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ON SOME HERMITE-HADAMARD INTEGRAL INEQUALITIES
IN MULTIPLICATIVE CALCULUS

MUHAMMAD AAMIR ALI, MUJAHID ABBAS AND AZHAR ALI ZAFAR

ABSTRACT. In this paper, we establish some new Hermite-Hadamard inte-
gral inequalities for log-¢-convex and ¢-convex functions in the framework
of multiplicative calculus. Furthermore, some results related to differentiable
log-¢-invex functions are also obtained.

1. INTRODUCTION

Grossman and Katz [14] initiated the study of Non-Newtonian calculus and mod-
ified the classical calculus introduced by Newton and Leibnitz in the 17th century.
On the other hands, Bashirov et al. [3] studied the concept of multiplicative calculus
and presented a fundamental theorem of multiplicative calculus.

Since then a number of interesting results has been obtained in this direction.
For more discussion and applications of this discipline, we refer to [28], [2, 3, 4] and
[26]. Some elements of stochastic multiplicative calculus have been investigated in
[17] and [I3]. Bashirov and Riza [5] also studied complex multiplicative calculus.

Another popular Non- Newtonian calculus, known as bigeometric calculus is
studied in [29], [15], [1], [18], [27], [6].

Recall that, multiplicative integral called *integral is denoted by f;( flx))=

whereas the ordinary integral is denoted by f; f(x)dx. This is due to the fact that
the sum of product terms in the definition of a proper Riemann integral of f on
[a, b] is replaced with the product of terms raised to certain powers. It is also known
that [3] if f is positive and Riemann integrable on [a, b], then it is *integrable on
[a,b] and

/b(f(x))dm _ ef:ln(f(a:))dm.

Consistent with [3] , the following results and notations will be needed in the sequel.
@) [y ((F@))™ = [ ((f@)*)",
(i) [, (f@)g(@) = [[(F@)™. [, (g(x)*,
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b T T f;(f(z))dz
(i) [, (5™ = P

d.
(
() ;@)™ = U@ [(f@)*, a<e<h
W) Ji @) =1 and  [(F)® = ([J@)*=)

On the other hand, the notion of convexity plays a significant role in many
disciplines such as mathematical finance, economics, engineering, management sci-
ences,and optimization theory.

In the recent years, several extensions and generalizations of convexity have been
investigated. Noor [22] extended the concept of a convex function to ¢-convex func-
tions. For more results in this direction, we refer to [19] and [22] .

Hermite and Hadamard showed independently that the convex functions are
related to an integral inequality. Hadamard’s inequality for convex functions has
received much attention in recent years and a remarkable variety of refinements and
generalizations have been obtained ( see for example, [7, [8 @] 10} 1T, 12]).

The aim of this paper is to establish Hermite Hadamard type integral inequalities
for log-¢-convex functions, and ¢-convex functions in the setup of multiplicative
calculus.

2. PRELIMINARIES

Let K be a nonempty closed set in R™, and K° the interior of K. We denote by
(.,.) and ||.|| the inner product and norm on R™, respectively. Let f, ¢ : K — R be
continuos mappings.

We recall the following well known results and concepts.

Definition 2.1 A set K is said to be convex, if for any a,b € K,

(1-tha+th=a+t(b—a) € K, forallte]0,1]. (2.1)
Definition 2.2 A set K is said to be ¢-convex, if for any a,b € K,
a+te®(b—a) € K, forall tecl0,1]. (2.2)

If we take ¢ = 0, then ¢-convex set becomes a convex set. The converse does not
hold in general.

Definition 2.3 The function f on the convex set K is said to be convex, if for
any a,b € K, we have

fla+tdb—a)) = f((1 —t)a+td)
<1 -t)f(a)+tf(b), forall ¢te[0,1].
The function f is said to be concave iff —f is convex.
Definition 2.4 The function f on the ¢-convex set K is said to be ¢-convex with
respect to ¢, if
fla+te®(b—a)) < (1—1t)f(a)+tf(b), VabekK, tecl01].

The function f is said to be ¢-concave iff —f is ¢-convex. Note that, every convex
function is ¢-convex but the converse does not hold in general.
Definition 2.5 The function f on the convex set K is called quasi convex, if

fla+t(b—a)) <max{f(a),f(b)}, VabeK, tecl01].
Definition 2.6 The function f on the ¢-convex set K is called quasi ¢-convex, if
fla+te?(b—a)) <max{f(a),f(b)}, VabeK, tel01].
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Definition 2.7 The function f on the convex set K is called logarithmic convex,
if
fla+t(b—a)) < (f(a) " (f(0)". (2.3)
Moreover, we have
log fla4+t(b—a)) <(1—t)log f(a)+tlog f(b) VabeK, te]0,1].

