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Abstract 

Probabilistic Seismic Hazard Analysis (PSHA) is not a new study field — indeed, it dates from the late 1960s. 

However, the original and introductory study paid scant attention to a crucial aspect, namely the 

estimation of the model parameters. Consequently, over the ensuing five decades, Parameter Estimation 

in Probabilistic Seismic Hazard Analysis (PE-PSHA) has not gained due recognition as an independent field 

of study. A review of the relevant body of literature indicates that PE-PSHA is not yet regarded as an entity, 

a coherent body of literature, or a study field. This study aims to introduce PE-PSHA as a distinct field of 

study. 

In 1968, Cornell introduced what is known today as Probabilistic Seismic Hazard Analysis (PSHA). Although 

a landmark study, it is peculiar and even astonishing that Cornell (1968) simply ignored the crucial aspect 

of parameter estimation of models. This aspect and the implications of ignoring the importance of 

parameter estimation are discussed in detail in this thesis.  

Seismicity modelling in general and the classic Cornell–McGuire procedure are introduced, which provides 

the platform for the introduction of the parameters typically associated with it, usually referred to as 

seismicity parameters. 

Subsequently, each parameter is discussed in detail, clarifying the development of estimation techniques, 

as well as the problem areas that could be identified. In some instances, solutions are put forward, either 

as own research by the author or gleaned from the literature.  

A discussion is presented on the magnitude of completeness (𝑚𝑐) of seismic catalogues, along with a 

critical analysis of the estimation techniques currently employed. Concerns about some of these methods 

are discussed comprehensively and clarified by detailed argument.  

The two principal model parameters are discussed, namely the Gutenberg–Richter 𝑏-value and the rate 

of seismicity (RoS). A review of the estimation techniques of these parameters is presented, as well as the 

problems encountered. This review also serves as an overview of the historical development of the 

estimation of the two parameters. Various solutions have been put forward to some of the problems 

encountered; however, these solutions are not being employed. Subsequently, some estimators for the 

𝑏-value for incomplete catalogues are compared. 

The maximum possible earthquake magnitude for a given area (𝑚𝑚𝑎𝑥) from the seismic catalogue data is 

discussed. A few procedures (or estimators) have been proposed, although only by a few researchers. The 

estimators are discussed in some detail and are analysed critically, among which are methods newly 

investigated by the author. 

The concept of seismic zones is discussed, as, although seismic zones are not parameters, the delineation 

of seismic sources is a modelling procedure that requires estimation from the catalogue data similar to 

estimating parameters (this can be regarded as a generalised part of parameter estimation). The practice 

of seismic zoning based largely on expert opinion is analysed critically, and a number of alternatives are 

discussed. 
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In the conclusion to the study, the need for PE-PSHA to be regarded as an entity, or separate field of 

study, is highlighted. In addition, the discussed problems and solutions are reviewed, and 

recommendations are made. Finally, possible future research areas are pointed out.  
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i. Summary 

Probabilistic Seismic Hazard Analysis (PSHA) is not a new study field — indeed, it dates from the late 1960s. 

However, the original and introductory study paid scant attention to a crucial aspect, namely the 

estimation of the model parameters. Consequently, over the ensuing five decades, Parameter Estimation 

in Probabilistic Seismic Hazard Analysis (PE-PSHA) has not gained due recognition as an independent field 

of study. A review of the relevant body of literature indicates that although numerous studies deal with 

the many aspects of PE-PSHA, a lack of suitable keywords, among other problems, hampers retrieval of 

the relevant information. This is indicative of the fact that PE-PSHA is not regarded yet as an entity, a 

coherent body of literature, or a distinct study field. Consequently, the problems related to parameter 

estimation remain obscure and, in some instances, somewhat vague. Considerable skill and determination 

are, therefore, required from researchers attempting to become acquainted with the field, and even 

experts might find it difficult to trace relevant information. Conceivably, researchers could even lose scope 

of the field they are making contributions to. 

This study aims to introduce PE-PSHA as a distinct field of study. The thesis is formatted unconventionally, 

in typical monograph style. The subject is set out systematically throughout the text, and the associated 

problems and solutions are presented as part of the text flow without specific emphasis. However, this is 

not a problem, as the novel research contributions of the author are listed in the preliminary section (iii). 

In 1968, Cornell introduced what is known today as Probabilistic Seismic Hazard Analysis. Although a 

landmark study, it is peculiar and even astonishing that Cornell (1968) simply ignored the crucial aspect 

of parameter estimation of models. This aspect and the implications of ignoring the importance of 

parameter estimation are discussed in detail in this thesis. In Chapter 1, the following are introduced, 

namely, seismicity modelling in general, the Cornell-McGuire procedure, and the parameters typically 

associated with it. Seismic catalogues are discussed briefly, as these are the data sources from which the 

parameters have to be estimated. Subsequently, parameter estimation and, finally, the problem, or 

research frontier, are discussed. 

In subsequent chapters, each parameter is discussed in detail, clarifying the development of estimation 

techniques, as well as the problem areas that could be identified. In some instances, solutions are put 

forward, either as own research by the author or gleaned from the literature.  

In Chapter 2, a discussion is presented on the magnitude of completeness of seismic catalogues, along 

with critical analysis of the estimation methods and techniques currently employed to estimate it. 

Concerns about some of these methods are discussed comprehensively and clarified by detailed 

argument.  

The two principal model parameters, the Gutenberg–Richter 𝑏-value and the RoS, are discussed in  

Chapter 3. This chapter serves as an overview of the historical development of the estimation of the 𝑏-

value and related problem areas, which have been reviewed and deliberated in several studies, although 

the solutions proposed are used rarely. In addition, an introduction is presented to the concept of time-

varying RoS, which is crucial to PSHA but difficult to implement. Again, various solutions have been put 
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forward but, unfortunately, are not being used. Finally, some estimators for the 𝑏-value for incomplete 

catalogues are compared. 

In Chapter 4, estimation of the maximum possible earthquake magnitude for a given area (𝑚𝑚𝑎𝑥) from 

the seismic catalogue data is discussed. A few procedures (or estimators) have been proposed, albeit only 

by a few researchers. The estimators are discussed in some detail and analysed critically. Among these 

are methods newly investigated by the author. In Appendices I and II, as related material to this text, links 

are drawn between certain estimators, and the problem of the divergence of the Tate–Pisarenko 

estimator is addressed, along with proof of the asymptotic equivalence of Cooke’s estimator and the Tate–

Pisarenko estimator. 

The concept of seismic zones is discussed in Chapter 5. This is not parameter estimation per se, but, similar 

to parameters, the delineation of seismic sources is a modelling procedure that requires estimation from 

the catalogue data. The practice of seismic zoning based largely on expert opinion is analysed critically, 

and a number of alternatives are discussed. 

In Chapter 6, PSHA is discussed in general, from a wide perspective, i.e. beyond the Cornell–McGuire 

procedure. The reason for this discussion is that parameter estimation and source delineation can differ 

among the various approaches. 

The conclusion to this work is presented in Chapter 7, Chapter 8 provides a final summary and conclusion, 

and the possibilities for further research are discussed in Chapter 9. 

 

ii. Research Statement 

Seismic Hazard Assessment, by definition, is the key to preventing loss of life, destruction of infrastructure, 

and economic losses caused by seismic activity. Probabilistic Seismic Hazard Analysis is currently the 

preferred method to conduct quantified, precise seismic hazard assessments. Therefore, the importance 

of properly carrying out PSHA is clear and can hardly be exaggerated. Yet, the numerous problems and 

gaps still existing in parameter estimation in PSHA appear to indicate that this study field is still in its 

infancy. This is an underappreciated fact, as the original work, i.e. the landmark study by Cornell (1968), 

did not even consider parameter estimation as part of the analysis — or, at least, that is the general 

impression held by practitioners. Cornell implicitly wrote only about the last part of the analysis, which 

could be conducted by engineers after the parameter values had been provided to them by seismologists, 

i.e. this implies that parameter estimation is outsourced. Today, complete hazard analysis, including 

parameter estimation, is typically carried out by a single team; however, the importance of parameter 

estimation is still being neglected and values are accepted and used with the only proviso being that they 

appear reasonable. Nevertheless, several studies have found that the outcome of a PSHA could be 

sensitive, or even extremely sensitive, to variations in parameter values (e.g. Barani et al., 2007; 

Rabinowitz and Steinberg, 1991; Rabinowitz et al., 1998; Molkenthin et al., 2015; Molkenthin et al., 2017; 
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Rohmer et al., 2014; Cramer et al., 1996; Joshi and Sharma, 2008; Atkinson and Charlwood, 1983; Bender 

and Perkins, 1993).  

Accordingly, it is essential to obtain a wider perspective on the current state of parameter estimation 

practice and procedures and, specifically, to identify, as clearly as possible, the different strengths and 

weaknesses, in terms of precision and implementability, of the methods currently in use, identify the gaps 

and problems that remain in the study field and, most important, find viable methods and solutions to fill 

the gaps and solve the problems. 

 

iii. Research Contribution 

The author conducted a critical evaluation of the methods employed to estimate the level of 

completeness (LoC). In addition to presenting a review of such methods, the author has discovered, what 

appears to be, fundamental problems related to the methods of Mignan (2012), Mignan et al. (2011), the 

Maximum Curvature Method (MAXC), and the Median-Based Analysis of Segment Slope (MBASS). This is 

a matter of consequence, as deficiencies could detrimentally affect the outcome of hazard analysis. The 

analysis and resulting considerations of the author are based on concise mathematical and logical 

argument, i.e. rigorous scientific reasoning, implying that these are more than simply personal opinion.  

The author shows that the maximum likelihood estimator of the 𝑏-value and seismicity, as presented by 

Ordaz and Giraldo (2018), is a special case of the Kijko–Sellevoll method (Kijko and Sellevoll, 1989). This 

points to the practical applicability of the Kijko–Sellevoll method. 

The author conducted simulations to compare the performance of the Aki–Utsu method (Utsu, 1965; Aki, 

1965), the extended Aki–Utsu method (Kijko and Smit, 2012), and two additional methods presented by 

Kijko (2017) to estimate the 𝑏-value. The simulations were conducted by coding in MATLAB (MathWorks, 

USA). 

The author conducted a critical evaluation and comparison of the application of statistical estimation 

methods to estimate 𝑚𝑚𝑎𝑥  that, to the best of the author's knowledge, although proposed and published 

in pure statistics, has not been implemented. These are the Generalized Least Squares Method, the 

Method of Moments, the method by Fraga Alves and Neves (2014), and the maximum likelihood estimate 

(MLE) for the Extreme Value Theory (EVT). The current study is intended to complement the study by Kijko 

and Singh (2011), adding additional methods. In the course of this study, MATLAB coding was done by the 

author, which has been made available as an updated version of the software application provided by 

Kijko and Singh (2011).  

There is no agreed method for estimation, and no specific grounds could be discerned to use any specific 

method among those already described in the literature and those presented by the author. However, as 

is discussed later in this work, the advantages and disadvantages of the different methods are clear and 
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certain methods may be more applicable depending on the situation, such as, among others, the data, 

and the frequency-magnitude recurrence law (FMRL). 

It has become apparent that the solution to the Tate–Pisarenko method sometimes diverges, and the 

current author has derived convergence criteria for the iterated Tate–Pisarenko method described by 

Kijko and Singh (2011).  

The author noted a connection between Cooke’s method and the EVT. Cooke’s method precedes the full 

development and recognition of the EVT as a distinct field. This connection between Cooke’s method and 

the EVT links the Kijko–Sellevoll estimator to the EVT and is an aspect for further investigation. 

Additionally, the contribution by Vermeulen and Kijko (2017) in a study establishing this link shows 

mathematically the asymptotic equivalence between Cooke’s and the Tate–Pisarenko estimators. 

Accordingly, this points to the Kijko–Sellevoll method not only linking to the Tate–Pisarenko method but 

also to the EVT, which explains why the performance of these methods can be expected to be similar. 

 

iv.    Notation and Symbols 

𝑃[𝐴]   –  probability of the event (or case) 𝐴 

𝑚𝑚𝑎𝑥   – maximum possible magnitude 

𝑚𝑐  or 𝑚𝑚𝑖𝑛 – magnitude of completeness 

𝜆            –   rate of seismicity 

 

v. Abbreviations 

CDF:  Cumulative Distribution Function 

ETAS:  Epidemic Type Aftershock Sequence 

EVT:  Extreme Value Theory  

FMD:   Frequency-Magnitude Distribution 

FMRL:   Frequency-Magnitude Recurrence Law 

FMSL:  Frequency-Magnitude Scaling Law  

GMM:   Ground Motion Model 
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GMPE:    Ground Motion Prediction Equation 

GLS:   Generalised Least Squares  

GPD:  Generalized Pareto Distribution  

GR:    Gutenberg–Richter 

LoC:   Level of Completeness 

MAXC:   Maximum Curvature 

MBASS:   Median-Based Analysis of Segment Slope 

MLE:   Maximum Likelihood Estimate  

MSE:   Mean Square Error 

PDF:   Probability Density Function 

PE-PSHA:   Parameter Estimation for Probabilistic Seismic Hazard Analysis 

PH procedure:  Parametric-Historic Procedure 

PSHA:   Probabilistic Seismic Hazard Analysis 

RoS:   Rate of Seismicity   
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1. Introduction  

The objective of this study is to carefully explore the study field of parameter estimation in Probabilistic 

Seismic Hazard Analysis (PSHA) in relation to its history, current state, and current problems. Furthermore, 

solutions will be presented to several of the problems that were noted, and recommendations will be 

suggested about others. An account of the development of the estimation of individual parameters is 

presented as the history of this field to date. In some instances, where problems were detected, an 

analysis is presented in the form of a logical or mathematical argument and, in other instances, as a 

comparative study of contemporary methods. In some instances, the solutions presented to the problems 

that were detected reflect the contribution of the current author. In addition, discussions are conducted 

on the methods to estimate the magnitude of completeness, Gutenberg–Richter 𝑏-value, and seismic 

activity rate, as well as the maximum possible magnitude for a region.  

