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5. ABSTRACT 

Climate change is causing droughts, which are affecting crop production globally, and 

disrupting plant metabolism. Due to the unpredictable natural droughts that occur, causing tea 

farmers significant losses in tea estates, a Short-time Withering Assessment of Probability for 

Drought Tolerance (SWAPDT) method for distinguishing between drought tolerant (DT) and 

drought susceptible (DS) Camellia sinensis cultivars was developed based on cultivars from 

the Tea Research Foundation for Central Africa in Malawi, and validated on 400 samples 

from the Tea Research Institute in Kenya. From the results, a sample size of 20 tea trees was 

deemed sufficient to accurately determine the drought susceptibility of a large tea field of 

approximately 5 - 20 hectares, containing 50 000 - 200 000 tea trees, were the difference 

between their mean values is approximately 6%. Tea production and subsequently its quality 

rely on evenly distributed rainfall. Tea consumers concern themselves with the quality of tea, 

in particular its flavour and aroma. To breed for these phenotypic traits is challenging due to 

these being qualitative traits inherited from parents, and influenced by environment. Two C. 

sinensis populations, 60 Commercial cultivars and 250 NonCommercial cultivars (TRFK St. 

504 and TRFK St. 524) were employed in a part of this study to identify the Quantitative 

Trait Loci (QTL) responsible for yield, drought tolerance and quality centred on a genetic 

map constructed using the DArTseq platform. The map comprised 15 linkage groups 

analogous to chromosome haploid number of tea plant (2n = 2x = 30) and spanned 1260.1 

cM with a mean interval of 1.1 cM between markers. Sixteen phenotypic traits were 

evaluated in both populations, and three, 11 and 46 putative QTLs were discovered after 

mapping on the 15 linkage groups, associated with tea quality from Gas Chromatography-

Mass Spectrometry (GC-MS), Nuclear Magnetic Resonance (1H-NMR) and Ultra-

Performance Liquid Chromatography (UPLC) data respectively. The variance explained by 

the QTLs varied from 4.6 to 96.3%, with an average of 28%. Using the KEGG database, the 

putative QTLs linked to yield, drought tolerance and quality were secondary metabolites 

associated with tea phenolic biomolecules and abiotic stress. Principal Component Analysis 

was performed on the GC-MS, 1H-NMR and UPLC data, and from these, the UPLC data 

showed clearer separation and clustering between the Commercial and NonCommercial 

cultivars. With focus on the UPLC data, it was narrowed down to the five catechins, four 

theaflavins and caffeine; these were used to develop several logistic regression models. The 

model based on only the fresh leaf catechins classified over 90% of the 310 genotypes as 

either Commercial or NonCommercial cultivars. This model may be useful in predicting the 
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suitability for commercialization of promising selections from mature seedling fields, based 

on the analysis of their dried green leaves. Last, 20 Commercial and 20 NonCommercial 

cultivars were analysed using UPLC-MS. New metabolites were identified as contributing to 

drought tolerance, yield and higher quality of the Commercial as compared to the 

NonCommercial cultivars. 
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11. CHAPTER 1 

LITERATURE REVIEW 

1.1 Camellia sinensis  

In-depth studies have been conducted on Camellia sinensis due to its precise flavonoid 

profile, responsible for tea health properties. Green tea, rich in catechins, serves as a 

traditional herbal remedy in China to prevent cardiovascular diseases amongst other chronic 

diseases. Tea prepared from the leaves of C. sinensis has been consumed either as green or 

black tea, by 70% of the human global population, since time immemorial, owing to its 

richness in polyphenolic compounds, which are associated with copious health promoting, 

therapeutic attributes (Tong et al., 2014); tea arrived in Europe only in 1636. Tea producers 

are in demand of new cultivars, which are high yielding, are drought tolerant, and produce 

high quality tea liquors. The main types of tea consumed worldwide are green, oolong and 

black tea, each being determined by the concentration their respective flavan-3-ols 

(Wambulwa et al., 2017). Over 52 countries worldwide cultivate C. sinensis, being consumed 

either as black (78%), green (20%) or oolong (2%) tea. Green tea is however predominantly 

favoured in North African and Middle Eastern countries, while black tea is customarily 

consumed in Western countries (Cooper et al., 2005). Green tea quality evaluation has 

conventionally been based on the appearance i.e. colour and its intensity, aroma i.e. sweet, 

floral, grassy, etc., and lastly, its taste i.e. astringency, bitterness, and sweetness. Tea gets its 

distinctive astringent and somewhat bitter taste from caffeine, even though several other 

metabolites such as the catechins and other polyphenols, carbohydrates, and amino acids are 

influential in its overall taste and flavour (Adkins et al., 2007; Nyarukowa et al., 2016). The 

amino acid theanine, which makes up approximately two-thirds of a tea leaf’s total amino 

acids content, is with other less abundant amino acids, responsible for the sweet and brothy 

taste of tea. However, it is noteworthy to indicate that the metabolite composition, which 

influences tea quality, varies between green and black tea. Unlike with green tea, whose 

quality depends on amino acids, particularly theanine, catechins and caffeine, the quality of 

black tea relies on theaflavin, thearubigen, catechin and caffeine (Le Gall et al., 2004). 

According to the World Health Organisation (WHO), about 3.92 million metric tonnes of tea 

is annually produced, and of this, black tea constitutes 60%, while green tea represents 30% 

(Meeting and Organization, 2010). Green tea production is however predicted to have 
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considerably increased compared to black tea due to its immense increased consumption in 

China (Shen et al., 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Biosynthesis of flavan-3-ols and their derivatives in C. sinensis leaves and roots (Jiang et al., 2015). 

1.2 Flavonoids in Tea 

The dry weight of young C. sinensis leaves consists of 25 – 30% flavan-3-ols (Singh et al., 

1999). Flavonoids are a sundry class of plant metabolites biosynthesised from 

phenylpropanoids and derived acetates from carbohydrate metabolism as indicated in Figure 

1.1. More than a few disparate types of flavonoids exist, with the most significant being 

dietary flavonoids, which fall into seven major categories, namely anthocyanidins, chalcones, 

flavanols, flavones, flavonones, flavonols, and isoflavonoids (Yilmaz, 2006). Flavonoids are 

essential metabolites required by plants for their growth and development. They protect the 

plant against microbes and pests by interfering with their interactions with the plant and are 

involved in the manufacture of phytoalexins, which are insect repellents (Lattanzio et al., 

2006). C. sinensis makes use of carbon obtained from the metabolism of amino acids 

tryptophan, tyrosine and phenylalanine for the biosynthesis of 15C flavonoids with a C6-C3-

C6 configuration, through the condensation and decarboxylation of phenylpropanoid 
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derivatives (Cuendet et al., 2001), with chorismic acid being the end product (Jiang et al., 

2019). C. sinensis then associates carbohydrate metabolism to the shikimate pathway via the 

pentose pathway, resulting in phenylpropanoid biosynthesis. The flavonoid structure is made 

up of two aromatic rings A and B, linked by a 3C bridge, in a heterocyclic ring, as shown in 

Figure 1.2 below. 

 

 

 

Figure 1.2: Structural configuration of flavonoid molecule. 

The A ring is derivative of the acetate pathway, while the B ring is a derivative of 

phenylalanine via the shikimate pathway. Varying the replacements, through e.g. acylation, 

alkylation, glycosylation, oxygenation, and sulfation of the A and B rings will result in the 

formation of varying compounds within each flavonoid class. It is these variations resulting 

from the substitutions to the C ring, which generate the major flavonoid categories, namely 

anthocyanidins, chalcones, flavanols, flavones, flavonones, flavonols, and isoflavonoids, as 

shown in Figure 1.3. In a Kenyan study in 2009, tea cultivars with purple coloured leaves 

were developed (Kamunya et al., 2009), and a follow up study in 2013 found that said purple 

leaves were rich in anthocyanins and anthocyanidins, with malvidin being the predominant 

anthocyanidin responsible for causing the colour (Kerio et al., 2013). 
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Figure 1.3: Structural configuration of the major flavonoid categories. 

1.3 Tea polyphenols 

The majority of osmolytes found in plants are secondary metabolites; tea osmolytes are 

predominantly comprised of polyphenolic metabolites (Cheruiyot et al., 2007). Polyphenols 

are metabolites consisting of integrated benzene rings, each comprising of numerous 

hydroxyl groups, and ranging from simple phenolic, to complex polymerised compounds 

(Balasundram et al., 2006). Although 90% of polyphenols found in tea are flavonoids, other 

classes of polyphenols exist i.e. phenolic acids and tannins (Sumpio et al., 2006), with 

tannins being the most active (Bravo, 1998). Polyphenols, being secondary metabolites, are 

derivatives of condensation reactions between cinnamic acid and three malonyl-CoA groups. 

These compounds exist as conjugates of mono and polysaccharides connected to phenolic 

groups (Balasundram et al., 2006). 

1.4 Health benefits of tea 

The efficacious health promoting properties of green and black tea have been extensively 

documented in literature, particularly regarding protection against cardiovascular diseases 

and cancer (Bahorun et al., 2012), obesity and diabetes (Uchiyama et al., 2011), and several 

metabolic ailments (Thielecke and Boschmann, 2009). Epicatechin (EC), epicatechin gallate 

(ECg), epigallocatechin (EGC), and epigallocatechin gallate (EGCg) are the major catechins 

found in tea, with EGCg being the most copious, making up 50 - 80% of the total catechin 

content (Sang et al., 2011). Structures for the catechin found particularly in green tea are 
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shown in Figure 1.6. Literature has documented the antioxidant, anti-hypertension, anti-

inflammatory, anti-mutagenic, and anti-tumorgenic properties of tea stemming from the 

catechins, as well as the induced relaxation and enhanced cognitive function stemming from 

theanine (Lisman et al., 2008; Haskell et al., 2008). Additional research has revealed that the 

co-administration of drugs and e.g. teas rich in catechins EC and EGCg bring about the 

inhibition of glucoronidation and sulfation reactions of oral drugs, increasing their 

bioavailability within the body (Suganuma et al., 2011). The theanine in tea induces 

relaxation; the reason for this is theanine translocates the blood brain barrier within 30 

minutes, in a dose-dependent fashion, following its consumption (Terashima et al., 1999). 

Furthermore, the relaxing effects of theanine have been documented in physiology studies 

focused on stress and anxiety (Kimura et al., 2007), while also acting as an antagonist against 

the stimulatory effects of caffeine (Rogers et al., 2008), and possessing exhibiting anti-

hypertensive qualities (Yokogoshi and Kobayashi, 1998). In addition to this, theanine also 

effectively prevents liver damage resulting from an excessive intake of alcohol (Sadzuka et 

al., 2005). Due to these documented pharmacological properties possessed by polyphenols, 

numerous tests on tea extracts have been conducted with these extracts serving as 

prophylactics e.g. the preclinical trials of polyphenon E in the chemoprevention of lung 

cancer (Lambert et al., 2005), and EGCg as a human immunodeficiency virus reverse 

transcriptase antagonist (Nance and Shearer, 2003). Moreover, studies have also shown that 

theaflavins suppress HIV transcription (Gramza et al., 2005). Lastly, catechins have 

extensively been documented to possess antioxidative attributes due to a high affinity for 

scavenging reactive oxygen and nitrogen species as illustrated in Figure 1.4 below. Catechins 

have a 3,4,5-trihydroxyl group on its B ring, with a gallate group esterified at the third 

position on its C ring, with positions 5 and 7 of its A ring having hydroxyl groups (Figure 

1.5) (Frei and Higdon, 2003); the more hydroxyl groups located on each flavonoid ring, the 

more antioxidant properties the molecule has (Lien et al., 1999). Catechins possess anti-

cancer properties by suppressing the growth of cancerous cells through the blockage of 

angiogenesis. Catechins prevent diabetes by inhibiting the sodium transporter SGLT1’s 

mechanism of action, therefore suppressing the uptake of glucose, and in turn lowering blood 

glucose levels (Khan and Mukhtar, 2007). As such, tea is no longer consumed just for the 

enjoyment of its gratifying taste and aroma, but also for its therapeutic properties (Zhang et 

al., 2012). Figure 1.6 shows a list of the predominant catechins in green tea. 
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Figure 1.4: The antioxidant mechanism of action for catechin (Amic et al., 2007). 

 

 

 

 

 

 

 

Figure 1.5: Groups conferring antioxidant properties on catechin (Frei and Higdon, 2003). 
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Figure 1.6: Catechins predominant in green tea. 
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1.5 Black tea 

Unlike green tea, which is predominantly consumed in North Africa and the Middle East, 

black tea is primarily consumed in Western countries as well as in certain Asian countries 

e.g. India and Sri-Lanka, and throughout East African countries. Kenya, for example, 

specialises in the production of black tea and as of August 2018, has been declared the 

world’s largest black tea producer and exporter, with a 23% market share, followed by China 

with 18% and thirdly Sri Lanka with 15% (Kariuki, 2018). In contrast to green tea, black tea 

predominantly consists of theaflavins, namely theaflavin (TF1), theaflavin-3- gallate (TF2), 

theaflavin-3’-gallate (TF3) and theaflavin-3, 3’-digallate (TF4). These are shown in Figure 

1.7 below. These are formed through the oxidation of catechins, and constitute black tea’s 

primary polyphenols (Sang et al., 2011). In addition to catechins, metabolites such as 

caffeine, kaempferol, myricetin, theobromine, theophylline and quercetin can be found in 

black tea in minute quatities (Balentine et al., 1997); these influence the quality of tea liquor. 

 

Figure 1.7: Structures of the major theaflavins.  
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1.6 Tea quality indicators 

The polyphenolic metabolites have served as the principal tea quality indicators for a very 

long time. The organoleptic evaluation of black tea by tea tasters to ascertain tea liquor 

quality is through sight, smell and or taste of the tea liquor (Kumar et al., 2011). Several 

studies have documented the correlation which exists between the fresh green leaf’s 

phytochemical composition, the processing parameters employed to get black tea and the 

sensory quality attributes of the resultant black tea liquor (Obanda et al., 2001). During 

organoleptic evaluation of black tea liquor, the tea tasters base their decision on five 

parameters, namely aroma, astringency, brightness, briskness, and colour (Hilton and Ellis, 

1972). Caffeine, theaflavins, thearubigins, and several minor flavour related volatile 

compounds are all contributory to the resultant quality of tea liquor obtained (Owuor et al., 

2006a). Furthermore, higher concentrations of carotenoids and chlorophyll in green tea have 

been submitted as possible black tea quality indicators of the resultant liquor produced from 

these cultivar clones (Taylor et al., 1992). Hilton and Ellis, (1972) documented the 

statistically significant linear correlation, which exists between theaflavin content and the 

market value of black teas from various tea producing countries globally. It is noteworthy to 

mention that though the Kenyan cultivars showed a positive correlation between theaflavin 

content and tea price, said correlation was not statistically significant, while cultivars 

obtained from Central Africa demonstrated a significant correlation between theaflavin 

content and tea price (Owuor et al., 2006). These observed differences in theaflavin content 

could emanate from the influential differences of the geographical regions of production 

(McDowell et al., 1995), or it could be due to the genetic variations in the cultivars i.e. there 

is inter and intra clonal variation when it comes to the formation of theaflavins via aeration 

(Magoma et al., 2000). It is for this reason that theaflavin concentration in the tea liquor does 

not, on its own, always accurately represent black tea quality; the different rates of theaflavin 

formation due to varying levels of aeration. The astringency of black tea differs with the total 

composition of theaflavins; the reason being that individual theaflavins possess varying 

astringencies. The astringency obtained when all four theaflavins i.e. TF1 - TF4 combined, 

can serve as a black tea quality indicator (Owuor et al., 2006). 
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1.7 Principle metabolites found in tea and their metabolic attributes 

1.7.1 Flavonoids 

Flavonoids, as abovementioned, are classified as anthocyanins, flavan-3-ols, flavanones, 

flavonols, flavones, and isoflavones (Del Rio et al., 2013). Polyphenols are the predominant 

class of flavonoids, with catechins constituting more than half of them; the major catechins 

are catechin, EC, ECg, EGC, EGCg, catechin gallate (CG), and gallocatechin gallate (GCG) 

(Chanphai and Tajmir-Riahi, 2019), with EGCg accounting for the highest quantity. 

Moreover, methylated catechins and digallic acid bound catechins may also be located in C. 

sinensis (Zhang et al., 2017). These catechin derivatives, in addition to their unique 

pharmacological effects, also interact with DNA by means of hydrophilic and hydrophobic 

interactions (Chanphai and Tajmir-Riahi, 2019). O-methylated-EGCg for example has been 

shown to alleviate Japanese cedar pollinosis (Masuda et al., 2014). Catehins as mentioned 

earlier provide C. sinensis with a chemical defence against pathogens and herbivores 

(Masuda et al., 2014). Figure 1.8 below shows the schematic representation of the flavonoid 

biosynthetic pathway. 
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Figure 1.8: Flavonoid metabolism in C. sinensis. 

Abbreviations: PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate−CoA 

ligase; CHI, chalcone isomerase; CHS, chalcone synthase; F3′5′H, flavonoid 3′, 5′-hydroxylase; F3H, flavanone 

3-hydroxylase; F3′H, flavonoid 3′-monooxygenase; FLS, flavonol synthase; DFR, dihydroflavonol-4-reductase; 

ANS, anthocyanidin synthase; ANR, anthocyanidin reductase; LAR, leucoanthocyanidin reductase (Jiang et al., 

2019). 
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1.7.2 Theanine 

According to literature, 26 amino acids have been documented to be found in tea; these 

include 20 protein, and six non-protein amino acids. Theanine synthase, found in the roots, 

catalyses glutamic acid into theanine, which falls under the non-protein amino acids, and 

accounts for approximately 70% (w/w) of the free amino acids found in a leaf’s dry weight; 

root theanine biosynthesis is a result of nitrogen absorption in the root of ammonia and 

nitrates (Deng et al., 2010). Theanine functions, not only as a nitrogen reservoir, but also as a 

carbon backbone initiator for synthesis during germination (Sharma et al., 2018). Theanine 

hydrolase, in the presence of sunlight, hydrolyses glutamic acid and ethylamine to theanine in 

the leaves. Ammonia oxidase induces the conversion of ethylamine into acetaldehyde, which 

is a catechin precursor (Kito et al., 1968). Figure 1.9 below shows the metabolism of theanine 

in C. sinensis. 

 

 

 

 

Figure 1.9: Theanine metabolism in C. sinensis. GDH represents glutamate dehydrogenase; TS represents 

theanine synthase, and GS represents glutamine synthase (Jiang et al., 2019). 
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1.7.3 Caffeine 

Caffeine is biosynthesised in the tender leaves of C. sinensis from both the de novo, and 

salvage pathways (Ashihara et al., 2013), which involves a four step sequence involving one 

nucleosidase and three methylation reactions (Mohanpuria et al., 2010). Caffeine’s purine 

ring is formed from de novo biosynthesis from CO2, formate, glutamine, and glycine, with 

adenine functioning as the predominant source. The alkaloid theobromine is a caffeine 

precursor. Approximately 99% of the formed caffeine is located in the young, fresh leaves; 

minute amounts of caffeine are also manufactured in the flowers, fruit, and roots of the tea 

plant, with most of it being bound to chlorogenic acid in the vacuole (Waldhauser and 

Baumann, 1996). Figure 1.10 below shows a schematic representation of caffeine’s 

biosynthetic pathway. 

 

 

 

Figure 1.10: Caffeine metabolism in C. sinensis. SAMs represents S-adenosyl-L-methionone synthase, and 

IMPDH represents inosine 5′monophosphate dehydrogenase (Jiang et al., 2019). 
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1.8 The tea breeding history in Africa 

C. sinensis is an evergreen perennial tree distinguished from others, by a large 3.02 Gb 

diploid genome, with a 2n= 2x= 30 chromosome number (Xia et al., 2017). C. sinensis is out-

crossing and highly self-incompatible (Wachira and Kamunya, 2005), therefore making it 

heterogeneous and heterozygous (Muoki et al., 2007). It is postulated that the Camellia genus 

encompasses over 300 species; C. sinensis (L.) O. Kuntze has been documented to be the 

foremost prominent agronomic specie (Mondal et al., 2004). The 2012 discovery of C. 

cherryana (Orel and Wilson, 2012), made evident how unstable and highly out-crossed the 

Camellia genus is. The C. sinensis chromosomes are small and have median centromeres, an 

indication of how primitive they are, limiting the advancement of polyploidy screening in tea 

(Singh et al., 2013b). The first breeding stratagems targeted artificial pollination between 

cultivars differing in specific morphological attributes in a bid to produce superior cultivars 

(Willson and Clifford, 2012). The resultant seeds produced from the controlled pollination 

between the selected cultivar pairs were then replicated on test plots, with a well performing 

commercial cultivar serving as an observation control for attributes such as growth vigour, 

leaf quality and yield output. The two cultivar bushes with seedling progeny presenting 

significant promise were proliferated through vegetative propagation, planted as propagative 

clones in alternating rows in an isolated seedling fields to yield naturally cross-pollinated 

seeds. The superlative fields then served as checks for high yielding and better liquor quality 

producing clones (Green, 1966). The early African tea estates were planted using open 

pollinated seeds (Cannell et al., 1977). In Assam and several north-east Indian regions, the 

prominence was placed on mass selection, involving randomised crosses between cultivars, 

which varied in leaf size and shape, growth rate, and texture (Wight, 1956). The issue with 

mass selection is that it regularly failed to yield high quality teas and failed to generate 

cultivars of constant morphological characteristics necessary for improved quality and yields 

(Richards, 1966). The upside of this is that numerous seed varieties were subsequently 

developed at Assam, which possess superior quality and yield traits compared to those 

randomly planted earlier. Sri-Lankan breeders constrained mass selection to selecting the 

superlative cultivars capable of vegetative propagation to give high yielding, identical 

progeny (Visser and Kehil, 1958). 
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1.9 Improvements in Kenyan tea breeding programmes 

The employment of seeds obtained from Assam, India, saw the beginning of improvements in 

Kenya’s tea breeding programmes, which brought about the establishment of the initial two 

polyclonal seed baries at Kangaita and Timbilil (Anon, 1990) following the 1980 formation 

of Tea Research Foundation of Kenya (TRFK), now known as the Tea Research Institute 

(TRI). Other large tea producing companies such as James Finlay (Kenya) and George 

Williamson (Kenya) followed suit and instituted programmes that saw the establishment of 

their own improved seed baries. Mass selection was employed as tea improvement method, 

proving a success, to an extent. It however, failed to generate a robust type of tea possessing 

satisfactory cup attributes and morphological consistency. Moreover, the developed 

progenies had not been specifically chosen for their high quality and yielding traits, and as 

such the resultant seedlings were a mixture of miscellaneous and mediocre genotypes 

(Wachira, 2001). Despite the abovementioned challenges, the tea breeding taking place at the 

TRI has resulted in the generation of new biclonal seed baries, while concurrently expanding 

the prevailing polyclonal seed baries. As of 2006, approximately 60% of clones concomitant 

with TRFK 6/8 have been commercialised, stemming from the Timbilil tea estate’s breeding 

programme. Furthermore, 24 out of the 45 developed clones have found success in industry, 

amongst which are the elite Cambod varieties, TRFK 301/4 and TRFK 301/5. In addition to 

these, are the clones TRFK 430/90 and TRFK 371/3, which in addition to them having high 

yield and improved black tea quality, these new cultivars possess biotic and abiotic stress 

tolerance properties (Kamunya and Wachira, 2006). Breeders have used the TRFCA SFS 150 

clone from Malawi and the TRFK 303/577 to produce varieties that are drought tolerant, such 

as the EPK TN 14-3, and have crossed the TRFCA SFS 150 and EPK TN 14-3 to produce F1 

progeny tolerant to cold (Kamunya et al., 2010); only the superior clones are being employed 

by farmers. 

1.10 Breeding for high yield and environmental stress resistance 

1.10.1 High yield 

Plant breeders have been finding it daunting to develop high yielding clones from seedling 

mother bushes. Earlier studies (Green, 1971) failed to establish reliable correlations between 

growth and yield properties of mother bushes, and their resultant F1 progeny clones. 

Subsequent studies (Nyirenda, 1991) has shown adequately strong correlations between the 

tea bush area, shoot number, and yield of tea mother bushes and those of their clones. A 
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strong positive correlation between growth traits and yield in matured tea fields was observed 

(Shanmugarajah et al., 1991). 

1.10.2 Environmental stress 

Due to the effects of global warming, fluctuations in weather patterns are being observed in 

Kenya, particularly the increased temperatures, leading to prolonged drought spells in the tea 

growing region (Elbehri et al., 2015). Due to these changes in the climate, tea production is 

drastically being reduced because of a shortage of suitable lands at lower altitudes and the 

result of this is that farmers have to seek lands at higher altitudes. Moreover, evidence has 

been furnished, over the course of the past 30 years, that temperatures in tea growing regions 

have been increasing at a rate of 0.2°C per decade (Cheserek et al., 2015). In addition to this, 

stresses concomitant with temperature fluctuations in tea producing areas such as Kericho, 

Kisii, and Nandi, have added to the grave tea production limitations in Kenya. Tea production 

is also reliant on well scattered rains; a rise or drop in temperatures as a result of the 

fluctuations in the rainfall patterns, adversely influences the quantity and quality of tea 

(Chang, 2015). The farming of tea has now been extended to areas previously deemed 

marginal and unsuitable for growing tea (Owuor et al., 2010). 
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1.11 Current breeding strategies to obtain desirable characteristics 

The objectives of tea breeding programmes vary from one geographical area to another; 

however due to the abovementioned effects of climate change, breeders are seeking varieties 

with improved resistance to the environmental stresses, while maintaining high quality. Tea 

breeders are concentrating on selecting and breeding populations rich in e.g. alkaloids such as 

caffeine, theobromine and theophylline; amino acids, namely theanine; carbohydrates like 

fructose and mannose; polyphenols, namely catechins, and proteins (Karori et al., 2014). The 

reason for this is that tea liquor has become a renowned healthy drink. Tea consumption has 

risen annually by 4.5% to 5.5 million tonnes as of 2016, predominantly in China, India and 

countries with emerging, developing economies; consumption is postulated to increase by 

another 1.5 million tonnes by 2027 (FAO, 2018). In the past, countries such as Kenya, India, 

and Sri Lanka, which are high black tea producing tend to breed cultivars which will produce 

black tea rich in theaflavins as they have been documented to be high yielding and high black 

tea quality clones. Efforts have been made to combine these two qualities into an F1 progeny 

via hybridisation breeding, but the lack of requisite knowhow pertaining to inheritance 

patterns and how to combine desirable attributes into a single progeny has caused sluggish 

progress in tea breeding (Wachira and Kamunya, 2005). A concerted effort is required to 

fully grasp and comprehend genetic variability found in tea, to aid in the development of the 

desired genotypes with the desired attributes (Kaundun and Matsumoto, 2003a). Studies have 

been conducted on linkage maps, MAS, molecular markers, mutation breeding, and QTLs to 

enhance breeding strategies (Chen et al., 2013). Figure 1.11 shows a schematic representation 

of current tea breeding strategy. 
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Figure 1.11: Schematic representation of tea breeding program (Hazra et al., 2018). 

1.12 Marker assisted selection 

MAS is where the plants possessing the genes responsible for expressing the attributes the 

breeders are interested in, are selected through these molecular markers. Through the 

advances in, and convenience of molecular markers and genetic maps, the employment of 

MAS has become possible in many crops, as has been observed with the use of rice 

molecular markers to discover novel markers in other crops such as barley and wheat (Ellis 

and Nyirenda, 1995), and has been employed in the improvement of millet (Obanda et al., 

2001). Although C. sinensis genetic maps have been documented by (Hackett et al., 2000; 

Adkins et al., 2007; Wright et al., 2002), and studies have been conducted on QTL mapping 

(Wright et al., 2002; Koech et al., 2018), which have identified markers and linkage groups 
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that are responsible for the expression of quantitative traits such as caffeine content, making 

the development of saturated linkage maps a necessary tool for MAS in the breeding of tea. 

1.13 Role of genetic markers in tea breeding improvement 

Genetic markers are specified chromosomal positions, functioning as genome analysis 

landmarks. These markers consist of biochemical, DNA, and morphological markers. Several 

converging biochemical and physiological characteristics are employed in conservative plant 

breeding to ascertain the cultivars’ genetic multiplicity. As a result of its outbreeding nature, 

C. sinensis is decidedly heterogeneous. Studies to assess the genetic diversity of C. sinensis 

through the incorporation of biochemical (metabolite) markers (Das et al., 2013), 

morphological markers (Chen et al., 2007), and molecular markers (Kaundun and Park, 2002) 

have been conducted. A lot of these characteristics have, however, been documented to 

possess continuous variation, with the environment impacting them predominantly, making it 

difficult to identify robust markers required for genotyping (Ariyarathna and Gunasekare, 

2007). 

1.13.1 Biochemical/metabolite markers 

The existing multiplicity found in C. sinensis cultivar varieties has efficiently been 

ascertained through the use of metabolite markers, such as anthocyanins, caffeine, catechins, 

and theanine (Li et al., 2013). These biochemical markers are easily influenced by 

environmental factors, with particular interest being on the plant’s stage of development at 

the time of exposure to these environmental factors (Das et al., 2013). 

1.13.2 Morphological markers 

Due to the fact that morphological traits relate on a one to one basis with the genes regulating 

them, these markers can serve as reliable gene indicators. Literature has documented that a 

majority of morphological markers are a result of mutations (Waycott et al., 1999). Due to 

the restricted availability of genetic mutants, the use of morphological markers in breeding 

has not been extensive (Worland et al., 1987). Morphological markers have been documented 

to be impacted by environmental stresses, and have shown a continuous variation, making it 

challenging to ascertain distinct taxonomic clusters based on morphological markers (Koech 

et al., 2018). 

1.13.3 Molecular markers 

The employment of molecular markers in crop breeding for favourable agronomic 

characteristics presents breeders with improved opportunities to attain even those traits 

considered problematic to assess through the use of biochemical, and morphological markers. 
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Molecular markers, unlike the biochemical or morphological, are plenty, and are least 

impacted by environmental stresses (Singh et al., 2013a). Furthermore, molecular markers 

offer an effective, ancillary option for differentiating intra- and or inter-specific germplasm 

differences, and in so doing, serving as an indispensable tea breeding instrument (Ni et al., 

2008). Based on how they are detected, molecular markers can be categorised into three 

categories, namely DNA sequence based, hybridisation based, and polymerase chain reaction 

(PCR) based (Angaji, 2011). In a study by Kamunya et al., (2009), C. sinensis DNA 

molecular markers were investigated in cultivars that are known to have a tolerance for 

drought, cold temperatures, and diseases. In a follow up study, it was ascertained that these 

markers also serve as indicators for cultivars that will be high yielding and will produce high 

quality tea liquor (Kamunya et al., 2010). Investigations have also been conducted on 

Chinary cultivars, by studying the catechin regulatory DNA molecular markers in green tea 

for MAS breeding (Ma et al., 2014). The use of molecular markers has been documented as a 

valuable and adequate tool for characterising and discriminating between C. sinensis varieties 

(Kaundun and Matsumoto, 2003b). 

1.13.4 Diversity array technology 

Diversity Array Technology (DArT) has, according to (Jaccoud et al., 2001), been defined as 

“a high throughput microarray hybridisation based method involving the isolation and 

cloning of randomised DNA fragments from complexity-reduced DNA sample.” DArT 

provides a homogeneous, high throughput genotyping, which allows for thousands of 

molecular markers from thousands of samples to be concurrently assayed, without any 

preceding sequence information (Wittenberg et al., 2005). The use of DArT has yielded 

outstanding results in diversity and phylogenetic studies (Steane et al., 2011), and genomic 

linkage mapping and selection (Poland et al., 2012; Schouten et al., 2012). Studies on crops 

with multifaceted genomes i.e. apple (Larsen et al., 2018) lemons and oranges (Sagawa et al., 

2018), strawberry (Vallarino et al., 2019), sugarcane (Grzebelus, 2015), wheat (Baloch et al., 

2017), have documented the successful application of DArT markers. These DArT markers 

serve as improved alternatives to the presently employed techniques, which include 

restriction fragment length polymorphism, amplified fragment length polymorphism, simple 

sequence repeats, and single nucleotide polymorphisms, especially regarding costs and the 

promptness of marker discovery and whole-genome fingerprint analysis. This technique is 

cost efficient, non-gel dependent technology that is acquiescent with high throughput 

mechanisation and the detection of superior markers in a single assay (Figure 1.12). 
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Figure 1.12: Diagrammatic representation of the DArT principle (Koech et al., 2018). 

1.13.5 Quantitative trait loci (QTL) 

Polygenes are the genes responsible for controlling numerous significant crop traits, 

including abiotic and biotic stress tolerance, quality, and yield. Analysing QTLs involves 

detecting linkages between the genotype markers and the resultant phenotype of the progeny 

assessed for the trait interested in (Collard et al., 2005). The relationship between the marker 

and the QTL is indicated by the difference (significant) between average values of the traits 

of interest and the genotype of their markers (Miles and Wayne, 2008). The analysis of QTLs 

furnishes information regarding the nature of each QTL, its position on the chromosome and 

its function. Molecular markers have been efficaciously employed in researching quantitative 

inheritance in crops (Agarwal et al., 2008), such as in tomato, where QTL research resulted 

in the development of cold tolerant, and insect resistant progeny (Grandillo and Cammareri, 

2016), and in wild barley (Elberse et al., 2004), while (Ma et al., 2014) documented markers 

significantly connected with C. sinensis. Metabolomics allows for functional gene mining in 

metabolic networks integrated with both genomics and transcriptomics. Metabolite 

quantitative trait loci (mQTLs) furnish information regarding genotypic and phenotypic 

associations, for mining and validating possible functional genes. Through the employment 

of this stratagem by (Kato et al., 2000), the genes which encode for the enzyme caffeine 

synthase, were cloned, bringing with it an opportunity for tea breeders to develop naturally 

low caffeine content cultivars. In another study, three genes responsible for nitrogen 

utilisation regulation were identified in two C. sinensis cultivars. These genes were also 
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found to encode for the enzymes which control the caffeine, catechin metabolic pathways in 

the C. sinensis plant. It was, however, unfortunate that the majority of these were candidate 

genes, which lacked validation by the transcriptome instead of the genome. Furthermore, the 

absence of established transgenosis and tissue culture limits the transformation system in C. 

sinensis. This is, however, a way of quickly identifying other unknown functional genes 

linked to metabolism, by combining metabolomics with molecular markers (Li et al., 2017). 

1.14 Challenges faced in genomic selection 

When the application of genomic selection is being considered, one important consideration 

to be taken into account is the interaction between the genotype and the environment (GxE). 

The application of genomic selection in wheat grain yields totalling 599 lines under four 

different environments, each analysed by cross-validation, established an accuracy variation 

of between 0.44 and 0.6 across the environments. Moreover, the study results revealed a 

significant difference in the accuracy of maize grain yield, ranging between 0.41 and 0.52 

under wet and drought conditions (Crossa et al., 2010). In a follow up study with additional 

environments, it was confirmed that different environments significantly affect the accuracy 

of the genomic selection results (Crossa et al., 2011). Furthermore, another study employed 

genomic selection on pines possessing a comparable number of clonal individuals and 

markers. These clonal individuals were spread across four locations; it was established that 

the equation generated from results obtained at any one of the locations served as a good 

predictor, approximating an accuracy of 0.7 within site, and decreasing across the sites 

(Resende Jr et al., 2012). This indicates that GxE interactions significantly influence the 

accuracy of genomic selection, even within identical clones exposed to varying 

environments. As such, it is crucial that the impact of the environment be taken into account 

when developing genomic prediction models. 

