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Abstract

In this work we develop a method to parametrize the set Irr(L/) of irreducible characters of a
Sylow p-subgroup U of a finite Chevalley group G(p”) which is valid for arbitrary primes p,
in particular, when p is a very bad prime for . As an application, we parametrize Irr{LU/)
when G = F,(2/).

1. Introduction

The study of finite groups and their representations is a major research topic in the area of
pure mathematics. An important open challenge is to determine the irreducible modular rep-

resentations of finite simple groups. Particular focus has been dedicated to finite Chevalley
groups.

Let ¢ be a power of the prime p, and let [, be the field with g elements. Let G be a finite
Chevalley group defined over ;. For H < G, denote by Irr( H ) the set of ordinary irreducible
characters of H. Due to the work of Lusztig, a great amount of information on Irr(G) has
been determined, for instance, irreducible character degrees and values of unipotent charac-
ters; see 2 and 3. The problem of studying modular representations of (¢ over a field of char-

acteristic # # p is still wide open.

One of the approaches to this problem is to relate the modular representations of G with the
irreducible characters of a Sylow p-subgroup U of GG. Namely, by inducing elements of [rr(L/)
to (G one gets ¢-projective characters, which yield approximations to the #-decomposition
matrix of . This is particularly important when p is a bad prime for (7, in that a definition of
generalized Gelfand-Graev characters is yet to be formulated. Such an approach has proved
to be successful in the cases of SO;(g), Sps(¢) 12, and SOg(g) 22. In order to achieve this,

obtaining a suitable parametrization of the set Irr(U) is an unavoidable step.
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Another crucial motivation of this work originates from the following conjecture on finite
groups of Lie type which has been suggested to us by G. Malle. The data for unipotent charac-
ters of (7 in 2, Chapter 13 and those known for Irr(U/) point out a strong link between the
rows of #-decomposition matrices of G, labelled by Irr((), and their columns, labelled by
suitable characters Indﬂ () for y € Irr(U).

Conjecture 1.1 (Malle).

Let & be a finite Chevalley group defined over [, with g = p! and p a bad prime for G, and
let U/ be a Sylow p-subgroup of . Then for every cuspidal character p € Irr(G), there exists
x € lrr(U) such that y(1) = p(1),.

This conjecture is verified in the following cases: B, (27 20, §7.G.(p/ ) forp € {2,3) 16,
Section 3, F.(37) 7, §4.3, D;(27) fori =4,5,6 and Es(p’ ) for p € {2,3) 17, and Es(5)
18. Here, we confirm Conjecture 1.1 for ¢ = Fy4(27). In particular, if p € Irr(G) is one of
the cuspidal characters F_{ [1] or Fif [1] in the notation of 2, §13.9, then p(1}, = g*/8, and
we do find irreducible characters of U of degree ¢*/8 in the family F”;‘z in Table 3.

We lay the groundwork for a package in GAP4 6, whose code is available at 15, in order to
build a database for the generic character table of UF,( 2/ '}, in particular to find suitable re-
placements of generalized Gelfand-Graev characters as in 22. Furthermore, we verify the
generalization of Higman’s conjecture in 9 for the group UF,(2/ ), namely the number of its
irreducible characters is a polynomial in g = 2/ with integral coefficients.

Theorem 1.2.

Let G = Fy(g) where g = 2f , and let U be a Sylow 2-subgroup of &G. Then each irreducible
character of U is completely parametrized as an induction of a linear character of a certain

determined subgroup of UU. In particular, we have
| Ire(U)| = 2¢° + 4q" +20¢° + 46¢° — 1364" — 164" + 158¢° — 94q + 17.

In this work, we first develop a parametrization of Irr(U') by means of positive root sets of G,
which is valid for arbitrary primes. This procedure generalizes the one in 7 and 17, which
does not work for type F; when p = 2. In general, if p is a very bad prime for G, then we lose
some structural information when passing from patterns to pattern groups. In fact, let @" be
the set of positive roots in (. The product of root subgroups indexed by a certain set P C &
forms a group despite P not being a pattern; see Example 3.2.
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We generalize the definition of pattern and quattern groups (see 7, §2.3 ) for every prime by
means of the Chevalley relations of U. Then every y € Irr(U) is constructed as an in-
flated/induced character from a quattern group V,, of U which is uniquely determined by the
algorithm in Section 4. In the case when V/, is abelian, i.e., a so-called abelian core, the char-
acter y is directly parametrized. The focus of the rest of the work is then devoted to studying
the nonabelian v, ’s, which we call nonabelian cores. In order to determine Irr( V, ), we gener-
alize the technique used in 17, §4.2 by constructing a graph I associated to V/, as in Section
5. When the prime p is very bad, the graph I may have a vertex of valency 1.

We remark that F;(27) is the highest rank exceptional group at a very bad prime.
Furthermore, the type F. is a good small example to fulfill our algorithm for the determina-
tion of Irr(U) for all primes. A parametrization of Irr(UF4( _ﬂIJr ')) has now been determined for
all primes p. Namely, 7, §4.3 settled the case when p > 3, and in this work we deal with the

case p = 2.

We observe the following phenomenon which occurs just for F;(2/) among all finite
Chevalley groups of rank 4 or less. The number of irreducible characters arising from a cer-
tain nonabelian core as in Table 2 cannot be expressed as a polynomial in ¢ = p/ . In detail,
the numbers of such characters :E:- have polynomial expressions in ¢ = p/ whenever either
f=2kor f=2k+1,thatis,g=1 (mod 3)andg = -1 (mod 3), respectively.
However, surprisingly, the expression for the number of irreducible characters of I/ of a fixed

degree is always a polynomial in ¢ with rational coefficients.

The structure of this work is as follows. In Section 2 we recall notation and preliminary re-
sults on character theory of finite groups and Chevalley groups. In Section 3 we give the defi-
nition of pattern and quattern groups valid for all primes. In Section 4 we generalize 7,
Algorithm 3.3 to obtain all abelian and nonabelian cores. In Section 5 we discuss on the
method to decompose nonabelian cores. Finally, in Section 6 we apply the method previously
developed to give a full parametrization of Irr(UF, (27y).

Authorship: The second author passed away on July 26th, 2018, shortly after the main re-
sults of the paper had been jointly obtained. The other authors of this work are deeply grate-
ful to him for an inestimable collaboration experience and for all of the insight that originated
from him in detecting the distinguished behavior of UF, {Zf } and many related results.



2. Preliminaries

In this section we present some definitions and well-known results on the character theory of

finite groups and on the theory of finite Chevalley groups.

In this work we consider only complex characters. Notation and fundamental results are
taken from 13. Let & be a finite group. We denote by Ir1(G) the set of irreducible characters
of G. The centre and the kernel of the character y € Irr(() are denoted by Z( ) and ker{( ),
respectively. For ¢ € Irr(G/N) with N <€ G, we denote by Inf%,, (@) the inflation of ¢ to G.
For H < G, we denote by 7|y the restriction of a character y € Irr(G) to H, and by
lnd'f,r{tp} or l,:r“ the induction of a character y of H to . Moreover, we define

(G | y) = {x €(G) | (x|, w) #0) =y €G] {r,y) #0).

For N € G, @ € Irt(N),and g, x € G, we denote by g* the element x~' gx, and by * ¢ the
element of Irr( N) defined by g ~— (g ). This defines an action of G on Irr{ N). By 7, §2.1, if
Z is a subgroup of the centre Z((G) of  such that Z n N = |1}, then the inflation from
G/N to G defines a bijection between the sets [rr(G/N | A) and Irr(G | Inf%" (4)) for every
A€ Irr(ZN/IN).

The main references used for the basic notions of finite Chevalley groups are 1, 3, and 21.
Let p be a prime, and let [I?F be an algebraically closed field of characteristic p. Fix a positive
integer f, letq := p/, and let F; be the automorphism of [I?F defined by x +— x9. Then we de-
note by [, the field with g elements defined by [, := {x € [I?F | Fy(x) = x}. Let

F,: GL,,([I?F) - GL,,([I?F), (a;;) — {a:ﬂ.). Here, F,, is a homomorphism of GL,, (¢) to itself.

