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SYNOPSIS

Amoss is an equation-orientated stochastic simulation platform, developed on open-source soft-
ware. It is designed to facilitate the development and simulation of Sasol value chain models
using the Moss methodology. The main difficulties with the original Moss methodology was
that plant recycles were difficult to incorporate and that plant or model changes meant rebuild-
ing the entire Moss model. The first version of automatic-Moss was developed by Edgar Whyte
in an effort to address these problems. It was successful as a proof of concept, but generated
simulations were numerically unstable and very slow. A second version of the tool was to be
developed to address numerical stability and simulation speed.
The stochastic simulations stemming from Amoss models are large-scale and contain mixed
continuous/conditional algebraic equation sets, with first order stochastic differential equations.
Additionally, optimal flow allocation as a disjunctive optimisation is often encountered. The
complexity of these factors makes finite difference approximation the main solution.
The equation ordering, simulation approach and code generation features of the Amoss tool
were investigated and re-implemented. A custom equation ordering method, which uses inter-
val arithmetic and weighted maximal matching for numerically stable matching, followed by
Dulmage-Mendelsohn decomposition and Cellier’s tearing, was implemented. For implicitly
ordered systems, a fixed-point iterative Newton method, where conditional variables are sepa-
rated from continuous variables for solving stability, was implemented. The optimal allocation
problem with heuristic allocation was generalised to plants with recycles. Fast simulation code
utilising parallel processing, efficient solving and function evaluation, efficient intermediate
data storage and fast file writing, was implemented. Amoss simulations are now substantially
faster than the industry equivalent and can reliably model Moss methodology problems.

KEYWORDS: stochastic simulation, simulation speed, numerical stability, equation ordering,
simulation approach, code generation
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CHAPTER 1

INTRODUCTION

1.1 Moss

Sasol is a large chemical provider located in South Africa and is one of the world’s largest
producers of liquids and gasses from coal. The Fischer-Tropsch process to convert low grade
coal to synthetic fuels revolutionized the petrochemical industry in 1955, and was pioneered
by Sasol. Of late Sasol has also heavily modernised its classical processes and become a
manufacturer of many types of chemicals. Sasol was estimated to be worth $23 billion in 2009.
It is a top 5 South African publicly listed company and finds itself listed on both Johannesburg
and New York stock exchange. (Meyer et al, 2011)

Sasol has historically faced many challenges. One of the major difficulties has been decision-
making on the highly integrated and dynamic processes found on its plants. The challenges
experienced can be summarised as follows (Meyer et al, 2011):

1. Production facilities are highly integrated and complex.

2. Chemical and fuel production contains continuous, semi batch and batch processes.

3. Many factors affect fuel and chemical components

4. Production information is limited (quality and availability).

2



CHAPTER 1. INTRODUCTION 3

5. Different businesses are involved with various goals.

The original approach to accommodate these factors in plant decisions has been to use average-
based models. The first method makes use of plant mass balance models, often implemented on
spreadsheets. The second method incorporates a linear program (LP) to processes for planning
and economic optimisation. The biggest problem experienced with these methods is that the
non-linear and stochastic nature of Sasol’s processes are not adequately taken into account.
This problem was to be addressed by the Moss methodology. (Meyer et al, 2011)

The Moss (modelling of operations using stochastic simulation) methodology was introduced
by Sasol’s operations research team and makes use of discrete-event stochastic simulation to
model the complex Sasol processes. The idea is to take continuous petrochemical systems
and consider the flow of liquids and gases as blocks of volume. These blocks of volume can
be tracked through the process at regular time intervals. This can be combined with actual
operating rules and failure events, which occur on the plants. This concept proved highly
successful for decision making on plants and was shown to clearly be an improvement over
average-based methods. The Moss methodology can be summarised as follows (Meyer et al,
2011):

1. Translation of continuous plant to a flow sheet model.

2. Translation of plant events to discrete events (incidents). This includes fitting probability
density functions to plant data and including operating rules.

3. Identification of failures, the frequency of occurrence and time required to fix these fail-
ures. These failures are included as simulation input.

4. Set-up optimisation problems, like fuel blending.

5. Validation of model against current conditions.

6. Analysis of the simulated scenarios for decision-making support.

Because of the complexity of the Sasol plants, an “off-the-shelf” model was not available.
In addition to this, no investigated software tool could successfully incorporate all the factors
required by the highly complex Moss models. The main commercial products investigated
were AnyLogic (The AnyLogic Company, 2017) and Simul8 (SIMUL8 Corporation, 2017).

Anylogic is a modular orientated simulation platform with an interactive GUI. There is support
for stochastic variables, development of statistical models and stochastic simulation. It
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can accommodate dynamics in systems, but cannot solve algebraic loops. This makes
addition of equations stemming from operating instructions impossible. In addition to
this, multi-component flow models are not accommodated.

Simul8 is a discrete-event simulation platform. It satisfies the requirement for discrete-event
accommodation, but lacks accommodation for continuous system dynamics. Handling
continuous flow was found to be problematic.

In addition to the simulation troubles experienced with the commercial products investigated,
the high licensing fee of these types of products was an issue. Due to the incapability of com-
mercial software to incorporate the complexity of the Moss models, the operations research
team at Sasol were forced to manually build the highly complex Moss simulations. Use was
made of the VBA programming language. These models were difficult to derive, took a large
amount of time to develop and had to be entirely rebuilt when a plant change occurred. How-
ever, despite the large amounts of challenges faced by the Moss modelling methodology, many
of the Sasol operations were successfully modelled. These models could now accurately and
reliably model actual plant behaviour, in a far superior manner to previous methods.

1.2 Justification of Amoss

The Moss methodology was a success, but had various shortcomings. The biggest problems
faced by the Moss methodology were development time and difficulty in accommodation of
plant recycles. Because of the Moss model complexity, developing a full simulation in VBA
could take months at a time. In addition to this, Sasol processes often go through changes.
This is highly problematic, since the VBA simulations would have to be mostly rebuilt. Sec-
ondly, a model based on the Moss methodology was simple to develop when only forward flow
was encountered. However, introducing plant recycles made manual model development very
difficult, because streams would have to be simultaneously solved.

Because of the challenges faced by the Moss methodology, the University of Pretoria was con-
tacted. The existing optimisation and steady-state models were handed over to the university as
reference. The Amoss project or Automatic-Moss was aimed at being an extension of the Moss
simulation methodology, with the main focus of automatically generating the Moss models for
simulation. If the Moss models were generated directly, both the challenge of development time
and the problems associated with plant recycles could be addressed. The deliverables agreed
upon by Sasol and the University of Pretoria, aimed at measuring the success of the Amoss
project, are the following (Whyte, 2018):
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Reduction in development time As discussed, it currently takes too long to build the Moss
models. Amoss should reduce development time significantly and ideally not be heavily
affected by model complexity.

Generic application Amoss must be able to model a Sasol value chain irrelevant of com-
plexity and configuration. There is also a need to convert the legacy models to the new
modelling solution. One of the measures of success of the Amoss model will be how
easily this conversion can be done.

Development flexibility Once the basic model exists, a modification to the model should be
simple to incorporate.

Simulation flexibility During simulation, the ability to activate or deactivate a particular por-
tion of the plant may be required. The idea is that significant changes can coexist in a
single model, instead of having to build separate models.

Acceptable accuracy The simulation must be sufficiently accurate to answer questions arising
from various scenarios. The accuracy must be independent of model complexity.

Fit for purpose The modelling environment must be focused on supporting the Sasol Moss
methodology and also have the ability to add features.

Linear scalability The resulting simulation speed must scale linearly i.e. if the number of
equations describing the system is increased by double, the simulation may at most take
twice as long to simulate.

Quick learning curve A quick learning curve is expected for the end user. It is accepted that
a steeper learning curve will be experienced by a developer.

Software cost Simulation packages can be quite expensive and it will make little sense for
Sasol to purchase a tool that only partially solves the problem. The initial cost of the
tool, as well as the annual maintenance cost, must thus be low. It is also required that
continual support be provided by the University of Pretoria for further development of
the tool.

Version control of model development As more than one user can use the same model at
any time, the solution must allow for simultaneous modification and development in a
controlled manner.

Debug capability The solution must be able to guide the user to quickly and easily to locate
a bug in a faulty model. The solution must be able to replicate an error situation in the
same replication and scenario in which it has occurred.
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Cause identification Sometimes a model gives counter-intuitive results. It is difficult to expect
the modeller to identify the reason for an outcome of this nature. The tool must assist in
identifying causes for results and assist in determining bottlenecks.

Fast simulation time The simulation time must be as short as possible as this will allow for
an increased number of replications per scenario as well as more runs during validation
and verification of the model.

Software package stability Amoss must be stable for all cases. The value of each variable
must be calculated at each time increment for all replications of all scenarios.

1.3 Amoss 1.0

The first master’s student involved with the Amoss project was Edgar Whyte. His dissertation
was completed in January 2018. He was tasked with developing the Amoss platform from the
ground up as a proof of concept. The first version of the tool, Amoss 1.0, was developed.
Most deliverables were addressed, although not necessarily optimally due to time constraints.
It was decided that Amoss 1.0 would be developed in the Python programming language. The
advantages of developing Amoss 1.0 in Python include the following (Whyte, 2018):

• Python has a large variety of libraries created and maintained by a large community.

• The Python Software Foundation License (PSFL) allows Python to be used and redis-
tributed without paying royalties.

• The PSFL does not place any restriction on the type of licensing restrictions on software
developed in Python. It is thus possible to build Amoss on open source software, but not
make it open source.

• Because of Python’s large community, support is available for new Python programmers.

• Python’s accessibility and support enables more people to be part and contribute to the
Amoss project.

The three main packages used for model development and simulation in Amoss 1.0 were
(Whyte, 2018):

OpenModelica The OpenModelica Connection Editor (OMEdit) was used for process dia-
gram development. This decision makes sense, because the OMEdit environment comes
with a fully connective flow sheet interface, a simple way of defining custom units and a
simple export file flow sheet representation, which can easily be read. This representation
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was then used to do equation generation for plant continuous and ordinary differential
equations.

Atom The Atom text editor was used to allow the user to define the plant operating instruc-
tions. This was mainly due to Atom’s ability to identify Python syntax. The operating
instructions could then be developed with Python syntax in the Atom text editor. The
operating instructions were then used to do equation generation for the additional equa-
tions.

Python The main code base was developed in Python. This included stochastic input genera-
tion, equation generation, equation ordering, simulation generation, parallel processing,
simulation, storing simulation results and the graphical user interface (GUI).

Making use of the above packages, Amoss 1.0 could be used as a generic simulation tool
aimed at addressing the deliverables. A high-level description of the work-flow is illustrated in
Figure 1.1 and follows the following steps (Whyte, 2018):

Step 1 requires the user to draw a process diagram in OMEdit and provide all unit specific
data.

Step 2 takes the OMEdit diagram, which contains process connectivity and operational unit
information and parses it to a network graph.

Step 3 iterates through the graph and creates the necessary continuous equations and differen-
tial equations describing the system.

Step 4 tears the continuous equations using the block lower triangular form and symbolically
solves the smaller blocks. This is referred to as pre-solving. A subset of the complete
model equations is solved, before the entire model is solved for simulation. Pre-solving
is used to reduce the border width of the final ordering, making it easier to solve the
total system.

Step 5 requires the user to define the operating instructions, which are equations describing
how the plant units are operated. In addition to this, the user is required to define
stochastic variables.

Step 6 takes the pre-solved continuous equations and differential equations in Step 4 and con-
catenates it with the operating instruction equations and stochastic inputs in Step 5. This
total system is then torn using the block lower triangular form, producing a full final
system of equations.

Step 7 simulates the combined process and generates results.
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Amoss 1.0 addressed most of the deliverables, but was far from being a well-rounded tool. The
deliverables sufficiently addressed are as follows (Whyte, 2018):

Reduction in development time This is the largest improvement offered by Amoss 1.0. To
be able to automatically generate a simulation from a flow diagram and operating in-
structions will drastically reduce development time. In the original Moss methodology
models had to manually be derived, which could take months. In addition to this, the
Moss methodology had an inability to accommodate for flow diagrams where plant re-
cycles were encountered. A model which could take months to develop in Moss can be
developed in about a week using Amoss 1.0.

Generic application Amoss 1.0 was developed as a generic stochastic simulation platform.
A process diagram and operating instruction file can be used to develop a model of a
process with almost any configuration. It is only required that the units used be defined
in Amoss 1.0.

Development flexibility Changing the operating instructions in the original Moss methodol-
ogy posed a huge problem. This is because the additional equations added by the operat-
ing instructions would require the original Moss model to again be symbolically derived.
This could set the developer back significantly. However, making a change to an existing
Amoss 1.0 model simply requires modifying the flow diagram (and the affected input
tables) and the operating instructions. This takes minimal time and effort.

Simulation flexibility In Amoss 1.0, sections of the plant can be activated and deactivated by
simply adding an if-block in the operating instructions. This if-block will be defined in a
way that inputs to a plant section will be set to zero (off) or the allocated values (on). This
simple modification is possible, because of the equation orientated approach followed by
Amoss 1.0.

Acceptable accuracy On the condition that the Newton solver converges to a solution, an
acceptable tolerance can be specified. An absolute tolerance of 1× 10−6 was selected.
Due to this, the accuracy of the algebraic equations can be guaranteed. On the other
hand, the accuracy of integration is not considered. Because Euler integration is used,
the accuracy of integration can vary. If the time constants of the buffer tanks are small,
accuracy can be poor. However, if the buffer tank time constants are large the integration
can be sufficient.

Fit for purpose Amoss 1.0 was built from the Moss methodology and was developed with
guidance of Sasol. Amoss 1.0 is written entirely in Python, which has a large commu-
nity. Thus, it is relatively simple for a person with moderate programming experience to
contribute to the Amoss project.
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Linear scalability Linear scalability as defined by Sasol initially did not take model complex-
ity into account. A complex model, which in the case of Amoss models would contain
numerous recycles or many unsafe assignments, would introduce large regions to simul-
taneously solve or numerical instability due to possible zero division. Linear scalability
is thus not an achievable goal. It is also uncommon in practice to find problems that scale
linearly. Even solving a set of linear equations has a worst-case time of O(n3). Since the
systems encountered in Amoss are non-linear in nature, even worse scaling is expected.

Quick learning curve The learning curve is low to moderate. The most difficult part is to
learn basic Python syntax for creating the operating instructions and learning to create
OpenModelica flow sheets. Other requirements to create a simulation are editing text
files and simple spreadsheets. A modeller with no prior knowledge of Python grammar
or OpenModelica was able to create small process models within a week.

Software cost The software cost for Amoss 1.0 is very low compared to other commercial
software. There is no licensing fee, with the only expense being the funding cost for
the University of Pretoria. The Amoss 1.0 package is developed entirely on open source
software like Python and OpenModelica and thus carries no additional cost for redistri-
bution.

Version control of model development The University of Pretoria has agreed to continue de-
velopment beyond the delivery date at the end of 2017. Version control of the project is
done with git using Bitbucket as a cloud repository. A developed model can be shared
using git and the repository. Alternatively, models can simply be shared using Google
Drive.

Debug capability Rudimentary debugging is added in the form of the information window of
the GUI. Common errors a modeller could make have been identified and will trigger the
display of an appropriate error message, recommending a course of action. An example
would be the degree of freedom check. In the event of the degree of freedom not being
zero, the number of overspecified or underspecified variables is determined. This would
trigger the message ”DOF is not zero. Please add/remove n inputs.”

Cause identification Rudimentary cause identification can be added by identifying when an
if-, elif- or else- condition has changed. This identification is possible, because of the
way that if-blocks are parsed and converted to equations. The statements of an if-block
are parsed to equations using a base if-variable which evaluates to 1 if the condition is
true and 0 if the condition is false. A list linking the created if-variables to the statement
is made available to the modeller.

There are two main deliverables, which were not met. These are fast simulation time and
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software package stability. The problems related to the two deliverables can be summarised as
follows (Whyte, 2018):

Fast simulation time The generated simulations of Amoss 1.0 are particularly slow. Even for
smaller test processes, Amoss 1.0 simulated more than an order of magnitude slower
than the developed VBA code by the Sasol operations research team. It should be noted
that the slow simulation speed is a result of the numerical instability and large number
of equations to solve simultaneously. This is a consequence of the equation ordering
method not performing well and resulting zero division.

Software package stability The stability of the Amoss 1.0 front-end as a whole should also
be addressed. The GUI is considered unstable and many problems are experienced. An
example problem encountered is that the simulation settings do not properly save in a
single session. In addition to this, the GUI is prone to crashing.
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Figure 1.1: Amoss 1.0 work flow (Whyte, 2018), with steps discussed in Section 1.3.



CHAPTER 1. INTRODUCTION 12

1.4 Amoss 2.0

Considering Amoss 1.0, there is significant room for improvement. Major stumbling blocks
encountered were slow simulation speed and numerical instability. Simulations often encoun-
tered floating-point errors from zero division or generated infeasible results, such as negative
flows or values incorrect by orders of magnitude. A second version of the tool, Amoss 2.0, is
required. It should be an improvement regarding the simulation speed and numerical stabil-
ity of Amoss 1.0. It has also become a priority of the Amoss project to develop the tool as
a stand-alone or independent package. The deliverables to be addressed by Amoss 2.0 are as
follows:

Fast simulation time The simulation time should be as short as possible. This would allow
for more replications per scenario to be run. In turn, this would increase the reliability of
the Monte Carlo analysis.

Numerical stability The generated simulations should be as numerically stable as possible.
The goal is to not encounter zero division.

Acceptable accuracy The simulation accuracy should be sufficient to answer the questions
arising from various scenarios.

Linear scalability Simulation time should scale approximately linearly with model complex-
ity.

Reduction in development time Simulation development time should be reduced from what
was required for the Moss simulation development method.

Independent package The tool should be developed with the aim of becoming a stand-alone
or independent package. That is to say, that only open source Python packages should be
used as dependencies.

To achieve a faster and more numerically stable simulation three main factors will be revisited.
These are:

Equation ordering The equation ordering method used to order the augmented algebraic
equation set is critical for stable and fast simulation. If an inadequate ordering is ob-
tained, zero division or many equations to simultaneously solve can be encountered.

Simulation approach The simulation approach is essential for fast and stable simulation. Al-
ternative simulation approaches could simulate models in a faster or more numerically
stable manner.
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Code generation The simulation code should be generated to execute effectively and quickly.
Numerical instability can not truly be addressed in code generation, but simulation code
which is memory efficient and stable should be generated.



CHAPTER 2

THEORY

2.1 Problem

Mathematical problems stemming from the Moss methodology consist of various elements.
Generally, problems are stochastic differential algebraic equation systems with continuous and
discrete variables, time-series inputs and possible disjunctive constraint optimisation. This
section aims to be a high-level summary of problem formulation and solution.

2.1.1 Formulation

To simplify mathematical notation, variables are grouped as input variables (i), continuous vari-
ables (x) and discrete variables (y). Continuous variables have the domain x ∈ R and discrete
variables have the domain y ∈ {d1, d2, d3, . . . , dn}, where di is a possible value assignment.
Input variables can have various domains, depending on input definition.

Time-invariant stochastic input variables are generated using user-provided tabular probability
data. The probability distribution p is specified as being either continuous or discrete. Stochas-
tic input variables are distributed in time by p, as shown in Equation 2.1.

i(t) ∼ p (2.1)

14
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Custom input variables are provided as tabular time-series data. Input variables of this type are
described by Equation 2.2, where c is an interpolation function of the tabular data.

i(t) = c(t) (2.2)

Non-linear continuous algebraic equations (f ) are generated from the flowsheet model and
certain operating instructions. Equations are of the form in Equation 2.3.

f(i, x, y) = 0 (2.3)

Ordinary differential equations (g) are encountered due to integrators in the flowsheet model.
Equations can be written in the residual form in Equation 2.4.

g(
dx

dt
, i, x, y) = 0 (2.4)

Discrete equations (h) are generated from the operating instructions. Equations can be written
in the form shown in Equation 2.5.

h(i, x, y) = 0 (2.5)

Optimal flow allocation can be specified in the operating instructions. This instruction re-
quires economic optimal distribution of mass flow to unit operations. It imposes disjunctive
constraints on the relevant continuous variables (xopt), as shown in Equation 2.6 to Equa-
tion 2.8. Additionally, the problem obtains the economic minimisation objective described
in Equation 2.9. ∑

xopt ≤ xavailable (2.6)

xopt ≤ xmax (2.7)

xopt = 0 or xopt ≥ xmin (2.8)

min
xopt

f(xopt) (2.9)

2.1.2 Solution

Due to model complexity, the main solution has been a Monte Carlo simulation approach, with
fixed-step ordinary differential equation simulation. For each replication (r), at each time-step,
input variables (i) are sampled. Continuous (x) and discrete (y) variables are solved from
problem equations and/or optimisation, using the sampled inputs. Derivatives of continuous
variables (dx

dt
) are then determined and used for integration, using the explicit Euler method.

