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Abstract

Two sets of data for dα scattering are analysed to determine the parameters of the
bound and resonant states of the nuclear system 6Li with quantum numbers 1+, 2+,
3+, 2−, and 3−, as well as to find the corresponding S-matrix residues. These data
(dα cross-sections) are fitted by both a single-channel and a two-channel S-matrix that
is written in terms of semi-analytic Jost matrices, where all the factors, responsible
for the branching of the energy Riemann surface, are given explicitly and exactly while
the remaining unknown functions are represented by power series with the coefficients
being the fitting parameters. The Jost matrices obtained from the fitting, are used at
complex energies to locate resonances and the bound state, as well as to determine the
corresponding S-matrix residues and the Asymptotic Normalization Coefficients (ANC).
Our analysis, based on an S-matrix with the correct analytic structure, gives a solid
confirmation of the resonance parameters found by the other authors.

Keywords Jost matrices, Coulomb interaction, resonances, bound state, S-matrix
residues, Asymptotic Normalization Coefficient, 6Li

1 Introduction

The nucleus 6Li belongs to the group of the lightest nuclides that have a rather simple
spectrum, consisting of less than a dozen well distinguished levels [1]. The abundance of this
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isotope is very small (∼ 7.6%) as compared to that of 7Li (∼ 92.4%), but its importance
in thermonuclear dt-fusion motivated many researchers to study 6Li both theoretically and
experimentally. In the dt-fusion, the nucleus 6Li serves as a stable “storage” of tritium that
can be released by the neutron “ignition” n + 6Li → t+ α.

The nucleus 6Li is also of importance in astrophysics, especially in connection with the
puzzle associated with its abundance. It is believed that its synthesis via the radiative capture
α(d, γ)6Li was the main process by which the isotope 6Li was produced during the primordial
nucleosynthesis as well as subsequently in stars [2]. However, the observed abundance of 6Li
does not agree with the predictions of the Big Bang Theory [3], which is known as the Lithium
Discrepancy.

Many collision processes, and in particular the radiative capture α(d, γ)6Li, may go via the
intermediate formation of resonances. This is one of the reasons why the accurate knowledge
of the parameters of these resonances is needed. Among these important parameters are the
Asymptotic Normalization Coefficients (ANC) that determine the behaviour of the resonance
wave functions at large distances, where the radiative cature mainly happens because of the
Coulomb repulsion between the colliding nuclei. So far, the ANC are found only for several
among many known excited states of 6Li (see, for example, Ref. [4]). One of our aims was
to partly cover this gap and to confirm the values or to improve the accuracy of the known
parameters.

In its ground state the nucleus 6Li can be viewed as a bound state of the α-particle
and deuteron [5]. The α-particle is the most tightly bound nuclear complex and therefore a
configuration with the presence of such a cluster should remain dominant at the excitation
energies at least up to ∼ 20MeV. In contrast to that, the deuteron cluster “dissolves” and
becomes the pn pair at much lower energies. This means that in a theoretical consideration
of the excited states of 6Li one has to deal with at least the three-body system, αpn.

However, when analysing experimental scattering data, we only look at the initial and final
channels. The constituents of the intermediate collision comples is something of a “black box”
for us. If we manage to construct an S-matrix that correctly describes the observed transitions
among the channels, then it does not matter what kind of configurations are formed in that
“box”. The poles of such an S-matrix should be at the correct (complex) resonance energies.
Of course, such an S-matrix will not reproduce all possible resonances, but only those that
are reachable from the channels taken into account.

In our present analysis, we only consider the data on the elastic dα scattering. Since the
isospins of both d and α are zero, we can only find the resonances with zero total isospin
(although in the spectrum of 6Li there are states with T = 1 [1]). In fact, most of the
low-lying levels of this nucleus have isospin zero and decay into the dα channel. This makes
our analysis reasonable and substantiated.
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Jπ coupled dα-channels

0− P0

1+ S1 −D1

1− P1

2+ D2

2− P2 − F2

3+ D3 −G3

3− F3

4− F4 −H4

Table 1: Coupled partial waves in the dα-collision for several lowest values of the total
angular momentum J .

2 Multi-channel S-matrix

All the channels we consider may only differ by the orbital angular momentum ℓ (different
partial waves), i.e. they have the same thresholds and threfore are degenerate in the energy.
Since the spins of deuteron and the α-particle are 1 and 0, and since the parity, π, is conserving,
the maximum number of coupled partial waves for a given total angular momentum J is two.
The channels we consider are given in Table 1.