Let G be a simple linear algebraic group defined over [I?P. Let F be a standard Frobenius map
of G corresponding to F_, i.e., there is an injective homomorphism i : G — GLH([EJ} for
some n1 such thati e F = F, < i,asin 2,1.17. A finite Chevalley group G is the group defined
as the set of fixed points of G under F. From now on, we fix an F-stable maximal torus T of
G and an F-stable Borel subgroup B of G containing T Let U be the unipotent radical of B.
Then B = U X T, and correspondingly B = U x4 T, where B. T and U are the fixed points
under F of B, T, and U, respectively. If & is a group of type Y and rank r,ie., G = Y,(g),
then the group U/ will also be denoted by UY, (g) in what follows.

Let @ be the root system of G corresponding to the chosen T, and let r be the rank of ®. Let
{ay,....a,}| be the subset of all positive simple roots of @ with respect to the choice of B,
whose enumeration agrees with the records of GAP4 6. Let @' be the set of positive roots of
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®, and let NV := |®*|. Recall the partial order on ®*, defined by « < fiif and only if § — « is
a positive combination of simple roots. We then choose an enumeration of the elements
aj,....ay of ®" in such a way that i < j whenever a; < a;, which also agrees with the enu-

meration in GAP4.

For every & € @ there exists a monomorphism x, : E., — U satisfying the so-called
Chevalley relations (see 8, Theorem 1.12.1 ). We denote by U, (resp., X, ) the root subgroup
of U (resp., U') corresponding to «, defined as the image under x,, of E, (resp., [; ). For every
I <i < N,we usually write x; and X; in place of x,, and X, , respectively. Each element

u € U (resp., U) is written uniquely as

N

u=x1(d)xa(dr) .. xn(dn) = [ [ it

i=1

whered,.....dy € I]?_f, (resp., ;). In particular, U = nrtl X is a Sylow p-subgroup of GG.
We recall the Chevalley commutator relation: for every 5.1 € F, and a. f € @7,

@) @@= T1 s o)
ijeZ| fo+jpied®
where C? # are certain nonzero structure constants.

of

The prime p is said to be very bad for G if it divides some c:rf . This happens if and only if

p =2intypesB,, C,, F;,and G; or p = 3 in type G-. In these cases, some c::;-a are actually
equal to +p. In all other cases, we have c:rf € [+1). The prime p is called bad for ( if it di-
vides one of the coefficients in the decomposition of the highest root in ®* as a linear combi-
nation of «; , ..., @,. A prime p which is very bad for ¢ is also bad for (. The primes p = 2
for types D, and E; withi € {6,7,8}, p = 3 for types F; and E; with i € {6,7,8}, and

p = 5 for type Ey are all the bad primes which are not very bad. A prime p is called good for

(; when it is not a bad prime for (;.

Finally, we describe some properties of nontrivial irreducible characters of [,. Let

Tr: F, — [, be the field trace with respect to the extension [, of [F,. From now on, and for
the rest of the work, we fix the irreducible character ¢ of [, defined by x + ¢**' Tl (X)/p
Then ker(¢p) = {t” — 1 | t € F, }. Every other nontrivial irreducible character of [, is of the
form ¢ = m,, where @ € [, and m, is the automorphism of [ defined by multiplication by
a. It is easy to see that ker(¢h e m,) = a! ker(¢h).



3. Pattern and quattern groups for all primes

In 11, Section 3 and 7, §2.3, the notion of patterns and quatterns, defined when p is not a
very bad prime for (7, are of major importance for the development of the methods for
parametrizing Irr({/). We now define the following generalization of pattern groups and nor-

mal pattern groups for arbitrary primes.

Let P = {a;,, ..., } with | <i} < <i, < N beasubset of ®*. We define
X]') = {xl'| {;H}“.x"'m(“m) I IJ‘I y o ,f,-m = [qu-

Considering each element in X» as an m-tuple, we have | Xp| = q'm. Further, if Xp isa
group, then it is independent on the order of the «;, s in 7. Here the «;, 's are usually ordered
by increasing indices if not otherwise specified. So the set X'p is well-defined under this order

setup. We are mostly interested in those subsets 72 of @* such that X is a group.
Proposition 3.1.

Let 7 = {ay,,...,q, } CPYwith] <i; < - <i, < N.Then Xp is a group if and only if
forevery | < j < k < mandeveryys, s, € [, we have

ngj (51, ), xi, (85,)] € Xp.
Proof.

For this proof, we write X » as X'» and arrange positive roots in 7 in decreasing order. It
suffices to prove the if-part of the above statement by induction on m. Let us assume that

[ (s, ), x;, (s5,)] € Xp, foreach]l < j <k <mandy; , s, €F,.Recall that X, isitselfa
group for all i. The claim clearly holds for m = 1. For some m > 1, it is enough to show that
xy € Xp, forall x,y € Xp_. Write x = ax’ and y = by’ forsomea, b € Xp , and

X',y € X,,_.Wehave

xy=ax'by = ax"bx'"! b"bfy' = a[x"", b7 |bx" .

By the decreasing order of positive roots in ” and the hypothesis, we have

[Xq,_ Xy ] € Xp, | foralli < m. Due to the formula [r, st] = [r.1][r, 5]", we have
[x'.b] € Xp,_, by induction hypothesis. Thus,

xy = (alx'"". b7 b)x" V) € Xp, | X, = Xp,.
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If the conditions of Proposition 3.1 are satisfied, we say that X, is a pattern group.
Example 3.2.

Consider UB;(g), and let a; (resp., a;) be its long (resp., short) simple root. Let
P := {a2,a; + a2 }. Then Xp is a pattern group if and only if p = 2. Notice that 7 is not a
pattern in the sense of 11, Definition 3.1.

‘We would like to have a notion of normality of pattern groups. By applying the same method
as in the proof of Proposition 3.1, it is straightforward to prove the following.

Proposition 3.3.

Let P = {a;,,...,a;, } € ®* besuch that Xp is a pattern group. Assume
N ={aj,....,a; } € P.Then X , is a normal subgroup of X if and only if for every
l<k<mand] <# < nandeverys, ,s;, €[, wehave

Ixi,x {"’1“. )5 X {SJ'; }I “ ‘X#"""

Under the assumptions of Proposition 3.3, we say that X ,- is a normal pattern subgroup of

the pattern group Xp.

Example 3.4.

Consider UG;(q), and let a; (resp., a>) be its long (resp., short) simple root. Set P := ®* and
N = {a; + 2a, }. Then X , is a normal pattern group of X if and only if p = 3 (see 16, §3
for a full parametrization of UG, (3”)). Notice that A is not a normal pattern in & in the
sense of 11, Definition 3.2

Pattern groups over bad primes can readily be determined by using GAP4 in terms of the be-
haviour of the positive roots. We highlight this in the following proposition.

Proposition 3.5.

Let P, N' C ®*,andassume p = 2 isa very bad prime for G.



(1) The set Xp is a pattern group if and only if for every a, § € @™, we have that
a+fed anda-—fed=a+pecP

(2) Let Xp be a pattern group. Then X ,, is a normal pattern subgroup of Xp if and only if
foreverya € Pandé € N, we have that

a+s6ed anda-s¢g D= a+de N.

Proof.

This comes directly from equation 2.1 and the fact that all the structure constants ch_,g and

c;‘f vanish for every «, § € ®* when p = 2 (see 1, Chapter 4 ).

Let Xp be a pattern group, and let X - be a normal pattern subgroup of X . We call

S = P\ N aquattern,and X s :== Xp/X , the corresponding quattern group. If X ,; is clear
from the context, then by slight abuse of notation we identify X ¢ with a transversal of X ,; in
Xp,ie, Xg =1{x; ;) ... x; (t;, ) | g, ..., € S,15, ..., EFj o, € Sand 1y, € Fy .

Given such a set 5, we define
Z(Xg)={re S| [X,, Xp] < X}
and

D(Xs)={ye 2(Xs) | X, n[Xp, Xp] =1}.