In particular, a complication is pointed out related to some of the methods employed to estimate the 

magnitude of completeness, and rigorous mathematics and logic are employed to prove that such 

weaknesses are, indeed, of concern. A quite recent closed-form solution for the simultaneous maximum 

likelihood estimation of the 𝑏-value and the seismic activity rate is shown to be equivalent to a special 

case of the Kijko–Sellevoll procedure. A comparison of several recent methods to estimate the 𝑏-value 

shows that these lead to quite similar results, although differences could possibly occur in extreme cases. 

Various methods for estimating 𝑚𝑚𝑎𝑥 are discussed, including those deriving from the current research. 

A connection is drawn between Cooke’s (1979, 1980) estimator and the EVT. The theory of the Kijko–

Sellevoll estimator developed by Haraala and Orosco (2016, 2018a, 2018b) is elaborated on in detail and 

in terms that seismologists can relate to. Finally, Probabilistic Seismic Hazard Analysis is discussed in 

broader terms, considering procedures other than that of Cornell–McGuire. In general practice, the classic 

Cornell–McGuire procedure is conducted after estimation of the parameters but, in other methodologies, 

such as the Parametric-historic (P-H) procedure, parameter estimation forms an integral part of and 

cannot be separated from the seismic hazard analysis procedure. It is important to note here that, 

whichever methodology is used, parameter estimation should be considered a critical element of hazard 

analysis. In addition, interestingly, the Kijko–Sellevoll procedure, which is relevant to the current research, 

is an integral part of the P-H procedure for PSHA. 

 

1.1. Probabilistic Seismic Hazard Analysis and the Cornell–McGuire 

Procedure 

Earthquakes constitute some of the most destructive natural forces known. The main cause of loss and 

fatality is the extensive damage to buildings and other infrastructure because of the ground motion at the 

specific locality. Undeniably, the adage ''earthquakes don't kill people, buildings do" is valid. It is important 

to understand this concept. An earthquake releasing a considerable amount of energy produces 

substantial ground motion in a given region. However, a comparatively small earthquake can also produce 

considerable ground motion in the immediate vicinity. Obviously, in either instance, no loss or fatality 
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might occur in a mostly unpopulated region. This implies that even severe shaking will not cause damage 

or loss if there are no humans or infrastructure in the vicinity. In addition, earthquakes usually do not have 

much effect on ecosystems and, therefore, specifically in sparsely populated areas, the slight natural 

damage does not affect the inhabitants much. Furthermore, only minor damage will be incurred in a 

region where structures and infrastructure are designed to resist ground motion that does not exceed a 

certain level. Such design is usually based on analyses of the level of ground motion that should be 

prepared for. Assessing the probability that a certain level of ground motion will be exceeded (referred to 

as the probability of exceedance) is vital in engineering design and disaster management, and to the 

insurance industry. Such an assessment is known as Probabilistic Seismic Hazard Analysis. Further, the 

calculated hazard is used to calculate the design parameters required for engineering structures to 

withstand such hazard. Or, the risk of the hazard combined with the structures exposed to the hazard 

could be calculated as the probability of a given loss being exceeded. Note that the term hazard is used 

here specifically to refer to the natural phenomenon of ground shaking unrelated to the presence of any 

humans or infrastructure that is put at risk because of the potential hazard. Risk refers to the probability 

that the existing population and infrastructure would sustain damage because of the potential hazard. 

Further, in hazard analysis, the term hazard is used interchangeably with the probability (or potential) of 

such hazard occurring.  

The classic study by Cornell (1968) (hereinafter referred to as Cor68) on, what he referred to as 

engineering seismic risk analysis, marked the start of what is known today as PSHA. Practitioners 

distinguish between seismic hazard, which refers to the probability of ground motion occurring and 

ground motion levels being exceeded, and seismic risk, which refers to the probability of a specific number 

of casualties, the extent of damage, or amount of loss in terms of value occurring or being exceeded. This 

implies that hazard relates specifically to the cause of the possible negative effect, whereas risk relates to 

the negative effect itself (Kijko, 2011). The aim of PSHA is to provide an estimate of the probability of 

recurrence of a given ground motion parameter at a site of interest, which can be divided into five main 

components. These are (1) the identification, or estimative identification, of the spatial distribution of 

areas (or crustal volumes) of the crust of the Earth surrounding the area that is capable of producing 

earthquakes. Such areas are modelled typically as seismic zones or areas of equal seismic potential. (2) 

The average rate at which earthquake events occur at potential source spaces (or seismic zones in the 

typical instance) in time (referred to as the rate of seismicity [RoS]) of a spatial element or source zone. 

(3) The relative frequency with which earthquakes of various sizes occur, which has to be determined 

quantitatively. It is known that larger earthquakes occur less frequently than smaller earthquakes do 

(referred to as a frequency-magnitude scaling law [FMSL]). A value called the Gutenberg–Richter 𝑏-value, 

which is discussed later, gives an effective quantitative description of the FMSL. (4) The manner in which 

seismic waves attenuate with distance from the earthquake source for a given type of source mechanism. 

Attenuation with distance is quite complex and depends on the characteristics of the earthquake source 

mechanism, as well as the mechanical properties of the crustal volume through which the seismic waves 

travel. Such attenuation is modelled by what is termed ground motion prediction equations (GMPEs), also 

known as the ground motion model (GMM). For the sake of completeness, it is worth mentioning that the 

local amplification effect of the underlying geologic material is incorporated in a GMPE in a final term in 

the equation. (5) The estimation of uncertainty and variation in the GMPE models. The fact that emphasis 
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is placed on the estimation of the uncertainty and variation in GMPE models, and not on the quantities 

determined in the previous component, is arbitrary and a matter of controversy. Undeniably, uncertainty 

in the estimation of all quantities is of primary importance.  

The RoS and the relation describing the FMSL at each source are a function of time that is not necessarily 

constant. In Cor68 and subsequent developments of the procedures for PSHA, the assumption was made 

that seismicity and the FMSL remained constant with time. In some instances, this is justified, but it must 

be recognised that a method is often developed from the simplest form, only to be refined later. 

 

1.2. Rate of Seismicity (𝝀) and the Frequency-Magnitude Scaling Law 

The RoS and FMSL are related closely and are introduced here in more detail. The RoS is merely the 

average number of earthquakes per unit time. Assuming that, at a probabilistic level, the RoS remains 

constant in time for a given area or spatial volume element, the modelling of earthquake occurrence is 

simply a constant, which can be referred to as 𝜆. It appears as if it could be modelled fairly accurately by 

this seemingly trivial process and, indeed, in many instances, this can be done. Nevertheless, such a 

constant-rate random-event-producing phenomenon has intriguing and complex but useful properties. It 

is referred to as a Poisson point process. As regards the RoS (𝜆0) for earthquakes above a given reference 

magnitude level (𝑚0) (also referred to as the rate of exceedance of 𝑚0), to describe such a Poisson 

process in time, it is customary to use the probability that an earthquake exceeding 𝑚0 would occur at 

least once in a time interval, which is given by 

 
𝑃[𝑚 ≥ 𝑚0] = 1 − exp (𝜆0𝑡). 

 
(1.1)  

This is considered the simplest way to capture the process and can be derived logically through 

fundamental principles.  

The FMSL is assumed by Cor68 (and most currently practising seismologists) to follow the Gutenberg–

Richter (GR) FMSL (alternately referred to as the GR law or the GR relation), defined by the relation 

(Gutenberg and Richter, 1944): 

  
log (𝑛) = 𝑎 − 𝑏𝑚, 

 
(1.2) 

where 𝑛 is the number of earthquakes exceeding a magnitude 𝑚 within a range [𝑚0, 𝑚𝑚𝑎𝑥] and within a 

given time interval, 𝑏 is a scaling parameter (commonly referred to as the 𝑏-value), and 𝑎 is the logarithm 

of the number of events greater than or equal to the reference magnitude 𝑚0. Equation (1.2) was first 

established empirically by Ishimoto and Iida (1939) and popularised by Gutenberg and Richter (1944). The 

𝑏-value is a crucial parameter and captures much of the information on the FMSL. Cor68, citing Isacks and 
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Oliver (1964), noted that the 𝑏-value typically varies between 0.65 and 1.0; however, as mentioned 

already, Cor68 does not refer to the issue of estimating the parameter. In the early years, seismologists 

were satisfied to consider 𝑏 = 1 (Cor68). The equation (1.2) can be written conveniently as the cumulative 

probability distribution of earthquake sizes (Page, 1968) 

 

𝐹(𝑚) =  

{
 

 
       0,                           𝑚 < 𝑚𝑐

1 − exp [−𝛽(𝑚 −𝑚𝑐)]

1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
,   𝑚𝑐 ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥  

            1,                            𝑚 > 𝑚𝑚𝑎𝑥

, 

 

(1.3) 

here 𝛽 = 𝑏ln(10). The values of 𝑏 and 𝛽 will be used interchangeably, and equation (1.3) does not appear 

to be simpler, but it is a proper description of the FMSL in probabilistic terms. Parameter 𝑎 appears to 

have been lost in the process; however, this is not the case but is actually the point where the link between 

the RoS and FMSL becomes apparent. Careful consideration reveals that 𝑎 is merely the theoretical RoS 

value for a cut-off magnitude of 0. The GR law implicitly incorporates the time factor, which is dropped in 

this probabilistic description in the formulation (1.3). 

As reflected in equation (1.3), the GR FMSL does not hold indefinitely up to arbitrarily large magnitude 

earthquakes. At some point, there has to be a cut-off magnitude, or a maximum possible regional 

magnitude (𝑚𝑚𝑎𝑥), which serves as an upper bound to the FMSL. 

Given the RoS 𝜆𝑚𝑖𝑛 (i.e. the rate of exceedance of 𝑚𝑚𝑖𝑛), the rate of exceedance (RoE) 𝜆𝑚 can be obtained 

of any given magnitude 𝑚 by the relation: 

 
𝜆𝑚 = 𝜆𝑚𝑖𝑛𝑃[𝑀 ≥ 𝑚] = 𝜆𝑚𝑖𝑛[1 − 𝐹(𝑚)]. 

 
(1.4) 

Note the elegance of this relation between the FMSL and RoS/RoE. In addition to being elegant and simple, 

it is immensely important. In calculating hazard, another RoE value that is associated with ground motion 

is of interest here and relates to the RoS. Given the GMPE, the rate at which the logarithm of a ground 

motion parameter 𝑦, e.g. peak ground acceleration (pga), will be exceeded is calculated by employing the 

cumulative probability distribution of the logarithm of the pga, 𝐹(𝑦) , and is given by 

 
𝜆𝑝𝑔𝑎(𝑦) = 𝜆𝑚𝑖𝑛𝑃[𝑌 ≥ 𝑦] = 𝜆𝑚𝑖𝑛[1 − 𝐹(𝑦)], 

 
(1.5) 

where 𝜆𝑝𝑔𝑎 refers to the RoE of a log(pga). Other ground motion parameters frequently used to describe 

ground motion are peak ground velocity, peak ground displacement, spectral acceleration, and the 

Modified Mercalli intensity value. Note that the Modified Mercalli intensity behaves like the logarithm of 

other ground motion parameters for sound physical reasons, but these reasons are beyond the scope of 

interest of this work. In addition to the Modified Mercalli intensity, the logarithm of ground motion 
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parameters is used because attenuation with distance and other parameters of the GMPE simplify from 

an exponential equation to an equation, where each parameter is captured in a summand term. Assuming 

that the rupture mechanism of the earthquake source and local site conditions are known and that the 

GMPE is a linear function of magnitude (𝑚), the 𝐹(𝑦) can be obtained by a change of variables (Cor68). 

Consequently, the average annual RoE of a level 𝑦 of some ground motion parameter takes the form 

(McGuire, 2008) 

 

𝜆𝑦 = 𝜆𝑚𝑖𝑛 ∫ ∫ 𝑃[𝑌 ≤ 𝑦|𝑟,𝑚]𝑓𝑅|𝑀(𝑟|𝑚)𝑓𝑀(𝑚)𝑑𝑟𝑑𝑚

𝑅|𝑀

𝑚𝑚𝑎𝑥

𝑚𝑚𝑖𝑛

. 

 

(1.6) 

Probability density functions (PDFs) involving 𝑟 (space) as a random variable constitute a description of 

the spatial model of seismicity, which will be discussed presently. Note the assumption that one FMSL 

holds for the entire area. If not, 𝑓𝑀(𝑚) would be an inseparable function of 𝑟, the order of integration 

would change, and would take place over functions of the form 𝑓𝑀|𝑅(𝑚|𝑟)𝑓𝑅(𝑟). As this can become quite 

complicated, it is done only in refined models and is often done by numerical methods rather than 

analytically. When multiple sources can be identified, (1.6) becomes 

 

𝜆𝑦 =∑𝜆𝑦,𝑖
𝑖

=∑𝜆𝑚𝑖𝑛,𝑖 ∫ ∫ 𝑃[𝑌 ≤ 𝑦|𝑟,𝑚]𝑓(𝑚|𝑟)𝑓𝑖(𝑟)𝑑𝑟𝑑𝑚

 𝑟𝑖,𝑚𝑎𝑥

𝑟𝑖,𝑚𝑖𝑛

𝑚𝑚𝑎𝑥

𝑚𝑚𝑖𝑛𝑖

, 

 

(1.7) 

where 𝜆𝑚𝑖𝑛,𝑖  is the RoS of the 𝑖𝑡ℎ source, with the spatial distribution 𝑓𝑖(𝑟) , and bounds 𝑟𝑖,𝑚𝑖𝑛 and 𝑟𝑖,𝑚𝑎𝑥. 

