
 

 

Optimal portfolio performance constrained by tracking error  

 

by 

 

Wade Michael Gunning 

 

Submitted in fulfilment of the requirements 

for the degree  

Master of Science in Financial Engineering 

 

in the Faculty of Natural & Agricultural Sciences 

 

University of Pretoria  

Pretoria 

 

 

October 2020 



 

 

SUMMARY 

 

 

 

OPTIMAL PORTFOLIO PERFORMANCE 

CONSTRAINED BY TRACKING ERROR 

by 

Wade Michael Gunning 

Supervisor:  Prof. Gary van Vuuren 

Department: Mathematics & Applied Mathematics 

University: University of Pretoria 

Degree: Master of Science, Financial Engineering 

Keywords:  Active investment style, tracking error, benchmark, efficient frontier, 

Omega ratio, optimal portfolio, performance metrics. 

 

Maximising investment returns is the primary goal of asset management but managing and 

mitigating portfolio risk also plays a significant role. Successful active investing requires 

outperformance of a benchmark through skilful stock selection and market timing, but these 

bets necessarily foster risk. Active investment managers are constrained by investment 

mandates such as component asset weight restrictions, prohibited investments (e.g. no fixed 

income instruments below investment grade) and minimum weights in certain securities (e.g. 

at least 𝑥% in cash or foreign equities). Such strategies' portfolio risk is measured relative to 

a benchmark (termed the tracking error (TE)) – usually a market index or fixed weight mix 

of securities – and investment mandates usually confine TEs to be lower than prescribed 

values to limit excessive risk taking. The locus of possible portfolio risks and returns, 

constrained by a TE relative to a benchmark, is an ellipse in return/risk space, and the sign 

and magnitude of this ellipse's main axis slope varies under different market conditions. How 

these variations affect portfolio performance is explored for the first time. Changes in main 

axis slope (magnitude and sign) acts as an early indicator of portfolio performance and could 

therefore be used as another risk management tool.  

The mean-variance framework coupled with the Sharpe ratio identifies optimal portfolios 

under the passive investment style. Optimal portfolio identification under active investment 



 

 3 

approaches, where performance is measured relative to a benchmark, is less well-known. 

Active portfolios subject to TE constraints lie on distorted elliptical frontiers in return/risk 

space. Identifying optimal active portfolios, however defined, have only recently begun to 

be explored. The Ω ratio considers both down and upside portfolio potential. Recent work 

has established a technique to determine optimal Ω ratio portfolios under the passive 

investment approach. The identification of optimal Ω ratio portfolios is applied to the active 

arena (i.e. to portfolios constrained by a TE) and it is found that while passive managers 

should always invest in maximum Ω ratio portfolios, active managers should first establish 

market conditions (which determine the sign of the main axis slope of the constant TE 

frontier) and then invest in maximum Sharpe ratio portfolios when this slope is > 0 and 

maximum Ω ratios when the slope is < 0. 
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INDEX 
 

Term Definition 

Absolute risk and 

return 
Metrics measured relative to a benchmark. 

Active management 

The frequent purchase and sale of securities with the intention 

to take advantage of changing market conditions. Actively 

managed portfolios are assessed relative to a benchmark usually 

a market index. 

Alpha (𝜶) Gearing of portfolio returns to market or benchmark returns. 

Benchmark 

An assembly of constituent assets of varying weights against 

whose collective return a fund manager’s portfolio return is 

assessed. 

Beta (𝜷) 
The portfolio return generated when the market or benchmark 

return = 0% 

Capital Market Line 
The locus of risk-return coordinates described by the risk-free 

rate of return on the return axis and the tangent portfolio. 

CAPM Capital Asset Pricing Model 

CML Capital Market Line 

Constant TE 

frontier 

The locus of risk-return coordinates which trace out all possible 

returns for any given level of TE. 

Constrained 

portfolios 

Agent-imposed restrictions on component asset weights as 

usually prescribed by mandates. Examples include exclusion or 

inclusion of certain asset classes or the imposition of upper or 

lower boundaries. 

Efficient frontier 
The locus of coordinates in return-risk space where for every 

level of risk, the maximum return possible is plotted. 

Excess return The difference between the portfolio’s its benchmark’s return. 

Expected return 

Either the average of an asset’s historical return, or, using expert 

judgement, an assessment of potential future returns given 

anticipated economic conditions. 

GDP Gross Domestic Product 

Investor utility 
A metric which incapsulates the gamut of investor preferences 

applicable to their portfolios. 

Main axis 
The locus of the risk-return coordinates joining the minimum 

variance on the efficient frontier and the benchmark. 

Monotonically 

increasing or 
In the relevant direction only. 
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decreasing 

MPT Modern Portfolio Theory 

Omega ratio (𝛀) 

A performance metric which makes no distributional 

assumptions of underlying portfolio returns and is particularly 

effective for return distributions containing extremes. 

Optimal portfolios 

Portfolios defined to be the “best” in some sense, for example 

exhibiting maximum return, minimum risk, maximal 

diversification, or maximum risk-adjusted return. 

Passive management 
The purchase and retention of securities for medium to long 

term investment horizons. 

PST Portfolio Selection Theory  

Portfolio 

performance 

A suite of metrics used to assess and compare portfolio 

behaviour. 

Risk 

A measure of the variability in an asset or portfolio’s returns, a 

proxy for which is the standard deviation (volatility, denoted by 

𝜎). 

Risk-adjusted 

return 

Also known as the Sharpe ratio, this is the quotient of the 

difference between portfolio return and risk-free rate and the 

portfolio volatility. 

Tangent portfolio 

The portfolio which exhibits the maximum Sharpe ratio or risk 

adjusted return. Note that such a portfolio exists on the efficient 

frontier and the constant TE frontier. 

TE Tracking error 

TE frontier 
The locus of risk-return coordinates which trace out the 

maximum return possible for any given level of TE. 

Tracking error 
A measure of relative risk, defined as the standard deviation of 

the difference between portfolio and benchmark returns. 

Variance  𝜎2  
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CHAPTER 1 GENERAL INTRODUCTION 

1.1 BACKGROUND AND SCOPE 

1.1.1 Theme 1 – The main-axis slope of the constant TE frontier 

The panic induced by the 2020 COVID-19 pandemic led to substantial sell offs of securities 

leading to unprecedented declines of global market indices, commodity prices, Gross 

Domestic Product (GDP), interest rates and consumer confidence. While the effects will be 

long-lasting and painful, this turbulent world offers plentiful investment opportunities 

(Fernandes, 2020). 

There are two styles which characterise investment markets: passive and active management 

styles. For the passive approach, managers buy and retain securities (or portions of market 

indices) for relatively long periods because they believe that outperforming the market is not 

feasible, so the most sensible strategy is to reduce transactions (and fees) by minimising 

costly transactions and be content with the broad market's returns. For the latter, managers 

assume that through skilful selection and timing of sales and purchases, market 

outperformance is possible. The emphasis in this investment style is on relative performance, 

so skill (outperformance) is assessed relative to a prescribed, mandated benchmark. Risk is 

also assessed relative to the benchmark's risk (Fahling, Steurer & Sauer, 2019).  

Markowitz's (1956) efficient frontier formulation has directed passive investment research 

for almost seven decades and the literature on associated portfolio optimisation is 

considerable. Sharpe (1964) introduced the concept of a maximum risk-adjusted return 

portfolio for 'optimal' performance, called the tangent portfolio. Active investment strategies 

involve more complex structures, because here, constraints restrict the investable universe. 

Benchmark constituents, the size of TE (portfolio risk relative to the benchmark) and asset 

weight floors and caps all contribute to additional complexity. Roll (1992) initiated research 

into TE constrained portfolio behaviour and developed the framework for describing an 

efficient frontier in risk/return space constrained by various levels of TE. Jorion (1992, 2003) 

extended this work and developed the details for the constant TE frontier: i.e. a locus of 
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points in risk/return space which embraces the universe of risk/return combinations – relative 

to the benchmark's risk and return.  

TE is an active risk measure (defined as the standard deviation of the difference between 

portfolio and benchmark returns) that reflects a portfolio manager’s decisions to deviate 

from the weights of a benchmark's positions with the aim of outperforming the benchmark. 

The inevitable risk introduced by this deviation is the TE, although it is not generally used 

as a risk metric to assess portfolio manager performance in isolation. Rather, other measures 

are used in combination with the TE for this purpose, such as Value at Risk, the Information 

ratio, etc. Fund managers determine the investment policy (i.e. its risk-return profile, 

outperformance targets, etc.) which in turn determines the TE. Thomas, Rottschafer and 

Zvingelis (2013) outline several causes of TE (fees, transaction costs, taxes, factor tilts, cash 

management and market volatility).  

In mean/variance space, the universe of possible portfolios constrained by a TE is an ellipse 

(and in risk/return space, it is a distorted ellipse). The ellipse's orientation (designated by the 

sign and magnitude of the 'main axis' slope) changes through time as economic conditions 

change. The way the main axis slope changes under different economic conditions, is 

explored here for South African (SA) stocks (an emerging third world economy) for the first 

time. The relevant mathematics required to calculate both the sign and magnitude of the main 

axis slope is detailed and the way this slope changes as time evolves and market conditions 

change assessed. Results indicate that when the main axis slope changes sign sharply, a 

prolonged downturn in economic conditions inevitably follows. The effect is subtle, 

however. Forecasting economic conditions (and hence investment strategy) may depend on 

slope sign changes, but this depends on the direction of the change (i.e. +𝑣𝑒 to −𝑣𝑒), the 

magnitude of the slope before the reversal and the speed and size of the reversal. The 

combinations are persistent and robustly predict near economic conditions with reasonable 

accuracy. The way the main axis slope (and magnitude) moves through time triggers novel 

investment strategies for active fund managers. 

1.1.2 Theme 2 – The optimal 𝛀 ratio under a TE constraint 

Investment styles follow one of two broad approaches: active and passive. Active fund 

managers trade frequently and engage energetically with the market. Successful active 
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managers identify not only high-performing assets, but also time trades to extract maximal 

performance, buying when prices are low and selling when they are high. Skill in this space 

is usually measured relative to a benchmark, usually a market index or an assembly of similar 

securities with constraints on portfolio weights, asset quality and acceptable risk. Passive 

managers select and purchase desired securities and hold these for investment horizons 

which span periods of economic booms and busts. Such managers' proficiency is measured 

on an absolute basis, they minimise transaction fees and aver that "good" securities 

outperform in the long run.  

Both styles have pros and cons, and the ebb and flow of economic activity often dictates 

investor style selection: passive usually in stable markets and active in volatile. Events such 

as the 2020 COVID-19 pandemic which severely shocked global markets, serve to 

emphasise the importance of agile, active investing. Managers capable and eager to quickly 

dispose of airline, oil or tourism-related stocks for example, avoided the worst of the 

downturn and significantly outperformed less-nimble investments. 

Modern portfolio theory led to the design and application of the widely-used efficient 

frontier, which plots – in return-risk space – the locus of portfolios whose arrangement of 

constituent security weights generates maximal returns at each specified risk level. Sharpe's 

work identified the optimal portfolio on this frontier: one whose excess return (usually over 

the risk-free rate) per unit of risk taken to achieve that return, was maximised. This 

framework of asset selection is ideally suited to the passive investment style. Identifying an 

optimal portfolio using this construction implies the belief that markets are relatively static 

and that buying and holding the optimal portfolio will eventually lead to the desired 

risk/return characteristics.  

Active investment strategies require more complex structures. Portfolios whose performance 

and risk are measured relative to a benchmark follow a different locus of possibilities in 

return/risk space. Jorion (2003) demonstrated that such portfolios occupy a distorted ellipse 

in this space – rather than the efficient frontier's hyperbola for absolute risk and return. The 

dimensions and orientation of this ellipse is governed by many factors, including the 

variance-covariance matrix of underlying security returns, benchmark weights in the 

permissible universe of investable assets, constituent portfolio weights relative to the 

benchmark and the size of the TE. The greater the deviation from benchmark weights, the 
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higher the possibility for outperforming (or underperforming) that benchmark (and the 

higher the TE). Active managers – to limit excessive risk-taking – are often constrained to 

not exceed prescribed TEs. There are profound differences in the way portfolio risk and 

return evolve and are measured under active and passive investment styles. Standard 

performance metrics, in common use for passive portfolios, require complex reformulation 

and behave in unfamiliar ways in active space.  

The Ω ratio, a performance metric which makes no distributional assumptions about asset 

returns, is popular amongst passive investors, but determining the asset allocation to generate 

an optimal Ω ratio portfolio eluded researchers for years. The definition of the Ω ratio imbues 

it with non-convex properties which do not yield to standard optimisation techniques. 

Recently, Kapsos, Zymler, Christofides and Rustem (2011) accomplished this feat using 

linear programming, but their approach has not subsequently been applied to active 

portfolios, i.e. those constrained by TEs. Maximum Ω ratio portfolios were identified on the 

constant TE frontier under different market conditions and these portfolios' performance 

were compared over time to that of universal (unconstrained) Ω ratio portfolios. 

1.2 LITERATURE REVIEW 

In the following sections, a condensed, specific and targeted literature review is presented 

for each of the pertinent fields of study. Chapter 2 provides a comprehensive review of 

current available literature on these topics. 

1.2.1 Theme 1 – The main-axis slope of the constant TE frontier 

Markowitz (1952) formulated the mean/variance framework which indicated to investors 

their coordinates in a return/risk plane. An efficient set of portfolios (i.e. those with a 

maximum return at a given absolute risk level) trace out a hyperbolic curve in this return/risk 

space. Sharpe (1964) established the maximum risk-adjusted portfolio return – now known 

as the Sharpe ratio. This ratio measures the quotient of excess return (over the risk-free rate) 

and portfolio risk (defined by its volatility) given as 

𝑆𝑅 =
𝜇𝑃 − 𝑟𝑓

𝜎𝑃
. 
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where 𝜇𝑃 is the portfolio annual return, 𝑟𝑓 is the annualised risk-free rate and 𝜎𝑃 is the 

portfolio annualised volatility (or risk). 

Two investment styles dominate the market: passive management (known as buy-and-hold, 

which is generally cheaper) and active management (strategic stock selection and timing, 

generally more expensive). Both passive and active fund managers are evaluated and 

remunerated depending on their propensity to outperform the broad market. The former 

accomplishes this by taking and holding small bets relative to market indices, whilst the 

latter attempts to generate outperformance of a prescribed benchmark (usually a market 

index or a – sometimes arbitrary – combination of securities) by taking a combination of 

bets and timing market movements. Active managers are often also constrained by a TE, 

which may not be exceeded under the mandated investment contract (Riccetti, 2010). 

Passive fund managers generally aim for the maximum Sharpe ratio (tangent) portfolio on 

the efficient frontier (Markowitz, 1952) although there are several other possibilities in 

which passive fund managers may explore, such as the minimum variance portfolio (for 

highly risk-averse investors), the maximum diversification or minimum intra-correlation 

portfolios (for risk averse investors), etc. Active manager performance is evaluated using 

several criteria, one of which is the TE (Menchero, & Hu, 2006). 