1.15 Plant metabolomics 

According to Hamanishi et al., (2015) when plants are exposed to abiotic stress, this results in 

the disruption of the plant’s metabolic pathways, to facilitate the plant’s survival; they have 

developed inestimable drought response stratagems (Ogbaga et al., 2014). Crop breeders are 

continuously seeking knowledge and understanding of the mechanisms employed by crops to 

survive in drought stricken and salinised environments (Nyarukowa et al., 2016). These 

adaptive response processes involve regulatory activation of multiple genes, which in turn 

activates subsequent metabolic pathways. Studies on drought stressed plants have been 
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conducted, revealing the significance of metabolic regulation, such as a build-up of osmolytes 

as a response (Slama et al., 2015). Osmolytes such as betaine, mannitol, proline, and 

trehalose are produced under hyperosmotic stress (Weckwerth et al., 2004). In addition to 

inducing osmolyte syntheses to maintain turgor through osmotic adjustment (Arbona et al., 

2013), these metabolites also serve to stabilise protein conformations, while diminishing 

protein-solvent interactions, and facilitating the repair of damaged tissues (Ruan and Teixeira 

da Silva, 2011). Glucosinolates are metabolites rich in nitrogen and sulphur, and are 

biosynthesised from leucine, methionine, phenylalanine, tryptophan, tyrosine, and or valine 

(Arbona et al., 2013). Bound to glucosinolate’s side chains are a β-thioglucosyl, and a 

hydroxyaminosulphate residue; these have been associated with the defence mechanisms 

plants employ against abiotic stresses such as drought. The enzyme myrosinase cleaves the β-

thioglycosidic bond on the β-thioglucosyl residue, giving isothiocyanates, nitriles, and 

thiocyanates (Zandalinas et al., 2012). These are then conjugated with intracellular 

glutathione` resulting in the glucosinolates’ bioactivity (Keum et al., 2005). 

Phytometabolomics is the study of plant metabolic profiling, which encompasses the 

qualitatively and quantitatively analysis of metabolites to better comprehend their metabolic 

responses under abiotic and biotic stress (Schauer and Fernie, 2006). Comprehending the 

desiccation response metabolome assists in ascertaining steps involved in the signal 

transduction pathways (Urano et al., 2009). Metabolic profiling commenced as a diagnostics 

tool to ascertain herbicide mode of action, and has since grown to include functions such as 

determining the differences between genetically modified and conservative crops, and 

genotyping them to discover new genes (Hagel and Facchini, 2008). Figure 1.13 below shows 

a typical metabolomics workflow: 
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Figure 1.13: A metabolomics workflow documenting steps involved in a metabolomics study (Jiang et al., 

2019). 
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Metabolomics is a post-genomics technique, which explores the link between genes and 

metabolic networks, by comprehensively investigating the numerous metabolites found in 

plants (Jiang et al., 2019). The key to metabolomics research is the employment of analytic 

tools to comprehensively analyse metabolites. Holistic metabolic profiles have been obtained 

from intricate animal and plant samples, using high resolution, information-rich powerful 

spectrometric techniques. Liquid chromatography coupled with mass spectrometry (LC-MS), 

due to its advancements within the field, is a central technique in metabolomics research 

(Khan and Mukhtar, 2007), with it being used predominantly in differential profiling and 

biomarker identification (Theodoridis et al., 2012). At present, direct injection mass 

spectrometry (DIMS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic 

resonance (NMR), are mostly used in plant metabolomics research. Gas chromatography 

(GC)-MS is another preferred technique employed in plant metabolomics for terpenoid (Chen 

et al., 2003) and several other volatile analysis (Tikunov et al., 2005). The main disadvantage 

with GC is its restriction to small volatile biomolecules, meaning it cannot be employed to 

analyse biomolecules possessing a larger molecular weight i.e. proteins. LC-MS has enjoyed 

a steady growth over the years, as the metabolomics technique of choice due to its high 

throughput, soft ionisation, and extensive metabolite coverage (Zhou et al., 2012). 

Metabolomics analyses can either employ a targeted or an untargeted approach. The objective 

of the targeted approach is the identification and quantification of specific metabolites for 

which pure standards exist to confirm the identities of the metabolites detected in the samples 

i.e. the chemical properties of the metabolites under investigation are known. Targeted 

metabolomics is customarily hypothesis driven, while untargeted metabolomics leads to the 

formation of a new hypothesis, which involves assessing all the metabolites in a biological 

system (Zhou et al., 2012). By combining 1.17, LC-MS, and NMR data, a comprehensive 

picture of a plant metabolome is obtained. As a result of the increase in plant metabolomics 

techniques, using non-targeted approaches is now a favourable option for the identification 

and quantification of hundreds of metabolites, giving an extensive insight into the samples 

metabolite profiles e.g. tea (Fraser et al., 2012). LC-MS has been established as predominant 

favourite targeted profiling technique especially for plant metabolomics studies; LC-MS-

based metabolomics depends on numerous analytical, computational, and experimental steps 

(Zhou et al., 2012). When employed as the analytical tool, LC-MS produces mass spectral 

peak lists, which after being aligned to their respective samples, are related with multivariate 

statistics, resulting in spectral feature identification. 
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No single technique adequately detects, identifies, and quantifies all metabolites in animal or 

plant samples. It is for that reason that the abovementioned metabolomics platforms are to be 

used in combination to encompass a majority of them. Hybridising GC, and LC-MS with 

NMR has been documented to result in the most favourable ascertainment of a sample’s 

metabolite profile (Ward et al., 2007). The field of metabolomics research has significantly 

grown over the last decade from approximately 6 000 publications in the year 2008, to 22 000 

in the year 2018. This is shown in Figure 1.14 below. 

 

Figure 1.14: Number of publications on metabolomics from 2001 to 2018. 
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1.16 Statistical analysis 

In metabolomics, uni- and multivariate statistical techniques are used in combination to help 

pinpoint relevant variation (e.g. between groups of interest) in datasets that are often large 

and high-dimensional. The univariate statistical tool used here was the t-test with resulting p-

value and associated effect size. Two multivariate approaches were included, principal 

component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). PCA is 

an unsupervised, projection technique that makes it possible to view large datasets by 

summarising variation through projection onto fewer dimensions. The separation between the 

classes provides a measure of validation for PLS-DA, which is prone to overfit. PLS-DA is a 

supervised technique used to identify combinations of variables that can distinguish between 

classes of samples. 

Logistic regression (LR) is a statistical analysis tool generally suitable for testing hypotheses 

regarding connections between categorical outcome variables and continuous predictor 

variables. LR solves problems that cannot be solved by simple linear regression, such as any 

occurring errors that are not normally distributed or are not constant throughout the data 

range (Peng et al., 2002). Contrasting from discriminant analysis, LR does not make the 

assumption that the predictor variables possess equal covariance matrices, and that these are 

normally distributed. It instead makes the assumption that the distributions of any errors 

equalling the true Y value subtracting the predicted Y value are described by the binomial 

distribution. This implies an identical probability is maintained across the range of predictor 

values. This binomial assumption is therefore easily testable using a Z-test (Siegel and 

Castellan, 1956). LR may be considered robust, provided the samples are random; in so doing 

this ensures the observations remain independent of one another (Peng et al., 2002). Another 

useful statistical analysis approach is making use of decision trees, which are created through 

the use of partition algorithms. These algorithms employ the links between predictors and 

their corresponding responses, and recursively partition the data, splitting predictors until the 

desired prediction response is obtained. Through these repeated data partitions, a decision 

tree is formed. By choosing the best splits from an infinite number of possibilities, the 

partition algorithm makes the decision trees a powerful modelling tool. Predictors are either 

continuous or categorical; where continuous, the partitions are a result of a cut off value, with 

sample values falling above and below this cut off value. If, on the other hand, the predictor 

is categorical, the samples will be split into two levels (JMP®). The decision tree identifies 

independent variables with a significant relationship to the dependent variable and evaluates 



28 

 

the continuous variables’ interval breaks to identify the most ideal combination. The 

independent variable possessing the sturdiest relationship with the dependent variable then 

becomes the decision tree’s first branch; each significantly different category, relative to the 

target variable becomes the leaf. This is continually done to identify each leaf’s significant 

predictor variable until predictors are exhausted (Thomas and Galambos, 2004). Violin plots 

are a statistical method considered to be a combination of the box plot and a kernel density 

plot, which are used for plotting numeric data. The violin plot contains the same information 

as would be found in a box plot, but have the indisputable advantage over the box plot in that 

they show the entire data distribution, which is beneficial when working with multimodal 

data i.e. distribution with several peaks (Hintze and Nelson, 1998).  

  

https://en.wikipedia.org/wiki/Box_plot
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Kernel_density_estimation
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1.17 PROBLEM STATEMENT 

The polyphenolic metabolites have served as the principal tea quality indicators for a long 

time. A positive correlation between theaflavin content and tea price has been reported in 

Kenyan teas (Obanda et al., 2001), while cultivars obtained from Central Africa 

demonstrated a significant correlation between theaflavin content and tea price (Hilton and 

Ellis, 1972).Caffeine, theaflavins, thearubigins, and several minor flavour related volatile 

compounds are all contributory to the resultant quality of tea liquor obtained (Owuor et al., 

2006a), and these are under the control of multiple genes called QTLs. Using conservative 

approaches for genetic enhancement of the tea plant i.e. increasing caffeine, theaflavins, 

thearubigins content, has proven laborious and time-consuming, especially since C. sinensis 

is out-crossed and highly self-incompatible (Wachira and Kamunya, 2005), has a low seed 

production count and the overall lack of available genetic markers. Employing QTLs for 

certain key agronomic traits can help to select tea cultivars with the desired traits at an early 

stage of plant growth, especially since tea is a woody plant, and using conservative breeding 

approaches may bring about delays due to tea having a long juvenile phase of between 22-25 

years. When the application of genomic selection is being considered, one important 

consideration is the interaction between the GxE. GxE interactions have been shown to 

influence the accuracy of genomic selection, even within identical clones exposed to varying 

environments. The impact of the environment should be considered when developing 

genomic prediction models. Phytometabolomics, the study of plant metabolic profiling, 

which encompasses the qualitatively and quantitatively analysis of metabolites to better 

comprehend their metabolic responses under abiotic and biotic stress may explore the link 

between genes and metabolic networks, by comprehensively investigating the numerous 

metabolites found in plants. Tea is the most consumed beverage, second to water, and is 

therefore an important commodity. With the environmental changes being brought about by 

global warming, it has become the most important objective to tea breeders to develop tea 

cultivars with the potential of producing high yields, which are drought tolerant and 

essentially produce high quality green and or black teas. Caffeine, catechins, theaflavins, and 

thearubigins are major determining factors of tea quality, and are yet to be subjected to QTL 

analysis. This study seeks to, using metabolomics, identify and map out markers associated 

with QTLs for quality determinants, and to use these to develop predictive models to assist 

tea breeders in new tea cultivar selections. 
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1.18 RESEARCH OBJECTIVE  

The main objective of this study was to identify and validate the biochemical and molecular 

markers linked to yield, drought tolerance, and quality traits of black tea.  

First, this study prioritised the replanting schedule of seedling tea fields on estates commonly 

subjected to drought by developing a sampling method and estimating drought susceptibility 

using the SWAPDT method, this being done in the absence of historical in-filling records. 

Second, this study identified putative QTLs associated with amino acids, caffeine, catechins, 

organoleptic evaluation and %RWC, using DArTseq markers, GC-MS, 1H-NMR and UPLC 

platforms, to construct genetic linkage maps for MAS in tea breeding.  

Third, this study made use of metabolomics generated data to identify differently expressed 

metabolites in the two groups of cultivars, following which these metabolites would be used 

to develop predictive models to classify the 310 genotypes as either Commercial or 

NonCommercial cultivars. The best model would be used in new field selections. 

The thesis is organised into the following chapters:  
 

Chapter 1: Literature review  

Chapter 2: Prioritising the replanting schedule of seedling tea fields on tea estates for 

drought susceptibility measured by the SWAPDT method in the absence of historical 

in-filling records 

Due to the unpredictable natural droughts that occur, causing tea farmers significant losses in 

tea estates, a two-day method for distinguishing drought tolerant (DT) from drought 

susceptible (DS) Camellia sinensis cultivars was developed. The findings suggest that where 

historical in-filling records are not available this method may be used to prioritise fields for 

replanting. 

Chapter 3: Identification of QTL’s responsible for yield, drought tolerance and quality 

traits in Camellia sinensis using GC-MS, 1H-NMR and UPLC 

Tea consumers concern themselves with the quality of tea. The breeding for these high 

yielding, DT, high quality phenotypic traits is challenging due to the fact that these are 

qualitative traits inherited from parents, and influenced by environment. Through the use of 

molecular markers to identify gene regions linked with the phenotypic traits of interest, 

marker-assisted selection may be employed to select high yielding, DT and high quality tea 

cultivars. The putative QTLs involved in identifying these traits of interest in tea based on 

DArTseq markers reveals the proteins, and possible enzymes linked to the traits of interest.  
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Chapter 4: Models for identification of elite mother bushes with high black tea 

commercial potential from mature seedling fields of Camellia sinensis 

The quality of tea is undeniably affected by variations in its metabolite composition. Tea 

producers are in demand of new cultivars, which produce high quality tea liquors. This 

chapter involved the careful study of metabolites influencing tea quality using metabolomics. 

GC-MS, LC-MS, 1H-NMR, and UPLC-DAD platforms were used. Logistic regression 

models were developed to find variables capable of classifying the 310 genotypes as either 

Commercial or NonCommercial cultivars. 

Chapter 5: Concluding discussion and recommendation.  

1.19 RESEARCH OUTPUTS  

1. Peer-reviewed paper (Appendix 2.1): Nyarukowa C. T., Koech K. R., Loots T., 

Hageman J., and Apostolides Z (2018). Prioritising the replanting schedule of seedling 

tea fields on tea estates for drought susceptibility measured by the SWAPDT method 

in the absence of historical in-filling records. Journal of Agricultural Science 10 (7): 

26-34. 

 2. Peer-reviewed paper (Appendix 4.1): Nyarukowa CT., van Reenen M., Koech RK, 

Kamunya SM., Mose R., and Apostolides Z. Multivariate models for identification of 

elite mother bushes with high commercial potential for black tea from mature seedling 

fields of Camellia sinensis. International Journal of Research in Agronomy Vol. 4, 

No. 1 (2020).  

3. Conference: Nyarukowa C. T., Koech K. R., Loots T., and Apostolides Z (July 

2018). SWAPDT: A method for Short-time Withering Assessment of Probability for 

Drought Tolerance in Camellia sinensis validated by targeted metabolomics. Invited 

poster presentation. The 26th South African Society of Biochemistry and Molecular 

Biology (SASBMB) conference held in conjunction with the Federation of African 

Societies of Biochemistry and Molecular Biology (FASBMB), North-West University 

(NWU), Potchefstroom, South Africa.  

3. Conference: Nyarukowa, C., Koech, R., Loots, T. & Apostolides, Z. (August 2018). 

SWAPDT: A method for Short-time Withering Assessment of Probability for Drought 

Tolerance in Camellia sinensis validated by targeted metabolomics. Presented at the 

15th ACGT Regional Plant Biotechnology Forum on “Plant Genomes: From Plants to 

Networks”, University of the Witwatersrand, Johannesburg, South Africa. 
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12. CHAPTER 2 

PRIORITISING THE REPLANTING SCHEDULE OF SEEDLING TEA FIELDS ON 

TEA ESTATES FOR DROUGHT SUSCEPTIBILITY MEASURED BY THE 

SWAPDT METHOD IN THE ABSENCE OF HISTORICAL IN-FILLING RECORDS 

ABSTRACT 

Due to the unpredictable natural droughts that occur, causing tea farmers significant losses in 

tea estates, a two-day method for distinguishing between drought tolerant (DT) and drought 

susceptible (DS) Camellia sinensis cultivars was developed. This work was based on known 

cultivars developed at the Tea Research Institute in Kenya and the Tea Research Foundation 

for Central Africa in Malawi. This paper contains an in-depth description of the application 

of the Short-time Withering Assessment of Probability for Drought Tolerance (SWAPDT) 

method on four 60-year old, C. sinensis seedling fields in Kenya. The in-filling history of the 

four fields due to drought-related deaths was obtained from historical records. The SWAPDT 

method scores correlated well with the historical records. It has been indicated, from the 

results obtained in this study, that a sample size of 20 tea trees is sufficient to accurately 

determine the drought susceptibility of a large tea field of approximately 5 - 20 hectares, 

containing 50 000 - 200 000 tea trees, were the difference between the fields’ mean values, as 

measured by the SWAPDT method, is approximately 10%. 

 

 

  



48 

 

2.1 INTRODUCTION 

Tea made from the leaves of C. sinensis, as green or black tea, has been drunk as a mild 

stimulant due to the caffeine content, since time immemorial (Ellis and Nyirenda, 1995). Tea 

consumption has increased in recent years, due to the health-promoting effects associated 

with its high polyphenol content (Preedy, 2012). C. sinensis is cultivated in over 52 countries 

around the world. Global world trade is approximately 78% by value in the form of black, 

20% as green and 2% as oolong tea (Nyarukowa et al., 2016). It is an important cash crop for 

countries such as India and China; in Africa alone, several countries produce tea, namely in 

Kenya, which is currently ranked third behind Sri Lanka and India with regards to annual 

production and export of black tea (Chang, 2015), Malawi, Uganda, Tanzania, Zimbabwe, 

Rwanda, South Africa, Burundi and Mauritius.C. sinensis tea estates need to be replanted 

every 20 - 90 years to maintain high yields. Tea estates are planted in sample blocks of about 

5 - 20 hectares, at 10 000 trees per hectare, with seeds from the same batch. Most tea estates 

in Africa are planted with tea seeds procured from tea-baries (orchards) in India or Sri 

Lanka.  The seed selection criteria employed focused on yield and neglected to consider 

drought tolerance (Murakami et al., 1999). During severe natural droughts, some of the trees 

(5 – 15%) die and are replaced with new trees. Tea planters refer to this process as “in-

filling”. Most estates keep good records of the in-filling, and hence good and poor fields are 

easily identified. However, sometimes these records are missing, and a new method is 

required to determine the drought tolerance of a tea field that might be 20 - 90 years old 

(Willson and Clifford, 2012).  

Tea producers demand new cultivars which are DT, to reduce crop losses. In the coffee 

industry, farmers are faced with the problem of dealing with coffee rust. How they deal with 

this is by assessing and analysing the risk of an epidemic by considering the region’s 

characteristics such as climate, soils, crop management patterns, namely shade management, 

etc. (DaMatta, 2004). This assessment approach has been adopted from studies conducted in 

West Africa on groundnuts (Avelino et al., 2004) as well as on work conducted by (Savary et 

al., 2000) on tropical Asian rice. As a result of this, tea farmers are also looking for an 

inexpensive yet effective method of determining which sample blocks of tea have a high 

percentage of DS plants so that these sample blocks may be prioritised for replanting. The 

samples in this study were collected from the James Finlay’s estate in Kericho, Kenya which 

together with surrounding estates (Figure 2.1) produces 23 million kilograms of tea annually. 
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This part of Kenya enjoys deep rich loam soils, which are high in organic content and 

combined with the perfect climate and environment are ideal for high yields of good quality 

tea (http://www.finlays.net). In Nyarukowa et al., (2016), a novel logistics probability 

formula was developed, which can be used to calculate a new cultivar’s probability to be DT 

after employing the SWAPDT method. The aim of this study was to determine how many tea 

trees are needed per field to obtain a representative sample of the tea field so that tea fields 

can be prioritised for replanting. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Tea growing areas in Kenya (Kenya Tea Development Agency). 

http://blog.dominiontea.com/2014/03/27/kenyan-tea-industry/ 

2.2 STATISTICAL ANALYSIS 

2.2.1 Spatial regression Modelling 

Spatial regression models have been widely employed in biological science disciplines. 

Central to spatial analysis and quantitative geography, has been the study of methods that 

specify and fit spatial regression models (Bivand et al., 2013). Spatial autocorrelation is the 

similarity or dissimilarity of two values of a feature spatially near one another. As such, a 

positive spatial autocorrelation value signifies that the values of a particular feature cluster 

spatially while a negative spatial autocorrelation signifies that the locations of said feature are 

encompassed by neighbours with varying values (Anselin, 1990). According to (Cressie, 

http://www.finlays.net/
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1993), spatial data analysis may be classified as point data analysis, lattice data analysis, or 

geo-statistics; each consists of its own unique objectives and approaches. Point data analysis 

focuses on ascertaining spatial patterns involved in e.g. cluster formation as aberrations from 

complete randomness. Lattice data analysis on the other hand looks at the spatial pattern of a 

particular feature on a regular or irregular spatial lattice perceived at the grid points, the 

purpose of which is to calculate the spatial pattern by using a pre-determined “neighbourhood 

structure” to observe the associations between the feature of interest and those expository 

variables whilst factoring for spatial effects. Lastly, geo-statistical data refers to spatial data 

collected at points continuous in space. Geo-statistics shares similarities with lattice data 

analysis, differing only in that geo-statistics has the further objective of predicting values of 

the feature of interest at locations not yet sampled (Chi et al., 2008). Furthermore, geo-

statistics is distinguished from lattice data analysis in that geo-statistics employs distance 

based functions instead of “neighbourhood structures” (as is the case with lattice data 

analysis) to denote spatial autocorrelation (Bailey and Gatrell, 1995).  

2.2.2 Contour Maps: construction and application 

Contour mapping can be used for in-network aggregation schemes, in the presentation of 

holistic networking of temporal and spatial domains while functioning as a diagnostic tool for 

the detection of faulty sensors. Contours may be representative of several occurrences e.g. 

temperature, altitude, etc. Furthermore, altitude and temperature contours may overlap within 

a single map. Though the contour maps concept is both simple and well documented, the 

construction of these maps is however quite exigent, particularly in a sensor network 

environment. Spatial suppression serves to take advantage of the correlation between 

neighbouring sensors whenever a particular occurrence takes place. When there is e.g. an 

unexpected temperature change, each sensor (µ) in the shared vicinity of this occurrence 

determines whether or not it should transmit its reading to the data collection centre, the sink. 

In instances where the magnitude difference between µ and the reading from another sensor 

is less than a pre-determined threshold value i.e. β, µ suppresses its report; sensor readings 

are not reported if the observed values changes over time are not significant. However, to 

permit outlier detection, sensors detecting such disparities, transmit this data to the sink, even 

if they ordinarily would not. This then aids the sink in accurately detecting outliers. The sinks 

then make use of this data of the terrain to precisely recreate contour maps taking into 
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account the sensor field as well as the positioning of these sensors, ensuring accurate 

detection and interpolation of outliers (Meng et al., 2006). 

2.2.3 Moran I Test Statistics 

The most popular spatial correlation test is based on the Moran I test statistic. This test is in a 

normalised quadratic form, with regards to the variables being tested for spatial correlation 

(Kelejian and Prucha, 2010). It measures the degree of linear association between the feature 

of interest (y) at a specific position and the average of the feature at its neighbouring 

positions (Wy); it can be construed as the regression slope of (y) on (Wy) (Pacheco and 

Tyrrell, 2002). The Moran I test statistic functions to test that the spatial autocorrelation of a 

variable in the null hypothesis is zero. Upon the rejection of the null hypothesis, the variable 

will be deemed to be spatially auto-correlated (Ord and Getis, 1995). The Monte-Carlo test 

can be employed to solve spatial distribution problems involving spatial point pattern, pattern 

similarity, space-time interaction and scales of pattern. The Monte Carlo test can also be 

employed when dealing with a null hypothesis, Ho, and a corresponding dataset, in which the 

value u1 of a selected test statistic, u, is ranked amongst a set of analogous values generated 

by randomly sampling from the null distribution of u. The rank of the test statistic u1, when 

the u distribution is continuous amongst the set of values {ui: i = 1,...,m} enables the 

determination of the exact significance level for the test (Besag and Diggle, 1977).  The 

ordinary linear regression model is amongst the most useful statistical methods employed in 

spatial analysis to identify relationships between variables is (Mei et al., 2004). In this 

technique, the dependent variable, y, is modelled as a linear function of a set of independent 

variables x1, x2,.::,xp. Based on n observations ( yi; xi1, xi2, .::, xip ), (i = 1, 2,.::, n), from a 

study region, the model can be expressed as: 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑘 + 
𝜌
𝑘=1 𝜖𝑖 ,       (1) 

where 𝛽0, 𝛽1, .::, 𝛽𝑝 are parameters, and 𝜖1, 𝜖2, .::, 𝜖𝑛 are error terms assumed to be normally 

distributed, random, independent variables (Mei et al., 2004). 

Determining a study’s sample size requires a compromise, which balances power, economy, 

and timeliness (Dupont and Plummer Jr, 1990). Researchers must define the sample size, 

power, and hypotheses for their study and to effectively do this, they require software 

programs that can calculate the missing parameter when given any two of the preceding three 

parameters. These programs compute the sample size required to identify, using a specified 
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power, e.g. the difference in efficacy of a particular treatment, the power this difference is 

detectable with given sample size, and the detectable difference with particular power and 

sample size. The link between the power and its corresponding sample size is best seen by 

plotting the power curve as a function of the parameter of interest (Kelsey et al., 1986). 

The Student's t-test was used to calculate the probability (p) that the two samples belong to 

the same population. When p < 0.05, there is a 95% certainty that the two samples belong to 

different populations. The Standard Error of the Mean (SEM) is an inferential statistic that 

can be used to draw error bars on histograms to visually estimate the p-value. When the 

sample size (n) > 10, and the gap between the SEM error bars > SEM1 + SEM2, we can be 

99% confident that the samples are from two different populations (Cumming et al., 2007). 

The MANOVA method may also be used to compare multiple fields with each other, and the 

three methods are expected to produce similar results (Keselman et al., 1998). Oneway 

analysis using JMP Pro 13 generates “mean diamonds”, which illustrate both the sample 

mean and confidence interval. The top and bottom of each diamond represent the (1 - α) x 

100 confidence interval for each group. The confidence interval computation assumes that the 

variances are equal across observations, and as such the height of each diamond is 

proportional to the reciprocal of the square root of the number of observations within the 

group. The mean line across the middle of each diamond represents the group mean, while 

the overlap marks appear as lines above and below the group mean. In instances where 

groups have equal sample sizes, these overlapping marks indicate that the two group means 

are not significantly different at the given confidence level. Where the mean in one diamond 

is between the overlap marks of another diamond, this indicates that these two groups are not 

significantly different at that confidence level (JMP®). 
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2.2.4 Mann-Whitney test 

When a study, such as this one, possesses two groups originating from normally distributed 

populations, it must be ascertained whether or not these groups are from the same populations 

i.e. whether there is a significant difference between the mean values of each group. Where 

no prior knowledge of the distribution exists, the Mann-Whitney test is useful especially in 

instances where behavioural effects are being observed (Baldino et al., 1979). In medical 

research, it is commonly used to contrast the outcomes in patient treatments, in non-

randomised groups, where the data is continuously distributed and skewed (Fagerland and 

Sandvik, 2009). This test is often employed as a t-test alternative; it assumes that the data 

consists of randomised, independent samples from two populations possessing similar shape, 

as shown in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Two distributions with different medians but similar shape and spread. The top figure has a 

distribution skewed 0.75 units to the right, meaning the medians will be different by 0.75 units, whilst both 

figures maintain identical shapes. 
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In cases where the sample size is large, the Mann-Whitney test is capable of detecting 

differences in the sample spread, regardless of the similarity of the medians. The 

dissimilarities observed in population medians tend to be accompanied by further shape and 

spread differences; the median differences are however not always the most important. Figure 

2.3 elaborates on this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Two distributions with differing median values (0.65 and 1.14 units) and shapes.The distribution 

showing the larger median also possesses the bigger spread.   
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2.3 RESEARCH OBJECTIVE 

The objective of this study was to prioritise the replanting schedule of seedling tea fields on 

estates commonly subjected to drought by developing a sampling method and ascertaining 

drought susceptibility using the SWAPDT method, all of this being done in the absence of 

historical in-filling records. 

2.4 HYPOTHESES 

Alternative hypothesis (H1): There will be a statistically significant difference in the 

%relative water content (RWC), between the historically “good” and “poor” fields, at the 

95% level of confidence. 

Null hypothesis (H0): There will be no statistically significant difference in the %RWC, 

between the historically “good” and “poor” fields, at the 95% level of confidence.  
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2.5 MATERIALS AND METHODS 

2.5.1 Sample Collection 

The field work was conducted on the Kaproret tea estate in Kericho, Kenya, with latitude: 0° 

22' 3.86" N and longitude: 35° 16' 59.30" E, during January and February of 2017. Based on 

historical in-filling records, two good fields, fields 12A and 12B, with fewer in-fillings due-

to-deaths-by-drought and two poor fields, 13A and 13B, with higher in-fillings due-to-deaths-

by-drought were selected. The good fields were those fields with more drought tolerant 

plants/ less deaths due to drought, while the poor fields were those fields with more deaths 

due to drought. These fields were approximately 1200 m apart. The fields were planted from 

different batches of seeds obtained from Assam, in 1954 and 1956 respectively. They were in 

the same prune year, receiving the same fertiliser regimen, under rainfed conditions. The 

longitude and latitude coordinates for field 12A and 12B are 35º 14.75' E, 0º 26' S and for 

field 13A and 13B are 35º 15.05' E, 0º 26.6' S and at an altitude of 2180 m above mean sea 

level. These fields were located in regions that have high humidity, fair temperatures and 

acidic soils. Samples were collected using a “point-intercept within a quadrat method”, in 

which a 100 m X 100 m quadrat was set up in the middle of each field. The starting point of 

the sampling was noted as point (0,0). Each quadrat consisted of intersecting lines along ten 

meter by ten meter pre-determined points on the transect line. This essentially gave ten rows 

along the “x-axis” and ten rows along the “y-axis”. At each intersecting point, three shoots of 

two leaves and a bud were harvested from each tree and placed in zip-lock plastic bags. A 

total of 400 samples were collected, 100 from each of the two good and two poor fields. 

Following sample collection, the leaves were transported to the Tea Research Institute 

laboratory, with the zip-locked plastic bags placed in an insulated box on ice. The samples 

were then subjected to the SWAPDT method as discussed in Nyarukowa et al., (2016) to 

determine the RWC of the leaves from each field. The SWAPDT method is an inexpensive 

and practical method developed for the prediction of DT tea cultivars. The rate of RWC loss 

between the DT and DS cultivars was evaluated by immersing three shoots with two leaves 

and a bud from a single bush under investigation in 20 ml of distilled water at room 

temperature and weighed after 24 hours. These turgid leaves were then blot dried and 

weighed before being oven dried at 37˚C and weighed after five hours when their RWC is 

between 40 - 80%. The leaves were again placed in water for 24 hours, and then weighed, 

and oven dried at 105˚C for 24 hours to obtain each leaf’s dry weight. 
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2.5.2 Statistical Analysis 

The data collected on the four fields, were tested for spatial homogeneity. In the case of field 

13B, spatial dependence was detected, as provided by (Bivand et al., 2011). A spatial 

simultaneous autoregressive error model was fitted to the data of field 13B, to predict and 

consequently remove the spatial signal. This was done using the “spdep” package. Using the 

one-sided Mann-Whitney test, it was established that Fields 12A and 12B, and 13A and 13B 

were respectively similar, but that the two groups differ significantly from one another.  A 

Monte-Carlo permutation test approach was then employed, using the p-value of the one-

sided Mann-Whitney test as test statistic, applied to comparisons between Fields 12A and 

13A, 12A and 13B, 12B and 13A, and 12B and 13B. One thousand repetitions of this test 

were performed at decreasing sample sizes, to construct an empirical distribution of the p-

value for each sample size.  The empirical quantile at which 0.05 and 0.01 was observed was 

recorded.  As the sample sizes decreased, the stability of the Mann-Whitney test decreased, as 

could be seen by the quantiles which usually lead to the rejection of the null hypothesis now 

moving away from the right-tail of the empirical distribution.  The minimum required sample 

size was set at the level just before the empirical quantile dropped below the required 

significance level. This test procedure was also repeated while controlling for the mean 

difference in fields, and by combining the data for Fields 12A and 12B, and 13A and 13B 

into Fields 12 and 13, respectively.  

Power curves for the tea data set were calculated using the package “pwr”. In Figure 2.23, 

four effect sizes have been defined, which correspond to a difference of 3%, 5%, 10% and 

15%. The 3% and 5% represent small effect sizes, with the 10% representing a medium effect 

size and the 15% a large effect size. The difference found in the pilot data set (35%) would be 

considered a gigantic effect size. The curves were created for the different amount of fields 

included in the experiment; these curves serve to determine a suitable number of replicates 

required for each field for example: 

When the desired power is 0.90 and the smallest relevant effect size is 5% and if 100 fields 

are used in the experiment, the minimum number of necessary replicates is estimated at 

approximately 22. When 50 fields are used, the minimum number of replicates would be 

about 33. The sample size calculations are done after eliminating any other “field effects” i.e. 

using oneway ANOVA. Where “field effects” are not eliminated, a mixed model approach is 

employed by adding random indicators for fields to the model. This addition results in an 
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increase in the power. Oneway ANOVA was used to compare the two good and the two poor 

fields and compute their means, standard deviations, and the Student’s t-test, and contour 

plots of each field were prepared by JMP Pro (ver 13). Excel was used to calculate the SEM, 

from the same Standard Deviation (SD) at different sample sizes and to obtain the equation of 

the curve. 

2.6 RESULTS 

2.6.1 %drought score contour RWC plots based on SWAPDT method 

The contour plots for the four fields are shown in Figure 2.4. These are indicative of the 

%RWC profiles, which were flat; this eliminates any possible bias due to underground rivers 

or rocky outcrops. The ANOVA comparison between the two good and the two poor fields 

shows clear differences, with the mean %RWC of 72.2 for the two good fields, and 35.0 for 

the two poor fields (p < 0.0001).  The SD ranged from 13.3 - 20 units, indicating a large 

variation within each field. This is supported by the large coefficient of variation (CV) 

values, shown in Figure 2.5. 
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Figure 2.4: %RWC drought score contour plots based on SWAPDT method for the two good fields (12A and 

12B) and the two poor fields (13A and 13B). 
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Figure 2.5: Mean distribution curves for the fields 12A, 12B, 13A and 13B. The plots show the Mean, Std Dev, 

SEM, sample size (N) and the CV for each field. 
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By approximation, the difference between the two means was expected to be statistically 

significant provided the difference of the means > the sum of their SEMs or if Mean1 - 

Mean2 > SEM1 + SEM2. The data for the two good fields were pooled and annotated as 

Good 1 and Good 2, while that of the poor fields was annotated as Poor 1 and Poor 2.  The 

SEM for different sample sizes (n = 100, 50, 25, 20, 15, 10 and 5) for Good 1 and Good 2, 

and Poor 1 and Poor 2 pools were calculated using the equation shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

Figure 2.6: Ideal theoretical vs practical sample size required.The plot shows the initially postulated number of 

samples per field deemed practical versus the actual statistically obtained sample number at the 95% level of 

confidence. 

It is important to tea estate management to know the sample size for two fields whose means 

are close to each other. Figure 2.6 shows the required numbers of samples per field versus the 

delta mean at the 95% level of confidence. The figure shows that if the delta mean is 8%, the 

corresponding sample size is approximately 12. Using the SWAPDT method and a sample 

size of 20, it is possible to distinguish between fields with a delta mean of 6%. The collection 

of these 20 samples should be in the middle of the field to dispel any possibility of edge 

effects, and about 10 m apart within rows and 10 m apart between rows. Figure 2.7 below 

shows the Oneway analysis ANOVA results of the %RWC of the two good and two poor 

fields.  
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Figure 2.7: Oneway analysis of the % RWC against the two good and two poor fields. Oneway ANOVA was 

used to calculate the means.  
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Power curves for the data set were also plotted in Figure 2.8, showing the four effect sizes 

which correspond with a difference of 3%, 5%, 10% and 15%, as described above in the 

methods. 
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D.  