Equation (1.7) is the most common formulation of PSHA, and its evaluation is known as the Cornell–

McGuire procedure (Kijko, 2011). Note that 𝜆𝑦 is the central trend of a probability distribution, as the 

variability of the GMPE, 𝜀, has to be taken into account. That is, 𝑃[𝑌 ≤ 𝑦|𝑟,𝑚] is assumed to be a 

complementary cumulative normal distribution. It has become the practice to finally integrate over the 

uncertainty parameter up to a certain level to give a single probability value. However, this practice has 

been criticised and an alternative (extreme) value distribution has been proposed (Pavlenko, 2015). The 

reason for the extreme value distribution is probably that recording of the peak (maximum value) of 

ground acceleration is equivalent to recording extreme values. Moreover, as Pavlenko (2015) states, the 

Weibull distribution allows for more realistic modelling of the extremes of peak ground motion values, 

which are bounded according to sound theory in physics of ground motion and are also clearly apparent 

in the data in the cases that were investigated. 
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1.3. Seismic Catalogues 

Seismic catalogues are primarily records of earthquakes in time and space, along with any additional 

information available on the events, including, among others, the source mechanism and faulting style. 

Earthquakes have been recorded since ancient times, at first orally and, subsequently, by other means as 

civilisation progressed. As science advanced, the interest in earthquakes increased, with increasingly more 

events being recorded, albeit, for a long time, only the largest events. Along with the inception and 

progress of seismology as a study field, the systematic recording of earthquakes was, and is, being done 

at an ever-increasing scale. The development of more refined methods and superior technology have 

facilitated the establishment of denser seismic recording networks, enabling improved accuracy and the 

detection of much smaller earthquakes. Figure 1 illustrates schematically a conceptualisation of a typical 

earthquake catalogue such as described here. 

Over time, the record of earthquakes has become more complete and more reliable. Prehistoric events 

(or palaeoearthquakes) are events that precede written records and are inferred, albeit with a large 

margin of error, from geologic evidence on fault lines and effects, such as near-source deformation. Only 

events of an extremely large magnitude can be inferred in this way and the resulting record is quite 

incomplete. Along with the population growth at relevant locations, the records on the experiences and 

effects of earthquakes have increased. From these records, the intensities and magnitudes of the events 

can be deduced, with a relatively large margin of error. Only the largest and most devastating earthquakes 

were recorded in this fashion. However, with the inception of modern technology and instruments 

(seismometers), scientists started to record and catalogue earthquakes systematically in such a fashion 

that, in a given area, all earthquakes could be recorded above a given magnitude level. With time, the 

sophistication and sensitivity of seismometers, the extent of the seismometer networks, and the 

sophistication of mathematical processing and inversion methods have improved. Because of these 

advances, the level above which all earthquakes are recorded completely (the magnitude level of 

completeness) has dropped and the margin of error on magnitude estimates has been reduced 

considerably. From this viewpoint, the level of completeness (LoC) is a monotonically decreasing function 

of time (Kijko et al., 2016). At times, for instance, during World War II, seismic stations were not in 

operation, resulting in a time-gap in the catalogues. Accordingly, earthquake catalogues are modelled as 

consisting of three parts, namely, prehistoric, historical (incomplete), and instrumental. The instrumental 

part, in turn, is subdivided into subparts with different magnitude levels of completeness and, possibly, 

time-gaps owing to events, such as, among others, natural disasters, war, and political unrest that damage 

infrastructure. It is easy to use only the instrumental part of the catalogue, discarding the rest of the data; 

however, this is not advisable. Several methods that use the full extent of the catalogue do exist and are 

discussed in subsequent chapters, along with a discussion on the estimation of seismicity parameters. 



 

22 
 

 

Figure 1. Conceptualisation of a typical earthquake catalogue. The first part consists only of extreme 

events recorded in a descriptive fashion. The extreme part may constitute part of or the entire historical 

catalogue. The second part, typically including the entire instrumental part of the catalogue and, possibly, 

the later part of the historical catalogue, comprise different parts, with the levels of completeness 

𝑚𝑚𝑖𝑛1,𝑚𝑚𝑖𝑛2, … decreasing as time progresses. Time gaps may exist because of sociopolitical factors that 

caused a lack of records of seismic activity. The historical part of the catalogue typically has substantial 

uncertainty attached to its recorded magnitude values and is much more difficult to determine (or 

estimate) than the instrumental part of the catalogue. With time, the uncertainty decreases in both the 

historical and the instrumental parts of the catalogue. (After Kijko and Sellevoll, 1992).  

 

1.4. Introduction to Parameter Estimation in PSHA 

When the logarithm of the number of earthquakes recorded in a given magnitude interval is plotted 

against the magnitude value, the decreasing trend of the number of observed earthquakes with increasing 

magnitude typically defines a straight line (GR FMSL). It should be noted that this is the case when a 

maximum magnitude value is not imposed, i.e. 𝑚𝑚𝑎𝑥 = ∞. Such a plot is referred to as a Gutenberg–

Richter plot. The slope of this value is the value 𝑏 in equation (1.2). It should be noted that, strictly, a 

straight line results only when a maximum magnitude value is not imposed, i.e. 𝑚𝑚𝑎𝑥 = ∞. However, for 

lower magnitudes, the straight line model is a good approximation. When normalised for time, equation 

(1.2) becomes 

 
log (𝜆𝑚) = 𝑎 − 𝑏𝑚. 

 
(1.8) 
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The parameter 𝑎 in this instance would correspond to the seismicity of magnitude 0. The 𝑏-value 

corresponds to the slope of the line. It would be physically impossible for earthquakes of arbitrarily large 

size to occur. There must be a finite upper bound (or supremum; see Glossary) 𝑚𝑚𝑎𝑥. Accordingly, the 

straight line is observed on a specific interval [𝑚𝑐 ,𝑚𝑚𝑎𝑥]. 

 

 

Figure 2. Top: Typical Gutenberg–Richter plot. Bottom: Idealised example of a Gutenberg–Richter plot, 

with data loss below the magnitude level of completeness (LoC). 

 

Figure 2 shows a typical Gutenberg–Richter Frequency-Magnitude plot. The downward bend at the largest 

magnitudes is because of the finitude of the GR FMSL; in other words, the fact that earthquakes cannot 

take on magnitude values beyond a finite value 𝑚𝑚𝑎𝑥. Moreover, when real data are plotted, the line 

starts to curve below the LoC because of the loss of data, as in Figure 2. 

Employing the Cornell–McGuire procedure, PSHA appears relatively simple and, for engineers, this is 

probably the case. However, for the teams of seismologist and geologists, the Cornell–McGuire procedure 

is only the last step, as considerable prior effort is required to determine the parameters (𝛽, 𝜆0, and 𝑚𝑚𝑎𝑥, 
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as well as the GMPEs) to conduct the procedure. Determining these parameters requires meticulous and 

extensive analysis of the source zones by geologists and seismologists and advanced statistical analysis of 

seismic catalogues by statistical seismologists. The teams have to determine the extent of the source 

zones and the size and times of occurrence of palaeoearthquakes to supplement the catalogue data and 

the estimates of parameters derived from the data (e.g. Kramer, 1996; Wallace, 1981). Statistical analysis 

of catalogues is required when such catalogues contain ambiguous and uncertain data (e.g. Kijko and 

Sellevoll, 1992; Kijko et al., 2016; Leptokaropoulos et al., 2018).  

GMMs and the estimation of their parameters are beyond the scope of this work. Interestingly, large 

research teams have been working on refining GMPEs for different regions on a global scale, using 

empirical data, geologic and geophysical data, and physical simulations (Power et al., 2008). For 

comprehensive details on the topic of GMPEs, the reader is referred to the information available on the 

Pacific Earthquake Engineering Research Center web page (PEER, 2018). 

 

1.5. The Problem of Parameter Estimation 

As already mentioned, a concerted effort is required to determine the parameters 𝛽, 𝜆, and 𝑚𝑚𝑎𝑥. In 

addition, the LoC, 𝑚𝑐, has to be estimated for each complete sub-catalogue in the earthquake catalogue 

(which consists of the instrumental part and possibly some of the historical parts of the catalogue). 

Although not required as a parameter in the Cornell–McGuire procedure, the LoC must be determined to 

enable estimation of the rest of the parameters from earthquake catalogues. This is because in the 

methodologies customarily used, only the part of catalogues above the LoC can be used. As, per definition, 

loss of data occurs at lower magnitude values, Kijko and Smit (2017) devised a method to incorporate all 

the available data, dispensing with the need for the estimation of the LoC. However, this new research 

has yet to make its way into customary practice, and possible disadvantages of the method might still be 

uncovered. Determining the LoC for each sub-catalogue requires intensive analysis and, furthermore, is 

the subject of considerable research (e.g. Wiemer and Wyss, 2000; Woessner and Wiemer, 2005).  

As a parameter, the LoC, 𝑚𝑐 , for sub-catalogues in the complete part of the catalogue is of interest, as it 

indicates which part of the data can be used. As seen in Figure 3, 𝑚𝑐 is the point on a Gutenberg–Richter 

plot below which curvature starts. The most obvious way of dealing with the problem would be by 

graphically determining this point (''eyeball estimation''). However, because using data below the LoC for 

parameter estimation results in incorrect estimates and discarding the valuable data above the LoC is 

undesirable, several methods have been developed in attempts to estimate the LoC more accurately (e.g. 

Wiemer and Wyss, 2000; Woessner and Wiemer, 2005; Amorèse, 2007).  

Determining the most convenient subdivision of the complete part of the catalogue presents another 

problem, namely, if data from a part with a lower LoC are allocated to a part with a higher LoC, the data 

that could have been used are discarded because of the higher LoC. Although little has been published on 

this topic, there are notable studies by Stepp (1972) and Tinti and Mulgaria (1985). 
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As regards the first parameter of direct interest, an optimal estimate of the value of 𝛽 is easy in the 

simplest case and relatively simple for a single complete catalogue of superior quality. If the range 

[𝑚𝑐 , 𝑚𝑚𝑎𝑥] is relatively large (in practice this has to be only a few orders of magnitude), 𝑚𝑚𝑎𝑥 can be 

assumed to be at infinity. Accordingly, the MLE of 𝛽 is given by the simple equation (Aki, 1965) 

 

𝛽 =
1

𝑚̅ −𝑚𝑐
. 

 

(1.9) 

Taking 𝑚𝑚𝑎𝑥 into account, the MLE of 𝛽 is (Page, 1968) 

 
1

𝛽
= 𝑚̅ − 𝑚𝑚𝑖𝑛 +

(𝑚𝑚𝑎𝑥 −𝑚𝑐) exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]

1 − exp[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
. 

 

(1.10) 

In addition, the 𝛽 value is often estimated by a linear least squares regression on the Gutenberg–Richter 

plot for single complete catalogues (e.g. Bender, 1983; Guttorp, 1987). However, estimating 𝛽 is not 

nearly as simple when this has to be done from the historical and complete subparts of the catalogue. 

Estimating the RoS, 𝜆𝑚𝑖𝑛, is linked closely with the parameter 𝛽. The MLE for a single complete catalogue 

that contains 𝑛 observations and spans a time interval 𝑡 is  

 

𝜆𝑚𝑖𝑛 =
𝑛

𝑡
. 

 
(1.11) 

Again, this is rather simple. The task is more complex, however, as, for different sub-catalogues with 

different LoCs, 𝑖𝑡ℎ sub-catalogue, the RoS 𝜆𝑚𝑖𝑛,𝑖  will be estimated for magnitudes above the LoC 𝑚𝑚𝑖𝑛,𝑖 

of the sub-catalogue, as 𝜆0 has to be estimated for a lower bound, which serves as a general lower bound 

in the analysis of the catalogue, 𝑚0. It is a vital aspect of the statistical analysis to determine 𝜆0 from the 

complete sub-catalogues and, if possible, the historical part of the catalogue. The estimation of 𝜆 in the 

case of incomplete catalogues is discussed in Chapter 3. 

Estimating 𝑚𝑚𝑎𝑥 from the seismic catalogue, data is not a straightforward task, even in the instance of a 

simple complete catalogue, and the solutions to the problem are not quite intuitive either. Essentially, it 

is an attempt at estimating the maximum possible earthquake magnitude. Several studies have been 

published on this topic (Kijko, 2004; Kijko and Singh, 2011; Vermeulen and Kijko, 2017; Beirlant et al., 

2018; Pisarenko, 1991; Pisarenko et al., 1996; Pisarenko et al., 2014 and references therein; Pisarenko 

and Rodkin, 2017); however, some controversy remains. Some authors (e.g. Holshneider et al., 2011) 

consider the parameter ill defined, whereas others (e.g. Raschke, 2015; Kagan, 2002a and references 

therein; Kagan, 2002b) have specifically proposed modifications to the tail of the distribution (1.3) for the 

purpose of estimating 𝑚𝑚𝑎𝑥. Probably, the most practical way to deal with the problem is to obtain a 

single value (point estimate) with its variance and possibly higher moments or to obtain confidence 
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bounds for the value. The problem associated with using confidence bounds is that the level of confidence 

is arbitrary and confidence bounds are prone to misinterpretation in such unconventional applications. 

Engineers tend to turn to and simply accept expert opinion; however, in view of the controversy 

surrounding the subject, there is very often little reason to believe that expert opinion would be any more 

reliable than statistical estimates are. In cases where there is reason to value expert opinion on the same 

level, or more highly than data, Bayesian formalisms should be resorted to. 