After each time-step and after each replication, simulation results are stored. This is used for
analysis after the complete simulation. The overall method is illustrated in Algorithm 1.
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Algorithm 1 Overall solution approach
for r in replications do

for t in time do
Sample i(t) from Equation 2.1 and Equation 2.2.
if not optimal flow allocation then

Solve x and y from Equation 2.3 and Equation 2.5.
else

Solve x and y by optimising Equation 2.9,
with Equation 2.3 and Equation 2.5 as equality constraints,
and Equation 2.6 to Equation 2.8 as inequality constraints.

end if
Solve dx

dt
from Equation 2.4.

Increase x by dx
dt
∗ dt.

Save results of x and y at time t.
end for
Save r results.

end for

2.2 Stochastic simulation

2.2.1 Probability distribution

A probability distribution is a description of the possible set of outcomes for a sample space
with a method to determine probabilities. Closely related to the probability distribution are
probability density function and probability mass function. A probability density function is a
function used to calculate probabilities and to specify the probability distribution of a continu-
ous random variable (Montgomery & Runger, 2003: 698). For a continuous random variable
X , a probability density function is such that:

1. f(x) ≥ 0

2.
∫∞
−∞ f(x) dx = 1

3. P (a ≤ X ≤ b) =
∫ b
a
f(x) dx = area under f(x) for any a and b

(Montgomery & Runger, 2003: 99)

The cumulative distribution function of a continuous random variable X can be determined
using Equation 2.11.

F (x) = P (X ≤ x) =

∫ x

−∞
f(u)du (2.10)
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for −∞ ≤ x ≤ ∞
(Montgomery & Runger, 2003: 102)

A probability mass function is a function that provides probabilities for the values in the range
of a discrete random variable (Montgomery & Runger, 2003: 698). For a discrete random
variable X , with possible values x1, x2, x3, . . . , xn, a probability mass function is such that:

1. f(xi) ≥ 0

2.
∑n

i=1 f(xi) = 1

3. f(xi) = P (X = xi)

(Montgomery & Runger, 2003: 62)

The cumulative distribution function of a discrete random variable X can be determined using
Equation 2.11.

F (x) = P (X ≤ x) =
∑
xi≤x

f(xi) (2.11)

(Montgomery & Runger, 2003: 64)

2.2.2 Input generation

Distribution data for simulation is provided as a user input, consisting of variable values (x),
probabilities (f(x)) and specification whether the distribution is discrete or continuous. Gener-
ating non-uniform stochastic inputs using distribution data is necessary for stochastic simula-
tion and sequential Monte Carlo analysis.

The inversion principle is essential for non-uniform variable generation for both continuous and
discrete distributions. Given a cumulative distribution function F , its inverse F−1 is defined by
Equation 2.12, where inf denotes the infimum. The infimum is the greatest lower bound of a
dataset and serves the function of providing a unique F−1 value for every u. If u is a uniform
[0, 1] random variable, then F−1 has a distribution F . (Devroye, 1986)

F−1(u) = inf {x : F (x) = u, 0 < u < 1} (2.12)

The inversion principle, as illustrated in Equation 2.12, states that given a cumulative distribu-
tion function F , its inverse F−1 can be used for random variable generation with the original
distribution properties left intact. To illustrate this concept, consider the example probability
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distribution shown in Figure 2.1. If the probability distribution represents a continuous random
variable, trapezoidal integration can be used to obtain the cumulative distribution shown in Fig-
ure 2.2. Alternatively, if the probability distribution represents a discrete random variable, the
probabilities can be added to obtain the cumulative distribution shown in Figure 2.3.

The inversion principle is simple to illustrate graphically. As an example, a randomly generated
input u has a value of 0.2. This u value can be used as the y-axis value for interpolation using
the cumulative distribution graphs. The relevant x value can then be determined. For the
continuous cumulative distribution shown in Figure 2.2, an x value of 2.67 is obtained. Using
the discrete cumulative distribution shown in Figure 2.3, an x value of 3.00 is obtained. It is
important to note that the infimum function in Equation 2.12 implies that if multiple x values
are possible from interpolation, the minimum x or left graphical value should be used.

Figure 2.1: Example probability distribution
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Figure 2.2: Example continuous cumulative distribution function

Figure 2.3: Example discrete cumulative distribution function
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The interpolation approach to the inversion principle is easy to implement and was used by
Whyte (2018) to generate non-uniform values for stochastic simulation in Amoss 1.0. With n
denoting the number of time-steps, the steps followed to generate data for a random variable x
for a single replication are as follows:

1. Generate cumulative distribution data for continuous or discrete random variable x, using
user input distribution data.

2. Select a seed for random number generation.

3. Generate a vector U of size n consisting of pseudo-random values in the interval [0, 1],
using a random number generator.

4. Generate vector X of size n, consisting of stochastic input x values throughout the sim-
ulation, by interpolating the cumulative distribution for each value u in vector U .

2.2.3 Monte Carlo method

Monte Carlo methods are algorithms that rely on repeated random sampling to obtain numerical
results. Randomness is used to simulate effects which are deterministic in nature. These meth-
ods are used to solve difficult mathematical and physical problems which could be impossible
to solve otherwise. Monte Carlo methods are mainly used in three classes of problems: opti-
misation, numerical integration and generating draws from a probability distribution (Kroese
et al, 2014). Mooney (1997) discusses the basic Monte Carlo procedure as follows:

1. Determine a distribution function for a stochastic input variable.

2. Sample the stochastic variable in a way that will approximate real behaviour.

3. Calculate an estimated value for an expected variable E(X), which is dependent on the
stochastic input.

4. Repeat steps 2 and 3 for as many replications (r) as desired.

5. Draw a frequency distribution of the resulting µr values which are the Monte Carlo esti-
mates of µ.

This method is best illustrated by an example. The classical example followed is that of ap-
proximating the value of π. The basic procedure is as follows (Kalos & Whitlock, 2009):

1. Draw a square and make a quadrant within it.
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2. Generate n number of random coordinate points to distribute in the square.

3. Count the number of points in the quadrant (i.e. radius smaller than 1).

4. The ratio of the number of points in the quadrant to the total number of points can be
used to approximate the ratio of the two areas.

5. The ratio of the areas is approximately π
4
, so the area ratio should be multiplied by 4 to

approximate π.

6. Repeat steps 2 to 5 for the desired number of replications (r).

7. Generate statistical data from the various replicated runs.

Figure 2.4: Monte Carlo method for π approximation

Figure 2.5: Convergence of Monte Carlo method for π approximation
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A single replication (r = 1) of the Monte Carlo method with 2000 samples (n = 2000) is
shown in Figure 2.4 and Figure 2.5. Commonly, multiple replications are done to generate
distribution data and the distribution mean used to more accurately approximate the variable.
Korn, Korn & Kroisandt (2010) refer to this experimental-based Monte Carlo method as the
crude Monte Carlo method. The crude Monte Carlo method approximates the arithmetic mean
of an expected variable E(X) using Equation 2.13. Xi(ω) are the independent experimental
results, with X as probability distribution.

1

n

n∑
i=1

Xi(ω), N ∈ N (2.13)

The strong law of large numbers is fundamental to the validity of the crude Monte Carlo method
and is shown in Theorem 1.

Theorem 1. Let (Xn)n∈N be a sequence of integrable, real value random variables that are

independent, identically distributed (i.i.d.) and defined on a probability space (Ω,F ,P). Let

further:

µ = E(X1) (2.14)

Then we have for P-almost all ω ∈ Ω

1

n

n∑
i=1

Xi(ω)
n→∞−−−→ µ (2.15)

i.e. the arithmetic mean of the (realisations of) Xi tends to the theoretical mean of every (Xi),

its expectation µ (Korn et al, 2010).

The strong law of numbers implies almost sure convergence. We can now consider the accu-
racy of the crude method. The unbiased Monte Carlo estimator is defined in Theorem 2.

Theorem 2. Let (Xn)n∈N be a sequence of integrable, real value random variables that are

independent, identically distributed (i.i.d.) and defined on a probability space (Ω,F ,P). Then

the Monte Carlo estimator

X̄N :=
1

N

N∑
i=1

Xi, N ∈ N (2.16)

is an unbiased estimator for µ = E(X), i.e. we have

E(X̄N) = µ (2.17)

(Korn et al, 2010)
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To gain insight into the error we consider the difference in the standard deviation between µ
and X̄N . The variance is shown in Equation 2.18. The standard deviation is thus of the order
O(1/

√
N). As a consequence, to increase the accuracy of the mean by one digit (reducing the

standard deviation by a factor of 0.1) requires increasing the number of runs by a factor of 100.

Var(X̄N − µ) = Var(X̄N) =
1

N2

N∑
i=1

Var(Xi) =
σ2

N
(2.18)

The use of standard deviation for error of a Monte Carlo estimator can be justified by using the
central limit theorem. The central limit theorem is shown in Theorem 3.

Theorem 3. Let (Xn)n∈N be a sequence of integrable, real value random variables that are in-

dependent, identically distributed (i.i.d.) and defined on a probability space (Ω,F ,P). Assume

further that they all have a finite variance σ2 = Var(X). Then the normalized and centralized

sum of these variables converges in distribution towards the standard normal distribution i.e.

we have ∑N
i=1Xi −Nµ√

Nσ

D−→ N (0, 1) as N →∞ (2.19)

(Korn et al, 2010)

Looking at the central limit theorem, it can be seen that the crude Monte Carlo estimator is
approximately N (µ, σ2/N) distributed for large N values. From this, the 2σ approximate
95%-confidence interval shown in Equation 2.20 can be derived. Typically, the true standard
deviation is not known. The standard deviation can be approximated from the gathered data
using Equation 2.21. (Korn et al, 2010)

[
1

N

N∑
i=1

Xi − 2
σ√
N
,

1

N

N∑
i=1

Xi + 2
σ√
N

]
(2.20)

σ̄N =

√√√√ 1

N − 1

N∑
i=1

(Xi − X̄N)2 (2.21)

When considering the generated Amoss models, Monte Carlo methods are essential. When the
Moss methodology was originally introduced, a large improvement over the existing methods
was the use of continuous stochastic variables and Monte Carlo methods rather than simply
assuming average variable values. This analysis provides better mean values and reliable con-
fidence intervals. In addition to this, discrete stochastic variables can compensate for real plant
phenomena like disturbances.
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2.2.4 Stochastic differential equations

Dlouhỳ, Fábry & Kuncová (2005) describe stochastic simulations as simulations which track
the evolution of variables that change stochastically (randomly) with a particular probability.
Stochastic differential equations have been researched in some detail with significant research
in the fields of Itô and Stratonovich differential equations. The stochastic elements in these dif-
ferential equation forms are described by Wiener processes. Durrett (1996) describes a Wiener
process, denoted by Wt, as a continuous-time stochastic process with the following properties:

• W0 = 0

• W has increments independent of previous values

• W has Gaussian increments or is normally distributed

• W has continuous paths or Wt is continuous in t

A d-dimensional stochastic differential equation system can be described in Itô differential
form by Equation 2.22. Alternatively a system can be described as a Stratonovich differential
in the form given by Equation 2.23. It should be noted that Wt is an m-dimensional process
with time-independent scalar Wiener process components.

dXt = f(Xt)dt+ g(Xt)dWt (2.22)

dXt = f(Xt)dt+ g(Xt) ◦ dWt (2.23)

The alternative forms of stochastic differential equations are equivalent and conversion can be
done from one form to the other. If we have an Itô system described by Equation 2.22, it can
be converted to

dXt = f̄(Xt)dt+ g(Xt) ◦ dWt

with

f̄i(Xt) = fi(Xt)−
1

2

d∑
j=1

m∑
i=1

gjk(Xt)
∂gik
∂Xj

(Xt), i = 1, . . . , d.

for the multivariable case. (Picchini, 2007)

2.2.5 Finite difference method

Although exact methods exist, very few systems describable by Stratonovich or Itô calculus are
explicitly solvable. A method commonly used to approximate stochastic differential equations
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is the so-called finite difference method. The finite difference method approximates continuous
time as discrete time. To this end, let’s divide the interval [0, T ] (where T is the final time) into
a number of subintervals N as shown in Figure 2.6.

∆tn

t0 = 0 tn tn+1 T = tN

Figure 2.6: Discrete time approximation of continuous time (Duffy & Kienitz, 2009: 108)

We have N + 1 mesh points (Duffy & Kienitz, 2009: 107):

0 = t0 < t1 < . . . < tn < tn+1 < . . . < tN = T

In this case, we define a set of subintervals (tn, tn+1) of size ∆tn ≡ tn+1− tn, 0 ≤ n ≤ N − 1.
We speak of a non-uniform mesh if the sizes of the subintervals are not the same. The most
common use case is a uniform mesh, where the N subintervals have the same size, namely
∆t = T/N (Duffy & Kienitz, 2009: 107). Consider the Itô stochastic differential equation
shown in Equation 2.22, with an initial value X0 = x0. If we approximate the continuous inter-
val [0, T ] using a uniform mesh, the continuous functionX can be approximated by the discrete
function Y . We obtain the recursive relation shown in Equation 2.24 to Equation 2.26 (Duffy
& Kienitz, 2009: 108).

Yn+1 = Yn + f(Yn)∆t+ g(Yn)∆Wn (2.24)

∆Wn = Wtn+1 −Wtn (2.25)

Y0 = x0 (2.26)

This relation is called the Euler-Maruyama integration scheme and is a popular approximation
method used for the solution of stochastic differential equations of the Itô calculus descrip-
tion (Duffy & Kienitz, 2009: 108). It is important to note that the Euler-Maruyama method
can not directly be applied to the generated problems. This is because the generated models in
general can not be described as Itô or Stratonovich differential equation systems. The reasons
are as follows:

Noise The system noise is not necessarily described by Wiener processes. Any form of con-
tinuous or discrete noise can be used for simulation purposes.

Custom inputs Custom user inputs, such as step and ramp inputs are allowed.
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Hybrid system The models generated for the greatest part are a combination of continuous
and conditional equations. Conditional equations cause irregular jumps in system values
during simulation.

Optimisation Optimal allocation or distribution of flow can form part of the simulation.

However, the finite difference approximation method can provide a good solution to the com-
plex simulation problem. We start with a uniform mesh approximation of the interval [0, T ],
with ∆t = T/N . Prior to simulation, the stochastic and custom inputs can be generated for
every tn in [0, T ]. The iterative simulation scheme described in Algorithm 2 can then be imple-
mented.

Algorithm 2 Finite difference approximation scheme

for tn in [0, T ] do
1. Sample - Sample the stochastic and custom inputs.
2. Root find or optimise - Use the sampled input values to solve the root finding or opti-
misation problem, depending on which is applicable.
3. Integrate - After root finding or optimisation, an integration scheme similar to the Euler-
Maruyama method could be implemented for integration of the differential equations.

end for

2.3 Equation ordering

2.3.1 Background

The simulation problems generated from Amoss models are quite complex and consist of large
unordered algebraic equation sets, stemming from the flow sheet model and operating instruc-
tions. The main problem to address is reducing the large amount of non-linear algebraic equa-
tions to solve simultaneously. Seeing as the number of equations can be in the order of hun-
dreds, equation ordering methods should be investigated.

The most commonly used method of ordering systems of non-linear equations is tearing. Tear-
ing encompasses a broad range of algorithms, with the general goal of ordering equation sets
into a computationally efficient and numerically stable form. This entails rewriting equations
into a sequentially solvable form and reducing the number of equations to solve simultaneously.
(Baharev, Domes & Neumaier, 2017)
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2.3.2 Incidence matrices

An incidence matrix is a matrix that indicates the relationship between two sets of objects.
Consider a first class X and a second class Y . An incidence matrix representation of X and
Y will have one row for each element of X and one column for each element of Y . For every
matrix entry, if a relationship exists between the row x and the column y, the entry will have a
value of 1. Otherwise, the entry will be 0. (Gross & Yellen, 2005: 97)

Incidence matrices can be used to represent system of equations and are often used in solution
of the equation ordering problem. The first class is the equation set, which is indicated by the
rows. The second class is the variable set, which is indicated by the columns. If a variable is
present in an equation, the entry will contain a 1. Otherwise, the entry will be 0. This is easily
illustrated by an example. Consider the following arbitrary unordered system:

dm
dt
− Fi + Fo = 0

Fi −W (Pu − P ) = 0

Fo − f ′L(P − Pa) = 0

p− m

V
= 0

Re− 1700p = 0

P − mRT

MV
= 0

1√
f ′

+ 2 log10

(
ε/D

3.7
+

2.51

Re
√
f ′

)
= 0

The system inputs are m, Pu, Pa, ε, R, D, W , M , V and L. The variables to solve are dm
dt ,

Fi, Fo, P , f ′, p and Re. There are 7 equations and 7 variables to solve, which indicates that
the system is fully specified and solvable. The incidence matrix representation of this system
is shown below:

dm
dt Fi Fo P f ′ p Re

1 1 1 1 0 0 0 0
2 0 1 0 1 0 0 0
3 0 0 1 1 1 0 0
4 0 0 0 0 0 1 0
5 0 0 0 0 0 1 1
6 0 0 0 1 0 0 0
7 0 0 0 0 1 0 1
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It should be noted that for Amoss generated models, the algebraic equation sets will necessarily
be fully specified and have a square incidence matrix representation. This is because simulation
requires a completely specified system.

2.3.3 Bipartite graph

The bipartite graph (or bigraph) finds its origin in graph theory and is defined as a graph whose
vertices can be divided into two disjoint sets, U and V , such that every edge E connects a
vertex in U to V . The vertex sets U and V are called the parts of the graph. A bipartite graph
is often denoted by the notation G = (U, V,E). (Asratian, Denley & Häggkvist, 1998)

Bipartite graphs are a representation form often used to describe systems of equations. The ver-
tex sets, being U and V , can be used to represent the equation set and variable set, respectively.
The edges, which are the connections between vertices, indicate an equation-variable relation-
ship and are synonymous with the incidence values of an incidence matrix. A difference which
should be noted between bipartite graph and incidence matrices, is that it is possible to indi-
cate directionality in a bipartite graph. An incidence matrix representation can be converted
to an undirected bipartite graph representation easily. If we consider the example system in
Chapter 2.3.2, we obtain the equivalent bipartite graph representation shown in Figure 2.7.

2.3.4 Identifying unsafe eliminations

For stable simulation, it is important to consider numerical stability in equation ordering or tear-
ing. A significant problem experienced historically in general simulation tools, is zero division.
This is due to most tearing methods not taking unsafe pairings of equations and variables into
account. Baharev, Schichl & Neumaier (2016b) discuss a solution to this problem, considering
possible variable-equation matches.

A definition should be given to safe assignments. If an equation fi(x) = 0 can be solved
symbolically for the variable xj and the solution is unique, explicit and numerically stable, it
is considered a safe assignment. Considering these three requirements should be sufficient to
identify an unsafe elimination.

Unsafe variable assignments should be noted, but are not necessarily detrimental to simulation.
The implicit and non-unique cases simply require that the variable be solved by a root finding
method, with the equation as residual. Numerical instability is a more substantial problem and
is difficult to address. As an example, consider the equation:

x1 − x2x3 = 0



CHAPTER 2. THEORY 29

1
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dm
dt

Fi

Fo

P

f ′

ρ

Re

Figure 2.7: Bipartite graph of example system

Making each of the possible variable assignments (x1, x2 or x3) the subject of the equation,
three possible solutions are obtained:

x1 = x2x3

x2 =
x1
x3

x3 =
x1
x2

If it was known that −1 ≤ x2 ≤ 1, assigning the equation to x3 could lead to zero division
and numerical instability. Baharev, Schichl, et al (2016b) takes the following approach to
identifying numerically troublesome eliminations. Firstly, feasible upper and lower bounds
for variables are provided. Approximate feasible bounds are sufficient. Making use of interval
arithmetic, possible solution ranges are evaluated. If a solution range lies within r ⊆ [−M,M ],
with an arbitrarily large M , the elimination is considered numerically safe.

The interval arithmetic approach is not perfect, but evaluation of the numerical stability of
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pairings is necessary. Interval arithmetic tends to overestimate possible ranges. Consequently,
this approach can be conservative, especially if conservative variable ranges are provided. A
problem that can occur is that a numerically unsafe elimination is the only possible variable
assignment. This is especially a problem in sparse systems.

2.3.5 Maximum matching

Maximum matching is an important concept in equation ordering and tearing. To understand
maximum matching, preliminary definitions are necessary. Given an undirected graph G =

(V,E), a matching is a subset of edges that M ⊆ E such that for all nodes v ∈ V , at most one
edge of M is incident on v. A node v ∈ V is matched by a matching M if some edge in M
is incident in v, otherwise, v is unmatched. A perfect matching is a matching in which every
node is matched. A maximum matching is a matching of maximum cardinality, which entails
that as many as possible nodes are matched. When a bipartite graph is equivalently represented
as an incidence matrix, this corresponds to rearranging rows and columns, such that as many
as possible non-zero entries are on the diagonal. Maximum matching is often also referred to
as maximum transversal or maximum assignment. (Baharev, Schichl & Neumaier, 2016a)

Matching should be put into practical perspective. It is normal in practice, when a small man-
ageable amount of equations are encountered, to try to write equations into a sequentially solv-
able form where a single equation solves a particular variable. In terms of the equation ordering
problem, a maximum matching of equations and variables significantly simplifies obtaining a
sequentially solvable problem. Now, considering that the variables and equations sets generated
from the combined models initially have no form, starting with variable-equation assignment
seems logical.