For each state with definite Jπ, the S-matrix at the energy E can be written in terms of
the corresponding Jost matrices (see, for example, Ref. [6]),

S(E) = f (out)(E)
[

f (in)(E)
]−1

, (1)

where we drop the symbols J and π. For the Jost matrices in the above equation, we use the
exact semi-analytic expressions obtained in Ref. [6],

f
(in/out)
ℓ′ℓ (E) =

eπη/2ℓ′!

Γ(ℓ′ + 1± iη)

{

Cℓ(η)k
ℓ−ℓ′

Cℓ′(η)
Aℓ′ℓ(E) (2)

−

[

2ηh(η)

C2
0 (η)

± i

]

Cℓ′(η)Cℓ(η)k
ℓ′+ℓ+1Bℓ′ℓ(E)

}

,

where k is the wave number (common for all the channels with the same thresholds and the
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same reduced mass µ),

k = ±
√

2µE/~2 , (3)

Cℓ(η) is the Coulomb barrier factor depending on the Sommerfeld parameter η,

Cℓ(η) =
2ℓe−πη/2

(2ℓ)!!
exp

{

1

2
[ln Γ(ℓ+ 1 + iη) + ln Γ(ℓ+ 1− iη)]

}

−→
η→0

1 , (4)

and

h(η) =
1

2
[ψ(iη) + ψ(−iη)]− ln η , ψ(z) =

Γ′(z)

Γ(z)
, η =

e2Z1Z2µ

~2k
. (5)

The matrices A and B in Eq. (2) are unknown. They are determined by the dynamics of the
physical system.

As is seen, the Jost matrices (and thus the S-matrix) are not single-valued functions of the
variable E. This is due to the two reasons. Firstly, for a given energy there are two possibilities
for obtaining the wave number: by choosing the sign in front of the square root (3). Secondly,
the function h(η) involves ln(k), which assumes an infinite number of different values for a
complex k. Therefore, for a single value of E there are infinitely many values of S(E). As a
result, the S-matrix is defined on a Riemann surface with spiral topology, where the threshold,
E = 0, is the branch point of the square-root and the logarithm type at the same time (see,
Refs. [7, 8]).

In Ref. [6] it is shown that the matrices A and B in the semi-analytic representations (2)
are single-valued analytic functions of E, i.e. they are defined on a simple complex plane
without any branch points. These matrices are the same on all the sheets of the Riemann
surface. All the troubles with the branching of the Riemann surface are caused by the explicit
factors in (2). It should be emphasized that these representations are exact (rigorously derived
from the multi-channel Schrödinger equation) and are valid for any physical system with binary
channels. In simple words, the explicit factors in them are the same for any such system (they,
kind of, describe the kinematics), while the unknown single-valued matrices A and B describe
the specific dynamics.

Since the matrices A and B are single-valued and analytic, we can use any reasonable
approximation for them. Such an approximation does not affect the analytic structure of
the S-matrix, i.e. the topology of its Riemann surface and the symmetry relations among
the values of the S-matrix at different points on this surface. Keeping the correct analytic
structure is important when the S-matrix is analytically continued from the real axis to complex
energies for the purpose of locating possible resonances. Such an analytic continuation is very
oftenly used, when the S-matrix is (approximately) constructed by fitting the scattering data.

In the present work, we also fit the data (cross sections). In doing this, we choose a point
E0 on the real axis somewhere in the middle of the energy interval, where the data points are

4



available, and approximate the matrices A and B by several terms of their Taylor expansions
around E0,

A(E) ≈ a(0) + a(1)(E − E0) + a(2)(E − E0)
2 + · · ·+ a(M)(E −E0)

M , (6)

B(E) ≈ b(0) + b(1)(E − E0) + b(2)(E −E0)
2 + · · ·+ b(M)(E − E0)

M , (7)

where the unknown expansion coefficients (elements of the matrices a and b) serve as the
fitting paremeters.

After finding the optimal values of these parameters, we obtain a reliable approximation
for the S-matrix (1), which has the correct analytic properties. Then the resonances can be
found as the roots of the equation

det f (in)(E) = 0 (8)

on the corresponding non-physical sheet of the Riemann surface. Choice of the appropriate
sheet is done by choosing the sign in Eq. (3) and taking the principal branch of the logarithmic
function ln(k).