Determining or modelling the spatial distribution of earthquake occurrence is the final problem in 

parameter estimation, or ''parameter estimation in a broader (generalised) sense''. It is another aspect of 

the problem of PSHA that Co68 did not consider, or had taken for granted, or as a given. Usually, it is 

modelled non-parametrically, as no specific functional model can be used as a generic law for the spatial 

distribution of seismicity. The RoS gives the relative values for the spatial distribution — a link of which 

the importance cannot be overemphasised. Actually, such a non-parametric, almost undefined model 

requires an infinite number of descriptive parameters, which are modelled empirically with an acceptably 

high resolution (i.e. a grid-wise approach). Spatial distribution is usually modelled by quite simple, rather 

trivial seismic zones based mainly on expert opinion. Typically, the RoS is assumed to be uniform over a 

seismic zone and the boundaries are arbitrary and geometrically simple. Further, assuming the FMSL as 

constant over a seismic zone is a gross oversimplification. In other words, the spatial model of seismicity 

involves variations both in the RoS and the FMSL. 

The ambiguity, disagreement, and unresolved problems related to parameter estimation point to a 

problematic gap in PSHA, i.e. reliable parameter estimation from seismic catalogues. Although numerous 

authors have made attempts at filling this gap, much remains to be done. This work attempts to address 

this problem to a large extent. 
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Figure 3. Illustration of a Gutenberg–Richter plot with 𝑚𝑐 emphasised. It is the point below which 

curvature ensues.   

 

2. Magnitude of Completeness 

A precise definition of the magnitude LoC is given by Rydelek and Sacks (1989), "[𝑚𝑐] is defined as the 

lowest magnitude at which 100% of the events in a space-time volume are detected " (in Amorèse, 2007). 

An earthquake catalogue will be incomplete below a specific LoC depending on the detection capabilities 

of the recording instrumentation, seismic noise, and decisions to only record magnitudes above a certain 

cut-off level, among other aspects (Mignan and Woessner, 2012). The result is that the frequency of the 

recorded events does not reflect the true frequency, i.e. it would be smaller. The simplest, most intuitive 

model for a frequency-magnitude relation affected by data loss would be a "true" magnitude distribution 

𝑓(𝑚), multiplied by a data loss probability function 𝑞(𝑚). The resulting frequency-magnitude distribution 

takes the form (Ringdal, 1975) 

 
𝑝(𝑚) = 𝑞(𝑚)𝑓(𝑚)/𝐶, 

 
(2.1) 
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where 𝐶 = ∫ 𝑞(𝑚)𝑓(𝑚)
∞

−∞
𝑑𝑚 is a normalising constant. Ringdal (1975) presents an elegant justification 

for 𝑞(𝑚) to be a cumulative Gaussian distribution function, namely 𝑞(𝑚)~erf(𝜇, 𝜎). Other authors who 

use this form for 𝑞(𝑚) in accordance with the work by Ringdal (1975) include Iwata (2012), Ogata and 

Katsura (1993), Alamilla et al. (2014), and Woessner and Wiemer (2005).  

Mignan (2012) introduced five different models for frequency-magnitude distribution (FMD), where 𝑞(𝑚) 

in equation (2.1) differs for each model. Model I is an angular-shaped function with                                            

𝑞(𝑚) = exp (𝜅(𝑚 −𝑚𝑐)) for magnitudes below 𝑚𝑐, and unity above 𝑚𝑐 (in which case it might be 

described more appropriately as wedge-shaped, although Mignan does not use this terminology). Mignan 

contends that Model I is the most elementary FMD that would result when no spatial and temporal 

variations are present. Model II (intermediary FMD) results from local space–time variations, with the 

FMD resulting from the superposition (or summation) of several angular FMDs with varying 𝑚𝑐, but with 

the variation being so small as not to result in multiple maxima. Model III (intermediary FMD with multiple 

maxima) is the result of the superposition of angular FMDs, with 𝑚𝑐 varying in such a way that the 

resulting FMD would have multiple maxima. Model IV (gradually curved FMD) is the result of the 

superposition of angular FMDs in such a way that it can be approximated by equation (2.1). It is viewed 

as the result of variations in 𝑚𝑐 because of the regional distribution of seismic networks. Model V 

(gradually curved FMD with multiple maxima) is the result of the superposition of several angular FMDs, 

leading to an FMD with several maxima, and it can be approximated by the superposition of several 

gradually curved FMDs. It is viewed as the result of large variations in 𝑚𝑐 because of the superposition of 

local and regional seismic networks. According to the literature, despite the proposal of the angular FMD 

for improved detection capability, the Gaussian model appears to prevail. Furthermore, the work by 

García-Hernández et al. (2019) appears to indicate that the Gaussian distribution is the most appropriate 

model in most instances. 

To compute the Gutenberg–Richter 𝑏-value from the commonly used Aki–Utsu estimator (Aki 1965, Utsu 

1965) and its variants (Molchan et al., 1970; Weichert, 1980; Rosenblueth and Ordaz, 1987; Kijko and 

Sellevoll, 1989, 1992; Kijko and Smit, 2012, 2017), it is necessary to use a part of the catalogue for which 

the GR relation holds. This would correspond to a so-called LoC (𝑚𝑐), above which 𝑞(𝑚) = 1. Data below 

𝑚𝑐 are usually discarded, as the estimation of the 𝑏-value will produce incorrect results if the Aki–Utsu 

method were used. However, when the data above 𝑀𝑐 are discarded, valuable information is lost. A 

correct estimate of mc is, therefore, of vital importance. Methods not requiring the parameter 𝑚𝑐 have 

been developed, such as those by Ogata and Katsura (1993), Alamilla et al. (2014), and Kijko and Smit 

(2017). However, these methods are not being used frequently yet. Accordingly, 𝑚𝑐 is a crucial parameter 

to be estimated. In the Gaussian data loss model, there is a chance of data loss for all magnitudes. The 

model of Woessner and Wiemer (2005) and the angular FMD have a well-defined value of 𝑚𝑐. Although 

Mignan and Chen (2016) argue against using the Gaussian model for data loss, a gradually curved FMD is 

usually observed, in contrast with the angular FMD they propose. 

The first estimator of 𝑚𝑐 was probably developed by Stepp in 1972 and is still in use today. This method 

is based on the assumption that earthquakes follow a Poissonian distribution in time. It utilises the fact 

that, for a stationary Poisson process, the standard deviation of the mean number of earthquakes is 
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inversely proportional to the number of earthquakes. Because the expected number of earthquakes is 

directly proportional to the elapsed time, the number of earthquakes can be replaced by the extent of the 

time interval. For a catalogue divided into different magnitude classes, the time before the present, for 

which a given magnitude class is complete, could be estimated by the point where a plot of the standard 

deviation of the mean number of earthquakes against the time before present deviates from a linear 

trend, with a slope of negative unity. Such a plot is known as a completeness plot. 

The study by Tinti and Mulgaria (1985) presents an interesting approach, as they assign a completeness 

index to different magnitude classes over time periods, in which the apparent rate of earthquake 

occurrence is considered homogeneous. For the 𝑗𝑡ℎ magnitude class, the Poisson mean 𝜇𝑗(𝑡𝑖) is estimated 

from the catalogue. The relative and absolute completeness indexes are given, respectively, by 

 

𝛾𝑗(𝑡) =
𝜇𝑗(𝑡)

𝜇̃𝑗
, 𝐶𝑗(𝑡) =

𝜇𝑗(𝑡)

𝜎𝑗
, 

 

(2.2) 
 

where 𝜇̃𝑗  is the highest rate of occurrence found in the 𝑗𝑡ℎ magnitude class, and 𝜎𝑗 is the true Poisson rate 

of occurrence for the 𝑗𝑡ℎ class. The rate 𝜎𝑗 is estimated for large magnitude classes for very recent time 

periods and is extrapolated for lower magnitude classes from the Gutenberg–Richter relation.  

Wyss et al. (1999) and Wiemer and Wyss (2000) introduced the widely used maximum curvature (MAXC) 

method, where 𝑚𝑐 is estimated as the point of MAXC of the cumulative frequency-magnitude plot. This 

corresponds to the highest value of the non-cumulative frequency-magnitude plot. 

Wiemer and Wyss (2000) introduced the goodness of fit (GFT) method, which compares the observed 

FMD with synthetic distributions. The 𝑎- and 𝑏-values for the synthetic distribution are computed from 

the data above a given cut-off magnitude 𝑚𝑐𝑜. The statistic 𝑅 is defined as 

 

𝑅(𝑎, 𝑏,𝑚𝑐) = 100 − (
∑ |𝐵𝑖 − 𝑆𝑖|
𝑚𝑚𝑎𝑥
𝑚𝑐𝑜

∑ 𝐵𝑖𝑖
100) 

 

(2.3) 
 

where 𝐵𝑖  is the predicted value of the cumulative number of magnitude counts in each bin, and 𝑆𝑖 the 

actually observed count. Starting with low values of 𝑚𝑐𝑜 and increasing incrementally, 𝑚𝑐 is estimated as 

the first value 𝑚𝑐𝑜 for which the data are modelled at a pre-specified accuracy by a straight line. The 

accuracy of the model is given by 𝑅 (as a percentage). 

Cao and Gao (2002) estimate 𝑚𝑐 by considering the stability of the estimated 𝑏-value. The GR relation has 

a constant 𝑏-value; therefore, fluctuation (typically a steady increase) of the 𝑏-value with increasing cut-

off magnitude indicates that the cut-off value is too low. These authors regard 𝑚𝑐 as the first cut-off 

magnitude for which two consecutive estimated 𝑏-values differ by less than a predefined constant.  
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Woessner and Wiemer (2005) introduced a different criterion based on the uncertainty 𝛿𝑏 of the 

estimated 𝑏-value of Shi and Bolt (1982)  

 

𝛿𝑏 = 2.3𝑏2√
∑ (𝑚𝑖 − 𝑚̅)

2𝑛
𝑖=1

𝑛(𝑛 − 1)
, 

 

(2.4) 
 

where 𝑛 is the number of earthquakes, and 𝑚̅ is the mean value of the earthquake magnitudes. The 

variable 𝑚𝑐 is taken as the first cut-off magnitude for which |𝑏𝑎𝑣𝑒 − 𝑏| < 𝛿𝑏, where 𝑏𝑎𝑣𝑒 is the average 

of 𝑏-values calculated for consecutive cut-off values. 

Marsan (2003) defines the log-likelihood of completeness as the logarithm of the probability that the 

model GR law calculated with the given cut-off magnitude could predict the number of earthquakes if 

there were a small magnitude increment just below it. 𝑚𝑐 is chosen so that the log-likelihood of 

completeness drops for 𝑚 = 𝑚𝑐 , and the calculated 𝑏-value drops for 𝑚 < 𝑚𝑐. 

Woessner and Wiemer (2005) use a model to estimate 𝑚𝑐 that incorporates the entire magnitude range 

(EMR), including values below 𝑚𝑐 . This model is based on equation (2.1), with a slightly modified Gaussian 

model for the probability of detection. The part of the FMD below 𝑚𝑐 is given by a truncated Gaussian 

distribution, and the part above 𝑚𝑐 by a GR relation. This model is fitted to the observed FMD using the 

maximum likelihood method.  

Mignan and Woessner (2012) consider the model used in the EMR method as an incorrect description of 

the natural process, as it does not conform to equation (1.1). A logical alternative to the model is a 

truncated Gaussian distribution for 𝑞(𝑚), truncated at 𝑚𝑐. 

Amorèse (2007) applies the multiple change-point method, as developed by Lazante (1996). It is referred 

to as the Median-Based Analysis of Segment Slope (MBASS). The logic behind this is to calculate a 

theoretical "change-point" in the slope of the non-cumulative FMD. First, the segment slope at magnitude 

value 𝑚2 is defined as 

 

𝑠(𝑚2) =
log (𝑛(𝑚1)) − log (𝑛(𝑚2))

𝑚1 −𝑚2
. 

 

(2.5)  
 

The values 𝑠 are assigned a rank, and 𝑆𝑅𝑖 is assigned the sum of the ranks up to the 𝑖𝑡ℎ segment slope. 

The adjusted sum is computed: 

 
𝑆𝐴𝑖 = |2𝑆𝑅𝑖 − 𝑖(𝑛 + 1)|. 

 

(2.6) 
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The maximum of the adjusted sum is identified as a possible change-point 𝑚𝑐ℎ and marked as point 𝑛1. 

To test whether 𝑚𝑐ℎ qualifies as a change-point, the Wilcoxon–Mann–Whitney non-parametric test is 

employed. The test statistic, 𝑧, for this test is computed as follows (Lazante, 1996) 

 
𝑛2 = 𝑛 − 𝑛1 

𝑊𝑐𝑟𝑖𝑡 = 𝑛1(𝑛 + 1)/2 

𝑠𝑊 = √𝑛1𝑛2(𝑛 + 1)/12 
 

𝛿 =

0.5 𝑖𝑓 𝑊 < 𝑊𝑐𝑟𝑖𝑡

−0.5 𝑖𝑓 𝑊 > 𝑊𝑐𝑟𝑖𝑡

0 𝑖𝑓 𝑊 = 𝑊𝑐𝑟𝑖𝑡

 

 

𝑧 = (𝑊 −𝑊𝑐𝑟𝑖𝑡 + 𝛿)/𝑠𝑤. 

 

(2.7) 
 

The hypothesis that 𝑚𝑐ℎ is not a change-point is then not rejected ("accepted" for practical purposes) at 

some chosen level of confidence. The first auxiliary change-point is set at the next largest value of 𝑆𝐴𝑖. 