Here, one can consider Z( X ¢) as the central root set and 1J( X ¢) as the isolated root set of 5.
For fixed 7 C Z( X 3), define

Ir(Xs)z = {y € Im(Xs) | x|y, # lx, foreveryy € Z}.
We recall the following formula (see 17, Equation (3) ):

GD Y (1) =g G-

yeEhT( Xz



Finally, if 7 is an irreducible character of [/, then we put

rk(y) = {a e ® | X, C ker y}.

Proposition 3.6.

Let y € Irr(U). Then X,y ,, is a normal pattern subgroup of U.

Conversely, let N C ®* be such that X \ is a normal pattern subgroup in U. Then there ex-
ists ¥\ € Irr(U) such thatrk(y ) = N,

Proof.

Let y € Irr(U). Forevery a € rk(y) and i € ®", we claim that |x, (1), x5(s)] € Xy, for
all 5,1 € [F,; this of course would imply x,, (1)) € X - We have

(a, 1y € {A ;%A |, Az, B2, G; ). Due to the properties of rk{ y), it suffices to prove that for the
cases (@, ff) € {B2, G2 | the claim is true for all irreducible constituents of y| v ;.

By 16, §3, the first statement holds for & of type G, at any prime. From the fact that
UB2(g) = UG2(9)V/ X34, +2a, X34, +a, and that Irr(UGa(g)) is partitioned by positive root sets
as in 16, §3, if « € rk( ), then both X ;4 and X/, are contained in ker( 7); thus, the claim

follows.

For the converse, let N° C ®* be such that X , is a normal pattern group in U. Set
X :=UIX 5 = Xg+\ > and by slight abuse of notation write X, instead of X, X - for every
root subgroup X,,. Let i € Irr(Z(X)) besuch that 1|, # 1, forall X, < Z(X). By prop-

erties of induction, for every constituent y € Irr(X | A) we have |, = y(1)4|y forall
X, < Z(X). Thus, rk( ¥) = @. So the inflation y s of y to U satisfies rk{ y /) = N

‘We now determine a partition of Irr{U/) in terms of the so-called representable sets. We call

¥ C @* a representable set if ¥ = Z(U/X ;) for some N° C @ such that X , < U. Notice
thatif X\, dUandL; := Z(U/X ;) fori = 1,2, then X) = X, ifandunl)rif}'ﬂ = N5.
Hence, given a representable set ¥ C @™, we can define Ny to be the unique set correspond-
ing to a normal pattern group of U such that Z (X g+, », )Z(U/X y, ) = X. For a repre-
sentable set ¥, denote

Irr(U)s == {Infyx ()| ¥ € I(UIX )z}
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Remark 3.7.

When p is not a very bad prime for G, then the definition of representable sets given in this

work is consistent with 11, Section 5.

The desired partition follows by Proposition 3.6 and the uniqueness of rk( y) for every
x € Irr(U).

Proposition 3.8.

We have that

Irr(U) = [ ] Irr(U)s.

EC™ | representable

Finally, we remark that all representable sets in low rank are determined by computer alge-
bra. Namely, these are in bijection with normal pattern groups in @*, and Proposition 3.5
gives a criterion to check whether a subset of ®* gives rise to a normal pattern group in /. In
this way, it is immediate to produce an efficient algorithm in GAP4 whose input is a record of
the Chevalley relations and that gives all representable sets; see the function repSetAll in
our GAP4 code in 15.

We collect the numbers of representable sets in rank 4 in Table [1. Notice that these numbers
are the same as in 11, Table 2 when p is not a very bad prime fu?(}, namely they coincide
with the numbers of antichains in ©*. On the other hand, fixed a type in Table 1 for which 2
is a very bad prime, we see that the number of representable sets for p = 2 and for p=3is

considerably different.

4. Reduction algorithm

In this section we develop a reduction algorithm for the study of the sets Irr(U )z with

¥ C &* representable, which is an adaptation of 7, Algorithm 3.3. Namely, we establish a bi-
jection between a set of the form Irr(X )7, with 7 € Z(Xs), and a set [rr( X ¢ ) -+, with

Z" € Z(X g ), where | S| < |S]|. More precisely, our goal is to develop an algorithm which
takes ¥ as input, and outputs the decomposition

Irr(U)s «— |_| Irr(Xs)z U |_| Iir(Xs)z,
{EED[ EEC}
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where € is a tuple (S, Z, A, L, K) of positive roots, and the sets O and O, are a measure

for the complication of the parametrization of the characters of Irr( X 5 )~ .

The set O contains all families of characters whose parametrization is immediately provided
by the algorithm. The remaining families in £, whose study requires more work, almost al-
ways highlight a pathology of the group U at very bad primes. For example, they often con-
tain characters whose degree is not a power of g. The families in £0> shall be in turn reduced

to few enough cases to be studied in an ad hoc way.

We introduce the following notation, in a similar way as in 7, §2.3. Assume that X g isa
quattern group with respect to 7; and \V; fori = 1,2.1f P, = P, and N} 2 N>, for

£ == N \ N> we define Inf; to be the inflation from Xg to Xg,,andif £ = {a} we put
Inf, := Infy. If N} = N5 and Py € P, for T := P, \ P, we define Ind; to be the induc-
tion from X ¢ to X ,andif 7 = {a} we put Ind" := Ind”.

We need the following adaptation of 7, Lemma 3.1 . The proof repeats mutatis mutandis.
Proposition 4.1.

Let 5 = P\ K be such that X s is a quattern group, and let Z C Z(X 5). Suppose that there
existy € Zand 6, f € S\ {y} satisfying:

(1) [x3(s5), x5(N] = x,(es't/) forsome ¢ # Oand i, j € 7,
(2) [ X X ] ﬁXﬁ = | forall a’,ﬂ" £ .5, and

(3) [Xu, X5] = 1 foreverya € S\ {f}.

Define P’ := P\ {f}, K" := KU {6},and S’ == P’ \ K'. Then X}~ is a pattern group and

X 9 Xy, ie, Xg isaquattern group. Moreover, we have a bijection

Irr(X g)z = Ir(Xs)z,
7+~ Ind’ Inf; »

by inflating over X ; and inducing to X 5 over X .
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We now proceed to illustrate the adaptation of 7, Algorithm 3.3 . At each step, we assume that
the tuple @ = (5, Z, A4, £, K) is constructed and currently taken into consideration.

Input. Our input is a representable set ¥. We initialize € by putting S = &+ \ N5,

Stepl. If S = Z(Xs), then add the element € to 0.
Step 2. If S # Z(Xs)and at least one triple (y, §. 6) of positive roots satisfies the assump-
tions of Proposition 4.1, then we choose from those the triple to be the unique one

having minimal f among the ones having maximal & (with respect to the linear or-

dering on ®*), and we put €’ := (8, Z, A', £, K'), with
S =S\ (f5), A'=AUlf). L' =CuU(s), and K =KuUl{s).

Go back to Step 1 with ¢’ in place of €.

Step3. fS# Z(Xs), Z(Xs)\(ZUD(Xs)) # @, and no triple of positive roots satisfies
Proposition 4.1, then in a similar way as in 17, §2.4 , we choose the maximal element

yin Z(Xg) \ (Z U D(X5s)), and we put
S =S\{yl, K =Kufy), ad Z'"=Zuly).

Go back to Step 1 carrying each of
G =(8",Z2, ALK and C" =(85,Z", A, LK)

Step4. If S # Z(Xs), Z(Xs)\ (ZUD(Xs)) = @, and no triple of positive roots satisfies
Proposition 4.1, then add € to ©-.