Since all the poles of the S-matrix are simple, its residues at these poles can be found by
numerical differentiation of the determinant of the Jost matrix f (in)(E) in Eq. (1), as described
in Ref. [8]. Such a residue of a diagonal element of the S-matrix determines the asymptotic
normalization coefficient Aℓ of the wave function. The derivation of the corresponding relation
can be found in Ref. [9]. This relation involves an arbitrary factor whose choice is a matter
of convention (depends on the definition of Aℓ). In order to compare our results with the
previous calculations, we use here the relation

Res [Sℓℓ, E] = i(−1)ℓ+1~
2k

µ
e−πηA2

ℓ , (9)

which is equivalent to the relevant formulae of Ref. [4].

3 Experimental data and fitting procedure

As the dα-data for our fitting, we take and combine two different sets of scattering cross-
sections, denoted further as the sets A and B. They cover adjacent intervals of the collision
energy and thus complement each other.

Data set A consists of the dα cross sections obtained from the corresponding phase-shifts
of Ref. [10], where it was done an energy independent analysis of 3900 raw experimental data
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points with channel coupling included. These phase-shifts cover the C.M. energy range from
4MeV to 30MeV. There are roughly 20 data points available for each of the partial waves
with ℓ = 0, 1, 2, 3, 4, 5.

Data set B is made of the dα cross sections, which we derived from the Padé approxima-
tion of the S-matrix that was obtained in Ref. [11] by fitting energy-dependent single-channel
experimental data in the the C.M. energy interval from 0.5MeV to 3.5MeV. Channel coupling
was not taken into account by the authors of Ref. [11]. Since their S-matrix is given in an
explicit form, we can generate from it a sequence of data points convenient for our analysis,
even outside the original energy-interval. Using this freedom, we generated 40 points in each
channel that evenly cover the C.M. energies from 0.4MeV to 4.0MeV.

Therefore, combining the sets A and B, we have (for each channel) 40 points between
0.4MeV and 4MeV, and 20 points between 4MeV and 30MeV. The sets A and B are consis-
tent, i.e. they rather smoothly match at around 4MeV. Actually, the same data were used in
Ref. [4], where a method, similar to the effective-range expansion, was applied for extracting
the information about the discrete states of the dα-system. In doing this, the authors of
Ref. [4] analysed the data sets A and B separately. We, however, following the suggestion of
Ref. [11], chose to combine the two sets and treated them as a single one.

In the present work, we use the same fitting procedure as was described in Refs. [7–9,12].
In short, for each available data point, σexp

ℓ (E), we calculate the corresponding fitting cross
section

σfit
ℓ (E) =

π(2J + 1)

3k2
|Sℓℓ(E)− 1|2 , (10)

which depends on the fitting parameters a(n) and b(n) used in the expansions (6, 7), and
minimize the function

χ2 =

N1
∑

i=1

[

σexp
ℓ1

(Ei)− σfit
ℓ1
(Ei)

]2
+

N2
∑

i=1

[

σexp
ℓ2

(Ei)− σfit
ℓ2
(Ei)

]2
. (11)

Here the first sum takes into account the deviations of the fitted points from the experimental
ones in the first channel, and the second sum runs over the data points in the second channel
(if it exists for a given J , as shown in Table 1). N1 and N2 are the numbers of the data points
taken into account in the first and the second channels, respectively. The minimization was
done using the code MINUIT [13].

It should be noted that any diagonal matrix element Sℓℓ obtained as the “ratio” (1),
depends on all the elements of the matrix f (in) (diagonal and off-diagonal), i.e. on all the
elements of the parameter matrices a(n) and b(n). This means that coupling of the channels is
always present in our fitting procedure, and it is taken into account in the correct way. Even
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Er

[MeV]

Γ

[MeV]

Res[S00, E]

[MeV]

Res[S22, E]

[MeV]

|A0|

[fm1/2]

|A2|

[fm1/2]
Ref.

−1.4691
29.588

+i42.904

0.00603

−i0.00079
2.3330 0.0252 this work

1.960 0.093 [4] (v. 1)

1.900 0.025 [4] (v. 2)

−1.4743 [1] (accepted)

3.8858 2.6324
0.00196

+i0.00087

−1.7743

−i1.0906
0.0153 0.4768 this work

3.900 2.347 0.028 0.455 [4] (v. 1)

3.872 1.860 0.018 0.392 [4] (v. 2)

4.18± 0.05 1.5± 0.2 [1] (accepted)

Table 2: Parameters of the bound and resonant states of 6Li with Jπ = 1+, obtained from
a two-channel fit of the elastic cross sections for the S1 and D1 partial waves of the d-α
scattering. The corresponding parameters from Refs. [1, 4] are given here for the purpose of
comparison.

if we were fitting only one channel (when the second one exists) all the fitting parameters are
involved in such a fit, and thus the resulting S-matrix should correctly describe the second
one as well. Such a “predictive” power of our procedure was previously demonstrated in some
model problems (see Refs. [12, 14]).