Rydelek and Sacks (1989) noted that seismic noise increases during the day compared with the night, 

causing incompleteness. These authors developed an easy and effective way to estimate the magnitude 

level below which such diurnal variation in seismic noise causes incompleteness. For a given magnitude 

class, starting at the centre of a circle, a unit vector (phasor) is added to a path in the direction of the hour 

on a 24-hour clock. It is assumed that earthquakes follow a homogeneous Poisson process (i.e. random in 

time). The probability of the resulting vector (or so-called walkout) to exceed a given radius 𝑅 is                        

𝑃𝑅 = exp (−𝑅
2/𝑛), where 𝑛 is the number of earthquakes. Therefore, the null hypothesis of the recorded 

earthquakes occurring randomly in time is rejected below some confidence level (1 − 𝑃𝑅). For the 95% 

confidence interval, this would be when 𝑅 = 1.73√𝑛. If the resulting walkout is larger than 𝑅, the 

catalogue is biased and, consequently, incomplete at the given magnitude level. 

Referring to the work of Godano et al. (2014), Godano (2017) notes that the 𝑏-value changes continuously 

with a magnitude threshold 𝑚𝑐, even at large values of 𝑚𝑐, which can be ascribed to the spatial and/or 

temporal non-homogeneity of the 𝑏-value. According to Godano (2017), this view is supported by, among 

others, Kagan (2004), Helmstetter et al. (2006), Enescu et al. (2007), Lippiello et al. (2007), Peng et al. 

(2007), Lippiello et al. (2012), Omi et al. (2013), de Arcangelis et al. (2016), and Lippiello et al. (2016). It is 

clear that part of the scientific community agrees on this. Obviously, this complicates the estimation of 

𝑚𝑐 even more (Godano, 2017). 

Godano (2017) proposes a method based on the calculation of the ''harmonic mean of the magnitudes'' 

larger than a given threshold 

 

𝜈 =
𝑛

∑ 1/𝑚𝑖
𝑛
𝑖=1

, 

 
(2.8) 
 



 

32 
 

where 𝑚𝑖 > 𝑚𝑡ℎ, and 𝑚𝑡ℎ is the threshold magnitude. The harmonic mean is related linearly to 𝑚𝑡ℎ for 

𝑚𝑡ℎ > 𝑚𝑐, and is higher than the theoretical value in the case of a GR law. In addition, it has been 

observed to be practically constant for values less than 𝑚𝑐. The difference Δ between the harmonic mean 

𝜈 and the theoretical value of the linear trend has to be investigated. Godano (2017) proposes an estimate 

𝑚̂𝑐 of 𝑚𝑐 when Δ < 𝛿𝑡ℎ for some prechosen value 𝛿𝑡ℎ. Judging from the results, the method of Godano 

(2017) does seem to be superior to the method of 𝑏-value stability. For the sake of comparison, this 

estimator shall be referred to as 𝑚𝑐
𝐻𝑎𝑟𝑚. 

 

2.1. Consideration of Methods 

Mignan and Woessner (2012) found that 𝑚𝑐
𝑀𝐴𝑋𝐶~𝜇 and that 𝑚𝑐

𝑀𝐵𝑆 > 𝜇 + 𝜎, and 𝑚𝑐
𝐺𝐹𝑇 and 𝑚𝑐

𝑀𝐵𝐴𝑆𝑆 yield 

intermediate results. This formulation was done under the assumption that 𝑞(𝑚)~erf (𝜇, 𝜎). In a study 

by Huang et al. (2016), it was found that 𝑚𝑐
𝑀𝐴𝑋𝐶 consistently underestimates 𝑚,𝑐, as does 𝑚𝑐

𝑀𝐵𝑆 and 

𝑚𝑐
𝐺𝐹𝑇, but 𝑚𝑐

𝐸𝑀𝑅 yields intermediate results. Huang et al. (2016) used three models, namely (1) = 0.9,      

𝜇 = 1.5, and 𝜎 = 0.2; (2) as in model 1, except 𝜎 = 0.4; (3) model 1 is combined with an equal number 

of events from a catalogue for which all events (100%) above magnitude 1.5 are recorded. As Huang et al. 

(2016) note, a larger 𝜎 indicates a slower change in the detection capability with a change in magnitude. 

Huang et al. (2016) assume that the correct value of 𝑚𝑐 would be where one in every 500 events is missed. 

This means 𝑚𝑐
𝑀𝐴𝑋𝐶 underestimates 𝑚𝑐 in the instance of gradually curved FMDs (e.g. Woessner and 

Wiemer, 2005; Mignan and Woessner, 2012). Godano (2017) shows that the proposed estimator 𝑚𝑐
𝐻𝑎𝑟𝑚 

is superior to methods based on 𝑏-value stability. 

 

2.2. Critical Analysis of the Arguments of Mignan (2012) and Mignan et al. 

(2011)  

Mignan et al. (2011) use the difference Δ = 𝑚𝑐
𝑀𝐵𝐴𝑆𝑆 −𝑚𝑐

𝑀𝐴𝑋𝐶  as a proxy to the gradual curving of the 

FMD and note that Δ becomes smaller as spatial and temporal heterogeneities decrease. Mignan and 

Woessner (2012) claim that it has been shown in Mignan et al. (2011) that Δ tends to zero as 

heterogeneities decrease to zero; however, in fact, this is only a suggestion. Mignan (2012) proposes the 

angular FMD model for homogeneous catalogues but does not demonstrate that this model is applicable 

in reality. The argument by Ringdal (1975) that 𝑞(𝑚)~erf (𝜇, 𝜎) still appears to be an exceptionally good 

physical justification of the model. Indeed, as Mignan and Chen (2016) state, the graduality with which 

the FMD curves appear to decrease with the increase in inhomogeneity of aggregated local catalogues (in 

other words, many local catalogues, each with their own LoC, are superimposed in the larger catalogue); 

however, it has not been proven nor shown by the authors that 𝑞(𝑚)~exp (𝑚), as is required by the 

angular FMD model. The obvious alternative view would be that 𝜎 greatly decreases in the model 

𝑞(𝑚)~erf (𝜇, 𝜎). The physical interpretation of the angular FMD model is that the probability of detection 
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decreases exceptionally rapidly immediately below the value of 𝑚𝑐. It can be argued equally well that 𝜎 

decreases with decreasing homogeneity, resulting in a more gradual curvature of the FMD, as noted by 

Huang et al. (2016). 

 

2.3. Critical Analysis of the Maximum Curvature Method 

In several studies published over the last fifteen years, the magnitude LoC was estimated by, what is 

termed, the Method of Maximum Curvature and, notably, Woessner and Wiemer (2005) consider this a 

promising method. The magnitude LoC of an earthquake catalogue is defined as the magnitude above 

which all earthquakes are recorded in space–time volume (Amorèse, 2007).  

The current author wishes to point out that the Method of Maximum Curvature (Woessner and Wiemer, 

2005) produces erroneous estimates of the LoC (mc) of earthquake catalogues. 

Recall that the GR law produces a theoretically linear logarithmic plot, such as in Figure 4. 

The gradual data loss can be seen in Figure 5, which is a Gutenberg–Richter plot of the Myanmar 

earthquake catalogue from 1973 to 2015. It can be observed that at some point a deviation occurs from 

linearity in the Gutenberg–Richter plot. This is the LoC mc. 

As the name implies, this method estimates mc as the point of MAXC on the Gutenberg–Richter plot. This, 

as the current author will show, is an erroneous estimate of mc, when certain specific conditions are not 

met, as it does not correspond to the point where the curvature starts. 

Woessner and Wiemer (2005) do point out that the method tends to underestimate 𝑚𝑐, but they appear 

to imply that this only happens for catalogues where the loss of data is gradual. It is true that the 

underestimation is more pronounced in instances of gradual loss; however, the limitation of this estimator 

is inherent and will always occur. Although mc can appear attractive for use as a lower bound for 𝑚𝑐, it 

will only provide an accurate estimate in an instance where data loss is sudden, such as the exponential 

model of Mignan (2012). The results obtained by García-Hernández et al. (2019) illustrate that this is not 

a typical case, rather, from the data they used, it appears that this is the most unlikely case. 

Estimating mc correctly requires estimating the point where curvature starts, i.e. where deviation from a 

power law starts, as pointed out by Woessner and Wiemer (2005). The value of mc does not necessarily 

correspond to the point of MAXC, except that it will always be at a larger or equal value. 

 

2.3.1. Argument by example 

As an example, the current author simulated a catalogue for which the probability of detection below mc 
is (Woessner and Wiemer, 2005) 
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𝑞(𝑚|𝜇, 𝜎) =

{
 
 

 
 1

𝜎√2𝜋
∫ 𝑒𝑥𝑝(−

(𝑥 − 𝜇)2

2𝜎2
)

𝑚

−∞

𝑑𝑥, 𝑚 < 𝑚𝑐

1, 𝑚 ≥ 𝑚𝑐

, 

 

(2.9) 
 

with 𝜇 = 1 and 𝜎 = 0.25, in accordance with theoretical examples constructed by Woessner and Wiemer 

(2005). This closely mimics the model of Ogata and Katsura (1993), which was found to be the typical case 

in the data investigated by García-Hernández et al. (2019). The value of 𝑚𝑐 was set at 𝑚𝑐 = 3, which 

implies a more gradual loss of data below 𝑚𝑐 to illustrate the point more clearly. Woessner and Wiemer 

(2005) note that underestimation when using the MAXC is more pronounced for gradual data loss. The 

resulting Gutenberg–Richter plot of simulated data is shown in Figure 6. This instance is extreme, i.e. the 

data loss is so gradual that 𝑚𝑐 would be hardly detectable by any method; however, this extreme example 

illustrates the argument clearly. 

As noted in Woessner and Wiemer (2005), an uncomplicated way to identify the point of MAXC is to 

identify the bin with the highest frequency of events, which, in this case, is 1.03. This is well below the 

true value of 𝑚𝑐. 

 

2.3.2. Theoretical argument 

If, for the sake of simplicity, the minimum recorded magnitude were considered at 𝑚 = 0, the GR relation 
brings about the probability distribution function for magnitudes 

 
𝑤(𝑚|𝛽) = exp(−𝛽𝑚). 

 

 
(2.10) 
 

Subsequently, combining equations (2.9) and (2.10) and normalising, the PDF for the model of the 
recorded magnitudes with data loss is obtained (Iwata, 2012) 

 

𝑓(𝑚|𝛽, 𝜇, 𝜎) =
𝑤(𝑚|𝛽)𝑞(𝑚|𝜇, 𝛽, 𝜎)

∫ 𝑤(𝑚|𝛽)𝑞(𝑚|
∞

−∞
𝜇, 𝛽, 𝜎)𝑑𝑚

. 

 

 
(2.11) 
 

The point of MAXC can be obtained from equation (2.11) by setting the derivative of the numerator of the 
left-hand side of equation (2.11) equal to zero 

 
𝑑

𝑑𝑚
[𝑤(𝑚|𝛽)𝑞(𝑚|𝜇, 𝛽, 𝜎)] = 0, 

 

(2.12) 
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which results in 

 
𝑤(𝑚|𝛽) = exp(−𝛽𝑚), 

 

 
(2.13) 
 

 

which is independent of 𝑚𝑐. 

An instance can be modelled where the point of MAXC (the bin with the highest frequency of events) is 

at 𝑚𝑐 by putting 𝑚𝑐 at a point smaller than that satisfying equation (2.13). However, this implies a sudden 

and almost complete data loss corresponding to the exponential model of Mignan (2012). 

It must be pointed out that at 𝑚𝑐 the derivative of 𝑓(𝑚|𝛽, 𝜇, 𝜎) does not exist (is infinite), which can, in a 

certain way, be considered a point of MAXC. However, this is an artefact of the model, and it is also 

realistic to assume that 𝑓(𝑚|𝛽, 𝜇, 𝜎) is smooth at 𝑚𝑐, which, however, was not the case with the model 

used in the current research. Furthermore, when the change in slope at 𝑚𝑐 is quite small (corresponding 

to exceptionally gradual data loss), this point would be hardly detectable. 

Furthermore, even an estimate that seeks to estimate the point where deviation from linearity starts will 

theoretically be biased toward too low values of 𝑚𝑐 if the starting point of this deviation were extremely 

gradual and, at the actual value of 𝑚𝑐, the deviation will be hardly detectable. The reasoning of the current 

author is consistent with that of Amorèse (2007) and Iwata (2012). 

 

2.3.3. Conclusion 

The Method of Maximum Curvature to estimate 𝑚𝑐 has been shown both by example and by theoretical 

argument to have a weak point. Therefore, it is recommended that this method not be used when data 

loss is gradual below 𝑚𝑐. 
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Figure 4. Plot of magnitude frequency for a simulated earthquake catalogue. 

 

 

Figure 5. Plot of magnitude frequencies of an earthquake catalogue from Myanmar. 
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Figure 6 Simulated earthquake catalogue with data loss following a GR law, with data loss according to 

equation (2), with μ = 1, σ = 0.25, and 𝒎𝒄 = 3. 

 

2.4. Critical Analysis of the Median-Based Analysis of Segment Slope 

The multiple change-point method, developed by Lanzante (1996), was designed to detect clear changes 

in a time series distribution, as, e.g. the location of discrete jumps. It may well be applied to a magnitude 

series, as Amorése (2007) applies the change-point method in the MBASS if a discrete change in the 

median magnitude value were expected. However, in the model where 𝑞(𝑚)~erf (𝜇, 𝜎), the slope 

changes gradually. Therefore, the empirical value of the median of the segment slopes is expected to 

change gradually as well. A change can be detected in the median value of the segment slope only from 

and below a value of magnitude where the change in the 𝑏-value is detectable over random fluctuations. 

From a theoretical point of view, for a small incremental change 𝜀 that the MBASS method will fail to 

detect in the slope value, a small magnitude increment 𝛿 will be found in the magnitude below 𝑚𝑐, such 

that the slope takes on that change in value. Therefore, the value 𝑚𝑐
𝑀𝐵𝐴𝑆𝑆 will be below the value of 𝑚𝑐. 