The elements € in the set O (resp., O, ) are called the abelian (resp., nonabelian) cores of U,
as the corresponding groups X ¢ are abelian (resp., nonabelian). As in 17, we sometimes
write (S, Z) for short for the core € = (S, 7, A, L, k). By Proposition 4.1, the algorithm

provides a partition of Irr(U). An element of this partition is a set
{Infy, Ind™ Infe(y) | ¥ € Irr(Xs)z } € lre(U),
where (S, Z) is a core corresponding to a representable set . If € is an abelian core, then the

set Ir( X 5 ) - is easily parametrized, as well as the set on the left-hand side of the above inclu-

sion. Thus, the main problem remains to study nonabelian cores.
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Notice that by fixed a core (5, Z, A, £, K), one can reconstruct S from .4, £, and X’. Namely,
if we put P := @©* \ A and N := £ U K, then S = P\ N as a quattern. On the contrary,
the set .S itself does not encode the whole information given by A, £, and K. These sets will
be made explicit in what follows wherever needed. The set 7 is a nontrivial subset of Z(.5),
hence this also has to be specified unless | Z(5)| = 1.

In a similar way as in 17, §2.4, given a nonabelian core €, by slight abuse of notation, we
identify the sets S and Z with S\ D(Xs)and Z \ D(X ¢), respectively. Namely, we have
that X5 = XS'\D{X_:,-‘] b XD[JI-'_#:I! hence

(X s)z = Ir(Xs\poxg))zvoosy X (X oo ) znoix) s
and the set Irr( X px ) ) z~pix ) is readily parametrized since X x ., is abelian.

We say that a nonabelian core € corresponding to S and Z isa |z, m, ¢]-core if

c12=z
= |S| = m,and

= there are exactly ¢ pairs (i, j) with i < j corresponding to nontrivial Chevalley relations in
X, ie,such that x;(s), x;(t) € Xg forall 5,1 € I and [x;(5), x;(1)] # 1.

We also say that the triple | z, m, ¢] is the form of the core €. Recall that nonabelian core
forms can be easily read from the output of the algorithm described above and implemented
in GAP4.

We finish by recalling the forms in groups of rank 4. For type A, there are no nonabelian
cores at any prime. As in 7, Section 4, there is just one [3, 10, 9]-core in type B, for p = 3,
and in type D for arbitrary primes, there are 6 nonabelian cores of different forms in type F;
for p = 3, and there are no nonabelian cores in type C, for p = 3. In the case of

UB4(2') = UC4(2") we have 51 nonabelian cores of the form [2, 4, 1], one [4, 8, 2]-core and
one [4, 11, 6]-core. Finally, we collect in the first two columns of Table 3 the 11 triples

[z, m, ¢] giving rise to a nonabelian core of UF;(2/) and the number of cores of a fixed form.
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Remark 4.2.

Recall that two cores (S, Z) and (S’, Z") are isomorphic if X ¢ and X o are isomorphic. In
contrast with 17, Theorem 4, we have that two cores with the same form |z, m, ¢] are not nec-
essarily isomorphic. Namely, from Table 3 of UF,(27), the cores of the form [4, 8, 4] split
into at least two nonisomorphic classes, si_nce there exist sets of the form Irr( X ) > whose
parametrization is evidently different as (.S, Z) runs into |4, 8, 4]-cores, and so do cores of the
form [4, 12,9] and [5, 9, 4].

On the other hand, it is easy to check that whenever 2 is a very bad prime for G, any core of
the form [2, 4, 1] is isomorphic to the B:-core of the form [2, 4, | | corresponding to
S=d% ={a,...,a3}and Z = Z(Xs) = {a3, a4 ). Its study is well known; see for in-
stance 20, §7 . Thus F,(2”) is the Chevalley group of minimum rank in whose Sylow

p-subgroup we find nonisomorphic | z, m, ¢|-cores.

5. Reducing nonabelian cores

By virtue of Section 4, the focus from now on is on the study of the families Irr( X 5 ) - where
¢ = (S, 7) is a nonabelian core. Our methods will again involve inflation and induction
from smaller subquotients. The groups involved in our procedure need no longer be root sub-
groups. In particular, we need to deal with diagonal subgroups of products of root subgroups
of UU. In order to do this, we need the following result from 17, §4.1, which we recall here in a

more compact form.

Proposition 5.1.

Let V" be a finite group. Let H < V, and let X be a transversal of / in V. Assume that there
exist subgroups Y and Z of H, and 4 € Irr(£), such that

(i) Z is a central subgroup of V,
(ii) Y is a central subgroup of H,
(iii) ZNnY =1,

(iv) [X,Y] C Z,and

(v) Y' := Staby(A) hasa complement YinY.

14



Let X' := Staby(A),and let H' :== HX'.Then H' = Staby{lnf??(i}} is a subgroup of V
such that ¥ ker(4) 9 H', and we have a bijection

Ind}, Infly, o0 T(H' 1Y ker(4) | 4) — Tre(V | A).

Throughout the rest of the work, we keep the notation of Proposition 5.1 for the group V', its
subquotients, and A € Irr( Z) satisfying assumptions (i)}-(v). These will be specified in each
case taken into consideration. From now on, let X denote a transversal of H X' in V. We use
the terminology of 17, Definition 10, and we call XandY anarmand a leg of X 5, respec-

tively, and X and Y a candidate for an arm and a candidate for a leg in X s, respectively.

In the case when V' = X s, the check of the validity of the assumptions of Proposition 5.1
translates into a condition on the underlying set of positive roots involved, which can be car-
ried out by computer investigation. In particular, 17, Corollary 13 generalizes in the follow-

ing way when p is a very bad prime for ;.
Corollary 5.2.

Let S C @™ be such that X g is a quattern group. Assume that there exist subsets 7, 7, and 7
of .S such that

(0) Xz isaquattern group,
(i) £ C Z(Xs),

(i) J € Z(Xs\1),

(iii) J N Z = @,and

(iv) iface I,f e Jand[X,, Xy] # 1,then[X,, X;] C X;.

Letusput Z = X;, X = X;,Y¥ = Xy,and H = X 5. In the notation of Proposition 5.1,

we have a bijection

X ' . .
Indﬁ- Infﬁ,n; ker(d) - Irr(H'/Y ker(A) | A) — Irr(X g | A).

Let € = (S, Z) be a fixed nonabelian core. In order to find sets 7 and ,7 as in Corollary 5.2,
we define the following generalization of the graph in 17, §4.2. Define a graph I" in the fol-
lowing way. The vertices are labelled by elements in .S, and there is an edge between « and
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ifand only if | # [x,(s), x4(#)] € X7 forsomes,t € F,.

We have the notion of connected components and circles in " as in 17, §4.2. The heart of I",
which we usually denote by H, is the set of roots in .5 whose corresponding vertex in I" has

valency zero. We say that € is a heartless core if H = @.

In Chevalley groups of rank 4 or less, the shape of each connected component of I" with at
least one edge is verified to be as follows. We have either a linear tree, or a union of circles to-
gether with possibly few subgraphs isomorphic to linear trees which share with it exactly a
vertex (see the second graph in Figure 1). In particular, the shape of the graph I' is different
from the ones of the graphs obtained in’ 17, §4.2 due to the existence of vertices of valency 1;
these correspond to roots which form a B, -subsystem with its unique neighbor in I". Hence
we need a new method to define the sets T and 7.

We assume, without loss of generality, that I is a connected graph with at least one edge. We
now construct uniquely defined candidates for the sets I and .7 in this case such that

S\ H =1 u.J.Thereason why such constructed T and .7 are likely to satisfy the assump-
tions of Corollary 5.2 lies in the fact that the induced graph I'|; has no edges. That is, no ele-
ments of I are connected to each other. In fact, as in 17, Remark 14 , if € is a heartless core,
then such 7 and .7 do indeed satisfy the conditions of Corollary 5.2.

We recall the natural notion of a distance d defined on the vertices of a linear tree A. Let ¢
and & be two vertices in A. If € = 4, then we put d(e, 5) = (. Assume that ¢ # 5. Then we de-
fine d(e, &) = s if and only if there exist s edges {f;, f;,; } fori =1, ..., ssuch that f; = ¢,
fey1 = 6.and fi; # p; ifi # j.

The construction of T and T is as follows. We first assume that I” is a linear tree with set of

vertices V.

« Let 6 be the maximal root in I" with respect to the previously fixed linear ordering of ®*.
Then we set Ty := |6}, and for each & > 1 we define

I, ={peV |dpd =2k-1) and T = eV |dfao =2k).
Finally, we define

I::Urk and Jt=UJk-
%

k
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We now assume that the union C(I") of all circles in I" is nonempty.