Roll (1992) set out the description of the maximum return portfolio, relative to a benchmark, 

for a given TE, a formulation that describes a hyperbolic curve, much like the efficient 

frontier (but shifted to the right – i.e. riskier), in risk-return space. Absolute portfolio risk is 

neglected in Roll's (1992) approach, so these portfolios are not optimal in a mean-variance 

sense and they are always riskier than the benchmark. The problem of mean-variance 

maximisation under a TE constraint was reconsidered by Bertrand, Prigent and Sobotka 

(2001) who reintroduced both absolute and relative risk (i.e. TE) aversion into their 

optimisation program. A range of optimisation and holding periods while ignoring 

transaction cost constraints was considered by Larsen & Resnick (2001). Frequent 

rebalancing was necessary to maintain control over total risk (though not TE risk) when 

portfolios are actively managed (see also Plaxco & Arnott, 2002), but this did not always 

lead to optimal portfolios (El-Hassan & Kofman, 2003). Jorion (2003) tackled these and 

other problems and established the shape of the constant TE portfolio, an ellipse in the 

traditional mean-variance plane, but not in mean/risk plane (where it is a distorted ellipse 

with no bi-axial symmetry).  
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When TE could vary and risk aversion was fixed (rather than only considering constant TE 

frontier-constrained portfolios) Bertrand (2009) found that the resulting optimal portfolios 

exhibited many desirable properties, such as having the same information ratio. The IR 

decomposition proposed by Menchero & Hu (2006) was also explored evaluated by Bertrand 

(2010) using risk-adjusted performance attribution previously developed by Bertrand 

(2005).  

The literature was largely silent on absolute portfolio risk in the active management arena, 

until work by Maxwell, Daly, Thomson & van Vuuren (2018) unveiled a way to determine 

the asset weights to construct the TE-constrained tangent portfolio – effectively the 

maximum Sharpe ratio (tangent) portfolio on the constant TE frontier. This approach 

produced portfolios with a lower risk, but greater return than the agent's benchmark whilst 

satisfying the TE constraint and maximising the Sharpe ratio (Jansen & van Dijk, 2002). 

The efficient frontier is shown in Figure 1.1 as well as the minimum variance and tangent 

portfolios (the latter at the intersection of the capital market line (CML) and the efficient 

frontier (in this example, 𝑟𝑓 = 7%)).  

 

Figure 1.1. Positions of relevant frontiers and portfolios in the risk/return plane. 

Source: Author calculations. 

The riskier TE frontier appears to the right of the efficient frontier: this is the locus of 

coordinates on the risk/return plane with the highest return at increasing values of TE relative 

to a benchmark. Where 𝑇𝐸 = 0%, the TE frontier necessarily intersects the benchmark. 

Finally, also shown in Figure 1.1 is the distorted ellipse of the constant TE frontier (here, 

𝑇𝐸 = 6%), with the minimum variance, maximum Sharpe and maximum return portfolios. 
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The tangent portfolio is at the intersection of the constant TE frontier and its CML (Maxwell, 

et al, 2018). The maximum return portfolio on the constant TE frontier is the maximum 

return coordinate on the constant TE frontier for every value of TE. Note the slightly positive 

slope of the constant TE frontier ellipse in this configuration. 

The main axis slope, 𝑆𝑀𝐴 (defined as the slope of the line joining the efficient frontier's 

minimum variance portfolio and the benchmark portfolio) and its relationship with TE 

constrained portfolio performance is investigated here for the first time. 

1.2.2 Theme 2 – The optimal 𝛀 ratio under a TE constraint 

Modern portfolio theory (MPT) is a well-established and widely implemented paradigm 

which asserts that investors select portfolios based upon their level of risk aversion. Set out 

by Markowitz (1952) the framework gives rise to a set of efficient portfolios – those 

characterised by the maximum possible return at any given risk level – which trace out a 

boundary in return/risk space known as the efficient frontier. The literature is replete with 

improvements and adaptations, augmentations, and variations of MPT. Markowitz, Schirripa 

& Tecotzky (1999), for example, showed how – by pooling assets – investors could 

collectively provide constituent members higher expected returns, for given risks, than 

individuals could generate alone. These results were confirmed and extended by Kwan 

(2003) and more recent innovations are provided by Calvo, Ivorra, & Liern (2012). 

Sharpe (1966) identified an optimal portfolio on the efficient frontier, the highest risk-

adjusted portfolio return, measured as the quotient of portfolio return in excess of the risk-

free rate and the portfolio's risk (defined by its volatility), S𝑅 = (𝜇𝑃 − 𝑟𝑓)/𝜎𝑃 where 𝑆𝑅 is 

the Sharpe ratio, 𝜇𝑃 is the portfolio annual return, 𝑟𝑓 is the annualised risk-free rate and 𝜎𝑃 

is the annualised portfolio volatility (or risk). This portfolio represents the single intersection 

point of the capital market line (CML) hinged at the risk-free rate on the return axis and the 

frontier, i.e. where the CML is tangent to the frontier. Despite the many assumptions 

embedded in the determination of this optimised portfolio (e.g. Muralidhar, 2015), it remains 

a popular metric (Sharpe, 1994; Lo, 2012 and Qi, Rekkas & Wong, 2018). 

MPT and the tangent portfolio reflect the passive portfolio management style in which assets 

are bought and held for "long" investment horizons, usually several months or years. This 

style enjoys the benefits of low trading costs and a through-the-cycle view of market 
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performance resting on the assumption that superior assets will outperform the broader 

market even though influenced by it. The active management style (strategic stock selection 

and timing) while more expensive because of trading expenses, is dominated by fund 

managers who purchase and sell securities when prevailing conditions signal danger or 

opportunity (Ammann & Zimmermann, 2001). This style has been eclipsed in recent times 

by index (passive) investing, but this has given rise to systemic problems (Anadu, Kruttli, 

McCabe, Osambela, & Shin, 2018) and the alleged inferior performance of the active 

investment style has been challenged by Cremers, Fulkerson & Riley (2019) whose research 

found evidence that 'conventional wisdom' had been unfairly critical of the value of active 

management which continues to outperform the passive style (Berk & van Binsbergen, 2015; 

Pedersen, 2018 and Dolvin, Fulkerson & Krukover, 2018). 

Active fund performance is assessed relative to a benchmark, commonly a market index or 

a selection of securities constrained by investor preferences (Clarke, de Silva & Thorley, 

2002). Superior active funds should outperform the returns generated by the benchmark and 

simultaneously not exceed a prescribed, relative risk measure: the TE defined as the standard 

deviation of the differences between portfolio and fund returns (Wu & Jakshoj, 2011). 

Using a mean/variance (Markowitz) framework, Roll (1992) established a description of 

portfolio optimisation relative to a benchmark for a given TE. These optimal, but 

constrained, portfolios trace out a frontier much like the efficient frontier (but shifted to the 

right – i.e. lower potential returns with higher risk), in return/risk space. Bertrand, Prigent & 

Sobotka (2001) and Larsen & Resnick (2001) reconsidered the problem of mean-variance 

maximisation under TE constraints, but Jorion (2003) was first to mathematically formulate 

the constant TE frontier, a distorted ellipse in return/risk space comprising TE-constrained 

portfolio return/risk coordinates. Stowe (2014) provides a recent, comprehensive treatise on 

the relevant mathematics governing TE constrained portfolios. 

Maxwell, et al., (2018) and Maxwell & van Vuuren (2019) adapted and extended Jorion's 

(2003) approach to TE constrained portfolio optimisation by establishing a technique which 

identified the tangent portfolio on the constant TE frontier. Analogous to the tangent 

portfolio on the efficient frontier, this portfolio (where the analogous CML – also hinged at 

the risk-free rate on the return axis – is tangent to the constant TE frontier) represents the 

maximal risk-adjusted return portfolio constrained by a given TE. Daly, Maxwell & van 

Vuuren (2018) explored 𝛼, 𝛽 and investor utility behaviour for TE constrained portfolios 
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and Evans & van Vuuren (2019) investigated several portfolio performance metrics on the 

constant TE frontier. Gunning & van Vuuren (2019) surveyed the mechanisms which drive 

constrained portfolio performance by examining the influence of macroeconomic conditions 

on the shape of the TE frontier (certain market conditions alter the slope of main axis of the 

constant TE frontier ellipse (often from > 0 to < 0) which profoundly influences TE 

constrained portfolio performance). 

The Ω ratio is a portfolio performance measure which captures both portfolio down and 

upside potential while remaining consistent with utility maximisation (Keating & Shadwick, 

2002). Although now widely used, an optimal Ω ratio portfolio long eluded practitioners 

because it is a non-convex function, which does not lend itself to standard optimisation 

techniques. Kane, Bartholemew-Biggs, Cross, Dewar (2005) explored this problem 

empirically using simulated returns from a portfolio comprising three assets. By changing 

asset weights to maximise the Ω value and assuming no short selling, several local solutions 

were found. Extending this work to ten (real) assets and employing a global optimisation 

technique (not disclosed), Kane et al., (2005) identified maximal Ω portfolios and compared 

their performance with portfolios produced using MPT (i.e. tangent portfolios). The results 

showed that the allocation of weights for portfolios' constituent assets were considerably 

different from those based on risk minimisation. Passow (2004) and Gilli, Schumann, Di 

Tollo, & Cabel (2008) made laudable attempts to resolve the problem of Ω portfolio 

optimality, but their solutions were heuristic (which did not guarantee the accurate 

identification of the global optimum) and their threshold accepting methods were 

numerically unstable, requiring complicated fine tuning of the underlying parameters 

(Mausser, Saunders & Seco, 2006 and Theron & van Vuuren, 2018).  

Kapsos, et al. (2011), using the Ω ratio quasi-concave property (which permits its 

transformation into a linear program), overcame the non-convex function problem, and 

established an exact formulation. This solution is a direct analogue to the mean-variance 

framework and its associated Sharpe ratio maximisation. Kapsos, et al's (2011) work is 

applicable to the passive investment style: to date, no attempts have been made to explore Ω 

optimal portfolios which are also subject to TE constraints.  

This chapter combines several strands of related research. The work described above relating 

to TE constrained portfolios is described, Kapsos et al's (2011) optimal Ω ratio solutions are 
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adapted to accommodate TE constrained portfolios and some properties of optimal, TE 

constrained Ω ratio portfolio performance are explored. 

1.3 DISSERTATION RATIONALE 

The formulation of the constant TE frontier in return/risk space is not novel. Jorion's (2003) 

work set out the mathematical description of its construction and some work has been 

undertaken subsequently. High active manager fees and poor performance in the 1980s led 

to the decline in popularity of active funds. At the same time, increased automation fuelled 

a boom for passive investments which had come to rely less and less on human input and 

more and more on machine-based pattern recognition and rapid activation times. The ebb 

and flow of market sentiments has recently (2018) seen the tide turn once more toward active 

investments: in a low-yield world, the search for relative outperformance has once again 

witnessed renewed interest. Maxwell et al, (2018) identified – mathematically – a maximum 

Sharpe ratio (tangent) portfolio which satisfied the usual active constraints (e.g. portfolio 

risk must be less than a prescribed TE and asset weight restrictions must be adhered to) while 

also generating a portfolio with the highest risk-adjusted return at a given level of risk. This 

precipitated much work in the area, some of it extended and developed further here. 

How the orientation of the constant TE ellipse (by which is meant, the size and sign of the 

ellipse's main axis slope) changes with different market conditions could have consequences 

for the active investment approach, particularly given the market volatility experienced 

under increasingly common extreme events (such as the 2008 financial crisis and the 2020 

COVID-19 pandemic).  

As a performance metric, the popular Ω ratio makes no assumptions about the assets' return 

distribution. A maximum Ω ratio portfolio has been identified but its effectiveness has only 

been applied and tested under the passive approach. Implementing the maximal Ω ratio in a 

TE-constrained portfolio setting is of interest to active managers who wish to understand 

and exploit the behaviour of such constrained portfolios. 
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1.4  RESEARCH QUESTIONS 

Under the active investment style, how does the orientation of the constant TE ellipse's main 

axis influence the behaviour of portfolios on the efficient (constrained) set? For the two 

optimal (maximum return and maximum Sharpe ratio) portfolios on the efficient set, how 

does their risk/return profile change with changing market conditions and does the size and 

magnitude of the long axis slope influence these profiles? 

How is the unconstrained maximum Ω ratio portfolio different from the TE-constrained 

maximum Ω ratio portfolio? How does the TE-constrained maximum Ω ratio portfolio's 

return/risk profile change through time as market conditions improve and deteriorate?  

1.5 DISSERTATION STRUCTURE 

This dissertation is structured as follows: Chapter 2 explores how variations in the TE-

constrained frontier in active return/risk space affect portfolio performance. Changes in main 

axis slope (magnitude and sign) are found to act as early indicators of portfolio performance 

and could therefore augment the existing array of management tools. Chapter 3 applies the 

identification of optimal Ω ratio portfolios to the active arena (i.e. to portfolios constrained 

by a TE) and explores the influence of market conditions on this (and other maximal 

portfolios) through time.  

Chapter 4 summarises the findings of the entire study and suggests future research 

possibilities. References are included at the end of the dissertation. 

1.6 GENERAL OBJECTIVES 

General objectives of this research include: 

• interrogate and refine the principles governing the development and implementation 

of the constrained TE frontier, and explore the consequences of changing market 

conditions on this framework both mathematically and empirically 

• establish – through back-testing – whether portfolios on the TE-constrained efficient 

set are influenced by the ellipse's main axis slope magnitude and sign  
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• explore the characteristics of the unconstrained maximum Ω ratio portfolio and 

compare its characteristics with those of the TE-constrained maximum Ω ratio 

portfolio. how do these differ, how are they similar, and do they provide information 

on early warnings in the market to impending crises? 

1.7 SPECIFIC OBJECTIVES 

Specific objectives of this research are:  

• using historical share price data and under the active investment style, establish 

whether the main axis slope of the constant TE frontier influences the performance 

of liquid, equity-based, TE-constrained portfolios under different market conditions 

and  

• using historical share price data and under the active investment style, establish the 

principal return/risk profile differences between constrained and unconstrained max-

imum Ω portfolios under different market conditions. 

1.8 RESEARCH DESIGN 

The research design of this dissertation follows in the outline below: 

Pose research problem statement and question: Portfolio optimality (in whatever form) as 

well as constrained portfolio optimality are complex pursuits. How may component asset 

weights be determined for actively managed portfolios subject to tracking-error constraints? 

Critical literature review: A critical literature review is conducted by consulting and 

considering existing literature. Adjustments to existing risk management procedures, 

techniques and methodologies to solve problems are documented and highlighted in the 

literature studies. The existing literature for this research theme is copious. Where an entirely 

new approach to risk practices is required, the literature was less obliging, but this was not 

a constraint in this study, because popular, well-established mathematical techniques are 

almost always available for research endeavours and again, abundant literature exists to 

address and divulge these. 

Theory building/adapting/testing: adaptation of existing financial tools and mathematical 

techniques for practical implementation enjoys rich precedent. The bulk of the results 
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reported in this dissertation were from empirical analyses of simulated data derived using 

both known and innovative risk metrics. 

Data collection: Data used were either simulated or from third-party, internet-based, 

electronic databases (e.g. McGregor BFA, Opendata and BloombergTM for historic index 

prices). Adequate data were available for all the chapters, so sample error was minimised. 

Data in this study comprised several published, historical time series, available from both 

proprietary (e.g. BloombergTM) and non-proprietary sources (e.g. internet databases). 