Definition 2.8 The function f on the convex set K is called logarithmic ¢-convex,
if

fla+te?(b—a)) < (f(a) " (f(b)". (2.4)
Definition 2.9 The function f on the ¢-convex set K is said to be logarithmic
¢-convex with respect to ¢, if

fla+te®(b—a)) < (f(a)) " (F(b)".
Moreover, we have
log f(a +te'®(b— a))
<(1-t)logf(a)+tlog f(b) VabeK, tel0]1].
In view of this fact, we have the following.

Definition 2.10 The differentiable function f on the ¢-convex set K is said to be
a log-¢-invex function with respect to ¢ , if
fo(a)
log f(b) —log f(a) > { —,b—a Va,be K.
) ~1og f(a) = (75
It is well known [I0, 1T 24] 25] that if f is a convex function on the interval
I = [a,b], then

a ’ a
f( —2|—b>gbla‘/af(x)dng();_f(b)7 Va,bEI, (25)

which is known as the Hermite-Hadamard inequalities for the convex functions.
For some results related to this classical result, we refer to [10] 11l 24] 25] and the
references therein.

Dragomir and Mond [10] proved the following Hermite-Hadamard type inequal-
ities for the log-convex functions:

f (ajb) < exp [bi / b 1n[f<x>]dx]

1 b
<o | GU@. flatb-o)do
b
<o [ S
fl@)+ 1)

(2.6)

where G(p,q) = \/pq is the geometric mean and L(p,q) = ﬁ(p # q) is the
logarithmic mean of the positive real numbers p,q (for p = g,we put L(p,q) = p).

Pachpatte [24] obtained some other refinements of the Hermite-Hadamard in-
equality for differentiable log-convex functions.
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From now onward, unless otherwise stated, we assume that K = [a,a + ¢'* (b — a)]
and 0 < ¢ < 3.

Note that, if K = [a7 a+ e (b— a)] is an interval, then the ¢-convex functions
can be characterized as follows:

1 1 1
a x a+e®b—a) |>0,
fla) f(x) fla+e?(b—a)

where z = a + te'®(b — a) € K.
Using this definition, it can be easily shown that ¢-convex functions satisfy the
inequalities of the form:

@) < flo)+ L0 ), 2.1
3. MAIN RESULTS

Theorem 3.1. If f : K — (0,00) is a ¢-convex function on the interval of real
numbers in K° and a,b € K° with a < a + et (b—a) and0< ¢ < g, then

e

</a+ei¢(ba)(f(x))dx> ei¢(t—a) _ (f(b))ﬁ (f(a))% .

Proof. As f is a ¢-convex function, we have

+e'?(b—a)
/a T @) = el )
a
_ o n(fate 5ma) ) (p—ai
< €0 (b=a) [} (In((1—t) f(a)+tf(b))dt

— eew(b—a){ln FO=(F®=F(@) Jy Frayrecrm—ray 4t}

1
em(ba){ In f(b) — (f(b) ;(ﬁ(a)) b ot }
e T (O F@) (@) +t(f(B)~F(a))) Jdt

_ P b=a){(n £(0) =14 7 iy (n () —In f())) }

f(a) e'?(b—a)
f£(b) —f(a
_ [eln f(b) 1+1n(f<a) ) F®=75( )‘|

e'?(b—a)

[(f(b))m’;(% N f(a»m]

e

Hence

e

( [ f(@)dm) T _ () (f(a)) T
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Corollary 3.2. If f : K = [a,b] — (0,00) is a convex function on the interval of
real numbers in K° and a,b € K°, then

1

(/b(f(x))dz> o < (f(b))% .(f(a))%.

e
Proof. From Theorem 1 we get this inequality for ¢ = 0. [

Theorem 3.3. If f : K — (0,00) is a log-¢-convex function on K, then

b Pz Tom)
( / (f(x))d“’> < G(f(a). f(B))

< L(f(a), f(b)) < A(f(a), f()),

where G(.,.) L(.,.), A(.,.) are geometric, logarithmic and arithmetic means, respec-
tively.

Proof. Since f is a ¢-convex function, we have
a+e'?(b—a) i
/ (flx)™ = el O (In(f (2)))dz
_ eew(b—a) fol ln(f(a—}-tew(b—a)))dt
< eem(bfa) Jo n(f(a)'~Ff(b)"))dt
_ eew(b—a) Jo ((A=t) In f(a)+t1n f(b))dt

_ eei¢(b_a){ In f(b);ln f(a) +1n f(a)}

i$ In £ (b)+1n f(a)
eel (b—a) { f}

el?(b—a)
o{In f(b)+1n £( a)}) 2

et (b—a)

(
(e{lnf b)-£( a)}) 2
= (

’% a)

f(@)-£0))
< (VI@I®) " = GU@, fe)

io a e'?(b—a)
e < (L 10

e'?(b—a)

IA
—
=
=
S
~
~

b Pz o)
(/ (f(l”))d“’> <V fla).f(b) = G(f(a), f(b))
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Corollary 3.4. If f : K = [a,b] — (0,00) is a log convex function on the interval
[a, b], then

b
( / (f(w))d”> <= G(f(a), /(1))
< L(f(a), F(b)) < A(f(a), F(5)).

