence the
simulations results are in a way in agreement with the slip relation (1.4).
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Velocity field Streamlines

i
I
i
0.5 i
t
|

W=
NS
0 oo
0 0.5 1
Pressure distribution function 9h
0.05 -
0
1
Figure3.g=4.7

5.3 Example 3: convergence check

One considers the same problem described in Example 1. Since we do not have the exact
solution, then it is assume that the solution obtained for h = 1/128 is the reference solution,
and from the simulations in Example 2, we take g = 0.8 to ensure the existence of slip
condition on S. We replace j(v) = (g.v:)s by its Simpson's approximation. It is noted from
Tables 3 and 4 that the convergence rate is linear for the quantity

letrer —eeilli + 18y —8slli + Py — pall. Once again these simulations are supported by the theory
(Remark ).
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Table 3. Convergence rates with function g= 0.8

h lleze; — sl ‘ Rate llaze; —2eslls ‘ Rate ‘ 1P rer = Pyl Rate
174 7.28e-02 B6.14e-01 1.07e-01
1/8 1.80e-02 2.01 3.02e-01 1.01 4,30e-02 1.31
1716 4.55e-03 1.98 1.37e-01 1.14 0.76e-02 1.18
1/32 8.55e-04 2.41 2.75e-01 1.00 4.67e-02 1.06
1/64 1.96e-04 212 5.51e-01 1.00 1.95e-02 1.26

Table 4. Convergence rates with function g=0.8

h 18,er— Byl ‘ Rate ‘ 18,7~ Bll1 Rate
174 7.25¢-05 2.20e-03

18 9.83e-06 2.48 6.46e-04 1.56
1116 1.81e-06 2.43 2.53e-04 1.35
1/32 3.92¢-07 2.21 1.11e-04 1.18
1/64 7.59¢-08 2.36 4.34e-05 1.35

5.4 Concluding remarks

We have investigated the numerical approximation of the Stokes flow under nonlinear slip
boundary condition coupled with the heat equation. The conditions under which the weak
solution and its finite element counterpart are uniquely defined are highlighted. We have
shown convergence of the finite element approximation considered and established that
order one rate of convergence can be obtained if greater regularity of the tangential velocity
field on the slip zone is imposed. To compute the approximate solution, we have proposed
an iterative scheme based on Uzawa-type algorithm and studied its convergence. Finally, we
have exhibited some numerical experiments that validate the theoretical findings.
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