This finding is in agreement with that of Huang et al. (2016).  
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3. Seismicity Parameters b and 𝝀 

In this section, the estimation of the Gutenberg–Richter 𝑏-value and the RoS (𝜆) is discussed in detail. The 

𝑏-value is, besides 𝑚𝑚𝑎𝑥, the essential parameter in the GR relation, which is the FMD, and 𝜆 is the 

essential parameter in the temporal distribution. These two values are related closely, with 𝜆 featuring 

implicitly in parameter 𝑎 of the GR relation. Theoretically, 𝑎 is the RoS for 𝑚, i.e. 𝜆(0) = 𝑎, which is the 

extrapolation of the value of 𝜆 to magnitude 0. 

 

3.1. Estimation of the 𝒃-value 

The GR relation has been introduced already 

 
𝑙𝑜𝑔(𝑛) = 𝑎 − 𝑏𝑚. 

 
(3.1) 

The GR FMSL is ubiquitous in nature, and an exceptional number of academic reports have been published 

on the topic (Marzocchi and Sandri, 2003). Furthermore, it is observed in various tectonic settings and, in 

many instances, even in induced seismicity (Marzocchi and Sandri, 2003) and in small-scale laboratory 

experiments (e.g. Scholz, 1968). In the GR relation, the 𝑏-value is a particularly important parameter, as it 

describes the ratio of small to large earthquakes. It has been assigned various physical meanings, including 

the phenomenon of Self-Organized Criticality (e.g. Bak and Tang, 1989; Sornette and Sornette, 1989). 

Mogi (1962) finds that the heterogeneity of rock affects the 𝑏-value (Scholz, 1968). According to Scholtz 

(1968), the 𝑏-value depends on a characteristic way on stress, as an increase in stress causes a decrease 

in the 𝑏-value. Subsequent studies on the 𝑏-value include those by Rabinovitch et al. (2001), Turcotte et 

al. (2003), and Ben-Zion (2008), among others. It has been noted, however, that deviations do occur (see 

particularly Youngs and Coppersmith, 1985). Nevertheless, the GR law, with its essential 𝑏-value, remains 

the basis for describing the FMSL for natural tectonic earthquakes. However, other studies (e.g. 

Wesnousky, 1994) hold a contradictory view, namely that the assumption of the general applicability of 

the GR law and the characteristic earthquake model is obsolete. 

The 𝑏-value was calculated by Gutenberg and Richter (1944) using the least squares technique (Guttorp 

and Hopkins, 1986) but the use of the least squares technique in calculating the 𝑏-value has been criticised 

strongly, as will be explained later. However, the 𝑏-value was convenient and, probably, the most obvious 

way to obtain an approximation with accuracy that was adequate for their purposes. Currently, most 

estimation methods are based on the estimator derived by Utsu (1965) employing the Method of 

Moments, and by Aki (1965) using the maximum likelihood method. Subsequently, numerous variations 

for this popular estimator have been developed, which will be discussed later. The formula for the 

estimator of Utsu and Aki (hereinafter the Aki–Utsu estimator) is given by 
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𝛽 =
1

𝑚̅ −𝑚𝑚𝑖𝑛
, 

 

(3.2) 

where 𝛽 = ln(10) 𝑏, 𝑚̅ is the mean of the magnitudes in the catalogue above 𝑚𝑚𝑖𝑛 , and 𝑚𝑚𝑖𝑛 is the 

minimum considered magnitude (typically the LoC 𝑚𝑐). Actually, this is the estimator of the value 𝛽 for a 

shifted exponential distribution, which is well-known in pure statistics. The 𝑏-value and the value 𝛽 will 

be used interchangeably. Aki (1965) presents a simple approximate variance of the estimator (3.2) 

 

𝜎(𝛽) =
𝛽

√𝑛
. 

 

(3.3) 

As mentioned in the introduction, each spatial element should have its own 𝛽-value, although such 

changes can usually be assumed to be quite gradual. Accommodating the spatial and slow temporal 

changes in 𝛽, Shi and Bolt (1982) proposed the standard deviation of the Aki–Utsu estimator for large 

samples 

 

𝜎(𝛽̂) = 𝛽2𝜎(𝑚̅), 

 

(3.4) 

where 

𝜎(𝑚̅) =
1

𝑛
∑(𝑚𝑖 − 𝑚̅)

2

𝑛

𝑖

. 

 

(3.5) 

It is most unfortunate that, although such advanced theoretical tools are available, they are not being 

used in practice. Ogata and Yamashina (1986) note that, as is true for many statistical estimators, the Aki–

Utsu estimator is biased, particularly when a small number of earthquakes (or data points) are involved. 

These authors propose an alternative, adapted formula 

 

𝛽 =
(𝑛 − 1)

∑ (𝑚𝑖 −𝑚𝑐)
𝑛
𝑖=1

. 

 

(3.6) 

This formula also maximises entropy, which is a desirable property for an estimator. Nevertheless, the 

Aki–Utsu estimator in its original form is still predominant in practice, as formulas (3.2) and (3.6) are 

practically equivalent with regard to a large number of data points. As a theoretical consideration to 

explore the properties of the value 𝛽, Ogata and Yamashina (1986) propose a distribution of the estimated 

𝛽-value arising from the Bayes' theorem by employing the non-informative prior (deriving from the Fisher 

information measure), which is given by 
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𝑝(𝛽) =
[∑(𝑚𝑖 −𝑚𝑐)]

𝑛

(𝑛 − 1)!
𝛽𝑁−1 exp [−𝛽 (∑(𝑚𝑖 −𝑚𝑐))]. 

 

(3.7) 

Notably, the mean of the distribution (3.7) is given by (3.2), and its mode by (3.6). 

Note that distribution (3.7) is the probability distribution that arises from multiple estimations of 𝛽 from 

multiple random samples from an exponential distribution, such as that deriving from the GR law, as it 

would, for instance, be observed in a Monte Carlo experiment. A considerable weakness of the Aki–Utsu 

estimator and its derivatives has been discussed, i.e. it does not take into account the maximum possible 

magnitude 𝑚𝑚𝑎𝑥. It is based on the assumption that the FMD is completely unbounded, which is common 

in theoretical statistics but completely unrealistic in the physical application to seismicity. In an attempt 

to resolve this, Page (1968) presents the maximum likelihood estimator of 𝛽 in an instance where a 

maximum magnitude is imposed. The estimator is given by 

 

𝛽 = [𝑚̅ −
𝑚𝑐 −𝑚𝑚𝑎𝑥exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]

1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
]

−1

, 

 

 
(3.8) 
 

where 𝑚𝑚𝑎𝑥 is the maximum possible magnitude. If the magnitude range of the data were sufficient 

(typically 𝑚𝑚𝑎𝑥 −𝑚𝑐 ≥ 3), the Aki–Utsu estimator would still be an adequate estimator (Marzocchi and 

Sandri, 2003). Marzocchi and Sandri (2003) warn strongly against the bias introduced by the assumption 

of continuity of binned (or grouped) magnitudes. This implies that the assumption is that the distribution 

is continuous; however, the sample employed in the current research is in the form of a histogram, which 

requires groups, or bins, of values. Formulas (3.2)–(3.10) are all based on the assumption of continuity, 

which is a natural but, unfortunately, erroneous approximation. The smaller the bins, the more negligible 

would be the error. The bias is not considerable for the usual bin width of Δ𝑚 = 0.1 of instrumental 

catalogues, but it is definitely of significance for historical data, of which the bin widths are typically above 

Δ𝑚 = 0.5 (Marzocchi and Sandri, 2003; Bender, 1983; Guttorp and Hopkins, 1986). Accordingly, Guttorp 

and Hopkins (1986) deem it necessary to derive the following MLE for 𝛽 for the discretised (binned) model 

 

𝛽̂ =
1

Δ
log (1 +

Δ

𝑚̅ −𝑚𝑐
), 

 

(3.9) 

where Δ is the bin width. The difference between estimators (3.2) and (3.9) is of the order Δ2. For                

Δ𝑚 = 0.1, the error would be of the order 0.01, which, in the current author's opinion is still considerable. 

However, this important theoretical result is not used in practice. Guttorp and Hopkins (1986) give the 

following approximate confidence bands for their maximum likelihood estimator 
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(𝛽̂ −
𝑧𝛼

√𝑛
(𝑘̅(𝑘̅ + 1))

1
2
, 𝛽̂ +

𝑧𝛼

√𝑛
(𝑘̅(𝑘̅ + 1))

1/2
), 

 

(3.10) 

where 𝑘̅ = ∑𝑘𝑖/𝑛, 𝑘𝑖 is number of earthquakes in the 𝑖𝑡ℎ bin and 𝑛 denotes number of bins. A standard 

deviation is not proposed, unfortunately. Quite astonishingly, a second, different maximum likelihood 

estimator was proposed by Bender (1983) for binned magnitudes, with the formula  

 

𝑞

1 − 𝑞
−

𝑛𝑞𝑛

1 − 𝑞𝑛
=∑

(𝑖 − 1)𝑘𝑖
𝑁

𝑛

𝑖=1

, 

 

(3.11) 

where 𝑞 = exp (−𝛽Δ𝑚), 𝑛 is the number of bins each with 𝑘𝑖 earthquakes and 𝑁 is the number of 

earthquakes where 𝑁 = ∑ 𝑘𝑖
𝑛
𝑖=1 . (Intuitively it might be expected that only a single maximum likelihood 

estimator exists). It appears that equation (3.11) does not take 𝑚𝑚𝑎𝑥 into account; however, it is done 

implicitly by taking the number 𝑛 of magnitude groups into account, although, for some groups, 𝑘𝑖 could 

be zero. In view of such difficulties, Bender (1983) conducted a meticulous and comprehensive study (that 

is highly undervalued) to derive the distribution of the estimated 𝑏-values for different numbers of 

intervals, numbers of earthquakes, and the like. Because magnitude data are grouped, only a finite 

number of possible 𝑏-values are possible, and the distribution is discrete. Bender compares the 

distributions of different estimators for combinations of continuous or grouped data and uses the 

maximum observed value and the true maximum value, such as 𝑏=1.0, over a range of sample sizes. The 

estimators that Bender (1983) compares are interval least squares, cumulative least squares, minimum 

𝜒2, the maximum likelihood formula for continuous data, and the maximum likelihood formula for 

grouped data. Note that, for all techniques, only a discrete set of estimated 𝑏-values is possible in the 

instance of grouped data. The maximum likelihood formula for grouped data is that given in equation 

(3.11). The maximum likelihood formula for continuous data is given by formula (3.11). In the minimum 

𝜒2 procedure, the quantity ∑
[𝑘𝑖−exp(𝛼)exp (−𝛽𝑚𝑖)]

2

exp(𝛼)exp (−𝛽𝑚𝑖)
𝑛
𝑖=1  is minimised. In the interval least squares 

procedure, Bender (1983) weights the number of observations by 
1

𝑖
 (the author notes that this is arbitrary; 

however, Guttorp (1987) lends support and explains the applicability of the weighting scheme). 

Presumably, Bender (1983) must have used some intuitive reasoning. Bender (1983) uses the classic 

cumulative least squares formula, and also gives a corrected version of the estimators by Page (1968) and 

the Aki–Utsu estimators. The corrected version of the Page (1968) formula is given by Guttorp (1986) 

 
∑ 𝑘𝑖𝑚𝑖
𝑛
𝑖=1

∑ 𝑘𝑖
𝑛
𝑖=1

= 𝑚𝑐 +
𝑛Δ𝑚

2
[1 −

1 + exp (−𝛽𝑛Δ𝑚)

1 − exp (−𝛽𝑛Δ𝑚)
] +

Δ𝑚

2

1 + exp (−𝛽Δ𝑚)

1 − exp (−𝛽Δ𝑚)
. 

 

(3.12) 

The corrected version of the Aki–Utsu estimator is 
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lim
𝑛→∞

∑ 𝑘𝑖𝑚𝑖
𝑛
𝑖=1

∑ 𝑘𝑖
𝑛
𝑖=1

= 𝑚𝑐 +
∆𝑚

2

1 + exp (−𝛽∆𝑚)

1 − exp (−𝛽∆𝑚)
. 

 

(3.13) 

This implies that formulas (3.12) and (3.13) are adjusted to suite the discretised, or binned, instance. Tinti 

and Mulgaria (1987) derive yet another estimator for grouped data  

 

𝛽̂ =
ln (𝑝̂)

Δ𝑚
 

 

(3.14) 

where 

 

𝑝̂ = 𝑧/(𝑧 + 1) 
 

(3.15) 

and 

 

𝑧 =
𝑚̅ −𝑚𝑐

Δ𝑚
− 0.5. 

 

(3.16) 

Confidence intervals are given for this estimator by Tinti and Mulgaria (1987), as follows 

 
𝑟 = 𝑧𝑁, 

 
(3.17) 

where 𝑟 follows the negative binomial distribution, given by 

 

𝑃𝑁(𝑟, 𝑝) = (
𝑁 + 𝑟 − 1
𝑁 − 1

) (1 − 𝑝)𝑁𝑝𝑟 ,      𝑟 = 0,1,2,… 

 
(3.18) 

Then, the cumulative probability distribution associated with 𝑟 is given by 

 

𝐿𝑁(𝑟, 𝑝) = ∑𝑃𝑁(𝑘, 𝑝)

𝑟

𝑘=0

. 