Conceptual development and empirical investigation: This research is intended to provide 

robust, but practical, solutions for use by investors and traders. As a direct result, the primary 

source of analytical work was Microsoft ExcelTM since this tool is used by most financial 

institutions. These spreadsheet-based models use visual basic programming language (a 

flexible, functional desktop tool available to all quantitative analysts and risk managers) to 

develop macros to replace onerous and repetitive computing tasks. The empirical study 

comprises the practical implementation of the research method, using techniques and models 

developed in Microsoft ExcelTM. 

The variables employed are data assembled from various historical time series. All data are 

available in the public domain. Some pricing data were simulated for illustration. 

Illustrate and reason findings: Having analysed the data, obtained meaningful results, and 

displayed these appropriately, the findings were written up into article-style reports for peer 

review and publication. The articles have been published as detailed in Table 1.2. 

Further work: To complement major findings of and ensure the continuation of much needed 

work not addressed in this dissertation, future work regarding the many consequences of 

optimal constrained portfolios is proposed for active fund managers and academics. 

1.8.1 Data 

Data requirements, frequency and source are shown in Table 1.1.  
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Table 1.1: Data requirements, frequency, and source. 

# Topic Data required Frequency Sources 

1 

Exploring the drivers 

of tracking error 

constrained portfolio 

performance 

Historical asset 

returns 

Variance/covariance 

matrices 

Calculated portfolio 

weights 

Monthly 

Bloomberg. S&P 

Capital IQ, Open-

data, non-proprietary 

internet databases 
2 

Optimal Ω ratio 

portfolio performance 

constrained by 

tracking error 

1.8.2 Research output 

Research output is shown in Table 1.2.  

Table 1.2: Research output. 

# Topic Mathematics 
Research 

methodology 

1 

Gunning, W. M. and van Vuuren, G. W. 

2019. Exploring the drivers of tracking 

error constrained portfolio performance. 

Cogent Economics, 7(1): 1 – 15. 

Proprietary 

Microsoft Excel 

models 

Calculus 

(differentiation) 

Linear algebra and 

Lagrangian 

dynamics 

Portfolio 

optimisation 

approaches 

Asset selection 

under prescribed 

portfolio constraints 2 

Gunning, W. M. and van Vuuren, G. W. 

2020. Optimal Ω-ratio portfolio 

performance constrained by tracking 

error. Submitted for publication in 

Financial Innovations. 
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CHAPTER 2 LITERATURE STUDY 

Successful portfolio managers are assessed based on their skill at maximising returns – a 

skill which underlies Modern Portfolio Theory, or Portfolio Selection Theory (PST). The 

main objective of PST (as well as maximising returns) is to determine how to optimally 

allocate assets in a portfolio, knowing an investor’s risk tolerance. This ‘optimal’ allocation 

produces portfolios of chosen assets whose risk levels are commensurate with the investors 

level of risk aversion, thereby maximising investor utility (Ghosh & Mahanti, 2014). A 

trade-off between risk and return (mean/variance trade-off) is thus different for different 

investors, but Markowitz (1952) argued that, although this may be true, all investor 

preferences lie on a curve of ‘efficient portfolios’ called the efficient frontier which consists 

of diversified (efficient) portfolios having the lowest risk for any given level of return or, 

equivalently, the highest return for any given risk level,. This assembly of risk/return 

combinations generates the frontier. 

Portfolio optimisation emerges as a single – but important – phase of the process of 

investment management which embraces the general procedure adopted by portfolio 

managers in determining ‘optimal’ investor portfolios. Other steps require assessing the risk 

preference/profile of investors and any specific investment objectives, constraints, permitted 

investment allocations in different asset classes or sectors, the investment strategy 

(value/growth, passive/active), and the performance measures and assessors to be used 

(Fabozzi & Markowitz, 2011). These constitute portfolio planning and optimisation models 

used to determine the optimal portfolios. 

Markowitz’s (1952) portfolio optimisation problem comprises two related criteria: expected 

return (mean) and risk (standard deviation) – the latter used as a proxy for the return 

volatility. For a single investment period formulation, Markowitz (1952) posited that 

investors distribute capital amongst several assets and then, over the course of the investment 

period, the combined return rate (assumed random) generated by the portfolio generates 

higher or lower capital value at the end of the period (relative to the original investment 

amount). Subsequent work (e.g. Mansini, Orgczak & Speranza,., 2014) successfully 

extended Markowitz’s (1952) model to embrace multiple consecutive periods, so the concept 

remains the foundation upon which modern portfolio theory is based.  
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The portfolio selection process is divided into two main phases according to Markowitz 

(1952). The first phase links experience and observation to forecast the future performance 

of the constituent assets, and the second uses these forecasts to select the most suitable 

portfolio. The successful completion of the first of these stages relies on the fund manager’s 

skill, the accuracy of the forecasting models and the formulation of estimation error. 

Considerable research has been conducted in this arena, but this work is beyond the scope 

of this dissertation. Markowitz (1952) concluded that investors should place roughly equal 

emphasis on return and risk in the selection of investment portfolios. In doing so, investors 

are considerably more likely to select utility maximising portfolios, that is, ones which are 

closely aligned with their preferences. 

Utility maximisation represents the desired investor outcome, and represents a subset of 

Utility Theory, an extensively researched field of economics. Investor utility is the total 

satisfaction received from the consumption of capital (by whatever means). It is defined by 

a utility function, which assigns numeric values to all possible choices faced by the investor 

where the higher the numeric value of a choice, the greater the satisfaction derived from it 

(Fabozzi & Markowitz, 2011). PST seeks to identify – using indifference curves – the 

portfolio which will generate the maximum possible utility, constrained by the investor’s 

preferences and requirements. An indifference curve collates an ensemble of choices (in this 

case portfolios with different risk/return combinations) which provide investors with the 

same utility level. Investors should, therefore, be indifferent to the allocated asset 

combination (and resulting portfolios). These indifference curves are usually traced out in 

the same (mean/variance) space as the efficient frontier, which allows portfolio managers to 

select optimal portfolios at the tangent point where the maximum indifference curve meets 

the efficient frontier (Fabozzi & Markowitz, 2011). This unique portfolio is not only efficient 

but is optimal for the investor in that it uniquely satisfies their risk profile/preferences 

(Larsen & Resnick, 2001). 

Markowitz (1952) extended his 1952 work and restructured the mean variance optimisation 

formulation into a quadratic programming model by balancing portfolio risk and return 

(Markowitz, 1959). This presents portfolio managers with a quantitative tool to facilitate 

investment allocation decisions (Ghosh & Mahanti, 2014). This optimal allocation of 

holdings/investments is determined through solutions generated by this quadratic 

programming model (Ghosh & Mahanti, 2014). This mean variance model has been altered 
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in various ways since its inception, namely; the single index/market model which ignores 

the covariance between asset returns, the CAPM (Capital Asset Pricing Model) as an 

extension of the single index model (considering the returns of securities to depend on the 

market index and not the covariance between asset pairs), and the multiple period Mean 

Variance model (see, for example, Clarke, de Silva & Thorley, 2002).  

Using Markowitz (1952, 1959), Ghosh and Mahanti (2014) averred that an important 

implication of Modern Portfolio Theory was that in the asset selection process, the risk and 

return should not be considered in isolation but rather in conjunction with the correlation of 

that asset’s returns with other constituents’ returns. This co-movement of asset returns, if 

negligible or in the opposite direction, can reduce portfolio risk (volatility of returns) 

significantly, whilst still generating the same level of portfolio return. The process of adding 

uncorrelated or negatively correlated assets to reduce overall portfolio risk is known as 

diversification (Clarke, de Silva & Thorley, 2002). 

Having selected the optimal portfolio, its performance (and hence the manager's) is measured 

and evaluated. This is a fundamental consideration in portfolio management and several 

performance measures and attribution models have been proposed. Fama’s (1972) 

Decomposition of Total Return identifies the sources of the portfolio’s return, indicating 

how much of the return can be attributed to the manager and how that return was earned. 

Other important portfolio measures include: the Treynor ratio (which measures the ratio of 

excess returns, above the risk-free rate, to the systematic risk, 𝛽) which indicates manager’s 

timing skills; the Jensen index (an absolute measure which estimates manager ability to 

forecast returns and diversify the portfolio to protect it from excessive risk (Ghosh & 

Mahanti, 2014); the Information ratio (the ratio of excess return above the benchmark, to the 

TE of a portfolio) which estimates the manager’s ability to generate excess returns (and the 

consistency of that return generation) and finally, the Sharpe ratio (the ratio of excess return 

above the risk-free rate to total portfolio risk), which indicates fund manager skill in security 

selection. These tools are all employed in the final phase of the investment management 

process and provide investors with an overall picture of portfolio manager ability, portfolio 

performance, and derived satisfaction levels (whether performance is aligned with investor 

preferences) (Fabozzi & Markowitz, 2011). 

The main goal of active portfolio managers is to select and manage portfolios that outperform 

their benchmark. Successful portfolio management lies in the long-term mix of assets which 
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exhibit relatively low correlations with each other. Diversification actively selects 

uncorrelated or low-correlated component assets to mitigate unsystematic risk associated 

with adversely performing investments. The rationale governing this selection process is that 

combinations of dissimilar portfolios will generate higher returns at lower level of risk than 

that of individual securities on average (Menchero & Hu, 2006). Successful asset allocation 

is non-trivial and represents the most important decision in portfolio construction, exceeding 

even that of individual security selection. Ghosh and Mahanti (2014) suggest, however, that 

inter-asset correlations must be considered in the individual asset selection process as the 

co-movement between assets reduces portfolio variance while maintaining portfolio returns.  

Retaining the optimal portfolio mix involves constantly rebalancing portfolio weights. This 

entails repeatedly reweighting or substituting over-valued securities for undervalued ones. 

Fund managers are assessed and remunerated on their ability to exceed benchmark returns 

tantamount to a positive expected TE (Riccetti, 2010). Reducing TE, in contrast, reduces 

relative portfolio risk. Modern portfolio theory assumes that investors are risk averse, 

meaning that given two portfolios of equal expected returns, investors will always favour 

the less risky of the two. The trade-off associated with the risk/return portfolio is defined by 

a hyperbolic curve known as the efficient frontier, which categorises the highest expected 

return possible for any risk level. A TE (standard deviation between a portfolio’s return and 

its benchmark) quantifies a portfolio’s consistency and performance relative to its 

benchmark (Plaxco & Arnott, 2002). 

A two-dimensional performance approach is the ambit of traditional portfolio management. 

Portfolio managers are evaluated on their ability to exceed benchmark returns synonymous 

with a positive expected TE, and reducing TE is equivalent to reducing relative portfolio 

variance. Roll (1992) identified that investors who aim for the highest possible excess 

expected return while maintaining a minimum TE were naively disregarding absolute 

portfolio risk. The construction of the TE frontier (Figure 2.1) illustrates the maximum 

expected return away from a benchmark subject to a TE constraint. It can be analytically 

demonstrated that the TE curve may be derived independent of benchmark returns and unless 

the index lies directly on the efficient frontier, these portfolios are always inefficient (Jansen 

& van Dijk, 2002). Furthermore, if active portfolio managers were exclusively incentivised 

to maximise excess returns then portfolios located on the upper half of the efficient frontier 

would be preferable. Expected returns are – in practice – replete with noise and 
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unpredictable. Instead fund managers are constrained by a TE that prevents excessive 

amounts of absolute risk being taken in the search for superior relative returns. The 

consequences of not adhering to this mandate can result in punitive action from investors 

and regulatory authorities (El-Hassan & Kofman, 2003). 

 
Figure 2.1: TE frontier and TE-constrained portfolio. In this example, 𝑇𝐸 = 5% and the TE 

constrained portfolio position shows the maximal return allowable for that level of TE. 

Source: Roll (1992) and own calculations. 

Each point on the TE frontier represents the maximum total expected excess return possible 

for a given TE. Markers indicate intervals of 1% TE deviation away from the benchmark i.e. 

the enlarged TE-constrained portfolio marker shown above describes the maximum excess 

return possible above a benchmark for a 𝑇𝐸 = 5%. 

Jorion (2003) investigated whether the naïve characteristic of active portfolios taking on 

systematically higher risk than that of the benchmark could be solved while maintaining a 

TE constraint. An alternative investment decision was proposed (Jorion, 2003) based on 

portfolio selection with the same benchmark risk but situated on the constant TE frontier as 

shown in Figure 2.2. Jorion (2003) showed that because of the ‘flatness’ (the low angle 

between the ellipse’s main axis and the risk axis) of the ellipse, the addition of a total 

portfolio volatility constraint significantly improved portfolio performance. This effect was 

more pronounced with and lower TEs and less efficient benchmarks. Jorion (2003) 

demonstrated these effects by constraining the portfolio volatility to that of the benchmark, 

targeting portfolios with higher relative returns (but lower absolute returns).  
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Figure 2.2: TE frontier, TE-constrained portfolio and constant TE frontier (with TE = 5%). 

(a) Shows the naïve portfolio: excess return is maximised for a given TE constraint. (b) 

shows Jorion's (2003) suggestion: observe constraints from (a) but restrict portfolio risk to 

that of the benchmark.  

Source: Roll (1992), Jorion (2003) and own calculations. 

Jorion (2003) mapped the boundary of all possible portfolios constrained by a TE and set 

out the mathematical description of the constant TE frontier (an ellipse in traditional 

mean/variance space (Figure 2.2)). In risk/return space, this is a tilted, distorted (reduced 

eccentric symmetry) ellipse (usually, but not always) presented at a low angle between the 

ellipse’s long axis and the risk axis.  

Figure 2.3 illustrates the constant TE frontier (in risk/return space) for various levels of TE. 

The grey shadow shown in the 𝑇𝐸 =  0% plane represents the realm of feasible portfolios 

where the outer boundaries trace the efficient frontier. For 𝑇𝐸 =  0%, the constant TE 

frontier exists as a single point where the absolute return and risk profile equals that of the 

benchmark portfolio. For 𝑇𝐸 >  0%, the constant TE frontier ellipse initially expands 

outwards until reaching the efficient frontier, as portfolios can take on more and more 

relative portfolio risk. Further increases of TE (in this example, for 𝑇𝐸 > 7%) pushes the 

constant TE frontier away from the efficient frontier, showing that taking on unnecessary 

absolute risk results in less efficient portfolios. 
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Figure 2.3: Constant TE-constrained frontier 0% ≤ 𝑇𝐸 ≤ 15%. 

Source: Daly, Maxwell, & van Vuuren (2018). 

Maxwell, Daly, Thomson & van Vuuren (2018) extended this analysis by determining the 

portfolio with the highest risk-adjusted return. By adding an additional constraint – 

maximisation of the Sharpe ratio for a given TE – the authors found that these portfolios 

sacrifice marginal portfolio return (but exhibit considerably less absolute risk) than the 

maximum return portfolio (Figure 2.4). In countries such as the United Kingdom, where 

interest rates are low (0.25% in August 2020), the maximum Sharpe-constrained portfolio 

has a higher expected return and lower risk than the market return (where 𝛽 < 1).  
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Figure 2.4: (a) TE-constrained portfolio, constant TE frontier and CML with optimal 

portfolio and (b) enlarged view showing all three portfolios. TE = 5% and 𝑟𝑓 = 2%. 