Figure 2.8: Power curves  for the data set were plotted, showing four effect sizes which correspond with a 

difference of 3%, 5%, 10% and 15%. (A) represents the number of replicates for 10 fields; (B) represents the 

number of replicates for 25 fields. (C) represents the number of replicates for 50 fields, and (D) represents the 

number of replicates for 100 fields. 
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 2.7 DISCUSSION AND CONCLUSION 

The RWC contour maps are almost flat, suggesting that there are no geological features that 

affect SWAPDT method scores, in these fields. This work sought to find a robust monitoring 

solution capable of concurrently achieving cost effective, adaptive and timeous sampling; the 

SWAPDT method was determined to effectively achieve this objective. The contour plots 

served to show that the high %RWC results of the cultivars from the good fields was not due 

to e.g. underground streams; likewise to show that the cultivars from the bad fields didn’t 

have e.g. molehills or old hut-sites. Both sets of plots showed that all the fields were normal. 

The solution attained allowed for improved sampling of the good fields (12A and 12B), and 

the poor fields (13A and 13B). The algorithm developed performs in-network data 

suppression for both spatial and temporal dimensions. This algorithm is employable for 

residual energy monitoring, faulty sensor detection and spatial–temporal event monitoring, 

with the results confirming the efficiency of the solution’s accuracy and cost effectiveness. 

Figure 2.5 and Figure 2.7 show the mean distribution curves and Oneway ANOVA results, 

respectively, for the two good fields (12A and 12B) and the two poor fields (13A and 13B). 

From these results, it is evident that the good fields have a higher %RWC mean, of 72 for 

both fields 12A and 12B, than the poor field with %RWC means of 34 and 36 for fields 13A 

and 13B respectively. These results are in agreement with those obtained from the contour 

plots and what is theoretically expected i.e. that the good fields, with drought tolerant 

cultivars would have a higher %RWC than the drought susceptible cultivars found on the bad 

fields. The plot in Figure 2.6 shows the initially postulated number of samples per field 

deemed practical to observe significant differences between fields versus the actual 

statistically obtained sample number at the 95% level of confidence. From this figure, it can 

be seen that the initially postulated 100 samples per field would be required to differentiate 

between fields with approximately 2% variation between them. As the variation between the 

fields increases, a smaller sample size is required i.e. when the variation between the fields is 

more than 6%, as little as 20 samples per field is required. From the means of the good and 

poor fields shown in Figure 2.5, it is clear that the two sets of fields vary significantly and as 

such as little as 5 samples per field will be able to distinguish between them on a statistically 

significant level. The results presented in the ANOVA showed that the SWAPDT method 

distinguishes good fields from poor fields.  

The power of a hypothesis test, according to Wise, (1974), tests the probability that the null 

hypothesis will correctly be rejected; this test is influenced by sample size. In instances where 



68 

 

a test possesses a low power, an effect may go undetected and it may be wrongly concluded 

that none exists, leading to the rejection of the H0 when it, in actuality is true. On the other 

hand, if the test power is too high, minor effects may be taken to be significant, and this may 

result in a failure to reject H0, when it is actually false. A power value of e.g. 0.9 signifies 

that if one was to repeat the same experiment several times, taking random samples each 

time, 90% of the time may result in the correct rejection of the H0, and the remaining 10% 

may result in sampling errors, which result in a failure to reject H0. Power curves plot the 

power of the hypothesis test against the difference between the mean and the target 

(Ariyavisitakul and Chang, 1993). The sample size is used to ascertain the number of 

observations required to obtain a certain power value for the testing of the hypothesis at a 

particular difference. Each power curve represents every combination of power and 

difference for each sample size when the significance level and the Std Dev are held constant. 

From Figure 2.8, sample sizes of 10, 25, 50, and 100, and their corresponding power curves 

are shown. Increasing the sample size employed in the hypothesis test results in a power 

increase, and this is observed from the power curves. As the sample size increased from 10 to 

100, the power values increased from less than 0.1 to 1.0 between fields which vary by as 

little as e.g. 3%. It is therefore necessary to have enough sample observations to achieve 

adequate power, without having a large sample size, which leads to a waste of time and 

money on redundant sampling (Wise, 1974). The findings of the two good and two poor 

fields correspond with the historical in-filling records that were available for these fields. 

This finding suggests that where historical in-filling records are not available, the SWAPDT 

method may be used to prioritize fields for replanting. These results also show that the 

SWAPDT method developed on tea cultivars from the TRFCA in Malawi can be applied to 

the seedling tea fields in Kenya, suggesting that the SWAPDT method may apply to other tea 

growing regions of the world. The sample size of 20 tea trees per field is sufficient to 

distinguish between fields that vary by 6% or more in their mean SWAPDT score. This 

sample size will need to be increased if the CV within a field is greater than 60%, i.e. if fields 

were planted with a more heterogeneous source of seeds than used in the four fields reported 

here.  
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Appendix 2.1: Peer-reviewed scientific article based on results from Chapter 2 
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Appendix 2.2: The meaning of the mean diamonds and x-axis proportional lines used in 

Chapter 2 statistical analysis 

 

The mean diamonds illustrate the sample mean and confidence intervals. Figure 1 shows 

examples of mean diamonds and x-axis proportional options  

 

        

Figure 1: Mean diamonds and x-axis proportional options (JMP®). 

The top and bottom of each diamond is representative of each group’s (1-α) x 100 CI. The CI 

calculation/determination assumes the variances to be equal across all the observations, and 

as such, each diamond’s height is proportional to the reciprocal of the square root of each 

group’s total observations. The mean line across the centre of each diamond is representative 

of each group’s mean. In instances where overlaps occur, the lines representing these appear 

above and below the mean. When groups have equal sample sizes, the overlap marks show 

that the group means are not significantly different at that particular CI. If one group’s 
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overlap marks are close to another group’s mean, this shows that the two groups do not differ 

at that CI. 
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13. CHAPTER 3 

IDENTIFICATION OF QTL’S RESPONSIBLE FOR YIELD, DROUGHT 

TOLERANCE AND QUALITY TRAITS IN CAMELLIA SINENSIS USING GC-MS, 

1H-NMR AND UPLC 

ABSTRACT 

Camellia sinensis (tea) is one of the most consumed beverages worldwide, and its 

consumption has, in recent years, increased due to its health-promoting attributes, brought 

about by its high polyphenol content. In-depth studies have been conducted on C. sinensis 

due to its precise flavonoid profile, responsible for conferring copious therapeutic properties. 

According to Nyarukowa et al., (2018), approximately 78% of black, 20% of green and 2% 

of oolong tea by value are globally traded. Green tea, rich in catechins, serves as a traditional 

herbal remedy in China to prevent cardiovascular diseases among other chronic diseases; this 

explains why green tea has been substantially studied i.e. because of its antioxidant and anti-

carcinogenic properties. Tea production and subsequently its quality are reliant on evenly 

distributed rainfall. Tea consumers concern themselves with the quality of tea, in particular 

its flavour and aroma; it is on the basis of these that consumers are willing to pay premium 

prices for the best quality teas. To breed for these phenotypic traits is however challenging 

due to the fact that these are qualitative traits inherited from parents, and influenced by 

environment. Two C. sinensis populations (TRFK St. 504 and TRFK St. 524) were employed 

in this study to identify the Quantitative Trait Loci (QTL) responsible for yield, quality and 

total polyphenol content centred on a genetic map constructed using the DArTseq platform; 

populations of 106 TRFK St. 504 and 144 TRFK St. 524 clonal progeny were investigated; 

map comprised 15 linkage groups analogous to chromosome haploid number of tea plant (2n 

= 2x = 30) and spanned 1260.1 cM with a mean interval of 1.1 cM between markers. Sixteen 

phenotypic traits were evaluated in both populations. A total of three, 11 and 46 putative 

QTLs were discovered after mapping on the 15 linkage groups, responsible for tea quality for 

GC-MS, 1H-NMR and UPLC data respectively. The variance explained by the QTLs varied 

from 4.6 to 96.3%, with an average of 28%.   
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3.1 INTRODUCTION 

Tea has been documented to be the most consumed non-alcoholic beverage, worldwide, 

second to water. According to Dutta et al., (2011), tea production has up scaled from 850 000 

tonnes in 2003 to 980 000 tonnes 2007 (Dutta et al., 2011) to 2,414,802 tonnes in 2018 

(www.reportlinker.com/tea/reports). Green C. sinsensis leaves comprise of predominantly 

five flavan-3-ols, namely catechin (CAT), epicatechin (EC), epicatechin gallate (ECg), 

epigallocatechin (EGC), and epigallocatechin gallate (EGCg) (Koech et al., 2018), with 

EGCg being the principal catechin accounting for approximately 50–80% of the total 

catechins (Sang et al., 2011). Black tea on the other hand consists of theaflavins and 

thearubigins as its major polyphenols, resulting from catechin oxidation and polymerisation. 

Black tea consists of theaflavin (TF1), theaflavin-3-monogallate (TF2), theaflavin-3′-

monogallate (TF3), and theaflavin-3,3′- digallate (TF4). Tea’s popularity as a beverage is 

dependent on its flavour, comprising of taste and aroma, with non-volatile organic 

compounds being responsible for its taste, and the volatile organic compounds responsible for 

its aroma. Volatile organic compounds in tea fall into one of two groups, with Group I 

comprising of non-terpenoids such as hexenols, which confer the fresh green flavour, and 

Group II comprising of terpenoids, responsible for its sweet flowery aroma; high quality teas 

are rich in Group II compounds and due to their flavoury nature, sell for 4 - 5 times higher 

(Rawat et al., 2007). According to (Le Gall et al., 2004), the taste of green tea is determined 

by the type of tea tree, its plucking time, as well as the method of cultivation employed. 

Amino acids such as theanine, which make up between 60-70% of the amino acids found in 

tea leaves; these are responsible for tea’s brothy taste, while its astringent taste can be 

attributed to catechin levels and lastly its bitter taste attributed to caffeine (Pongsuwan et al., 

2007). Tea quality is undeniably affected by variations in its chemical compositions, which 

determine its commercial market value (Qin et al., 2013). Sensory evaluation of tea quality 

by trained specialists, tea tasters, has traditionally been employed to establish its specific 

aroma profile, which is important in determining the tea quality grade (Schuh and Schieberle, 

2006). These trained tasters have developed a language of their own which they use to 

describe various attributes of a tea infusion; this sensory evaluation has its own deficiencies, 

such as time consuming, human susceptibility and variability (Group et al., 2011). Due to its 

increased popularity, tea has enthralled both consumers and researchers, not only because of 

its taste and aroma but because of medicinal benefits concomitant with tea, owed largely to 

its bioactive metabolites i.e. flavonoids, with catechins constituting up to 30% of soft-shoot 

http://www.reportlinker.com/tea/reports)%20
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dry weight in green tea. The catechins and theaflavins in green and black tea respectively 

have been documented to possess antioxidant, anti-inflammatory, anticancer, as well as 

cardiovascular disease preventing capabilities (Preedy, 2012). 

The profiling of plant metabolites has developed into a major metabolomics field of study, 

reason being that plants manufacture a wide array of metabolites. Through the use of 

metabolomics, plant materials have and continue to be classified, with the predominant 

statistical tool being the principal component analysis (PCA) (Pongsuwan et al., 2007). PCA 

is the first step in multivariate statistical analysis, which is highly expedient when it comes to 

e.g. outlier identification, pattern and trend detection. The partial least squares-discriminant 

analysis (PLS-DA) is another multivariate statistical approach employed in metabolomics 

data analysis. The PLS-DA is a better suited statistical approach as compared to the PCA, 

when it comes to differentiation in e.g. the origins of particular samples, especially in 

instances where the metabolite profiles are influenced/ affected by several factors (Kang et 

al., 2008). The genetic enhancement of crops is fast becoming a highly employed, continuous 

practice; this has resulted in an increased demand for plant breeders skilled in metabolomics 

(Chugh, 2013). When developing novel cultivars, crop breeders encounter a common 

challenge of ascertaining their selection criteria; C. sinensis breeders for example have to 

select from a list of properties which include, but are not restricted to yield, quality, drought 

tolerance. Due to the effects of global warming, which are seeing altered precipitation 

patterns, elevated temperatures and protracted drought spells in the tea growing regions, the 

Kenyan tea industry has been facing strenuous challenges (FAO 2015). It is for this reason 

that rigorous breeding programmes need to be developed to produce novel cultivars with 

better metabolic profiles and improved drought tolerance. A previous study on drought 

tolerance in C. sinensis saw the development of the Short-time Withering Assessment of 

Probability for Drought Tolerance (SWAPDT) method which was validated by targeted 

metabolomics to predict tolerance in tea cultivars by generating metabolic profiles which 

showed the differences between the drought-tolerant and drought susceptible cultivars under 

wet conditions; this method employed the %RWC of tea leaves after a five-hour withering 

period (Nyarukowa et al., 2016). The advancement of genomics‐assisted breeding techniques 

such as Marker Assisted Selection (MAS) has resulted in the significant advancement and 

refinement of breeding selection precision and efficacy (Chen et al., 2013). The trait selection 

criterion is a multifaceted one; phenotypic assessments are incapable of denoting the degree 

of variation with respect to a trait of interest due to environmental effects (Feil and Fraga, 
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2012). Quantitative genetics, the study of genetic interactions and environment on e.g. C. 

sinensis is capable of empowering breeders with information regarding the quantity of 

transmissible genetic variation in the available traits for selection (El-Soda et al., 2014). 

Quantitative genetics also indicates/highlights correlations by furnishing breeders with a 

comprehension of any genetic relationships existent between the traits directly and or 

indirectly influencing the crops phenotype. A comprehension of genetic correlations serves to 

enable the identification of potential markers in instances where the direct measurement of 

traits is either strenuous or expensive, thus circumventing the selection of unrelated traits 

(Mackay et al., 2009). According to El-Soda et al., (2014), quantitative genetic analysis also 

governs the degree to which trait variation and correlations are influenced by environmental 

factors, ensuring accurate predictions of genetic improvements and enhancing breeding 

strategy development. Furthermore, in C. sinensis, quantitative genetic analysis serves the 

added advantage of being employed as a means of determining the hereditary potential, in 

offspring trials, for traits of interest found in either male or female plants e.g. those 

concomitant with yield, quality, and drought tolerance (Kamunya et al., 2009); this will serve 

to simplify tea breeding through selection of parents with desirable traits to yield enhanced 

progeny (Yao et al., 2008). 

Genetic linkage maps possess the potential to substantially increase the rate and accuracy of 

cultivar development strategies for perennial woody tree crops (Hackett et al., 2000). C. 

sinensis is a woody, perennial tree, often having long juvenile periods of 4–5 years, taking 

approximately 25 years to breed a novel cultivar (Wang et al., 2016). It is characterised by a 

huge diploid genome of about 3Gb and chromosome number (2n = 2× = 30) that is self-

incompatible, highly heterozygous, and principally allogamous (Koech et al., 2018). It is 

because of these factors that conventional breeding is both time consuming and laborious, 

requiring a lot of land for offspring trials (Orel and Wilson, 2012); genetic mapping does 

away with this, making early selection amenable. This means the selection of parents based 

on molecular markers of interest linked to Quantitative trait loci (QTL) shortens the breeding 

cycle. A genetic linkage map was constructed by employing a two-way pseudo-testcross 

strategy to map the drought-tolerant attribute of tea cultivars originating from (Bali et al., 

2015). Despite these advancements, the use of genetic linkage maps is predominantly centred 

on both prevalent markers like random amplified polymorphic DNA (Hackett et al., 2000) 

and co-dominant markers like the simple sequence repeats (Tan et al., 2016). Unfortunately 

these technologies are not extensively pertinent tools capable of correlating genotypes with 
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phenotypes. There has been an increase, in recent years, in the amount of research conducted 

on Diversity Arrays Technology (DArT); this technology entails isolating and cloning 

indiscriminate DNA fragments from complexity-reduced DNA samples (Gupta et al., 2013); 

because of DArT, standardised genotyping of thousands of markers in parallel in multiple 

samples without the need for prior sequencing information (Wittenberg et al., 2005) and has 

been employed in phylogenetic and diversity studies (Steane et al., 2011), genomic selection 

(Poland et al., 2012), and in the construction of genetic linkage mapping (Koech et al., 2018) 

in plants such as apples (Schouten et al., 2012), wheat (Zou et al., 2017), and Eucalyptus 

(Steane et al., 2011). It is on the basis of the increasing research that genetic linkage maps 

generated from the DArTseq platform can be considered vital in the relation of a particular 

phenotype to genotype, simplifying the process with which breeders identify and select 

parents with the sort after traits. In the current study, a high-density linkage map for C. 

sinensis was constructed through the integration of the DArTseq technology, GC-MS, 1H-

NMR, and UPLC techniques for QTLs linked to amino acids, sugars, catechins, caffeine, tea 

taster scores, and %RWC for future MAS breeding. 

3.2 RESEARCH OBJECTIVE  

This study’s objective was the identification of putative QTLs associated with amino acids, 

caffeine, catechins, organoleptic evaluation and %RWC DArTseq marker integration with GC-

MS, 1H-NMR and UPLC platforms, constructing genetic linkage maps for MAS in tea breeding. 

3.3 HYPOTHESIS 

Null hypothesis (H0): The DArTseq markers are not linked to QTLs for black tea quality 

parameters and yield.   
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3.4 MATERIALS AND METHODS 

3.4.1 Plant material 

All the cultivars used in this study were maintained using uniform agronomic practices in an 

experimental field site in Kericho (0° 22′ S, 35° 17′ E), Kenya as described by Koech et al. 

(2018). Sixty open-pollinated cultivars, pre-selected for their high yield, and good tea liquor 

since the 1950s formed the Commercial (Comm) group. These cultivars were vegetatively 

propagated by stem cuttings from elite mother bushes. Each Comm cultivar is cultivated in 

over 10 Hectares with 13,448 bushes per Ha. The NonCommercial (NComm) group of 250 

cultivars were the F1 progeny of a reciprocal cross between two heterozygous parental clones 

TRFK 303/577 and GW Ejulu. The NComm cultivars comprise two populations of TRFK St. 

504 (TRFK 303/577 x GW Ejulu) with 106 progeny, and the TRFK St. 524 (GW Ejulu x 

TRFK 303/577) with 144 progeny, which were bred at the Tea Research Institute (TRI) of 

Kenya (Koech et al., 2018). The GW Ejulu is a commercial cultivar that produces high-

quality black tea, with high total catechins and moderate caffeine content; it is, however, a 

low-yielding and drought-susceptible clone. Cultivar TRFK 303/577, on the other hand, is a 

high yielding, drought tolerant (DT) commercial cultivar, which produces medium-quality 

black tea, with moderate levels of caffeine and total catechins. All the plants were 

vegetatively propagated and planted in 15-bush observation plots comprising 3 rows and 5 

plants per row spaced at 1.22 m between rows and 0.61 m within rows (i.e. 13,448 plants/ha) 

in a randomised complete block design with three replicates. 

3.4.2 Sample collection and processing 

Fresh shoots comprising two leaves and a bud were randomly harvested from the respective 

tea bushes and placed in zip-lock plastic bags, appropriately labelled (Nyarukowa et al., 

2018) to be processed at the TRI factory. Half the shoots of each sample were freeze-dried 

and ground using a coffee grinder, sieved using a 355 µm sieve, sealed in zip-lock plastic 

bags and stored at 4°C in a fridge until analysis. The other half was used to make black tea 

according to Koech et al., (2018). Briefly, the leaves were withered to a %relative water 

content of 50–65% over an 18 hour period before being passed through CTC rollers till 

maceration was achieved. Following maceration, the resultant dhool was aerated at 22–26°C 

for 90 min, and at 100% humidity for enzymatic oxidation (fermentation) to occur. A 

TeaCraft Ltd bench top fluid-bed drier system was employed for firing the tea, starting at 

120°C for 25 min, and subsequently lowered to 100°C for 10 min. The black tea samples 
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were then ground using a coffee grinder, placed in sealed in zip-lock plastic bags and stored 

in 4°C fridge until UPLC analysis. 

3.5 GC-MS sample preparation and analysis 

3.5.1 Sample preparation 

A 70% MeOH solution was used for extraction. For all samples of approximately 150 mg, 1.5 

mL extraction solution was added. The samples were vortex mixed and incubated for 10 

minutes at 70°C. The samples were vortex mixed halfway through the incubation period as 

well as at the end. After cooling, the samples were centrifuged for 5 minutes at 6000 g and 

the 1 mL supernatant transferred to GC vials before drying under nitrogen. The dried samples 

were derivatised by adding 120 μl methoxyamine (10 mg/mL in pyridine) and incubated for 1 

hour at 60°C; followed by the addition of 80 μl BSTFA (containing 1% 

trimethylchlorosilane) and incubated for another hour at 60°C. Samples were transferred to 

inserts before GC-MS analysis. Pooled quality control (QC) samples were prepared, and 

these underwent the same extraction and derivatisation procedures as the samples. Samples 

were randomly injected with QC samples analysed after every 10th sample i.e. QC1 followed 

by samples 1 to 10 then QC2 followed by samples 11 to 20 etc. Two additional QCs were 

analysed in the beginning of each batch to condition the new liner. These QCs were not used 

in data processing. 

3.5.2 GC-MS analyses 

Analyses were performed on a GC-TOF-MS system, comprising of an Agilent 7890A GC 

front-end system with an Agilent 7693 autosampler and a Leco Pegasus HT TOFMS. 

Hydrogen was used as carrier gas at a flow-rate of 1.8 mL/min; 0.2 μl sample was injected in 

splitless mode (allowing 30s purge delay). The inlet temperature was kept at 250°C. 

Compounds were separated on a Restek RX-1MS column (20 m x 180 μm x 0.18 μm). The 

transfer line and source temperatures were 250 and 200°C, respectively. Solvent delays of 

200 s were allowed where after masses (50 – 800 m/z) were recorded at 20 spectra/sec. 

Universal EI settings were used for ionisation while the detector was operated at 50 V above 

tune voltage.  
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3.6 1H-NMR sample preparation and analysis 

3.6.1 1H-NMR buffer solution 

A 1.5 M KH2PO4 buffer solution was prepared by dissolving 20.4 g of KH2PO4 in 80 mL of 

deuterium oxide (D2O). Next, 13 mg of sodium azide and 100 mg of trimethylsilyl-2,2,3,3-

tetradeuteropropionic acid (TSP) were dissolved in 10 mL of D2O and added to KH2PO4 

solution. The combined solution was mixed well under sonication before adjusting the pH to 

7.4 using potassium hydroxide in H2O. The final solution was then transferred to a 100 mL 

volumetric flask and the volume topped up to the mark using D2O. 

3.6.2 1H-NMR sample preparation 

Freeze-dried samples were sent in individual plastic bags of 50 mg weight to the 1H-NMR 

lab. A pooled QC sample was created by collecting 5 mg from each of n=294 samples. 

Samples were prepared by adding 4.5 mL ddH20 to each 45 mg weight of the dry sample to 

create a 10 mg/mL concentration. Each sample was vortexed at 0, 20 and 40 minutes. At 60 

minutes, a volume of 540 µL of the sample was collected in a microcentrifuge tube, with 60 

µL 1H-NMR buffer solution. The sample was mixed under vortex and centrifuged at 12 000 g 

for 5 minutes to sediment any particulates. A final volume of 540 µL of supernatant was 

carefully transferred to a 5 mm 1H-NMR glass tube and loaded onto an autosampler for 1H-

NMR analysis. 

 

3.6.3 1H-NMR analyses 

The samples were measured at 500 MHz on a Bruker Avance III HD NMR spectrometer 

equipped with a triple-resonance inverse (TXI) 1H{15N, 13C} probe head and x, y, z gradient 

coils. 1H spectra were acquired as 128 transients in 64 K data points with a receiver gain of 

64 and a spectral width of 10 000 Hz. The sample temperature was maintained at 300K and 

the H2O resonance was presaturated by single-frequency irradiation during a relaxation delay 

of 4 s, with a 90° excitation pulse of 8 μs. Shimming of the sample was performed 

automatically on the deuterium signal. The resonance line widths for TSP and metabolites 

were <1 Hz. Fourier transformation and phase and baseline correction were done 

automatically. Software used for 1H-NMR processing was Bruker Topspin (V3.5). Bruker 

AMIX (V3.9.14) was used for metabolite identification and quantification. (Ellinger et al., 

2013). 
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3.7 UPLC sample preparation and analysis 

3.7.1 Extraction of catechins, caffeine and theaflavins 

Samples were collected as documented in 3.4.2. The International Organisation for 

Standardisation (ISO) extraction procedure described in document ISO14502-2 (2005) was 

employed for the extraction of metabolites from the tea samples. Concisely, amounts of 0.200 

± 0.001 g of green and black tea samples were weighed out using a Mettler Toledo model 

XS205DU analytical balance (Microsep, South Africa) and transferred to 20 ml thick-walled 

glass test tubes, following which five ml volumes of 70:30 MeOH (Merck, South Africa): 

water (v/v) at 70°C were added to each, stoppered and vortex mixed for ± five seconds before 

being placed into a 70°C set water bath. After five minutes, the extraction mixtures were 

removed from the water bath and vortex mixed before being returned for an additional five 

minutes. The mixtures were vortex mixed a second time, cooled and then centrifuged at 2000 

x g using Thermo Scientific Heraeus Labofuge (Sepsci, South Africa) 300 centrifuge for ten 

minutes. The resultant supernatants were decanted into respective ten ml volumetric flasks 

and the extraction step repeated once more. The two extracts were then pooled, and the 

volume adjusted to ten ml with cold 70:30 MeOH: water (v/v). A one ml volume of each 

extract was diluted to five mL using stabilising solution, which constituted 10% (v/v) 

acetonitrile, 500 mg/mL EDTA and 10 mg/ml ascorbic acid, all purchased from Sigma-

Aldrich, South Africa. Each resultant dilution was then filtered through a 0.2 μm 

Minisart®RC4 syringe filter (Sartorius, South Africa) with hydrophilic, solvent-resistant 

regenerated cellulose membranes and the samples were then analysed using UPLC-DAD. 

3.7.2 UPLC analyses 

The UPLC analyses were accomplished on a Waters ACQUITY UPLC H-Class system 

(Waters, Milford, MA, USA) equipped with a binary solvent delivery pump, an autosampler 

and a photodiode array detector and controlled by the Empower-3 software. Separation was 

attained on a Waters Acquity HSS T3 column (1.8 μm, 2.1 × 150 mm), with the mobile phase 

constituted of solvent A, which was 2% acetic acid and 9% acetonitrile in deionised double 

distilled water, at a pH of 2.8, and solvent B comprised of 2% acetic acid and 80% of 

acetonitrile in deionised double distilled water. A gradient elution method was employed: 0 

min (5% B), 0-21 min (5-20% B), 21-30 min (20-25% B), 30-32 min (25-100% B), 32-39 

min (100-100% B), 39-40 min (100-5% B), and 40-45 min (5% B). The mobile phases were 

filtered through a 0.2 μm cellulose acetate membrane filter and degassed using a Neuberger 
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Laboport (Labotech, South Africa) vacuum pump. A sample injection volume of five μL, and 

a 0.2 mL/min flow-rate were employed for analyses. Catechins (catechin, epicatechin, 

epicatechin gallate, epigallocatechin and epigallocatechin gallate), caffeine and gallic acid 

(Sigma-Aldrich, South Africa) were used as standards. Tryptamine, sulfanilamide and 

mycophenolic acid (Sigma-Aldrich, South Africa) were used as the QC internal standards; 

identification and quantification was at 278 nm, with the individual catechins and caffeine in 

the samples being identified on retention times of the standards. 

3.8 Metabolite identification 

Spectral matching to the NIST11 commercial library (for GC-MS metabolites) and Bruker 

BBIOREFCODE (pH 7.0) and in-house pure compound spectral libraries (pH 7.4) (for 1H-

NMR metabolites) were used to identify the compounds. A level 2 identity was awarded 

when a spectral match of 80% similarity was achieved. A level 1 identity was awarded when 

the retention time or retention index of the GC-MS information matched that of standards 

(Schymanski et al., 2014) or 2D 1H-NMR information confirmed 1D 1H-NMR spectral 

identifications. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Proposed identification confidence levels in high resolution MS analysis. MS2 is intended to also 

represent any form of MS fragmentation (e.g. MSe, MSn) (Schymanski et al., 2014). 
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3.9 Determination of tea quality 

3.9.1 DNA extraction and quantification 

Fresh shoots comprising two leaves and a bud were randomly harvested from the parents, the 

Comm and NComm cultivars, and placed in zip-lock plastic bags containing dry silica gel, 

which served to absorb any surface moisture on the leaves; the silica gel had been oven dried 

for 48 hours at 70°C. Following this, the leaf samples were stored at −20°C prior to DNA 

extraction; an adapted (Gawel, 1991) method was employed. To quantify the amount of DNA 

in ng/µl for each sample, the NanoDrop spectrophotometer (NanoDropTechnologies, South 

Africa) was employed; the DNA integrity was ascertained using agarose gel electrophoresis 

(Adkins et al., 2007). 

3.9.2 DArTseq assay 

The DNA samples were sent to the Diversity Array Technology Pty Ltd. in Canberra, 

Australia where DArTseq analysis was performed; for DNA quality and digestibility analysis, 

restriction enzyme PstI were obtained from Fermentas, Burlington, Canada and EcoRI from 

Promega, Madison, USA. The DArTseq technique was conducted as documented in 

(Sansaloni et al., 2010) using PstI and MseI restriction enzymes. The markers were scored 

either 0 or 1, representing either the absence or the presence of a polymorphism in each 

samples genomic representation. 

3.9.3 Construction of linkage map 

A total of 6 588 DArTseq markers were obtained from the C. sinensis sequences, and 

employing the genomic DNA from TRFK 303/577 and GW Ejulu, and the 250 NComm 

cultivars, these were tested for segregation. JoinMap 4.0 software was then employed to 

analyse the derived genotyping data (Van Ooijen, 2006); an odds of logarithm (LOD) of 3–12 

and a recombination frequency of 0.4 was used to group the markers, with the distances 

between markers being ascertained using the Kosambi mapping function. To establish the 

LOD thresholds at the genome-wide level, 1000 permutations were run, with a p-value of p < 

0.05. 

3.9.4 QTL analyses 

To map QTL’s, MapQTL 6.0 software was employed with the first set of markers being 

chosen as cofactors from interval mapping results, while noteworthy markers were selected 

through backward exclusion. According to(Churchill and Doerge, 1994), 1000 permutations 
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are required to obtain a significant threshold to accurately accept the existence of a 

prospective QTL. The maximum LOD values score served to ascertain the position of QTL’s 

on each linkage group. The MapChart software was employed to indicate the location of each 

QTL for each phenotypic trait. 

3.9.5 Fast Adaptive Shrinkage Thresholding Algorithm (FASTA) files preparation 

The DArTseq marker sequences were derived from tag sequences linked to each DArTseq 

marker as documented by Koech et al., (2018). These were produced by Diversity Arrays 

Technology Pty. Ltd. (Canberra, Australia). FASTA files were then prepared by beginning 

with single line marker sequence descriptions, which were then followed by the sequence 

data. Each single line description was differentiated from sequence data through the use of 

“>” before the description.  

3.9.6 Basic Local Alignment Search Tool (BLAST) search  

All 1 421 DArTseq markers on LGs 1 to 15 were ran through a BLAST search, with marker 

tag sequences obtained from the DArTseq map being searched against the tea genome, using 

the BLASTN program. The %identity and E-value was used to select the best hit. The E-

value functioned as a determinant for the number of possible hits one may expect to obtain 

when searching a database with small E-values designating homology. The %identity 

indicated the proportion of residues, which were identical between the query and database hit 

sequences, with lengthy expanses of homology indicating a genuine match.  

3.9.7 Functional annotation and pathway assignment  

A functional annotation of the 1 421 DArTseq markers was conducted using the BLASTX 

search against the GenBank protein sequence database, with the E-value threshold set to 10-6 

(Conesa and Götz, 2008). The Blast2GO program version 3.2 was used for annotating and 

mapping GO terms. The GO terms linked to each BLAST hit were retrieved, and GO 

annotation assignment to the query sequences were conducted using the subsequent 

annotation score parameters; E-value Hit Filter (default=1.0E-6), Annotation Cut-Off (90), 

GO-Weight (default=5), Hsp-Hit Coverage Cut-Off (default=0). InterProScan, Blast2GO 

program online sequence search plugin, was used to query the contig sequences for conserved 

domains/motifs; all 13 applications were selected prior to the run. The resultant GO terms 

were then combined with the GO terms obtained from the Blast2GO annotation step. Lastly, 

KEGG mapping was used to ascertain metabolic pathways, with the Blast2GO sequences 

with matching evidence code (EC) numbers being mapped to the KEGG database.   
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3.10 RESULTS 

3.10.1 Genetic map construction 

The regression-based integrated map, which was generated, gave 15 linkage groups, with 

Figures 3.2, 3.3 and 3.4 showing the important groups; Tables 3.2, 3.3, 3.4 and 3.5 show 

corresponding information. The linkage map spanned a genetic distance of 1 260.1 cM, 

averaging a genetic marker locus distance of 1.1 cM. Each linkage group differed in size 

from the rest, with the smallest being LG 2 spanning 64.8 cM, and the largest, LG 9, 

spanning 160.1 cM. The number of markers on each LG ranged from 50 to 219 on LGs 1 and 

9 respectively, as shown in Table 3.1, with LG 9 having the highest marker density, 

averaging a locus distance of 1.4 cM; the rest of the LGs ranked lower with a marker density 

of 0.5-1.7 cM. DArT markers associated with the phenotypic traits of interest were detected 

on LG 14 generated from the GC-MS, LGs 1, 2, 5, 7, 11, 13 and 14 generated from the 1H-

NMR data, and LGs 1, 2, 4, 6, 7, 8, 9, 10, 12, 13, 14 and 15 generated from the UPLC data. 

The markers were clustered differently, with some LGs significantly less densely populated 

with markers than others. 

3.10.2 Phenotype segregation and QTL mapping 

The analysis of the GC-MS data revealed three putative QTLs; the 1H-NMR data revealed 11 

putative QTLs, and the UPLC data revealed 46 putative QTLs, within the 15 LGs linked with 

tea liquor quality through the use of Interval Mapping and Multiple QTL Model at a genome-

wide significance confidence level threshold of 5%. The logarithm of odds ratio (LOD) 

scores varied from 3.0 to 3.1 on the GC-MS data; 3.0 to 3.5 for the 1H-NMR QTLs, and 3.0 

to 4.1 on the UPLC data (Tables 3.2, 3.3 and 3.4). The phenotypic variation explained (PVE) 

expressed as a percentage by all QTLs for the traits of interest ranged between 5.1(catechin) 

to 96.3% (isoleucine) for the 1H-NMR QTLs; 6.1 (colour) to 97% (EGC) for the UPLC 

QTLs, and 4.6 (phloroglucinol) to 7.5% (xylonic acid) for the GC-MS QTL’s. Four 

metabolites, namely caffeine, catechin, EC and EGC were detected by both 1H-NMR and 

UPLC platforms. These were successfully mapped; it was however noted that they appeared 

on different LG, at different position and their %PVE differed. This is shown in Table 3.5. 
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Table 3.1: DArT markers distribution among the linkage groups.  