Maximum matching algorithms have been researched and are implemented by most tools which
implement equation ordering methods. It is often the starting point for tearing methods like
Dulmage-Mendelsohn decomposition, which is discussed in Section 2.3.7. Maximum match-
ing algorithms mostly follow two methodologies. The first most common implementation is
a greedy algorithm, which implements a breadth or depth first search method. This solves the
problem in polynomial time. The second, which is used less often, is an optimisation approach.
The problem is often referred to as maximum bipartite matching and the fastest general known
algorithm to date runs in O(

√
V E) time (Micali & Vazirani, 1980).
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2.3.6 Weighted maximum matching

An alternative to maximum matching discussed in Section 2.3.5 is weighted maximum match-
ing. The problem experienced in traditional maximum matching is that additional information
like the suitability of a matching is not taken into account. In our case, it would be ideal to
compensate for the numerical stability of a match. Making use of interval arithmetic, numeri-
cally safe and unsafe matches can be determined and a weight assigned to each matching. The
weighted maximum matching objective would then be to optimise for the most numerically
stable matching which assigns a variable to each equation.

The maximum weighted bipartite matching problem, also known as the linear assignment prob-
lem, is an optimisation problem to find the maximum weighted matching of a weighted bipartite
graph. The first algorithm historically used to solve this problem is the Hungarian algorithm.
The original algorithm has a running time of O(V 4E). It uses a modified shortest path search
in the augmenting path algorithm. If the Bellman-Ford algorithm is used for this step, the run-
ning time of the Hungarian algorithm becomes O(V 2E), or the edge cost can be shifted with a
potential to obtain O(V 2 log V + V E) running time with the Dijkstra algorithm and Fibonacci
heap (Fredman & Tarjan, 1987). An alternative algorithm, which has shown better results in
practice for the assignment problem, is the so-called Jonker-Volgenant algorithm, with a time
running time of O(V 3E) (Jonker & Volgenant, 1987).

2.3.7 Dulmage-Mendelsohn decomposition

Dulmage-Mendelsohn decomposition is a tearing method that is well-established and is often
used in tools like OpenModelica and Dymola as part of the equation ordering method (Baharev,
Domes, et al, 2017). The first step of the Dulmage-Mendelsohn decomposition method is
determining a maximum matching or a weighted maximum matching, as an improvement. For
the systems generated in Amoss certain things can be assumed. An equal number of equations
and variables are necessary for simulation, which implies that all incidence matrices will be
square. In addition to this, it is necessary that the system be solvable, which implies that a
maximum matching be a perfect matching.

There are two distinct Dulmage-Mendelsohn decomposition methods: coarse decomposition
and fine decomposition. Given the input matrix A, the coarse Dulmage-Mendelsohn decompo-



CHAPTER 2. THEORY 32

sition yields a row permutation P and a column permutation Q such that

PAQ =


A11

A21

A31 A32

A41 A42 A43 A44

 , (2.27)

where [
A11

A21

]
(2.28)

is either absent or it is rectangular and has more rows than columns, similarly[
A43 A44

]
(2.29)

is either absent or it is rectangular and has more columns than rows. The blocks A21, A32

and A32 are square with a zero-free diagonal. The matrix 2.28 corresponds to the structurally
overdetermined part and the matrix 2.29 to the structurally underdetermined part of the system
Ax = b. Both matrix 2.28 and matrix 2.29 will be absent if Ax = b is structurally well-defined.
(Baharev, Schichl, et al, 2016a)

The fine Dulmage-Mendelsohn decomposition yields a row permutation P and a column per-
mutation Q such that A21, A32 and A43 have possibly smaller irreducible square blocks on the
diagonal, with each block having a zero free diagonal. A32 also becomes block lower triangular.
Irreducible here is meant to suggest that repeating the Dulmage-Mendelsohn decomposition on
these blocks would not further decompose them into smaller blocks. An example illustrating
how Dulmage-Mendelsohn decomposition works is shown in Figure 2.8. Take note that the
zero-free diagonals of the blocks are marked in grey. (Baharev, Schichl, et al, 2016a)

(a) Input matrix (b) Maximum matching
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(c) Coarse DM decomposition (d) Fine DM decomposition

Figure 2.8: Dulmage-Mendelsohn decomposition example with zero-free diagonals marked in grey
(Baharev, Schichl & Neumaier, 2016a)

The primary application of tearing is the simulation of fully specified technical systems (Ba-
harev, Domes, et al, 2017). Most mainstream modelling environments will give an error if a
system is not fully specified. A special case of the Dulmage-Mendelsohn tearing and the one
of primary concern to the Amoss code generation is block lower triangular decomposition or
BLT decomposition. If the input matrix is square and structurally non-singular (all submatrices
of 2.27 are absent except for A32), a block triangular matrix is obtained as output. The coarse
Dulmage-Mendelsohn decomposition leaves A intact, and the fine Dulmage-Mendelsohn de-
composition permutes A into a block triangular form, where each diagonal block is square and
irreducible, with a zero free diagonal (Baharev, Domes, et al, 2017).

It is common practice to perform BLT decomposition first, before implementing a finer tear-
ing technique. This is referred to as partitioning and precedence ordering in literature. The
advantage gained from using this method, is that the smaller blocks are computationally eas-
ier to handle and tear. In addition to this, considering the number of equations of the Amoss
models, it will be greatly advantages to sequentially solve subsystems of equations, instead of
a large system of equations. BLT decomposition achieves this, while many tearing methods
aim to achieve bordered block triangular form, which has a large single solve area. This can
significantly increase solving time, because the number of equations scale as the number of
subsystems increase.

However, it should be noted that BLT decomposition followed by tearing can obtain sub-
optimal results. An example is shown in Figure 2.9. The variables which need to be guessed
for solution of the system are marked in grey. It is clear that the BLT decomposition followed
by tearing has 2 unsolved variables, while the optimal tearing only has a 1 unsolved variable.
Taking into account the difficult nature of the equation ordering problems faced with the Amoss
models, this is a practical trade-off that will be made.
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(a) BLT tearing (b) Optimal tearing

Figure 2.9: BLT tearing versus optimal tearing (Baharev, Schichl & Neumaier, 2016a)

2.3.8 Cellier’s tearing

After incidence matrix decomposition to block lower triangular form, finer tearing methods
should be applied to blocks, to reduce the number of equations to solve. Heuristic tearing
methods are commonly used, with Cellier’s tearing being a popular choice. The Cellier’s tear-
ing method is an essential part of simulation packages like OpenModelica. The traditional
Cellier’s tearing method contains two sub-routines. The first is maximum matching, where
equations and variables are matched, with the Tarjan algorithm being used. The second is vari-
able tearing, where the variables to solve are determined. These routines are called alternately
until the system is solved. (Cellier & Kofman, 2006)

The Tarjan algorithm is a graph theory maximum matching algorithm. Its original use was the
detection of strongly connected components. Cellier implemented a modified Tarjan algorithm
for matching in his algorithm. A bipartite graph representation of the system is required. Two
sets of nodes are present, the first representing the equation set and the second representing the
variable set. A variable is connected to an equation with an edge if it occurs in the equation.
During the matching procedure, matched edges will be coloured red, edges which cannot be
matched anymore will be coloured blue and edges not considered will remain black. The
matching rules can be summarised as follows (Cellier & Kofman, 2006):

1. For acausal equations with only one black line attached, colour that line red and all other
connections ending in that variable blue. Renumber the equation using the lowest number
starting from one.

2. For all unknown variables, if the variable only has one line attached to it, colour that line
red, follow it back to the equation it points to, and colour all the connections coming
from that equation in blue. Renumber the equation using the highest free number starting
from n, where n is the number of equations.
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Using this colouring technique a full matching of equations to variables is determined. After
equation-variable matching using the Tarjan algorithm, heuristic tearing commences. Using the
original bigraph (the uncoloured bigraph), a tearing variable should be determined. A tearing
variable is the variable that will be solved for. The steps for determining a tearing variable is as
follows (Cellier & Kofman, 2006):

1. Determine the equations with the largest number of black lines attached to them.

2. For every one of these equations, follow the black lines, and determine the variables with
the most black lines attached to them.

3. For each of these equations determine how many additional equations can be made causal
if that variable is assumed known.

4. Choose one of those variables as the next tearing variable that allows the largest number
of equations to be made causal.

This process is repeated until a system is made solvable. There are many comments to be made
on the original Cellier’s tearing method. Starting with the matching algorithm, the Tarjan algo-
rithm has many problems. For instance, difficulties will be encountered if there is an algebraic
loop. The algorithm will loop in an effort to obtain a solution endlessly and fail. Secondly, the
Cellier’s tearing method makes no accommodation for the solvability of the equation-variable
matches. Numerical instability, with the possibility of zero division, is possible. Finally, dis-
crete variable matches, which occur in hybrid systems, are not taken into account. (Täuber
et al, 2014)

The main suggestions to improve the algorithm are as follows. A more robust maximum match-
ing algorithm than the Tarjan algorithm should be used. Many superior algorithms exist, but
taking numerical stability into account can be difficult. A possibility is to use weighted max-
imum matching to accommodate for numerical instability of matches, as discussed in Sec-
tion 2.3.6. Discrete variables should be taken into account from both a matching and tearing
heuristic side. Discrete variable matches should be pre-assigned, with continuous variable max-
imum matching being done independently. From the tearing side, changing rule 3 of the tearing
variable allocation heuristic is recommended to disallow discrete variables as possible tearing
variables (Täuber et al, 2014).

2.3.9 Desirable forms of incidence matrices

Equation tearing methods have the ultimate goal of obtaining functional forms of incidence
matrices. These desirable forms can be used to generate simulations of the represented systems.



CHAPTER 2. THEORY 36

There are two incidence matrix forms commonly used for simulation generation. These are the
bordered block lower triangular form and spiked lower triangular form. The bordered block
lower triangular form of an input matrix A is described by Equation 2.30. The leading sub-
matrix L is a block lower triangular matrix whose diagonal blocks are square and structurally
non-singular. (Baharev, Schichl, et al, 2016a)

A =

[
L B

C D

]
(2.30)

Spiked lower triangular matrices are nearly lower triangular matrices, where some of the columns
have entries above the diagonal. These columns are called spiked columns or simply spikes.
The diagonal entry in a non-spike column must be nonzero. Furthermore, for any pair of spike
columns, referred to as left and right spikes, the following property must hold: The set of rows
in the left spike is either contained in or disjoint from the set of rows of the right spike. This
implies that bordered block lower triangular forms can be formed on the diagonal at the spikes
where the blocks are either properly nested or disjoint. These diagonal blocks are recursively
bordered lower triangular forms. Thus, the spiked lower triangular form can be referred to as a
nested bordered lower triangular form. (Baharev, Schichl, et al, 2016a)

As an example, consider Figure 2.10. The input matrix can be transformed to the bordered
block lower triangular form or the spiked lower triangular form as shown (Baharev, Schichl,
et al, 2016a). The bordered lower triangular form separates the original problem into two dis-
tinctive regions: a sequentially solvable region (the leading sub-matrix L) and a simultaneous
solution region (the border). It is the simplest form to use for simulation generation. The spiked
lower triangular form breaks the original problem into a series of sub-problems to solve. Each
block can be torn to bordered block lower triangular form, each with its own sequentially solv-
able region and simultaneous solution region. Implementing simulation using this form is more
difficult, but faster simulation is possible.

(a) Input matrix
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(b) Bordered block lower triangular (c) Spiked lower triangular

Figure 2.10: Desirable incidence matrix forms example (Baharev, Schichl & Neumaier, 2016a)

2.4 Root finding

2.4.1 Newton’s method

Solving systems of non-linear equations is an important problem to address regarding the sim-
ulations encountered in Amoss. The Newton method, often also called the Newton-Raphson
method, and its variants are the most popular solution to the general non-linear root finding
problem. Given a system F , which is a function of the vector x, with N variables and N

equations, the general root finding problem can be expressed by Equation 2.31. Take note that
F : RN → RN . F is commonly referred to as the non-linear residual or simply the residual
(Kelley, 2003).

F (x) = 0 (2.31)

An important concept for root finding is the Jacobian matrix F ′(x). The Jacobian matrix is a
square matrix representation of the gradient of the non-linear residual F with regard to each
component of x. If the components of F are differentiable at x ∈ RN , the Jacobian matrix is
defined by Equation 2.32 (Kelley, 2003).

F ′(x)ij =
∂(F )i
∂(x)j

(x) (2.32)

The Newton’s method is a fixed-point iterative method. The traditional multivariable Newton
sequence is shown in Equation 2.33 (Kelley, 2003).
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xn+1 = xn − F ′(xn)−1F (xn) (2.33)

The local convergence of Newton’s method should be determined. The standard assumptions
are as follows (Kelley, 2003):

1. Equation 2.33 has a solution x∗

2. F ′ : Ω→ RN×N is Lipschitz continuous near x∗

3. F ′(x∗) is non-singular

Lipschitz continuity near x∗ requires a γ > 0 (the Lipschitz constant) such that Equation 2.34
holds for all x, y sufficiently near x∗ (Kelley, 2003).

‖F ′(x)− F ′(y)‖ ≤ γ‖x− y‖ (2.34)

The convergence theorem of Newton’s method is stated in Theorem 4 (Kelley, 2003).

Theorem 4. Let the standard assumptions hold. If x0 is sufficiently near x∗, then the Newton

sequence exists (i.e. F ′(xn) is non-singular for all n ≥ 0) and converges to x∗ and there is a

K > 0 such that

‖en+1‖ ≤ K‖en‖2 (2.35)

for n sufficiently large.

Considering the Newton sequence and its convergence, certain things become apparent. From
a practical point, it is clear that the Jacobian matrix calculation is critical to both the speed
and stability of Newton’s method. If the Jacobian matrix can not be calculated easily or the
Jacobian is not well behaving, the Newton method will be difficult to implement or diverge
if implemented. However, if a fast, stable and well-behaving Jacobian matrix calculation is
available, given that the assumptions of Theorem 4 hold, Newton’s method should converge
rapidly. It is expected that the root finding problems encountered in Amoss simulations will
have unique solution, well behaving Jacobian matrices and obey the convergence requirements.
The fact that Newton’s method exhibits second order convergence, implies that very fast and
highly accurate root finding is possible.

2.4.2 Hybrid system solving

The systems encountered in Amoss are for the most part of the mixed continuous/discrete type.
These systems, often also called hybrid systems, are difficult to solve with conventional solving
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methods. If an attempt is made to solve the hybrid system directly using a solver, most solvers
will fail. This is mainly due to the fact that most solvers make the assumption of convexity
and continuous differentiable gradient. The disjunctions caused by discrete variables have the
effect of non-convexity and discontinuous gradients, which are non-differentiable. For this
reason alternative approaches need to be investigated.

Modelica is a modelling language where this problem is commonly encountered. Otter, Elmqvist
& Mattsson (1999) discuss this problem as approached by the OpenModelica tool. As an ex-
ample, consider the hybrid system shown in Equation 2.36. For simplicity a linear continuous
system has been selected. y are unknown discrete variables of type boolean, integer and/or dis-
crete real. x are unknown continuous variables. A is assumed to be square and regular for all
values of y, to ensure a feasible unique solution. f is a function of discrete relations of x, y and
of the unknowns y. An example is shown in Equation 2.37. For simplicity, it is also assumed
that the equations describing f are sequentially solvable (Otter et al, 1999).

y := f(relation(x, y), y)

A(y)x = b(y)
(2.36)

y1 := x1 > x2

y2 := y1 and x3 < 0
(2.37)

Two main approaches of solving this problem were proposed. The first is a simple fixed-point
iteration scheme as shown in Algorithm 3. The idea is to do an outer fixed-point iteration
for solution of the discrete variables y and with each iteration solve the continuous variables
x. If the y values after an iteration matches the previous iteration value, a solution has been
found. The advantage of this scheme is its simplicity. This scheme has been shown in Dymola
modelling to converge quickly, usually within 3 or 4 iterations. However, convergence is not
guaranteed. (Otter et al, 1999)

The second solution approach is an exhaustive search scheme as shown in Algorithm 4. Be-
cause the discrete variables can only take on a countable number values, all combinations of
variables can be tested. The main advantage of this algorithm is that if a solution to the hy-
brid system exists convergence is guaranteed. The main disadvantage of this scheme is that
the number of possible combinations can be huge and that determining the continuous solution
for every combination is computationally expensive. For this reason the fixed-point iteration
scheme in Algorithm 3 is often preferred. (Otter et al, 1999)
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Algorithm 3 Fixed point iteration scheme for hybrid systems (Otter, Elmqvist & Mattsson,
1999)

x := x (when last event occurred)
y := y (from last event)
loop

last(y) := y
y := f(relation(x, y), y)
if y == last(y) then exit;
A := A(y)
b := b(y)
〈solve Ax = b for x〉

end loop
return x, y

Algorithm 4 Exhaustive search scheme for hybrid systems (Otter, Elmqvist & Mattsson, 1999)
x := x (when last event occurred)
y := y (from last event)
while 〈not all values for relation(x) tried〉 do

lastRelation(x, y) := 〈next possible value set〉
last(y) := y
y := f(lastRelation(x, y), y)
A := A(y)
b := b(y)
〈solve Ax = b for x〉
if relation(x, y) == lastRelation(x, y) then exit;

end while
return x, y
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2.5 Disjunctive programming

Disjunctive programming problems are commonly encountered in Amoss models. Taking into
account that mixed-integer non-linear programming (MINLP) solvers are more established than
disjunctive programming solvers, converting the disjunctive programming problems to MINLP
problems is a reasonable approach. Generalized disjunctive programming (GDP) is a general-
ization of disjunctive programming, which is an alternative to the MINLP problem formulation.
Generalized disjunctive programming makes use of disjunctions and logic propositions, instead
of purely algebraic equations and inequalities as used in MINLP. The generalized disjunctive
program is of the form shown in Equation 2.38 (Lee & Grossmann, 2000).

minZ =
∑
k∈K

ck + f(x)

s.t. r(x) ≤ 0

∨
j∈Jk

 Yjk

gjk(x) ≤ 0

ck = γjk

 , k ∈ K

Ω(Y ) = True

x ≥ 0, ck ≥ 0, Yjk ∈ {true, false}

(2.38)

x ∈ Rn is a vector of the continuous variables. Yjk are boolean variables. ck ∈ R1 are
continuous variables. γjk are fixed charges. f is the term for the continuous variables in the
objective function. It has a domain Rn → R1. r are constraints that hold regardless of discrete
decisions. It has a domain Rn → Rq. f(x) and r(x) are convex. A disjunction is composed
by the

∨
operator. Each disjunction contains boolean variables Yjk, a set of convex non-linear

inequalities gjk(x) and cost variable ck. gjk(x) has a domain Rn → R1. If Yjk is true then
gjk ≤ 0 and ck = λjk are enforced. Jk is an index set of the terms of every disjunction,
Jk = {j|j = 1, 2, ,mk}, k ∈ K. Ω(Y ) = True are the logic terms of the Boolean variables. It
is important to note that the problem P , the functions f(x), r(x) and gjk(x) are assumed to be
convex and bounded. (Lee & Grossmann, 2000)

The GDP problem shown in Equation 2.38 can be reformulated using big-M reformulation
to the MINLP problem shown in Equation 2.39, by replacing the Boolean variables Yjk by
binary variables yjk and the big-M constraints. The logic constraints (Y ) are converted to
linear inequalities. Mjk are the big-M parameters that render the inequalities gjk redundant
when yjk = 0. (HP Williams, 1985)
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minZ =
∑
k∈K

∑
j∈Jk

γjkyjk + f(x)

s.t. r(x) ≤ 0

gjk(x) ≤Mjk(1− yjk), j ∈ Jk, k ∈ K∑
j∈Jk

yjk = 1, k ∈ K

Ay ≤ a

x ≥ 0, yjk ∈ {0, 1}, j ∈ Jk, k ∈ K

(2.39)

In Lee & Grossmann (2000) a new approach termed the complex Hull reformulation was intro-
duced. The convex Hull is defined as the tightest possible relaxation of a disjunctive constraint.
This is the preferable transformation, considering that the relaxed problem is solved using an
MINLP solver. The generalized convex Hull reformulation method is shown in Equation 2.40.

minZ =
∑
k∈K

∑
j∈Jk

γjkλjk + f(x)

s.t. r(x) ≤ 0

x =
∑
j∈Jk

vjk, k ∈ K∑
j∈Jk

λjk = 1, k ∈ K

(λjk + ε)gjk(ν
jk/(λjk + ε)) ≤ 0, j ∈ Jk, k ∈ K

0 ≤ νjk ≤ λjkUjk, j ∈ Jk, k ∈ K
Aλ ≤ a

x, νjk ≥ 0, λjk ∈ {0, 1}, j ∈ Jk, k ∈ K

(2.40)

The types of disjunctive constraints encountered in Amoss are simple linear binary disjunctions.
Reformulation of these types of constraints is simplified significantly. To illustrate this, we
consider the simple example shown in Equation 2.41. This disjunctive constraint creates two
separate solutions spaces as shown in Figure 2.11 (Bilodeau, 2015).