Source: Jorion (2003) and author calculations.  

Portfolio managers are sometimes required to assemble 𝛽-constrained portfolios as 

higher 𝛽s are theoretically indicative of higher returns. Roll (1992), however, proved this to 

be incorrect. Portfolios that have a lower volatility and higher expected performance relative 

to the benchmark have 𝛽 < 1. Portfolios with higher volatility and positive benchmark 

outperformance (𝛽 > 1) are symptomatically inefficient and lie further to the right of the 

efficient set. For 𝛽 = 1 (that is, not the benchmark) portfolios are located on the TE frontier 

but are always less efficient than the benchmark. The addition of the 𝛽 constraint allowed 

Roll (1992) to prove the impossibility of producing 𝛽 constrained portfolios that 

simultaneously minimises TE and outperforms the market return. The position of Jorion's 

(2003) proposed portfolio, and the maximum Sharpe portfolio, agrees with Roll's (1992) 

findings that higher performing portfolios exhibit portfolios with 𝛽 < 1.  

Daly, Maxwell & van Vuuren (2018) stylised the mathematics governing the 𝛽, 𝛼-TE and 

investor utility frontier for portfolios bound by a TE and determined that it is impossible to 

simultaneously satisfy more than two constraints onto the constant TE frontier (Figure 2.5). 

The 𝛼-TE frontier differs from other constraints in that it shows the minimum TE for various 

levels of ex-ante 𝛼. This means that for every TE constrained portfolio, a maximum 𝛼 would 
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exist at the boundary of the constant TE. A 𝛽 frontier that coincides with the maximum 𝛼-

TE constrained portfolio would be a maximum as defined by Roll (1992) (𝛽 < 1), although 

this is impractical.  

 

Figure 2.5: The 𝛼-TE frontier for various levels of 𝛼. Other frontiers are shown for 

comparison. Levels of 𝛼 are indicated on the graph. TE = 5%, 𝑟𝑓 = 2%. 

Source: Author calculations. 

Alexander and Baptista (2010) proposed an innovative methodology of reducing the sub 

optimality associated with portfolios that do not lie on the efficient set. The formulation of 

the 𝛼-TE frontier (Figure 2.5) is helpful to practitioners who evaluate the performance of a 

fund manager based on ex-post 𝛼 of the investment. In addition, the 𝛼-TE frontier allows 

managers to identify less risky, utilitarian portfolios that are not typically selected by most 

active managers (Wu & Jakshoj, 2011).  

Investor utility represents a quantitative investor satisfaction metric. Portfolio selection seeks 

to maximise utility, but this does not necessarily imply fund selection that maximise returns, 

minimise risk or maximise risk-adjusted returns. Rather, utility optimisation is a subjective 

constraint specific and unique to different investors. Indifference curves demonstrate the 

resulting satisfaction gained based on investment decisions, in which each point on the 

indifference curve represents the same level of satisfaction for different risk/return 
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combinations (Fabozzi & Markowitz, 2011). When displayed on the mean variance plane, 

optimal portfolios may be chosen in which maximum indifference curves are tangential to 

efficient frontiers and it is at these intersections that the risk/return profiles – and investor 

utilities – are maximised. Daly, Maxwell & van Vuuren (2018) investigated the utility 

function of TE-constrained portfolios at the maximum Sharpe portfolio and found that risk 

aversion inreased with increasing TE, up until a point.  

Maxwell & van Vuuren (2019) stylised the behaviour of alternative portfolio assemblies on 

the constant TE frontier (Figure 2.6). These portfolios where characterised as maximally 

diversified, exhibit risk parity, have minimal intra-correlation, and minimum risk for varying 

levels of TE. Every point along this frontier was investigated and it was discovered that such 

portfolios behaved adversely to mean variance efficient (unconstrained) portfolios. 

 

Figure 2.6: Loci of relevant portfolios in mean/risk space for 1% ≤ 𝑇𝐸 ≤ 12%. 

Source: Author calculations. 

Evans & van Vuuren (2019) analysed six active TE constrained performance strategies, 

using numerous performance measures to assess the relative performance on the investment 

on the ellipse. Performance ratios reached plateaus for high TEs because of the roughly linear 

nature of the efficient frontier in risk/return space. Because the constant TE ellipse remains 
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in contact with the efficient frontier for high TEs, the maximum Sharpe ratio for the former 

will always be approximately the same as the latter (Evans & van Vuuren, 2019). 

Bertrand (2010) investigated the effect of fixing the investors level of risk aversion and 

allowed the TE to vary between 0 (the benchmark) and positive infinity (the minimum 

variance portfolio). This generated what Bertrand (2010) named ‘iso-aversion frontiers’ in 

which all optimal portfolios had the same Information ratio, allowing fund managers to make 

portfolio selections based on preferred investor risk. The problem with this research is that 

actively managed funds are generally constrained by a TE mandate, rendering Bertrand’s 

(2010) findings partially obsolete.  

Although MPT dictates that specific risk can be removed through portfolio diversification, 

systematic risk cannot be entirely eliminated. Movements in external factors which are 

beyond the control of investors or portfolio managers will always originate risks (e.g. interest 

rate, transactional fees, economic recessions, etc.). The capital asset pricing model (CAPM) 

is a theoretical tool that used to estimate an expected rate of return based on the investment’s 

market risk. Stowe (2014) averred that the application of 𝛽 and TE constraints on portfolio 

selection assured favourable investor utility improvements, and if implemented correctly, 

could produce more efficient portfolios by prudent managers.  

Constructing mean-variance efficient portfolios often involve taking extreme long and short 

positions, hence the need for active portfolio managers to impose an asset weights constraint. 

Imposing constraints on portfolio weight is common in active portfolio management. 

Ammann and Zimmermann (2001) examined the relationship between TE and restricted 

asset weight deviations from the benchmark and found that large tactical asset allocation 

ranges implied much smaller TEs than expected. These tactical asset allocation restrictions 

also restricted the tactical ranges of the individual asset classes, as well as TEs of individual 

asset classes.  

Bajeux-Besnainou, Belhaj, Maillard & Portait (2011) determined an optimal asset allocation 

of such agency-mandated portfolios and assessed the implications of restricting weights on 

fund manager performance. Bajeux-Besnainou, Belhaj, Maillard & Portait (2011) 

investigated the limitations associated with weight constraints on TE-constrained portfolios 

and found that these restrictions were mutually binding. Also, because of the weight 
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constraint, the information ratio decreases when the fund manager deviates further from the 

benchmark.  

The literature on constant TE frontiers is limited. Since the introduction and installation of 

the concept in 2003, only a handful of articles were produced before a resurgence of interest 

in the topic resulted in a series of connected works over the last few years (since 2017). 

Having established some of the background of TE-related research in this chapter, the next 

extends and contributes to this recent tradition by examining and assessing the drivers of 

TE-constrained portfolio performance, specifically the influence on portfolio performance 

of the orientation (angle sign) and magnitude (angle size) of the TE-ellipse’s main axis with 

the risk (volatility) axis. 
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CHAPTER 3 DRIVERS OF TRACKING 

ERROR CONSTRAINED 

PORTFOLIO PERFORMANCE 

3.1 ABSTRACT 

Maximising returns is often the primary goal of asset management but managing and 

mitigating portfolio risk also plays a significant role. Successful active investing requires 

outperformance of a benchmark through skillful stock selection and market timing, but these 

bets necessarily give rise to risk. The risk, relative to the benchmark, is the TE and active 

managers are constrained by investment mandates including a restriction on TE. The locus 

of possible portfolio risks and returns, constrained by a TE is elliptical, and the main axis 

slope's sign and magnitude varies under different market conditions. How these variations 

affect portfolio performance is explored for the first time. Changes in main axis slope 

(magnitude and sign) are found to act as early indicators of portfolio performance and could 

therefore be used as another risk management tool. 

3.2 INTRODUCTION 

Investment styles are broadly classified as passive or active. For the former, fund managers 

purchase and hold securities (or fractions of market indices) for extended investment periods 

believing that market outperformance is impossible, so best to minimise transactions (and 

hence fees) and be satisfied with returns like the broad market. For the latter, managers 

assume that through skilful selection and timing of sales and purchases, market 

outperformance is possible. The emphasis in the latter investment style is on relative 

performance, so skill (outperformance) is assessed relative to a prescribed, mandated 

benchmark. Risk is also assessed relative to the benchmark's risk.  

Markowitz's efficient frontier (1956) formulation has directed passive investment research 

for almost seven decades and the literature on associated portfolio optimisation is 
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considerable. Sharpe (1964) introduced the concept of a maximum risk-adjusted return 

portfolio for 'optimal' performance, called the tangent portfolio. Active investment strategies 

involve more complex structures, because here, constraints restrict the investable universe. 

Benchmark constituents, the size of TE and asset weight floors and caps all contribute to 

additional complexity. Roll (1992) initiated research into TE constrained portfolio behaviour 

and developed the framework for describing an efficient frontier in risk/return space 

constrained by various levels of TE. Jorion (2003) extended this work and developed the 

details for the constant TE frontier: i.e. a locus of points in risk/return space which embraces 

the universe of risk/return combinations – relative to the benchmark's risk and return.  

TE is an active risk measure (defined as the standard deviation of the difference between 

portfolio and benchmark returns) that reflects a portfolio manager’s decisions to deviate 

from the weights of a benchmark's positions with the aim of outperforming the benchmark. 

The inevitable risk introduced by this deviation is the TE. The TE is generally not used as a 

risk metric to assess portfolio manager performance in isolation. Rather, other measures are 

used in combination with the TE to assess portfolio risk, such as Value at Risk, the 

information ratio, etc. Fund managers determine the investment policy (i.e. its risk-return 

profile, outperformance targets, etc.) which in turn determines the TE. Thomas, Rottschafer 

& Zvingelis (2013) outline several causes of TE (fees, transaction costs, taxes, factor tilts, 

cash management and market volatility).  

In mean/variance space, the universe of possible portfolios constrained by a TE is an ellipse 

(and in risk/return space, it is a distorted ellipse). The ellipse's orientation (designated by the 

sign and magnitude of the 'main axis' slope) changes through time as economic conditions 

change. The way the main axis slope changes under different economic conditions, is 

explored here for South African (SA) stocks (an emerging third world economy) for the first 

time. The relevant mathematics required to calculate both the sign and magnitude of the main 

axis slope are detailed and the way this slope changes as time evolves and market conditions 

change is evaluated. Results indicate that when the main axis slope changes sign sharply, 

this presages a prolonged downturn in economic conditions. The effect is subtle, however. 

Forecasting economic conditions (and hence investment strategy) may depend on slope sign 

changes, but this depends on the direction of the change (i.e. +𝑣𝑒 to −𝑣𝑒), the magnitude 

of the slope before the reversal and the speed and size of the reversal. The combinations are 

persistent and robustly predict near economic conditions with reasonable accuracy. Results 
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show that the way the main axis slope moves through time could trigger novel investment 

strategies for active fund managers. 

3.3 MATERIALS AND METHODS 

3.3.1 Materials 

South Africa is an emerging economy with a history of political scandals and a volatile cur-

rency. The data for both benchmark and portfolios comprised 20 assets from the Johannes-

burg Stock Exchange (JSE) selected from a variety of market sectors to diversify the portfo-

lio. The portfolio spans at least seven market sectors and seven of the largest, most liquid 

stocks are shown in Table 3.1. These assets are frequently traded by active managers. 

Monthly returns spanning 15 years from Oct-00 to Apr-19 were used. This era embraces 

various market conditions: the years of expansionary conditions which preceded the 2007-9 

credit crisis, the credit crisis and post credit crisis turmoil.  

Table 3.1 Top seven stocks (by liquidity and market capitalisation) details. 

 Description Sector 

Naspers 
A global internet and entertainment group and one of 

the largest global technology investors 
Media 

AVI 

Food market sector embracing hot beverages, biscuits 

and snacks, frozen convenience foods, personal care 

products, cosmetics 

Food producers 

Shoprite Africa's largest food retailer 
Food and drug retail-

ers 

Remgro 

An investment holding company with interests in 

banking, financial services, packaging, glass prod-

ucts, medical services, mining, petroleum, beverage, 

food and personal care products. 

Financial services 

MTN 
Telecommunications network provider offering mo-

bile comms, internet data bundles and contracts. 
Mobile telecomms 

ARM 

Niche, diversified South African mining company 

with long-life, low-cost operating assets in key ARM 

mines and beneficiates iron/manganese and chrome 

ore, platinum group metals, copper, nickel and coal 

Industrial metals and 

mining 

Sappi 
Leading global provider of sustainable wood fibre 

products and solutions 
Forestry & Paper 

Source: Bloomberg. 
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The benchmark was rebalanced monthly and comprised equal proportions of these highly 

liquid shares. The descriptive statistics of these securities are set out in Table 3.2.  

Table 3.2 Descriptive statistics. 

 Naspers AVI Shoprite Remgro MTN ARM Sappi 

Mean annual 

return (%) 
32.40 20.97 22.21 17.99 11.08 20.25 10.36 

Max monthly 

return (%) 
40.18 20.27 22.35 19.76 31.49 42.77 27.23 

Min monthly 

return (%) 
-48.57 -18.45 -16.38 -12.18 -28.09 -31.89 -43.33 

Cumulative 

19y return 
5 217% 2 056% 2 181% 1 495% 182% 613% 114% 

Annualised 

volatility (%)  
22.07 20.39 25.80 17.47 26.34 39.54 24.54 

Skewness -0.672 0.072 0.123 0.142 0.158 0.283 -0.275 

Kurtosis 4.690 0.110 -0.142 0.833 1.152 1.060 1.822 

Source: Bloomberg and author calculations. 

Figure 3.1 (a) illustrates all stocks' rebased cumulative share prices (rebased on Oct-00 = 

100) and Figure 3.1 (b) shows the exponentially weighted moving average (EWMA) vola-

tilities of the stocks. 

 

Figure 3.1. Descriptive information regarding the shares used in the analysis. 

(a) Rebased cumulative share prices (Oct-

00 = 100) 

(b) Exponentially weighted moving 

average (EWMA) volatilities of constituent 

stocks 

Source: Bloomberg and author calculations. 
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3.3.2 Methods 

Active fund managers are assessed based on performance relative to a specified benchmark. 

The active investment positions they take differ from the benchmark positions according to 

the mandate governing the fund. For low TEs, active weights are small. For higher TEs, 

active weights are larger reflecting the fact that bigger bets are possible. Higher TEs, then, 

permit a wider range of security weights to be taken advantage of, rewarding skilled fund 

managers with potentially higher returns than the benchmark.  

The underlying variables, matrices, and matrix notation, are defined below for a sample of 

𝑁 component securities: 

𝒒:  1 × 𝑁 vector of benchmark weights 

𝒙:  1 × 𝑁 vector of deviations from the benchmark 

𝒒𝑷 (= 𝒒 + 𝒙): 1 × 𝑁 vector of portfolio weights 

𝑬:  1 × 𝑁 vector of expected returns,  

𝝈:  1 × 𝑁 vector of benchmark component volatilities  

𝜌:  𝑁 × 𝑁 benchmark correlation matrix 

𝑽:  𝑁 × 𝑁 covariance matrix of asset returns  

𝟏:  1 × 𝑁 vector of 1s and 

𝑟𝑓:  the risk-free rate.  