» We first follow the same procedure as in 17, §4.2,, namely we suitably enumerate the dis-
tinct circles Cy, ..., C; of I" and we construct thesets I, ..., 7, and 7. ..., .7, accordingly
such that T, U 7, = C(T').

« Let T be the set of subgraphs attached to C(I") and isomorphic to linear trees. As previously
remarked, if A € 7, then A and C(I") share a unique vertex, say 6. Let V' be the set of ver-
ticesof A. If 6 € 7, then we set J;(A) := { 4], and for each k > 1 we define

Tu(A)={BEV |dB,6)=2k—1} and Ji(A):={B €V |d(B,8) =2k}

Otherwise, we have that & € I, since I; U 7, = C(I'). In this case, we set I;(4) := {5},

and for every k > 1 we define

I(a)={peV|dpsé =2k} and Ji(A):={feV |dp d)=2k—1}.

We then put
1= 1) and  J@)= | JiA).
k k

« Finally, we define
I=ru(J1a) and  J=70(]T@).

AT AeT

The general ideas of the construction just outlined are summarized in the two examples in
Figure 1 which relate to the families 75 ; and Fy of Irr(UF, (2)) in Table 3.

We easily check, as remarked beforehand, that if H = @, then the 7 and 7 satisfy the as-
sumptions of Corollary 5.2. Moreover, all the nonabelian cores arising in rank 4 or less at
very bad primes are heartless, except the [3, 10, 9]-core in UF, (2 ) which has already been
studied in 10; it is an immediate check that the T and 7 previously defined satisfy the condi-
tions of Corollary 5.2 in this case as well. In the same fashion as 17, Lemma 18 (see the func-

tion findCircleZ in 15 ), we get the following result by a GAP4 implementation.

Lemma 5.3.

Let (7 be a finite Chevalley group of type Y and rank r, and let € be a nonabelian core of
UY,(p/).1fr < 4,and if p = 2 is a very bad prime for G, then the sets T and .7 constructed
as above satisfy the assumptions of Corollary 5.2.
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We conclude this section with an equality that will be repeatedly used in the sequel. Let us
take a nonabelian core €, and let I = {i....,i,} and . J = {j,,.... jr | be constructed as in
Corollary 5.2. In order to determine X' and ¥', we need to study the equation A([y, x]) = 1
forx = x; () x; (t;,) € Xand y = x; (s; ) -+~ x;,(5;, ) € Y. Its general form is

4 L]
G0 ¢ Y dissle) =1

h=1 k=1

forsomed,;; €[, and (by.cr) € (£ )* . Hence we have

X' = {x;, (#;,) --- x;_(#;, ) such that equation 5.1 holds forall s; ,....5;, € [F{;f }
and

Y' = {xj, (85, )+ x;, (87, ) such that equation 5.1 holds forall ¢; . ....1; €F'}
Remark 5.4.

Recall that all nonabelian cores in UF,(27), except the well-known [3, 10, 9]-core described
in 7, §4.3, are heartless. That is, every index of a root in S\, Z is involved in equation 5.1.
Our focus for the rest of the work will therefore be on the determination of the solutions of
equation 5.1, which is enough to completely determine a parametrization of Irr(X ¢ ) in the

case of heartless cores.

Remark 5.5.

Although two | z, m, ¢]-cores are not always isomorphic, we can still group them by means of
equation 5.1. Namely, it is easy to see that two heartless cores for which equation 5.1 is the
same up to a permutation of indices determine the same numbers of irreducible characters

and corresponding degrees. We will say in the sequel that such cores have the same branch-

ing.

We collect in the third column of Table E for a fixed form |z, m, c], the number of cores in
UF, (Ef ) of that form that have the same branching. In general, this considerably decreases
the number of nonabelian cores to study. For example, we see from Table 3 that it is suffi-

cient to study 14 pairwise nonisomorphic nonabelian cores in type F. when p = 2.
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6. The parametrizations of Irr(UF, (22k )) and
Irr(UF, (2%%+1y)

As an application of the method previously developed, we give the parametrization of Irr(U/)
when G = F,4(2/). The labelling for the positive roots and the Chevalley relations are as in 7,
§2.4 . In this case, we have |90 representable sets. The characters of abelian cores are immedi-
ately parametrized via the algorithmic procedure of Section 4 ; in fact, such characters had al-
ready been parametrized in 5. Computerizing the algorithm in GAP4, we are left with exam-
ining 21| nonabelian cores. By Remarks 4.2 and 5.5, this can in turn be reduced to the study
of 14 families, i.e. 14 sets of the form F = Irr(X s ) corresponding to configurations (S, Z)

of nonabelian cores. We parametrize every character arising from nonabelian cores.

Theorem 6.1.

All characters arising from nonabelian cores of UF, 1[2'Ir ) are parametrized, and their branch-
ing into 14 families of [rr(UF, (2/)) are listed in Table 3.

‘We now explain how to read Table 3. The first column collects all the triples [z, m, ¢] that
arise as forms of nonabelian cores as in Section 4. The second column collects the number of
occurrences of a core of a fixed form, and the third column describes their branching as ex-
plained in Remark 5.5. Fixed a family 7' = Irr( X 5) 7, we gather in the fourth column of
Table 3 the families F', ..., F", where m is the number of different branchings. The differ-
ent lab_el]ing foreach 1, ..., m is reflected in the fifth column. This collects labels for an irre-
ducible character of each family F; obtained as inflation/induction from an abelian subgroup
of X s, which is not necessarily a product of root subgroups and whose structure can be re-
constructed by the indices of the labels. The convention for the letters a, b, ¢, d for such labels
and their precise meaning are explained in 17, Section 5. Finally, we collect in the sixth col-

umn the number of irreducible characters of F;, and in the seventh column their degree.

The pathology of the case Irr(UF;(q)) when g = 2/ is quite rich. Notice that f = 2k if and
onlyifg =1 mod 3,and f = 2k + | ifand only if § = —1 mod 3. For the first time in the
study of any of the sets Irr(U/), the parametrization is different according to the congruence
class of ¢ modulo 3. In fact, the families 7, , ¥y ;, and 7, yield different numbers of charac-
ters according to whether f is even or odd. The expression of | 7’| when 7 is one of these fam-

ilies is not polynomial in g, but is PORC (Polynomial On Residue Classes) in g. Surprisingly,
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the global numbers k(U, D) of irreducible characters of Irr(UF4(¢)) of fixed degree D are the
same for every D in both cases of / odd and f even. As remarked in the introduction, an in-

teresting research problem is to find an insightful explanation of this phenomenon.

The number of irreducible characters of a fixed degree are collected in Table 2. In particular,
the degrees of characters in Irr(U) are: ¢ fori =0,...,9;¢4'/2fori =1, ... ,TG; g' /4 for

i € {4,10};and ¢*/8. This is the example of smallest rank that yields a character of Irr(U) of
degree ¢'/p* when g = p/.

Finally, we point out that the analogue over bad primes of 14, Conjecture B which general-
izes 19, Conjecture 6.3 does not hold for the group UF,(2/). In fact, the number k(U, g*)
cannot always be expressed as a polynomial in v ;= ¢ — 1 with nonnegative integral coeffi-
cients. Moreover, k(UF.(g), ¢*), k(UF4(g), ¢*/4) € Z[v/3] \ Z[v]. A similar phenomenon
happens when p = 3 7, Table 3, in that k(UF4(g), g, k(UF4(q), g*13) € Z[v/i2]\ Z[v). If
p = 3, then the expression of every k(UF4(g), g“)isin Z|v].