 Y1

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 4

∨
 Y2

5 ≤ x1 ≤ 9

4 ≤ x2 ≤ 6

 (2.41)

The disjunctive constraint shown in Equation 2.41 can be relaxed to the constraints shown in
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Equation 2.42 using big-M formulation (Bilodeau, 2015).

y1 + y2 = 1

y1, y2 ∈ {0, 1}
−M(1− y1) + 0 ≤ x1 ≤ 3 +M(1− y1)
−M(1− y1) + 0 ≤ x2 ≤ 4 +M(1− y1)
−M(1− y2) + 5 ≤ x1 ≤ 9 +M(1− y2)
−M(1− y2) + 4 ≤ x2 ≤ 6 +M(1− y2)

(2.42)

Alternatively, the disjunctive constraint in Equation 2.41 can be relaxed using convex Hull
reformulation to obtain the form shown in Equation 2.43 (Bilodeau, 2015).

y1 + y2 = 1

y1, y2 ∈ {0, 1}
x1 = x11 + x12

x2 = x21 + x22

0 ≤ x11 ≤My1

0 ≤ x21 ≤My1

0 ≤ x12 ≤My2

0 ≤ x22 ≤My2

0 ≤ x11 ≤ 3y1

0 ≤ x21 ≤ 4y1

5y2 ≤ x12 ≤ 9y2

4y2 ≤ x22 ≤ 6y2

(2.43)

Although the big-M reformulation and convex Hull reformulation represent the same disjunc-
tive programming problem, the relaxed problem solution spaces differ. To illustrate this, if
we arbitrarily select M = 7 and use substitution, the big-M reformulation and convex Hull
reformulation in Equation 2.44 and Equation 2.45 are obtained, respectively (Bilodeau, 2015).

−7(1− y1) ≤ x1 ≤ 3 + 7(1− y1)
−7(1− y1) ≤ x2 ≤ 4 + 7(1− y1)

−7(1− y2) + 5 ≤ x1 ≤ 9 + 7(1− y2)
−7(1− y2) + 4 ≤ x2 ≤ 6 + 7(1− y2)

(2.44)
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0 ≤ x11 ≤ 7y1

0 ≤ x21 ≤ 7y1

0 ≤ x12 ≤ 7y2

0 ≤ x22 ≤ 7y2

0 ≤ x11 ≤ 3y1

0 ≤ x21 ≤ 4y1

5y2 ≤ x12 ≤ 9y2

4y2 ≤ x22 ≤ 6y2

(2.45)

The solution spaces of the big-M reformulation and convex Hull reformulation are shown in
Figure 2.12 and Figure 2.13, respectively. It is clear that the big-M reformulation problem
has a larger solution space. The larger solution space leads to an increase in solving difficulty
and consequently solving time for the big-M reformulation problem, using an MINLP solver
(Bilodeau, 2015).

Figure 2.11: Example disjunctive solution space (Bilodeau, 2015)
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Figure 2.12: Example disjunctive big-M relaxed
solution space (Bilodeau, 2015)

Figure 2.13: Example disjunctive convex Hull
relaxed solution space (Bilodeau,
2015)

2.6 Numerical integration

A first order ordinary differential equation (ODE) is commonly of the form shown in Equa-
tion 2.46 (Bradie, 2006). Higher order ODE systems are not considered separately. This is
because conversion of higher order systems to first order systems can simply done by intro-
ducing dummy variables and sequential substitution. Take for example Equation 2.47. If we
introduce the dummy variable x(t) as in Equation 2.48, we can rewrite Equation 2.47 as Equa-
tion 2.49 and Equation 2.50.

y′(t) = f(t, y(t)) (2.46)

y′′(t) = λy(t) (2.47)

x(t) = y′(t) (2.48)

x′(t) = λy(t) (2.49)

y′(t) = λx(t) (2.50)

The initial value problem for ODEs is of particular importance. Given an ODE of the form
in Equation 2.46, with an initial value y(t0) = y0, the problem is to solve y(t) for t > t0.
Few ODE systems have a symbolic or closed-form solution. For this reason, numerical inte-
gration methods are often used for initial value problems regarding ODEs. Various numerical
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integration methods exist, including implicit, explicit, one-step and multi-step methods. The
most often used integration methods are the family of explicit Runge-Kutta methods. Meth-
ods include, in increasing order of accuracy, the explicit Euler method, the explicit trapezoidal
method and the RK4 or classical Runge-Kutta method. (LeVeque, 1998: 93–102)

Solution of initial value problems regarding ODEs is necessary for simulation of Amoss mod-
els. The generated ODE systems are stochastic in nature, consist of hybrid continuous/con-
ditional equations and could contain intermediate optimisation. The nature of the generated
models breaks the smoothness assumptions of higher order integration methods. Due to this,
only the explicit Euler method, which is a first order method, will be considered. The Euler
method is shown in Equation 2.51 (Süli & Mayers, 2003: 317).

yn+1 = yn + hf(tn, yn) (2.51)

There are two types of errors which are used as measures of the accuracy of numerical inte-
gration: local truncation error and global truncation error. Local truncation error is the error
made by a single iteration. The global truncation error is the error made by multiple iterations
or in other words, the cumulative sum of the local truncation error (Süli & Mayers, 2003: 317).
Order of accuracy, which is based on the global truncation error, is the rate of convergence of a
numerical approximation of a differential equation to the actual solution. A numerical method
is said to be nth order accurate if its global truncation error is proportional to step size h to the
nth power (LeVeque, 1998: 3–5). The order of accuracy of the Euler method is 1 (LeVeque,
1998: 149).

Another factor to investigate is stability. The first type of stability to discuss is that of zero-
stability. The Euler method is zero-stable. A zero-stable method is a method where the error
(both global and local) tends to 0 as the step size h tends to 0. Often this limit cannot be
computed and this stability definition proves impractical. This is because evaluation of very
small h values becomes very computationally expensive. In practice, an h value which is as
large as possible while still maintaining the accuracy requirements should be selected. A more
meaningful stability measure of a numerical integration method is absolute stability. (LeVeque,
1998: 149).

Consider the test problem shown in Equation 2.52. When the Euler method is selected, the
iterative solution in Equation 2.53 is obtained. The method is absolutely stable if |1 + hλ| ≤ 1.
Otherwise, it is unstable. Although there are two parameters (h and λ), the product of the two
(z = hλ) is of importance. The Euler method is stable for −2 ≤ z ≤ 0 and thus the interval
of absolute stability is [-2, 0]. The region of absolute stability is more commonly used. This
is the interval of absolute stability in the complex z plane. It is illustrated graphically with the
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real component of z on the x-axis and the imaginary component on the y-axis. This allows
the possibility that λ values be imaginary, which is not relevant to the ODE systems solved in
Amoss. (LeVeque, 1998: 151–152)

y′(t) = λy(t) (2.52)

yn+1 = (1 + hλ)yn (2.53)

Euler’s integration method is simple, with a small stability region and a low order of accuracy.
The overall simulation approach makes use of finite difference approximation and frequent re-
evaluation of the entire model. Due to this, the Euler method should be sufficient. The use of
small time-steps will ensure absolute stability and sufficient integration accuracy.

2.7 Automatic or algorithmic differentiation

When dealing with code that evaluates numerical values of certain functions, it is often impor-
tant to determine accurate values for the derivatives as well. This is most important for our root
finding method. Taking into account that the Newton method requires calculation of a Jaco-
bian matrix for each iteration, using a reliable method for derivative information is essential.
The method that is most often used for reliably determining gradients in modern computing is
algorithmic or automatic differentiation.

Automatic differentiation, also referred to as algorithmic differentiation can be seen as a set of
techniques used to evaluate the derivative of a computer program. It is superior to alternative
gradient calculation methods in terms of accuracy and more significantly efficiency. Automatic
differentiation exploits the fact that any computer program is executed by sequentially doing
basic operations (addition, subtraction, multiplication, division, etc.) and elementary operations
(exp, log, sin, cos, etc.). Making use of the chain rule, derivatives of any order can be calculated
to working precision, almost as fast as the original function evaluation is done. (Griewank &
Walther, 2008)

It is important to distinguish automatic differentiation from both numerical differentiation
(method of finite differentiation) and symbolic differentiation. Numerical differentiation is
a derivative approximation method that uses function evaluations to approximate the gradi-
ent over a finite step or difference. Two commonly used gradient approximation formulas are
shown in Equation 2.54 and Equation 2.55. Symbolic differentiation entails analytically de-
riving the derivative function, directly by substitution, and numerically evaluating the derived
function. (Griewank & Walther, 2008)
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f ′(x) ≈ f(x+ h)− f(x)

h
(2.54)

f ′(x) ≈ f(x+ h)− f(x− h)

2h
(2.55)

Numerical differentiation is often used, but has certain shortcomings. From Equation 2.54 and
Equation 2.55, it is clear that if h is small cancellation error reduces the accuracy of the ap-
proximation. If h is not small then truncation error reduces the accuracy of the approximation.
This effect is even more severe for higher order derivatives. Even if h is optimally selected, the
derivative accuracy can be a problem. Symbolic differentiation suffers from two main prob-
lems. The first is that determining an analytical derivative function is not always possible or is
at least difficult. Even in the case that obtaining an analytical solution is possible, it can occur
that the given function cannot be differentiated symbolically. The second is that the analytical
function obtained can often be complex and computationally expensive to evaluate. (Griewank
& Walther, 2008)

Algorithmic differentiation comes in many variants, with the classical forward and reverse
modes being the most common. The forward mode traverses an evaluation trace in a forward
direction. An input variable is chosen, with each derivative then being calculated with regard
to the independent variable making use of the chain rule. An alternative to this is traversing
an evaluation trace in the reverse direction. This is referred to as reverse mode. The output
variable is selected and its sensitivity with regard to each input is determined using the chain
rule. (Griewank & Walther, 2008)

Algorithmic differentiation is best explained by an example. Consider the function y = f(x1, x2)

shown in Equation 2.56. The goal is to determine the derivative of y with respect to x1 for
x1 = 1.5 and x2 = 0.5. Evaluating y, the evaluation trace shown in Table 2.1 is obtained.
The evaluation trace can be represented by the computational graph shown in Figure 2.14. The
notation ν̇i = ∂νi/∂x1 is introduced to simplify the forward mode derivative calculation. Cal-
culating the derivative using the forward mode, we obtain the forward-derivative evaluation
trace shown in Table 2.2. The notation ν̄i = ∂y/∂vi is introduced to simplify the backward
mode derivative calculation. Calculating the derivative using the backward mode, we obtain
the backward-derivative evaluation trace shown in Table 2.3. (Griewank & Walther, 2008)

y = [sin(x1/x2) + x1/x2 − exp(x2)] · [x1/x2 − exp(x2)] (2.56)
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ν−1 ν1 ν2 ν5

ν0 ν3 ν4 ν6

Figure 2.14: Computational graph of example evaluation trace (Griewank & Walther, 2008)

Table 2.1: Example evaluation trace (Griewank & Walther, 2008)

ν−1 = x1 = 1.5000
ν0 = x2 = 0.5000

ν1 = ν−1/ν0 = 1.5000/0.5000 = 3.0000
ν2 = sin(ν1) = sin(3.0000) = 0.1411
ν3 = exp(ν0) = exp(0.5000) = 1.6487
ν4 = ν1 − ν3 = 3.0000− 1.6487 = 1.3513
ν5 = ν2 − ν4 = 0.1411 + 1.3513 = 1.4924
ν6 = ν5 · ν4 = 1.4924 · 1.3513 = 2.0167

y = ν6 = 2.0167

Table 2.2: Example forward-derivative evaluation trace (Griewank & Walther, 2008)

ν−1 = x1 = 1.5000
ν̇−1 = ẋ1 = 1.0000
ν0 = x2 = 0.5000
ν̇0 = ẋ2 = 0.0000

ν1 = ν−1/ν0 = 1.5000/0.5000 = 3.0000
ν̇1 = (ν−1 − ν1 · ν̇0/ν0) = 1.0000/0.5000 = 2.0000
ν2 = sin(ν1) = sin(3.0000) = 0.1411
ν̇2 = cos(ν1) · ν̇1 = −0.9900 · 2.0000 = −1.9800
ν3 = exp(ν0) = exp(0.5000) = 1.6487
ν̇3 = ν3 · ν̇0 = 1.6487 · 0.0000 = 0.0000
ν4 = ν1 − ν3 = 3.0000− 1.6487 = 1.3513
ν̇4 = ν̇1 − ν̇3 = 2.0000− 0.0000 = 2.0000
ν5 = ν2 − ν4 = 0.1411 + 1.3513 = 1.4924
ν̇5 = ν̇2 − ν̇4 = −1.9800 + 2.0000 = 0.0200
ν6 = ν5 · ν4 = 1.4924 · 1.3513 = 2.0167
ν̇6 = ν̇5 · ν4 + ν5 · ν̇4 = 0.0200 · 1.3513 + 1.4924 · 2.0000 = 3.0118

y = ν6 = 2.0167
ẏ = ν̇6 = 3.0118
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Table 2.3: Example backward-derivative evaluation trace (Griewank & Walther, 2008)

ν−1 = x1 = 1.5000
ν0 = x2 = 0.5000
ν1 = ν−1/ν0 = 1.5000/0.5000 = 3.0000
ν2 = sin(ν1) = sin(3.0000) = 0.1411
ν3 = exp(ν0) = exp(0.5000) = 1.6487
ν4 = ν1 − ν3 = 3.0000− 1.6487 = 1.3513
ν5 = ν2 − ν4 = 0.1411 + 1.3513 = 1.4924
ν6 = ν5 · ν4 = 1.4924 · 1.3513 = 2.0167
y = ν6 = 2.0167

ν̄6 = ȳ = 1.0000
ν̄5 = ν̄6 · ν4 = 1.0000 · 1.3513 = 1.3513
ν̄4 = ν̄6 · ν5 = 1.0000 · 1.4924 = 1.4924
ν̄4 = ν̄4 + ν̄5 = 1.4924 + 1.3513 = 2.8437
ν̄2 = ν̄5 = 1.3513
ν̄3 = −ν̄4 = −2.8437
ν̄1 = ν̄4 = 2.8437
ν̄0 = ν̄3 · ν3 = −2.8437 · 1.6487 = −4.6884
ν̄1 = ν̄1 + cos(ν1) = 2.8437 + 1.3513 · (0.9900) = 1.5059
ν̄0 = ν̄0 − ν̄1 · ν1/ν0 = −4.6884− 1.5059 · 3.0000/0.5000 = −13.7239
ν̄−1 = ν̄1/ν0 = 1.5059/0.5000 = 3.0118

x̄2 = ν̄0 = −13.7239
x̄1 = ν̄−1 = 3.0118
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2.8 Parallel processing

Parallel processing or computing entails executing many calculations or processes simultane-
ously (Gottlieb & Almasi, 1989). The idea is to reduce a large problem into smaller sub-
problems, which can be executed on multiple processors at the same time and thus be executed
significantly faster. Parallelism has become core to high-performance computing in recent
times. This is due to most modern computers having multi-core processors (Asanovic et al,
2006).

Traditionally computers only had single processors to perform the actions designated by a
particular program. Computers with multiple processors or multiprocessor computers have be-
come a norm in recent times. If a process can be divided into at least as many sub-processes
as there are processors (p), a given process can be processed in 1/pth of the time. This can
lead to great performance increases. In practice this is rarely obtained, because practical fac-
tors like dividing a problem into perfect sub-problems and even writing to disk pose practical
limitations. (Allen & Wilkinson, 2005)

The ideal case of parallel processing is when processes can be divided into entirely independent
parts and executed simultaneously. This is referred to as embarrassingly parallel or naturally
parallel processes. These types of problems require no advanced techniques for parallelisation.
Ideally, there should be no communication between these types of processes. Figure 2.15
illustrates the disconnected computational graph of embarrassingly parallel processes (Allen &
Wilkinson, 2005). Monte Carlo simulations are well-known naturally parallel processes, due
to the independent nature of the individual replications. This suggests that Amoss simulations
could benefit greatly from parallel processing.

Input data

Results

Processes

Figure 2.15: Disconnected computational graph of embarrassingly parallel processes (Allen & Wilkin-
son, 2005)
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2.9 Result writing

Result writing is an essential part of simulation. Slow result writing can easily become a sim-
ulation bottleneck, especially considering the large amount of data generated during Amoss
Monte Carlo simulations. For result writing, it is important to consider the file format used and
compression methods if available.

2.9.1 CSV

Comma-separated values (CSV) files are simple text files using commas as delimiter between
values. Data is stored in plain text, with each line representing a record. The CSV format was
one of the first widely used data storage formats. However, data storage is memory inefficient,
especially for large data sets. Due to the representation method, internal compression is not
possible (Shafranovich, 2005). Moss simulation results were initially stored as CSV files.

2.9.2 HDF5

The hierarchical data formats (HDF) are a set of data formats, specifically designed for storage
of large data sets. It was originally developed by the National Center for Supercomputing
Applications and is currently supported by the HDF group. HDF5 is widely used and has
mature support. Compression methods are well supported. (The HDF Group, 2019)

2.9.3 Parquet

Parquet is a fast and well established columnar file format. The initial development of Parquet
was a joint-effort between Twitter and Cloudera. It is currently a top-level Apache Software
Foundation (ASF)-sponsored project. Parquet is commonly used for storage of large data sets.
Compression is well supported. (Apache Software Foundation, 2019)

2.9.4 Feather

Feather is a lightweight fast to read and write file format. It makes use of the Apache Arrow
columnar memory specification and is maintained by the Apache Arrow community. The file
format is not yet mature, so long term data storage is not recommended due to instability.
Compression as a feature is not yet available. (Wickham, 2016)
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2.9.5 Snappy

Compression methods can be used to reduce file size when writing to disk. This can improve
write speed and aid with storage space of large amounts of data. During simulation, file writing
occurs between replications, so storing results quickly is important. Writing time is more
important than high compression ratios. For this reason, Snappy compression is ideal. Snappy
(previously known as Zippy) is a fast data compression and decompression library written in
C++ by Google. It does not aim for maximum compression, but rather high compression speeds
and reasonable compression (Google, 2019).

2.10 Amoss 1.0

Amoss 1.0 was developed by Edgar Whyte. It was developed as a generic equation-oriented
stochastic simulation platform to address the problems associated with the Moss methodol-
ogy. An automated method of generating and simulating Moss models was introduced. Model
generation was done using flow sheet model and user input operating instructions. It proved
successful as a proof of concept, but the generated simulations were numerically unstable and
slow. (Whyte, 2018)

The primary goal was to generalize Moss simulation generation. The Moss methodology pro-
vided a sequential modular approach to generate stochastic simulations by hand. Simulations
were developed in this manner by Sasol’s operations research team in the VBA language. How-
ever, creating simulations took a considerable amount of time and simulations had to be rebuilt
every time a plant change occurred. Additionally, complex plant recycles could not be accom-
modated in a simple way. (Whyte, 2018)

2.10.1 Equation ordering

A significant improvement of Amoss 1.0 was how the flow sheet model and operating instruc-
tions were handled. Equations were generated, augmented and ordered into a solvable form
for simulation using equation ordering methods. If a plant change was made, the flow sheet
model would simply have to be changed. Thus, there was a shift from a sequential modular to
equation-orientated simulation approach. (Whyte, 2018)

Zero division was expected to be a problem if an inadequate ordering was obtained. Mass
flows and tank levels could viably be zero. Due to this, safe eliminations, as discussed in
Section 2.3.4, had to be considered. The safe-elimination repository was developed
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upon request by Baharev (2017a) to determine unsafe eliminations. The sdopt-tearing
repository, also developed by Baharev (2017b), was used for equation ordering. Using the
hessenberg function in rpc api.py, the bordered block lower triangular form of in-
cidence matrices could be obtained, taking into account unsafe eliminations. The ordering
method proved functional, but various problems were experienced. The problems experienced
were as follows (Whyte, 2018):

Many equations to simultaneously solve Ordering to bordered block lower triangular form
led to many equations having to be solved simultaneously. This slowed down the root
finding method and consequently simulations. This is a result of the conservative nature
of the algorithm, which adds any unsafe variable matches to the variables to simultane-
ously solve.

Numerical instability Although unsafe eliminations were considered, the obtained orderings
often led to numerically unstable simulations.

External dependency The repository was not installable as a Python package. Because of
this, the repository as a whole had to exist in the code base.

The equation ordering results could be categorized into three groups: explicit ordering, implicit
ordering and optimisation problem. An explicit ordering corresponds to a sequentially solvable
ordering with no equations to simultaneously solve. An implicit ordering corresponds to an
ordering where equations need to be simultaneously solved. If an optimisation goal formed part
of the model, the ordering would be marked as an optimisation problem instead of a simulation
problem.