Net short sales are allowed so the total active weights (𝒒𝑖 + 𝒙𝑖) may be < 0 for individual 

securities. The universe of assets may be larger than the benchmark's component set, but for 

Roll's (1992) methodology, no assets outside the benchmark's set may be included. Expected 

returns and variances are expressed in matrix notation as: 

𝜇𝐵 = 𝒒𝑬′: expected benchmark return 

𝜎𝐵 = √𝒒𝑽𝒒′: volatility (risk) of benchmark return 

𝜇𝜀 = 𝒙𝑬′: expected excess return; and 

𝜎𝜀 = √𝒙𝑽𝒙′: TE. 
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The active portfolio expected return and variance is given by 𝜇𝑃 = (𝒒 + 𝒙)𝑬′ = 𝜇𝐵 + 𝜇𝜀  

and 𝜎𝑃 = √(𝒒 + 𝒙)𝑽(𝒒 + 𝒙)′ respectively. The portfolio must be fully invested, so (𝒒 +

𝒙)𝟏′ = 1.  

Merton (1972) defined 𝑎 = 𝑬𝑽−𝟏𝑬′, 𝑏 = 𝑬𝑽−𝟏𝟏′, 𝑐 = 𝟏𝑽−𝟏𝟏′, 𝑑 = 𝑎 −
𝑏2

𝑐
 and Δ1 = 𝜇𝐵 −

𝑏

𝑐
 where 𝑏/𝑐 = 𝜇𝑀𝑉 and Δ2 = 𝜎𝐵

2 −
1

𝑐
 with 1/𝑐 = 𝜎𝑀𝑉

2  where 𝑀𝑉 is the minimum variance 

portfolio. 

It is useful to recall the mathematics required to generate the various frontiers. 

3.3.2.1 Mean variance frontier  

Minimise 𝒒𝑷𝑽𝒒𝑷
′  subject to 𝒒𝑷𝟏′ = 1 and 𝒒𝑷𝑬′ = 𝐺 where 𝐺 is the target return. The vector 

of portfolio weights is 𝒒𝑷 = (
𝑎−𝑏𝐺

𝑑
) 𝒒𝑴𝑽 + (

𝑏𝐺−
𝑏2

𝑐

𝑑
) 𝒒𝑻𝑮 where 𝑞𝑀𝑉 is the vector of asset 

weights for the minimum variance portfolio given by 𝒒𝑴𝑽 = 𝑽−1 𝟏

𝑐
 and 𝒒𝑻𝑮 is the vector of 

asset weights for the tangent portfolio (with 𝑟𝑓 = 0), i.e. 𝒒𝑻𝑮 = 𝑽−1 𝑬

𝑏
. The weights of the 

tangent portfolio's components, 𝒒𝑻𝑷, with 𝑟𝑓 ≠ 0, are:  

𝒒𝑻𝑷
′ =

𝑽−𝟏(𝑬 − 𝑟𝑓 ⋅ 𝟏)′

𝟏 ⋅ 𝑽−𝟏(𝑬 − 𝑟𝑓 ⋅ 𝟏)′
 

3.3.2.2 TE frontier  

Maximise 𝒙𝑬′ subject to 𝒙𝟏′ = 0 and 𝒙𝑽𝒙′ = 𝜎𝜀
2. The solution for the vector of deviations 

from the benchmark is 𝒙′ = ±√𝜎𝜀
2

𝑑
𝑽−1 (𝑬 −

𝑏

𝑐
𝟏)

′

. The solution to this optimisation problem 

generates the TE frontier, a portfolio's maximal return at a given risk level and subject to a 

TE constraint. The benchmark may be efficient, in which case it would lie on the efficient 

frontier. The benchmark is often rather arbitrarily selected (a mix of stock and bonds or an 

imperfect market index) so it frequently is not a member of the efficient portfolio set. The 

TE frontier passes through the benchmark coordinates when here 𝑇𝐸 = 0. 
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3.3.2.3 Constant TE frontier 

Maximise 𝒙𝑬′ subject to 𝒙𝟏′ = 0, 𝒙𝑽𝒙′ = 𝜎𝜀
2 and (𝒒 + 𝒙)𝑽(𝒒 + 𝒙)′ = 𝜎𝑃

2 . The vector of 

deviation weights from the benchmark is 𝒙′ = −
1

𝜆2+𝜆3
𝑽−1(𝑬′ + 𝜆1 + 𝜆3𝑽𝒒′) where 𝜆1 =

−
𝜆3+𝑏 

𝑐
, 𝜆2 = ±(−2)√

𝑑Δ2−Δ1
2

4𝜎𝜀
2Δ2−𝑦2 − 𝜆3 and 𝜆3 = −

Δ1

Δ2
±

𝑦

Δ2
√

𝑑Δ2−Δ1
2

4𝜎𝜀
2Δ2−𝑦2. The solution for this 

optimisation describes an ellipse – a constant TE frontier – in return/risk space: the 

unconstrained constant TE frontier (Jorion, 2003). The north-west segment of this frontier is 

bounded on the west by the minimum variance portfolio (with 𝜎𝑃 =

√(𝜎𝐵
2 + 𝑇𝐸 + 2√𝑇𝐸 ⋅ (𝜎𝐵

2 − 𝜎𝑀𝑉
2 ))) and in the north by the maximum return portfolio (with 

deviations from the benchmark weights given by 𝒙′ = ±√𝜎𝜀
2

𝑑
𝑽−1 (𝑬 −

𝑏

𝑐
𝟏)

′

). The arc 

between these portfolios on the unconstrained constant TE frontier represents the efficient 

set of portfolios subject to a specific TE. The solution for the weights which generate the 

tangent portfolio (to the constant TE frontier) was recently found by Maxwell et al, (2018) 

to involve solving for 𝜎𝑃 using: 

 
(𝑟𝑓−𝜇𝐵)

𝜎𝑃
2 +

(Δ1
2−𝑑Δ2)⋅(𝜎𝑃

2 −𝜎𝐵
2 −𝜎𝜀

2)

√(Δ1
2−𝑑Δ2)[(𝜎𝑃

2 −𝜎𝐵
2 −𝜎𝜀

2)
2

−4Δ2𝜎𝜀
2]

+Δ1

Δ2
−

√(Δ1
2−𝑑Δ2)[(𝜎𝑃

2−𝜎𝐵
2−𝜎𝜀

2)
2

−4Δ2𝜎𝜀
2]+Δ1⋅(𝜎𝑃

2−𝜎𝐵
2−𝜎𝜀

2)

2Δ2𝜎𝑃
2  

then establishing 𝜇𝑃 on the efficient segment of the constant TE frontier and then backing 

out the relevant weights (see Figure 1.1).  

3.3.2.4 Main axis slope, 𝑺𝑴𝑨 

The main axis slope, 𝑆𝑀𝐴 is calculated using  

𝑆𝑀𝐴 =
Δ1

𝜎𝐵 − 𝜎𝑀𝑉
=

𝜇𝐵 −
𝑏
𝑐

𝜎𝐵 − 𝜎𝑀𝑉
=

𝜇𝐵 − 𝜇𝑀𝑉

𝜎𝐵 − 𝜎𝑀𝑉
 (3.1) 

Δ1 determines the sign of 𝑆𝑀𝐴 because the denominator is always > 0 since 𝜎𝐵 − 𝜎𝑀𝑉 > 0 

always. A necessary and sufficient condition for 𝑆𝑀𝐴 < 0 is 𝜇𝐵 < 𝜇𝑀𝑉 . Note that the 𝑆𝑀𝐴 is 

independent of TE since none of its components depend explicitly thereon. For the first time, 

the sign and magnitude of the 𝑆𝑀𝐴 are evaluated and how these (and constituents of the 𝑆𝑀𝐴) 
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change over time as market conditions evolve plus their influence on TE constrained 

portfolio performance are explored.  

Figure 3.2 shows the relevant frontiers, portfolios, and the long axis – calculated using (3.1). 

The periods are (a) Sep-10 when 𝑆𝑀𝐴 < 0 and (b) Apr-11 when 𝑆𝑀𝐴 > 0. 

 

Figure 3.2. Efficient, TE and constant TE frontiers and the main axis. 𝑇𝐸 = 6% and 𝑟𝑓 

was the annualised 3-month SA treasury rate. Different levels of TE gave similar results. 

(a) Sep-10 (𝑆𝑀𝐴 = −2.64 [< 0]) (b) Apr-11 (𝑆𝑀𝐴 = +2.82 [> 0]).  

Source: Bloomberg and author calculations. 

3.4 RESULTS AND DISCUSSION 

Figure 3.3 shows the regression results of the 𝑆𝑀𝐴 versus the tangent portfolio's Sharpe ratios 

(the latter shown in Figure 1.1).  

 

Figure 3.3. 𝑆𝑀𝐴 regressed on the tangent portfolio's maximum Sharpe ratios. 

Source: Author calculations. 
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The maximum Sharpe ratio portfolio was compared and regressed against this portfolio 

(since most active managers will aim for this rather than the maximum return portfolio (Ross, 

1992)), as was the portfolio with the same risk as the benchmark (Jorion, 2003) or the min-

imum variance portfolio on the constant TE frontier. The tangent portfolio is the optimal 

portfolio subject to a given TE constraint, so it lies on the efficient portfolio set, has a higher 

return than that of the benchmark and frequently (but not always) has a lower risk than the 

benchmark. Although the tangent portfolio does not generate the maximum return, it max-

imises the risk-adjusted return for a given TE (Maxwell, et al., 2018).  

An 𝑅2 = 0.41 indicates a positive relationship between 𝑆𝑀𝐴 and the maximum Sharpe ratios 

of the tangent portfolio. This relationship is expected: an 𝑆𝑀𝐴 > 0 requires that 𝜇𝐵 > 𝜇𝑀𝑉 . 

Higher Sharpe ratios require higher risk-adjusted returns, hence the positive relationship 

between maximum Sharpe ratios and the 𝑆𝑀𝐴.  

Splitting the dataset into two and regressing the metrics over two time periods, (a) Nov-05 

to Oct-12 and (b) Nov-12 to Apr-19 shows that these changed over time from being highly 

correlated to (𝜌 = 0.88) to only marginally correlated (𝜌 = 0.46) – see Figure 3.4. This is 

more clearly shown in Figure 3.6.  

 

Figure 3.4. 𝑆𝑀𝐴 regressed on the tangent portfolio's maximum Sharpe ratios for the period 

(a) Nov-05 to Oct-12 and (b) Nov-12 to Apr-19. 

 Source: Author calculations. 
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2013) and later that year by another (Moody's, 2013). The market became more volatile and 

the earnings of several corporates with international holdings became more volatile because 

of currency fluctuations at the time. The consequences of this are discussed later. 

Why the 𝑆𝑀𝐴 and the Sharpe ratio would be correlated is better explained using Figure 3.5 

for two economic milieus, (a) boom: 𝑆𝑀𝐴 > 0 and (b) bust: 𝑆𝑀𝐴 < 0. Figure 3.5(a) sets out 

the stylised, relative positions of frontiers and portfolios under boom conditions. Figure 

3.5(b) shows the stylised position, in risk/return space, of these frontiers and portfolios in a 

downturn period.  

In this configuration, Figure 3.5(a) shows an 𝑆𝑀𝐴 > 0 because Δ1 > 0.  

Figure 3.5. Stylised, relative positions of frontiers and portfolios under both boom and 

bust conditions. As a direct result, when 𝑆𝑀𝐴 < 0, the tangent portfolio Sharpe ratio is 

likely to be low, as observed (Figure 3.6). 

 

(a) Boom conditions (b) Bust conditions 

Source: Author calculations. 
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in returns and an increase in risk, so it shifts down and right in the risk/return plane. In 

sufficiently severe downturns, this can mean 𝑆𝑀𝐴 < 0 and the coordinates of the tangent and 

maximum return portfolios move much closer together, i.e. their risk and return profiles 

become almost indistinguishable. Because the risk of the maximum Sharpe ratio portfolio 

increases in market downturns and its return decreases, there should be a strong relationship 

between the 𝑆𝑀𝐴 and the maximum Sharpe ratio (as observed). 

The relationship between 𝑆𝑀𝐴 and the maximum Sharpe ratio from the tangent portfolio over 

time is shown in Figure 3.6. 

 

Figure 3.6. The tangent portfolio's Sharpe ratio and the 𝑆𝑀𝐴: the grey dashed line indicates 

the time of multiple credit rating agency downgrades. Circles indicate turning points and 

the grey shaded area indicates a developing trend in which the two series diverge 

considerably. 

Source: Author calculations. 
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In the less correlated phase (Figure 3.6(b)) the situation is less clear. Sharp turning points 

when the 𝑆𝑀𝐴 > 0 result in corresponding small (≈ 20%) changes in the maximum Sharpe 

ratio. Sharp changes in 𝑆𝑀𝐴 when it is < 0 sometimes results in large changes in the 

maximum Sharpe ratio (e.g. mid 2013, ≈ 120%) and sometimes not (e.g. ≈ 10% in early 

2014). The significant changes in the 𝑆𝑀𝐴 both decreasing and increasing in early 2016 had 

almost no effect on the maximum Sharpe value. 

Since Feb-18, the close relationship between 𝑆𝑀𝐴 and the maximum Sharpe ratio measured 

has diverged even more (grey shaded region in Figure 3.7). South Africa's first technical 

recession in nine years was announced in Q2-18 which increased market risk and lowered 

annual returns (Figure 3.7). The combination of these effects contributed to the lowest 

measured Sharpe ratios in the entire 15-year observation period. During the same time, the 

𝑆𝑀𝐴 remained positive (if only slightly) and has only begun to increase more recently. It is 

possible that the benchmark, comprising large, liquid stocks, has not experienced the 

substantial losses (and increase in risk) as those in the maximum Sharpe ratio portfolio. As 

a result, 𝑆𝑀𝐴 has remained positive, while the maximum Sharpe ratio has continued to 

decline. 

These results could be used to signal exit and entry strategies in the tangent portfolio. Sharp 

reversals in the sign of 𝑆𝑀𝐴 indicate a prolonged period of poor performance if 𝑆𝑀𝐴 changes 

rapidly from > 0 to < 0 in boom conditions. The reverse is also true, 𝑆𝑀𝐴 sign reversals 

indicate a prolonged period of superior performance if 𝑆𝑀𝐴 changes rapidly from < 0 to >

0, again, in boom conditions. Large changes in the magnitude of 𝑆𝑀𝐴 lead directly to large 

changes in the maximum Sharpe ratio, and hence performance of the tangent portfolio. 

Figure 3.7 shows the excess returns (over 𝑟𝑓) and portfolio volatility for the maximum Sharpe 

ratio portfolio. Note that these are the constituents of the Sharpe ratio calculation. 

Figure 3.8 shows the 𝑆𝑀𝐴 and the annualised returns of the minimum variance and 

benchmark portfolios (averaged over three years). Note the relative volatility of returns for 

the two portfolios' returns. 

To demonstrate the correlation between the returns of the maximum Sharpe ratio and those 

of the benchmark, the returns were regressed on each other and a high 𝑅2 = 0.92 was found. 

It is not surprising that the returns of these portfolios should move together; they comprise 
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the same constituents and the TE is tight (𝑇𝐸 = 6%), so portfolio managers will be 

discouraged from taking bets far from the benchmark weights.  