 

(3.19) 

Tinti and Mulgaria (1987) evaluate the confidence intervals for the parameter 𝑝 by, "finding the lower end 

𝑝𝑙,𝛼 and the upper end 𝑝𝑢,𝛼 of the interval for which the probability of containing the true value of 

parameter 𝑝 is larger than and simultaneously as close as possible to the given amount 1 − 𝛼, called the 

confidence coefficient." (Tinti and Mulgaria, 1987). Accordingly 
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𝑃(𝑝𝑙,𝛼 ≤ 𝑝 ≤ 𝑝𝑢,𝛼) ≥≈ 1 − 𝛼, 

 
(3.20) 

where ≥≈ denotes "the best approximation in excess." (Tinti and Mulgaria, 1987). 

The end points of the confidence intervals are then given by the implicit expressions 

 

{
𝐿𝑁(𝑟 − 1, 𝑝𝑙,𝛼) = 1 − 𝛼/2

𝐿𝑁(𝑟, 𝑝𝑢,𝛼) = 𝛼/2
, 

 

(3.21) 

that constitute a formal solution to the problem. Inverting equation (3.14) produces the corresponding 

end points of the confidence interval for parameter 𝛽, as follows 

 

{
𝛽𝑙,𝛼 = − ln(𝑝𝑢,𝛼) /Δm

𝛽𝑢,𝛼 = − ln(𝑝𝑙,𝛼) /Δ𝑚
. 

 

(3.22) 

As the estimator by Tinti and Mulgaria (1987) is not straightforward, the estimators by Guttorp (1987) and 

Bender (1983) are preferred for their simplicity. Actually, a study could be conducted on a comparison of 

the performance of the three estimators.  

Nava et al. (2017) noted another source of bias in the Aki–Utsu estimator, as large magnitudes are often 

under- or over-sampled. As a solution, they propose choosing an upper threshold 𝑚𝑢 magnitude, below 

which this under- and over-representation should not have an effect. Using only values between 𝑚𝑐 and 

𝑚𝑢, they propose a corrected estimate of the sample mean, given by 

 

𝑚̂̅ =
𝑚𝑐 +

1
𝛽
− 𝑒−𝛽(𝑚𝑢−𝑚𝑐) (𝑚2 +

1
𝛽
)

1 − 𝑒−𝛽(𝑚𝑢−𝑚𝑐)
, 

 

(3.23) 

 with 𝛽 being unknown, the first estimate of 𝛽 is from the Aki–Utsu estimator using the usual sample 

mean. The estimator for the sample mean and 𝛽 are then solved iteratively by using the above equation 

for the mean and 

 

𝛽̂ =
1

𝑚̂̅ − 𝑚𝑐

. 

 

(3.24) 

It is important to note that 𝑚𝑢 is not at all equivalent to 𝑚𝑚𝑎𝑥, as 𝑚𝑢 is a value above which data values 

do exist but are discarded for the purpose of estimation. A related study by Nava et al. (2017), not as yet 

subjected to further investigation, points out seemingly valid concerns regarding histograms and 
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sampling. That is, the values in the tail often do not appear and, if they do, they do not take on integer 

values, which can be much higher than the theoretical values. Actually, this is a general problem 

encountered with distribution tails. 

Further to the previously raised concerns about the least squares method, which was the initial method 

used by Gutenberg and Richter (1944), the general point of view is that this technique does not have a 

statistical foundation, according to the arguments of Page (1968) and Bender (1983). To the best of the 

current author's knowledge, a straightforward argument against the least squares method has not been 

presented explicitly in the literature, except by Sandri and Marzocchi (2006). They contend that the 

logarithmic transformation on the GR plot, which is a histogram, distorts the errors, most likely not 

producing a normal distribution of scattering, which, actually, is a fundamental assumption in employing 

the least squares method. Page (1968) refers to a study by Suzuki (1958), which shows that the technique 

is not applicable. Bender (1983) shows the extreme bias of applying the technique empirically and 

presents a brief explanation. In contrast, according to Shi and Bolt (1982), the least squares technique is 

applicable in some instances. Kijko (1994) notes that the L1 norm, i.e. the sum of the absolute residuals, is 

less sensitive to outliers. In fact, Kijko (1994) presents an algorithm for a norm Lp to be minimised, which 

is optimal. The Lp norm is defined as |𝑦𝑖 − 𝑓(𝑥𝑖)|
𝑝. Although this Lp norm remains subject to scrutiny, it 

does represent a definite improvement. Guttorp (1987) notes that the ordinary least squares fit on the 

cumulative frequency-magnitude plot is inappropriate, as the summing number of earthquakes leads to 

dependence in the observations. This is probably the principal argument against the ordinary least squares 

method. Guttorp (1987) developed a generalized least squares approach, noting that the suggestion for 

weights of least squares (Bender, 1983) is asymptotically correct, as proven by the calculations. Therefore, 

if the least squares procedure were to be used at all, it should be the generalized least squares procedure. 

Bender (1983) presents a comparison of the performance of the least squares procedure and the other 

procedures, including the generalized least squares procedure. Sandri and Marzocchi (2006) note 

additional problems with the least squares estimation. First, fitting to the cumulative form of the 

distribution leads to an underestimation of the uncertainty of the estimate, which is ascribed to the 

filtering effect of high frequency noise in the cumulation operation. This relates to the problem Guttorp 

(1987) noted when he applied the generalized least squares approach. Second, the logarithmic 

transformation produces a bias in the estimation of the 𝑏-value, most probably because of the nature of 

an asymmetrical scatter under the logarithmic transformation. The bias depends strongly on sample size, 

as shown by Bender (1983). Given the superiority of the Guttorp (1987) generalised least squares (GLS) 

approach, it is sensible and prudent to explore this method. 

This generalised least squares procedure by Guttorp (1987) is described as follows. Define                         

𝐹𝑛(𝑡) = #{𝑗: 𝑋𝑗 ≤ 𝑡}/𝑛, where 𝑋𝑗 is rank ordered? Define 𝑌𝑖 = log (1 − 𝐹(𝑚𝑖)), 𝑖 = 1,2,… , 𝑛. 

The ordinary least squares line has a slope 

 

𝛽̂𝐿𝑆 =
∑ 𝑌𝑖−1𝑚𝑖
𝑛
𝑖=2

∑ 𝑚𝑖
2𝑛

𝑖=2

. 

 

(3.25) 



 

45 
 

Another estimator by Guttorp (1987) used often, is called the slope-intercept estimate and is given by 

 

𝛽̂𝑆𝐼 =
∑ 𝑌𝑖−1(𝑚𝑖 − 𝑚̅)
𝑛
𝑖=2

∑ (𝑚𝑖 − 𝑚̅)
2𝑛

𝑖=2

, 

 

(3.26) 

where 𝑚̅ is the arithmetic mean of the magnitude values. Guttorp (1987) notes that 𝛽̂𝐿𝑆 has a smaller 

variance than does 𝛽̂𝑆𝐼. Nevertheless, the above two estimates are considered inappropriate by Guttorp 

(1987), whereas the weights proposed by Bender (1983) improve the situation. These weights are 
exp (𝑌𝑖)

1−exp (𝑌𝑖)
. Guttorp (1987) presents a generalised least squares estimator, as follows. Let                                                 

𝒀 = (𝑌1, … , 𝑌𝑛−1)
𝑇 and 𝒎 = (𝑚2, … ,𝑚𝑛)

𝑇. Denote the covariance matrix of 𝑌 by 𝑾. The generalised 

least squares estimator is then given by 

 

𝛽̂𝐺𝐿𝑆 =
𝒀𝑇𝑾−1𝒎

𝒎𝑇𝑾−1𝒎
. 

 

(3.27) 

Guttorp (1987) uses an asymptotic approach that is valid for large 𝑛 to estimate 𝑾. Let                                 

𝐹(𝑚𝑖) = ∑ 𝑓𝑥(𝑚𝑗)
𝑖
1  and 𝐹̅(𝑚𝑖) = 1 −  𝐹(𝑚𝑖). Now, let 𝑤𝑖 =

𝐹(𝑚𝑖)

𝑛𝐹̅(𝑚𝑖)
. Then, the approximation holds 

 

𝑾 = [

𝑤1 𝑤1 … 𝑤1
𝑤1 𝑤2 … 𝑤2
…
𝑤1

…
𝑤2

…
…

…
𝑤𝑘

]. 

 

(3.28) 

Numerical experiments showed that this approximation was too crude. Although this leaves a gap in the 

theory, jack-knife or bootstrap procedures are robust numerical procedures to obtain an accurate 

approximation of the variance. The inverse of this is a band-diagonal matrix with elements 𝑊𝑖𝑗, with band 

elements 

 

𝑊11 =
𝑤2

𝑤1(𝑤2 −𝑤1)
 

 

𝑊12 =
1

𝑤2 −𝑤1
 

 

𝑊𝑗𝑗−1 =
1

𝑤𝑗 −𝑤𝑗−1
 

 

𝑊𝑗𝑗 =
𝑤𝑗+1 −𝑤𝑗−1

(𝑤𝑗+1 −𝑤𝑗)(𝑤𝑗 −𝑤𝑗−1)
 

 

(3.29) 
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𝑊𝑗𝑗+1 =
1

𝑤𝑗+1 −𝑤𝑗
, 2 ≤ 𝑗 ≤ 𝑘 − 2 

 

𝑊𝑘−2𝑘−1 =
1

𝑤𝑘−1 −𝑤𝑘−2
 

 

𝑊𝑘−1𝑘−1 =
1

𝑤𝑘−1 −𝑤𝑘−2
. 

 

As the function 𝐹 is unknown, it is approximated by 𝐹𝑛. The variance is estimated by 

 

𝑉𝑎𝑟 𝛽̂𝐺𝐿𝑆 = (𝒎
𝑇𝑾−1𝒎)−1. 

 
(3.30) 

The variance of the least squares estimate without intercept 𝛽̂𝐿𝑆 is estimated by 

 

𝑉𝑎𝑟𝛽̂𝐿𝑆 =
𝒎𝑇𝑾𝒎

(𝒎𝑇𝒎)2
. 

 

(3.31) 

For the variance of least squares with intercept, it is replaced by 𝑚 − 𝑚̅, where 𝑚̅ = 1𝑇𝒎/1𝑇1 and 1 is a 

𝑛 − 1 vector of ones. 

 

3.2. Estimation of the 𝒃-value for Catalogues with Time Intervals with 

Different Levels of Completeness  

Hitherto, the discussion has been about the 𝑏-value alone. However, as has been noted earlier, the 𝑏-

value and the RoS are related closely. These factors can be seen together in the GR relation, noting that 

the number of earthquakes occurs within a certain time interval. This can well be taken as, or rescaled to, 

a unit time interval, thereby transforming it into the RoS. The interrelation is clarified in this section of the 

thesis. 

An early attempt at dealing with the estimation of the 𝑏-value from catalogues with time intervals with 

different levels of completeness was that by Molchan and co-workers (1970). Molchan et al. (1970; in 

Weichert [1980]) divide magnitudes into classes and use  
𝑛𝑖

𝑇𝑖
, "event numbers divided by the time interval 

of completeness for each magnitude interval, as maximum likelihood estimator [of the annual seismicity 

rate]" (Weichert, 1980).  

Two years after the publication of the work by Molchan et al. (1970), Stepp (1972) attempted to assess 

the seismicity parameters; however, he deals mainly with the incompleteness in his own work. 
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Nevertheless, the method by Stepp (1972) to assess incompleteness was the first to be implemented 

generally and it is still being used today. Stepp (1972) calculates the annual seismicity rate for each 

magnitude class with the data at hand. Afterward, he proceeds to estimate 𝛽 and 𝜆 by linear least squares 

regression, assuming a Gutenberg–Richter FMSL law (this practice has already been criticised in the 

current study, but it is not essential to the steps of assessing incompleteness). However, the procedure is 

criticised by Weichert (1980) for failing to implement a maximum magnitude. It would be elucidating to 

conduct a study on the effects of the negligence of maximum magnitude in implementing the Stepp (1972) 

method. 

Weichert (1980) proposes an estimation method for the 𝑏-value in an instance where the LoC changes 

with time. This is probably the most popular method, as it is rigorous but still understandable and reliable. 

Weichert (1980) divides magnitude range into magnitude classes, each with 𝑛𝑖 events occurred with the 

time period of completeness 𝑡𝑖, and provides a maximum likelihood estimator, given by  

 
∑ 𝑡𝑖exp (−𝛽𝑚𝑖)𝑖

∑ exp (−𝛽𝑚𝑗)𝑗
=
∑𝑛𝑖𝑚𝑖

𝑁
, 

 

(3.32) 

that can be solved via iteration. The variance of this estimator is given by 

 

var(𝛽) =
1

𝑁

[∑ exp (−𝛽𝑚𝑖)𝑖 ]2

[∑ 𝑡𝑖𝑚𝑖𝑖 exp (−𝛽𝑚𝑖)]
2 − ∑ 𝑡𝑖exp (−𝛽𝑚𝑖)∑ ∑ 𝑡𝑖𝑚𝑖

2
𝑖 exp (−𝛽𝑚𝑖)𝑖𝑖

. 

 

(3.33) 

The accompanying annual event rate is given by 

 

𝜆0 =
𝑁∑ exp(−𝛽𝑚𝑖)𝑖

∑ 𝑡𝑗exp (−𝛽𝑚𝑖)𝑗
, 

 

(3.34) 

and the variance of 𝜆0 is 
𝜆0

𝑁
. For large enough total number of events 𝑁, 𝜆0 can be considered as 

distributed normally, and confidence intervals can be established.  

Rosenbleuth (1986) derives a joint likelihood equation for 𝛽 and 𝜆. Dividing the magnitude range into 

intervals with size 𝛥𝑚, and assuming a Poisson process, the probability that an earthquake of magnitude 

𝑚𝑖 will occurr within the time interval 𝑡 is 

 

−𝜆𝑖
′Δ𝑚𝑒𝜆𝑖

′𝑡Δ𝑚. 
 