2.10.2 Simulation approach

The main focus of Amoss 1.0 was to generate Monte Carlo simulations of Moss models. The
augmented models were found to be difficult to simulate for various reasons. The steps used to
obtain a model are as follows (Whyte, 2018):

1. Translate real plant to a flow sheet model.

2. Gather statistical data of plant units with statistical variance and fit probability density
function.

3. Determine operating rules, which contain protocol followed in event of failures and nor-
mal operating procedures.
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4. Set up optimisation problems like optimal flow allocation.

Augmenting the equations generated from each of the above steps, a highly complex model
could be generated. The simulation elements contained in the model can be summarised as
follows:

First order ordinary differential equations buffer tank levels

Continuous equations flow sheet model and operating instructions

Conditional equations if-blocks in the operating instructions

Stochastic elements unit efficiency, weather effects, plant disturbances, mass flow
losses etc.

Disjoint constraint optimisation optimal distribution of mass flow to reactors

In addition to the complexity of the combined model, the number of equations could be in the
order of hundreds. These large combined problems are difficult to solve and have been the
topic of research for almost a decade. Whyte (2018) attempted to solve the problem, using a
finite difference approach, which has been the main solution.

Algorithm

The simulation approach to the implicitly ordered problem is shown in Algorithm 5. The first
step is sampling of the stochastic variable. The second step entails solving the simultaneous
solution region of the combined continuous and conditional equation set in a single root finding
step. The third step entails evaluating the remaining continuous and conditional equations. The
fourth and final step is where Euler integration is applied to the first order differential equations.

The simulation approach to the explicitly ordered and optimisation problems are similar to the
implicitly ordered problem. The explicitly ordered problem approach is shown in Algorithm 6.
There is no root finding step, since the system is sequentially solvable. The optimisation prob-
lem simulation approach is shown in Algorithm 7. It should be noted that the root finding
step is replaced with an optimisation step. The residual equations of the root finding problem
become returns to the disjunctive optimisation problem.

The simulation approaches had varying success. Simulations stemming from explicit orderings
proved successful, but the implicit ordering and optimisation problem simulations were prob-
lematic. Implicit ordering problems often led to numerically unstable and slow simulations.
Simulations of the optimisation problem often led to counter-intuitive results.
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Algorithm 5 Whyte (2018) implicit ordering simulation approach
for t in time span do

stochastic var = sample stochastic(t)
solved var = RootFind(stochastic var, integrate var)
combined var, integrate f = Evaluate(stochastic var, integrate var, solved var)
integrate var = integrate var + integrate f∆t

end for

Algorithm 6 Whyte (2018) explicit ordering simulation approach
for t in time span do

stochastic var = sample stochastic(t)
combined var, integrate f = Evaluate(stochastic var, integrate var)
integrate var = integrate var + integrate f∆t

end for

Algorithm 7 Whyte (2018) optimisation problem simulation approach
for t in time span do

stochastic var = sample stochastic(t)
solved var = Optimise(stochastic var, integrate var)
combined var, integrate f = Evaluate(stochastic var, integrate var, solved var)
integrate var = integrate var + integrate f∆t

end for

Optimal flow allocation

One of the most difficult features to incorporate in the generated simulations was optimal flow
allocation. It is often possible that mass flow can be distributed through multiple pipes. An
operating instruction specifying optimal mass flow distribution can be specified. The problem
is made difficult by the fact that some lines require a minimum flow or are constrained by a
maximum flow. The optimal flow allocation problem can be described by Equation 2.57. An
objective function should be selected, with an economic objective being a common choice. It
was decided that the user would assign economic priority to each of the streams. An objective
function of the form in Equation 2.58, with a decaying factor d, was selected for minimization.
(Whyte, 2018)

min
x

f(x)

s.t.
∑

x ≤ xavailable

h(x) ≤ hmax

g(x) = 0 or g(x) ≥ gmin

(2.57)
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f(x) = −d0x0 − d1x1 − d2x2 − . . .− dnxn (2.58)

A special case of the general optimisation is possible when the minimum and maximum con-
straints are local to the point of distribution. This significantly simplifies the optimisation
problem, which can be reduced to a series of if-statements with priority allocation. Work was
done on this matter for the case where no plant recycles are involved. The allocate function
was developed for use in the operating instructions, to generate simulations with priority mass
flow allocation. The allocate function has the following inputs (Whyte, 2018):

available (type: float) mass flow available to distribute

minimum priority (type: list of ints) priority order in which minimum constraints should be
satisfied

minimum constraints (type: list of floats) minimum constraints of allocations

maximum priority (type: list of ints) priority order in which maximum constraints should
be satisfied

maximum constraints (type: list of floats) maximum constraints of allocations

For simulation, the allocate operating instruction is converted to a set of equations using
the algorithm illustrated in Figure A.1. The special case of the optimal flow allocation problem
in the forward direction simulated with accepted results. However, two main problems were
encountered regarding optimal flow allocation. Firstly, problems were experienced when im-
plementing the special case when a dependency existed between the inputs and the outputs, i.e
a plant recycle was encountered. Secondly, simulation of the general case of the optimal flow
allocation generated counter-intuitive results.

The disjunctive programming problem describing the general case of optimal flow allocation
could be reformulated as an MINLP, using big-M or convex Hull reformulation. It was decided
that reformulation and MINLP solving would be too difficult to implement. Equation 2.57 was
reduced to Equation 2.59 for simplicity. The maximum constraints (h(x)) were removed and
the disjunctive minimum constraints (g(x)) were reduced to binary constraints that could only
take on values of zero or gmin (Whyte, 2018). This modelling decision should be criticised.
Equation 2.59 is a poor approximation of the disjunctive programming problem and incorrect
or counter-intuitive results were to be expected.
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min
x

f(x)

s.t.
∑

x ≤ xavailable

g(x) = {0; gmin}

(2.59)

2.10.3 Code generation

Amoss 1.0 implemented a robust code generation method, although the generated code was not
as efficient as possible. The simulation code was set up to do Monte Carlo simulation of each
scenario. Simulation code was generated as a non-executable .py Python file and imported to
the greater Python code base for simulation (Whyte, 2018). This design choice is non-ideal,
because effective parallel processing requires simulation runs to be independent. Because a
large part of the code base is shared, a dependence will exist among various runs.

Parallel processing was implemented, with simulation of the various scenarios being paral-
lelised. The Celery package was used for parallel processing (Whyte, 2018). The decision to
parallelise scenarios and not the replications of scenarios limited the potential effect of parallel
processing. After simulation, the results were written to HDF5 with compression. The HDF5
files were substantially smaller than the CSV files previously generated. This led to lower write
times (Whyte, 2018).

Amoss 1.0 code generation also made use of the CasADi package, with great success. CasADi
is an automatic differentiation framework developed in C++. It was mainly used for simple
Newton root finding during simulation. The simulation time was significantly reduced by its
use. Additionally, the CasADi interface to IPOPT was used for optimisation of the optimal
flow allocation problem. (Whyte, 2018)
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CHAPTER 3

TESTS, BENCHMARKS AND
VALIDATION

When the deliverables to address in Amoss 2.0 are considered, as discussed in Section 1.4,
it becomes clear that tests, benchmarks and validation should be implemented. Tests, which
are run upon any code changes, should be in place to ensure the integrity of the code base
as development commences. Fast simulation time, reduction in development time and linear

scalability are outcomes which can objectively be measured and quantified. Benchmarks could
be used to determine the performance relative to these deliverables. Acceptable accuracy as a
goal could be evaluated using result validation.
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3.1 Hardware and software

All tests and benchmarks will be run on a machine with the hardware and software specifica-
tions shown in Table 3.1.

Table 3.1: Hardware and software specifications

Component Specification

Processor Intel Core i7-2800 CPU @ 2.40 GHz
Disk Seagate SATA HDD 160 GB

Operating system Windows 10 Professional @ 2018 Microsoft Corporation
RAM 32 GB DDR3

Python version 3.7.4

3.2 Test processes

The Amoss tool should be able to accommodate various simulation features. For this reason,
test processes with a gradual increase in difficulty and simulation features were created. These
test processes will be tested for code generation and simulation upon any code changes. This
approach is advantageous for various reasons. Firstly, the integrity of the code base is ensured.
Secondly, if a code change breaks a simulation feature, this feature can be determined and
the code change altered. Additionally, the test processes can be used for benchmarking, as
discussed in Section 3.4. The simulation features which are gradually introduced are:

• The number of components in each stream to simulate.

• The number of recycles in the flow diagram.

• The number of buffer tank units in the flow diagram.

• The number of separator units in the flow diagram.

• The number of cracker units in the flow diagram.

• The number of plant units in the flow diagram.

• The number of stochastic inputs in the simulation.

• Whether the simulation contains a forward heuristic allocation problem.

• Whether the simulation contains a heuristic allocation problem with a plant recycle.
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• Whether the simulation contains an optimal allocation problem.

The number of equations of the generated models can be used as a rough indicator of the
overall test process complexity. The simulation features of the test processes are summarized
in Table 3.2.

Table 3.2: Test process simulation features

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Components 1 1 5 1 1 1 1 5 5 5 5 5 5 1
Recycles 0 0 0 1 2 3 4 1 2 4 4 1 1 0

Buffer tanks 0 1 1 1 1 1 1 1 1 1 1 1 1 0
Separators 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Crackers 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Plants 1 1 1 1 1 1 1 1 1 1 1 1 0 0
Stochastic inputs 0 0 0 0 0 0 0 0 0 2 3 0 0 0

Heuristic allocation (Forward) 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Heuristic allocation (Recycle) 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Optimal allocation 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Equations 16 26 52 28 30 42 44 78 89 107 89 140 147 10

3.3 Industrial process

The best indication of the success of Amoss 2.0 would be its performance when solving an
industrial-scale problem. The ultimate goal of the tool is to be able to solve real plant simulation
problems. To date, no fully developed industrial process models exist in Amoss. However,
work has been done to create a process model of the most difficult Sasol process. This model
is partially built, but is already more complex than any of the test processes. This process was
used in Whyte (2018) to quantify the performance of Amoss 1.0.

The partially built process has features summarised in Table 3.3. Take note that the full in-
dustrial process contains multiple stochastic inputs, as well as heuristic optimal allocation with
recycles. These features should increase the model complexity and ultimately simulation time
slightly.



CHAPTER 3. TESTS, BENCHMARKS AND VALIDATION 63

Table 3.3: Features of partially built industrial process

Feature Number

Components 4
Recycles 4

Buffer tanks 3
Separators 4
Crackers 3

Plants 6
Equations 370

3.4 Benchmarks

Benchmarks for the various deliverables should be determined. This will serve as performance
indicator of how successfully the outcomes were addressed. The benchmarks for the deliver-
ables are as follows:

Fast simulation time The simulation time per replication (s/rep) of the test processes will be
measured and compared.

Reduction in development time Since the reduction in development time is difficult to quan-
tify, the code generation time (s) of the test processes will be measured and compared.
Model development should not take long, depending on the complexity of the process
and experience of the modeller.

Linear scalability The simulation time per replication (s/rep) of the test processes as a func-
tion of the number of equations will be compared.

3.5 Validation

The requirements of acceptable accuracy should be clarified. When considering the accuracy
of a single run, there are two factors to take into account: root solving accuracy and integration
accuracy. Root solving accuracy is ensured by setting the absolute tolerance of the relevant root
solver. Integration accuracy is not truly considered. This is mainly due to the chosen simulation
approach. The finite difference method samples inputs, re-evaluates the model and integrates
numerically at each time-step. It is expected that the time constants of the buffer tanks are
much larger than the selected step size for integration. Euler integration should be sufficient for
integration accuracy.
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Because root solving and integration accuracy are ensured for a single run, acceptable accuracy

will be relaxed to simple quantitative checks. Basic sanity checks to determine the possible
validity of a single run will be implemented. The basic requirements are as follows:

No invalid values Streams, levels or component rates should only have positive values. In
addition to this, no values should tend to infinity or not be a number (nan).

No basic plant constraint violations If flow allocation is implemented, selected streams
should remain within given constraints. Additionally, buffer tank ratios (ratio indicat-
ing how full a buffer tank is) should remain between 0 and 1.

In addition to basic checks, a qualitative comparison to actual plant results or the currently
developed VBA simulation could be used to illustrate acceptable accuracy.



CHAPTER 4

EQUATION ORDERING

4.1 Background

After generation of the model variables and equations using the operating instructions and flow
sheet model, the task remains to determine an ordered set of algebraic equations for simula-
tion. The starting point of equation ordering in Amoss 2.0 is the mixed algebraic equation
set consisting of continuous and discrete equations and variables, as well as variable bounds.
The continuous variables and equations stem from the flow sheet model and certain operat-
ing instructions. The discrete variables and equations stem from if-statements, min and max
functions in the operating instructions. The variable bounds are reasonable expected bounds
provided by the user.

In Amoss 1.0, the sdopt-tearing repository developed by Baharev (2017b) was used for
equation ordering. The ordering method proved functional, but problems were experienced.
Problems include that many equations had to be solved simultaneously after ordering to bor-
dered block lower triangular form, the obtained orderings led to numerically unstable simu-
lations and that the repository was not installable as a Python package. This is discussed in
Section 2.10.1. Due to the problems experienced, it was decided that custom equation ordering
code would be developed for Amoss 2.0. Fast simulation time, numerical stability, reduc-

tion in development time and independent package are the outcomes to be addressed using the
developed equation ordering code.
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4.2 Overview

A single superior equation ordering method has not been identified in research. This is due to
the often conflicting goals of equation ordering. The first goal of equation ordering is to achieve
a numerically stable ordering (numerical stability). The second goal is to achieve as little as
possible variables to solve simultaneously (fast simulation time). And finally, it is important to
obtain a numerically stable ordering with as little as possible variables to solve simultaneously
in a reasonable amount of time, i.e. a fast ordering method (reduction in development time).
Due to these factors, practical trade-offs have to be made.

On the selection of a class of equation ordering methods it was decided that strictly heuristic
ordering methods will be investigated. This was decided based on the size of the systems
encountered in Amoss. A reasonable ordering can be obtained in a short amount of time making
use of heuristic ordering methods. To obtain numerical stability in an ordering, a new approach
making use of interval mathematics and weighted maximum matching will be used to obtain
equation-variable pairings. Incidence matrix decomposition followed by heuristic tearing will
be used to ensure that few equations need to be solved simultaneously. The equation ordering
method can be summarised in the following steps:

1. Pre-condition equations

2. Determine safe equation-variable pairings

3. Do equation-variable matching

4. Decompose ordering problem into sequentially solvable sub-problems

5. Apply tearing to sub-problems

6. Determine desirable form of incidence matrix

7. Generate input for code generation

4.3 Pre-condition equations

Throughout the equation ordering and simulation method, it is important that equations and
variables be either of the continuous or conditional type. Conditional equations are a subset of
discrete equations, where the variable solved by the equation can only take on a boolean value
of True (1) or False (0). Following this template simplifies the equation ordering method and
improves the performance of the solving methods.
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The first step of the equation ordering method is to convert all discrete equations to equiv-
alent conditional and continuous equations. The allowed discrete equations, which are not
conditional, are binary min or max functions. An example of a min function is shown in Equa-
tion 4.1. An example of a max function is shown in Equation 4.2.

x1 = min(x2, x3) (4.1)

x4 = max(x5, x6) (4.2)

Conditioning min or max functions proves to be quite simple. The conditional variables y1 and
y2, defined by Equation 4.3 and Equation 4.4, are introduced. Equation 4.1 and Equation 4.2
can now be rewritten as Equation 4.5 and Equation 4.6, respectively. A single discrete min or
max function is converted to a conditional and continuous equation.

y1 = x2 < x3 (4.3)

y2 = x5 > x6 (4.4)

x1 = y1x2 + (1− y1)x3 (4.5)

x4 = y2x5 + (1− y2)x6 (4.6)

4.4 Safe equation-variable pairings

Prior to equation-variable matching, safe and unsafe pairings need to be determined. For the
known variables, continuous and conditional, an expected interval is assigned. The continuous
variables take on the default bounds specified by the user, while the conditional variables take
on the interval [0, 1].

Once reasonable bounds have been identified for all variables, interval arithmetic can be used
to determine unsafe pairings. The procedure followed consists of solving every equation for
each possible variable match. The solutions are then tested using interval mathematics, to de-
termine whether the equation-variable pairing can lead to zero division. The original approach,
suggested by Ali Baharev, is discussed Section 2.3.4. The original method for determining
whether a variable is a safe elimination is illustrated in Algorithm 8.

The algorithm employed by Ali Baharev is computationally intensive and quite slow. For in-
stance, if a solution does not have a denominator, it is clear that no interval will cause zero
division and interval math is not required. Additionally, the entire solution, numerator and
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denominator, are evaluated and compared to a very large interval (−M,M). The interval arith-
metic is difficult and unnecessarily expensive. An improved, more computationally efficient,
method for determining whether a variable is a safe elimination was determined and is illus-
trated in Algorithm 9. This method breaks up the solution into a numerator and denominator.
If the denominator is a number, the pairing is safe. If the denominator is symbolic, only the
denominator is evaluated using interval arithmetic. If zero is in the denominator’s possible
interval, zero division is possible and the pairing is unsafe.

Algorithm 8 Original algorithm for determining safe elimination
M = 1E10
solution = solve(equation, variable)
if len(solution) = 1 then

solution interval = interval math(solution, parameter)
is safe = solution interval in (−M,M)

else
is safe = False

end if
return is safe

Algorithm 9 Improved algorithm for determining safe elimination
solution = solve(equation, variable)
if len(solution) = 1 then

numer, denom = fraction(solution)
if denom is not a number then

denom interval = interval math(solution, parameter)
is safe = 0 not in denom interval

else
is safe = True

end if
else

is safe = False
end if
return is safe

4.5 Equation-variable matching

Once the safe variables for each equation have been determined, equations and variables should
be matched. The aim is to obtain as many as possible numerically safe pairings, while ensuring
that as many as possible variables and equations are matched. Firstly, a cost matrix is generated
from the safe and unsafe variables in each equation. We assign the smallest value for safe elim-
ination (i.e. -10), a second slightly larger value for unsafe eliminations (i.e. -5) and infeasible
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pairings are marked with an arbitrary large positive value (i.e. 50). Consider the system of
equations shown below, with xi ∈ [0, 100]:

x2 + 2x3x4 − 13 = 0

5x1 + 2x1x2 − 15 = 0

x1 + 2x4 + 3x2x4 − 10 = 0

x3 + x4 + 5x2x5 − 12 = 0

x1 + 4x1x4x5 + x5 − 10 = 0

A summary of all equation variables and safe variable assignments is shown in Table 4.1. This
system can be converted to the cost matrix shown in Equation 4.7.

Table 4.1: Example system feasible and safe variable assignments

Equation Feasible Safe

1 x2, x3, x4 x2
2 x1, x2 x1
3 x1, x2, x4 x1, x4
4 x2, x3, x4, x5 x3, x4
5 x1, x4, x5 x1, x5

C =


50 −10 −5 −5 50

−10 −5 50 50 50

−10 −5 50 −10 50

50 −5 −10 −10 −5

−10 50 50 −5 −10

 (4.7)

After setting up the cost matrix, the combinatorial optimisation problem known as the linear
assignment problem should be solved. Rows and columns of the cost matrix are only allowed
to be assigned once. The objective is to minimize the sum of the cost matrix values. Due to
Amoss models necessarily being fully specified, the obtained maximum matching should be a
perfect matching.

The linear assignment problem is solved in Amoss 2.0 by making use of the
linear sum assignment function, which is part of the scipy.optimize module. The
implementation makes use of the Hungarian algorithm to solve the weighted maximum match-
ing problem. Weighted maximum matching and the Hungarian algorithm are discussed in
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greater depth in Section 2.3.6. Applying weighted maximum matching to the cost matrix in
Equation 4.7, we obtain the equation-variable assignments shown in Table 4.2.

Using this method as the first step of equation ordering adds an increased numerical stability to
the final ordering. The aim is to minimize the possibility of simulation instability due to zero
division. This approach is not perfect, since it is not always possible to have exclusively safe
variable assignments. However, it proves to be a good practical first step.

Table 4.2: Example system variable assignments

Equation Variable

1 x2
2 x1
3 x4
4 x4
5 x5

4.6 Incidence matrix decomposition

Once equation-variable matching has been achieved, the next proposed step is decomposition
of the incidence matrix. The incidence matrix is generated from the continuous and conditional
equations and variables. An incidence matrix describes the relationship of two unique sets of
objects to one another. In the case of equation ordering, the relationship of equations and vari-
ables is described. This is discussed in more detail in Section 2.3.2. The aim of decomposition
is to re-order the original incidence matrix into block lower triangular form. This equivalently
means breaking up the original problem into a series of sequentially solvable sub-problems.
This is discussed in more detail in Section 2.3.7.

The CSparse library developed by Timothy A. Davis in the C++ language, is a renowned
sparse matrix linear algebra library (Davis, 2006). It contains many algorithmically optimised
algorithms, including a very fast Dulmage-Mendelsohn decomposition implementation. Mak-
ing use directly of this library and its Dulmage-Mendelsohn implementation was not possible
for two reasons. Firstly, because the Amoss project is programmed exclusively in Python, using
a C++ library is possible with tools like Cython, but is difficult to implement. Secondly, the
original Dulmage-Mendelsohn algorithm achieves matching making use of maximum match-
ing and does not have accommodation for weighted maximum matching.