4 Results

When fitting the data, we used several different central points E0 and different numbers M
in the expansions (6, 7). The choice of these parameters was determined by the choice of the
energy domain where we were looking for a resonance. It is obvious that the closer E0 is to the
resonance point, the more accurately it can be located. By repeating the calculations for the
same resonance with different E0 or M we can check the accuracy achieved. Indeed, ideally,
the resonance parameters should not depend on such a choice. Therefore all the digits in their
values that remain the same with different E0, for example, can be considered as accurate.
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Speaking about the particular channels, we begin with the coupled S1 and D1 partial waves
in the state 1+. The results of our analysis for them are given in Table 2. The corresponding
fit was done with E0 = −1.45MeV and M = 1. The quality of the fit can be seen in Figs.
1 and 2. The bound state energy we obtained, agrees well with the value that is considered
as accepted in the compilation [1]. Our ANC for the S1 partial wave is somewhat larger than
the values from Ref. [4]. Our ANC forn the D1 partial wave agrees with one of the two values
reported in Ref. [4], where it was supposed that the S1 − D1 coupling was weak, since the
D1-ANC was small as compared to S1-ANC. However, the comparison of these values is not
a decisive argument for such a conclusion. A reasonable judgement about the strength of the
coupling between any two channels can be done, if the cross section of the transition between
them is considered. As we mention at the end of Sec. 3, our method has an advantage that
the same fitting parameters describe all the elastic and inelastic processes. Therefore, after
fitting the S1 and D1 channels, we automatically obtain the correct transition cross-section,
which is shown in Fig. 3. As is seen, it is three orders of magnitude smaller than both the
elastic cross sections, shown in Figs. 1 and 2. This means that the S1 −D1 coupling is weak
indeed.

As far as the 1+ resonance in the coupled S1−D1 channels is concerned, our results agree
well with those from Ref. [4]. This can be said not only about the resonance energy and
width, but also about the ANC values. However our width is somewhat larger than the value
accepted in the compilation [1]. The weak coupling between the two partial waves results in
the absence of any visible irregularities around the resonance energy, E ∼ 3.9MeV, in the S1

cross section. The 1+ resonance at this energy is completely dominated by the D1 wave. A
possible explanation can be that a potential barrier is needed to sustain this resonance, and
in the state with ℓ = 2 there is the centrifugal barrier for that purpose. After this resonance
is formed in the D1 wave, it can decay back to the same wave or to the S1 wave. However,
because of the weak coupling between them, the probability of decaying into the S1 wave is
very small. Nontheless, it is nonzero and contributes something to the total width. This is
why our total width is a bit greater than that of Ref. [4], where the coupling was completely
ignored.

The next state that we consider is the partial wave D2 (Jπ = 2+), which is not coupled
to any other waves. The data points for this state and the corresponding cross section from
the fitting with E0 = 2.6MeV and M = 3, are shown in Fig. 4. In this channel, we found one

resonance at the energy E = (2.8448 −
i

2
1.3229)MeV, which practically coincides with the

value accepted in the compilation [1]. The S-matrix residue and the corresponding ANC are
given in Table 3.

Next in the list are two quantum states 2−(P2 − F2) and 3+(D3 − G3) that are both
mixtures of two partial waves. However, similar to the (S1 − D1) case, we found that the
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Jπ ℓJ
Er

[MeV]

Γ

[MeV]

Res[Sℓ, Er −
i
2
Γ]

[MeV]

|Aℓ|

[fm1/2]
Ref.