 

Figure 3.7. Components of the maximum Sharpe ratio portfolio (numerator: excess return 

(over 𝑟𝑓 = 6%) and denominator: 𝜎𝑃, calculated over the same observation period for 

comparison. The combination of lower returns and higher risk recently (shaded area) has 

contributed to the decline in the maximum Sharpe ratio over the same period (shaded area 

in Figure 3.6). 

Source: Author calculations. 

 

Figure 3.8. Annualised returns of the benchmark and minimum variance portfolio 

(averaged over three years) and the 𝑆𝑀𝐴 over the same observation period for comparison. 

Source: Author calculations. 
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levels of 𝜇𝐵, even 0%. This reflects a highly desirable information ratio of 1.67 (relative 
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Although a positive correlation still exists between the returns of the minimum variance 

portfolio and those of the benchmark, the latter influences the former considerably less (𝑅2 

here = 0.52). It has already been shown that they the returns of these portfolios – although 

11%

13%

15%

17%

19%

21%

23%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

Jan-05 Jan-07 Jan-09 Jan-11 Jan-13 Jan-15 Jan-17 Jan-19 Jan-21

P
o

rt
fo

lio
 v

o
la

ti
lit

y

Ex
ce

ss
 r

e
tu

rn

-10%

0%

10%

20%

30%

40%

50%

60%

-8

-6

-4

-2

0

2

4

6

8

10

Jan-05 Jan-07 Jan-09 Jan-11 Jan-13 Jan-15 Jan-17 Jan-19 Jan-21
A

n
n

u
al

is
ed

 re
tu

rn
s

M
ai

n
 a

xi
s 

sl
o

p
e

Benchmark

Min variance



 

 55 

positively correlated – have substantially different volatilities (see Figure 3.9) with 𝜎𝑀𝑉 <

𝜎𝐵. The minimum variance portfolio generates returns which are invariably greater (by ≈

7%) than those of the benchmark which leads to 𝑆𝑀𝐴 > 0 more often than 𝑆𝑀𝐴 < 0 (54.7% 

versus 45.3%).

 

Figure 3.9. Regression of (a) monthly maximum Sharpe ratio portfolio returns and (b) 

monthly minimum variance portfolio returns on monthly benchmark portfolio returns. 

Source: Author calculations. 

The weights in the respective stocks as a function of time is shown in Figure 3.10. Three 

major incidents are identified: credit ratings downgrades, corruption scandals and the 

'Nenegate' affair. These give rise to notable, dramatic changes in the evolving profile of 

security weights as well as the sharp changes in 𝑆𝑀𝐴 shown in Figure 3.6. 

 

Figure 3.10. Relative portfolio constituent weights (𝒙𝒊) for the maximum Sharpe ratio 

portfolio on the constant TE frontier over the observation period. Recall that ∑ 𝒙𝒊𝑖 = 0. 

Source: Bloomberg and author calculations. 
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Prior to the 2013 local and foreign currency downgrade by Fitch ratings, relative holdings in 

Naspers fluctuates between overweight and underweight the benchmark. However, after the 

announcement of the downgrade (and after the 2014 corruption scandals, the uncertainty 

regarding the May 2014 elections and the Nenegate affair of November 2015) relative hold-

ings in Naspers become positive and remain consistently overweight to the benchmark. Note 

that with monthly rebalancing note that this implies continuous increases of the weightings 

in Naspers. Naspers invests internationally and thus an investment in Naspers reflects con-

siderable diversification benefits. When the ZAR depreciates it is beneficial to invest in a 

company which has international holdings.  

Although MTN experienced good performance up until their $5.2 billion fine in 2015 it was 

optimal to underweight the stock relative to the benchmark weights as its performance was 

not as stellar as Naspers and Shoprite. Naspers and Remgro both have international holdings 

whereas Shoprite, MTN and African Rainbow Minerals are companies whose activities are 

predominantly in the developing market space. More portfolio performance research is re-

quired during political uncertainty and associated devaluation of the ZAR. More work is 

required before it can be definitively determined whether overweighting companies with 

international holdings and consecutively underweighting companies whose activities are 

predominantly based in the emerging market space yields better returns. While acknowledg-

ing the sometimes-disastrous consequences experienced by many South African companies 

who ventured into foreign markets, these results do elucidate the importance of foreign di-

versification.  

Naspers as well as AVI Limited’s relative weightings increase significantly after Sept-18. 

This is due to both stocks consisting of international holdings and this period proceeds the 

announcement of South Africa's first technical recession in nine years (Sep-18). Again, this 

highlights the importance of international diversification. 
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CHAPTER 4 OPTIMAL OMEGA-RATIO 

PORTFOLIO PERFORMANCE 

CONSTRAINED BY TRACKING 

ERROR 

4.1 ABSTRACT 

The mean-variance framework coupled with the Sharpe ratio identifies optimal portfolios 

under the passive investment style. Optimal portfolio identification under active investment 

approaches, where performance is measured relative to a benchmark, is less well-known. 

Active portfolios subject to TE constraints lie on distorted elliptical frontiers in return/risk 

space. Identifying optimal active portfolios, however defined, have only recently begun to 

be explored. The Ω ratio considers both down and upside portfolio potential. Recent work 

has established a technique to determine optimal Ω ratio portfolios under the passive 

investment approach. The identification of optimal Ω ratio portfolios is applied to the active 

arena (i.e. to portfolios constrained by a TE) and find that while passive managers should 

always invest in maximum Ω ratio portfolios, active managers should first establish market 

conditions (which determine the sign of the main axis slope of the constant TE frontier). 

Maximum Sharpe ratio portfolios should be engaged when this slope is > 0 and maximum 

Ω ratios when < 0.  

4.2 INTRODUCTION 

Investment styles follow one of two broad approaches: active and passive. Active fund 

managers trade frequently and engage energetically with the market. Successful active 

managers identify not only high-performing assets, but also time trades to extract maximal 

performance, buying when prices are low and selling when they are high. Skill in this space 

is usually measured relative to a benchmark, usually a market index or an assembly of similar 

securities with constraints on portfolio weights, asset quality and acceptable risk. Passive 
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managers select and purchase desired securities and hold these for investment horizons 

which span periods of economic booms and busts. Such managers' proficiency is measured 

on an absolute basis, they minimise transaction fees and aver that "good" securities 

outperform in the long run.  

Both styles have pros and cons, and the ebb and flow of economic activity often dictates 

investor style selection: passive usually in stable markets and active in volatile. Events such 

as the 2020 COVID-19 pandemic which severely shocked global markets, serve to 

emphasise the importance of agile, active investing. Managers capable and eager to quickly 

dispose of airline, oil or tourism-related stocks for example, avoided the worst of the 

downturn and significantly outperformed less-nimble investments. 

Modern portfolio theory led to the design and application of the widely-used efficient 

frontier, which plots – in return-risk space – the locus of portfolios whose arrangement of 

constituent security weights generates maximal returns at each specified risk level. Sharpe's 

work identified the optimal portfolio on this frontier: one whose excess return (usually over 

the risk-free rate) per unit of risk taken to achieve that return, was maximised. This 

framework of asset selection is ideally suited to the passive investment style. Identifying an 

optimal portfolio using this construction implies the belief that markets are relatively static 

and that buying and holding the optimal portfolio will eventually lead to the desired 

risk/return characteristics.  

Active investment strategies require more complex structures. Portfolios whose performance 

and risk are measured relative to a benchmark follow a different locus of possibilities in 

return/risk space. Jorion (2003) demonstrated that such portfolios occupy a distorted ellipse 

in this space – rather than the efficient frontier's hyperbola for absolute risk and return. The 

dimensions and orientation of this ellipse is governed by many factors, including the 

variance-covariance matrix of underlying security returns, benchmark weights in the 

permissible universe of investable assets, constituent portfolio weights relative to the 

benchmark and the size of the TE. The greater the deviation from benchmark weights, the 

higher the possibility for outperforming (or underperforming) that benchmark (and the 

higher the TE). Active managers – to limit excessive risk-taking – are often constrained to 

not exceed prescribed TEs. There are profound differences in the way portfolio risk and 

return evolve and are measured under active and passive investment styles. Standard 
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performance metrics, in common use for passive portfolios, require complex reformulation 

and behave in unfamiliar ways in active space.  

The Ω ratio, a performance metric which makes no distributional assumptions about asset 

returns, is popular amongst passive investors, but determining the asset allocation to generate 

an optimal Ω ratio portfolio eluded researchers for years. The definition of the Ω ratio imbues 

it with non-convex properties which do not yield to standard optimisation techniques. 

Recently, Kapsos, Zymler, Christofides & Rustem (2011) accomplished this feat using linear 

programming, but their approach has not subsequently been applied to active portfolios, i.e. 

those constrained by TEs. The maximum Ω ratio portfolios are identified on the constant TE 

frontier under different market conditions and these portfolios' performance are compared, 

over time, to that of universal (unconstrained) Ω ratio portfolios. 

4.3 MATERIALS AND METHODS 

4.3.1 Materials 

The data for both benchmark and portfolios comprised 15 stocks (from six market sectors to 

ensure some diversification) selected from a major emerging economy's stock exchange. 

These stocks are highly liquid and frequently traded by active managers; many are dual listed 

on international stock exchanges. Monthly returns spanning 20 years from Jan-00 to Jan-20 

were used, thus covering an era characterised by different market conditions: the years of 

expansionary conditions which preceded the 2007-9 credit crisis, the credit crisis and post 

credit crisis turmoil. The currently evolving economic ramifications of the COVID-19 pan-

demic (May 2020) should contribute to an interesting case study. 

The benchmark comprised equal proportions of these stocks and was rebalanced monthly. 

For the analysis that follows, five years of monthly returns were used to generate portfolio 

returns, volatilities and correlations. The analysis was rolled forward one month at a time 

(maintaining a five-year period to generate the relevant parameters) to explore the behaviour 

of TE constrained optimal 𝛀 ratio portfolios, the impact of a sign-changing constant TE 

frontier main axis slope and the observed differences between security weights for different 

optimal portfolios constrained by TE. Although all rolling five-year periods were examined 

for this work (from Jan-00 to Jan-20), the analytical results which most strongly demonstrate 
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these impacts mentioned above were selected (and presented). The two five-year periods 

identified were: 

1. Oct-00 – Oct-05 characterised by  

a. relatively low volatility, 

b. high returns – despite including the 9-11 US terrorist attack, 

c. a risk-free rate of 7.0%, and  

d. a main axis slope of the constant TE frontier > 𝟎 and 

2. Oct-09 – Oct-14 characterised by 

a. high volatility, 

b. lower returns – in the aftermath of the 2007/8 global financial crisis, 

c. a risk-free rate of 5.8%, and  

d. a main axis slope of the constant TE frontier < 𝟎. 

Portfolio behaviour subject to TEs from 1% to 12% (in 1% increments) was explored. De-

scriptive statistics of these securities are set out in Table 4.1.  

Table 4.1. Descriptive statistics for the period Oct-00 to Oct-05 and Oct-09 to Oct-14. 

 Energy Materials Retail IT Consumer Financial 

 A B C D E F G H I J K L M N O 

2000 – 2005 

𝝁 (%) 30.0 15.3 9.3 3.9 22.5 13.8 16.0 43.7 18.9 11.5 10.4 30.2 29.6 14.0 20.1 

𝝁max (%) 24.0 18.0 24.8 18.2 37.6 49.3 19.9 51.6 18.2 33.4 40.2 29.0 27.3 44.1 15.2 

𝝁min (%) -13.9 -18.2 -18.1 -20.9 -23.3 -21.9 -13.1 -23.3 -13.9 -28.6 -44.7 -11.9 -25.0 -47.1 -11.7 

𝝈 (%) 32.6 21.3 33.6 29.8 36.9 57.0 26.9 42.5 22.6 41.1 51.0 26.0 29.3 51.7 19.9 

𝒔 0.22 0.04 0.56 -0.16 0.75 0.67 0.50 1.13 0.04 0.13 -0.61 0.77 0.09 -0.33 0.30 

𝜿 -0.77 1.13 0.05 -0.23 1.34 0.06 -0.30 3.23 -0.03 0.60 2.09 1.22 2.18 1.89 -0.02 

2009 – 2014 

𝝁 (%) 14.2 -1.1 -2.0 9.0 -0.4 -26.5 20.8 41.8 17.1 14.8 39.8 37.2 12.2 37.5 7.4 

𝝁max (%) 16.8 14.0 15.9 17.9 19.4 23.2 17.3 25.9 11.4 15.8 24.1 15.5 19.6 21.9 13.1 

𝝁min (%) -10.5 -14.3 -21.1 -11.8 -16.8 -28.3 -17.6 -14.1 -15.3 -9.0 -14.6 -19.0 -15.6 -11.4 -9.6 

𝝈 (%) 17.3 20.3 26.0 24.6 28.2 36.0 23.6 24.5 18.4 18.1 28.1 24.4 25.5 28.8 17.2 
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𝒔 0.52 -0.07 -0.17 0.27 0.22 -0.35 -0.38 0.54 -0.57 0.45 0.05 -0.69 0.40 0.48 0.31 

𝜿 0.72 0.06 0.18 -0.17 -0.69 0.50 0.31 1.90 0.56 0.38 -0.13 0.89 -0.12 -0.52 -0.04 

Source: Bloomberg and author calculations. 

Key: 𝝁 − mean annual return, 𝝁max − max monthly return, 𝝁min − min monthly return, 𝝈 − 

mean annualised volatility, 𝒔 − skewness and 𝜿 − kurtosis. 

4.3.2 Methods 

Active investment positions differ from benchmark positions according to the risk appetite 

of investors. Low TEs mean active weights must be small, while for higher TEs, active 

weights are larger (permitting a wider range of weights relative to the benchmark). The 

underlying variables, matrices and matrix notation, are defined below for a sample of 𝑁 

constituent securities: 

𝒒:  1 × 𝑁 vector of benchmark weights 

𝒙:  1 × 𝑁 vector of deviations from the benchmark 

𝒒𝑷 (= 𝒒 + 𝒙): 1 × 𝑁 vector of portfolio weights 

𝑬:  1 × 𝑁 vector of expected returns,  

𝝈:  1 × 𝑁 vector of benchmark component volatilities  

𝝆:  𝑁 × 𝑁 benchmark correlation matrix 

𝑽:  𝑁 × 𝑁 covariance matrix of asset returns  

𝟏:  1 × 𝑁 vector of 1s and 

𝑟𝑓:  the risk-free rate. 

Net short sales are allowed so the total active weights (𝒒𝑖 + 𝒙𝑖) may be < 0 for individual 

securities. No assets outside the benchmark's set may be included using Roll's methodology 

– although in principal this is of course possible. Using matrix notation, expected returns 

and variances are: 

𝜇𝐵 = 𝒒𝑬′: expected benchmark return 

𝜎𝐵 = √𝒒𝑽𝒒′: volatility (risk) of benchmark return 



 

 62 

𝜇𝜀 = 𝒙𝑬′: expected excess return; and 

𝜎𝜀 = √𝒙𝑽𝒙′: TE. 

The active portfolio expected return and variance is given by 𝜇𝑃 = (𝒒 + 𝒙)𝑬′ = 𝜇𝐵 + 𝜇𝜀  

and 𝜎𝑃 = √(𝒒 + 𝒙)𝑽(𝒒 + 𝒙)′ respectively. The portfolio must be fully invested, so (𝒒 +

𝒙)𝟏′ = 1.  