 

Linkage 

group 

Number of 

markers 

Total length covered 

(cM) 

Average distance 

between markers (cM) 

LG1 50 97.3 0.5 

LG2 107 64.8 1.7 

LG3 61 82.4 0.7 

LG4 98 70.1 1.4 

LG5 77 77.0 1.0 

LG6 65 82.6 0.8 

LG7 139 83.2 1.7 

LG8 100 68.3 1.5 

LG9 219 160.1 1.4 

LG10 114 81.9 1.4 

LG11 67 80.7 0.8 

LG12 83 77.5 1.1 

LG13 68 78.5 0.9 

LG14 83 79.2 1.0 

LG15 90 76.5 1.2 

Total 1421  1260.1 

Average  84 1.1 
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Table 3.2: GC-MS QTLs for arabinose, phloroglucinol, and xylonic acid identified in TRFK St 504 and TRFK St 524 tea cultivar samples. 

 

Traits QTL LG Position (cM) LOD threshold PVE (%) Marker 

Arabinose qArabinose 14 9.083 (9.083 - 9.367) 3.1 5.7 5125565 

Phloroglucinol qPhloroglucinol 14 30.666 3.1 4.6 5136609 

Xylonic Acid qXylonicAcid 14 64.378 (64.378 – 65.383) 3.0 7.5 5075568 

 

LG – Linkage group  

LOD – Logarithm of odds ratio 

PVE – Phenotypic variation explained  

QTL – Quantitative trait loci 

The LOD thresholds are determined by P < 0.05, and the basis of which, was permutation testing with n = 1 000. 
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Figure 3.2: Genetic map of C. sinensis, displaying GC-MS QTL locations for arabinose, phloroglucinol, and xylonic acid. The map ruler is scaled in cM. Each detected QTL 

e.g. caffeine, catechins are represented by different coloured bars and lines, which are indicative of 1-LOD and 2-LOD support intervals.  
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Table 3.3: NMR QTLs for caffeine, catechins, epicatechin, valine, isoleucine, chlorogenic acid, and acetic acid identified in TRFK St 504 and TRFK St 524 tea cultivar 

samples. 

 

Traits QTL LG Position (cM) LOD threshold PVE (%) Marker 

Acetic Acid qAcetic Acid 14 8.993 (8.993 - 16.426) 3.1 25.7 5109437 

Caffeine qCaffeine 1 37.158 (35.049- 37.158) 3.1 6.6 5109590 

Catechin qCatechin 1 0 (0 - 7.000) 3.0 5.1 5115373 

Chlorogenic Acid qChlorogenic Acid 11 16.971 3.3 6.3 5085772 

Epicatechin qEpicatechin 5 18.151 (11.749 - 18.151) 3.0 18.5 5132307 

Epigallocatechin qEpigallocatechin 13 64.77 (64.77 - 73.899) 3.1 5.4 5133837 

Isoleucine  qIsoleucine 7 

13 

62.78 

29.748 (29.748 - 36.683) 

3.5 

3.3 

7.5 

66.3 

5120311 

5070055 

Valine  qValine 2 

13 

14 

8.309 (6.818 - 8.309) 

19.195 (19.195 - 36.538) 

0 (0 - 5.465) 

3.2 

3.1 

3.0 

42.6 

8.1 

14.4 

5123739 

5016516 

5106853_E-26 

 

LG – Linkage group  

LOD – Logarithm of odds ratio 

PVE – Phenotypic variation explained 

QTL – Quantitative trait loci 

The LOD thresholds are determined by P < 0.05, and the basis of which, was permutation testing with n = 1 000.
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Figure 3.3: Genetic map of C. sinensis, displaying 1H-NMR QTL locations for Acetic acid, Caffeine, Catechin, Chlorogenic acid, Epicatechin, Epigallocatechin, Isoleucine 

and Valine. The map ruler is scaled in cM. Each detected QTL e.g. caffeine, valine are represented by different coloured bars and lines, which are indicative of 1-LOD and 2-

LOD support intervals. 
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Table 3.4: UPLC QTLs for caffeine, catechins, epicatechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, theaflavins, tea taster’s scores and the % RWC 

identified in TRFK St 504 and TRFK St 524 tea cultivar samples. 

 

Traits QTL LG Position (cM) LOD threshold PVE (%) Marker 

Caffeine qCaffeine 2 

4 

7 

8 
13 

14 

50.9 (50.2 - 51.5) 

68.6 (63.1 - 70.1) 

48.1 (34.7 - 50.4) 

18.8 (16.8 - 26.0) 
29.7 (23.7 - 36.5) 

5.465 (0 - 5.465) 

3.3 

3.2 

3.2 

3.3 
3.1 

3.3 

6.0 

6.7 

6.6 

6.7 
8.1 

6.4 

5064585 

5112599 

5064391 

5134558 
5088162 

5123053 

Catechin qCAT 2 

4 

8 

12 

13 

14 

0 (0 - 2.4) 

30.3 (29.9 - 30.3) 
12.5 (12.5 - 12.9) 

42.9 (36.0 - 54.1) 

50.6 (48.6 - 58.7) 

60.7 (47.7 - 61.1)  

3.2 

3.3 

3.3 

3.1 

3.0 

3.2 

6.4 

55.6 

5.6 

10.3 

6.9 

6.9 

5135436 

5063001 

5130194 

5123751 

5111268 

5132370  

Epicatechin qEC 2 

15 

2.2 (0 - 8.3) 

25.4 (20.6 - 25.4)  
3.3 

3.3 

7.0 

7.6 

5072338 

5085963  
Epicatechin gallate qECg 1 

4 
6 

10 

12 

13 

15 

96.4 (96.4 - 97.3) 

17.7 (13.9 - 37.2) 
56.8 (56.5 - 56.9) 

20.6 (20.1 - 25.5) 

50.4 (50.1 - 50.4) 

50.6 (48.6 - 58.7) 

75.1 (75.1 - 76.5)  

3.0 

3.4 
3.1 

3.3 

2.9 

3.1 

3.3 

11.7 

8.0 
6.7 

8.0 

23.1 

6.4 

7.2 

5128890 

5087113 
5098382 

5136108 

5136790 

5088162 

5111164  
Epigallocatechin  qEGC 1 

2 

4 

6 

12 

13 

14 

87.1 (84.4 - 88.6) 

7.8 (7.8 - 7.9) 

27.2 (27.2 - 28.9) 

66.4 (56.5 - 72.4) 

42.9 (42.9 - 54.1) 

50.6 (48.6 - 58.7) 

60.7 (60.7 - 63.1)  

3.0 

3.2 

3.3 

3.1 

3.0 

3.1 

3.1 

5.8 

5.5 

56.6 

7.2 

8.6 

6.4 

6.9 

5133866 

5124128 

5123475 

5073424 

5123751 

5136623 

5132791  

Epigallocatechin 
gallate  

qEGCg 4 
12 

15 

37.2 (28.9 - 38.6) 
48.2 (36.9 - 49.7) 

32.1 (17.1 - 33.6) 

3.4 
3.0 

3.3 

24.1 
7.2 

6.5 

5087017 
5104630 

5114089 



103 

 

Theaflavin 1  qTF1 2 

6 

4.5 (4.5 - 5.4) 

69.6 (69.6 - 75.1)  

3.1 

4.1 

5.8 

7.9 

5084595 

5136045  

Theaflavin 2  qTF2 2 4.5 (1.2 - 

5.4)  
3.1 7.0 5084595 

Colour  qCL 7 72.7 

(72.7 - 

72.7) 

3.0 6.5 5132432 

Brightness qBRT 14 71.046 

(65.383-

71.046)  

3.4 6.8 5125626 

Astringency  qAST 1 

9 

96.7 

(88.8 - 

97.3) 
87.6 

(87.6)  

3.0 

3.2 

9.1 

6.6 

5135087 

5123950  

Briskness  qBRK 1 

9 

13 

96.7 

(89.2 - 

97.3) 

87.6 

(87.6) 

61.582 

(61.582) 

3.0 

3.6 

3.0 

7.3 

7.4 

7.3 

5115441_E-26 

5123950 

5114985  

Aroma  qAR 4 

10 

68.6 

(68.6) 

28.7 

(26.9 - 
29.0)  

3.0 

3.2 

6.4 

7.0 

5112599 

5128967 

%RWC  qRWC 2 

6 

9 

60.9 

(56.9 - 

60.8) 

66.2 

(66.2 - 

66.2) 

6.7 (6.2 - 

6.7)  

3.2 

3.3 

3.9 

7.3 

5.7 

6.9 

5136794 

5082606 

5130531  

Average    3.2 9.9  
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%RWC – percent relative water content 

LG – Linkage group  

LOD – Logarithm of odds ratio 

PVE – Phenotypic variation explained 

QTL – Quantitative trait loci 

The LOD thresholds are determined by P < 0.05, and the basis of which, was permutation testing with n = 1 000. 
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Figure 3.4: Genetic map of C. sinensis, displaying UPLC QTL locations for Caffeine, Catechins, Theaflavins, and tea taster’s scores. The map ruler is scaled in cM. Each 

detected QTL e.g. caffeine, catechins are represented by different coloured bars and lines, which are indicative of 1-LOD and 2-LOD support intervals. 
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Table 3.5: The differences between 1H-NMR and UPLC QTL markers. 

 
1H-NMR QTL LG Position PVE (%)  UPLC QTL LG Position PVE (%) 

Caffeine 1 37.1 6.6  Caffeine 2 

4 

7 

8 

13 

14 

50.9 (50.2 - 51.5) 

68.6 (63.1 - 70.1) 

48.1 (34.7 - 50.4) 

18.8 (16.8 - 26.0) 

29.7 (23.7 - 36.5) 

5.465 (0 - 5.465) 

6.0 

6.7 

6.6 

6.7 

8.1 

6.4 

Catechin 1 7.1 5.1  Catechin 2 

4 

8 

12 

13 

14 

0 (0 - 2.4) 

30.3(29.9 - 30.3) 
12.5 (12.5 - 12.9) 
42.9 (36.0 - 54.1) 

50.6 (48.6 - 58.7) 

60.7 (47.7 - 61.1) 

6.4 

55.6 

5.6 

10.3 

6.9 

6.9 

Epicatechin 5 18.5 18.5  Epicatechin 2 

15 

2.2 (0 - 8.3) 

25.4 (20.6 - 25.4) 

7.0 

7.6 

Epigallocatechin 13 64.7 5.4  Epigallocatechin 1 

2 

4 

6 

12 

13 

14 

87.1 (84.4 - 88.6) 

7.8 (7.8 - 7.9) 

27.2 (27.2 - 28.9) 

66.4 (56.5 - 72.4) 

42.9 (42.9 - 54.1) 

50.6 (48.6 - 58.7) 

60.7 (60.7 - 63.1) 

5.8 

5.5 

56.6 

7.2 

8.6 

6.4 

6.9 

 

LG – Linkage group  

LOD – Logarithm of odds ratio 

PVE – Phenotypic variation explained 

QTL – Quantitative trait loci 
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Table 3.6: Functional annotation of putative candidate genes in GC-MS related linkage groups of C. sinensis on reference tea genome. 

 

Nr QTL Parent DArTseq 

Marker 

LG Position (cM) LOD PVE (%) E-value Annotated protein Function 

           

1  qArabinose TRFK 

303/577, GW 

Ejulu  

5125565 14  9.1 3.1  5.7  4.0E-23  ['PB1 domain', 

'RWP-RK domain']  

Abiotic stress  

2  qPhloroglucinol TRFK 
303/577, GW 

Ejulu  

5136609 14  30.7 3.1  4.6  5.0E-13  ['PB1 domain', 
'RWP-RK domain'] 

Abiotic stress  

3  qXylonicAcid GW Ejulu  5075568  14 64.4  3.0  7.5  2.0E-12  ['Pectinesterase'] Drought 

response  
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Table 3.7: Functional annotation of putative candidate genes in 1H-NMR related linkage groups of C. sinensis on reference tea genome. 

 

Nr QTL Parent DArTseq Marker LG Position 

(cM) 

LOD PVE (%) E-value Annotated 

protein 

Function 

           

1  qAcetic Acid TRFK 303/577, 

GW Ejulu  

5109437 14 8.9 3.1 25.7 2.0E-25  ['Protein of 

unknown 

function 
(DUF677)'] 

 -  

2  qCaffeine TRFK 303/577, 

GW Ejulu  

5109590 1 37.2 3.1 6.6 2.0E-25  ['Peptidase 

C65 

Otubain']  

Modification 

of cellular 

proteins  

3  qCatechin GW Ejulu  5115373 1 7.0 3.0 5.1 1.0E-19  ['Histone 

acetyltransfer

ase subunit 

NuA4']  

Drought 

response  

4  qChlorogenic 

Acid 

TRFK 303/577, 

GW Ejulu  

5085772 11 16.9 3.3 6.3 6.0E-25  ['Peptidase 

C65 

Otubain']  

Modification 

of cellular 

proteins  

5  qEpicatechin TRFK 303/577, 

GW Ejulu  

5132307 5 18.2 3.0 18.5 3.0E-08  ['Peptidase 

family M3']  

Abiotic stress  

6  qEpigallocatechin TRFK 303/577  5133837 13 64.8 3.1 5.4 9.0E-18  ['PB1 

domain', 

'RWP-RK 
domain'] 

Abiotic stress 

7 qIsoleucine TRFK 303/577, 

GW Ejulu 

5120311 

 

7 

 

62.8 3.5 7.5 5.0E-16 ['ABC 

transporter 

transmembra

ne region 2', 

'ABC 

transporter'] 

Transport 

protein 

  TRFK 303/577 5070055 13 29.7 3.3 66.3 4.0E-23 ['Alcohol 

dehydrogenas

e GroES-like 

domain', 

'Zinc-binding 

Carbohydrate 

metabolism 
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dehydrogenas

e'] 

8 qValine TRFK 303/577, 

GW Ejulu 

5123739 

 

2 

 

8.3 3.2 42.6 2.0E-6 ['C1-like 

domain'] 

- 

  TRFK 303/577, 

GW Ejulu 

5016516 13 

 

19.2 3.1 8.1 3.0E-17 ['Amino acid 

kinase 

family'] 

Nitrogen 

Assimilation 

  TRFK 303/577, 

GW Ejulu 

5106853_E-26 14 5.5 3.0 14.4 9.0E-21 [' Domain of 

unknown 

function 
(DUF4217)']  

 - 
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Table 3.8: Functional annotation of putative candidate genes in UPLC-DAD related linkage groups of C. sinensis on reference tea genome. 

 

Nr QTL Parent DArTseq 

Marker 

LG Positio

n (cM) 

LOD PVE 

(%) 

E-value Annotated protein Function 

           

1  qECga  TRFK 303/577, GW 

Ejulu  

5128890  1  96.4  6.8  11.7  2.0E-25  ['Actin']  Abiotic stress  

2  qECa  TRFK 303/577, GW 

Ejulu  

5072338  2  2.2  4.1  5.6  2.0E-25  ['Peptidase family M3']  Abiotic stress  

3  qEGCa  GW Ejulu  5124128  2  7.7  3.2  6.8  2.0E-18  ['Kinesin motor domain']  Transport protein  

4  qCaffeineb  TRFK 303/577, GW 
Ejulu  

5064585  2  50.9  3.4  5.8  6.0E-25  ['Peptidase C65 Otubain']  Modification of cellular 
proteins  

5  qECga  TRFK 303/577, GW 

Ejulu  

5097659  4  17.1  4.6  7.8  1.0E-07  ['Rpp14/Pop5 family']  -  

6  qECga  TRFK 303/577  5087113  4  17.7  4.7  22.9  6.0E-22  ['impB/mucB/samB family']  UV protection through DNA 

repair  

7  qECa  GW Ejulu  5134490  4  26.4  12.6  43.7  3.0E-08  ['Aminotransferase class I and II']  Phenylalanine, tyrosine and 

tryptophan biosynthesis  

8  qEGCga  GW Ejulu  5134853  4  37.6  14.9  45.1  2.0E-06  ['Diacylglycerol kinase catalytic 

domain']  

Abiotic stress  

9  qTF1a  TRFK 303/577, GW 

Ejulu  

5106352  4  26.0  14.7  45.6  2.0E-06  ['Thiolase, C-terminal domain']  Benzoic acid biosynthesis  

10  qECa  GW Ejulu  5123475  4  27.2  14  51.5  1.0E-10  CSA016461  -  

11  qEGCa  GW Ejulu  5123475  4  27.2  3.7  51.5  1.0E-10  CSA016461  -  

12  qECa  TRFK 303/577  5119221  4  32.7  3.1  53.8  1.0E-19  ['Histone acetyltransferase subunit 

NuA4']  

Drought response  

13  qEGCga  TRFK 303/577  5119221  4  20.6  3.3  53.8  1.0E-19  ['Histone acetyltransferase subunit 

NuA4']  

Drought response  

14  qEGCa  TRFK 303/577, GW 

Ejulu  

5136058  4  27.6  46.1  54.1  1.0E-07  ['Autophagy-related protein 11']  Abiotic stress  

15  qTF4a  TRFK 303/577, GW 

Ejulu  

5136058  4  27.6  14.8  54.1  1.0E-07  CSA024230  -  

16  qCaffeineb  TRFK 303/577, GW 

Ejulu  

5114692  4  68.6  3.8  6.1  4.0E-23  ['BT1 family']  Transport protein  

17  qCATb  TRFK 303/577  5119221  4  32.7  3.1  2.3  1.0E-19  ['Histone acetyltransferase subunit 
NuA4']  

Drought response  
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18  qECga  TRFK 303/577  5136985  6  26.4  5.1  5.3  6.0E-28  ['KOW motif']   

19  qTF1a  TRFK 303/577  5136045  6  69.6  4.5  6.9  6.0E-19  ['Catalase']  Abiotic stress  

20  qECgb  TRFK 303/577, GW 

Ejulu  

5108503  6  56.5  4.8  8.2  2.0E-27  ['DnaJ domain']  Drought response  

21  qECgb  GW Ejulu  5098382  6  56.9  4  8.7  6.0E-19  ['Asparagine synthase, Glutamine 

amidotransferase domain']  

Nitrogen mobilization  

22  qRWCb  TRFK 303/577  5082606  6  66.2  3.3  5.7  9.0E-21  ['Alpha adaptin AP2']  Abiotic stress  

23  qCaffeineb  GW Ejulu  5064391  7  48.1  3.7  6  2.0E-27  ['Lipase (class 3)']  Lipid degradation, 

esterification and 

transesterification processes  

24  qCaffeineb  TRFK 303/577, GW 

Ejulu  

5134558  8  18.8  3.9  7.5  9.0E-24  ['Nitronate monooxygenase']  Catabolic or anabolic 

pathways  

25  qRWCb  TRFK 303/577, GW 

Ejulu  

5130531  9  6.7  4  7  7.0E-06  ['MatE']  Drought response, 

Sequestration  
of proanthocyanidins  

26  qTF2a  TRFK 303/577, GW 

Ejulu  

5128967  10  28.7  3.5  7  2.0E-25  ['Acyl-CoA oxidase']  Lipid catabolism and plant 

hormone biosynthesis  

27  qECga  GW Ejulu  5072021  10  25.5  4.3  7.5  8.0E-09  ['ATPase family associated with 

various cellular activities (AAA)']  

Heat stress response  

28  qECgb  GW Ejulu  5136108  10  20.6  4.8  5.7  1.0E-10  ['Protein kinase domain']  Abiotic stress  

29  qECgb  TRFK 303/577, GW 

Ejulu  

5124207  10  20.4  3.1  5.3  8.0E-12  ['Acyltransferase']  Phenylpropanoid and 

Shikimate pathway  

30  qEGCga  TRFK 303/577  5088456  12  47.9  3.9  9.8  4.0E-23  ['Protein kinase domain']  Abiotic stress  

31  qCATa  GW Ejulu  5136077  12  42.8  6.6  11.2  5.0E-13  CSA026168  -  
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32  qEGCa  GW Ejulu  5136077  12  42.8  5.6  11.2  5.0E-13  CSA026168  -  

33  qCATa  TRFK 303/577, GW 

Ejulu  

5123751  12  43.0  6.1  11.5  2.0E-18  ['Bromodomain']  Scaffolding proteins  

34  qEGCa  TRFK 303/577, GW 

Ejulu  

5123751  12  43.0  14.9  11.5  2.0E-18  ['Bromodomain']  Scaffolding proteins  

35  qCaffeineb  TRFK 303/577, GW 

Ejulu  

5088162  13  29.7  4.7  5.4  6.0E-28  ['PA domain']  -  

36  qCATb  TRFK 303/577  5103784  13  50.6  3.8  6.1  8.0E-12  CSA003424  -  

37  qCATb  TRFK 303/577  5122899  13  50.5  3.8  6  6.0E-19  CSA033214  -  

38  qCATb  TRFK 303/577, GW 
Ejulu  

5133009  13  48.6  3.6  5.8  1.0E-16  ['Adaptor complexes medium 
subunit family']  

-  

39  qCATb  TRFK 303/577  5122899  13  50.5  3.8  6  6.0E-22  ['Protein kinase domain']  Abiotic stress  

40  qCATb  TRFK 303/577  5122899  13  50.5  3.8  6  2.0E-21  ['14-3-3 protein']  Abiotic stress  

41  qCATb  TRFK 303/577  5122899  13  50.5  3.8  6  2.0E-21  ['NB-ARC domain']  Disease resistance  

42  qCATb  TRFK 303/577  5122899  13  50.5  3.8  6  2.0E-21  ['Pectinesterase']  Drought response  

43  qCATb  TRFK 303/577  5122899  13  50.5  3.8  6  1.0E-16  ['2OG-Fe(II) oxygenase 
superfamily']  

Abiotic stress  

44  qCATb  TRFK 303/577, GW 

Ejulu  

5111268  13  50.6  4.1  7.2  6.0E-28  ['WD domain']  Transport protein  
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45  qCATb  TRFK 303/577, GW 

Ejulu  

5123751  13  58.1  4.1  6.5  4.0E-23  ['Transmembrane amino acid 

transporter protein']  

Abiotic stress  

46  qECgb  TRFK 303/577, GW 

Ejulu  

5088162  13  50.6  3.7  5.4  6.0E-28  ['PA domain']  -  

47  qEGCb  TRFK 303/577, GW 

Ejulu  

5123751  13  50.6  3.7  6.5  4.0E-23  ['Transmembrane amino acid 

transporter protein']  

Abiotic stress  

48  qEGCa  GW Ejulu  5116677  14  63.1  4.1  5.2  6.0E-28  CSA002263  -  

49  qEGCa  GW Ejulu  5116677  14  63.1  4.1  5.2  3.0E-11  ['Armadillo/beta-catenin-like 

repeat']  

Heat stress response  

50  qBRTa  TRFK 303/577  5122986  14  65.4  3.7  7.5  7.0E-06  ['Glycosyl hydrolase family 9']  Phenylpropanoid pathway  

51  qCATb  -  5132370  14  60.7  4.1  2.5  1.0E-10  ['Glutaminyl-tRNA synthetase']  Chlorophyll biosynthesis  

52  qECgb  GW Ejulu  5111164  15  75.1  4.2  7.2  1.0E-07  ['Isocitrate/isopropylmalate 

dehydrogenase']  

Abiotic stress  

53  qEGCgb  TRFK 303/577, GW 

Ejulu  

5114089  15  32.1  3.8  6.8  8.0E-12  ['Cytochrome P450']  Biotic and abiotic stresses  

 
 

a Putative QTL identified based on Interval Mapping with LOD>3.0  

b Putative QTL identified based on Multiple QTL Model Mapping with LOD>3.0  

QTL - Quantitative trait loci; LG - Linkage group; LOD - Logarithm of odd ration; cM - Centi-morgan, CAF - Caffeine, CAT - Catechin, EC - Epicatechin, ECg - 

Epicatechingallate, EGC - Epigallocatechin, EGCg - Epigallocatechin gallate, TF1 - Theaflavin, TF4 - Theaflavin-3,3’-digallate, BRT - Brightness,%RWC - Percent relative 

water content   
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3.11 DISCUSSION AND CONCLUSION 

Metabolomics can be employed as a “competent tool” by tea breeders to aid them in the 

selection and improvement process for good tea cultivars. Yield and quality are some of the 

traits of interest that have been documented in literature to be significantly influenced by 

several QTLs (Kamunya et al., 2010). It is also these traits that farmers are keen on, as they 

get paid more for high quality, high yield teas; an enhancement in these attributes increase/ 

improve their competitiveness not only in the local, but also in the global market. As 

mentioned earlier, this present study served to identify molecular markers capable of being 

used in MAS, and in so doing, shorten both the development and commercialisation stages of 

choice varieties, instead of waiting for periods of up to 20 years to develop new cultivars 

through conventional breeding and clone selection. Furthermore, this study, being the first of 

its kind, presents opportunities for the exploration of further QTL analysis of different tea 

populations. As mentioned, the metabolites from the 310 samples of green tea obtained from 

the TRI in Kenya were ascertained using GC-MS, 1H-NMR and UPLC metabolomics 

platforms; 60 were the Comm cultivars and 250 of these were the NComm cultivars. The 1H-

NMR results indicate that levels of caffeine, catechin, EC and EGC were higher in the Comm 

cultivars as compared to the NComm cultivars. The 1H-NMR further detected the amino 

acids valine and isoleucine. These were found to be higher in the cultivars that were also 

established to be DT, and were rich in catechins. Cultivars rich in catechins have been shown 

to be of a higher quality, as was documented in a study on the Arabidopsis plants and their 

metabolic responses to drought stress (Arbona et al., 2003). A study on Poplar trees further 

showed that isoleucine levels were up-regulated in the DT Poplar trees than in the DS under 

drought stress (Hamanishi et al., 2015). This is in agreement with the results obtained in this 

study. Lastly, the UPLC results show that caffeine, catechin, EC, theaflavin, theaflavin-3’-

gallate and theflavin-3,3’-digallate were variable importance in projection (VIP) metabolites 

responsible for distinguishing between the Comm and NComm cultivars. Correlations have 

been documented in literature between the umami taste found in tea and the metabolites 

aspartic acid, asparagine, and theanine, while further correlations have been seen between the 

traits bitterness and astringency with arabinofuranose (Wei et al., 2014), EC, ECg, EGC, 

EGCg and gallic acid (Robichaud and Noble, 1990), mannose (He et al., 2015) and 

theobromine (Bonvehi and Coll, 1997). According to literature, fresh green tea leaves contain 

trace amounts of gallic acid, which then accumulates during auto-oxidation in the 
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manufacturing process of black tea as a result of galloyl ester breakdown from the catechins 

and theaflavin gallates. The high levels of gallic acid in some cultivars has been attributed to 

corresponding high levels of gallated catechins, which result in the generation and 

consequent degradation of the theaflavins. During black tea manufacture, theaflavic acids are 

formed, and these in turn oxidize the gallocatechins EGC and EGCg, releasing gallic acid 

(Kerio et al., 2013). Therefore cultivars rich in gallic acid can be postulated to be rich in 

gallocatechins, responsible for tea liquor taste. It has been documented that EGCg and ECg 

are principal taste metabolites in tea, which are responsible for tea astringency, while caffeine 

is responsible for bitterness (Xu et al., 2018). Furthermore theaflavins, in black tea, catechins, 

caffeine and glycosidic flavonoids have been shown to serve as metabolomic markers which 

distinguish high quality teas from the low quality teas (Wang and Ruan, 2009), influencing 

the price of tea at auctions. The gallated catechins EGC and EGCg significantly contribute to 

the generation of theaflavins in black tea. As such, tea cultivars high in EGC and EGCg 

concentrations can, through breeding programs, be developed to enhance the quality of 

resultant black tea. It has been reported that the ratio of di-hydroxyl flavan-3-ols to tri-

hydroxyl flavan-3-ols impacted the quality of black tea; high quantities of simple catechins 

such as catechin, EC and ECg compared to the gallo-catechins EGC and EGCg, results in 

higher amounts of theaflavin (Ellis and Nyirenda, 1995). Therefore it is evident that the 

cultivars with higher catechin content produce high quality green and black tea. From the 

results obtained in the present study, the NComm cultivars, with higher catechin content 

correlate to the organoleptic results obtained independently from the tea taster, which agrees 

with literature. Furthermore, astringency, another trait considered and ascertained by the tea 

taster, is greatly influenced by theaflavin digallate, which is approximated to be 6.4 times 

more astringent than theaflavin, while also being 2.88 times more astringent than both 

theaflavin-3-monogallate and theaflavin-3’-monogallate (Obanda et al., 2001). According to 

Wright et al., (2002), to generate a single molecule of theaflavin necessitates a dihydroxy and 

a trihydroxy flavan-3-ol as shown below: 

EC + EGC = Theaflavin; 

EC + EGCg = Theaflavin-3-gallate; 

ECg + EGC = Theaflavin-3’-gallate; 

ECg + EGCg = Theaflavin-3,3’-digallate (Wright et al., 2002). 
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The interrelation between catechins and TFs content with respect to tea quality was 

extensively studied, with focus on aroma, astringency, brightness, briskness, and colour. 

Although the organoleptic results indicate a positive correlation between caffeine and 

catechin content, and quality, they were not convincing. This could be a result of a 

degradation of the aromatic compounds during storage, and prior to the time of organoleptic 

evaluation, leading to flat tea. Thearubigin, TF/TR ratio and sensory scores have been 

documented to significantly decrease with sample storage time (Sedaghathoor et al., 2013). A 

significant correlation was observed between the individual sensory traits studied i.e. aroma, 

astringency, brightness, briskness, and colour, comparable to that obtained by (Owuor et al., 

2006b), with no noteworthy correlation between non-gallated theaflavins and the sensory 

traits, with the exception of the tea liquor brightness. These abovementioned significant 

correlations are indicative of phenotypic traits controlled by linked genes. It is for this reason 

that the enhancement of one phenotypic trait may result in the enhancement of the rest of the 

phenotypic traits under investigation. 

The construction of genetic linkage maps is an important requisite for QTL identification of 

agronomically significant genes such as those responsible for yield and quality, which are 

influential in the development of better-quality cultivars. Similar to the maps obtained by 

Taniguchi et al., (2012) of 1298 and 1305 cM, and Ma et al., (2014) of 1143.5 cM, the map 

obtained in this study was a total length of 1260.1 cM with 1421 markers. This study 

produced 15 linkage groups, an indication of genome saturation, with n = 15. The restriction 

enzymes PstI (CTGCAG) and MseI (CCGG) performed optimally, with 16,382 DArTseq 

attained; there was however a gap of more than 20 cM between adjacent markers on LG06 

and LG15. This may be due to genome regions which correspond to gap regions in the 

genetic map; further research needs to be conducted to fill in the gaps in the genetic map used 

in the current study. The markers mapped in this study are spread over the 15 LGs with 

marker densities extending from 0.5 to 1.7 cM. A recommended marker density of less than 

10 cM is required for genome-wide QTL mapping (Doerge, 2002; Taniguchi et al., 2012); the 

map contrived and used in this study is therefore ideal for QTL identification. In total, for the 

GC-MS data, one arabinose, one phloroglucinol, and one xylonic acid were derived, with the 

%PVE ranging from 4.6 to 7.5 (Table 3.2) and averaging 5.9%. One acetic acid, one caffeine, 

three catechins (one catechin, one EC and one EGC), one chlorogenic acid, four amino acids 

(one isoleucine and three valines) were detected using the 1H-NMR derived data, with the 

%PVE by each QTL varying from 5.1 to 96.3%, with an average of 34.4% (Table 3.3). 
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Lastly, six caffeine, 25 catechins, three theaflavins, nine organoleptic scores and three 

%RWC QTLs were identified, with a %PVE varying between 5.5 to 56.6%, and averaging 

9.9% (Table 3.4). The high PVE displayed by the 1H-NMR QTLs acetic acid, epicatechin, 

isoleucine and valine, and the UPLC QTLs caffeine, catechins, theaflavins, organoleptic 

scores, and %RWC suggests that these attributes could possibly be controlled by critical 

genes. The sample size of 250 employed in this study was comparable to that of 300 used in 

the study entitled “construction of a SSR-based genetic map and identification of QTLs for 

catechins content in tea plant” (Ma et al., 2014). In addition to the QTLs for catechins 

obtained across the 1H-NMR and UPLC platforms, the current study also incorporated QTLs 

for acetic acid, caffeine, chlorogenic acid, isoleucine and valine from 1H-NMR, and 

arabinose, phloroglucinol and xylonic acid from GC-MS, which influence the quality of tea. 

As shown above in e.g. Figure 3.3, some linkage groups such as LG 13 have several QTLs i.e 

QTLs for EGC, isoleucine, and valine. This is indicative that the regions of the chromosomes 

contain multifunctional genes concomitant with amino acid and catechin production and 

accretion; this is worthy of further investigation. Moreover, it was interesting to note that the 

QTLs associated with caffeine, catechin, EC and ECg from both 1H-NMR and UPLC were 

located on different LGs, and at different positions on the chromosome, with different %PVE 

(Table 3.5). This clearly indicates that the genes concomitant with the manufacture and 

accretion of these metabolites are sparsely situated in different chromosomal regions. The 

GC-MS and 1H-NMR results were obtained from an untargeted approach, whereas the UPLC 

results were obtained from a targeted approach. It has been documented extensively in 

metabolomics literature that a targeted approach always yields better results than an 

untargeted one. In the case of a targeted approach, the peaks were confidently identified 

based on the matching of their retention times and UV sectra to that of pure standards. In the 

case of the GC-MS and 1H-NMR, peaks may have been incorrectly identified, even if their 

identities were based on in-house and online metabolite databases; without the pure standards 

to corroborate, a likelihood of misidentification exists. This could be the reason why some 

metabolites e.g. caffeine are found on different LGs. In future works, pure standards for the 

identified metabolites from an untargeted approach will be purchased and run to confirm the 

identiy. It must also be noted that the sample size of 310 employed in the mapping population 

employed in the study for the 1H-NMR was too small, as compared to the samples sizes 

employed in other similar studies, which had sample sizes of upto 3861 and 4630 

respectively (Raffler et al., 2015; Son et al., 2008). Further work will have to be conducted to 
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confirm these QTLs for MAS to avoid any possible overestimation of the QTL effects, 

decreasing the statistical power for detection of QTLs possessing lesser effects. 1H-NMR is a 

semi-quantitative technique and as such a large sample size is required to minimise obtained 

variation within samples. Thus for future works, an increased sample size for population 

mapping is required, to ensure better estimations of QTL loci and effect. Furthermore, the 

differences obtained could be a result of complications faced during the sample preparation 

and analysis. As indicated in the materials and methods section, the samples were placed in 

zip-locked bags before storing at 4°C; during transfer of the samples into test tubes for 

analyses, different amounts of samples were transferred due to static experienced between the 

samples and the plastic zip-locked bags. As such further variation was added, which could 

have affected the final concentrations obtained and subsequently the detected QTL positions 

per LG. In future studies, glass polytop vials will be used to avoid this variation being added. 

Literature has documented the significant impact the environment has on the accuracy of 

QTL detection. This is due to the fact that certain environment-specific QTLs tend to express 

differently when in different environments; this thus makes such QTLs problematic to 

employ when breeding for the development of functional traits (Ma et al., 2014).  