However, Richard Lincoln, who did follow-up work on the CSparse package, wrote a Python
translated version of the package (Lincoln, 2012). This code was included in the code base and
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modified to make use of weighted maximum matching, instead of maximum matching. Since,
the CSparse package is only used for the Dulmage-Mendelsohn decomposition, the code was
also truncated to only contain the decomposition method. This modified implementation is
used exclusively to obtain the decomposed incidence matrices in Amoss 2.0.

To illustrate the overall ordering method, consider an example using an existing test process.
Test process 11 was selected. It has the unmatched incidence matrix shown in Figure 4.1.
Black dots are used to indicate incidences and white dots are used to indicate the absence of
incidences. When weighted maximum matching is applied to the unmatched incidence matrix,
the matched incidence matrix in Figure 4.2 is obtained. Take note that the main diagonal is
completely populated. Safe variable matches are indicated on the diagonal by blue dots and
unsafe matches are indicated on the diagonal by red dots. Take note that the main diagonal
should be completely populated. Finally, Dulmage-Mendelsohn decomposition is applied to
the matched incidence matrix and the block lower triangular incidence matrix in Figure 4.3 is
obtained. Take note that the blocks are indicated by grey.
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Figure 4.1: Unmatched incidence (test pro-
cess 11). Incidences are indicated
by black.
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Figure 4.2: Matched incidence (test pro-
cess 11). Safe and unsafe matches
are indicated by blue and red,
respectively.
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Figure 4.3: Block lower triangular incidence
(test process 11). Grey indicates
blocks.

4.7 Sub-problem tearing

After division of the large equation ordering problem into smaller sub-problems using Dulmage-
Mendelsohn decomposition, the task remains to identify variables to solve in each equation.
This task is accomplished in Amoss 2.0 by making use of Cellier’s tearing. Cellier’s tearing is
a heuristic tearing method, which has been quite successfully implemented as part of modelling
tools, such as OpenModelica and Dymola. The traditional implementation of Cellier’s tearing
is graph-based and discussed in detail in Section 2.3.8. No packages that allow implementation
of Cellier’s tearing to a sub-system was found. This is due to the method rarely existing on its
own and mostly being a part of larger equation ordering methods. It was decided that a custom
Cellier’s tearing algorithm would be implemented.

The original Cellier’s tearing method has fairly significant flaws. Firstly, conditional equations
and variables are not taken into account. This is a problem, because it is highly undesirable
that conditional variables and equations become the residual variable or equations. This would
change the nature of the continuous root finding problems and make the problems substan-
tially more difficult to solve. Secondly, variable matching is done recursively, using maximum
matching, which again is not desirable. It would make more sense to preserve the original
equation-variable matches, obtained from the weighted maximum matching step. Recursive
weighted maximum matching would also prove computationally impractical. Finally, because
the main approach taken for the Amoss 2.0 equation ordering method is the incidence matrix
approach, an incidence matrix implementation rather than a graphical implementation will be
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used. The custom incidence matrix implementation for Cellier’s tearing is shown in Listing 4.1.

Applying Cellier’s tearing to the block lower triangular incidence shown in Figure 4.3, the
spiked lower triangular incidence shown in Figure 4.4 is obtained. This form has the unique
property that the original system is broken into sequentially solvable sub-problems. The simul-
taneous solution regions are indicated using grey.
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Figure 4.4: Spiked lower triangular incidence
(test process 11). Grey indicates
simultaneous solution regions.
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1 def cellier_tearing(match_incidence, discrete_indices):

2 # Copy incidence matrix

3 copy_incidence = numpy.array(match_incidence)

4

5 # Do diagonal pivoting

6 row_perm, col_perm = dm_perm(copy_incidence)

7 decomposed_incidence = copy_incidence[row_perm, :][:, col_perm]

8 is_lower_triangular = numpy.all(is_solved(decomposed_incidence))

9 if is_lower_triangular:

10 return row_perm, []

11

12 # Create empty assigned index

13 solve_index = []

14 l = copy_incidence.shape[0]

15 unassigned_index = list(range(l))

16

17 for n in range(l):

18 # Determine row and column sum

19 row_sum = copy_incidence.sum(axis=1)

20 max_row_location = numpy.where(row_sum == numpy.max(row_sum))[0]

21 max_row_location =\

22 [i for i in max_row_location if unassigned_index[i] not in discrete_indices]

23 col_sum = copy_incidence[:, max_row_location].sum(axis=0)

24

25 # Determine best index

26 i = max_row_location[col_sum.argmax()]

27

28 # Append index

29 solve_index.append(unassigned_index[i])

30 del unassigned_index[i]

31

32 # Delete row and col entries

33 copy_incidence = numpy.delete(numpy.delete(copy_incidence, i, 0), i, 1)

34

35 # Determine causal equations

36 row_perm, col_perm = dm_perm(copy_incidence)

37 decomposed_incidence = copy_incidence[row_perm, :][:, col_perm]

38 is_lower_triangular = numpy.all(is_solved(decomposed_incidence))

39 if is_lower_triangular:

40 ordered_index = [unassigned_index[i] for i in row_perm]

41 break

42 return ordered_index, solve_index

Listing 4.1: Custom Cellier’s tearing implementation
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4.8 Desirable incidence matrix form

There are two incidence matrix forms commonly used for simulation generation. These forms
are discussed in Section 2.3.9 and are:

Spiked lower triangular form The spiked lower triangular incidence matrix shown in Fig-
ure 4.4 contains blocks representing sequentially solvable sub-problems, each with its
own explicit region and a sequentially solvable region. This form can be seen as a local
ordering. It is often used for simulation and can be quite efficient. However, several
sequential solvers would have to be used if multiple blocks are encountered. This is diffi-
cult to implement. Additionally, if the algebraic equation set is not used for root finding,
but rather forms part of an optimisation, the form cannot be used.

Bordered block lower triangular form The most common form of incidence matrix used for
simulation is the bordered block lower triangular form. The bordered block lower trian-
gular form can be seen as a global ordering. This form divides the entire equation set
into two distinct regions: an explicitly solvable region and a simultaneous solution re-
gion. This requires only a single solver to be generated, which is simpler to implement.
Additionally, if the algebraic equation set forms part of a greater optimisation, the simul-
taneous solution region can simply be added to the optimisation equality constraints.

For simplicity and taking into account that optimisation can be encountered, the bordered block
lower triangular form was selected as the desired incidence matrix form. To determine the
bordered block lower triangular form from the spiked lower triangular form is quite simple.
Any column in the spiked lower triangular form that contains an incidence above the diagonal
is moved to the right or the simultaneous solution region. The remaining entries to the left form
a lower triangular matrix and make up the explicitly solvable region. The bordered block lower
triangular form of the spiked lower triangular incidence in Figure 4.4 is shown in Figure 4.5.
Grey is used to indicate the simultaneous solution region.
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Figure 4.5: Bordered block lower triangular
incidence (test process 11). Grey
indicates the simultaneous solu-
tion region.

4.9 Code generation input

Using the bordered block lower triangular incidence matrix, an input should be generated,
which can be used for code generation. The first class necessary is an Equation class. This
class stores the information of an ordered equation. The properties are as follows:

equation (type: SymPy equation) The equation to solve.

variable (type: SymPy symbol) The variable assigned to solve in the equation.

equation variable (type: list of SymPy symbols) All variables in the equation.

is safe (type: boolean) Whether the equation-variable matching is safe or not.

is conditional (type: boolean) Whether the equation is conditional or not.

Three possibilities exist for the equation ordering result. The first is an explicit ordering. This
occurs if an explicit solution, i.e. a solution with no simultaneous solution region, is deter-
mined. The second is an implicit ordering. This occurs if the ordering solution contains a
simultaneous solution region. Finally, if an optimisation goal is part of the simulation prob-
lem, an ordering with an optimisation goal is obtained. The three classes, Explicit, Implicit

and Optimisation, are created to contain the information necessary for code generation of each
ordering result.
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SIMULATION APPROACH

5.1 Background

The simulation problems generated from Amoss models are difficult to simulate for various rea-
sons. To understand how the problem arises, model generation should be considered. Amoss
models are generated from the flow sheet model, operating instructions, statistical data and
optimisation objectives. These facets are combined to generate a highly complex model. The
simulation elements include: first order ordinary differential equations, continuous equations,
conditional equations, stochastic elements and disjoint constraint optimisation. Model genera-
tion is discussed in detail in Section 2.10.2.

The generated models are not only complex, but the number of equations can be in the order
of hundreds. Simulating these large complex models has been the topic of research for over
a decade. Whyte (2018) attempted to solve this problem, using a finite difference approach,
which has been the main solution to this problem. The simulation algorithms are discussed
in Section 2.10.2. The simulation approaches to the implicit ordering, explicit ordering and
optimisation problems are shown in Algorithm 5, Algorithm 6 and Algorithm 7, respectively.

There are two main flaws with the simulation approaches followed. The first is a substantial
flaw in Algorithm 5. For the implicit ordering problem, a single root find of the combined
continuous-conditional system is attempted. The root finding method used is a simple Newton
method. Due to the conditional variables, the system will experience discontinuities in the

77
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gradient, which makes failure using a Newton method and almost all root finding methods
highly likely. This approach led to numerical instability and slow simulations. The second
flaw is related to the optimisation of Algorithm 7. A rough approximation of the disjunctive
optimisation was attempted. This is discussed in more detail in Section 5.6.3.

Optimal flow allocation using heuristic rules is also a major point of discussion. This was one
of the primary concerns identified at the start of the project. Optimal flow using heuristic rules
in the forward direction was attempted and successfully implemented in Amoss 1.0. This is
discussed in Section 5.6.1. However, a solution to this problem in event of system recycles was
not obtained. This is necessary for simulation of most actual systems. Due to the issues experi-
enced in the simulation approach, it was decided that it would be revisited in Amoss 2.0. Fast

simulation time, numerical stability and acceptable accuracy are the outcomes to be addressed
by development of the simulation approach.

5.2 Overview

The simulation approach consists of many facets which should be addressed. For the implicit
ordering problem it is essential that a stable (numerical stability), fast (fast simulation time) and
sufficiently accurate (acceptable accuracy) method for root finding of the combined system be
selected. When considering the simulation speed of the optimal flow allocation problem, it is
clear that the heuristic optimisation be used when possible. The solution time of the disjunc-
tive optimisation problem will be orders of magnitude larger than evaluation of if-conditions.
Conditions for heuristic optimisation need to be determined. A solution to the heuristic alloca-
tion problem in event of recycle should be determined. If this can be attained, fast simulation

time of large-scale problems with optimal flow allocation should be possible. The following
simulation approach aspects were investigated:

• Simulation inputs

• Numerical integration

• Root finding

• Optimal flow allocation

5.3 Inputs

Input handling is important for simulation. There are two main types of inputs allowed:
stochastic and custom inputs. These inputs are generated differently, but are handled effec-
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tively in the same manner throughout simulation. The simulation inputs are generated prior to
each replication. Throughout simulation, at every time-step t, the variable value is simply read
from the pre-generated input.

5.3.1 Stochastic

Stochastic inputs form the basis of Monte Carlo analysis, as discussed in Section 2.2.3. User
provided distribution data consisting of variable values (x), probability values (p) and whether
the distribution is continuous or discrete is provided. Prior to simulation of a replication, the
stochastic variable values for the entire replication run is generated. Stochastic input gen-
eration was implemented by Whyte (2018) in Amoss 1.0 and is discussed in more detail in
Section 2.2.2.

5.3.2 Custom

Custom inputs have been added as a new feature in Amoss 2.0. As an example, consider a
simulation of 100 hours, with a step size of 1 hour. The user can provide a time related data
set representing a custom variable input, with an example shown in Table 5.1. The user should
also state whether the value changes are continuous or discrete.

Table 5.1: Example custom input

Time (hr) Value

0 0
20 4
40 10
60 6
80 2

100 0

Using the nature of the value changes of a given data set, the input data can be extended over
the entire simulation time-span. If the value changes are continuous, the custom input shown
in Figure 5.1 is obtained. Alternatively, if the value changes are discrete, Figure 5.2 is ob-
tained. This feature allows the user to effectively generate input data of any form, including
step disturbances, ramp disturbances, time dependant stochastic inputs, etc.
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Figure 5.1: Custom input with continuous value changes

Figure 5.2: Custom input with discrete value changes



CHAPTER 5. SIMULATION APPROACH 81

5.4 Numerical integration

Ordinary differential equations (ODEs) are a norm in Amoss generated models. This is a result
of buffer tank accumulation inherently being described by the mass flow continuity equation.
The finite difference approach used for simulation requires numerical integration at every time-
step. The explicit Euler method shown in Equation 5.1, which was used by Whyte (2018), was
selected for numerical integration. Higher order methods can not be used, because the smooth-
ness assumptions do not hold. This is due to the augmented systems containing stochastic
elements, conditional equations and possibly optimisation goals. This is discussed in more
detail in Section 2.6.

yn+1 = yn + hf(tn, yn) (5.1)

5.5 Root finding

5.5.1 Continuous system

To simulate as fast and as robustly as possible, it is important that appropriate root finding
methods are selected. The first root finding problem commonly encountered is continuous
equation root finding. It should be noted that the combined Amoss models often also contain
both conditional equations and flow optimisations. The alternative cases will be discussed in
more detail later.

It is often possible to quickly determine the root of a continuous system when an initial guess
near the solution is available. This can be achieved in many ways, with Newton solvers and its
variants being common choices. The properties of Newton solvers are discussed in more detail
in Section 2.4.1.

Root finding in Amoss simulations is done at every time-step. This is due to the finite difference
approach used. The nature of the root finding problem is thus dynamic and not static. If a valid
initial root is determined, each previous time-step root can be used as a guess starting value
for the next time-step. This implies that throughout the simulation, a different number of root
finding steps may be required, based on how close the previous root is to the next solution. The
initial value method is discussed in Section 5.5.3.

Because speed is of utmost importance, a simple Newton root finding scheme is a good choice
for root finding during the dynamic simulation. Jacobian evaluation is critical to Newton root
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finding and it was decided that automatic differentiation be used to determine gradients. Au-
tomatic differentiation is much more computationally efficient than traditional methods, while
maintaining working accuracy. Automatic differentiation is discussed in more detail in Sec-
tion 2.7.

5.5.2 Hybrid system

As discussed in Section 5.1, one of the main problems experienced with root finding in Amoss 1.0
is that conditional equations often form part of the equation set to be solved. This is the most
common scenario encountered in the implicitly ordered problem, because if-blocks are com-
monly present in the operating instructions. This creates a significant problem for continuous
root finding methods like Newton methods, because discontinuities are introduced in the result-
ing Jacobian. This means that the solving strategy will likely fail, especially when the number
of equations to solve becomes significant.

A practical solution to this problem, which makes use of a fixed-point iteration for the con-
ditional variables, has been implemented by the OpenModelica tool kit and is discussed in
Section 2.4.2. The main idea is to separate the conditional and continuous equation sets after
equation ordering. The conditional equations and variables are iteratively solved in a fixed-
point iteration, with continuous root finding occurring at every iteration. This should work
well, since the conditional variables need only take on a boolean value. The implemented
fixed-point iteration scheme for Newton root finding is shown in Algorithm 10, with x denot-
ing the continuous variables and y denoting the conditional variables.

Algorithm 10 Fixed-point iteration scheme for hybrid systems with Newton solving
ycheck = 0
ycalc = yprev (from last event)
while ycheck 6= ycalc do
ycheck = ycalc
x = Newton(x, ycheck)
ycalc = Conditional(x, ycheck)

end while
return x, ycalc

5.5.3 Initial value

The combined root finding problems of Amoss models are expected to have a single unique
root at each time-step. Thus, the root finding scheme in Section 5.5.2 is not expected to be
highly sensitive to the initial value. From time zero onward, the previous root value can be
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used as an initial guess. However, it is important to determine a reasonable starting point for
the first root solve at time zero. Because reasonable lower and upper bounds are provided for
each variable, a starting root value for the residual continuous variables at the mid-point of
the lower and upper bounds can be used. The remaining continuous and conditional variables
can be evaluated sequentially using the combined model. This method is clearly sub-optimal,
because starting root values can be quite far from the solution. However, it is a practical and
easy to implement method of generating initial values for root finding. Considering that the
Newton solver accuracy is set beforehand, this method works sufficiently.

5.6 Optimal flow allocation

Incorporating the optimisation problem stemming from mass flow allocation has been a major
problem of Amoss simulations. It is often the case in the Moss methodology that flow distri-
bution through multiple pipes is possible. The operating instruction stemming from this is set
with the ambiguous goal of optimally distributing mass flow economically. The difficulty of
this problem is increased when it is taken into account that for the operation of some lines a
minimum flow is required and that maximum plant constraints can be added. This problem can
be stated as an optimisation problem with an economic objective considering the distribution
of streams with a particular availability constraint, maximum constraints and disjoint minimum
constraints. Optimal flow allocation is discussed in more detail in Section 2.10.2. The general
optimal flow allocation problem is described by Equation 5.2 (Whyte, 2018).

min
x

f(x)

s.t.
∑

x ≤ xavailable

h(x) ≤ hmax

g(x) = 0 or g(x) ≥ gmin

(5.2)

5.6.1 Special case: Forward flow

A special case of the problem stated in Equation 5.2 is possible if the conditions below are met:

1. maximum constraints (h(x) ≤ hmax) are imposed on the available streams (xi)

2. disjunctive minimum constraints (g(x) = 0 or g(x) ≥ gmin) are imposed on the available
streams (xi)
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3. no mass accumulating units i.e. buffer tanks are situated between input flow (xavailable)
and available streams (xi)

This simplifies the optimisation problem, which can be reduced to a series of if-statements
with priority allocation. Whyte (2018) did the original work on this matter, specifically when
no recycles are involved. A function for use in the operating instructions called allocate

was created. This is discussed in Section 2.10.2.

Figure 5.3: Flow diagram illustrating forward flow allocation problem (Whyte, 2018)

Figure 5.3 will be used to illustrate a typical example of this special case optimisation. For the
example we have Savail = S1 + S2 to optimally distribute. The minimum disjoint constraints
are S3 ≥ 10 or S3 = 0 and S4 ≥ 10 or S4 = 0. The maximum constraints are S3 ≤ 30 and
S4 ≤ 40. It should be noted that no constraints are imposed on S5, because it is a necessary
degree of freedom for the stream mass balance to hold. The allocate function can be used in
model operating instructions as shown below:

1 S_avail = S1_total + S2_total

2 S3_min_p = 0

3 S4_min_p = 1

4 S3_max_p = 1

5 S4_max_p = 0

6 S3_total, S4_total = allocate(S_avail, [S3_min_p, S4_min_p], [10, 20], [S3_max_p, S4_max_p],

[30, 40])

The allocate operating instruction is converted to a set of continuous and conditional equations
using the algorithm developed by Whyte (2018), illustrated in Figure A.1. Making use of the
developed equation ordering method in Chapter 4, the model description shown Listing B.1 is
obtained. The result is an explicitly ordered solution, as expected.
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If for example the variables S1 and S2 take on an arbitrary value of 25, we have Savail of 50 to
distribute between the streams S3, S4 and S5. The values determined from the equation set is
S3 = 10, S4 = 40, S5 = 0. The algorithm followed will ensure that the minima are allocated,
but because S4 has the higher maximum priority, its maximum capacity will be reached first.

5.6.2 Special case: Flow with recycle

One of the biggest problems faced historically is accommodation for the special case of the
optimal allocation when a recycle is involved. The logic in the forward direction is difficult to
maintain when the input and output streams affect one another. Take for example Figure 5.4.
We have Savail = S1 + S2 +R1 to optimally distribute. R1 is calculated as R1 = 0.1(S3 + S4).
In addition to this, we again have the minimum disjoint constraints S3 ≥ 10 or S3 = 0 and
S4 ≥ 10 or S4 = 0 and the maximum constraints S3 ≤ 30 and S4 ≤ 40.

Figure 5.4: Flow diagram illustrating flow allocation problem with recycle

Although the examples in Figure 5.3 and Figure 5.4 look similar, there is a significant differ-
ence. This difference is that the recycle R1 adds to the inflow of the node for allocation. This
creates an additional relationship between the input and output of the flow allocation problem.
Because the allocate instruction is converted to a simple set of continuous and conditional equa-
tions, it can be used in the operating rules in the conventional way. Thus, we have the operating
rules:

1 R1_total = 0.1*(S3_total + S4_total)

2 S_avail = S1_total + S2_total + R1_total

3 S3_min_p = 0
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4 S4_min_p = 1

5 S3_max_p = 1

6 S4_max_p = 0

7 S3_total, S4_total = allocate(S_avail, [S3_min_p, S4_min_p], [10, 20], [S3_max_p, S4_max_p],

[30, 40])

Taking into account that an additional relationship between the input and output is added, it is
expected that the equation ordering method will yield an implicit solution. Making use of the
developed equation ordering method in Chapter 4, the model description shown Listing B.2
is obtained. As expected, the solution is an implicit ordering. This is an important result.
Due to the newly introduced fixed-point iteration scheme for root finding in Section 5.5.2, it is
possible to solve the heuristic allocation problem with a recycle. This will be handled in the
same manner as any if-condition in the operating instructions.