Proof. From Theorem 3, we obtain this inequality for ¢ = 0. O

Theorem 3.5. Let f,g: K — (0,00) be log-¢-convex functions on the interval of
real numbers in K° and a,b € K°. Then

Proof. As f,g are log-¢-convex functions, therefore

a+e'?(b—a) i
/ (Fle)g(a))® = o™ tn(s@gis
_ eew(bfa) fol (ln(f(athem(bfa))g(athe"’d’(bfa))dt
< ¢ (b=0) [ (((f(@)g(a)]'~* [F(0)g(B)]") )t

— &' ?(b=a) [§ (1=t) In(f(a)g(a))+tIn(f(b)g(b)))dt

_ eei¢(b7a){ ln(f(h)g(b));1“(1"(0)9(‘1)) +1n(f(a)g(a))}

ipp_ In(f(b)g(b))+In(f(a)g(a))
— ¢° (b a){ > }

_ oS (£ (b)a (1) +1n(f (a)g(a))}

— oD (n(F (D)9 (1)) (F(a)g(a)))

et (b—a)

:(e{ln(f(b)g(b))~(f(a)9(a))}) 2

eid’(b—a)
2
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Hence

]

Corollary 3.6. If f,.g : K = [a,b] — (0,00) is a log convex functions on the
interval of real numbers in K° and a,b € K°, then

b =r
(/ (f(w)g(ff))dx> <V F(a)f(b)-9(a)g(b) = G(f(a)f(b),g(a)g(b))

< L(f(a)f(b), g(a)g(b))
< A(f(a)f(b), g(a)g(b)).
Proof. This follows from Theorem 5 by taking ¢ = 0. ]

Theorem 3.7. If f,g: K — (0,00) are differentiable log-¢-invex functions on the
interval of real numbers in K° and a,b € K°, then

a+e'?(b—a) 4
/ s (@)9(z)
4 atel®(b—a)
f (2a+ei¢(b7a)> g(x) exp f¢<‘2 - E ) — 2a+¢'?(b—a) +g (2a+ei¢(b7a))
/a—&-ei‘b(b—a) 2 f(%) ’ 2 2
>
- ' [ 2a+ei?(b—a)
a e\ =™ =2 atei®(b—a
Xf(.]?) eXp (2a+eid’(ba) ) » L — 2ot 2(b :
o(Peemt=)

Proof. Since f,g are differentiable log-¢-invex functions. So, we have

log f(x) — log f(y <f > nd
< 95()

x—y> Vg(z),9(y) € K,

dz

log g(x) — log g(y

which implies that

)L (B0
gf(y)2< W y>

That is,
f(@) > Fly)esp K 2 o y>} (3.1)
9(r) > gly) exp [<g;(;y))x ~0)]. (32)
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Multiplying on both sides of (3.1)) and (3.2)) by g(z) and f(x), respectively and then
adding the resultants, we have

2f(x)g(x)
> g(z)f(y)

con[(00-3) s (0]

By taking y = M in , we obtain that
2f(x)g(x)

i (n ! 2a+e’’ (b—a) i (n
Zg(a:)f(QaJre (b a)>exp <¢( ’.2 ) 2a + e (b a)>

y L —
2 2

2a + ¢ (b — a)
g <2a+61;(b7a)) = 2 ’

) d
f;) <2a+e'l¢(bfa)) *

2a+e’? (b— 2 2a-+e'? (b— 2a+e'? (b—
f(%(a)) g(z) exp < f(2a+ei¢(b7a)) o — e2( a)> +g( a 82( a))
2
7, (2a+ei‘;(b7a)> ”
2a+e' (b—
x f(z) exp < (20+ei¢(b_a)) r— 2 e2( a)>
9 2

]

Corollary 3.8. If f,g: K = [a,b] — (0,00) are differentiable log invex functions
on the interval of real numbers in K° and a,b € K° with a <b. Then

/ " (2 @)l
>/ab f(a—2|—b>g(m)exp[< ((Eb)), a—QH)>

g(a—;b)xf(x)eprg/((E))’ _a;rb> da

Proof. By taking ¢ = 0 in Theorem 7, we obtain the result. (]