The following definitions are also required: 𝑎 = 𝑬𝑽−𝟏𝑬′, 𝑏 = 𝑬𝑽−𝟏𝟏′, 𝑐 = 𝟏𝑽−𝟏𝟏′, 𝑑 =

𝑎 −
𝑏2

𝑐
 and Δ1 = 𝜇𝐵 −

𝑏

𝑐
 where 𝑏/𝑐 = 𝜇𝑀𝑉  and Δ2 = 𝜎𝐵

2 −
1

𝑐
 with 1/𝑐 = 𝜎𝑀𝑉

2  where 𝑀𝑉 is 

the minimum variance portfolio (Merton, 1972). 

It is useful to recall the relevant mathematics which generate the various frontiers. 

4.3.2.1 Mean variance frontier  

Minimise 𝒒𝑷𝑽𝒒𝑷
′  subject to 𝒒𝑷𝟏′ = 1 and 𝒒𝑷𝑬′ = 𝐺 where 𝐺 is the target return. The vector 

of portfolio weights is 𝒒𝑷 = (
𝑎−𝑏𝐺

𝑑
) 𝒒𝑴𝑽 + (

𝑏𝐺−
𝑏2

𝑐

𝑑
) 𝒒𝑻𝑮 where 𝑞𝑀𝑉 is the vector of asset 

weights for the minimum variance portfolio given by 𝒒𝑴𝑽 = 𝑽−1 𝟏

𝑐
 and 𝒒𝑻𝑮 is the vector of 

asset weights for the tangent portfolio (with 𝑟𝑓 = 0), i.e. 𝒒𝑻𝑮 = 𝑽−1 𝑬

𝑏
. The weights of the 

tangent portfolio's components, 𝒒𝑻𝑷, with 𝑟𝑓 ≠ 0, are:  

𝒒𝑻𝑷
′ =

𝑽−𝟏(𝑬 − 𝑟𝑓 ⋅ 𝟏)′

𝟏 ⋅ 𝑽−𝟏(𝑬 − 𝑟𝑓 ⋅ 𝟏)′
 

4.3.2.2 TE frontier  

Maximise 𝒙𝑬′ subject to 𝒙𝟏′ = 0 and 𝒙𝑽𝒙′ = 𝜎𝜀
2. The solution for the vector of deviations 

from the benchmark is 𝒙′ = ±√𝜎𝜀
2

𝑑
𝑽−1 (𝑬 −

𝑏

𝑐
𝟏)

′

. The solution to this optimisation problem 

generates the TE frontier, a portfolio's maximal return at a given risk level and subject to a 

TE constraint.  

4.3.2.3 Constant TE frontier 

Maximise 𝒙𝑬′ subject to 𝒙𝟏′ = 0, 𝒙𝑽𝒙′ = 𝜎𝜀
2 and (𝒒 + 𝒙)𝑽(𝒒 + 𝒙)′ = 𝜎𝑃

2 . The vector of 

deviation weights from the benchmark is 𝒙′ = −
1

𝜆2+𝜆3
𝑽−1(𝑬′ + 𝜆1 + 𝜆3𝑽𝒒′) where 𝜆1 =
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−
𝜆3+𝑏 

𝑐
, 𝜆2 = ±(−2)√

𝑑Δ2−Δ1
2

4𝜎𝜀
2Δ2−𝑦2 − 𝜆3 and 𝜆3 = −

Δ1

Δ2
±

𝑦

Δ2
√

𝑑Δ2−Δ1
2

4𝜎𝜀
2Δ2−𝑦2. The solution for the 

weights which generate the tangent portfolio (to the constant TE frontier) was shown by 

Maxwell et al, (2018) to involve solving for 𝜎𝑃 using: 

 
(𝑟𝑓−𝜇𝐵)

𝜎𝑃
2 +

(Δ1
2−𝑑Δ2)⋅(𝜎𝑃

2 −𝜎𝐵
2 −𝜎𝜀

2)

√(Δ1
2−𝑑Δ2)[(𝜎𝑃

2 −𝜎𝐵
2 −𝜎𝜀

2)
2

−4Δ2𝜎𝜀
2]

+Δ1

Δ2
−

√(Δ1
2−𝑑Δ2)[(𝜎𝑃

2−𝜎𝐵
2−𝜎𝜀

2)
2

−4Δ2𝜎𝜀
2]+Δ1⋅(𝜎𝑃

2−𝜎𝐵
2−𝜎𝜀

2)

2Δ2𝜎𝑃
2  

then establishing 𝜇𝑃 on the efficient segment of the constant TE frontier and then backing 

out the relevant weights.  

4.3.2.4 Constant TE frontier main axis slope, 𝑺𝑴𝑨 

The main axis slope, 𝑆𝑀𝐴 is calculated using  

𝑆𝑀𝐴 =
Δ1

𝜎𝐵 − 𝜎𝑀𝑉
=

𝜇𝐵 −
𝑏
𝑐

𝜎𝐵 − 𝜎𝑀𝑉
=

𝜇𝐵 − 𝜇𝑀𝑉

𝜎𝐵 − 𝜎𝑀𝑉
 

Δ1 determines the sign of 𝑆𝑀𝐴 because the denominator is always > 0 since 𝜎𝐵 − 𝜎𝑀𝑉 > 0 

always. A necessary and sufficient condition for 𝑆𝑀𝐴 < 0 is 𝜇𝐵 < 𝜇𝑀𝑉 . Note that the 𝑆𝑀𝐴 is 

independent of TE since none of its components depend explicitly thereon. For the first time, 

the sign and magnitude of the 𝑆𝑀𝐴 were measured and evaluated and how these (and 

constituents of the 𝑆𝑀𝐴) change over time as market conditions evolve plus their influence 

on TE constrained portfolio performance were explored.  

4.3.2.5 Optimal 𝛀 portfolios 

Consider a market with 𝒏 stocks. The current time is 𝒕 = 𝟎 and the end of the investment 

horizon is 𝒕 = 𝑻. A portfolio is completely characterised by a vector of weights 𝒘 ∈ ℝ𝒏, 

such that ∑ 𝒘𝒊 = 𝟏𝒏
𝒊=𝟏 00%. The element 𝒘𝒊 denotes the percentage of total wealth invested 

in the 𝒊th stock at time 𝒕 = 𝟎. Let 𝒓̃𝒊 indicate the random return of asset 𝒊 and with boldface 

the vector of return variables 𝒓̃ ∈ ℝ𝒏. The random return of a portfolio of assets is defined 

as 𝒓̃𝒑 = 𝒘𝑻𝒓̃. 

Let 𝑭(𝒓𝒊) and 𝒇(𝒓𝒊) denote the cumulative density function and the probability density func-

tion, respectively. For an asset 𝒊, Keating & Shadwick (2002) define the 𝛀 ratio as: 



 

 64 

𝛀(𝒓̃𝒊) =
∫ [𝟏 − 𝑭(𝒓𝒊)]𝒅𝒓𝒊

+∞

𝝉

∫ 𝑭(𝒓𝒊)𝒅𝒓𝒊
𝝉

−∞

 (4.1) 

Integration by parts and some algebraic transformation, the 𝛀 ratio may be written: 

𝛀(𝒓̃𝒊) =
∫ (𝒓̃𝒊 − 𝝉)𝒇(𝒓𝒊)𝒅𝒓𝒊

+∞

𝝉

∫ (𝝉 − 𝒓̃𝒊)𝒇(𝒓𝒊)𝒅𝒓𝒊
𝝉

−∞

=
𝔼[(𝒓̃𝒊 − 𝝉)+]

𝔼[(𝝉 − 𝒓̃𝒊)+]
=

𝔼(𝒓̃𝒊) − 𝝉

𝔼[(𝝉 − 𝒓̃𝒊)+]
+ 𝟏 

Therefore, the portfolio 𝛀 ratio is: 

𝛀(𝒓̃𝒑) =
𝒘𝑻𝔼(𝒓̃) − 𝝉

𝔼[(𝝉 − 𝒘𝑻𝒓̃)+]
+ 𝟏 (4.2) 

Portfolio optimisation problems that aim to maximise the 𝛀 ratio subjected to additional 

constraints on portfolio weights are explored here. The 𝛀 maximisation problem can be writ-

ten as  

𝐦𝐚𝐱
𝝎∈ℝ𝒏

𝒘𝑻𝔼[𝒓̃] − 𝝉

𝔼[(𝝉 − 𝒘𝑻𝒓̃)+]
 (4.3) 

s.t. 𝒘𝑻𝟏 = 𝟏𝟎𝟎% and 𝒘 ≤ 𝒘 ≤ 𝒘. 

The objective is to determine the allocation that gives the optimal weights (𝑤 ∈ 𝑅𝑛) that 

result in the portfolio with the maximum Ω ratio. The constraints above relate to the budget 

constraint and the upper and lower bound on any individual investment. 

The discrete analogue for (4.2) is  

𝛀 =
𝒘𝑻𝒓 − 𝝉

∑ [𝝉 − 𝒘𝑻𝒓𝒋]
+

𝒑𝒋𝒋

 (4.4) 

The optimisation problem is 

𝐦𝐚𝐱
𝒘

𝒘𝑻𝒓 − 𝝉

∑ [𝝉 − 𝒘𝑻𝒓𝒋]
+

𝒑𝒋𝒋

 (4.5) 

s.t. ∑𝒘𝒊 = 𝟏, and 𝒘 ≤ 𝒘 ≤ 𝒘 and where 𝒑𝒋 = 𝟏/𝒏. 

Using the portfolio weights derived from (4.5), Ωs may be calculated, and their component 

numerators and denominators graphed. Figure 4.1 presents interesting similarities with the 

MPT's mean-variance framework and Sharpe ratio optimisation. Point above the frontier are 

unattainable and investors may choose better solutions for all coordinates below. Kaspos et 
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al., (2011) named this locus of points the Ω frontier and found that its concave, non-

decreasing feature arose from the optimisation problem's (4.5) convexity property. For each 

point on the frontier, the Ω ratio is determined by the gradient of the line passing through it 

and the origin, so an optimal solution (maximum Ω ratio) is that point at which the line which 

passes through the origin has the highest slope (i.e. tangent to the Ω frontier). 

 

Figure 4.1: Ω frontier, analogous capital market line and location of the optimal Ω portfolio. 

Source: Author calculations. 

4.4 RESULTS AND DISCUSSION 

The aim is to generate constant TE frontiers for varying levels of TE (1% to 12% in 1% 

intervals) and then, for each constant TE frontier, establish the risk and return (and corre-

sponding portfolio constituent weights) for each of the following maximal portfolios: return, 

Sharpe, and 𝛀. There are two "maximum 𝛀 ratio portfolios"; one which simultaneously sat-

isfies the relevant TE constraint and maximises the return at each TE-constrained risk level 

and the other unconstrained by TE, i.e. a universal maximum 𝛀 portfolio. The former is 

identified by first selecting the (known) asset weights which generate the upper hemisphere 

of portfolios on the constant TE frontier (i.e. from minimum to maximum variance portfolios 

on the ellipse). These weights are then used to generate portfolio returns over the chosen 

period of interest (five years of monthly returns, rolled forward one month at a time, since 

Jan-00) and the associated 𝛀 ratio calculated for each set of 60 (5y) returns. By construction, 

these portfolios lie on the constant TE frontier. The 𝛀 ratio – measured using as threshold 

the benchmark return – for each portfolio is then plotted on the same 𝒙-axis (risk) as the 

constant TE frontier (the solid black line in Figure 4.2 for 𝑻𝑬 = 𝟔%). The unconstrained 
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(universal) 𝛀 ratio, using the same threshold, is also shown in Figure 4.2, along with the 

efficient frontier and the capital market line (CML) for the constant TE frontier (Maxwell, 

et al, 2018).  

 

Figure 4.2. Orientation of relevant components in Oct-05. 𝑇𝐸 = 6% and 𝑟𝑓 = 7.0%. The 

Ω ratio as a function of risk is shown as a solid black line, tied to the right-hand axis (the 

maximum Ω ratio on this curve is indicated). All other elements are linked to the left-hand 

axis. 

Source: Bloomberg and author calculations. 

In Figure 4.2, the period selected was Oct-00 to Oct-05 using monthly returns. This period 

precedes the credit crisis of 2007-09 when markets enjoyed buoyant returns and reduced 

volatility, giving rise to a constant TE ellipse with a positive main axis (see Gunning & van 

Vuuren, 2019). The maximum Ω ratio portfolio – constrained by TE – lies between (in terms 

of risk and return) the maximum Sharpe ratio and maximum return portfolios, while the 

universal (unconstrained) Ω ratio portfolio lies outside the constant TE frontier with higher 

risk and higher return than all other constant TE frontier portfolios (in this example where 

𝑇𝐸 = 6% and 𝑟𝑓 = 7.0%). 

In Figure 4.3, the period selected was Oct-09 to Oct-14, i.e. post the worst of the turbulent 

market volatility instituted by the credit crisis of 2007-09. Portfolio annual returns are 

substantially lower than those observed in the period preceding the credit crisis and annual 

risk is higher: the configuration resulting in a negative main axis for the constant TE ellipse. 

The maximum TE-constrained Ω ratio portfolio again lies between (in terms of risk and 

return) the maximum Sharpe ratio and maximum return portfolios, while the universal 

(unconstrained) Ω ratio portfolio again lies outside the constant TE frontier with higher risk 
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and higher return than all other constant TE frontier portfolios (in this example where 𝑇𝐸 =

6% and 𝑟𝑓 = 5.8%). 

 

Figure 4.3. Orientation of relevant components in Oct-14. 𝑇𝐸 = 6% and 𝑟𝑓 = 5.8%. 

Source: Bloomberg and author calculations. 

Figure 4.4(a) shows the 𝛀 frontiers for portfolios with returns selected from the two periods 

(Oct-00 – Oct-05 and Oct-09 – Oct-14). Figure 4.4(b) plots 𝛀 ratio at each corresponding 

threshold. 𝛀 ratios are higher in the latter period because high volatility here leads to a higher 

dispersion of portfolio returns. The overall increase in quantity and magnitude of returns >

𝟎% in this period, combined with the greater dispersion elevates 𝛀 ratios ∀𝝉 > 𝟎%. 

 

Figure 4.4. Analysis of the Ω ratio for Oct-00 – Oct-05 and Oct-09 – Oct-14. 

(a) Ω frontiers (b) maximum Ω(𝜏) 

Source: Bloomberg and author calculations. 
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Constituent deviations from the benchmark (i.e. 𝑥𝑖) in the optimal, universal, unconstrained 

Ω portfolios for the two periods are provided in Figure 4.5, grouped by market sector. 

 

Figure 4.5. Weights in optimal, unconstrained Ω portfolios for Oct-00 – Oct-05 and Oct-09 

– Oct-14. 

Source: Bloomberg and author calculations. 

In the former period, the optimal unconstrained 𝛀 portfolio strongly overweights assets A 

and M while strongly underweighting C and D. Both A and M witnessed considerably 

growth in the low risk, high return pre-crisis period, skewing their return distributions to the 

right, while C and D both experienced large losses during this time, skewing both return 

distributions to the left.  