The GC-MS putative QTLs, qArabinose, qPhloroglucinol, and qXylonic acid, and the 1H-

NMR qEpigallocatechin, in the present study were annotated RWP-RK protein domain, 

which function in aiding the tea plant against abiotic stress, particularly drought stress (Table 

3.6). The RWP-RK protein family are transcription factors which mediate DNA binding. This 

family’s functional analysis revealed several RWP-RK proteins to possess key roles in 

regulating nitrogen availability in e.g. Arabidopsis during stress conditions (Chardin et al., 

2014). In the present study, QTLs qCaffeine and qChlorogenic acid, were annotated 

peptidase C65 Otubain proteins. This family of proteins has been reported to be a very 

precise ubiquitin iso-peptidase, functioning to remove ubiquitin from proteins. The ubiquitin 

protein modification is a significant event that causes/ increases protein stability and function 

in eukaryotic cells; the process is dynamic and reversible (Balakirev et al., 2003). These 

proteins therefore modify cellular proteins in response to abiotic and biotic stress, aiding the 

tea plant to cope, and survive. The 1H-NMR putative QTL, qValine, was annotated an amino 

acid kinase protein. The synthesis of essential amino acids such as lysine and threonine in 

plants, is primarily controlled by the feedback inhibition of the kinase proteins 

aspartate kinase and dihydrodipicolinate synthase. Furthermore, the control of carbon 

fixation and nitrogen assimilation, and the regulation of carbon and nitrogen into amino acids 

https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Lysine
https://en.wikipedia.org/wiki/Threonine
https://en.wikipedia.org/wiki/Aspartate
https://en.wikipedia.org/wiki/Synthase
https://en.wikipedia.org/wiki/Carbon_fixation
https://en.wikipedia.org/wiki/Carbon_fixation
https://en.wikipedia.org/wiki/Nitrogen
https://en.wikipedia.org/wiki/Regulation
https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Amino_acids
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during stress conditions is also regulated by this family of proteins. The metabolic regulation 

of the aspartate kinase gene expression in Arabidopsis was studied by Kochhar et al., (1998) 

who revealed that aspartate conversion into storage amino acid asparagine was subject to 

reciprocal metabolic control, and that this branch point was a part of a greater nitrogen and 

carbon regulatory mechanism to enable to the plant to store and utilise these during stress. 

The putative QTL, qIsoleucine, was annotated as GroES-like zinc-binding alcohol 

dehydrogenase family protein (Table 3.7). These have been shown to function in 

carbohydrate metabolism. Nyarukowa et al., (2016) reported that drought tolerant tea 

cultivars had higher levels of carbohydrates than their drought susceptible counterparts. The 

tolerant cultivars were able to effectively metabolise carbohydrates, providing the plants with 

energy to “combat” the drought stress conditions. This could explain why this protein was 

identified in the drought tolerant TRFK 303/577 parental clone. 

According to Punyasiri et al., (2004) and Vankatesh et al., (2007), the biosynthetic pathway 

for C. sinensis flavonoids begins with the deamination of phenylalanine to produce trans-

cinnamic acid. Trans-cinnamic acid is in turn oxidised to give p-coumaric acid, which then 

forms p-coumaroyl-CoA. The pivotal step in the flavonoid biosynthetic pathway involves the 

enzyme chalcone synthase, which catalyses the condensation reaction of p-coumaroyl-CoA 

and malonyl-CoA to produce chalcone; chalcone isomerisation produces (2S)-flavonones. 

The identification of the CAT putative QTL for 2-ODDs superfamily protein in both the 1H-

NMR and UPLC/DAD results further validates previously reported literature findings about 

the 2-ODDs function in flavonoid biosynthesis. The 2-ODDs are non-heme proteins involved 

in reactions such as C-C bond cleavage, epimerisation, fragmentation, hydroxylation, and 

ring formation. These 2-ODDs catalyse the formation of flavonoid subclasses, namely (2S)-

flavonones which, through a hydroxylation process, are transformed to dihydroflavonols. The 

formed dihydroflavonols then serves as a substrate for flavonol synthase, which competes 

with dihydroflavonol 4-reductase to produce anthocyanidins, flavonols, and procyanidins 

(Table 3.8).  

Histone acetyltransferases were identified in the results of this study (1H-NMR and UPLC). 

These enzymes are critical in the histone acetylation of chromatin in plants, which is vital in 

the epigenetic control of gene expression. Acetyl group transfer to core histone tails by 

histone acetyltransferases, facilitates the transcription of key genes involved in plant drought 

response and abscisic acid signalling e.g. in Arabidopsis thaliana (Kim et al., 2008) and rice 

(Fang et al., 2014). In a study by Kim et al., (2015), it was reported that the changes in 

https://en.wikipedia.org/wiki/Metabolism
https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Arabidopsis_thaliana
https://en.wikipedia.org/wiki/Asparagine
https://en.wikipedia.org/wiki/Gene_regulation
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histone modification could be correlated with the up-regulation of genes involved in drought 

stress-response. The putative QTLs for catechin (qCatechin in 1H-NMR and qCAT in UPLC), 

qEC, and qEGCg in the present study were annotated histone acetyltransferase subunit NuA4 

proteins. This corroborates the findings of Jeyaramraja et al., (2003), and Cheruiyot et al., 

(2008), which reported catechins as possible drought tolerance markers in C. sinensis.  

Glycosylation, an important process regulated by glycoside hydrolases, involving plant 

polyphenols has been shown to increase hydrophobic flavonoid solubility and stability (Xu et 

al., 2016). This process involves glycosidic bond hydrolysis and rearrangement. It is our 

postulation that the UPLC qBRT putative QTL, associated with the glycosyl hydrolase family 

9, functions in synthesising and sequestrating phenylpropanoids (Jones et al., 2003). 

Galloylated catechins found in tea, the result of UDP-glucosyltransferase glucosylation 

activity, have been reported in literature to be responsible for the astringency and bitterness 

of teas. Flavonol 3-O-glycosides on the other hand have been reported as being responsible 

for the dry mouth, velvety mouth-coating sensations experienced as a result of tea 

consumption (Cui et al., 2016).  

Acyltransferases, which are involved in several metabolic pathways such as the biosynthesis 

of anthocyanidin, and the transfer of acyl groups, using acyl-CoA as the donor, to 

anthocyanin sugar moieties (Mizutani et al., 2006), were putatively identified in the present 

study. The putative QTL, qCaffeine, was annotated as BT1 family protein. This protein has 

been reported by Haferkamp, (2007) as being responsible for exporting adenine and 

guanosine nucleotides, precursors for caffeine biosynthesis, synthesised entirely in plants 

plastids (Negishi et al., 1992). The present study putatively annotated QTL qCAT as 14-3-3 

protein, a protein involved in abiotic stress response in tea. This finding is in agreement with 

the findings of Cheruiyot et al., (2008b) where individual catechins were reported to be 

potential drought tolerance predictors in tea. These 14-3-3 proteins bind to other proteins, 

inducing specific target-site modification and rearrangement, essential in signal transduction 

pathways. Arabidopsis studies have associated 14-3-3 proteins with ABA signalling, whose 

primary function includes regulating plant response to abiotic or biotic stress. The 14-3-3 

proteins have also been implicated as being in key in physiological stress responses such as 

carbon and nitrogen metabolism, and various plant growth and development aspects (Koech 

et al., 2019).  

Drought stress has been shown to affect photosynthesis, which in turn affects the plant 

nutrient availability resulting in e.g. ion intoxication. To combat this, plants rely on reversible 
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protein phosphorylation by protein kinases at the beginning and later stages of signalling 

pathways, as a response to abiotic stress. Furthermore, plants regulate the expression of 

certain protein kinase genes, in order to preserve osmotic homeostasis during drought stress. 

Putative QTL, qCAT, was also annotated for a protein kinase domain in the present study. 

Jeyaramraja et al., (2003) reported catechins to be higher in the drought tolerant cultivars as 

compared to drought susceptible cultivars. This serves as corroboration for the results 

obtained in the present study, as qCAT was annotated as a protein kinase domain in the 

TRFK 303/577, the drought tolerant parent.  

Amino acids have been reported in literature as not only being essential protein synthesis, but 

for also being important signalling molecules. In Arabidopsis for example, drought and saline 

stress bring about an upregulation in the expression of proline transporters 1 and 2, while 

downregulating the expression of amino acids permease 4 and 6 (Hua et al., 2017). It is for 

this reason that transmembrane amino acid transporter proteins are important; they facilitate 

the transport of amino acids across biological membranes. Proline has been reported to 

function as an osmo-protectant, which confers drought tolerance to tea plants subjected to 

drought stress (Upadhyaya and Panda, 2013). In a study by Nyarukowa et al., (2016) it was 

reported that during drought stress, drought tolerant tea cultivars convert phenylalanine into 

proline, which is an osmo-protectant and confers tolerance on the tea cultivars. The present 

study identified putative QTLs qCAT and qEGC, annotated as putative candidate genes for 

transmembrane amino acid proteins. It can be postulated that said protein functions as a 

transmembrane amino acid transporter for proline during times of drought stress. Moreover, 

these transmembrane amino acid transporter proteins may be involved in transporting 

phenylalanine, tyrosine and tryptophan, which are precursors for several tea secondary 

metabolites, importantly polyphenols. These are involved in phenylalanine and shikimate 

pathways.  

The next family of proteins annotated in the present study was MATE proteins. These are 

active transport proteins utilising membrane electrochemical gradients, whose transport 

activity is maintained by ATPases. MATE proteins transport secondary metabolites such as 

anthocyanins, flavon-3-ols, and flavone glycosides into vacuoles, the plant cell’s major 

storage site (Shitan, 2016). The present study saw the putative QTL, qRWC, being annotated 

for MATE proteins. These proteins are responsible for sequestering vacuole flavonoids in 

response to water stress (Petrussa et al., 2013). The MATE gene family member, TT12, has 

been reported to also be involved in the sequestration of proanthocyanidins in seed vacuoles, 
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resulting in seed coat pigmentation (González et al., 2016), while it transports epicatechin 3′-

O-glucoside and cyanidin 3-O glucoside in yeast (Marinova et al., 2007). MATE proteins 

have also been reported to facilitate and modulate the efflux of ABA and drought-tolerance 

sensitivity in Arabidopsis (Zhang et al., 2014). The fact that the present study found a 

putative QTL for %RWC annotated as MATE, it thus corroborates the findings of 

Nyarukowa et al., (2016), which, relying on %RWC, classified tea cultivars as either drought 

tolerant or susceptible using tea leaf metabolites. In the present study, putative QTL, qECg, 

was annotated DnaJ protein, which are proteins that are involved in cellular protein 

homeostasis i.e. protein folding, break down and refolding during plant stress situations (Park 

and Seo, 2015). They have also been reported to function as chaperones; this can either be 

alone or by associating with heat-shock protein 70. Wang et al., (2016), in a transcriptomics 

study on the effect of drought stress on leaf quality of tea, reported an increase in levels of 

ECg and EGCg during drought stress. Jeyaramraja et al., (2003) also reported on how soil 

moisture content alterations due to drought affect tea biomolecules in relation to its quality. 

The results of the present study indicate that ECg may be employed as a possible marker for 

drought tolerance in C. sinensis cultivars.  

The qEGCg putative QTL was annotated as diacylglycerol kinase catalytic domain protein. 

This is postulated to be a drought and cold tolerance marker in C. sinensis cultivars. Abiotic 

stresses such as cold, drought, and salinity have been shown to trigger plants to produce 

phosphatidic acid (Zhu, 2016). Phosphatidic acid is produced through phosphorylating 

diacylglycerol, a reaction catalysed by diacylglycerol kinase. Diacylglycerol is essential for 

the development of, and the response to environmental stimuli. Salinity stress has been 

shown to increase non-specific phospholipase C activity, promoting diacylglycerol 

production in Arabidopsis. Cold stress has also been reported to induce phosphatidic acid 

production in suspension-cultured Arabidopsis cells (Arisz et al., 2013). Lastly, 

aminotransferases are enzymes responsible for catalysing the transfer of amino groups from 

amino donor to acceptor compounds. These proteins are involved in several key metabolic 

pathways such as amino acid biosynthesis, and secondary metabolites biosynthesis (de la 

Torre et al., 2014). Prephenate aminotransferase is a class of aminotransferase enzymes 

responsible for catalysing the final reaction in phenylalanine biosynthesis, a product central 

to the shikimate pathway; it is a vital precursor for flavonoid synthesis (Ververidis et al., 

2007). The putative QTL, qEC, in the present study was annotated as aminotransferase I and 



126 

 

II, leading to the postulation that EC is a marker associated with flavonoid biosynthesis in C. 

sinensis.  

In conclusion, as mentioned earlier, this study is the first of its kind, attempting to acquire 

information pertaining to genomic and functional annotation of proteins responsible for 

quality, yield and drought tolerance in black tea using DArTseq markers. The results in this 

study illuminate on the association between proteins and certain metabolites, and how they 

are responsible for certain traits observed in tea cultivars. The DArTseq markers were able to 

offer beneficial information, revealing quality and drought tolerance genetic determinants in 

black tea. The DArTseq markers employed in this current study may serve as valuable 

markers for constructing linkage maps, and employed to learn new gene functions. The study 

successfully used SNPs to construct a linkage map. It was however unfeasible to have our 

map anchored to a previously constructed C. sinensis map because of the lack of availability 

of any anchoring markers. Moreover, earlier studies made use of AFLP, RAPD and SSR 

markers to construct tea linkage maps, whereas the present study employed DArTseq 

markers. The information obtained in this study i.e. gene function annotation and DArTseq 

sequence alignment, compared to recent literature referencing the tea genome has been 

ground breaking, and has set a platform for further MAS research on tea breeding to be 

concucted. The results obtained in this work may aid tea breeders select parental clones with 

desirable DArTseq markers for breeding new tea cultivars with desirable traits.   
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Appendix 3.1: DArTseq marker ID with the commensuating separate marker sequence 

 

Marker ID Marker Sequence (5’-3’) 

5063001  TGCAGCCTTATTAGTTTCACGTTACGTATGAAAAACTATGCAATTGTCGAATTTGTTTAGGAGCTCCCA  

5064391  TGCAGCCATAGTTTGAAGAACAGCAGAGTTTTTGACCCAAGAATCATGCTCTTAGTTTACAATCTGTAT  

5064585  TGCAGTTCAACATCATCAGCACTTTTAGTTTTAGACAACACATTTATTGACCAAAAGCTGAGTGCCATG  

5072338  TGCAGCTCTGATTCACTTGTTTCTCAATATTTGAACTTCCACGGTATGAAGGTATATATTTCAAATATG  

5073424  TGCAGAGAAATTCCTCCACACACCGAGGCTCGTTTGGGAAGTAACGTTTTTACTAAAAAAAAATTACAG  

5082606  TGCAGCAAGCAAAAAAAGTGGAATCCCTCGGAACACTGGACTCGCCGAGGCTAGTCAGAGCCTCTTTTG  

5084595  TGCAGTTGAATCTGTAAGAGTGAGACACCCATTAGGCACCCAATAACTTTAGAAATTCAGAAGAAAAAT  

5085963  TGCAGCTTGTGGAGCTGCTTATAACTTTTTATTTTGAGAATCGGTGTCAGAGTGTTTGGTGCATCTTTT  

5087017  TGCAGTAACAAACATTATAATTTTTGTGTTGCATTATAAAAGCAAGACAATACTAATCAAGCCTTGATT  

5087113  TGCAGCGGTTGATGCTGTACGTTTACTCACAGCAGCATCTCCTATCCCGACAAGATGGGTTGACTTTTA  

5088162  TGCAGATTTTTTAGGACAACAAGATTCTCCAAGGTCTGAATAATTATGAGAACAAAAATATGCATTCAC  

5098382  TGCAGGGCATCAAACAGGACATTAGTCACAAGTAATTAGCATAAGCAACGGATACTATAATTACAGATC  

5104630  TGCAGCTGTAGATGAGGAGGTACGCTAGTCTAATTTTAGAGGAATAAAGATGGAGAGTTTTACAGATCG  

5111164  TGCAGTACCAGATGGACAAGGAGAGAGAAGCGAGTTAGAGGTCTTTACAGATCGGAAGAGCGGTTCAGC  

5111268  TGCAGAGGTAATCTACACCTATCAGTTCACTTCCCATATGTCGTTGAGTACAAACAAGGACACAAAGTT  

5112599  TGCAGGAAATCCGGCATTTAGAGGCATTTACAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGA  

5114089  TGCAGTCCTTTTTGATTGTTTCTGATCCTTCCATCACGAAACATATATTACAGATCGGAAGAGCGGTTC  

5114985  TGCAGCAAACACTTGCTAATTTTCACTCTATCTTACCAAAATGAGGCATTACAGATCGGAAGAGCGGTT  

5123053  TGCAGGTCATTTTATAATGTGACACATCGGAGATTACAGATCGGAAGAGCGGTTCAGCAGGAATGCCGA  
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5123475  TGCAGAGCAATTACCACAGTTTATCGCTGCTGGCAACTTACAGATCGGAAGAGCGGTTCAGCAGGAATG  

5123751  TGCAGCTGCCTTTCGTCATGTGGCTTGCCATCAAGAAACCAGAGAAGTTTAGCTTGTCTTGGCTTATTA  

5123950  TGCAGCCATTGGTGCCTACCTGGAGTTCCATACACATGGAATGAACTTCTGTATGCTCACCTACTGTCA  

5124128  TGCAGCTAGAATAATGTCTACCCACAATCAAATATAGATCTTACAGATTATTACAGATCGGAAGAGCGG  

5125626  TGCAGTCGGGCCACTTTTTTTTAGTTGGTGTGAATGTCCCGTAATTTATTACAGATCGGAAGAGCGGTT  

5128967  TGCAGAAGAAAGGCACACATGAGCAGCTGTGATGGAATAACCCAGTTGCAATCTACCACATATTACAGA  

5130194  TGCAGTGGTGGAAGCTTGTACATCTGGAGTTTTACAGATCCGAAGAGCGGTTCAGCAGGAATGCCGAGA  

5130531  TGCAGTCAGCATAACCGGTGCAGCTATCTGCCACATCTTCTTTGATTCATCTCGACATTTTCTGTTACA  

5132370  TGCAGCTGTCCTTTCACCAAGTAACGCATATAAGTTTGCATCGACGAGTTGCTATTCCAAATAAGAGCA  

5132432  TGCAGGTTTCTTCTTTCACCCAAAAAAAAAGCCCTCATTTTGGTTCAATTTTACAGATCGGAAGAGCGG  

5132791  TGCAGCAATTTGCTAATAACCTCCTCATCCTTGCCTTCAAAATCAATGCCTTCAAAAACAAATCTCATA  

5134558  TGCAGCTGAAGTGGTAAAGAGGCTTGTTGAAGGGGCTCAACTCCTCATCCATCAAAGATTTACAGATCG  

5135436  TGCAGGAAAGGCAAGGGAAATAACAACAAATAATTACAGATCGGAAGAGCGGTTCAGCAGGAATGCCGA  

513647 TGCAGAGCAATTACCTGGTGTGAATGTCCCGTAATTTTAGAGGCATTTACAGATCGGAAGAGCGGGCAG 
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14. CHAPTER 4 

MODELS FOR IDENTIFICATION OF ELITE MOTHER BUSHES WITH HIGH 

BLACK TEA COMMERCIAL POTENTIAL FROM MATURE SEEDLING FIELDS 

OF CAMELLIA SINENSIS 

ABSTRACT 

Tea (Camellia sinensis) has enthralled both consumers and researchers, and its popularity has 

increased, due to its taste, aroma and its medicinal attributes, owed largely to its metabolites. 

The catechins and theaflavins in green and black tea respectively have been documented to 

possess antioxidant, anti-inflammatory, anticancer, and cardiovascular disease preventing 

properties (Preedy, 2012). Tea consumers concern themselves with the quality of tea its taste 

and aroma; it is based on these that consumers will pay premium prices for the best quality 

teas. The quality of tea is undeniably affected by variations in its metabolite composition 

(Qin et al., 2013). Tea producers are in demand of new high yielding, DT cultivars, which 

produce high quality tea liquors. To breed for these phenotypic traits is challenging due to 

these being quantitative traits, controlled by many genes, inherited from parents, and 

influenced by environment. In this study, two groups of black tea cultivars, one commercial 

(Comm) and the second non-commercial (NComm), were compared using a metabolomics 

approach. Data were generated via untargeted GC-MS and LC-MS; semi-targeted 1H-NMR, 

and targeted UPLC-DAD. PCA and PLS-DA were performed on the metabolomics data, 

which showed clear separation and clustering between the Comm and NComm cultivars. 

Several logistic regression models were developed and it was found that the model based on 

the UPLC-DAD theaflavins worked best, with the model based on UPLC-DAD caffeine and 

the five catechins classifying the 303 genotypes as either Comm or NComm cultivars, 

worked equally well.  
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4.1 INTRODUCTION 

Tea has been documented to be the most consumed non-alcoholic beverage worldwide, 

second only to water. Tea quality is undeniably affected by variations in its metabolite 

composition, which determine its commercial market value. According to Le Gall et al. 

(2004), the taste of green tea is determined by the cultivar of tea tree, the season of plucking, 

as well as the method of cultivation employed. Tea producers are in demand of new cultivars, 

which are high yielding, are drought tolerant, and produce high quality tea liquors. Tea gets 

its distinctive astringent and somewhat bitter taste from caffeine, even though several other 

metabolites such as the catechins (catechin (CAT), epicatechin (EC), epicatechin gallate 

(ECg), epigallocatechin (EGC), and epigallocatechin gallate (EGCg)) and all other 

polyphenols, carbohydrates, and amino acids are influential in its overall taste and aroma 

(Adkins et al., 2007; Nyarukowa et al., 2016). The amino acid theanine, which makes up 

approximately two-thirds of a tea leaf’s total free amino acids content, is together with other 

less abundant amino acids, responsible for the sweet and brothy “umami” taste of green tea. 

However, it is noteworthy to indicate that the metabolite composition, which influences tea 

quality, varies between green and black tea. Unlike green tea, whose quality is dependent on 

amino acids, particularly theanine; catechins and caffeine, the quality of black tea is 

dependent on theaflavins and thearubigins, its major phenolics, which result from the 

dimerisation and polymerisation of the catechins. The major theaflavins are theaflavin (TF1), 

theaflavin-3-gallate (TF2), theaflavin-3’-gallate (TF3), and theaflavin-3,3-digallate (T4) (Le 

Gall et al., 2004). The four TFs are synthesised by polyphenol oxidase in C. sinensis leaves 

from the combination of green tea catechins, as shown: (1) EC + EGC = TF1; (2) EC + EGCg 

= TF2; (3) ECg + EGC = TF3; (4) ECg + EGCg = TF4. This therefore indicates that the 

green leaf catechins are important and thus C. sinensis cultivars rich in catechins are likely to 

produce higher quality teas (Takemoto and Takemoto, 2018).  

Tea’s popularity as a beverage is dependent on its flavour, comprising of taste and aroma. 

Non-volatile organic compounds are responsible for its taste, while volatile organic 

compounds are responsible for its aroma. Volatile organic compounds in tea fall into one of 

two groups, with Group I comprising of non-terpenoids, such as hexanol which confers the 

fresh green aroma; and Group II comprising of terpenoids, responsible for its sweet flowery 

aroma (Chaturvedula and Prakash, 2011). High-quality black teas are rich in Group II 

compounds and due to their flowery nature, achieve significantly higher prices; e.g. high-
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quality varieties of Longjing tea (pan-roasted green tea) sell for USD 16.5, while the low-

quality varieties sell for USD 1 per Kg (Yu et al., 2008).  

It has been reported that areas with higher rainfall tend to produce teas of inferior quality and 

that black teas from South India have elevated concentrations of aroma causing metabolites 

during the dry season as compared to the rainy season. In these studies, 40 or fewer 

compounds were used to classify tea quality. The profiling of plant metabolites has developed 

into a major metabolomics field of study, the reason being that plants manufacture a wide 

array of metabolites. The genetic improvement of crops with metabolomics is fast becoming 

a popular method; this has resulted in an increased demand for plant breeders skilled in the 

field of metabolomics. When developing new cultivars, crop breeders encounter a common 

challenge of identifying important selection criteria. Tea breeders criteria of selection include 

but not limited to yield, quality, and drought tolerance. C. sinensis is an important cash crop 

for many countries with China, India, Kenya and Sri Lanka being leading world producers 

and exporters of black tea (ITC, 2019). According to the Kenya National Bureau of Statistics 

(2019), tea is the largest agribusiness in Kenya, with the total export volume of January 2019 

being significantly higher, at 47.92 Million Kg compared to the January 2018 total export 

volume of 31.94 Million Kg. It is for this reason that tea quality is an important selection 

criterion from an economic perspective as it is the major determinant of market price. Tea 

quality, whether for black, white, purple or green tea, is governed by the metabolic 

profile/composition of the tea leaves, influencing its aroma, briskness, brightness and taste 

(Dutta et al., 2011); the agronomic traits i.e. yield and quality are dependent on leaf 

physiognomies. As previously noted, due to the effects of global warming, specifically 

altered precipitation patterns, elevated temperatures and protracted drought spells in the tea 

growing regions, the Kenyan tea industry has been facing challenges. It is for this reason that 

rigorous breeding programmes need to be developed to produce new cultivars with better 

metabolic profiles and improved drought tolerance.  

The employment of seeds obtained from Assam, India, saw the beginning of improvements in 

Kenya’s tea breeding programmes, which brought about the establishment of the initial two 

polyclonal seed baries at Kangaita and Timbilil (Anon, 1990) following the 1980 formation 

of Tea Research Foundation of Kenya (TRFK), now known as the TRI. Other large tea 

producing companies such as James Finlay (Kenya) and George Williamson (Kenya) 

followed suit and instituted programmes that saw the establishment of their own improved 
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seed baries. Mass selection was employed as tea improvement method, proving a success, to 

an extent. It however, failed to generate a robust type of tea, possessing satisfactory cup 

attributes and morphological consistency. Moreover, the developed progenies hadn’t been 

specifically chosen for their high quality and yielding traits, and as such the resultant 

seedlings were a mixture of miscellaneous and mediocre genotypes (Wachira, 2001). As of 

2006, approximately 60% of clones associated with TRFK 6/8 have been commercialised, 

stemming from the Timbilil tea estate’s breeding programme. Furthermore, 24 out of the 45 

developed clones have found success in industry, amongst which are the elite Cambod 

varieties, TRFK 301/4 and TRFK 301/5. In addition to these, are the clones TRFK 430/90 

and TRFK 371/3, which in addition to them having high yield and improved black tea 

quality, these new cultivars possess biotic and abiotic stress tolerance properties (Kamunya 

and Wachira, 2006). Breeders have used the TRFCA SFS 150 clone from Malawi and the 

TRFK 303/577 to produce varieties that are drought tolerant, such as the EPK TN 14-3, and 

have crossed the TRFCA SFS 150 and EPK TN 14-3 to produce F1 progeny tolerant to cold 

(Kamunya et al., 2010). Plant breeders have been finding it daunting to develop high yielding 

clones from seedling mother bushes. Earlier studies (Green, 1971) failed to establish reliable 

correlations between growth and yield properties of mother bushes, and their resultant F1 

progeny clones. Subsequent studies (Nyirenda, 1991) have shown adequately strong 

correlations between the tea bush area, shoot number, and yield of tea mother bushes and 

those of their clones. A strong positive correlation between seedling height, leaf area, stem 

girth, stem dry weights and yield in matured tea fields was observed (Shanmugarajah et al., 

1991). Due to the effects of global warming, fluctuations in weather patterns are being 

observed in Kenya, particularly the increased temperatures, leading to prolonged drought 

spells in the tea growing region (Elbehri et al., 2015). Due to these changes in the climate, tea 

production is drastically being reduced because of a shortage of suitable lands at lower 

altitudes and the result of this is that farmers have to seek lands at higher, dryer altitudes. 

Moreover, evidence has been furnished, over the course of the past 30 years, that 

temperatures in tea growing regions have been increasing at a rate of 0.2°C per decade 

(Cheserek et al., 2015). In addition to this, stresses concomitant with temperature fluctuations 

in tea producing areas such as Kericho, Kisii, and Nandi, have added to the tea production 

limitations in Kenya. Tea production is also reliant on well distributed rains; a rise or drop in 

temperatures as a result of the fluctuations in the rainfall patterns, adversely influences the 
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quantity and quality of tea (Chang, 2015). The cultivation of tea has now been extended to 

previously deemed marginal and unsuitable tea growing areas (Owuor et al., 2010). 

The insufficient understanding of the genetics involved when breeding for yield and quality is 

a problem not only for breeders, but for the tea industry as a whole. Currently, the practice of 

making field selections based on traits such as recovery from prune and leaf poise have a 

success rate of about 1% when it comes to identifying elite mother bushes that become 

commercial successes. The tea industry is in need of new methods for field selections to 

increase this success rate. Metabolomics has been defined as “the study of the quantitative 

measurement of the dynamic multi-parametric metabolic response of biological system and 

changes in metabolite concentrations or fluxes related to genetic or environmental 

perturbations”. It is a discipline which assesses, classifies and quantifies endogenous and 

exogenous metabolites in a variety of biological samples. The information obtained from the 

study of metabolites is crucial in that it informs scientists about a biological system’s 

functional state, explaining the organism’s phenotypic traits (Schauer and Fernie, 2006). 

Comprehending the desiccation response metabolome assists in ascertaining steps involved in 

the signal transduction pathways (Urano et al., 2009). Metabolic profiling commenced as a 

diagnostics tool to ascertain herbicide mode of action, and has since grown to include 

functions such as determining the differences between genetically modified and conservative 

crops, and genotyping them to discover new genes (Hagel and Facchini, 2008). The key to 

metabolomics research is the employment of analytic tools to comprehensively analyse 

metabolites. Holistic metabolic profiles have been obtained from intricate animal and plant 

samples, using high resolution, information-rich powerful spectrometric techniques. Nuclear 

magnetic resonance (1H-NMR) spectroscopy and gas chromatography mass spectrometry 

(GC-MS) were two of the analytical metabolomics platforms used in this study. GC-MS, 

though tedious in the sample preparation stage, has a higher sensitivity as compared to 1H-

NMR, capable of detecting metabolites with concentrations lower than the limit  of detection 

of 1H-NMR. 1H-NMR has the advantage of having simple sample preparation, as well as 

being semi-quantitative and non-destructive ), but limited by resolution and the availability of 

plant metabolites in compound databases. Ultra-performance liquid chromatography coupled 

with a diode array detector (DAD) and mass spectrometry (LC-MS) were other platforms 

used in the study. Due to its advancements within the field, UPLC is a central technique in 

metabolomics research (Khan and Mukhtar, 2007), with it being used predominantly in 
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differential profiling and biomarker identification (Theodoridis et al., 2012). Metabolomics 

analyses can either employ a targeted or an untargeted approach. The objective of the 

targeted approach is the identification and quantification of specific metabolites for which 

pure standards exist to confirm the identities of the metabolites detected in the samples i.e. 

the chemical properties of the metabolites under investigation are known. Targeted 

metabolomics is customarily hypothesis driven, while untargeted metabolomics leads to 

hypothesis generation, which involves assessing all the metabolites in a biological system 

(Zhou et al., 2012). LC-MS has become a method of choice for profiling metabolites in 

complex biological samples, i.e. plant metabolomics samples (Zhou et al., 2012).  

In metabolomics, uni- and multivariate statistical techniques are used in combination to help 

pinpoint relevant variation (e.g. between groups of interest) in datasets that are often large 

and high-dimensional. The univariate statistical methods used here was the independent 

samples t-test and Cohen’s d effect size. Three multivariate methods were included, principal 

component analysis (PCA); partial least squares discriminant analysis (PLS-DA) and Chi-

square Automatic Interaction Detection (CHAID) decision trees. PCA and PLS-DA are both 

multivariate methods that project data onto lower dimensional subspaces by summarising 

variation, making it possible to graphically present large datasets. PCA models are not 

provided with group or class membership information, while PLS-DA models, though 

predictive, are complex and often do not generalise well. During the preceding decade, 

CHAID decision trees gained popularity, as is documented by the trend in peer-reviewed 

science journals. This increase in popularity is attributed to the realisation by researchers of 

the benefits associated with making use of advanced statistical software packages to perform 

comprehensive analyses. Decision trees combine inductive reasoning and supervised learning 

capable of being used for prediction, regression, estimation, data description, visualisation 

and dimensionality reduction (Milanović, 2016). CHAID decision trees were constructed to 

determine the minimum combination of metabolites that can serve as predictors for 

separating the Comm cultivars from the NComm cultivars. These CHAID decision trees offer 

a non-algebraic, data partitioning option, becoming a popular alternative to logistic 

regression, and discriminant analysis in the past two decades (Wilkinson, 1992). Decision 

trees are created through the use of partition algorithms. These algorithms employ the links 

between predictors and their corresponding responses, and recursively partition the data, 

splitting predictors until the desired prediction response is obtained. Through these repeated 
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data partitions, a decision tree is formed. By choosing the best splits from an infinite number 

of possibilities, the partition algorithm makes the decision trees a powerful modelling tool. 

Predictors are either continuous or categorical; where continuous, the partitions are a result of 

a cut off value, with sample values falling above and below this cut off value. If, on the other 

hand, the predictor is categorical, the samples will be split into two levels (JMP®). The 

decision tree identifies independent variables with a significant relationship to the dependent 

variable and evaluates the continuous variables’ interval breaks to identify the most ideal 

combination. The independent variable possessing the sturdiest relationship with the 

dependent variable then becomes the decision tree’s first branch; each significantly different 

category, relative to the target variable becomes the leaf. This is continually done to identify 

each leaf’s significant predictor variable until predictors are exhausted (Thomas and 

Galambos, 2004).  

Logistic regression (LR) is a statistical analysis tool generally suitable for testing hypotheses 

regarding connections between categorical outcome variables and continuous predictor 

variables. LR solves problems that cannot be solved by simple linear regression, such as any 

occurring errors that are not normally distributed or are not constant throughout the data 

range (Peng et al., 2002). Contrasting from discriminant analysis, LR does not make the 

assumption that the predictor variables possess equal covariance matrices, and that these are 

normally distributed. It instead makes the assumption that the distributions of any errors 

equalling the true Y value subtracting the predicted Y value are described by the binomial 

distribution. This implies an identical probability is maintained across the range of predictor 

values. This binomial assumption is therefore easily testable using a Z-test (Siegel and 

Castellan, 1956). LR may be considered robust, provided the samples are random; in so doing 

this ensures the observations remain independent of one another (Peng et al., 2002).  

Another useful statistical analysis approach employed in this study were violin plots, which 

are a statistical method considered to be a combination of the box plot and kernel density 

plot, which are used for plotting numeric data. The violin plot contains the same information 

as would be found in a box plot, but have the indisputable advantage over the box plot in that 

they show the entire data distribution, which is beneficial when working with multimodal 

data i.e. distribution with several peaks (Hintze and Nelson, 1998).  
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4.2 RESEARCH OBJECTIVES  

1. To use data generated through untargeted GC-MS, and semi-targeted 1H-NMR 

metabolomics platforms to identify metabolites, which were expressed differently in the 

Comm and NComm cultivars. 

2. To make use of UPLC-DAD generated targeted metabolomics data to develop LR models 

and CHAID decision trees, to classify the 303 genotypes as either Comm or NComm 

cultivars. The best model may then serve in predicting whether a new field selection is likely 

to become commercialised due to its similarities with the Comm cultivars.  

3. To use untargeted LC-MS data to identify any additional metabolites not detected by 

platforms mentioned in objectives 1 and 2, to distinguish between the Comm and NComm 

cultivars. 

4.3 HYPOTHESIS 

Null hypothesis (H0): There will be no statistically significant difference between the 

metabolite profiles and metabolite concentrations detected by all the metabolomics platforms 

employed between the Comm and NComm cultivars, at the 95% confidence interval. 
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4.4 MATERIALS AND METHODS 

4.4.1 Plant material 

All these NComm materials were vegetatively propagated and planted in two sites (Kericho 

(0.3689° S, 35.2863° E) and Kirinyaga (0.6591° S, 37.3827° E), Kenya, in 15-bush plots at 

1.22 m and 0.62 m between and within plots, respectively, and replicated thrice following a 

complete randomised block design (Koech et al., 2018). Sixty open-pollinated cultivars, pre-

selected for their high yield, and good tea liquor since the 1950s formed the Comm group. 