5.6.3 General case

When the special case is not applicable, solving the flow allocation problem as an optimisation
problem is necessary. This can be done by having the user assign an economic priority to each
of the streams. This makes practical sense, because the streams lead to unit operations with
varying economic influence on the overall plant. The objective function f(x) of Equation 5.2
should be defined. Whyte (2018) selected an objective function of the form in Equation 5.3,
with a decaying factor d, which can be arbitrarily chosen.

f(x) = −d0x0 − d1x1 − d2x2 − . . .− dnxn (5.3)

Whyte (2018) could not sufficiently address the general case of the optimal flow allocation
problem in Amoss 1.0, as discussed in Section 2.10.2. The largest problem is that the disjunc-
tive constraints on g(x) make the problem solution space disjunctive and render the original
problem unsolvable by most MINLP solvers. Whyte (2018) made a crude approximation of
the disjunctive programming problem in Equation 5.2. As expected, counter-intuitive results
were obtained by using this formulation.

A more commonly followed approach, as discussed in Section 2.5, is to reformulate the dis-
junctive program as an MINLP problem using either the big-M reformulation or complex Hull
reformulation. Complex hull formulation leads to smaller solution spaces and thus faster solu-
tion time. The constraint g(x) can be represented by Equation 5.4.
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[
Y1

0 ≤ x1 ≤ 0

]∨[
Y2

gmin ≤ x1 ≤ ∞

]
(5.4)

Making use of big-M reformulation, we obtain the disjunctive constraint relaxation shown in
Equation 5.5.

y1 + y2 = 1

y1, y2 ∈ {0, 1}
−M(1− y1) ≤ y1 ≤M(1− y1)
−M(1−y2) + gmin ≤ y1

(5.5)

The convex Hull reformulation of the problem is shown in Equation 5.6. Equation 5.6 can be
simplified to Equation 5.7.

y1 + y2 = 1

y1, y2 ∈ {0, 1}
x1 = x11 + x12

0 ≤ x11 ≤My1

0 ≤ x12 ≤My2

0 ≤ x11 ≤ 0

gminy2 ≤ x12

(5.6)

y1 + y2 = 1

y1, y2 ∈ {0, 1}
0 ≤ x1 ≤My2

gminy2 ≤ x1

(5.7)

Because Amoss disjunctive constraints are linear in nature, the relaxed solution region will be
linear. As an example, if we have M = 200 and gmin = 50, we obtain the relaxed solution
regions for the big-M and convex Hull reformulation shown in Figure 5.5.
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Figure 5.5: Relaxed solution region of Amoss disjunctive constraints. Blue and green denote the convex
Hull and big-M reformulations, respectively.

It is clear that the relaxed solution region for the big-M reformulation is twice that of the convex
Hull reformulation. This means that the reformulated problem using big-M formulation will
take significantly longer to solve using an MINLP solver. Thus, the convex Hull reformulation
will be used to relax the disjunctive programming problem in Equation 5.2. Substituting the
objective function f(x) and doing convex Hull reformulation we obtain the alternative form of
the allocation problem shown in Equation 5.8.

min
x,y

f(x) = −d0x0 − d1x1 − d2x2 − . . .− dnxn

s.t.
∑

x ≤ xavailable

h(x) ≤ hmax

y1 + y2 = 1

y1, y2 ∈ {0, 1}
0 ≤ x ≤My2

gminy2 ≤ x1

(5.8)



CHAPTER 6

CODE GENERATION

6.1 Background

After equation ordering, discussed in Chapter 4, has been applied to the model algebraic vari-
ables and equations, the simulation approach, discussed in Chapter 5, should be implemented
for simulation of the model. The starting point for code generation in Amoss 2.0 is the equa-
tion ordering result, stochastic and custom inputs and the integration variables and equations.
The equation ordering result is provided as an Explicit, Implicit or Optimisation object. The
stochastic and custom inputs are generated inputs to be sampled during simulation. The inte-
gration variables and equations are the equations stemming from Euler integration of the buffer
tank ODEs.

There were minor flaws regarding the code generation method in Amoss 1.0, discussed in
Section 2.10.3. Simulation code could have been generated more efficiently, but with the major
faults in the simulation approach, these changes would have had little effect. Due to the large
changes in the simulation approach and equation ordering methods, the code generation had to
be rebuilt entirely. Rebuilding the code generation does allow the opportunity to re-evaluate
the most effective implementation of the simulation approach. Fast simulation time, reduction

in development time and independent package are the outcomes to address using the new code
generation method.

89
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6.2 Overview

Code generation entails creating simulation code for a generated model. The simulation code
will be used to simulate the various scenarios and multiple replications for Monte Carlo anal-
ysis. It is important that the code generation method be robust and reliably generate code for
the Explicit, Implicit and Optimisation equation ordering objects. Fast simulating code (fast

simulation time) should be generated reasonably quickly (reduction in development time). For
the simulation of the various equation ordering results, efficient solving and evaluation tools
need to selected. The generated simulations also have the potential to be run in parallel and
parallel processing methods should be looked into. Ideally, the Python standard library and
widely used open-source packages should be used (independent package). The code genera-
tion aspects looked into are:

• Template

• Solver and evaluation

• Parallel processing

6.3 Template

Amoss Monte Carlo simulations require running multiple replications of multiple scenarios of
a developed model. Amoss 1.0 generated simulation code as non-executable .py Python files,
which were imported and used by the greater Python code base. This design decision created an
unwanted dependency between simulation of various scenarios. The simulation code should be
generated in such a way that any replication of any scenario can be simulated independently by
using it. To achieve this utility, code will be generated as an executable .py Python file, which
will be provided simulation arguments using the command line. The layout of the generated
code is shown in Listing 6.1. The functions in the general code layout are as follows:

generate stochastic input Generate stochastic inputs for simulation from distribution data.

generate customs input Generated custom inputs for simulation from custom input data.

initialise solver Initialise fixed-point iterative Newton solver or MINLP solver.

initialise function Initialise evaluation functions.
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initial value Initial value function, starting with the residual variable values at the mid-point of
the reasonable bounds. The other continuous and conditional variables are sequentially
evaluated.

mass balance Simulation of a single time-step. Stochastic and custom inputs are sampled,
the relevant solving is done, followed by evaluation of the remaining variables and Euler
integration.

run replication Main function, where a single replication of a single scenario is executed.

The main function executed in the generated code is run replication. The function code
is shown in Listing 6.2. The steps followed to simulate a single replication of a scenario are as
follows:

1. Create variable dictionary and read scenario values.

2. Initialise solver and evaluation function.

3. Generate stochastic and custom inputs for simulation.

4. Determine initial values for simulation.

5. Do simulation and store results.

6. Write results.
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43 import *

44

45 def generate_stochastic_input(file, replication_number):

46 ...

47 return stochastic_input

48

49 def generate_custom_input(file, scenario_number, replication_number):

50 ...

51 return custom_input

52

53 def initialise_solver(tolerance):

54 ...

55 return solver

56

57 def initialise_function():

58 ...

59 return function

60

61 def initial_value(variable_dict, stochastic_input, custom_input):

62 ...

63 return variable_dict

64

65 def mass_balance(variable_dict, solver, function, stochastic_input, custom_input, t, dt):

66 ...

67 return variable_dict

68

69 def run_replication(arguments):

70 ...

71 return None

72

73 if __name__ == ’__main__’:

74 run_replication(arguments)

Listing 6.1: Generated code layout
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75 def run_replication(arguments):

76 # Create variable dictionary and read scenario values

77 variable_dict = read_start_value(file)

78 scenario_dict = read_scenario(scenario_number)

79 variable_dict.update(scenario_dict)

80

81 # Initialise solver and evaluation function

82 solver = initialise_solver(tolerance)

83 function = initialise_function()

84

85 # Generate stochastic and custom inputs for simulation

86 stochastic_input = generate_stochastic_input(file, replication_number)

87 custom_input = generate_custom_input(file, scenario_number, replication_number)

88

89 # Determine initial values for simulation

90 variable_dict = initial_value(variable_dict, stochastic_input, custom_input)

91

92 # Do simulation and store results

93 result_storage = empty

94 for t in range(number_of_hours):

95 variable_dict = mass_balance(variable_dict, solver, function, stochastic_input,

96 custom_input, t, dt)

97 result_storage.append(variable_dict)

98

99 # Write results

100 result_storage.write_results(file)

101 return None

Listing 6.2: run replication function
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6.4 Solver and function

The main tool used for solving and function evaluation is the CasADi Python package. CasADi
is an open-source tool, with the main function of providing automatic differentiation. It is writ-
ten entirely in self-contained C++ and is often used for non-linear optimisation and optimal
control problems. Models are communicated using its symbolic framework (Andersson et al,
2019). CasADi was first used in the Amoss 1.0 by Whyte (2018) and proved a valuable addi-
tion, especially for Newton root finding.

6.4.1 Function

A basic use of the CasADi tool is simple evaluation of explicitly ordered sets of equations.
The solution of these systems translates to evaluation of a multi-input multi-output function.
The function class in CasADi can be used for function evaluation. Functions are created
at runtime and can be numerically evaluated afterwards. With functions being pre-compiled to
C++, function evaluation throughout simulation is expected to be very fast.

6.4.2 Root finding

The main advantage of the CasADi tool is the automatic differentiation feature. Automatic
differentiation can be described as an effective method for determining derivative information
of a computer program. It is discussed in more detail in Section 2.7. CasADi provides the
rootfinder class for non-linear root finding. A very fast Newton solver, which heuristically
makes use of forward and reverse-mode automatic differentiation to determine Jacobian infor-
mation is provided. Similar to function objects, rootfinder objects are pre-compiled
to C++. It is expected that using the pre-compiled automatic differentiation Newton solver for
iterative root finding of implicitly ordered problems will be the greatest speed improvement
provided by using the CasADi tool.

6.4.3 MINLP

The mixed-integer non-linear programming (MINLP) problems in Amoss caused by the opti-
mal flow allocation problem are complex and difficult to solve. CasADi provides the nlpsol
class for solution of non-linear programming problems. The nlpsol class itself does not con-
tain an MINLP solver, but the open-source Bonmin solver is available as a plugin. Bonmin
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(Basic Open-source Nonlinear Mixed INteger programming) is a solver designed for solving
general MINLP and is part of the COIN-OR project. When the optimisation objective is con-
vex, the Bonmin solution is exact. However, if the objective is non-convex, a good heuristic
solution can be obtained. The MINLP problems in Amoss stem from disjunctive optimisation
problems and are expected to have non-convex objectives, due to the reformulation methods.
The recommended method for solution of non-convex problems in Bonmin is the branch-and-
bound method. The nlpsol object is pre-compiled, but due to the external solver being called
at each use, no compilation speed advantage is expected.

6.5 Parallel processing

It is typical of Monte Carlo type simulations to be embarrassingly parallel in nature. In the
case of Amoss simulations, replications of simulation scenarios are entirely independent of
one another. That is to say that no common data is accessed and that no communication is
necessary between replications, during simulation. This creates an opportunity for parallel
processing. Parallel processing utilises the various processors of a computer to run independent
instructions concurrently. Parallel processing is discussed in more detail in Section 2.8.

In Amoss 1.0, the simulation scenarios were parallelised for parallel processing. Parallel pro-
cessing was implemented using Celery. Only parallelising the simulation scenarios and not
the replications of the scenarios, limits the effect of parallel process. Additionally, Celery
no longer provides support for Windows (Celery, 2018). As an improvement, in Amoss 2.0
replications of scenarios are parallelised for parallel processing. Parallel processing is now ac-
complished by spawning subprocesses using the subprocess module in the Python standard
library.

Given s scenarios and r replications, the total number of runs to do is s× r. On a machine with
n virtual cores, n number of scenario-replication subprocesses are spawned simultaneously,
each with its own global interpreter lock (GIL) executing in its own terminal. After completion
of n parallel replications, n new replications are spawned. This approach works well, because
there is little time difference between different replications. If s× r is perfectly divisible by n,
the simulation time is theoretically divided by n.
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Results and conclusions
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CHAPTER 7

RESULTS AND DISCUSSION

7.1 Intermediate result storage

During simulation, it is necessary to store simulation data, before writing the results to hard
disk. With many simulations this is not a practical problem, but Amoss simulations often
contain hundreds of variables, which need to be stored every hour for thousands of hours. The
sheer amount of data generated requires effective storage of data in memory before writing the
simulation results.

A method which could be used, is intermittently writing results and clearing the memory. This
can come at the sacrifice of simulation time, because conversion of data to a writable format
can take significant time. The optimal method of simulation with regard to simulation time is
to store data in memory throughout the simulation for a single replication, convert the results
to a writable format and write to disk only once.

Thus, it is important to select a data type for intermittent storage. This data type should be mem-
ory efficient, fast to write to and quick to convert to a writable data type. A two-dimensional
spatial requirement is also necessary, because of the time and variable axes. The data types to
investigate are:

• Two-dimensional numpy array. The C contiguous (row major) and F contiguous (column
major) orderings will be considered.
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• A list of Python lists.

• A list of Python tuples.

• A list of Python dictionaries.

During simulation, variable values are most easily represented as a dictionary. The dictionary
effectively represents the state of all variables. This information can be added to the selected
data type for intermittent storage. To test memory usage, write time and conversion time, 500
variables were randomly generated every hour for 70 000 hours. The variable data was written
every hour to each data type, to mimic how data will be written during simulation.

The memory usage of each of the data types was determined using the pympler tool. The
memory usage of the various data types is shown in Figure 7.1. In addition to memory usage,
it is necessary to determine how much time is spent on writing data to the relevant data type.
The time spent writing data to the relevant data type is shown in Figure 7.2.

Figure 7.1: Memory usage of data types
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Figure 7.2: Write time to data types

An important factor to take into account is how long each intermediate data format takes to
be converted to a writable format. The data type selected for file writing is the widely used
Pandas dataframe object. When constructing dataframes using Pandas, all non-array iter-
able data formats are internally converted to numpy arrays. The conversion time to numpy

arrays is shown in Figure 7.3. Final conversion from numpy arrays to Pandas dataframes is
very fast and is illustrated in Figure 7.4.

Figure 7.3: Conversion time from data types to numpy array
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Figure 7.4: Conversion time from numpy array to Pandas dataframe

From Figure 7.1 it is clear that numpy arrays take up much less memory than the standard
Python data types. The numpy arrays are approximately 5 times smaller than the list of lists and
list of tuples and about 10 times smaller than the list of dicts. This result makes sense, because
numpy arrays are generated in C and are data type specific. Note that parallel processing will
be implemented for simulation, which makes memory usage very significant. As an example
take a simulation on a machine with 8 processors, where 8 simulations are run in parallel. If 8
numpy arrays of 70 000 × 500 are generated, about 2.2 GB of memory will be used up. Thus,
it is clearly impractical to use the other data types, when considering memory usage.

From Figure 7.2 it is clear that write time to numpy arrays, especially the C ordering, is slower
than the other formats. The calculations involved with simulation are expected to be substan-
tially slower than the write times and more than likely will render these differences insignifi-
cant. More significantly than the write times, there is no conversion time when constructing a
Pandas dataframe from a numpy array. Conversion time to numpy arrays is slow, as illus-
trated in Figure 7.3. The absence of conversion time, combined with the memory efficiency,
makes the numpy array data type the clear best choice for intermediate data storage. Consid-
ering the array orderings, it is clear that the F ordering is superior in terms of write time and
conversion time to a Pandas dataframe.
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7.2 Result writing

During simulation, data is stored to an intermediate storage data type as discussed in Sec-
tion 7.1. After simulation, the intermediate data storage is converted to a writable data type for
results writing. It is important that results be written as quickly as possible and take up as little
space as possible on disk. Because of the large amount of result data generated, write speed
and result storage size can become a problem.

The Pandas dataframe object was selected as the writable data type. This is mainly due to
Pandas widespread use, various available file formats and compression filters. It is necessary
to determine is a suitable file format for result writing. The file formats selected for investi-
gation are Feather, Parquet, HDF5 and CSV. The file formats are discussed in more detail in
Section 2.9.

Compression should be considered. Because file writing occurs between replications, writ-
ing results as quickly as possible is priority. Thus, writing time is more important than high
compression ratios. For that reason, only the Snappy compression method will be considered.
Snappy compression is discussed in Section 2.9.5 and is focused on fast reasonable compres-
sion.

To test the write time, read time and storage file size of each of the file formats, a 70 000× 500
Pandas dataframe was generated, written to each file format and read. This should be a suffi-
cient representation of simulation result storage and reading. The write time of the various file
formats is shown in Figure 7.5. The file size of the various file formats is shown in Figure 7.6.
The read time of the various file formats is shown in Figure 7.7.
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Figure 7.5: Write time of file formats. Snappy compression is indicated by C.

Figure 7.6: File size of file formats. Snappy compression is indicated by C.
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Figure 7.7: Read time of file formats. Snappy compression is indicated by C.

The results from Figure 7.5, Figure 7.6 and Figure 7.7 clearly illustrate the inferiority of the
CSV file format for result storage of large data sets, with it being the worst file format in all
categories. From Figure 7.5, it is clear that the fastest file formats to write to are feather and the
Snappy compressed HDF5 format, with the feather file writing in 0.41 s and the compressed
HDF5 file writing in 0.27 s. Figure 7.7 also suggests that these two formats are the fastest
to read from, with the feather file reading in 0.12 s and the compressed HDF5 file reading in
0.22 s. Figure 7.6 shows that the smallest file sizes belong to the HDF5 files and feather, with
the files being approximately 273 MB in size.

All factors suggest that the Snappy compressed HDF5 format and feather file formats are the
best file formats for result writing. It is important to note that the feather format is new and
slightly unstable for long-term data storage. The feather format also does not yet have ac-
commodation for compression. Because of the instability of the feather file format and faster
write time, the Snappy compressed HDF5 file format was selected as the file format for result
writing. However, in future it is expected that this evaluation can change. If compression can
be introduced and the long-term storage stability could be improved, the feather format could
prove superior to the compressed HDF5 format.
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7.3 Benchmarks

With numpy arrays (F ordering) as the intermediate data type and Snappy compressed HDF5 as
the file format for result writing, the benchmarks in Chapter 3.4 were run for the test processes.
The test processes are discussed in Chapter 3.2. The simulations were run for 70 000 hours,
with a step size of 1 hour. The machine used for benchmarking has the hardware and software
specifications shown in Table 3.1. Because the machine has 8 virtual cores, 8 replications were
run in parallel.

7.3.1 Code generation time

The code generation benchmark relates to the reduction in development time deliverable. Code
generation only constitutes a small portion of development time, because model development
prior to code generation is expected to take in the order of a week. Thus, considering that
during model development code generation should only occur once, very high code generation
speed is not required. That being said, in event of plant or operating instruction changes, fast
code generation can be advantageous.

The code generation time of the test processes are shown in Figure 7.8. The average code
generation time is approximately 8 s, with the longest code generation taking 37 s. Model
development prior to code generation takes in the order of a week. Considering that code
generation only occurs once, it is clear that code generation is not a bottleneck.

From Figure 7.8, it can be observed that code generation of test process 8 and test process 12
is substantially slower than that of the other test processes. Various factors could be the cause.
It is suspected that the model equations are difficult to solve symbolically (using SymPy).
This would result in a bottleneck when determining the safe equation-variable pairings during
equation ordering.
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Figure 7.8: Benchmark code generation time

7.3.2 Simulation time

Simulation time relates to the fast simulation time deliverable. Fast simulation time is criti-
cal. After code generation has been done, the next step is to do Monte Carlo analysis on the
various simulation scenarios. Monte Carlo analysis, as discussed in Section 2.2.3, depends on
the strong law of large numbers, which implies that more simulation replications will lead to
more reliable analysis results. Thus, faster simulation time of a single replication allows more
replications to be run and better analysis to be done. Additionally, more simulation scenarios
can be run.

The simulation time of the test processes are shown in Figure 7.9. Take note that test process
14 was timed, but not included in the benchmark. Its slow simulation time of 278.3 s/rep is
two orders of magnitude slower than the other test processes. This illustrates the impractical
slow time obtained by solving the allocation problem using the MINLP approach. The heuristic
allocation formulation should always be used when possible.

From Figure 7.9, the simulation time is low. The average simulation time is 2.2 s/rep, with the
longest simulations taking about 4.2 s/rep. Considering that for the implicit ordering problems,
every hour of 70 000 hours an iterative Newton root finding step is implemented, this is an
exceptional result. For all test processes, the basic validations discussed in Section 3.5 were
met.
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Figure 7.9: Benchmark simulation time

7.3.3 Linear scalability

The linear scalability of the simulation time is an important deliverable. Linear scaling implies
that there is at most a linear relationship between the simulation time (s/rep) and the number of
equations. In other words, if the number of equations of a model doubles, the simulation time
should not increase by a factor of more than two. This scaling is important, because inefficient
scaling will make simulation of larger systems infeasible.