Except for the [3, 10, 9]-core, whose parametrization is as for 7', in 10, Table 2, all the
other cases in Table 3 correspond to heartless cores. Let (.S, Z) be one such core. We apply
the method in Section 5 to find 7 and .J; these are readily computed thanks to our imple-
mented function findCircleZ in GAP4 15. Then X' and ¥’ can be determined by means of
the study of equation 5.1. Asin 17, §5.1, if X' is an abelian subgroup, then the characters in
Irr( X ¢ )7 are immediately parametrized by inflating over ¥ ker(4) and inducing to X . This
is the case for all remaining families in Table 3 except for 7, and Fy; hence, the only com-
putation we have to do in these cases is to solve equation 5.1. The remaining two families
yield | X'| = ¢°,and X' is not a subgroup of X s. The study of the family 7 remains uncom-
plicated, as the associated graph " has in this case just three edges. The study of the family

F7 > presents more complications and will be examined in full detail.

We include in this work the complete study of three important families of characters arising

from nonabelian cores, namely:

» the family 7, ; corresponding to a [4, 8, 4]-core, which provides the smallest example

where the expression of the cardinality of a family F; is PORC, but not polynomial,

» the family 5 , corresponding to a [4, 12, 9]-core, where X' is not a subgroup, which

presents a more intricate branching and contains characters of degree ¢*/8, and

= the family F; corresponding to a [6, 10, 4]-core, whose study requires the determination

of solutions of complete cubic equations over [, .
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The difficulty of the computations related to all other families in Table 3 is bounded by that
of the three families described above. Full details in these cases can be found in 15.

Before we start, we recall the following notation. For any g = p/ andm > 1, we define

Fr, = {x € F | x = y" for some y € F*].

Notice that [Fé,‘fm is a cyclic group. We focus on the set [F;_{_1 when g = 2/, It is easy to check

that if £ = 2k + 1, then 5, = F*, while if = 2k, then |F)%,| = (g — 1)/3.

We first study a nonabelian [4, §, 4]-core arising from the family 7, ; in Table 3. In this case,

we have
« S={a. a3, a5, a7, a5, @y, A1p. A8 |,
o Z = {ag,m0,ap, a3},

. A = {ﬂ:l,ﬂq}andf- = {alhalﬁ}:

« I'={ay,as}and J = {a3. a7 }.
Proposition 6.2.

The irreducible characters corresponding to the family 7 > in lrr(UF; (27)) are parametrized

as follows:

« If f = 2k, then

. qafeven _ g.f even, | I even, 2
Faa=T4, 0 =T, U7y )

where

- Tir.zmu' " consists of 2(g — 1)*/3 irreducible characters of degree > and
- Tf even. 2 consists of 16(g — 1)*/3 irreducible characters of degree g° /4.
- W/ =2k+1,thenFyp = Tir.zwd consists of 4(g — 1)* irreducible characters of degree
R
g-12.

The labels of the characters in ir";f'r 2"""3“' h Tf ;VE“' 2 andin T;f ;dd are collected in Table 3.
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Proof.
Here, equation 5.1 has the form
p(s3(aoty sz + agts) + s7(aigtssy +aptz2)) = 1.

By the remark after equation 5.1, in order to find X' (respectively, ¥') we need to find all
12,15 € [, (respectively, s3, s7 € [,) such that equation 5.1 holds for every 53, 57 € [F, (re-
spectively, 15, 15 € [F;). By choosing (53, s7) (respectively, (r2,75)) in {(1,0),(0, 1)}, we easily
get

X' ={x2(12)x5(15) | 12,15 € By, a315 = avtz, and aj, 15 = aists
— 2 ] —] 7 =7
= {x2(t2)x5(t5) | ta,ts € Fyuta = aday' 12, and 1} = ag'ajaj) aists }

and

Y' = {xa(s3)x7(57) | 53,57 € Fy, @053 = ajos7, and ais 53 = agss)
— -7 2 —
= [x3(53)x7(57) | 53,87 € Fy, 57 = aoayy 53, and 537 = agay~aj,ag 53 ).

Let us assume that / = 2k. If a;g & ag a;z ﬂ?“ﬂ::] , that is, for 2(q — 1)/3 choices of a3 in ",

then the quartic equations involved in the definitions of X’ and Y’ just have a trivial solu-

tion. In this case, we have X' = 1 and Y' = 1, and we get the family F"{ ;W’”" as in Table 3.

Ifag € ag a;z ﬂ%u I]:[:f3 ,i.e., for (g — 1)/3 choices of a3 in [F; , then there are three distinct val-

ues @g o, 1p,15; fori = 1,2,3 such that i , 15, = sy a3,a7, - In this case, we have
¥ —_ — —_ —_ .

X' = {1} U {x2(asay' ogg 1o, 15,)%5 (a5 @55 1,15,) | 1 € [1,3])

and

Y' = “} u {-‘ff!-{m&,g,lu.]ﬁ:i}-’f?(m}ﬂ;ul mé,'&l.lﬂ.l&i} I i€ []+3]}

We now observe that X' and Y’ are each isomorphic to C; % C,. We get the family 'P{ Jren?
as in Table 3. By equation 3.1, we readily check that

Fia = F5" = Flpen T up[iem?,
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This proves the first claim of the proof.

Let us now assume that f = 2k + 1. Let g 9,1p,j3 be the unigue cube root of ag agla?nal‘a' .
Then we get

' -1, -2 1]
X' = {Lxalagay wg g ,5)%s5(ag @gq10,5) )

’ —
Y'={1,x; (fﬂH.‘:'.lU.]tE}xT{a':Ja]Ulwilg_][]‘m}]'*

Hence we obtain the family F;{;;"M as in Table 3, completing our proof.

We then move on to study the family 7 > in Table 3, corresponding to nonabelian cores of
the form [4, 12, 9]. Here we have

« S=laj.a, a3, a4, a5, ag, 07, g, Ao, Ajp, A, A6 ),
« Z ={ag,ap. . a5},
s A=0L =,

» I ={o,@.05, 04} and . J = {as. a5, a7, a9 }.
Proposition 6.3.

The irreducible characters corresponding to the family 75 in Irr(UF;(2/)) are parametrized

as follows:

Fra = D Fia.

i=l

where

. P?I.’z consists of 8(g — 1)* irreducible characters of degree g'/8 and

» each of Pé_, fori € {2....,8)} consists of 2(g — 1)* irreducible characters of degree g'/4.

The labels of the characters in P%.z fori € {1,...,8} are collected in Table 3.

23



Proof.

The form of equation 5.1 is

B(ss(aynt; + asts) + selasty + ajots) + s7(a16t257 + arot2) + solaet; +anty)) = 1.
We have that

X' = {x(1) € X | ant = agta, agty = aywls, ajyl; = ael2, and ayly = a1y
and

Y' = {E(E} eY |f.'|'3.'if, = dy 5o, ﬂm.i'% = dns7. aé.&‘; = aj;ss, and H?“Sé = ays89 }.

Hence we have that

2
g dipdn a1
X" =< xi(e))xalea)xa(es)xy (—C‘l) le; €40, — o2 €4 0, — .03 €
a

i) 2
n*ﬂ_ﬂ}
ay

dg s a1
and

a a dgdd
Y' = xs5(c) )xgl(ca )x7(ca)xy (—31:‘2) | € ﬂ.;,_l .00 E 40, Bl .03 E {
an

2 2
ag Apail
ann
0, — \
dig

with X' =X’;X5X; in a natural way with X| C X,, X' C X;;,anng C X, X, and
Y' = Yl’}’;}’; with Y C X7,Y) C X5,andY3’ C X4 Xg. Now notice that X' is not always a

group, namely, we have
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dipdy

,,
a5 as azd)g dgdin

X2 T » X3 H— = Xg 5 X 5 3 ¥

! i 11 @) @y ayy

- ) -
Ajpt ajnaiy ais ap

X] 3 X\ —— )2 | = =X\ —= |-
agdygp dgdie iy ag

agdg dgdin ay

Thus we have[Xf,}i’_;J =Y/ forevery i, j, k with {i, j, k} = {1,2,3}.
Fore¢y, e, ¢y € {0, 1} we call A€ := A% the extension of A to X - ¥’ such that

AS(y;) =y, forevery y; € Y; and i = 1, 2, 3. An inflation and induction procedure from

groups of order /8 then induces a bijection

(X s)z — rr(X'Y'Z | A5).