2+ D2 2.8448 1.3229 −1.0387− i0.7135 0.4262 this work

2.960 0.995 0.349 [4] (set A fit)

2.802 1.178 0.384 [4] (set B fit)

2.838± 0.022 1.30± 0.1 [1] (accepted)

3+ D3 0.7135 0.0219 0.0141− i0.0166 0.1124 this work

0.690 0.024 0.119 [4] (set A fit)

0.704 0.025 0.121 [4] (set B fit)

0.712± 0.002 0.024± 0.002 [1] (accepted)

3+ D3 9.1632 8.2023 0.7411− i1.1532 0.2793 this work

14.326 17.8 [10]

2− F2 20.906 29.034 −20.743− i0.8508 0.8043 this work

25.526 22 [10] (Sol. A)

19.526 30 [10] (Sol. C)

3− F3 10.305 16.724 −7.3697 + i4.7254 0.5403 this work

22.526 16 [10]

Table 3: Parameters of 6Li resonances in the states with 2+, 3+, 2−, and 3− obtained from
fitting of the corresponding cross sections of the dα scattering. The available values of the
corresponding parameters from Refs. [1, 4, 10].
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cross sections for the transitions P2 ↔ F2 and D3 ↔ G3 are several orders of magnitude
smaller than the corresponding elastic cross sections. This implies that the couplings in these
pairs of partial waves are extremely weak and therefore the resonances (if any) are dominated
by a single wave in both states. We tried both the two-channel fits for the pairs (P2 − F2),
(D3−G3) and the single channel fits for each of the waves P2, F2, D3, and G3 separately. The
single channel fits reveal resonances only in the waves F2 and D3. The two-channel fits give
the 2− and 3+ resonances with the same parameters as were obtained via the single-channel
fits. In this way, we found one resonance in the state 2− and two resonances in the state 3+.
Their parameters are given in Table 3, where only the dominant partial waves are shown. The
corresponding fits of the cross sections are shown in Figs. 5 and 6. They were done with
E0 = 1.0MeV and M = 5 for D3 and with E0 = 30MeV and M = 2 for F2.

The last resonance that we found, is in the state 3−(F3), which involves only one partial
wave. Its parameters are also shown in Table 3. The cross section for this state together with
the fitted curve (E0 = 15MeV, M = 2) are shown in Fig. 7.

It should be noted that the resonances that we found in the partial waves F2, F3, and
the second resonance in D3, were not included in the accepted list of Ref. [1]. They are very
wide and are therefore difficult to find with any method. The only work where the resonances
in these states were reported was the old paper [10]. As is seen from Table 3, our findings
only roughly put these resonance points in the same places. This means that an independent
confirmation is needed before they can be considered as firmly established. It is seen from
Figs. 5 and 7 that there is much experimental uncertainty in the available data for the partial
waves F2 and F3 and therefore deducing reliable resonance parameters for these channels is
difficult.

In our initial fitting attempts, where the data sets A and B were considered separately,
vastly different results were obtained, indicating the importance of using a larger energy range
in performing fittings to obtain parameters for wide resonances.

Lastly, we should say that no resonances were found (as was expected) in the other states
listed in Table 1.

Speaking in general, our calculations reasonably reproduce (confirm) the parameters of
the bound state of 6Li as well as the parameters of all the resonances with isospin zero given
in Ref. [1]. We also approximately confirmed some of the resonances not included in the
compilation [1], but found in Ref. [10]. Since we are able to check the accuracy of our results,
we may claim that the parameters we publish here, are reliable in the sense that they most
accurately correspond to the data from which they were deduced.
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Figure 1: Fit of the data points in the partial wave S1.
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Figure 2: Fit of the data points in the partial wave D1.
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Figure 3: Cross section for the transition between the partial waves S1 and D1.
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Figure 6: Fit of the data points in the partial wave D3.
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[10] B. Jenny, W. Grüebler, V. König, P. A. Schmelzbach, C. Schweizer, “Phase-Shift Analysis
of d- Elastic Scattering Between 3 and 43 Mev”, Nuc. Phys. A 397, pp. 61-101 (1983)

[11] V. M. Krasnopol’sky, V. I. Kukulin, E. V. Kuznetsova, ”Energy-dependent phase-shift

analysis of 2H+4He scattering in the energy range 0.87 < Ed < 5.24 MeV ”, Phys. Rev.
C 43(2), pp. 822-834 (1991)

19



[12] P. Vaandrager and S. A. Rakityansky, “Extracting the resonance parameters from

experimental data on scattering of charged particles”, Int. J. Mod. Phys. E 25,
1650014(2016)

[13] F. James and M. Roos, “Minuit - a system for function minimization and analysis

of the parameter errors and correlations”, Comp. Phys. Comm. 10 (1975) 343-367;
http://hep.fi.infn.it/minuit.pdf

[14] S.A. Rakityansky, N. Elander, “A method for extracting the resonance parameters from

experimental cross section”, Int. J. Mod. Phys. E 22(5), 1350032(2013)

20