These cultivars were vegetatively propagated by stem cuttings from elite mother bushes. 

Each Comm cultivar was cultivated in over 10 Hectares with about 10 000 trees per Ha. The 

NComm group of 250 cultivars were the F1 progeny of a reciprocal cross between two 

heterozygous parental clones TRFK 303/577 and GW Ejulu. The NComm cultivars were 

various clonal materials code-named TRFK St. 504 (TRFK303/577 (♂), GW Ejulu (♀)) with 

106 progeny and TRFK St. 524 (GW Ejulu (♀), TRFK 303/577(♂)) with 144 progeny, which 

were developed at the TRI of Kenya (Koech et al., 2018). The GW Ejulu clone produces 

high-quality black tea, with high total catechins and moderate caffeine content; it is, however, 

a low-yielding and drought-susceptible clone. TRFK 303/577, on the other hand, is a high 

yielding, drought tolerant (DT) clone, which produces medium-quality black tea, with 

moderate levels of caffeine and total catechins. Each NComm cultivar was previously tested 

for yield and quality but was found unworthy of commercialisation. From the 303 cultivars, 

eight Comm and eight NComm cultivars were selected at random, and prepared for UPLC-

MS analysis. 

4.4.2 Sample collection and processing 

About 500 grams fresh shoots comprising two leaves and a bud were harvested from the 

respective tea bushes, between September 2013 and February 2014. The fresh shoots were 

placed in appropriately labelled zip-lock plastic bags (Nyarukowa et al., 2018). The plastic 

bags were placed on ice blocks to keep cool until processing at the TRI mini-factory within 

24 hours. Half the shoots of each sample were freeze-dried and ground using a coffee grinder, 

sieved using a 355 µm sieve, sealed in zip-lock plastic bags and stored at 4°C in a fridge until 

analysis. The dried green tea samples are refered too as “green tea” in this thesis. The other 

half was used to make black tea according to Koech et al., (2018). Briefly, the leaves were 

withered to a % relative water content of 68 - 72% over an 18 hour period before being 

passed through CTC rollers till maceration was achieved. Following maceration, the resultant 
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dhool was aerated at 22–26°C for 90 min, and at 100% humidity for enzymatic oxidation 

(fermentation) to occur. A TeaCraft Ltd bench top fluid-bed drier system was employed for 

firing the tea, starting at 120°C for 25 min, and subsequently lowered to 100°C for 10 min. 

The black tea samples were then ground using a coffee grinder, placed in sealed in zip-lock 

plastic bags and stored in 4°C fridge until UPLC analysis. 

4.4.3. GC-MS sample preparation and analysis 

4.4.3.1 Sample preparation 

A 70% MeOH solution was used for extraction. For all samples of approximately 150 mg, 1.5 

mL extraction solution was added. The samples were vortex mixed and incubated for 10 

minutes at 70°C. The samples were vortex mixed halfway through the incubation period as 

well as at the end. After cooling, the samples were centrifuged for 5 minutes at 6000 g and 

one mL supernatant transferred to GC vials before drying under nitrogen. The dried samples 

were derivatised by adding 120 μl methoxyamine (10 mg/mL in pyridine) and incubated for 1 

hour at 60°C; followed by the addition of 80 μl BSTFA (containing 1% 

trimethylchlorosilane) and incubated for another hour at 60°C. Samples were transferred to 

inserts before GC-MS analysis. Pooled quality control (QC) samples were prepared, and 

these underwent the same extraction and derivatisation procedures as the samples. 

 

4.4.3.2 GC-MS analyses 

Analyses were performed on a GC-TOF-MS system, comprising of an Agilent 7890A GC 

front-end system with an Agilent 7693 autosampler and a Leco Pegasus HT TOFMS. 

Hydrogen was used as carrier gas at a flow-rate of 1.8 mL/min; 0.2 μl sample was injected in 

splitless mode (allowing 30s purge delay). The inlet temperature was kept at 250°C. 

Compounds were separated on a Restek RX-1MS column (20 m x 180 μm x 0.18 μm). The 

transfer line and source temperatures were 250 and 200°C, respectively. Solvent delays of 

200 s were allowed where after masses (50 – 800 m/z) were recorded at 20 spectra/sec. 

Universal EI settings were used for ionisation while the detector was operated at 50 V above 

tune voltage. 

4.4.4 1H-NMR sample preparation and analysis 

4.4.4.1 1H-NMR buffer solution 

A 1.5 M KH2PO4 buffer solution was prepared by dissolving 20.4 g of KH2PO4 in 80 mL of 

deuterium oxide (D2O). Next, 13 mg of sodium azide and 100 mg of trimethylsilyl-2,2,3,3-

tetradeuteropropionic acid (TSP) were dissolved in 10 mL of D2O and added to KH2PO4 
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solution. The combined solution was mixed well under sonication before adjusting the pH to 

7.4 using potassium hydroxide in H2O. The final solution was then transferred to a 100 mL 

volumetric flask and the volume topped up to the mark using D2O. 

4.4.4.2 1H-NMR sample preparation 

Freeze-dried samples were sent in individual plastic bags of 50 mg weight to the 1H-NMR 

lab. A pooled QC sample was created by collecting 5 mg from each of n=294 samples. 

Samples were prepared by adding 4.5 mL ddH20 to each 45 mg weight of the dry sample to 

create a 10 mg/mL concentration. Each sample was vortexed at 0, 20 and 40 minutes. At 60 

minutes, a volume of 540 µL of the sample was collected in a microcentrifuge tube, with 60 

µL 1H-NMR buffer solution. The sample was mixed under vortex and centrifuged at 12 000 g 

for 5 minutes to sediment any particulates. A final volume of 540 µL of supernatant was 

carefully transferred to a 5 mm 1H-NMR glass tube and loaded onto an autosampler for 1H-

NMR analysis. 

4.4.4.3 1H-NMR analyses 

The samples were measured at 500 MHz on a Bruker Avance III HD NMR spectrometer 

equipped with a triple-resonance inverse (TXI) 1H{15N, 13C} probe head and x, y, z gradient 

coils. 1H spectra were acquired as 128 transients in 64 K data points with a receiver gain of 

64 and a spectral width of 10 000 Hz. The sample temperature was maintained at 300K and 

the H2O resonance was presaturated by single-frequency irradiation during a relaxation delay 

of 4 s, with a 90° excitation pulse of 8 μs. Shimming of the sample was performed 

automatically on the deuterium signal. The resonance line widths for TSP and metabolites 

were <1 Hz. Fourier transformation and phase and baseline correction were done 

automatically. Software used for 1H-NMR processing was Bruker Topspin (V3.5). Bruker 

AMIX (V3.9.14) was used for metabolite identification and quantification.  

4.4.5 UPLC-DAD and UPLC-MS sample preparation and analysis 

4.4.5.1 Extraction of catechins, caffeine, and theaflavins 

Samples were collected, and metabolites extracted from the tea samples as documented in the 

International Organisation for Standardisation (ISO) extraction procedure, described in 

document ISO14502-2 (2005). Briefly, amounts of 0.200 ± 0.001 g of green and black tea 

samples were weighed out using a Mettler Toledo model XS205DU analytical balance 

(Microsep, South Africa) and transferred to 20 ml thick walled glass test tubes, following 

which five ml volumes of 70:30 MeOH (Merck, South Africa): water (v/v) at 70°C was 

added to each, stoppered and vortex mixed for ± five seconds before being placed into a 70°C 
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set water bath. After five minutes, the extraction mixtures were removed from the water bath 

and vortex mixed before being returned for an additional five minutes. The mixtures were 

vortex mixed a second time, cooled and then centrifuged at 2000 g using a Thermo Scientific 

Heraeus Labofuge (Sepsci, South Africa) Model 300 centrifuge for ten minutes. The resultant 

supernatants were decanted into respective ten ml volumetric flasks and the extraction step 

repeated once more. The two extracts were then pooled, and the volume adjusted to ten ml 

with cold 70:30 MeOH: water (v/v). A one ml volume of each extract was diluted to five mL 

using stabilising solution, which constituted 10% (v/v) acetonitrile, 500 µg/ml EDTA and 10 

mg/ml ascorbic acid, all purchased from Sigma-Aldrich, South Africa. About 100 µl of each 

resultant dilution was then filtered through a 0.2 μm Minisart®RC4 syringe filter (Sartorius, 

South Africa) with hydrophilic, solvent-resistant regenerated cellulose membranes and the 

samples were then analysed using UPLC-DAD and UPLC-MS. Twenty Comm and 20 

NComm cultivars were randomly selected and analysed using UPLC-MS to identify 

additional metabolites not detected by the other metabolomics platforms.  

4.4.5.2 UPLC-DAD analyses 

The UPLC-DAD analyses were accomplished on a Waters ACQUITY UPLC H-Class system 

(Waters, Milford, MA, USA) equipped with a binary solvent delivery pump, an autosampler, 

and a photodiode array detector and controlled by the Empower-3 software. Separation was 

attained on a Waters Acquity HSS T3 column (1.8 μm, 2.1 × 150 mm), at 40oC, with the 

mobile phase constituted of solvent A, which was 2% acetic acid and 9% acetonitrile in 

deionised double distilled water, at a pH of 2.8, and solvent B comprised of 2% acetic acid 

and 80% of acetonitrile in deionised double distilled water. The mobile phases were filtered 

through a 0.2 μm cellulose acetate membrane filter and degassed using a Neuberger Laboport 

(Labotech, South Africa) vacuum pump. A gradient elution method was employed: 0 min 

(5% B), 0-21 min (5-20% B), 21-30 min (20-25% B), 30-32 min (25-100% B), 32-39 min 

(100-100% B), 39-40 min (100-5% B), and 40-45 min (5% B). A sample injection volume of 

five μl and a 0.2 ml/min flow-rate were employed for analyses. Catechins (CAT, EC, ECg, 

EGC, and EGCg), caffeine and gallic acid (Sigma-Aldrich, South Africa) were used as 

standards. Tryptamine, sulfanilamide and mycophenolic acid (Sigma-Aldrich, South Africa) 

were used as the QC internal standards; identification and quantification were at 278 nm, 

with the individual catechins and caffeine in the samples being identified on retention times 

of the standards, and UV/vis spectra matches. The internal QC standards were also identified 

based on their retention times and UV/vis spectra. 
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4.4.5.3 UPLC-MS analyses 

The high-resolution UPLC-MS analyses were performed using a Waters Synapt G2 

Quadrupole time-of-flight (QTOF) MS connected to a Waters Acquity UPLC (Waters, 

Milford, MA, USA). Electrospray ionisation was employed in negative mode, with cone 

voltage set at 15 V, and the desolvation temperature set at 275°C. The desolvation gas was 

set at 650 L/h, with all other MS settings optimised to obtain the best resolution and 

sensitivity. The data was acquired by scanning from 150 m/z to 1500 m/z in both resolution 

mode and MSE mode. The ESI capillary voltage was set at 3.1 kV.  Two MS data channels 

were acquired in MSE mode, the first at a low collision energy (4 V) and the second at a 

ramped collision energy (40−100 V) allowing for the collection of fragmentation data. 

Leucine enkaphalin was employed as the lock mass (reference mass) for accurately 

determining the masses. Instrument calibration was performed using sodium formate. A 

Waters HSS T3, 2.1 × 100 mm, 1.7 μm column was used for the chromatographic separation. 

The mobile phases consisting of deionised double distilled H20 with 0.1% formic acid 

(solvent A) and acetonitrile containing 0.1% formic acid (solvent B). The gradient used 

started off with 0% B for 1 min and increased to 28% B over 20 min, before increasing to 

40% B in 1 min then finally to 100% B over 2 min, where it was held isocratic for 1.5 min, 

followed by re-equilibration to initial conditions for 4 min. A flow rate of 0.3 mL/min, 

injection volume of 2 μL, and a column temperature of 55°C were used. 

4.4.6 Metabolite identification 

Spectral matching to the NIST11 commercial library (for GC-MS metabolites) and Bruker 

BBIOREFCODE (pH 7.0) and in-house pure compound spectral libraries (pH 7.4) (for 1H-

NMR metabolites) were used to identify the compounds. The UPLC-DAD metabolites were 

identified using pure standards and an in house library based on retention times. A level 2 

identity was awarded when a spectral match of 80% similarity was achieved. A level 1 

identity was awarded when the retention time or retention index of the GC-MS, and UPLC-

DAD information matched that of standards or 2D 1H-NMR information confirmed 1D 1H-

NMR spectral identifications. The potential UPLC-MS biomarkers were identified and 

confirmed by comparing their mass spectra and retention times against the reference 

standards. A full spectral library, comprising of MS/MS data in both positive and negative 

ionsation modes, was obtained. The MassFragment™ application manager (Waters 

MassLynx v4.1, Waters corp., Milford, USA) was employed to facilitate the MS/MS 

fragment ion analysis process by way of chemically intelligent peak-matching algorithms. 
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This information was then submitted for database searching, either in-house or using the 

online MassBank (http://www.massbank.jp/) data source. 

4.4.7 Data pre-processing 

4.4.7.1 GC-MS, 1H-NMR and UPLC-DAD 

ChromaTOF software (Leco) was used to perform data extraction for the GC-MS data, which 

included baseline removal using the “spanning” tracking method, with an offset of 1. The 

software performed automatic smoothing. An expected peak width of 3 s and signal-to-noise 

ratio of 20 was used to detect the peaks with five apexing masses. GC-MS data was 

normalised using the “total useful signal” correction method. A subset of the data was aligned 

for exploratory statistical analysis since the add-on function of ChromaTOF (Statistical 

Compare) is unable to align > 250 samples. The subset consisted of approximately 140 

randomly selected Comm and NComm cultivar samples from every batch (including QCs). 

With the exploratory statistics, a list of compounds that differed between the groups was 

generated, which was used to create a reference chromatogram within ChromaTOF. The 

reference was used to extract the peaks of interest from all the samples in a “targeted” 

manner. The target peaks lists were aligned into a data matrix with MS Excel using the 

“consolidate” function. The reason for pre-processing was to transform the data to enhance 

ease and improve the data analysis. 1H-NMR spectra pre-processed involved binning and 

scaling, with bins spanning 0.04 – 0.05 ppm. 1H-NMR variables were scaled relative to the 

internal standard (TSP) by dividing each bin by the corresponding TSP value for the same 

sample. Next, the combined GC-MS, 1H-NMR and UPLC-DAD variables with more than 

10% missing values in both groups were eliminated; if two variables had a high correlation, 

one was removed; outliers were removed. The remaining missing values for each group, 

deemed to be below the quantification threshold of the instrument, were imputed with 

random numbers drawn from a uniform distribution between one and two-thirds of the lowest 

non-zero observations. Imputations were performed for each variable independently. 

4.4.7.2 UPLC-MS 

The acquired UPLC-MS data was processed using the MarkerLynxTM version 4.1 software. 

The processing steps included filtering, peak detection, peak alignment and normalisation. 

The function one data for all the samples was processed; this is the data collected at low 

energy and as such does not include ion fragmentation data as only the mother ions of each 

metabolite are detected. MarkerLynx software parameters were set to process the 1–13 min 

retention time (Rt) range of the chromatograms, mass range 100–1000 Da, mass tolerance 
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0.01 Da, mass window 0.05 Da and a Rt window of 0.20 min. Only data matrices that had 

noise levels less than 50% (MarkerLynx cut off) were retained for downstream chemometric 

and statistical analyses. Mandatory data scrutiny was meticulously done post data pre‐

processing steps. This included assessment of the number of extracted features (˂10,000 

features, as a rule of thumb), applying the 80% rule (i.e. features found in less than 20% of 

the analysed samples were removed). Furthermore, MarkerLynx processing included removal 

of adducts (an exclusion list was included in the MarkerLynx automated processing: e.g. 

sodium adducts, formic acid adducts, etc.). The quality of data and stability of the analysis 

were monitored using QC samples. The generated clean data matrices were then analysed, 

applying different algorithms and approaches, to extract information that describes the effects 

of ESI electronic parameters (capillary and cone voltages) on acquired MS signals (number 

and abundance of features) and downstream overall data structures. Following the processing, 

a table of detected metabolite markers with their corresponding normalised peak heights 

across all the samples was generated. PCA and PLS-DA were then performed using the 

MarkerLynxTM version 4.1 software.  

4.4.8 Multivariate statistical analysis 

The univariate statistical tool used here was the t-test with resulting p-value and associated 

effect size. Independent samples t-tests were performed assuming unequal group variance and 

a 5% significance using MATLAB with Statistics Toolbox (2019), version 9.5.0 (R2018b) 

software (Natick, Massachusetts: The MathWorks Inc). Effect sizes were incorporated as an 

indication of the practical relevance of significant differences (P≤0.05) based on Cohen’s d-

value and calculated manually as the absolute difference between group means divided by the 

larger of the two group standard deviations (SD). To control the family wise error rate, p-

values were adjusted using the Bonferonni-Holm correction for multiple testing. 

PCA scores plots were generated to provide a visual summary of the predominant variation in 

each dataset and the association with the two experimental groups. This could be achieved as 

the PCA models constructed here were unsupervised and so received no group information. 

PLS-DA is another multivariate statistical approach employed in metabolomics data analysis. 

PLS-DA has been described as a versatile algorithm capable of being used for discriminative 

variable selection, as well as descriptive and predictive high-dimensional dataset modelling. 

PLS-DA is a better suited statistical approach, compared to the PCA, when it comes to 

distinguishing between the two groups of samples as it is a supervised method, especially in 
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instances where the metabolite profiles are influenced/ affected by several factors. That said, 

PLS-DA models are prone to overfit and must be validated. A leave-one-out cross-validation 

(LOO-CV) procedure was followed here to validate the variance explained in the grouping 

variables. PLS-DA scores plots were generated to assess the predictive ability of the model. 

Prior to identifying compounds that are largely responsible for any visible separation, the 

goodness-of-fit statistics (R-squared), as well as the LOO-CV (Q-squared) statistics, were 

compared to assess model validity. R-squared values above 80% were considered sufficient 

but conditioned to no dramatic deterioration during LOO-CV, that is Q-squared values above 

60% were considered acceptable. PCA and PLS-DA analysis were performed using 

MATLAB with Statistics Toolbox (2019), version 9.5.0 (R2018b) software (Natick, 

Massachusetts: The MathWorks Inc) in conjunction with the PLS_Toolbox (2019), version 

8.7 software (Wenatchee, WA: Eigenvector Research Inc. Software available 

at http://www.eigenvector.com). Prior to statistical analysis, the data were pre-processed to 

help ensure the accuracy of results. The GC-MS, 1H-NMR and UPLC-DAD datasets were log 

transformed (shifted natural log transformation with shift parameter set to 1) to correct for the 

skewness in distribution known to plaque metabolomics data, and auto-scaled (subtracting the 

mean and dividing by the SD) so compounds in different abundances receive equal attention 

during multivariate analysis. Finally, the PCA model based scores plots and Hotelling’s T-

squared distances were employed to detect outliers within each group given a 95% 

confidence interval (CI). 

4.4.9 Logistic regression analysis 

For the LR model development, JMP Pro 15 software was used. Firstly, the 303 cultivars 

were separated into the Comm and NComm groups i.e. 56 Comm and 247 NComm cultivars. 

Next, a validation column was created using the predictive modelling function of the software 

in which 75% of the 303 samples were randomly selected and assigned as the training sample 

set. The remaining 25% was held out, and was used as the testing sample set to determine the 

predictive accuracy of the developed LR models. Next, LR was performed on the 75% using 

different metabolite combinations as predictors. Once the LR models had been developed, the 

probability formulas for each were saved, and the number of misclassifications was 

determined manually on the 25% test sample set. The %sensitivity and %selectivity were 

determined using the following formulas:  

http://www.eigenvector.com/
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Sensitivity = TP/(TP + FN), where TP are the true positives i.e. Comm cultivars correctly 

classified as Comm; FN are the false negatives i.e. Comm cultivars misclassified as NComm 

cultivars. 

Specificity = TN/(TN + FP), where TN are the true negatives i.e. NComm cultivars correctly 

classified as NComm; FP are the false positives i.e. NComm cultivars misclassified as Comm 

cultivars. 

These steps were repeated three times per model, which entails that each time the validation 

column was generated, a random, different sample list within the 303 dataset made up the 

training and testing samples sets. The mean of each was then used as the %sensitivity and 

%specificity for each developed model, as reported in Table 4.9. 
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4.5. RESULTS 

4.5.1 List of tables showing detected metabolites using GC-MS, 1H-NMR, UPLC-DAD and UPLC-MS 

The tables below show all the metabolites detected in this study using the various metabolomics platforms.  

Table 4.1: The list of tentatively identified metabolites detected by GC-MS, expressed in arbitrary units. 

Comm vs NComm  

variables 

Analytical 

platform 

Relative normalised intensity Fold  

change of 

the mean 

Cohen’s d-

value 

Reported literature  

concentration (mg/g) 

References 

Comm NComm 

Acetoacetic acid GC-MS 0.050 1.2 1.2 0.21 20.02 Naveed et al., 2017 

Arabinose GC-MS 0.011 2.2* 2.2* 0.81 20.03 Naveed et al., 2017 

Catechin GC-MS 0.070 1.3 1.3 0.47 29.18 Gramza et al., 2006 

1-Cyclohexenecarboxylic Acid GC-MS 0.034 0.6* 0.6* 0.42 4.72 Baeza et al., 2016 

Gallic acid GC-MS 0.056 1.3* 1.3* 0.62 5.10 Kaneko et al., 2006 

Glycerol GC-MS 0.006 1.4 1.4 0.01 10.03 Jones et al., 2008 

Phloroglucinol GC-MS 0.003 1.0 1.0 0.13 45.10 Matanjun et al., 2008 

Psicose GC-MS 0.0005 2.0 2.0 0.69 1.31 Mu et al., 2012 

Ribitol GC-MS 0.007 1.4* 1.4* 0.32 20.04 Roser et al., 1992 

Sucrose GC-MS 0.040 1.0 1.0 0.46 30.90 Kumar et al., 2011 

Threonic acid GC-MS 0.006 0.5* 0.5* 0.86 12.20 Naveed et al., 2017 

Xylonic acid GC-MS 0.001 2.3* 2.3* 0.29 4.50 Habibi et al., 2004 

Total sweeteners GC-MS 0.095 3.6* 3.6* 0.83 N.A N.A 

*indicate a statistically significant difference in the mean concentration of the metabolite between the Comm and NComm cultivars at the 95% level of significance after 

correcting for multiple testing. N.A = not available. 
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Table 4.2: The list of metabolites detected by 1H-NMR, expressed in mg/g.  

Comm vs NComm 

variables 

Analytical  

platform 

Comm concentration 

(mg/g) 

NComm concentration 

(mg/g) 

Fold  

change 

of the 

mean 

Cohen’s 

d-value 

Reported 

literature  

concentration 

(mg/g) 

References 

Min Max Mean Min Max Mean 

Acetic acid 1H-NMR 25.01 60.97 34.8 28.80 70.71 42.2 0.8 1.40 40.01 Bandurski and Schulze, 1977 

Alanine 1H-NMR 0.11 0.32 0.2 0.16 0.40 0.2 1.0  0.31 4.21 Min et al., 2017 

Caffeine 1H-NMR 6.24 20.02 12.6 6.14 19.12 11.6 1.1*  1.10 24.33 Chin et al., 2008 

Catechin 1H-NMR 6.17 30.32 15.4 2.66 28.89 14.2 1.1  0.90 29.18 Gramza et al., 2006 

Chlorogenic acid 1H-NMR 2.65 6.44 4.2 2.51 6.07 4.0 1.0  1.10 6.92 Marks et al., 2007 

Epicatechin 1H-NMR 7.92 28.16 14.6 8.84 26.26 14.2 1.0  0.51 70.66 Gramza et al., 2006 

Epicatechin gallate 1H-NMR 4.01 23.03 13.5 4.32 22.13 13.2 1.0  0.80 170.30 Gramza et al., 2006 

Epigallocatechin 1H-NMR 20.55 117.41 51.7 17.12 113.49 49.6 1.1*  0.40 151.29 Gramza et al., 2006 

Epigallocatechin gallate 1H-NMR 19.02 66.60 39.0 17.36 57.58 35.6 1.1*  0.40 173.87 Gramza et al., 2006 

Formic acid 1H-NMR 19.07 46.40 27.2 16.01 31.08 21.0 1.3* 1.70 21.01 Sanhueza, E., and Andreae, 1991 

Gallic acid 1H-NMR 0.53 2.04 1.1 0.60 2.98 1.0 1.1  2.00 5.10 Kaneko et al., 2006 

Glucose 1H-NMR 5.38 11.72 7.5 4.97 10.36 7.2 1.0  0.50 6.91 Melgarejo et al., 2000 

Isoleucine 1H-NMR 0.13 0.41 0.2 0.01 0.27 0.2 1.0  0.10 2.60 Min et al., 2017 

Leucine 1H-NMR 0.06 0.23 0.2 0.08 0.30 0.1 2.0*  0.40 3.90 Min et al., 2017 

Methanol 1H-NMR 0.07 0.29 0.2 0.07 0.25 0.1 2.0* 1.71 0.04 Fall and Benson, 1996 

Sucrose 1H-NMR 5.91 21.54 15.0 6.61 23.14 13.6 1.1*  0.20 30.90 Kumar et al., 2011 

Theanine 1H-NMR 2.82 22.22 8.6 4.19 13.79 8.0 1.1  1.90 30.00 Vuong et al., 2011 

Quinic acid 1H-NMR 1.01 2.70 1.9 1.03 3.04 2.0 1.0  0.71 5.04 Rodrigues et al., 2007 

Valine 1H-NMR 0.11 0.29 1.7 0.09 0.27 1.7 1.0  0.40 3.40 Min et al., 2017 

Total amino acid 1H-NMR 13.22 33.89 21.8 11.97 32.85 20.9 1.0 1.04 N.A N.A 

Total catechins 1H-NMR 55.73 241.18 121.6 51.22 160.30 114.9 1.1* 0.60 N.A N.A 

Total sweeteners 1H-NMR 4.37 22.91 9.3 3.51 15.81 8.7 1.1* 0.71 N.A N.A 

 

*indicate a statistically significant difference in the mean concentration of the metabolite between the Comm and NComm cultivars at the 95% level of significance after 

correcting for multiple testing. N.A = not available.   
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Table 4.3: The list of metabolites detected by the UPLC-DAD, expressed in mg/g. 

Comm vs NComm 

variables 

Analytical  

platform 

Comm concentration 

(mg/g) 

NComm concentration 

(mg/g) 

Fold 

change 

of the 

mean 

Cohen’s d-

value 

Reported literature  

concentration 

(mg/g) 

References 

Min Max Mean Min Max Mean 

Caffeine UPLC-DAD 21.3 40.3 29.0 16.3 29.3 23.3 1.2* 1.42 24.33 Chin et al., 2008 

Catechin UPLC-DAD 4.4 18.2 16.4 2.6 20.4 8.3 2.0* 1.90 29.18 Gramza et al., 2006 

Epicatechin UPLC-DAD 1.7 13.3 7.7 5.7 32.5 13.9 0.6* 1.53 70.66 Gramza et al., 2006 

Epicatechin gallate UPLC-DAD 10.4 72.3 27.2 15.5 65.3 30.2 0.9 0.37 170.30 Gramza et al., 2006 

Epigallocatechin UPLC-DAD 5.2 53.8 25.5 11.2 63.9 32.8 0.8 0.69 151.29 Gramza et al., 2006 

Epigallocatechin gallate UPLC-DAD 42.6 72.6 57.1 37.6 99.1 61.0 0.9 0.41 173.87 Gramza et al., 2006 

Theaflavin UPLC-DAD 1.1 19.5 7.9 2.8 10.8 5.3 1.5* 0.73 21.01 Ding et al., 1992 

Theaflavin-3-gallate UPLC-DAD 2.1 21.8 5.5 4.5 11.2 7.5 0.7* 0.73 16.10 Ding et al., 1992 

Theaflavin-3’-gallate UPLC-DAD 5.3 26.5 14.6 4.5 12.3 7.6 1.9* 1.41 32.11 Ding et al., 1992 

Theaflavin-3,3-digallate UPLC-DAD 3.2 37.4 26.1 2.8 9.0 5.0 5.2* 5.75 41.10 Ding et al., 1992 

Yield UPLC-DAD 479.7 5560.0 3022.6 366.2 2345.3 1589.8 2.0* 2.00 N.A N.A 

Total catechins UPLC-DAD 64.3 230.2 133.9 72.6 281.2 146.1 0.9 0.91 N.A N.A 

Total theaflavins UPLC-DAD 19.3 87.5 54.0 16.8 39.5 25.4 2.1* 2.10 N.A N.A 

 

*indicate a statistically significant difference in the mean concentration of the metabolite between the Comm and NComm cultivars at the 95% level of significance after 

correcting for multiple testing. N.A = not available. Yield is expressed in KgMT/Ha/year. 
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Table 4.4: The list of metabolites detected by the UPLC-MS, expressed in arbitrary units. 

Comm vs NComm 

variables 

Analytical  

platform 

Comm concentration  NComm concentration  Fold 

change 

of the 

mean 

Cohen’s d-

value 

Reported literature  

concentration 

(mg/g) 

References 

Min Max Mean Min Max Mean 

Argininosuccinate UPLC-MS 3.5 7.4 5.3 1.4 3.3 2.4 2.2* 3.10 9.40 Naveed et al., 2017 

Caffeic acid UPLC-MS 0.2 0.8 0.5 0.1 0.5 0.3 1.7* 1.67 19.20 Ravn et al., 1994 

Caffeine UPLC-MS 0.1 0.6 0.3 0.1 0.2 0.2 1.5* 1.56 24.33 Chin et al., 2008 

Catechin UPLC-MS 1.7 4.4 3.1 0.7 2.5 1.4 2.2* 2.41 29.18 Gramza et al., 2006 

Citric acid UPLC-MS 0.5 0.9 0.7 0.2 0.7 0.5 1.4* 1.42 2.32 Melgarejo et al., 2000 

Epicatechin UPLC-MS 0.4 1.9 1.5 0.5 1.7 0.9 1.7* 1.15 70.66 Gramza et al., 2006 

Epicatechin gallate UPLC-MS 1.2 2.8 2.1 1.7 2.5 2.2 1.0 0.49 170.30 Gramza et al., 2006 

Epigallocatechin gallate UPLC-MS 0.2 0.7 0.5 0.1 0.6 0.3 1.7* 1.11 173.87 Gramza et al., 2006 

Gallic acid UPLC-MS 0.4 1.3 0.7 0.6 3.3 1.4 0.5* 1.07 5.10 Kaneko et al., 2006 

Gallocatechin UPLC-MS 0.2 0.9 0.6 0.3 0.8 0.5 1.2 0.29 5.76 Blainski et al., 2017 

Gluconic acid UPLC-MS 2.5 5.1 3.5 1.7 4.1 2.6 1.3* 1.14 11.80 Naveed et al., 2017 

Glucose UPLC-MS 3.4 4.8 4.1 2.8 4.0 3.3 1.2* 2.03 6.91 Melgarejo et al., 2000 

Glutamic acid UPLC-MS 0.1 0.3 0.2 0.1 0.3 0.2 1.0 0.41 6.90 Min et al., 2017 

Kaempferol 3-O-β-rutinoside UPLC-MS 0.7 1.9 1.2 0.4 2.8 1.2 1.0 0.06 0.11 Karakaya and El, 1999 

Lysine UPLC-MS 0.4 1.2 0.7 0.3 0.4 0.3 2.3* 0.82 2.30 Min et al., 2017 

Maltose UPLC-MS 0.6 1.1 0.8 0.3 0.9 0.5 1.6* 1.51 7.10 Naveed et al., 2017 

Myoinositol UPLC-MS 4.7 10.1 6.0 4.9 8.9 6.6 0.9 0.39 36.60 Naveed et al., 2017 

Quercetin UPLC-MS 0.6 1.2 0.9 0.9 2.6 1.6 0.6* 1.79 0.04 Karakaya and El, 1999 

Rutin UPLC-MS 2.5 4.9 4.0 2.7 7.1 4.9 0.8 0.83 2.69 Kreft et al., 2006 

Theanine UPLC-MS 0.3 1.1 0.6 0.2 0.4 0.3 2.0* 2.06 30.00 Vuong et al., 2011 

Theobromine UPLC-MS 0.1 0.7 0.4 0.2 0.4 0.3 1.3* 0.98 4.86 Sun et al., 2006 

Total amino acid UPLC-MS 0.7 2.6 1.4 0.7 1.5 1.0 1.4* 1.45 N.A N.A 

Total catechins UPLC-MS 3.8 10.6 7.6 3.2 8.2 5.4 1.4* 1.12 N.A N.A 

Total sweeteners UPLC-MS 8.6 16.0 11.0 8.0 13.8 10.4 1.1 0.97/ N.A N.A 
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*indicate a statistically significant difference in the mean concentration of the metabolite between the Comm and NComm cultivars at the 95% level of significance after 

correcting for multiple testing. N.A = not available 
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Table 4.5: The list of identified metabolites to be distinguishing markers between the Comm and NComm 

cultivars. Table shows the ionisation mode under which they were detected, their m/z value and corresponding 

retention time (RT/min). 

 
Detected metabolite Ionisation 

mode 

Measured m/z RT/min High energy MS 

fragment 

Caffeic acid M-H 179.0347 4.9 149, 135 

Catechin M-H 289.0711 4.7 139, 123, 95 

Citric acid M-H 191.0196 1.0 87, 111 

Epicatechin M-H 289.0701 5.7 207, 139, 123, 55 

Epicatechin gallate M-H 441.0807 7.8 273, 153, 139, 123 

Epigallocatechin gallate M-H 457.3720 14.8 441, 289, 153, 139 

Gallic acid M-H 169.0145 1.8 169, 125, 44 

Gallocatechin M-H 305.0657 3.4 223, 195, 163, 139 

Gluconic acid M-H 195.0509 0.7 149, 133 

Glucose M-H 179.0561 0.8 131, 133 

Kaempferol 3-O-β-rutinoside M-H 593.1492 8.7 449, 287, 147, 331 

Maltose M-H 341.1086 0.7 281, 263, 179, 161 

Myoinositol M-H 333.0584 0.6 145, 201, 233 

Quercetin M-H 301.0346 10.3 151, 179, 229, 273 

Rutin M-H 609.1439 7.7 465, 303, 85 

Argininosuccinate M+H 290.1226 1.1 201, 157, 58 

Caffeine M+H 195.0875 8.61 138, 110, 69 

Glutamic acid M+H 148.0602 0.8 130, 102, 84, 56 

Lysine M+H 147.1127 1.0 130, 129, 84, 56 

Theanine M+H 120.0665 1.2 158, 130, 84, 56 

Theobromine M+H 181.0717 3.2 138, 110, 83 
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4.5.2 Violin plots for GC-MS, 1H-NMR, UPLC-DAD and UPLC-MS 

To visually represent the abundance of metabolites retained after zero-filtering, violin plots 

were constructed. Each plot has two violin plots, one for the Comm cultivars and another for 

the NComm cultivars, depicting the concentration/level of each metabolite (indicated on the 

y-axis). The plots also show box and whisker plots showing the distribution of each 

metabolite within the Comm and NComm samples, and highlighting those that are outliers. 