€], | 0.1 |

Let us assume ¢; = 1 for every i = 1, 2, 3. Then we can apply Proposition 5.1 with arm X

and leg X7,. In this case, we get a bijection
Irr{xl Y.F Z I Al.],l] —_— ]W{X_; ylr}/zr]/;z | J]'l'l }ﬂ
and X' Y'Y, Y, Z is abelian. Hence we get the family ?’fj as in Table 3.

Let us now assume that¢; = ¢; = l and ¢, = O forany {i, j, k} = {1,2, 3}. Proposition 5.1
applies here with arm X| and leg X . We have a bijection

r(X'Y' Z | 4) — Ie(X Y/ YIY! Z | 29),
with XYY, Y, Z abelian. This gives the three families 715,

?‘?12 ,and ?‘%Z as in Table 3.

Let us then assume thatc; = 1,and ¢; = ¢, = Oforany {i, j,k} = {1,2,3}. Proposition 5.1

now applies with arm X7, and leg X} . We have a bijection
(XY Z | 48) — Ire(X Y[ Y] Y] Z | A5),

with X'Y/ Y] Y] Z abelian. This gives the three families 'F?: . F%,,and F;":_, as in Table 3.
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Let us then assume that¢; = 1,and ¢; = ¢, = Oforany {i, j,k} = {1,2,3}. Proposition 5.1
now applies with arm X, and leg X} . We have a bijection

Iir(X'Y' Z | A5) — Ie(X] Y] Y] Y] Z | A%),

with X} ¥/ Y] Y] Z abelian. This gives the three families 7 ,, 73 ,, and 7, as in Table 3.
Finally, let us assume ¢; = ¢; = ¢3 = (). Then we have that

Ir(X'Y' Z | A"y — (XY Zry' | 2%00)

is a bijection, and X'Y' Z/Y" = X| X! X[ ZY'/Y' is abelian. We have determined our family
F?I.?. of 8(g — 1)* irreducible characters of degree g'/8 as in Table 3.

Equation 3.1 now yields

5
Faa= |_| Fis,
i=1
proving our claim.

We conclude our work by expanding the computations for the parametrization of the unique
|6, 10, 4]-core, which corresponds to the family 7, in Table 3. As previously remarked, we
need some properties of solutions of cubic equations in [;. Fora, b € F", let

Pas(X) = X" +aX +b.

Define the map g : F;, — [, such that g(x) = x* 4+ x,and fori € {0,1,3) letus put

A; = {(a.b) € (F))* | pas(X) = 0 has i solutions in F, }.

By 4, Equation (1.1) and the fact that (1, b) € A; implies (a*,a’b) € A, for everya € [,

we have that

e Az ={(@. @ +x) e eF x (0.1}, 14+ x7* €im(g)},
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A =@, @ (X +x)|a€E [Fq’(,x & (0,1}, 14+ x7* & im(g)},and

= Ay =(U:§}:\(-43 U.4;).

In particular, we have

—1ig =3+ (=]*! — g =1+ (=1y"*!
Ay = =D : COD gy = Az Da= LD
— g+ (=1
| [}|=(q }{qB{ )

The next result follows directly by the explicit description of .4, for i € {0, 1,3} and a case-
by-case discussion. We omit the lengthy, but straightforward proof.

Lemma 6.4.

Let

S={(hen|beF 1€F \ (b}, andceF\ {1}},

and for every (b, c,1) € S, let p, ., (X) == X° + (t/b+ b*)X + (t + ¢), and
B; = {(b,c,t) € 5| ppc:(X) =0 has i solutions}.

Then we have that

(g—35)g—-3+ (=1 (g—3)g—1+(=1")

1Bs| = - 1B = >
—2 1)+
Remark 6.5.

The expressions of 33, 51, and 55 in Lemma 6.4 as polynomials in g for even and odd / are
different. This is reflected in the sixth column of Table 3 for the |6, 10, 4|-core, and it ex-
plains a difference in the parametrization of the family 7, C lrr(UF, (27)) in these two

Cases.
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We return to the study of the family F;. In this case,

« S={am. 03, a5, 05, a7, 05, g, A, @12, A5 |,
« Z = {ag. o5, @y, Ay, @12, Q15 }s
e A={aj,as}and £ = {a;, a5},

« I'={oy, a5} and J = {az. a7 }.

Proposition 6.6.

The irreducible characters corresponding to the family 7, in Irr(UF;(2/)) are parametrized

as follows:

« If f = 2k, then

o, pef even «f even, §
Fip = F & = | | P/,

i=1

where

— F/ ™ ! consists of (g — 1)* irreducible characters of degree ¢,

- 'Ffr A ? consists of 4(g — 1)*(g — 2) irreducible characters of degree g°/2,

- 'F'f'r e ? consists of 2(g — 1)%/3 irreducible characters of degree ¢°,

- 'F'fr [ 4 consists of 16(g — 1)*(g — 4)/3 irreducible characters of degree g° /4,

— F/ 5" consists of (g — 1)7(g — 2)/3 irreducible characters of degree ¢°,

— F/ ™Y consists of 2g(q — 1)*(g — 3) irreducible characters of degree ¢*/2, and
_F fr| evem, 7 o onsists of 8(g — 1)*(g — 4)(g — 5)/3 irreducible characters of degree ¢°/4.

If f=2k+ 1, then

6
o odd e odd,
i=l
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where

- 7/ "1 consists of (g — 1)* irreducible characters of degree ¢,

- 7% % and 7/, """ consist of 4(¢q — 1)*(g — 2) irreducible characters of degree ¢°/2,
- F/,°% % consists of (g — 1)* (g — 2)(q + 1)/3 irreducible characters of degree ¢°,

- F/,°% 3 consists of 2(¢ — 1)*(q — 2)(q — 3) irreducible characters of degree ¢°/2, and

- P/, consists of 8(¢ — 1)*(q — 2)(g — 5)/3 irreducible characters of degree ¢?/4.

The labels of the characters in ;F'f"l eentgori=1,....7 and in 'F{'-l - S forj=1,...,6are
collected in Table 3.

Proof.
The form of equation 5.1 is

d(s3(aots + agty + asts) + s7(aists + annts + apt2)) = 1.
We have that

X' ={x(1) € X | asts = aofs + agty and ayotr = aist: + apis}

and

Y’ ={x(s) €Y | aﬁs% -- a%ns% = agsy and a%zs% -- aﬁsg = ag57}.
We now focus on the determination of X'. Analogous computations can be carried out in or-
der to determine Y. We omit the details in the latter case, just mentioning that the cubic
equations that show up in the study of X" and Y’, which depend on a; for

i€ 6,8,9,10,12, 18}, have the same number of solutions for each of the fixed values of the

| "
¢; sin [Fq .
Let us fix ag, a9, and a;g in . By combining the equations defining X', we substitute the

value of 15 as a function of 1> into the first equation. Let us put a; := ag/ag.

dig = ﬂﬁﬂmf{ﬂﬁﬂm}and da = ﬁ(,ﬂﬂmzf{HSQ]g). Then we get
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(6.1) Ig(!’% + (@2/ag +5§J?2 + (@ +ap))=0.

Since X' is an abelian subgroup of X ¢, and ¥’ is determined in a similar way as previously
remarked (in particular, | X’ | = |Y'|), then each choice of a; fori € {6, 10, 12} such that
equation 6.1 has k solutions yields k*(g — 1)° irreducible characters of degree ¢°/k. The
claim follows if we determine the number of solutions of equation 6.1 for every

g, ay,a € £

Let us first assume thata;, = a;» = ag;this happens for g — 1 values of ag, ayp. a2 € [qu.
In this case, equation 6.1 is 73 = 0 and just has the solution > = 0. In this case, we get the

family 7|, asin Table 3.

Let us then assume that a2 # a-; and a |y = ay>; this happens for (g — 1)(g — 2) values of
g, dy, djy € [qu. In this case, equation 6.1 is r%{r% +¢) = 0,where c = ayy + a2 # 0,and
we see that its two distinct solutions are 0 and the unique square root of c. This gives the fam-
ily 7, asin Table 3.