Simulation time (s/rep) as a function of the number of equations (N ) of each test process is
plotted in Figure 7.10. To test linearity, the linear trend line y = 0.1N was plotted. There are
no points above the linear trend line. It is clear from the plotted points and the linear trend
line, that the simulation time scaling is of a lower order than 1. This is an excellent result. To
determine an approximate order for the scaling, a non-linear trend line with an unknown power
was fitted. The non-linear trend line y = 0.46N0.38 was obtained. Thus, the simulation time
scaling is of approximately order 0.4.

The number of equations in a system is not an absolute measure of model complexity. The
limiting step for simulation is root finding. Thus, the main factor in determining simulation
time is not the number of equations, but rather the number of equations to simultaneously solve
during root finding. This is supported by Figure 7.11, which illustrates the simulation time
(s/rep) as a function of the number of equations to simultaneously solve. Although the data
points are not well spread out, there is a clear increase in simulation time as the number of
equations to root find increases. The reason for the decent scaling of simulation time is the
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success of the equation ordering method. Because large systems of equations are reduced to
only have a few equations to solve simultaneously, adding more equations to a model does not
necessarily increase simulation time substantially.

Figure 7.10: Benchmark linear scalability

Figure 7.11: Benchmark simulation time versus number of equations to simultaneously solve
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7.4 Industrial process

Amoss 2.0 was also tested using the partially built industrial process, discussed in Section 3.3.
The results are positive and can be summarised as follows:

Equation ordering The system of 370 equations was reduced to 25 equations to simultane-
ously solve. This is a good result and a significant reduction. Taking into account that
heuristic tearing methods were used, this is more than acceptable. The incidence matrices
illustrating the equation ordering method are shown in Appendix C.

Code generation Code generation was completed in approximately 30 s, which is quite fast.
Taking into account that the code generation only occurs once, this is a good result.

Simulation time The most impressive result is the newly achieved simulation time. In Whyte
(2018) the partially built industrial process simulated in approximately 24 min/rep. The
fully built Sasol process simulated in about 1.7 min/rep. The current implementation
simulates the partially built industrial process in 3.8 s/rep or 0.063 min/rep. This is more
than two orders of magnitude faster than Amoss 1.0 in Whyte (2018) and approximately
27 times faster than the Sasol simulation at the same time. It should be noted that in the
meantime, the Sasol model has become more complex and simulates more slowly.

Result validation The simulation results contain no negative values for steams or component
rates. Zero division is not encountered and no plant constraints are violated. This sug-
gests that the partially built model results are valid.

The benchmark results illustrate the progress made from Amoss 1.0 to Amoss 2.0. It is recom-
mended that the industrial process build be completed and updated to the version currently in
use at Sasol. This would allow more elaborate simulation and result comparison.



CHAPTER 8

CONCLUSIONS AND
RECOMMENDATIONS

8.1 Conclusions

The Amoss 2.0 simulation engine is a great improvement over that of Amoss 1.0, which is
supported by the benchmark results of Chapter 7. This is a direct consequence of revisiting the
simulation factors, discussed in Section 1.4. The changes made are as follows:

Equation ordering A custom equation ordering method was implemented. This method starts
by pre-conditioning the system of equations to only consist of continuous and conditional
equations. Afterwards, safe and unsafe variable matchings are determined using inter-
val arithmetic. Weighted maximum matching is then applied to determine the most nu-
merically stable equation-variable matching. The matched system is decomposed using
Dulmage-Mendelsohn decomposition and torn using Cellier’s tearing. Finally, the sys-
tem is transformed to the bordered block lower triangular form used for code generation.

Simulation approach Various aspects of the existing simulation approach were investigated.
A major change was made to the solution of the implicitly ordered problem. Because
of the root finding difficulties, a fixed-point iterative Newton solve technique was imple-
mented for solution of the combined continuous-conditional system. The optimal flow
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allocation problem was reinvestigated. The heuristic allocation method, which has been
applied to the forward direction, was extended for use when recycles are encountered.
The general case of the optimal flow allocation problem was reformulated. With regard
to simulation inputs, accommodation was made for custom inputs.

Code generation Code generation was reimplemented to accommodate the new simulation
approach. The simulation code template was generated such that all replications and sce-
narios can be run using the same code. The CasADi tool was selected for function eval-
uation, Newton root finding and MINLP solution. The evaluation functions and solvers
are pre-compiled to C++ and numerically evaluated as simulation progresses. Parallel
processing using subprocesses was implemented, to exploit the embarrassingly parallel
nature of the replications and scenarios.

Result storage Storing simulation results intermediately to numpy arrays (F ordering) was
implemented. Writing completed simulation results as HDF5 files with Snappy com-
pression was implemented.

The goal of revisiting the above factors was to address the Amoss 2.0 deliverables in Sec-
tion 1.4. All deliverables have been sufficiently addressed. The progress with regard to each of
the deliverables are as follows:

Fast simulation time The simulation time of the tool was reduced significantly, with the aver-
age test process simulation time being 2.2 s/rep and the partially built industrial process
simulating at 3.8 s/rep. The partially built industrial process simulation time was reduced
by two orders of magnitude from Amoss 1.0 and is 27 times faster than the Sasol devel-
oped simulation. This great increase in simulation speed is a result of the improvements
made to the equation ordering method, the fixed-point iterative root finding method for
implicitly ordered systems, the numpy array data type being used for intermediate data
storage, using the HDF5 file format for result writing, Snappy compression, parallel pro-
cessing using subprocesses and the speed of the CasADi Newton solver and function
evaluations.

Numerical stability The numerical stability of simulations using the tool was greatly im-
proved. The test processes and partially built industrial process simulations are free
of invalid values and zero division throughout all tested simulation runs. This is due
to the equation ordering method using interval arithmetic to determine safe and unsafe
equation-variable pairings, followed by weighted maximum matching and the fixed-point
iterative root finding method used to simulation implicitly ordered systems.

Acceptable accuracy The simulation accuracy of the tool was increased by improving nu-
merical stability. Because zero division is no longer encountered, reasonable simulation
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values are encountered. The implicitly ordered system values are root solved using a
Newton strategy with an absolute tolerance of 1× 10−6. This ensures acceptable simu-
lation accuracy.

Linear scalability The simulation time of the tool scales very well. The simulation time does
not only scale linearly with the number of equations, but scales at approximately an order
of 0.4. This is a direct result of the success of the custom equation ordering method.

Reduction in development time Model development time using the tool is very low. The tool
itself has a slight learning curve and it is expected that a new user would take approxi-
mately a week to develop a model, with no prior experience of using the tool. This devel-
opment time will of course decrease as the user becomes more accustomed the tool’s use.
The average code generation time is only 8 s, which is much lower than model develop-
ment time. The low code generation time means that flow sheet or operating instruction
changes can quickly be implemented and simulated.

Independent package The equation ordering, code generation and simulation parts of the tool
are now independent. The external equation ordering repository, sdopt-tearing,
was removed from the code base and custom equation ordering code developed. Ex-
clusive use is made of the Python standard library and other widely-used open source
packages.

8.2 Recommendations

8.2.1 Near future

Legacy model building For the first time, since the start of the Amoss project, the simulation
engine is numerically stable and simulation is fast. Additionally, it is possible to do
almost any simulation by using the stochastic and custom inputs. Taking these factors
into account, it is important that time be spent rebuilding the legacy models in Amoss 2.0.
These simulations are expected to be substantially faster and more stable than the Sasol
developed counterparts. Additionally, simulation results could be compared to industrial
results.

Independent package The simulation engine of Amoss 2.0 is independent of non-Python ex-
ternal packages. However, the other sections of the tool have an external dependency on
OpenModelica, Atom and Microsoft Excel. Work should be done to remove all external
dependencies from the Amoss project. The concurrent projects are and should continue
working towards making Amoss a stand-alone package.
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Additional stochastic input accommodation In addition to basic time-independent stochas-
tic inputs using distribution data, different types of stochastic inputs are made use of by
the Sasol simulations. An example is time-dependent failure stochastic input. For in-
stance a stochastic input can be generated from plant information on mean time to failure
and mean time to repair. It is currently possible to manually include this type of input as
a custom input, but machinery should be included to automatically generate these inputs.

Result analysis In the current state of the tool, only model development and simulation is
accommodated. This creates the need to convert the generated HDF5 simulation results
to CSV for separate analysis on the Sasol operation research team’s side. This mitigates
many of the advantages gained from fast simulation and result writing. Monte Carlo
analysis, result graphing and user feedback should be provided in the Amoss tool.

8.2.2 Future

Desired incidence matrix form In the developed equation ordering method, the bordered
block lower triangular incidence matrix form was used for code generation. This form
effectively divides the entire system into a single explicit region and single simultaneous
solution region. The main reason for its selection is its simplicity and the fact that op-
timisation can easily be accommodated. However, it is expected that the spiked lower
triangular incidence matrix form will simulate faster and scale better. This form comes
from tearing the blocks of the Dulmage-Mendelsohn decomposition. It effectively breaks
up the system into sequentially solvable sub-problems, each with its own explicit region
and simultaneous solution region. Thus, instead of having to solve over the entire sys-
tem, smaller sub-problems are sequentially solved. This is more difficult to implement
for code generation.

C code generation A decision was made in Amoss 1.0 and Amoss 2.0 to generate simulation
code in the Python programming language. There were many considerations, with the
main factor being ease of development. However, a major drawback of Python code is
execution speed. It is an interpreted language and consequently runs slower than a com-
piled language. A large speed improvement is possible by rather generating simulation
code in a compiled language, such as C. CasADi can still be used for root finding and
supports both C code generation and a C++ API.

Data distribution In the event that the tool becomes frequently used by multiple users, it be-
comes practical to have a decent data distribution platform in place. As an example,
consider the Sasol operation research team. It is important that data be distributed among
team members. If the team members are assigned different models, it is unnecessary to
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develop and simulate on each computer to obtain model data and simulation results. Ide-
ally, model data and simulation results should be actively shared between team members.

Parallel processing over a cluster Stochastic simulations of the Amoss tool are embarrass-
ingly parallel, with replication and scenarios being independent. This property was used
to implement parallel processing on a single computer or local cluster. However, it is pos-
sible to extend this parallel processing to a cluster of computers. The more processors
are available in the cluster, the more independent replications can be run simultaneously.
This will even further improve simulation time. However, it is not expected that it will
be easy to implement based on the networking restrictions in Sasol.
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Täuber, P, Ochel, L, Braun, W and Bachmann, B (2014) “Practical realization and adaptation
of Cellier’s tearing method” in: Proceedings of the 6th International Workshop on Equation-

Based Object-Oriented Modeling Languages and Tools ACM: pp. 11–19.

The AnyLogic Company (2017) Simulation modeling software tools & solutions for business

anylogic URL: https://www.anylogic.com/ (visited on 12/2017).

The HDF Group (2019) The HDF5 Library File Format URL: https://www.hdfgroup.
org/solutions/hdf5/ (visited on 01/05/2020).

Whyte, E (2018) “AMOSS: Automatic Modeling Operations using Stochastic Simulation” Uni-
versity of Pretoria URL: https://repository.up.ac.za/handle/2263/71047.

Wickham, H (2016) Feather: A Fast On-Disk Format for Data Frames for R and Python, pow-

ered by Apache Arrow URL: https://blog.rstudio.com/2016/03/29/feather/
(visited on 01/05/2020).

Williams, HP (1985) Model building in mathematical programming, John Wiley & Sons.

http://sdetoolbox.sourceforge.net/manual.pdf
http://sdetoolbox.sourceforge.net/manual.pdf
https://www.ietf.org/rfc/rfc4180.txt#page-1
https://www.ietf.org/rfc/rfc4180.txt#page-1
https://www.simul8.com/
https://www.anylogic.com/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://repository.up.ac.za/handle/2263/71047
https://blog.rstudio.com/2016/03/29/feather/


APPENDIX A

ALLOCATE ALGORITHM

A.1



APPENDIX A. ALLOCATE ALGORITHM A.2

Start

calculate
corrected max

Calculate
mass available

Any
priorities

left

stop

Identify the
next priority

variable

min or
max

allocation

avail
≥ min

constraint

allocate min
constraint

allocate zero

zero min
allocation

avail
≥ max

constraint

allocate avail
allocate max

constraint

No

Yes

Min

Yes

No

Max

No

Yes

No

Yes

Figure 4.10: Algorithm that is followed by the created allocate equations.

88

Figure A.1: Algorithm followed to generate equations from allocate instruction (Whyte, 2018)



APPENDIX B

MODEL DESCRIPTION

1 1. Details

2 Type: Explicit

3 Number of equations/variables: 45

4

5 2. Combined equations

6 S_avail = S1_comp1 + S2_comp1

7 allocate0_avail = S_avail

8 allocate0_min_avail_p0 = allocate0_avail

9 S4_comp1_max = 40

10 S3_comp1_max = 30

11 S4_comp1_min = 20

12 S3_comp1_min = 10

13 S4_min_p = 1

14 S4_comp1_min_p1 = S4_min_p == 1

15 S4_comp1_min_p0 = S4_min_p == 0

16 S3_max_p = 1

17 S3_comp1_max_p1 = S3_max_p == 1

18 S3_comp1_max_p0 = S3_max_p == 0

19 S4_max_p = 0

20 S4_comp1_max_p1 = S4_max_p == 1

21 S4_comp1_max_p0 = S4_max_p == 0

22 S4_comp1_cor_max = S4_comp1_max - S4_comp1_min

23 S3_min_p = 0

24 S3_comp1_min_p1 = S3_min_p == 1

B.1
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25 allocate0_min_p1 = S3_comp1_min*S3_comp1_min_p1 + S4_comp1_min*S4_comp1_min_p1

26 S3_comp1_min_p0 = S3_min_p == 0

27 allocate0_min_p0 = S3_comp1_min*S3_comp1_min_p0 + S4_comp1_min*S4_comp1_min_p0

28 allocate0_min_p0_if = allocate0_min_p0 <= allocate0_min_avail_p0

29 allocate0_min_avail_p1 = allocate0_avail - allocate0_min_p0

30 allocate0_min_p1_if = allocate0_min_p1 <= allocate0_min_avail_p1

31 allocate0_min_al_1 = allocate0_min_p1*allocate0_min_p1_if

32 allocate0_min_al_0 = allocate0_min_p0*allocate0_min_p0_if

33 allocate0_avail_after_min = allocate0_avail - allocate0_min_al_0 - allocate0_min_al_1

34 allocate0_max_avail_p0 = allocate0_avail_after_min

35 S3_comp1_cor_max = S3_comp1_max - S3_comp1_min

36 allocate0_max_p1 = S3_comp1_cor_max*S3_comp1_max_p1 + S4_comp1_cor_max*S4_comp1_max_p1

37 allocate0_max_p0 = S3_comp1_cor_max*S3_comp1_max_p0 + S4_comp1_cor_max*S4_comp1_max_p0

38 if_min_0 = allocate0_max_p0 <= allocate0_max_avail_p0

39 allocate0_max_avail_p1 = allocate0_avail_after_min - allocate0_max_p0

40 if_min_1 = allocate0_max_p1 <= allocate0_max_avail_p1

41 allocate0_max_al_1 = -allocate0_max_avail_p1*if_min_1 + allocate0_max_avail_p1 +

allocate0_max_p1*if_min_1

42 allocate0_max_al_0 = -allocate0_max_avail_p0*if_min_0 + allocate0_max_avail_p0 +

allocate0_max_p0*if_min_0

43 S4_comp1 = S4_comp1_max_p0*allocate0_max_al_0 + S4_comp1_max_p1*allocate0_max_al_1 +

S4_comp1_min_p0*allocate0_min_al_0 + S4_comp1_min_p1*allocate0_min_al_1

44 S4_total = S4_comp1

45 S3_comp1 = S3_comp1_max_p0*allocate0_max_al_0 + S3_comp1_max_p1*allocate0_max_al_1 +

S3_comp1_min_p0*allocate0_min_al_0 + S3_comp1_min_p1*allocate0_min_al_1

46 S3_total = S3_comp1

47 S2_total = S2_comp1

48 S5_comp1 = S1_comp1 + S2_comp1 - S3_comp1 - S4_comp1

49 S5_total = S5_comp1

50 S1_total = S1_comp1

Listing B.1: Model description of forward heuristic allocation



APPENDIX B. MODEL DESCRIPTION B.3

1 1. Details

2 Type: Implicit

3 Number of equations/variables: 49

4

5 2. Continuous equations

6 S4_comp1_max = 40

7 S3_comp1_max = 30

8 S4_comp1_min = 20

9 S3_comp1_min = 10

10 S4_min_p = 1

11 S3_max_p = 1

12 S4_max_p = 0

13 S4_comp1_cor_max = S4_comp1_max - S4_comp1_min

14 S3_min_p = 0

15 allocate1_min_p1 = S3_comp1_min*S3_comp1_min_p1 + S4_comp1_min*S4_comp1_min_p1

16 allocate1_min_p0 = S3_comp1_min*S3_comp1_min_p0 + S4_comp1_min*S4_comp1_min_p0

17 S3_comp1_cor_max = S3_comp1_max - S3_comp1_min

18 allocate1_max_p1 = S3_comp1_cor_max*S3_comp1_max_p1 + S4_comp1_cor_max*S4_comp1_max_p1

19 allocate1_max_p0 = S3_comp1_cor_max*S3_comp1_max_p0 + S4_comp1_cor_max*S4_comp1_max_p0

20 S2_total = S2_comp1

21 S1_total = S1_comp1

22 R1_comp1 = 0.1*S3_comp1 + 0.1*S4_comp1

23 S_avail = R1_comp1 + S1_comp1 + S2_comp1

24 allocate1_avail = S_avail

25 allocate1_min_avail_p0 = allocate1_avail

26 allocate1_min_avail_p1 = allocate1_avail - allocate1_min_p0

27 allocate1_min_al_0 = allocate1_min_p0*allocate1_min_p0_if

28 allocate1_min_al_1 = allocate1_min_p1*allocate1_min_p1_if

29 allocate1_avail_after_min = allocate1_avail - allocate1_min_al_0 - allocate1_min_al_1

30 allocate1_max_avail_p0 = allocate1_avail_after_min

31 allocate1_max_avail_p1 = allocate1_avail_after_min - allocate1_max_p0

32 allocate1_max_al_0 = -allocate1_max_avail_p0*if_min_0 + allocate1_max_avail_p0 +

allocate1_max_p0*if_min_0

33 allocate1_max_al_1 = -allocate1_max_avail_p1*if_min_1 + allocate1_max_avail_p1 +

allocate1_max_p1*if_min_1

34 S4_total = S4_comp1

35 S6_comp1 = -R1_comp1 + S3_comp1 + S4_comp1

36 S6_total = S6_comp1

37 S3_total = S3_comp1

38 S5_comp1 = R1_comp1 + S1_comp1 + S2_comp1 - S3_comp1 - S4_comp1

39 S5_total = S5_comp1

40 R1_total = R1_comp1

41



APPENDIX B. MODEL DESCRIPTION B.4

42 3. Residual variables

43 S4_comp1, S3_comp1

44

45 4. Residual equations

46 -S4_comp1 + S4_comp1_max_p0*allocate1_max_al_0 + S4_comp1_max_p1*allocate1_max_al_1 +

S4_comp1_min_p0*allocate1_min_al_0 + S4_comp1_min_p1*allocate1_min_al_1

47 -S3_comp1 + S3_comp1_max_p0*allocate1_max_al_0 + S3_comp1_max_p1*allocate1_max_al_1 +

S3_comp1_min_p0*allocate1_min_al_0 + S3_comp1_min_p1*allocate1_min_al_1

48

49 5. Conditional equations

50 S4_comp1_min_p1 = S4_min_p == 1

51 S4_comp1_min_p0 = S4_min_p == 0

52 S3_comp1_max_p1 = S3_max_p == 1

53 S3_comp1_max_p0 = S3_max_p == 0

54 S4_comp1_max_p1 = S4_max_p == 1

55 S4_comp1_max_p0 = S4_max_p == 0

56 S3_comp1_min_p1 = S3_min_p == 1

57 S3_comp1_min_p0 = S3_min_p == 0

58 allocate1_min_p0_if = allocate1_min_p0 <= allocate1_min_avail_p0

59 allocate1_min_p1_if = allocate1_min_p1 <= allocate1_min_avail_p1

60 if_min_0 = allocate1_max_p0 <= allocate1_max_avail_p0

61 if_min_1 = allocate1_max_p1 <= allocate1_max_avail_p1

Listing B.2: Model description of heuristic allocation with recycle



APPENDIX C

PARTIALLY BUILT INDUSTRIAL
PROCESS
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Figure C.1: Unmatched incidence (indus-
trial process). Incidences are
indicated by black.
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Figure C.2: Matched incidence (industrial pro-
cess). Safe and unsafe matches in-
dicated by blue and red, respectively.

C.1



APPENDIX C. PARTIALLY BUILT INDUSTRIAL PROCESS C.2
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Figure C.3: Block lower triangular incidence (in-
dustrial process). Grey indicates
blocks.

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

Figure C.4: Spiked lower triangular incidence
(industrial process). Grey indicates
simultaneous solution regions.
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Figure C.5: Bordered block lower triangular inci-
dence (industrial process). Grey in-
dicates the simultaneous solution re-
gion.
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