The y-axis represent concentration and the x-axis the cultivar names. From the box plots, it 

can be seen that some metabolites are statistically significantly different between the Comm 

and NComm cultvars. The mean line across the centre of each box is representative of each 

group’s mean. In instances where overlaps occur i.e the mean line of one group falls within 

the lines of the upper and lower quartiles of the other group, this shows that the group means 

are not significantly different at that particular CI. This therefore means that the concentration 

of that particular metabolite is not statistically significantly different between the two groups 

and where the mean line of one group falls outside the box of the other group, that metabolite 

is statistically significantly different between the two groups at that CI. These are shown in 

Figure 4.1. 
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Figure 4.1: Violin plots showing separation between the Comm and NComm cultivars based on GC-MS metabolites. The y-axis units are arbitrary units. Thel black dots 

represent outliers, which are observations 1.5 x interquartile range (IQR) greater than the 75th quantile or 1.5 x IQR less than the 25th quantile. 
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Figure 4.2: Violin plots showing separation between the Comm and NComm cultivars based on 1H-NMR metabolites. The y-axis units are mg/g dry weights. 
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Figure 4.3: Violin plots showing separation between the Comm and NComm cultivars based on detected UPLC-DAD metabolites. The y-axis units for the CAF and catechins 

are %w/w dry weight; TF1-TF4 in black tea samples were quantified as EGCg equivalents, based on the EGCg response factor; yield s are KgMT/Ha/year. 
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Figure 4.4: Violin plots showing separation between the Comm and NComm cultivars based on UPLC-MS metabolites. The y-axis units are expressed in arbitrary units.  
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4.5.3 GC-MS, 1H-NMR and UPLC-DAD PCA plots 

Results presented in Figure 4.5 show that the ellipsoids representing 95% CI of score 

centroids of the Comm and NComm groups separate best by UPLC-DAD (Figure 4.5C) than 

1H-NMR (Figure 4.5B) and GC-MS (Figure 4.5A). The percentage of the overall variation in 

the measured compounds explained by each principal component (PC) is indicated along the 

three axes. 
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Figure 4.5: The 3D PCA scores plots for PCs one, two and three, for GC-MS (A) 1H-NMR (B) and UPLC-DAD 

(C), showing the separation and explaining 48%, 52% and 69% of the variation, respectively from each 

platform.  
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 4.5.3 GC-MS, 1H-NMR and UPLC-DAD PLS-DA plots 

Similar to PCA plots, ellipsoids represent 95% CI of score centroids of each group. The 

percentage of the overall variation in the measured compounds (X) and group membership 

(Y), as explained by each latent variable (LV), which is indicated along each axis, as shown 

in Figure 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

       C 

Figure 4.6: The 3D PLS-DA scores plots for LVs one, two and three, for GC-MS (A), 1H-NMR (B) and UPLC-

DAD (C). The goodness-of-fit values achieved for the GC-MS model were R2=62 % and Q2 = 55% making it 

unrealiable for discrimanant identification, when compared to the 1H-NMR model, which performed better with 

R2=87 % and Q2 = 85%. The goodness-of-fit values achieved for the UPLC-DAD model were deemed reliable 

with predictive accuracy R2=94% and leave-one-out crossvalidated predictive accuracy Q2=93%. 
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4.5.4 UPLC-MS positive and negative ionisation mode PCA, PLS-DA and S-plots 

PCA is an unsupervised, projection technique that permits the viewing of large sample 

datasets by summarising variation through the projection onto fewer dimensions. It is 

predominantly used multivariate analysis technique for the analysis of metabolomic data. 

PCA popularity in metabolomics is due to the fact that it is a simple non-parametric method, 

which permits the viewing of large sample datasets by summarising variation through the 

projection onto fewer dimensions, revealing inherent data trends. PLS-DA is a supervised 

technique commonly used for classifying and selecting biomarkers in metabolomics research. 

It consists of a PLS regression, used to identify combinations of variables that can distinguish 

between groups of samples. PLS-DA improves the observed PCA separation between the two 

sample groups, with the percentage of the overall variation explained by each component is 

indicated along each axis. Each point on the graph represents a sample as projected onto the 

new lower-dimensional space, with the ellipsoids representing the 95% CI of each group. 

Figures 4.7 and 4.8 show UPLC-MS PCA, PLS-DA and S-plots under the positive and 

negative ionisation modes. 
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Figure 4.7: (A) The PCA scores plot; (B) the PLS-DA plot, and (C) the s-plot, showing good separation between the Comm and the NComm cultivars in positive ion mode, 

and the metabolite markers distinguishing both groups. On the s-plot, the markers above the x-axis are the metabolites higher in the Comm cultivars as compared to the 

NComm, and those below the x-axis are higher in the NComm cultivars as compared to the Comm cultivars. 
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Figure 4.8: (A) The PCA scores plot; (B) the PLS-DA plot, and (C) the s-plot, showing good separation between the Comm and the NComm cultivars in negative ion mode, 

and the metabolite markers distinguishing both groups. On the s-plot, the markers above the x-axis are higher in the Comm cultivars as compared to the NComm, and those 

below the x-axis are higher in the NComm cultivars as compared to the Comm cultivar. 
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As mentioned in 4.4.6, biomarkers were identified and confirmed by comparing their mass 

spectra and retention times against the reference standards, and the MassFragment application 

manager was used to facilitate the MS/MS fragment ion analysis process. First, the high 

energy spectra fragments from the pure standards cocktail for caffeine, in the positive 

ionisation mode and ECg (annotated catechin gallate since CAT and EC are isomers) in the 

negative ionisation mode, were uploaded to MassBank online data source where they were 

identified and confirmed by their hit score values. MassBank uses a database search 

algorithm to calculate the similarity score between two spectra i.e. database spectrum and 

query spectrum, based on a modified cosine correlation (Horai et al., 2010). The closer the 

score is to 1, the higher the certainty of correct identification. Following this confirmation, 

the peaks in both the negative and positive ionisation mode samples were then identified 

(Figure 4.9), with Figure 4.9 (E) showing the fragments from the high energy negative 

ionisation mass spectrum used to identify gallic acid i.e. 44, 125 and mother ion 169. 
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(G). 

Figure 4.9: (A) Pure caffeine and (B) ECg standards identified through their fragments and confirmed by their hit and score values. A hit of 5 and above, and a score closer to 

1 means there is a high certainty of correct identification i.e. caffeine had a hit of 5 and a score of 0.998 and ECg had hit of 8 and score of 0.913. (C) gallic acid and (D) 

theobromine are the identified peaks in the samples from the negative and positive ionisation modes respectively. (E) high energy negative ionisation fragmentation mass 

spectrum for gallic acid. (F) high energy positive ionisation fragmentation mass spectrum for theobromine. (G). high energy negative ionisation fragmentation mass 

spectrum for quercetin. 
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4.5.5 LR analysis 

Nominal LR was performed on the GC-MS, 1H-NMR, and UPLC-DAD variables, starting 

with all identified variables and working through the results by taking the most significant i.e. 

p < 0.001, to develop the next model until the best possible model was obtained. In all 

instances, a confusion matrix was generated to show the number of misclassifications. These 

results are shown in the figures below. 

4.5.5.1 GC-MS LR models 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Nominal LR using all the detected GC-MS variables. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Nominal LR using the seven statistically significant variables from the total deteced variables. 
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The confusion matrices in Figure 4.10 and 4.11 show five and six Comm cultivars were 

misclassified as NComm, meaning 90% (44/49) and 88% (43/49) of the genotypes were 

correctly classified as Comm cultivars, respectively. Psicose and Acetoacetic acid were the 

most statistically significant variables, and as such the Acetoacetic acid/Psicose ratio was 

used as a variable to generate a new LR model (Figure 4.12). 
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B.  

 

Figure 4.12: (A) shows the LR plot using Acetoacetic acid/Psicose as a variable. (B) shows the confusion matrix 

obtained from the LR analysis.  
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4.5.5.2 CHAID decision tree analysis 

To confirm the results obtained in the LR model in Figure 4.11, a decision tree was 

constructed (Figure 4.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Decision tree based on the GC-MS metabolites. The tree shows that Acetoacetic acid and Psicose 

are predictors for whether a new cultivar will be Comm or NComm. 
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4.5.5.3 1H-NMR LR models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Nominal LR using all the detected 1H-NMR variables. 

The confusion matrices in Figures 4.14 show no misclassifications. This means that all 21 1H-

NMR variables can accurately separate the Comm cultivars from the NComm cultivars. As 

indicated in the introduction, amino acids have been documented as being important 

metabolites, which contribute to the quality of tea produced from different tea cultivars. As 

such, a LR model was developed based on these to see if they could serve as markers to 

distinguish the Comm from NComm cultivars. The results of this are shown in Figure 4.15 

below. 

 

 

 

 

 

 

 

 

Figure 4.15: Nominal LR model developed on amino acid variables. 
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The LR model developed based on the amino acids showed 50% (28/56) Comm cultivars 

were correctly classified. Next, a LR model based on CAF and the five catechins was 

developed to see if this model, developed on the 1H-NMR variables would give the same 

results as the same model developed on the UPLC-DAD data. This model is shown in Figure 

4.16. 

 

 

 

 

 

 

 

Figure 4.16: Nominal LR using all CAF, and all five catechin variables. 

The results of this model show that 91% (51/56) of the Comm cultivars were correctly 

classified, with CAF and CAT being the most significant variables (Figure 4.16), and as such 

the CAF/CAT ratio was used as a variable to develop a new LR model as seen in Figure 4.17. 
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Figure 4.17: (A) shows the LR plot using CAF/CAT as a variable. (B) shows the confusion matrix obtained 

from the LR analysis.  

  



194 

 

To confirm the results obtained in the LR model in Figure 4.17, a decision tree was 

constructed (Figure 4.18). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Decision tree based on the 1H-NMR CAF and all five catechin variables. The tree shows that CAF 

and EGC are predictors for whether a new cultivar will be Comm or NComm. 

The decision tree gave rise to a new variable combination i.e. CAF and EGC, which isn’t too 

surprising considering EGC was one of the variables with a p < 0.0001 (Figure 4.16). This 

led to the development of a LR model with CAF/EGC as a variable.  
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B.  

Figure 4.19: (A) shows the LR plot using CAF/EGC as a variable, and (B) its confusion matrix.  



195 

 

Based on the results obtained from the UPLC-DAD data (Figure 4.26), the CAT/EC ratio was 

shown to work well as a distinguisher between Comm and NComm cultivars. As such, a 

similar model was developed using the GC-MS data to see whether comparable results would 

be obtained. This model is shown in Figure 4.20.  
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B.  

Figure 4.20: (A) shows the LR plot using CAT/EC as a variable. (B) shows the confusion matrix obtained from 

the LR analysis.  

Next, a model based on the CAF/EC ratio, similar to that developed on the UPLC-DAD 

results was developed, as shown in Figure 4.21. 
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B.  

Figure 4.21: (A) shows the LR plot using CAF/EC as a variable. (B) shows the confusion matrix obtained from 

the LR analysis.  
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4.5.5.4 UPLC-DAD LR models 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: Nominal LR using all ten UPLC-DAD variables. 

From the results in Figure 4.22, the confusion matrix shows no misclassifications, meaning 

all ten variables together can accurately separate the Comm cultivars from the NComm 

cultivars. A LR model was then developed on the four theaflavins, which are markers for tea 

quality (Obanda et al., 1997; Wright et al., 2002). This model is shown in Figure 4.23. 

 

 

 

 

 

 

 

 

 

 

Figure 4.14.23: Nominal LR using only the four theaflavin variables. 
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Figure 4.23 shows that TF4 is the most statistically significantly different metabolite between 

the Comm and NComm cultivars making it a very important variable. This prompted the 

development of a LR model based on TF4 (Figure 4.24). 

 

 

 

 

 

 

 

A.  

 

 

 

B.  

Figure 4.24: (A) shows the LR plot using TF4 as a variable. (B) shows the confusion matrix obtained from the 

LR analysis.  

The confusion matrix in Figure 4.24 shows two Comm cultivars were misclassified as 

NComm, meaning 96% (54/56) of the genotypes were correctly classified as Comm cultivars, 

making it comparable to the model developed using all ten variables. In light of the fact that 

theaflavins are obtained from black tea, which is a laborious and time consuming process, 

requiring up to five years for a field selection to be propagated from cuttings, and grown to 

produce enough shoots to make black tea, a LR model based on CAF, and five catechins of 

the dried fresh green leaf was developed as shown in Figure 4.25 to see whether these could 

serve as possible discriminators. 
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Figure 4.25: Nominal LR using CAF, and all five catechin variables. 

Figure 4.25 shows that five Comm cultivars were misclassified as NComm, while three 

NComm cultivars were misclassified as Comm cultivars. This means 91% (51/56) of the 

Comm cultivars were correctly classified. To confirm the results obtained in the LR model in 

Figure 4.25, a decision tree was constructed (Figure 4.26), the results of which coincide with 

those obtained in the LR model shown in Figure 4.25. 
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Figure 4.26: Decision tree based on CAF and all five catechin variables. The tree shows that CAT and EC are 

predictors for whether a new cultivar will be Comm or NComm. 

The decision tree shows that CAT and EC are the predictors required to distinguish the 

Comm cultivars from the NComm cultivars. From the decision tree, 40 of the 56 Comm 

cultivars or 71%, have a %w/w CAT concentration of > 1.5 and a %w/w EC concentration of 

< or = 1.13. This therefore means breeders can predict whether a cultivar will be Comm by 

considering the CAT/EC ratio. As such, a LR model was developed, using the CAT/EC ratio 

as a predictor, as shown in Figure 4.27. 
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Figure 4.27: (A) shows the LR plot using CAT/EC as a variable. (B) shows the confusion matrix obtained from 

the LR analysis.  

The confusion matrix indicates that 12 Comm cultivars were misclassified as NComm, and 

four NComm cultivars were misclassified as Comm cultivars. This means the model correctly 

classified 79% (44/56) of the Comm cultivars. However, from Figure 4.28, it can be seen that 

the CAT peak is small and elutes very close to an unknown metabolite, which may make it 

difficult to accurately identify and quantify. This prompted the development, and 

construction, of another decision tree (Figure 4.30) and LR model (Figure 4.31), in which the 

CAT variable was excluded, to obtain a new ratio. 
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Figure 4.28: (A) Superimposed green tea UPLC/DAD chromatograms of one Comm and one NComm cultivar, offset by 0.25 min for easy identification. The internal 

standards used were sulphanilamide (1.8 min), Tryptamine (7.3 min) and mycophenolic acid (27.9 min). (B) shows the zoomed in chromatograms of three Comm and three 

NComm cultivars, showing the position of CAT (5.75 min); CAF (9.60) and EC (10.30 min). In both plots, the three dotted lines represents the Comm cultivars, and the three 

solid lines represents the NComm cultivars.   
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Figure 4.29: (A) Superimposed black tea UPLC/DAD chromatograms of one Comm and one NComm cultivar, offset and standards as in Figure 7. (B) shows the expanded 

chromatograms of three Comm and three NComm cultivars, showing the position of TF1 (24.05 min), TF2 (24.40 min), TF3 (24.55 min) and TF4 (25.10 min). In both plots, 

the three dotted lines represents the Comm cultivars, and the three solid lines represents the NComm cultivars. From the (B) figure, it can be seen that TF1, TF3 and TF4 are 

higher in the Comm cultivars as compared to the NComm cultivars. 
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Figure 4.30: Decision tree based on CAF and the catechin variables, excluding CAT. The tree shows that in the 

absence of CAT, CAF becomes the most significant predictor variable. The CAF/EC ratio serves as a predictor 

for whether a new cultivar will be Comm or NComm. 

 

A LR model was developed based on the CAF/EC ratio as shown in Figure 4.58 below. 
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Figure 4.31: (A) shows the LR model for the CAF and catechins, excluding CAT. (B) shows the LR plot based 

on the CAF/EC ratio. (C) shows the confusion matrix for the CAF/EC ratio. 

The LR model based on CAF and the four catechins, with CAT excluded, correctly classified 

80% (45/56) of the Comm cultivars. From the confusion matrix of the LR model based on the 

CAF/EC ratio, it can be seen that the number of misclassifications increases, with 12 Comm 

cultivars being misclassified as NComm, while four NComm cultivars remain misclassified 

as Comm cultivars. This therefore means the model correctly classified 79% of the Comm 

cultivars.  

In a study by Wright et al., (2000), 20 high, and 20 low quality tea clones were used to 

investigate any correlations between the catechin profiles of the green tea leaves, and the 

quality of the resultant black tea produced from them. The results obtained in their study 

confirmed those of Robertson, (1983), finding that the high and low quality tea cultivars 

differed significantly in CAT, EC, and ECg. Furthermore, their study showed that CAT 

correlated least with tea quality, and the reason postulated for this observation was that CAT 

is not a precursor of any of the four major theaflavins responsible for tea quality. The study 

showed a higher correlation between EC and quality, as compared to ECg, due to the lack of 

the gallic acid in EC, which has been reported to increase the astringency of tea (Xu et al., 

2018). This was also observed with the ungallated EGC highly correlating with quality than 
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the gallated EGCg. The high and low quality cultivars were thus distinguishable by 

considering CAT+EC+ECg. A LR model was developed based on CAT+EC+ECg as shown 

in the Figure 4.32 to see whether or not the findings of Robertson, (1983) and Wright et al., 

(2000), which were both on Malawian tea cultivars were applicable to the Comm and 

NComm cultivars used in the present study, which were obtained from Kenya. 
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Figure 4.32: (A) shows the LR model for CAT+EC+ECg. (B) shows the confusion matrix for CAT+EC+ECg. 

Lastly, the present study also saw the development of a LR model based on the ratio of 

simple: complex catechins, which was put forward in a study by Ellis and Nyirenda, (1995), 

as being a distinguisher between high and low quality teas. This LR model is shown in Figure 

4.33. 
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Figure 4.33: (A) shows the LR model for Simple/Complex catechins. (B) shows the confusion matrix for the 

Simple: Complex catechin model. 
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Table 4.6: List of LR models developed showing the %specificity and %sensitivity of each. Prob(Comm) = 1 / (1 + Exp( -(Lin[Comm]))). 

Model name Lin (Comm) %Sensitivity n=3; (%CV) %Specificity n=3; (%CV) 

GC-MS 

Model 1 

All detected metabolites 

(-1.30) + 102.1*1-Cyclohexene-1-carboxylic 

acid + 962.2*Acetoacetic acid + 

762.3*Arabinose + (-23.8)*CAT + 

80.1*Gallic acid + 7.4*Glycerol + (-

287.2)*Phloroglucinol + (-7751.9)*Psicose + 

(-137.9)*Ribitol + (-49.2)*Sucrose + (-

2.7)*Threonic acid + (-2811.9)*Xylonic acid 

84 4.0 94 2.3 

Model 2 

Acetoacetic acid, Arabinose, 

CAT, Gallic acid, Phloroglucinol, 

Psicose, Ribitol, Sucrose 

(-1.3) + 865.1 *Acetoacetic acid + 694.1 

*Arabinose + (-19.9) *CAT + 78.7 *Gallic 

acid + (-280.9) *Phloroglucinol + (-7755.2) 

*Psicose + (-115.5) *Ribitol + (-39.9) 

*Sucrose 

78 3.3 93 1.9 

Model 3 

Psicose/Acetoacetic acid 

2.2 + (-21.1)*Psicose/Acetoacetic acid 67 5.1 77 1.2 

1H-NMR 

 

Model 1 

All detected metabolites 

8.3 + (-0.6)*Acetic acid + (-0.5)*Alanine  + 

0.05*CAF + -0.03*CAT + 0.2*Chlorogenic 

acid + (-0.03)*EC + (-0.03)*ECg + (-

0.01)*EGC + 0.02*EGCg + (-1.4)*Formic 

acid + 0.05*Gallic acid + 0.02*Glucose + (-

2.7)*Isoleucine + 2.5*Leucine + 

2.1*Methanol + 0.006*Quinic acid + (-

0.08*Sucrose + (-0.007)*Theanine + 

0.002*Valine 

100 3.4 100 1.1 
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Model 2 

Alanine, Isoleucine, Leucine, 

Theanine, Valine 

1.7 + (-0.3)*Alanine + (-0.9)*Isoleucine  + 

1.1*Leucine + 0.006 *Theanine + 0.3*Valine 

50 5.3 78 2.1 

Model 3 

CAF, CAT, EC, ECg, EGC, 

EGCg 

(-1.2) + 0.02*CAF + (-0.01)*CAT + 

0.006*EC + (-0.02)*ECg + (-0.01)*EGC  + 

0.01*EGCg 

91 6.2 96 1.8 

Model 4 

CAF/CAT 

(-5.9) + 2.6*CAF/CAT 43 5.3 75 2.1 

Model 5 

CAF/EGC 

(-5.06) + 5.4*CAF/EGC 23 4.4 62 1.7 

Model 6 

CAT/EC 

(-0.09) + (-1.2)*CAT/EC 0 0 100 0 

Model 7 

CAF/EC 

(-6.8) + 3.9*CAF/EC 0 0 100 0 

UPLC-DAD 

Model 1 

CAF, CAT, EC, ECg, EGC, 

EGCg, TF, TF2, TF3, TF4  

(-290.7) + 47.3*CAF + 35.6*CAT + (-

21.1)*EC + (-5.1)*ECg + (-112.8)*EGC + 

54.9*EGCg + 242.5*TF + (-6.4)*TF2 + (-

461.3)*TF3 + 562.2*TF4 

86 8.1 100 1.2 

Model 2 

TF, TF2, TF3, TF4 

(-2.2) + (-0.9)*TF + (-5.5)*TF2 + (-3.0)*TF3 

+ 8.4*TF4 

100 0 100 0 

Model 3 

TF4 

(-8.2) + 6.2*TF4 100 0 100 0 

Model 4 

CAF, CAT, EC, ECg, EGC, 

(-15.6) + 5.6*CAF + 6.4*CAT + (-6.9)*EC + 79 22.3 98 1.2 
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EGCg (-1.3)*ECg + (-0.8)*EGC + 0.7*EGCg 

Model 5 

CAT/EC  

(-8.4) + 5.4*CAT/EC  76 6.1 98 1.6 

Model 6 

CAF, EC, ECg, EGC, EGCg 

(-15.6) + 5.6*CAF + 6.4* + (-6.9)*EC + (-

1.3)*ECg + (-0.8)* EGC +0.7*EGCg 

86 16.9 97 2.6 

Model 7 

CAF/EC 

(-7.4) + 2.3*CAF/EC 60 6.8 98 1.8 

Model 8 

CAT+EC+ECg 

(-0.9) + (-0.1)*CAT+EC+ECg 0 0 100 0 

Model 9 

(CAT+EC+ECg)/(EGC+EGCg) 

(-2.8) + 2.2*((CAT+EC+ECg)/(EGC+EGCg 

)) 

0 0 100 0 

 

Total number of Comm cultivars cultivars used in this study were 49 (GC-MS) and 56 (1H-NMR and UPLC-DAD). The %Sensitivity and %Specificity were calculated using 

formulas given in 4.4.9. 
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4.6 DISCUSSION AND CONCLUSION  

Metabolomics statistical data analysis can be employed as a supportive tool to aid breeders in 

the selection and improvement process for new tea cultivars. As mentioned, the objective of 

this study was to identify potential classifiers for the 303 genotypes investigated into either of 

the two groups, Comm or NComm cultivars, with GC-MS, 1H-NMR, UPLC-DAD and 

UPLC-MS as the metabolomics platforms. Figures 4.1 to 4.4 show the violin plots for the 

GC-MS, 1H-NMR, UPLC-DAD and UPLC-MS data, respectively, showing the differences in 

each of the detected metabolites in the Comm and the NComm cultivars. Violin plots serve as 

a conspicuous means of visualising the differences that exist between classes, carrying 

substantial statistical information about e.g. medians and outliers. When the mean of one 

class falls outside the 25th and 75th percentile of the second group, as is seen in Figure 4.2, 

this indicates that there is a statistically significant difference between these two classes, with 

respect to that particular metabolite. The GC-MS metabolites arabinose, CAT, 1-

cyclohexenecarboxylic acid, psicose, ribitol, sucrose, and threonic acid; 1H-NMR metabolites 

CAF, EGC, EGCg, Formic acid, Leucine, Methanol, and Sucrose; UPLC-DAD metabolites 

CAF, CAT, EC, TF1-TF4, and yield; UPLC-MS argininosuccinate, caffeic acid, CAF, CAT, 

citric acid, EC, EGCg, gallic acid, gluconic acid, glucose, maltose, quercitin and theanine in 

Figure 4.4 clearly differentiate the Comm cultivars from the NComm cultivars, making these 

ideal predictors to be employed in classifying the 303 genotypes into the two classes. 

Furthermore, the PCA and PLS-DA plots in Figures 4.5 and 4.6, respectively, show that the 

detected metabolites on the 1H-NMR and UPLC-DAD platforms separate the Comm cultivars 

from the NComm cultivars, while the GC-MS plots show some overlap between the two 

groups, signifying that the GC-MS platform metabolites are not capable of separating the 

Comm from the NComm cultivars. From Figures 4.5 (B) and 4.6 (B), it can be seen that two 

Comm cultivars cluster with the NComm cultivars. These two Comm cultivars are the 

parental clones GW Ejulu and TRFK 303/577. The observed clustering is because the 

metabolite concentrations in both parental clones for the metabolites responsible for 

separating the two groups are similar to those of the NComm cultivars and as such these 

parents will cluster with their offspring. This clustering is however not observed in Figures 

4.5 (C) and 4.6 (C) because the concentrations of the detected UPLC metabolites in the 

parental clones are similar to those of the other Comm cultivars and therefore the parental 

clones have clustered with the Comm cultivars; no clear separation was observed in Figures 

4.5 (A) and 4.6 (B) so it can not be determined whether the GC-MS metabolites cluster the 
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parental clones with the other Comm cultivars, or with the NComm cultivars.  Tables 4.1, 4.2 

and 4.3 show a total of 12, 19 and 10 metabolites were identified using GC-MS, 1H-NMR 

and UPLC-DAD respectively. The GC-MS results showed that arabinose, catechin, gallic 

acid, glycerol, phloroglucinol, sucrose and xylonic acid, a sugar acid generated through the 

complete oxidation of xylose, were detectable metabolites, which separated the Comm from 

the NComm cultivars in terms of arbitrary response units. Arabinose, sucrose and xylonic 

acid were higher in the Comm cultivars. These three metabolites have been shown to have 

positive correlations with metabolites such as ribose and sucrose, in other studies. They have 

been shown to play a role in improving the sweet taste of sugarcane  and to be up-regulated 

during strawberry fruit maturation (Zhang et al., 2010). It can thus be postulated that the tea 

cultivars with high levels of these sugars will produce sweet-tasting, higher-quality liquor. 

Arabinose has been reported in a study on serendipity berries from the Dioscoreophyllum 

cumminsii Diels plant, which is indigenous to tropical West Africa, and is grown in Guinea, 

Cameroon, and in the rain forests of central Africa. Arabinose levels were found to be higher 

in the fruits of some varieties of these berries and were determined to be the reason for the 

sweetness in these varieties (Inglett, 2012). In addition, polyols such as arabitol and ribitol, 

which also enhance the sweetness of fruits, have been reported in the literature at 

concentrations ranging between 20 and 60 mg/g dry weight (Roser et al., 1992). In a study 

evaluating the sucrose, and taste-related amino acids content in soybean, a sucrose 

concentration of 30.9 mg/g dry weight was reported (Kumar et al., 2011). The present study, 

however, detected average sucrose levels of 15 mg/g and 13.6 mg/g dry weight for the Comm 

and NComm cultivars respectively. Our results for higher concentrations of arabinose and 

sucrose in the Comm cultivars, agree with those in the literature where these compounds are 

higher in sweeter sugarcanes, ripening strawberries and sweeter cultivars of serendipity 

berries.  

Literature has shown that abiotic stress such as drought affects the photosynthetic pathway of 

plants, and in so doing drastically impacts their primary metabolism, which in turn affects 

sugars, sugar alcohols, and amino acids. The DT plants, tend to be of a higher quality than the 

drought susceptible (DS), as they efficiently up-regulate their production of sugars, which 

they utilise as an energy source during stress (Nyarukowa et al., 2016). This could also 

explain why the DT cultivars produce better tasting liquor. Further, carbohydrates have also 

been shown to influence the biosynthesis of other energy-generating metabolites, responsible 
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for the alteration of gene expression and signal transduction (Hoekstra et al., 2001). 

Phloroglucinol is a plant polyphenolic compound, which possesses antioxidant properties. It 

has been compared to ascorbic acid, and has been shown to be more powerful against e.g. 

DPPH and peroxide radicals; it is considered a natural antioxidant. Phloroglucinol has been 

described in the literature as sweet, and contributes to the sweet fruity taste of the grapes used 

to make Pinot noir wines (Cortell et al., 2008). Phloroglucinol was one of the metabolites 

identified, which was higher in the Comm cultivars as compared to the NComm cultivars. 

The higher concentration of phloroglucinol in the Comm cultivars agrees with the higher 

concentration of this compound in sweet fruity Pinot noir grapes. The higher concentration of 

phloroglucinol in the Comm cultivars can be explained in part by the fact that DT cultivars 

have been shown to have higher levels of polyphenols, which in turn results in them having a 

higher levels of antioxidants so they are able to scavenge free radicals better than the DS 

cultivars and this results in their survival under drought stress (Nyarukowa et al., 2016). 

Malic acid is a dicarboxylic acid, which was identified as a distinguisher between the Comm 

and NComm cultivars. This compound has been reported in ripening apples at concentrations 

of 10 mg/g (Ackermann et al., 1992); it has been reported to be responsible for the sour taste 

of fruits. In another study on apples by Ma et al. (2015), where the sugar and malic acid 

composition in cultivated vs wild apples was compared, it was found that a significant 

difference between the malic acid concentrations of the cultivated vs the wild apples existed. 

Furthermore, the study also showed that malic acid composition highly correlated with that of 

glucose and sucrose contents, suggesting that the selection of fruit acidity also has a 

significant effect on the amounts of sugars present in apple fruits. This means sugar 

metabolism is influenced by malic acid accumulation. The wild apples were shown to be 

more acidic as compared to the cultivated apples. Apple breeders select for apples richer in 

malic acid content, due to its strong impact on sugar concentration in apples, resulting in 

sweeter apples (Ma et al., 2015). The Comm tea cultivar results for malic acid agree with the 

malic acid results found in literature for commercial apple cultivars (Ma et al., 2015). Psicose 

was also detected in this study; this metabolite has been documented to confer sweetness to, 

for example, Worcester sauce and fruit juice. Oshima et al., (2006) reported psicose, a 

product of fructose breakdown, at concentrations ranging from 0.005 mg/g in coffee to 1.31 

mg/g in Worcester sauce. Our study found the arbitrary psicose units to be significantly lower 

in the Comm cultivars compared to the NComm cultivars, indicating it is a significant 

distinguisher. 
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Some key metabolites responsible for the taste of tea are caffeine, which comprises up to 5% 

of the shoot dry weight; theobromine and theophylline, which are < 3% of the shoot dry 

weight. Caffeine has, in addition to being a stimulant, been documented to contribute to tea 

briskness, while theophylline and theobromine have been shown to contribute to the 

mellowness and sweetness of oolong tea (Chaturvedula and Prakash, 2011). The 1H-NMR 

results indicate that levels of caffeine were higher in the Comm cultivars as compared to the 

NComm cultivars. According to Chin et al., (2008), the average caffeine content in black, 

and green tea is 7-30 mg/g serving of tea, with the average size of a tea bag being 2 g. The 

current untargeted study found average green leaf caffeine content of 12.6 and 11.6 mg/g in 

the Comm and NComm cultivars, respectively. These results agree with those of Mazzafera 

and Silvarolla (2010), which showed that coffee beans from high-quality cultivars had a 

higher caffeine concentration of 25 mg/g dry weight compared to the low-quality cultivars 

with a lower caffeine concentration of 9.64 mg/g.    

The 1H-NMR results show that amino acids valine and isoleucine were detected across all 

samples. These two amino acids were found to be higher in the Comm cultivars. Moreover, 

amino acids have been documented to improve taste and aroma in tea infusions, namely 

alanine, leucine, phenylalanine, tryptophan, tyrosine, and valine. Alanine and phenylalanine 

have been reported as being responsible for the flowery and rose-like aromas of tea, 

respectively, whilst leucine has been shown to produce a spicy aroma (Sanderson and 

Grahamm, 1973). 

Chlorogenic acid was one of the metabolites consistently detected in the Comm and NComm 

cultivars. In a study by Szejtli and Szente (2005), chlorogenic acid was complexed with the 

tasteless β-cyclodextrin, to eliminate the undesired bitter taste and resultant sensation in the 

mouth. In another study on apples, it was shown that from the 20 varieties investigated, the 

sweeter varieties were those with lower chlorogenic acid concentrations, as low as 1.8 mg/g 

fresh weight, with the less sweet varieties having as high as 6.9 mg/g fresh weight (Marks et 

al., 2007). In the present study, chlorogenic acid concentrations were comparable in both 

groups with the Comm and NComm cultivars having average dry weight concentrations of 

4.2 and 4 mg/g, respectively. 

Quinic acid was also detected in the Comm and NComm cultivars. Literature has documented 

quinic acid to be responsible for the astringency taste associated with coffee (Buffo and 

Cardelli-Freire, 2004). However, there was no statistically significant difference between the 

Comm and NComm cultivars for quinic acid. The metabolite 1-cyclohexenecarboxylic acid 
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was also detected in the present study, and was significantly higher in the Comm cultivars 

than the NComm cultivars. Cinnamic acids are trans-phenyl-3-propenoic acids found in 

plants as e.g. p-coumaric, caffeic, ferulic, dimethoxycinnamic, and trimethoxycinnamic acids, 

to name a few. These metabolites conjugate, through their carboxylic groups, with amino 

acids, polysaccharides, and glycosides. The most predominant of these reactions is the 

transesterification with quinic acid to form cinnamate esters, which are collectively known as 

chlorogenic acids. Furthermore, cinnamic acids conjugated with a derivative from quinic 

acid, shikimic acid, results in 3,4,5-trihydroxy-1-cyclohexenecarboxylic acid, which is also a 

cinnamate ester. 1-cyclohexenecarboxylic acid, like other chlorogenic acids, is bitter in taste, 

and has been documented to confer bitterness in green coffee beans (Baeza et al., 2016). 

The present study also detected methanol as a potential biomarker, separating the Comm 

from the NComm cultivars. In a study by Fall and Benson (1996), it was documented that 

methanol is a natural metabolism product, emitted from plant leaves. Their study showed 

high concentrations of methanol in the forest air, substantiating the likelihood that the forest 

plants were producing this compound. Employing GC analysis or direct enzymatic analysis 

of gas-phase methanol, significant methanol emissions were observed from the leaves of 

forest plants using leaf and branch enclosure approaches, typically ranging between 0.0003 - 

0.017 mg methanol per g dry weight, with young leaves emitting up to 0.04 mg methanol per 

g dry weight (Nemecek-Marshall et al., 1995). Methanol has been shown to possess a sweet 

taste and is used in artificial sweeteners (Chattopadhyay et al., 2014). The present study 

found the concentrations of methanol in the Comm cultivars to be double that of the NCom, 

at 0.2 and 0.1 mg/g, respectively.  

Glycerol is another metabolite that was detected on the GC-MS platform. Literature shows 

that glycerol enhances the aroma and sweetness levels in wines. In a study investigating the 

effects of glycerol in red and white wines, it was documented that a glycerol concentration of 

10 g/L was sufficient to enhance the aroma, and suppress the bitterness, resulting in these 

wines being reported as sweet-tasting even when glucose and fructose levels were below the 

detection threshold reported in other studies (Jones et al., 2008). This study found no 

significant difference in the concentrations of glycerol in the Comm and NComm cultivars. 