Theorem 3.9. If f,g: K — (0,00) are ¢-convex functions on the interval of real
numbers in K° and a,b € K°, then

atei® (b—a) o e GO flao(a)
(/ (f(x)g(x))dm> _ (f(b)g(b)) TWa0I-T@a@ . (f(a)g(a)) Tt~ 7 67a® .

e
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Proof. Since f,g are ¢-convex functions, we have

a+el¢(b a) i
/ (F@)g(2)™ = el (@t da
_ eei“b(b—a) fol ln(f(a—&-teid’(b—a))g(a+tei¢’(b—a))dt
< €7 (b=a) [g m(((1=1)f(a)+tf (6))(1~t)g(a)+tg (D))

o€’ (b—a) [) (In(f(a)g(a)+(f(b)g(b)—f(a)g(a)))dt

— ¢ 0=a){In f(0)g (1)~ (FB)9(0) = F(@)g()) [y Fraysrarracrmsm Tty ¢}

e { In f0)g(5) = (F®)g(b) ~ 1 (@)g(a) ) Jo lreserras@ }
—¢ T (F)g ()~ f(a)g(a))(F(a)g(a)+t(F(0)g(b)—f(a)g(a )))]dt

e'®(b—a){(In £(5)g(b) ~ 1+ Frpyores2dioray (In £ (b)g(b) ~In f(a)g(a))) }

=€

f(@a(a) " (b—a)
_ [elnf(b)g(b)_uln( fféggggbg) F®)g()—f(a)g(a) ]

a)g(a e'?(b—a)
(f(b)g(b))m (f(a)g(a))m
B e
Hence
1
a+e’i¢(b7¢l) eiP(b—a) (f(b) (b))% (f( ) ( ))%
dx < g (Jla)gla .
( [ vt ) < :
O

Corollary 3.10. If f,g : K = [a,b] = (0,00) are convex functions on the interval
of real numbers in K° (the interior of K) and a,b € K°, then

( / b(f(x)g(w»df)

(F(B)g(b)) TP TG0 _ (f(a)g(a)) T@o= 130

€

1
b—a

<
Proof. Take ¢ = 0 in Theorem 9. (]

Theorem 3.11. If f,g : K — (0,00) are ¢-convex and log-¢-convex functions,
respectively on the interval of real numbers K° and a,b € K°, then

( /W”’(b—@( f(x)gwdm) T (o) (@) T Glgla),g(b)

e

(F(b) T 7 . (f(a) T3 L(g(a), g(b))

e

(f(6) T (f(a)) T A(g(a) 9(8)

e

<

<
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Proof. Let f,g be ¢-convex and log-¢-convex functions, respectively. Then

a+ei¢(b7a) ‘
/ (F(2)g(2))™® = o 7 mF@)g(a))da

_ eeiqb(bfa) fol ln(f(a+tei¢(bfa)).g(a+tei¢(b7a)))dt

< €' ¥ (b=a) [ (n((L=t)f(a)+tf(b).(9(a)' " (g(b))"))dt
— €' ?(b=a) [y (In((1=) f(a)+tf (b)) +In((g(a))' ~*(g(b))"))dt
— €% (b=a) [y (In((1=t)f(a)+tf (b)) +(1~t) In(g(a))+t In(g(b))))dt

— ¢ =) { [ (=) F(@)+£7 (0)))dt+ [ (1=t) In(g(a))+t In(g(b))) )t }

i In g(a)+1In g(b
¢ o=a){In fO)~(F®)~F(a) J§ srayrecram—pay di+ 152 )

1 1
o { In £(b) ;(Ef(b) - @) fy o5 }
e ~ GO Fa T o —fay 4 + n(g(a)-g(b))

Nl

_ oo b=a){(n F(0) =14+ 75y (1n £(5)—n £ (@) +In(g(a).9(8)) ? }

f(a) 7€ =)
_ |fln f(b)flJrln( ;((Z)) ) F®)—f(a) +ln(g(a).g(b))2‘|

e'?(b—a)

_ [<f<b>>f<bf“?<a> (f(a) T .G(g(a). 9(b))

€

Hence

a+e'®(b—a) CW(lTa)
( / (f(w)g(w))d’”>

(F(0) T 7 . (f(a)) T3 .G(g(a), g(b))

e

(F(6) T 7@ . (f(a) T&-T5 L(g(a), g(b))

e

()T . (f() T A(g(@), 9()

e

IN

<
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Corollary 3.12. Let f,g : K = [a,b] — (0,00) are convez and log convex functions,
respectively on the interval of real numbers in K° and a,b € K°, then

b
/ (F(@)g(a))™

(F(0)THT@ (£(a)) 7T G(g(a), g(b))

e
_ O (f(a)) T L(g(a), g(b))
o e
_ O . (f(a) T A(g(a), (b))
< c .
Proof. The result follows from Theorem 11, if we take ¢ = 0. O
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