We now assume thata,, = ag and a |y # ay;;this happens for (g — 1)(g — 2) values of

iy, dip. di2 € [qu. Equation 6.1 writes rgl[r'; +d)=0,where d = ap + ﬁ; =0.1If

f =2k + 1, then d has a unique cube root and the equation has two distinct solutions. This
gives the family P{ i ©dd- 3 a5 in Table [3. Let us then assume that f = 2k. We distinguish two
cases in turn. We first suppose that E?E S (ﬁﬁ + 5N\ {0} = 32 +F5 0\ {ag }; this happens
for{g— 10{g—1)/3—=1)=1(g— 1)g—4)3 values of s, ap. a2 € [qu. In this case, d has
three distinct cube roots, and equation 6.1 has four distinct solutions. This gives the family
F[,*™ " as in Table 3. Assume then that @y € (a, +F, \ F)5) \ {0} = & + [, \ F)%; this

happens for 2(g — 1)2/3 values of g, @y, a2 € [F;. In this case, d has no cube roots.
Jf even, 3

Therefore, equation 6.1 only has the solution t> = 0, which yields the family 7, as in
Table 3.

Finally, we assume thata;, = r‘:é and ap # a;>. Then we are in the assumptions of Lemma

6.4 by settingi = a2, b = ag, and ¢ = a,. We readily get the families F‘{ | cven, 5 F‘{ | even, 6

and F‘{ e 7 asin Table 3 when f = 2k, and the families F‘{ : odd, 4 F’{ | odd- 3 and F‘{ | 0dd, 6
as in Table 3 when /" = 2k + 1, in the cases when the equation

ty 4 (aplas + a)t, + (@ +ap) =0

has 0, 1, or 3 solutions, respectively.
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Since

-

11

f
S even i even, i . Joodd S odd,
Pl = |F and P/ =| | P2

i=1 =1

the claim is proved.
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TABLE 1. The number of representable sets in rank 4 at different primes.

Lie type || As B4/C4 D, F,
Prime | any|[p=2[p>3|any|[p=2[p>3
Z Rep. sets || 42 | 98 | 70 | 50 | 190 | 105
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TABLE 2. The numbers of irreducible characters of UF(q) of fixed
degree for ¢ =2/, where v=¢q— 1.

D k(UF4(q), D)

1 v +40* + 607 + dv + 1
q/2 | 4v* + 8v3 + 4o?
q 20° + 8v? + 14v® 4 120% + 4v

q*/2 | 8v' + 1603 + 8v?

q’ 20° + 120° + 27v* + 300° + 17V + Qv

q3/2 1204 4 2403 + 1202

q 8v° + 28v* + 3603 + 2002 + dv

q*/8 | 8*

q*/4 | 80°/3 + 80v° /3 4 98v*/3

q*/2 | 1005 + 60v° + 1140v* + 8003 4+ 8v?

q 20% + 1607 + 160v°/3 + 280v° /3 + 301v* /3 4 68v° + 23v? + 2v

q-’/Q 81’5 + vt — 241.-3 + 81.2
g 207 + 14v°% + 38v° + 500t + 3413 + 1202 + v

q®/2 | 16v° + 40v* + 320° 4+ 802

q° 207 4 15v° + 40v° + 53v* + 361> + 13v2 4+ v

q" /2 | 4v° 4 240° + 48v* 4 400 + 1247
q 20% + 100° 4 20v* + 200° 4+ 1002 4+ 2v

/2 | 8v° + 32v* + 32v° + 82

7 v® + 8v° + 18v? + 18v® 4 T

q°/2 | 8v°® + 28v? + 24v° + 402

q° 20t 4+ 4 4+

q'°/4 | 16v*

q'°/2 | 8

k(UF4(q)) = 20® + 2007 + 1040° + 3620° + 674v* + 5520° + 19407 + 24v + 1
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TABLE 3. The irreducible characters of Irr(UF(2/)) parametrized

by nonabelian cores.

Form |Freq.|Branch.| Family Label Number Degree
2,41 [ 185 185 ,r;l XSy 4(q - 1}: q/2
: ag,a19,a19 =
Bogl 1| 1 L-35-| - prarmamn - - - - —,%—_11’)-; -—— —(}:@ ]
2 €1.8.7,°2
s3] 2 | 2 7 T T 16(¢ — 1 a /4
6| Jaa Xcas.chr "~ Aq—1)° /2
w4 | 8 | [HITT| __xevesewels | 2e-0Y3 |7
2 T ‘QE“"‘ | . ::-:’.QJ:;D 218 IG(Q 34 1}1;3 q2;‘_1
7 Clll I 5 ig—1) a%/2 |
4205 2 | ¢ s XCT ) ¢y g T6(g—1)" 77
[411.6]] 2 2 Te *’5107'1’a°£§332'1”;.c§5 - da(q - 1) a/2
I N o G 7
20 e 81" a8
i -J?Q"‘ - r —"“G‘T“TDNW-G'IFG‘JJ— I -.)"{'q—_"l) R -q.'["!i g
'-fgl. —'——cfl@""-ﬂ'ldfﬂ'l'l-'ﬂl'c'f?—-_---5-__-1'! - -J'I'
[4,12,0]| 2 Lot L Xo oo N0 W TL ol L
W ’ 1 | Fa | xgmenessT T Re-10 T A ]
[ TFa T [ -x:'?é:m'n :crru:cr.tr T _QIQ_":lF - qr’,cz ]
r. 1:‘;- 059T1 7O 15,5376 q - l)-! qrf"l
e | XoeemmmREe = g P - | A i
B _J_-é'; e ':'IST:TU-“'IFTTGWF?E‘JTT' e e _QTq___l)_] = e qfl'!:I &
Bog| 2| 2 [-FL_|_xaead "0 | _Se-Ne-DI _ ¢/
s I 72 . 2q(q — 1)* /2
ﬂu‘d .ﬂu.ﬂ .a
T Xy oo | 8a-Dia-9/3_ | ¥/
F even,2 X:G“"!ﬁ-“ﬂ-“lﬂ-“ls gq(q . l)l ql‘(g
' 5,49 s
3 Trfevans ";8',::..;; """"""""" N
5.9.4 | 4 | Xy ot | vis | @
HITT| aRoreewae 8a-1%a-2)/3 | ¢*/4
odd,2 ag 08,009,310,
| FIT2 ] Xarpday oo | _Ae-'@-2) | 2]
J_»d"‘tudd:i . :g,:‘sé:;;.am.qm (q_ 1)1(q+ I}f3 q2
, ¥ia X °6.a8,a10,a18 @=1)° P
F3a e s M- 1)ie-2) | &2
sane| 2 | 2 | Zh | _xusese | 8@-2@-0' _ | oA]
Fio X 2q(q - 1)* a/2
‘rll.l. x9.410,a12,a18 (g —1)3
O O i N TR W )
~f even ag ' ,ag,a10.412,948 e —
'{‘;"m:..'a e ST '4]‘} e B
iy Xdy 5,ds 7 16(q — 1)%(q — 4)/3 q°/4
) 2| * [EEZEL a3seeernan | -Dig-08_ ¢ |
0 xGeay e | 2(e-Dia-3) | @2 )
FHy==7 | xahelessioeindi “gg _1)dq—a)q-5)y3| 2/
FH™N | x@rpeeasa 4qg—1)Yq-2) q2/2
[ Ffoddd [~ alial ag.a10,012.818 | 1o — 13870 — D\ e 2. 1173 | =
B B w0 iy MM B2 2 im0
| HCET | xgray ottt | a0tz | 92 |
Ffodd6 [ xGeoseoaioaincis g 1)i(g—2)(q - 5)/3| ¢2/4
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Ficure 1. Two examples of graphs as described above in the case
G = F4(2/). On the left, § and Z correspond to the [4,12,9]-core
associated to F7 ;. On the right, § and Z are taken with respect
to the only [5,11,6]-core; here |T| = 1, and A € T is the graph
with edges {a,,aq} and {ag,a,}. The vertices in J (resp., I) are
those surrounded by a straight (resp., dotted) box.
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