Similar observations were noted for assets A (strong growth post the credit crisis), and E and 

O (large losses with widely dispersed returns) in the latter period.  

The performance of the remainder of the assets was unremarkable, their return distributions 

characterised by low skewness and low excess kurtosis. As a result, deviations from the 

benchmark weights are small.  

The behaviour of the maximum Sharpe ratio, maximum constrained 𝛀 and maximum return 

portfolios as a function of TE is shown in Figure 4.6(a) for the period Oct-00 – Oct-05. The 

locus of the return/risk coordinates all increase monotonically as TE increases and the rela-

tive configuration is preserved for all TEs (both the risk and return of the maximum Sharpe 

ratio portfolio less than that of the maximum 𝛀, and in turn less than that of the maximum 
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return portfolio). Figure 4.6(b) shows the associated Sharpe ratios for all portfolios as a func-

tion of TE – again monotonically increasing with the maximum Sharpe ratio portfolio ex-

hibiting, as expected, the highest Sharpe ratio for all TEs. Constant TE frontiers of 3%, 7% 

and 12% are displayed for scale and the Sharpe ratio for the constrained optimal 𝛀 portfolio 

is shown as a dotted line in Figure 4.6(b) for comparison. the vertical scales in Figure 4.6(a) 

and (b) are the same as those for Figure 4.7(a) and (b) for direct comparison. 

 

Figure 4.6. Analysis for Oct-00 – Oct-05. 

(a) Return/risk profiles for relevant 

portfolios as a function of TE (percentages 

indicate TE values)  

(b) Sharpe ratios versus TE for Oct-00 – 

Oct-05. Constant TE frontiers at 3%, 7% 

and 12% are shown for comparison. The 

optimal Ω ratio's Sharpe ratio is indicated as 

a dashed line.  

Source: Bloomberg and author calculations. 

Figure 4.7 duplicates the analysis presented in Figure 4.6, but for the period Oct-09 – Oct-

14. When the main axis of the constant TE frontier is negative, returns for all maximal port-

folios increase monotonically with increasing TE, while risk for these portfolios decreases 

then increases again as TE increases.  
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Figure 4.7. Analysis for Oct-09 – Oct-14. 

(a) Return/risk profiles for relevant 

portfolios as a function of TE 

(b) Sharpe ratios versus TE for Oct-09 – 

Oct-14. Constant TE frontiers at 3%, 7% 

and 12% are also shown for comparison. 

Source: Bloomberg and author calculations. 

For 𝑻𝑬 < 𝟓%, the constrained maximum 𝛀 ratio portfolio does not lie on the efficient con-

strained portfolio set – it lies to the right of the maximum return portfolio, i.e. it has higher 

risk and lower return (recall that the efficient set spans the upper hemisphere of the ellipse 

from the minimum variance portfolio on the left to the maximum return portfolio on the 

right. Portfolios outside this region are inefficient). Because the same level of return is pos-

sible for this maximum constrained 𝛀 portfolio, it is inefficient. This may not, in fact, be 

true because the 𝛀 ratio makes no assumptions of return distribution normality. Instead, it 

uses the empirical distribution and thus may still be efficient because both the max Sharpe 

and max return portfolios do assume a normal distribution of returns. 

Figure 4.8 compares weight deviations from the benchmark for the three portfolios over (a) 

the Oct-00 – Oct-05 period and (b) the Oct-09 – Oct-14 period. 
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Figure 4.8: Benchmark weight deviations for relevant portfolios 

(a) Oct-00 – Oct-05 (b) Oct-09 – Oct-14 

Source: Bloomberg and author calculations. 

Reasons for large over or underweighting remain – for either period – as discussed previ-

ously (for Figure 4.5). In Figure 4.8(a) for Oct-00 – Oct-05, the constant TE frontier's main-

axis slope is > 𝟎 (Figure 4.2) while for Figure 4.8(b) for Oct-09 – Oct-14 the main-axis 

slope is < 𝟎 (Figure 4.3). Deviations of asset weights from the benchmark vary considerably 

over the two periods. Not only do the relative weights differ in magnitude, the signs (over-

weight/underweight) are also often different. The size of constituent asset deviation from the 

benchmark weights (> 𝟎% or < 𝟎%) is also greater when the main axis slope is > 𝟎, but 

although the relative weights of the constituents often have different signs (like Oct-05), the 

magnitude of the differences are negligible. These observations are explained by the fact that 

when the main-axis slope is > 𝟎, the range of risks spanned by the efficient portfolio set is 
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greater than when the main-axis slope is < 𝟎 (earlier period's approximately 14.5% to 20.5% 

(6% risk range) compared with later period's 9.5% to 12.5% (3% risk range) in this example). 

Figure 4.9 presents asset K's weight deviations from the benchmark over the two periods as 

a function of TE. Several interesting features are apparent. For one, the profiles are broadly 

similar regardless of main axis slope: all increase or decrease monotonically as TE increases. 

This reflects the stability of benchmark deviations as TE changes – these are gradual, not 

abrupt. Another is that the benchmark weight deviations for the maximum Sharpe ratio and 

maximum return portfolios are almost identical over the two periods while those for the 

maximum 𝛀 portfolio are notably higher in the second period.  

 

Figure 4.9: Asset K's deviation in weight from benchmark for the relevant portfolios 

(a) Oct-00 – Oct-

05 

(b) Oct-09 – Oct-

14. 

Source: Bloomberg and author calculations. 
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maximum 𝛀 ratio portfolio increase accordingly, as the 𝛀 ratio balloons. This is untrue the 

maximum Sharpe portfolios because this approach assumes that returns are normally distrib-

uted. As K's volatility increases over time (due to large positive returns), so the Sharpe ratio 
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the benchmark because its performance is strongly tied to that of the benchmark (itself a 

representation of the broad market, being well-diversified and having equally weighted com-

ponents). This leads to strong positive correlations with other asset returns which perform 

favourably over the periods but not spectacularly. Adding asset K increases the risk relative 

to the benchmark beyond that of the specified PD, so the only option is to underweight this 

asset at the expense of the others. This may still generate the highest return portfolio, but it 

is only the maximum 𝛀 ratio portfolio which fully exploits a strongly outperforming asset. 
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CHAPTER 5 CONCLUSIONS AND FUTURE 

DIRECTIONS 

5.1 CONCLUSIONS 

Markowitz's (1956) work established a solid and robust framework for efficient portfolio 

asset allocation and Sharpe (1964) laid out the groundwork for portfolio optimisation within 

Markowitz's (1956) model. Despite considerable subsequent research and the introduction 

of many new ideas – even investment styles – portfolio optimisation under the assumption 

utility maximisation seeking (higher returns preferred over lower returns) rational investors 

remains key to modern portfolio theory and investment approaches. Both passive and active 

investment styles are commonplace today (2020) and all investors make use of one (or 

hybrids of both) of these asset management methods. Although investor interest in the 

approaches wax and wane with market conditions, associated fees and costs and the 

inexorable search for yield, substantially more asset allocation work has focussed on passive 

than active investing. The gap left in the literature is now being filled by new research, 

invigorated by renewed interest in active investing.  

Transferring well-known and successful principles from passive to active management is 

non-trivial: the mathematics governing the two, while similar in some respects, also differ 

considerably. Portfolio performance measured relative to a benchmark, it transpires, 

involves not only an alteration of risk/return metrics. Efficient frontiers in passive 

mean/variance space are hyperbolic, while in active mean/variance space, they are 

ellipsoidal. The features introduced by these differences unveil several interesting attributes: 

maximal variance, maximal return, long and short (ellipse) axes, orientation and magnitude 

of these axes, and a bounded mean/variance space – none of which are present in the better-

known passive arena.  
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Confronted by the array of novel research directions, and mindful of the burst of new 

research in this arena, two important features of active asset allocation were chosen: what is 

the influence of changing market conditions on  

• the orientation and magnitude of the constant TE frontier's main axis, and 

• the behaviour of the maximum Ω ratio portfolio on the constant TE frontier.  

5.1.1 Theme 1 – The main-axis slope of the constant TE frontier  

South Africa is an emerging economy which experiences periods of financial turmoil, 

political scandals, and considerable currency fluctuations. Following these periods of 

turmoil, large rebalancing of relative asset weights is required. The results and findings 

reiterate the importance of diversification, for any developing economy, especially in stocks 

which contain a percentage of international holdings. Investors, however, shy away from 

uncertainty and constant rebalancing because of the high transaction costs and tax liabilities: 

foreign investments have decreased in South Africa over the recent past.  

The significant positive relationship between the 𝑆𝑀𝐴 and the maximum Sharpe ratio 

confirms the link between these metrics and the possibility of a trading strategy. During 

boom conditions, sharp 𝑆𝑀𝐴 turning points when 𝑆𝑀𝐴 ≥ 0 trigger roughly 12 months of 

improving or deteriorating Sharpe ratios, depending on whether the turning point was a local 

maximum or minimum. Investors may adjust portfolio holdings accordingly. In bust 

conditions, when the market experiences currency weakness, high market volatility or both, 

the 𝑆𝑀𝐴 is an unreliable indicator or future market moves and should not be used. These 

results, and possible investor actions, are summarised in Table 5.1. 

Table 5.1. Investment strategies from sharp turning points in 𝑺𝑴𝑨. 

 Boom Bust 

𝑺𝑴𝑨 > 𝟎, 

downturn 

Sell portfolio or decrease holdings. 

≈ 1 year of declining Sharpe ratios 

to follow (indicating deteriorating 

returns and/or increasing market 

volatility) 

No reliable signal given 

𝑺𝑴𝑨 < 𝟎, 

upturn 

Purchase portfolio or increase holdings. ≈ 1 year of improving Sharpe 

ratios to follow (indicating improving returns and/or decreasing market 

volatility) 

Source: Author estimates. 
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5.1.2 Theme 2 – The optimal 𝛀 ratio under a TE constraint 

Identifying and characterising the behaviour of portfolios with a maximum 𝛀 ratio and con-

strained by TEs has been implemented and investigated here for the first time. Such portfo-

lios differ from universal – unconstrained 𝛀 ratio portfolios, both in risk and return charac-

teristics as well as constituent asset weights (and, therefore, they differ in their respective 

weight deviations from the benchmark). Unconstrained maximum 𝛀 portfolios distribute 

weights among components depending on both positive and negative return configurations. 

Portfolios which limit the magnitude of returns < 𝟎 and encourage returns > 𝟎 have the 

highest 𝛀 ratio and are the ones selected for optimality. TE-constrained portfolios, however, 

must allocate component asset weights differently. Because the relative risk level of these 

portfolios must equal the TE, constrained 𝛀 portfolios penalise assets whose risk profile 

prevents reaching relative risk equal to the TE (while favouring assets which generate port-

folios with more positive returns than negative ones). This arises from the complex interplay 

of not only component volatilities, but also component correlations. Individual assets whose 

returns are strongly correlated with those of the benchmark (or "market" if the benchmark 

represents broad market exposure) – while appearing favourable due to high positive returns 

– may be penalised because their inclusion leads to relative risk different from the TE. 

When the constant TE frontier's main axis is < 𝟎 (a feature that arises only in conditions of 

high market turbulence, usually short-lived, lasting only a few months), the range of possible 

return/risk combinations for optimal portfolios (Sharpe, 𝛀 ratio or return) is considerably 

reduced. Portfolios under these conditions exhibit similar risks and returns and have similar 

component weights. When the constant TE frontier's main axis slope is > 𝟎 (a longer lasting 

and far more prevalent feature of the constant TE frontier, arising from "normal" market 

conditions), the range of possible return/risk combinations is considerably greater. Variation 

in component asset weights is also higher when the constant TE main axis slope is > 𝟎.  
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5.2 FUTURE DIRECTIONS AND RESEARCH NEEDS 

5.2.1 Theme 1 – The main-axis slope of the constant TE frontier  

Future work could investigate the link, if any, between the frequency of the market cycle 

and the cycle frequency of the changing main axis slope. The slope does not change instan-

taneously, but rather evolves over time, in response to changing market conditions. It is not 

unreasonable to assume that there is some degree of correlation between the two frequencies 

– or, as proxy, between the amplitude of market cycles and the size of the main axis slope. 

Fourier analysis (which detects underlying cycle frequencies in noisy signals) could help in 

this regard, as could the Kalman filter (which uses Bayesian statistics and rudimentary ma-

chine learning and could be used to assess patterns in time series data). Establishing such a 

connection could prove fruitful in the early detection and amelioration of financial crises. 

Future work could also develop and augment the methodology, applying it to other develop-

ing and developed economies. Although there are no reasons to suspect the results will be 

any different (simulated runs have so far given similar results) it will be interesting to com-

pare the impact during another economy's boom and bust periods. 

Out-of-sample backtesting could also be performed on market data to determine the robust-

ness and accuracy of the forecasts. 

5.2.2 Theme 2 – The optimal 𝛀 ratio under a TE constraint 

Passive asset managers relying on absolute rather than relative performance should always 

allocate asset weights using the universal maximised 𝛀 ratio portfolio. Such portfolios have 

been shown to outperform other vaunted "optimal" alternatives. Active managers who re-

quire portfolios to outperform a prescribed benchmark while maintaining a prescribed level 

of risk relative to it subvert the mechanisms employed by optimal 𝛀 ratio portfolio construc-

tion, reducing – or eliminating – its effectiveness. In these cases, market conditions – which 

dictate the sign of the main axis slope of the constant TE frontier – should also be considered. 

When the main axis of the constant TE frontier is > 𝟎, strategic active asset managers should 

allocate asset weights using a maximum Sharpe ratio framework.  
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Tactical (shorter term) active asset managers should use a maximum 𝛀 ratio approach to 

determine asset weights. Possible future work could include an explicit, long-term, empirical 

investigation of the veracity of these conclusions. Current (2020) highly volatile market con-

ditions, due to the fallout induced by the COVID-19 pandemic, could serve as an interesting 

case study to gauge and calibrate these effects. 

The link between the family of four Johnson distributions and the Ω ratio could be examined 

in more detail and the strategy implemented in a constrained regime. The Ω performance 

measure is well-suited to the family of Johnson distributions. Passow (2004) found that 

Johnson-Ω portfolios, i.e. those whose higher portfolio moments were decompositions and 

derived to specifically include expected higher moments on fund levels gave significantly 

higher returns without sacrificing capital protection needs. Such a strategy, installed using 

an active investment strategy, could provide interesting results – especially in turbulent 

markets. 

Further generic research could involve a Black-Litterman approach which enables tactical 

management of portfolios by combining information assembled from historical (or expected) 

returns and from some personal “view” (considered expert opinion) about asset returns. The 

Black & Litterman (1991, 1992) approach was introduced to facilitate effective portfolio 

optimisation by incorporating investor (or fund manager) views into the asset allocation 

process using a Bayesian method to combine the investor’s views about expected asset 

returns with the prior information given by the vector containing the implied equilibrium 

returns. Posterior information is provided by a distribution whose mean is the mixed estimate 

of expected returns, and whose variance is a function of the covariance matrix of implied 

returns and of a diagonal matrix in which the confidence in the manager’s views are 

established.  

Combining a Black-Litterman framework with TE-constrained portfolio asset allocation 

could alleviate expected return forecasting issues and institute better allocation of funds for 

investments. This will form the focus of future research as this is a woefully underexplored 

feature of TE constrained portfolios.
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