Since several metabolites described above relate to sweetness, the summation of the 

metabolites; arabinose, arabitol, glycerol, malic acid, phloroglucinol, psicose, ribitol, sucrose, 

and xylonic acid for the GC-MS, and glucose, methanol and sucrose for the 1H-NMR, in each 

of the 303 cultivars was calculated. This sum of sweeteners was labelled total sweeteners. 
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Interestingly, the total sweeteners were significantly higher (P<0.05) in Comm cultivars. We 

report here for the first time in the leaves of black tea cultivars that several metabolites, 

related to sweetness, which are higher in the Comm than the NComm cultivars. Sweetness 

may have contributed to these cultivars being selected for commercial production since the 

1950s. 

As documented below, several metabolites were also detected that are responsible for other 

taste qualities i.e. bitterness and umami. Plants are rich in bitter-tasting metabolites, which 

serve to deter herbivores. To reduce bitterness or off-taste, plants produce sweet, acidic, or 

strong fruity flavoured molecules, which mask the bad tastes (Tripathi et al., 2011). The 

present study shows that the Comm cultivars have a higher total sweeteners concentration of 

9.3 mg/g, which is significantly higher (P<0.05) from the total sweeteners concentration in 

the NComm of 8.7 mg/g dry weight. Furthermore, the total amino acid concentration, 

calculated by adding the amino acids alanine, isoleucine, leucine, theanine, and valine, was 

higher in the Comm than the NCom, at 21.8 and 20.9 mg/g dry weight. These compounds 

could, therefore, mask the bitterness, resulting from e.g. caffeine and chlorogenic acid. As 

mentioned in the foregoing, amino acids are responsible for the aroma of tea, therefore, the 

higher the total amino acids, the more aromatic the tea. The total amino acid and total 

sweeteners concentrations being higher in the Comm cultivars result in the teas produced 

from these cultivars having a better taste.  

Linolenic acid was another metabolite detected by the GC-MS, which was higher but not 

statistically significant, in the Comm cultivars. Linolenic acid has been documented as being 

responsible for the bitter taste observed in soybean lecithins, and linseed oil obtained from 

different varieties. A study by Toumi et al., (2008), revealed linolenic acid to be the most 

abundant fatty acid in grapevine leaves, and it was higher in the leaves of DT cultivars, which 

corroborates our findings. The total lipid membrane composition in plants increases during 

drought, reducing the amount of water lost by the plant. It is therefore no surprise that DT 

cultivars have higher linolenic acid content, as it serves as a mechanism for coping with 

drought stress Threonic acid is a by-product of ascorbate catabolism, whose production is 

induced, and regulated by stresses such as light and drought; this metabolite confers 

protection to the plant. It has been documented to be involved in stomatal closure during 

drought stress (Renault et al., 2017). The levels of threonic acid found in this study were 

significantly higher (P<0.05) in the Comm cultivars than the NComm cultivars. This is 
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expected as threonic acid has been reported to confer drought tolerance properties in plants, 

and as such it can be postulated that this metabolite contributes to the drought tolerance 

properties observed in the Comm cultivars.  

Correlations have been documented in the literature between the umami taste found in green 

tea and theanine. Theanine concentrations have been reported to range between 10-50 mg/g 

dry weight (Vuong et al., 2011) in C. sinensis and the higher the concentration, the more the 

umami taste. The average theanine levels detected in this study were higher, but insignificant, 

in the Comm (8.6 mg/g) compared to the NComm cultivars (8.0 mg/g) dry weight. Gallic 

acid was detected to have slightly higher concentrations in the Comm cultivars (1.1 mg/g) 

than the NComm (1.0 mg/g). In a study by Kaneko et al., (2006), the umami taste intensity of 

green tea without any additives was evaluated and was scored at intensity of 1.5 out of five. 

However, following the addition of 5.4 mg/g of natural gallic acid, the intensity of the umami 

taste increased to a score of 2.4. This higher umami score indicates the significance of gallic 

acid in the taste of tea. According to literature, fresh green tea leaves contain trace amounts of 

gallic acid, which then increase during the manufacturing process of black tea as a result of 

galloyl ester hydrolysis from the catechins and theaflavin gallates. The high levels of gallic 

acid in some cultivars have been attributed to correspondingly high levels of gallated 

catechins, which result in the generation and consequent degradation of the theaflavins. It has 

been documented that EGCg and ECg are principal taste metabolites in tea, which are 

responsible for tea astringency, while caffeine is responsible for bitterness (Koech et al., 

2018). The gallated catechins ECg and EGCg significantly contribute to the generation of 

theaflavins in black tea. As such, high concentrations of ECg and EGCg may be markers for 

high-quality black teas. It has been reported that the ratio of di-hydroxyl flavan-3-ols to tri-

hydroxyl flavan-3-ols impacted the quality of black tea; high quantities of simple catechins 

such as catechin, EC and ECg compared to the gallo-catechins EGC and EGCg, results in 

higher amounts of theaflavins (Kwach et al., 2016). The concentration of EGC in the fresh 

tea shoots strongly correlates with theaflavins amounts, thus influencing black tea pricing 

(Yu et al., 2008). The higher EGC found in the Comm cultivars agrees with Yu’s findings.  

From the results obtained from the 1H-NMR, the Comm cultivars had a significantly (P<0.05) 

higher total catechins content of 121.58 mg/g compared to the 114.96 mg/g dry weight of the 

NComm cultivars. The total catechins were calculated by adding CAT, EC, ECg, EGC, and 

EGCg. According to Lin et al., (1996), a 200 mL cup of green tea contains 305 mg EGCg, 
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145 mg EGC, 70 mg ECg, 28 mg EC, and 8 mg CAT. It can, therefore, be concluded that the 

total catechins may have contributed to the selection of the Comm cultivars since the 1950s. 

The catechins are the substrates from which theaflavins and thearubigins are produced during 

the manufacture of black tea. Theaflavins are orangish-brownish pigments, which contribute 

to the briskness and brightness (Muthumani and Kumar, 2007) and astringency (Obanda et 

al., 2001) of black tea, all of which are important traits in tea quality determination. The 

theaflavin digallate, is approximately 6.4 times more astringent than theaflavin, while also 

being 2.88 times more astringent than both theaflavin-3-monogallate and theaflavin-3’-

monogallate (Obanda et al., 2001). They are the predominant constituents of black tea-cream 

upon cooling (Roberts, 1963); it is for this reason they are deemed as an important quality 

index of black tea. Furthermore, theaflavin content influences the total colour of tea i.e. teas 

with higher theaflavins content will have a higher total colour score. Hilton and Ellis (1972), 

developed several regression formulae, which were used to correlate theaflavin content in 

Malawian teas, with price. One formula with a highly significant regression coefficient of p < 

0.001 held: 

logprice = a1ogT.F. + b1ogT.C.    (1) 

with a correlation coefficient is 0.82. T.F = theaflavin and T.C = total colour. To validate 

their findings, they repeated their experiment using tea samples from Malawi, Uganda, 

Tanzania, Kenya, Assam and New Guinea; similar results were obtained depicting the close 

correlation between theaflavin content and market price. These findings further support those 

of the current study, which show that the Comm cultivars have higher theaflavin content than 

the NComm cultivars. Their study and its findings however, failed to gain wide acceptance 

due to the crude extraction method employed. The current study employs UPLC-DAD 

platform, which allows for the quantitative identification of the individual theaflavins. Figure 

4.29 shows superimposed black tea Comm and NComm cultivars, and from this figure, it is 

clearly visible that the Comm cultivars have higher total theaflavins content than the NComm 

cultivars. This further supports and explains why the Comm cultivars are of higher quality 

than the NComm cultivars. 

Figures 4.7 and 4.8 show the positive and negative ionisation mode PCA, PLS-DA and S-

plots, respectively. From both the PCA’s and PLS-DA’s, it can be seen that there is complete 

separation between the eight Comm and eight NComm cultivars analysed using UPLC-MS. 

Nine of the 21 detected metabolites were also detected by the other platforms, and these have 
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been discussed above. The purpose of employing the UPLC-MS platform was to detect and 

identify additional metabolites, which may not have been detected by the other three 

platforms and to investigate their influence on tea taste and quality (Figure 4.8). Caffeic acid 

(CA) was one of the metabolites detected by UPLC-MS. CA has been reported in literature as 

a potent antioxidant (Gülçin, 2006). In a study by Krishna and Surinder, (2003), it was shown 

that applying CA to soybean increases its yields. This could explain why the Comm cultivars 

had a reported higher yield as compared to the NComm cultivars. Furthermore, it has been 

reported that since the antioxidant enzyme genes responsible for regulating antioxidant 

enzyme activities in plants and the antioxidant system are interactional (Shin et al., 2014), the 

pre-treatment with CA affects antioxidant enzyme activation in plants. When these pre-

treated plants are subjected to drought stress, the antioxidant enzyme activities are enhanced, 

thus protecting plants from drought (Wan et al., 2014). Moreover, CA pre-treatment has been 

reported to enhance drought tolerance in cucumber seedlings through the increased 

antioxidant enzyme activity; CA also leads to an increase in proline and soluble carbohydrate 

contents. CA has further been reported to enhance the flavour of potatoes (Thybo et al., 

2006), and good quality olive oils (Kiritsakis, 1998). Citric acid was the other metabolite 

detected. It has been documented to have a bitter taste (Van Der Klaauw and Smith, 1995). 

Citric acid has been shown to have beneficial effects in the roots of wheat and legumes, as it 

forms stable molecular complexes with metallic cations, favouring the availability and 

absorption of water and nutrients, and in so doing, increasing the vigour of the plant (Franco 

et al., 1992). The role of citric acid in drought stress is well documented in several studies, 

which have reported that its synthesis and breakdown functions as a pH regulating 

mechanism in plant cells (Sadak and Orabi, 2015). Glucoronic acid was one of the other 

metabolites detected. Gluconic acid is an organic acid produced from the oxidation of 

glucose. As is the case with citric acid, glucuronic acid lowers the pH in the plant cells, 

enabling them to take up water and survive drought stress (Anastassiadis and Morgunov, 

2007). This compound may contribute to the Comm cultivars being drought tolerant. Another 

important finding in this study was the detection of kaempferol 3-O-β-rutinoside. This 

flavon-3-ol glycosides has been documented as being an important tastant responsible for the 

velvety astringent taste noted in tea infusions. It has also been reported as an enhancer of the 

bitterness of caffeine in tea (Scharbert and Hofmann, 2005). Myoinositol was another 

metabolite also detected in the study. In a study by Rogers et al., (1999), it was shown that 

myoinositol levels were higher in high quality, compared to the lower quality coffee beans. 
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Myoinositol is involved in several metabolic pathways in plants, serving as a precursor for 

e.g. inositol phosphates, phosphoinositides, cell wall polysaccharides through the myoinositol 

oxidation pathway; it is also involved in signal transduction pathways (Rogers et al., 1999). 

Quercetin and rutin are flavonol glycosides, which were both detected by UPLC-MS. These 

two compounds have been reported to being responsible to the bitter taste found in 

buckwheat plants (Baghel et al., 2012; Suzuki et al., 2015). The amino acids glutamic acid 

and lysine were also detected. In a study by Solms and Wyler (1979), which sought out to 

answer the question “Is there a potato taste at all, and what are the corresponding 

compounds?” This study reported that potatoes have a neutral flavour, yet possess a typical 

taste and odour. It was found that the amino acids glutamic acid and lysine were responsible 

for this. 

As mentioned, one of the objectives of this study was to make use of UPLC-DAD generated 

data of the metabolites from the 303 samples of green tea obtained from the TRI in Kenya, to 

develop LR models, to classify the 303 genotypes investigated as either Comm or NComm 

cultivars. The best model may then serve as a prediction tool for whether a newly field 

selected mother bush is likely to become commercialised due to its similarities with the 

Comm cultivars. This would, in turn, increase the success rate of field selections through 

conventional breeding. Tables 4.1 to 4.3 show the list of 12, 19 and ten metabolites upon 

which the LR models developed in this study were based. Over the course of the preceding 

decade, LR has gained popularity, as is documented by the trend in peer-reviewed science 

journals. This increase in popularity is attributed to the realisation by researchers of the 

benefits associated with making use of advanced statistical software packages to perform 

comprehensive analyses, including LR (Zeitouni and Chelghoum, 2001). In this study, we 

show that LR is capable of serving as a strong analytical tool for classifying cultivars as 

either Comm or NComm, based on the CAT/EC ratio, as well as the CAF/EC ratio from the 

UPLC-DAD catechins, and that these ratios can be used to predict whether or not new field 

selections are likely to be commercialised. The study also tests other catechin combinations 

documented in literature to function as predictors for high and low quality teas (Table 4.6). 

Multiple regression analysis functions to classify significant variables as genotype class 

predictors, which elucidate the dependent variable variance. Multiple regression, an extension 

of simple linear regression, is used when predicting the value of a dependent variable based 

on the value of two or more independent variables (Statistics, 2013). By contrast, decision 
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trees identify those variables which would most differentiate Comm and NComm cultivars. 

Figure 4.10 shows the nominal LR results obtained using all 12 GC-MS variables. Based on 

these results, 90% (44/49) of the Comm cultivars were correctly classified. Next, the seven 

statistically significant variables were used to develop another model (Figure 4.11) and this 

model was found to correctly classify 88% (43/49) of the Comm cultivars. The ChiSquare 

values in Figure 4.11 show Psicose and Acetoacetic acid to be the most statistically 

significant variables, and as such the Acetoacetic acid/Psicose ratio was used as a variable to 

generate a new LR model (Figure 4.12). This model correctly classified 67% (33/49) of the 

Comm cultivars. This means the GC-MS variables in this study were not the best suited to 

separate the Comm vs NComm cultivars, prompting the development of LR models on the 

1H-NMR results. The spatial decision tree was developed on the GC-MS data confirmed that 

Acetoactic acid and Psicose were indeed important variables in the GC-MS dataset. As with 

the GC-MS data, the first model developed on the 1H-NMR data was based on all 19 detected 

variables (Figure 4.14). From these results, it can be seen that this model correctly classifies 

all cultivars into the Comm and NComm classes, with the confusion matrix displaying zero 

misclassifications. However, no further LR models based on the significance of each variable 

could be developed because from the obtained p-values, all variables except for Quinic acid 

were significantly different between the Comm and the NComm cultivars. It has been 

extensively reported in literature that amino acids are good indicators for determining quality 

of tea liquor. This led to the development of model shown in Figure 4.15 based solely on the 

detected amino acids. From this model, only 50% of the Comm cultivars were correctly 

classified. This means that the detected amino acids, on their own, may not be the best 

variables to separate the cultivars into the two classes. The LR model based on CAF and the 

five catechins was developed and this model showed 91% of the Comm cultivars were 

correctly classified, which is identical to the UPLC-DAD model results based on the same 

variables (Figure 4.25). This shows that CAF and the five catechins are markers for 

separating the Comm and NComm cultivars. From the ChiSquare values of the model (Figure 

4.16), CAF and CAT were found to be the most significant variables, resulting in the 

CAF/CAT ratio being used as a variable. The LR model based on this ratio correctly 

classified 43% of the Comm cultivars, showing that this ratio would not work well in 

separating the Comm from the NComm cultivars. The decision tree developed in Figure 4.17 

identified CAF and EGC as important variables, which prompted the development of a LR 

model based on CAF/EGC. The results of this model show that 23% of the Comm cultivars 
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were correctly classified, making this ratio unsuitable for separating the two classes of 

cultivars. Figures 4.19 and 4.20 were developed based on the CAT/EC and CAF/EC ratios, 

respectively, similar to what was done with the UPLC-DAD results. Both these models 

correctly classified 0% of the Comm cultivars, failing dismally, by comparison to those 

developed on the UPLC-DAD data, which correctly classified 79% and 57% of the Comm 

cultivars, respectively. This could mean that UPLC-DAD detection of the CAT, CAF, and 

EC metabolites was better than 1H-NMR and as such the correct quantities were detected, 

making the ratios suitable predictors in the UPLC-DAD based models than in the 1H-NMR 

based models.  

Lastly, LR models were developed on the UPLC-DAD metabolites, starting with Figure 4.21, 

which shows the nominal LR results obtained using all ten UPLC/DAD variables. From these 

results, it can be seen that this model correctly classifies all 303 genotypes into the Comm 

and NComm classes, with the confusion matrix displaying zero misclassifications. The 

theaflavin variables were then separated from the catechin variables, and a LR model was 

developed based on the four theaflavins (Figure 4.22) and the most significant theaflavin, 

TF4 (Figure 4.23). From these models, 96% of the Comm cultivars were correctly classified, 

with only two misclassifications. This shows that theaflavins are as efficient at separating the 

two groups as all ten metabolites, corroborating literature findings that theaflavins are 

indicators of high tea quality markers (Wang and Ruan, 2009). Figure 4.24 shows the LR 

model developed on CAF and the five catechins. The confusion matrix shows five of the 56 

Comm cultivars were misclassified and 80% were correctly classified. Considering that it is a 

very cumbersome process to manufacture black tea to be able to obtain theaflavins, taking as 

much as 5 years for the bushes to grow before enough leaves can be harvested, the model 

making use of the green leaf catechins would be less cumbersome to ascertain the likelihood 

that a new field selection will be similar to the Comm cultivars. This saves them up to four 

years, as well as labour and resources of cultivating the tea bushes for five years only to learn 

it is a low yield, drought susceptible and low quality field selection, and will not be 

commercialised.  

Tea breeders are concentrating on selecting and breeding populations rich in e.g. alkaloids 

such as caffeine, theobromine and theophylline; amino acids, namely theanine, and 

polyphenols, namely catechins (Karori et al., 2014). The reason for this is that tea liquor has 

become a renowned healthy drink. Tea consumption has risen annually by 4.5% to 5.5 
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million tonnes as of 2016, predominantly in China, India and countries with emerging, 

developing economies; consumption is postulated to increase by another 1.5 million tonnes 

by 2027 (FAO, 2018). In the past, countries such as Kenya, India, and Sri Lanka, which are 

high black tea producing breed cultivars rich in theaflavins. Efforts have been made to 

combine these two qualities into an F1 progeny via hybridisation breeding, but the lack of 

requisite knowhow pertaining to inheritance patterns and how to combine desirable attributes 

into a single progeny has caused sluggish progress in tea breeding (Wachira and Kamunya, 

2005). From the decision tree given in Figure 4.26, it is evident that the predictors CAT and 

EC are responsible for classifying the 303 genotypes into the two classes. This implies that 

tea breeders will now be able to analyse the CAT and EC content of the seedling green leaves 

and follow the decision tree branches, to ascertain whether a new cultivar is likely to be 

Comm based on their CAT and EC content. The use of a decision tree for spatial 

classification is based on the simplicity and effectiveness of this approach. Since Figure 4.26 

shows that CAT and EC are the predictors, this means that the ratio of CAT/EC can serve as 

a predictor. The CAT/EC ratio LR plot (Figure 4.27) shows that to classify each of the 303 

genotypes as Comm cultivar, a CAT/EC ratio of 1.5 and above is required, while any ratio 

below 1.5 indicates the likelihood the cultivar will be NComm. The confusion matrix of this 

model shows that 12 of the 56 Comm cultivars were misclassified, meaning the model 

correctly classified 79% of the genotypes. However, as mentioned earlier, the identification 

and accurate quantification of CAT may be problematic due to its position on the 

chromatogram, as well as its peak height (Figure 4.28), warranting an improvement of the 

chromatography conditions in the ISO14502-2 (2005) method. This prompted the 

development of a decision tree, and LR model which excluded CAT (Figure 4.30 and 4.31 

respectively). The decision tree identified CAF and EC as the metabolite predictors, and the 

LR model developed based on the CAF/EC ratio proved capable of correctly classifying 57% 

of the genotypes, 22% lower than the CAT/EC ratio based model. This indicates CAT is an 

important metabolite predictor. This finding is, however, contradictory to the findings of 

Wright et al., (2000), who showed that CAT correlated least with tea quality. The reason 

postulated was that CAT is not a precursor of any of the four major theaflavins, and as such 

was not important as a predictor for high quality cultivars. The research aim of their work 

was to investigate any correlations between the catechin profiles of the green tea leaves, and 

the quality of the resultant black tea produced from them. The study involved eight high, and 

eight low quality clones. The results obtained in the Wright study confirmed those obtained 
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by Robertson, (1983), who found that the high and low quality tea cultivars differed 

significantly in CAT, EC, and ECg. The Wright study also showed a higher correlation 

between EC and quality, as compared to ECg, due to the lack of the gallic acid in EC. Gallic 

acid has been shown to increase the astringency of green tea (Xu et al., 2018). The Wright 

study concluded that high and low quality cultivars were distinguishable by considering 

CAT+EC+ECg, (B-ring di-hydroxy or simple catechins) prompting the development of a LR 

model based on CAT+EC+ECg (Figure 4.32) in the present study. The results of this show 

100% misclassification of the Comm cultivars as NComm cultivars. In another study by 

(Ellis and Nyirenda, 1995) on simple (CAT, EC and ECg) and complex catechins (EGC and 

EGCg) (tri-hydroxy), they documented that the higher the ratio of simple: complex catechins, 

the higher the amount of theaflavins produced, which in turn means the higher the quality of 

the resultant tea liquor. It was therefore concluded that the cultivars with a higher ratio of 

simple: complex catechins were of higher quality and ought to be selected. In the present 

study, the ratio of simple: complex catechins were also employed in developing a LR model, 

and there was 100% misclassification of the Comm cultivars (Figure 4.334.33). Our results, 

however, indicated that the findings of Robertson and Wright were not applicable to the 

cultivars used in this study. The reason for this could be that the NComm population used in 

our study was derived from two parents, whereas the cultivars used by Robertson and Wright 

were open pollinated plants from various parents. Another reason could be that the Robertson 

and Wright studies employed HPLC, which may have had CAT coeluting with other 

compounds, while the coeluting compounds were separated in our study, with CAT having 

two shoulders, as is seen in our higher resolution UPLC chromatograms. Lastly, the 

difference in the results of both studies could be because our study employed a sample size of 

303 cultivars whereas Robertson and Wright employed sample sizes of eight and 20 

respectively. The larger sample size lends more credibility to our results. Future work must 

be done on varieties from other tea producing countries such as Malawi, Sri-Lanka and India, 

and on populations derived from more parents, to confirm the validity and efficacy of the 

results obtained. In conclusion, the results of this study show that the UPLC-DAD is the 

better suited platform for analysing samples in order to generate LR models for prediction 

purposes. The results of this study show that it is now possible for breeders to predict the 

quality of new selections from mature seedling fields by employing CHAID decision trees, or 

the CAF/EC, as predictors. By making use of the model based on CAF and the four 

catechins, breeders will be more successful in identifying and field selections rich in 
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catechins, which as stated in the introduction, will result in teas rich in theaflavins, and higher 

market price. Further chromatographic work must be done to improve on the identification 

and quantification of CAT, which has been shown to possibly be an important predictor. The 

method proposed in this study may improve the success of field selections to higher than the 

current 1%.  

From the results presented throughout this chapter, it can thus be concluded that objective 1, 

to use data generated through untargeted GC-MS, and semi-targeted 1H-NMR metabolomics 

platforms to identify metabolites, which were expressed differently in the Comm and 

NComm cultivars was successfully achieved. Objective 2, which sought to make use of 

UPLC-DAD generated targeted metabolomics data to develop several LR models and 

decision trees, to classify the 303 genotypes as either Comm or NComm cultivars was 

successfully achieved. Last, objective 3, which sought to use untargeted LC-MS data to 

identify any additional metabolites not detected by platforms mentioned in objectives 1 and 2, 

to distinguish between the Comm and NComm cultivars was also successfully completed. 

The null hypothesis, which states that there will be no statistically significant difference 

between the metabolite profiles and metabolite concentrations detected by all the 

metabolomics platforms employed between the Comm and NComm cultivars, at the 95% 

confidence interval can therefore be rejected 
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Appendix 4.1: Peer-reviewed scientific article based on results from Chapter 4 
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Appendix 4.2:  Cohen’s d effect size definition, calculation and interpretation used in the statistical 

analysis of Chapter 4 data 

   

  



253 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Becker, L. A. (2000). Effect size (ES). Retrieved September, 9, 2007.   



254 

 

15. CHAPTER 5 

CONCLUDING DISCUSSION AND RECOMMENDATION  

5.1 Concluding discussion  

The present study sought to identify metabolomic markers associated with yield, drought tolerance and 

quality traits and document their possible biochemical mechanisms in black tea C. sinensis cultivars. As 

emphasised throughout the thesis, climate change, due to the effects global warming, is causing 

droughts, which are affecting crop production. Tea is one of Kenya’s key cash crops, providing revenue 

for up to 3 million individuals, and like the rest of the globe, Kenya is experiencing changes in weather 

patterns. These include substantial temperatures increases, rainfall decreases and an increase in droughts, 

frosts and hailstorms. Tea farming depends on a good distribution of rainfall; as such these changes in 

climate pose a significant threat to its global supply chains; to survive, plants must reconfigure their 

metabolic pathways. Because of the high occurrence of droughts, the first step of this study saw the 

validation of the Short-time Withering Assessment of Probability for Drought Tolerance (SWAPDT) 

method, developed on four cultivars from the Tea Research Foundation for Central Africa in Malawi in 

2016, to distinguish between drought tolerant and drought susceptible cultivars. Method validation was 

conducted on 400 samples from the Tea Research Institute in Kenya, and has been published in a peer 

review journal. The obtained results showed that a sample size of 20 tea trees was deemed sufficient to 

compare the drought susceptibility of large tea fields of approximately 5 - 20 hectares, containing 50 000 

- 200 000 tea trees, where the difference between the fields’ mean values, as measured by the SWAPDT 

method, was at least 6%. The SWAPDT scores for each of the 400 samples used correlated with the 

historical records of the fields from where the samples were taken. With the SWAPDT method 

validated, this method was then applied to the 310 cultivars (60 open-pollinated cultivars, pre-selected 

for their high yield, and good tea liquor, which formed the Comm group, and the 250 cultivars which 

were the F1 progeny of a reciprocal cross between two heterozygous parental clones TRFK 303/577 and 

GW Ejulu, which formed the NComm group) used for the genomic and metabolomics studies.  

Tea quality relies on the precise metabolite profiles of teas, which are responsible for its flavour and 

aroma. The present study, employing the two C. sinensis populations i.e. 60 Comm cultivars and 250 

NComm cultivars (TRFK St. 504 and TRFK St. 524), identified the QTLs responsible for yield, drought 

tolerance and quality centred on a genetic map constructed using the DArTseq platform. The map 
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comprised 15 linkage groups analogous to chromosome haploid number of tea plant (2n = 2x = 30) and 

spanned 1260.1 cM with a mean interval of 1.1 cM between markers. A 20 cM gap was noted between 

LG06 and LG15 adjacent markers, a possible result of gaps in both the parents used for mapping, which 

could have led to a lack of recombination events. Sixteen phenotypic traits were evaluated in both 

segregating populations and used to discover QTLs responsible for the traits of interest in both the black 

and green tea. Three, 11 and 46 putative QTLs were discovered after mapping on the 15 linkage groups, 

associated with tea quality from GC-MS, 1H-NMR and UPLC data respectively. Constructing genetic 

linkage maps is an important requisite for QTL identification of agronomically significant genes such as 

those responsible for yield and quality, which are influential in developing better-quality cultivars. From 

the GC-MS data, one arabinose, one phloroglucinol, and one xylonic acid QTLs were derived, with the 

%PVE ranging from 4.6 to 7.5 and averaging 5.9%. From the 1H-NMR data, one acetic acid, one 

caffeine, three catechins (one catechin, one EC and one EGC), one chlorogenic acid, five amino acids 

(two isoleucine and three valines) were detected, with the %PVE by each QTL varying from 5.1 to 

96.3%, and averaging 34.4%. Lastly, six caffeine, 25 catechins, three theaflavins, nine organoleptic 

scores and three %RWC QTLs were identified, with a %PVE varying between 5.5 to 56.6%, and 

averaging 9.9%. The high PVE displayed by the 1H-NMR QTLs acetic acid, epicatechin, isoleucine and 

valine, and the UPLC QTLs caffeine, catechins, theaflavins, organoleptic scores, and %RWC suggests 

that these attributes could be controlled by critical genes. Besides the QTLs for catechins obtained across 

the 1H-NMR and UPLC platforms, the current study also incorporated QTLs for acetic acid, caffeine, 

chlorogenic acid, isoleucine and valine from 1H-NMR, and arabinose, phloroglucinol and xylonic acid 

from GC-MS, which influence the quality of tea. It was interesting to note that the QTLs associated with 

caffeine, catechin, EC and ECg from both 1H-NMR and UPLC were on different LGs, and at different 

positions on the chromosome, with different %PVE. This clearly indicates that the genes concomitant 

with the manufacture and accretion of these metabolites are sparsely situated in different chromosomal 

regions. The variance explained by the QTLs varied from 4.6 to 96.3%, with an average of 28%. The 

UPLC analysis revealed a wide-ranging variation in the contents of caffeine, the different catechins, and 

the theaflavins in both the parents and their F1 progeny. As expected, the green tea had high catechins 

levels while the black tea had high theaflavins content. It was however noteworthy that there was no 

statistically significant difference in caffeine content between the green and black teas. In addition to the 

five major peaks i.e. CAF, EC, ECg, EGC and EGCg, several smaller peaks were detected, some of 

which were identified using LC-MS. This serves as an indication that numerous other metabolites are 
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present in tea extracts that could be contributing to the resultant quality of the tea, and other traits of 

interest. Using the KEGG database, the putative QTLs linked to yield, drought tolerance and quality 

were shown to be secondary metabolites associated with tea phenolic biomolecules and abiotic stress. 

Sixty seven unigenes associated with detected the putative QTLs were assigned KEGG database 

pathways based on secondary metabolite biosynthesis categories. The most predominant unigenes 

involved carbohydrate and amino acids biosynthesis; these are involved in plant hormone signal 

transduction pathways during abiotic stress and the biosynthesis of flavonoids, phenylalanine, thiamine, 

tyrosine, and tryptophan. Six enzyme categories were involved in the various metabolic pathways, 

namely hydrolases, isomerases, ligases, lyases, oxidoreductases, and transferases.  

 

In the present study, PCA and PLS-DA were performed on the GC-MS, 1H-NMR and UPLC data. The 

GC-MS results showed that the metabolites arabinose, catechin, gallic acid, glycerol, phloroglucinol, 

sucrose and xylonic acid were metabolites, which separated the Comm from the NComm cultivars. 

Literature has shown that abiotic stress such as drought affects the photosynthetic pathway of plants, and 

drastically affects their primary metabolism, which affects sugars, sugar alcohols, and amino acids. DT 

plants have been of a higher quality than the DS, as they efficiently up-regulate their production of 

sugars, which they utilise as an energy source during stress. The DT cultivars produce better quality tea 

liquor. Carbohydrates such as the detected glucose and sucrose have also been shown to influence the 

biosynthesis of other energy-generating metabolites, responsible for the alteration of gene expression 

and signal transduction. Caffeine, another detected metabolite, has besides being a stimulant, been 

documented to contribute to tea briskness, while theophylline and theobromine have been shown to 

contribute to the mellowness and sweetness of oolong tea. Several detected metabolites were shown to 

relate to the sweet taste of tea such as the GC-MS detected arabinose, arabitol, glycerol, malic acid, 

phloroglucinol, psicose, ribitol, sucrose, and xylonic acid, and the 1H-NMR detected glucose, methanol 

and sucrose. The total sweeteners were higher (P<0.05) in Comm cultivars as compared to the NComm 

cultivars. This study reports for the first time in the leaves of black tea cultivars that several metabolites, 

related to sweetness, which are higher in the Comm than the NComm cultivars. The present study 

reported the total amino acid concentration of the detected amino acids alanine, isoleucine, leucine, 

theanine, and valine, was higher in the Comm (21.8 mg/g) than the NComm (20.9 mg/g) dry weight. 

These compounds were postulated to possibly mask the bitterness, resulting from e.g. caffeine and 

chlorogenic acid, and as such contributing to the overall higher quality of the Comm cultivars. Because 
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amino acids are responsible for the aroma of tea, this means the higher the total amino acids, the more 

aromatic the tea. The total amino acid and total sweeteners concentrations being higher in the Comm 

cultivars result in the teas produced from these cultivars having a better taste.  

The 1H-NMR and UPLC detected catechins are the substrates from which theaflavins and thearubigins 

are produced during manufacturing black tea. Theaflavins contribute to the briskness, brightness and 

astringency of black tea, which are important traits in tea quality determination. They are the 

predominant constituents of black tea-cream upon cooling (Roberts, 1963); it is for this reason they are 

deemed as an important quality index of black tea. Theaflavin content influences the total colour of tea 

i.e. teas with higher theaflavins content will have a higher total colour score. The GC-MS, 1H-NMR and 

UPLC-DAD results were used to generate LR models for prediction. The results also show that it is now 

easier for breeders to predict the quality of new field selections by employing UPLC-DAD results in one 

of three, cost effective ways. The first is by making use of the CAF/EC ratio; if the ratio is 3.2 and 

above, that cultivar is 79% likely to be commercialised. The second way of ascertaining this is by using 

the decision trees, with CAF and EC as predictors. Third, they can make use of LR. One benefit of using 

decision trees and the CAF/EC ratio is that these enable the breeders to evaluate their results without the 

need of consulting a statistician, which is cost effective i.e. no need to pay consultation fee. The tea 

breeder normally selects only 100 bushes every year that recover quickly from the prune and meet 

several criteria e.g. good bush shape, leaf pose, DT and termite resistance, among other traits. These elite 

mother bushes are believed to be high yielders. Stem cuttings are used to propagate each of the 100 

mother bushes into 15-bush observation plots, called clones. The limit of 100 yearly selections is due to 

the high cost establishing and of maintaining the 15-bush plots. The yield of each clone is measured after 

five years. Black tea is produced from each of the ten highest yielding clones selected each year, and the 

tea quality is scored by expert tea tasters. Normally, only one or two of the 100 selected mother bushes 

produce clones with high yield and good taste. The clones with high yield and good quality are advanced 

to further field trials and if suitable, are released to the commercial growers. The success rate, from the 

100 mother bushes until release to commercial growers is about 1%. By making use of the model LR 

based on CAF and the five catechins, breeders will be more successful in identifying and field selections 

rich in catechins, which will cause teas rich in theaflavins, and higher market price. Last, eight 

Commercial and eight NonCommercial cultivars were analysed using UPLC-MS. Additional metabolites 



258 

 

such as caffeic acid were identified as contributing to drought tolerance, yield and higher quality of the 

Comm cultivars as compared to the NComm cultivars.  
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5.2 Recommendations  

Based on the findings from the current study, the following recommendations are made for future 

research:  

 To eliminate the possibility of the obtained results being due to the environment, the parental 

clones and their F1 progenies employed in the study may be replanted in a different geographical 

location, such that if the same results obtained in the present study are obtained again, this would 

eliminate the GxE variable, and lend further credibility to them. 

 The 1H-NMR sample size used for population mapping may have to be increased, to ensure 

better estimations of QTL loci and effect. 

 Further targeted metabolomics studies are warranted on the GC-MS metabolites reported in 

Table 4.1. 

 Improve on the UPLC-DAD chromatography to separate and accurately quantify the CAT peak, 

as CAT has been shown to be an important metabolite predictor in distinguishing between Comm 

and NComm cultivars. 

 The current study was performed using NComm cultivars from two parents. It is therefore 

warranted that this part of the study be repeated with open pollinated NComm cultivars, to 

validate, and strengthening the reliability of the predictive ability of the models obtained in the 

present study.  

 

 

 

 