(3.35) 

The probability that no earthquake would occur in the magnitude segment containing 𝑚𝑗 is  
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𝑒𝜆𝑗
′𝑡Δ𝑚. 

 
(3.36) 

Finally, the likelihood of the occurrence of earthquakes 𝑚𝑖 is 

 

ℒ(𝑴|𝛽, 𝜆) =∏(−𝜆𝑖
′)𝑒𝑥𝑝 (∑𝜆𝑘

′ 𝑡Δ𝑚

𝑘

)

𝑖

, 𝑘 = 𝑖, 𝑗, 

 

(3.37) 

and by means of taking the limit as Δ𝑚 → 0 as an idealised case, 

 

∏(−𝜆𝑖
′)

𝑖

𝑒𝑥𝑝(−𝜆0𝑡). 

 

(3.38) 

For sub-catalogues with different levels of completeness, this becomes  

 

∏(−𝜆𝑖
′)

𝑖

𝑒𝑥𝑝∑(−𝜆0𝑘𝑡𝑘)

𝑘

. 

 

(3.39) 

Noting that −𝜆𝑖
′ =

𝑑𝜆𝑖

𝑑𝑚
=

𝑑

𝑑𝑚
𝜆0(1 − 𝐹(𝑚)) = 𝜆0𝑓(𝑚), and elaborating, it is found that  

 

ℒ(𝑴|𝛽, 𝜆) = 𝑐𝑜𝑛𝑠𝑡. 𝜆0
𝑛𝛽𝑛∏exp (𝛽(𝑚𝑖 −𝑚𝑚𝑖𝑛))∑𝑒𝑥𝑝(−𝛼𝑘𝜏𝑘)

𝑘𝑖

, 

 

(3.40) 

where 𝛼 =
𝜆0

(𝑒−𝛽𝑚𝑖−𝑒−𝛽𝑚𝑚𝑎𝑥)
 and 𝜏 = (𝑒−𝛽𝑚0𝑘 − 𝑒−𝛽𝑚𝑚𝑎𝑥)𝑡𝑘. 

Weichert (1980) and Rosenblueth (1986) prefer to decouple equations for the sake of using prior 

distributions in a Bayesian scheme; however, this is not actually possible because of the presence of the 

term 𝛼𝑘𝜏𝑘. Details on the approximate decoupling are available in Rosenblueth (1986); however, the 

Rosenblueth method is not popular. Nevertheless, an investigation of the method can be considered 

worthwhile. 

Realising the need to include historical data, Kijko and Sellevoll (1989) propose another procedure to 

simultaneously determine the MLE of 𝛽 and 𝜆0. The importance of this work can hardly be overstated. 

Historical values are often discarded or not used to their full potential because of the lack of methodology 

to incorporate them. The procedure by Kijko and Sellevoll (1989) allows for historical data to be included 

in the estimation, the so-called extreme part of the catalogue — so-called because there is good reason 

to assume that the distribution of these values can be modelled by an extreme value distribution. In 
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addition, Kijko and Sellevoll (1989) steer readers to including other forms of information by using the 

Bayesian formalism, noting that the likelihood function extends easily to a Bayesian formalism if required. 

Smit et al. (2019) elaborate on the applicable method for such an instance, and this landmark work should 

serve as a guideline for the use of the Bayesian formalism for including information on seismicity 

parameters in PE-PSHA. 

The probability that the largest magnitude in a time span of 𝑡 years will be less than a given level 𝑥 is given 

by 

 

𝑔(𝑥, 𝑡) = exp [−𝜈0𝑡 (
exp(−𝛽𝑚𝑚𝑎𝑥) − exp (−𝛽𝑥)

exp(−𝛽𝑚𝑚𝑎𝑥) − exp (−𝛽𝑚0)
)], 

 

(3.41) 

where 𝜈0 = 𝜆(1 − 𝐹(𝑚0)), 𝐹(. ) is the cumulative Gutenberg–Richter distribution, and 𝑚0 is the 

threshold magnitude for the extreme part of the catalogue. If the extreme part of the catalogue consists 

of 𝑛0 events with magnitudes 𝒎𝟎 = (𝑚01,𝑚02, … ,𝑚𝑛0) occurring within time intervals                                              

𝒕𝟎 = (𝑡01, 𝑡02, … , 𝑡𝑛0), the likelihood function for the extreme part of the catalogue is 

 

𝐿0(𝒎𝟎, 𝒕𝟎|𝛽, 𝜆)  =∏𝑔(𝑚0𝑖, 𝑡0𝑖|𝛽, 𝜆)

𝑛0

𝑖=1

. 

 

(3.42) 

The likelihood function for 𝛽 for the 𝑖𝑡ℎ complete sub-catalogue of magnitudes 𝒎𝒊, each with a number 

of observations 𝑛𝑖 and completeness 𝑚𝑐𝑖, is given by 

 

𝐿𝑖𝛽(𝒎𝒊|𝛽) =
𝛽𝑛𝑖exp(−𝛽∑ 𝑚𝑖𝑗

𝑛𝑖
𝑗=1 )

[exp(−𝛽𝑚𝑐𝑖) − exp (−𝛽𝑚𝑚𝑎𝑥)]
𝑛𝑖
. 

 

(3.43) 

Assuming a homogeneous Poisson process, the likelihood function for 𝜆 is given by 

 
𝐿𝑖𝜆(𝑇𝑖, 𝑛𝑖|𝜆) = 𝑐𝑜𝑛𝑠𝑡 exp(−𝜈𝑖𝑇𝑖) (𝜈𝑖𝑇𝑖)

𝑛𝑖 , 
 

(3.44) 

where 𝑐𝑜𝑛𝑠𝑡 is a normalising constant, 𝑇𝑖 is the time length of the 𝑖𝑡ℎ complete sub-catalogue, and          

𝜈𝑖 = 𝜆(1 − 𝐹(𝑚𝑖)). Therefore, for the 𝑖𝑡ℎ complete sub-catalogue, the likelihood function for the 

parameter pair (𝛽, 𝜆) is 

 
𝐿𝑖(𝒎𝑖 , 𝑇𝑖, 𝑛𝑖|𝛽, 𝜆) = 𝐿𝑖𝛽(𝒎𝑖|𝛽) 𝐿𝑖𝜆(𝑇𝑖, 𝑛𝑖|𝜆), 

 
(3.45) 
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and, for the entire catalogue, the combined likelihood function is 

 

𝐿(𝛽, 𝜆) = 𝐿0(𝒎𝟎, 𝒕𝟎|𝛽, 𝜆)∏𝐿𝑖(𝒎𝑖 , 𝑇𝑖, 𝑛𝑖|𝛽, 𝜆).

𝑖=1

 

 

(3.46) 

Kijko and Sellevoll (1989) present an analytic solution for the likelihood function (3.46), but it can be 

readily solved numerically. For the standard error of this MLE, the approximate variance–covariance 

matrix is calculated as 𝐷(𝚯) = 𝐴−1, where 𝐴 is described by 

 

𝐴 = {𝑎𝑖𝑗} = −
𝜕2 ln(𝐿)

𝜕Θ𝑖𝜕Θ𝑗
, 

 

(3.47) 

where 𝚯 = (𝜆, 𝛽). 

The maximum likelihood equations of Weichert (1980) differ from those of Kijko and Sellevoll (1989). 

Those of Weichert (1980) are based on magnitude classes, whereas those of Kijko and Sellevoll (1989) are 

based on the assumption of continuous magnitude values. However, it should be possible to prove that a 

discretised version of the Kijko and Sellevoll (1989) solution is the same as that of Weichert (1980). This is 

an important topic for future research. 

Kijko and Smit (2012) realised the need for a simpler, generalised estimator that could accommodate 

catalogue sub-intervals of varying levels of completeness based on the Aki–Utsu estimator. These authors 

extended the Aki–Utsu maximum likelihood estimator of 𝛽 for catalogues with time intervals with 

different levels of completeness in a most elegant form. Suppose there are 𝑠 sub-catalogues and the 𝑖𝑡ℎ 

sub-catalogue containing 𝑛𝑖 earthquakes have an LoC 𝑚𝑐
𝑖 , and spans a period of 𝑡𝑖 years. Accordingly, 

maximising the likelihood function 

 

𝐿(𝛽|𝑚𝑗
𝑖) =∏∏𝑓(𝑚𝑗

𝑖

𝑛𝑖

𝑗=1

|𝛽)

𝑠

𝑖=1

=∏∏𝛽exp (−𝛽(

𝑛𝑖

𝑗=1

𝑠

𝑖=1

𝑚𝑗
𝑖 −𝑚𝑐

𝑖 )), 

 

(3.48) 

is done through the simple formula 

 

𝛽̂ = (
𝑟1

𝛽̂1
+
𝑟2

𝛽̂2
+⋯+

𝑟𝑠

𝛽̂𝑠
)

−1

, 

 

(3.49) 

where 𝑟𝑖 =
𝑛𝑖

∑ 𝑛𝑗
𝑠
𝑗=1

 and 𝛽̂𝑖 is the Aki–Utsu estimator applied to the 𝑖𝑡ℎ sub-catalogue. The estimator is 

approximately normally distributed, with a standard deviation 
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𝜎𝛽̂ =
𝛽̂

√𝑁
, 

 

(3.50) 

where 𝑁 = ∑ 𝑛𝑖
𝑠
𝑖=1 . This is the same formula as that derived for the classic Aki–Utsu estimator and applied 

to one complete catalogue. The confidence intervals of the 𝛽̂ estimators are given by 

 

(𝛽̂ − 𝑧𝛼
2
𝜎
𝛽̂
2, 𝛽̂ + 𝑧𝛼

2
𝜎
𝛽̂
2), 

 

(3.51) 

where 𝑧𝛼
2
 is the (1 −

𝛼

2
) quantile of the standard normal distribution. The activity rate 𝜆 corresponding to 

𝑚𝑚𝑖𝑛 is given by 

 

𝜆 =
𝑁

∑ 𝑡𝑖exp (−𝛽(𝑚𝑐
𝑖𝑠

𝑖=1 −𝑚𝑚𝑖𝑛)
. 

 

(3.52) 

 

3.2.1. Two additional estimators by Kijko (2017) 

Kijko (2017) presents two more estimators for 𝛽, on which discussions follow here. Choose an arbitrary 

lower limit 𝑚0 for magnitudes. The mean value of the magnitude for any period of time is                           

𝑚̅(0) = ∑ 𝑚𝑗
(0)/𝑛0

𝑛0
𝑗=1 , where 𝑗 = 1,… , 𝑛0. Here, the value 𝑚0 is reference magnitude, specifically less 

than or equal to all levels of completeness of sub-catalogues. If it were known how many events 𝑛0 of 

events 𝑚𝑗
0 ≥ 𝑚0 have occurred during the time interval of the incomplete catalogue, the Aki–Utsu 

estimator (3.2) can be applied 

 

𝛽 =
1

𝑚̅(0) −𝑚0
. 

 

(3.53) 

 The next logical step is to estimate 𝑛0. The number of events in the interval [𝑚0, ∞) in the 𝑖𝑡ℎ sub-

catalogue can be estimated as 

 

𝑛0𝑖 =
𝑛𝑖

[1 − 𝐹(𝑚𝑐
(𝑖))]

, 

 

(3.54) 
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where 𝐹 (𝑚𝑐
(𝑖)
) = 1 − exp [−𝛽 (𝑚𝑐

(𝑖)
−𝑚0)]. Following (3.54), the sum of magnitudes in the 𝑖𝑡ℎ sub-

catalogue, the interval [𝑚0,∞), is 

 

∑𝑚𝑖,𝑗
(0)

𝑛0𝑖

𝑗=1

=
𝑛𝑖 [𝑚̅𝑖 − (𝑚𝑐

(𝑖)
−𝑚0)]

[1 − 𝐹(𝑚𝑐
(𝑖)
)]

, 

 

(3.55) 

and for the entire catalogue, where 𝑚𝑖,𝑗
(0)

 is the magnitude of the 𝑗𝑡ℎ event in the interval [𝑚0,∞). For the 

entire catalogue, consisting of 𝑠 sub-catalogues, the sum of the magnitudes in [𝑚0,∞) is 

 

∑𝑚𝑗
(0)
=

𝑛0

𝑗=1

∑∑𝑚𝑖,𝑗
(0)

𝑛0𝑖

𝑗=1

𝑠

𝑖

=∑
𝑛𝑖 [𝑚̅𝑖 − (𝑚𝑐

(𝑖)
−𝑚0)]

[1 − 𝐹(𝑚𝑐
(𝑖)
)]

𝑠

𝑗=1

 

 

(3.56) 

Finally, it is possible to estimate the mean value of all the magnitudes in the interval [𝑚0, ∞) that occurred 

over the time span of the entire catalogue  

 

𝑚̅(0) =∑𝑚𝑗
(0)
/𝑛0 =

𝑛0

𝑗=1

∑(∑𝑚𝑖,𝑗
(0)

𝑛0𝑖

𝑗=1

)/𝑛0

𝑠

𝑖

=∑
𝑛𝑖 [𝑚̅𝑖 − (𝑚𝑐

(𝑖)
−𝑚0)]

[1 − 𝐹(𝑚𝑐
(𝑖)
)]

𝑠

𝑗=1

/∑(
𝑛𝑖

[1 − 𝐹(𝑚𝑐
(𝑖))]

)

𝑠

𝑖=1

. 

 

(3.57) 

Now, it is possible to substitute equation (3.57) into estimator (3.53), the result of which is 

 

𝛽̂ = 1/

(

  
 
∑

𝑛𝑖[𝑚̅𝑖 − (𝑚𝑐
𝑖 )]

1 − 𝐹 (𝑚𝑐
(𝑖)
)

𝑠
𝑖=0

∑
𝑛𝑖

1 − 𝐹 (𝑚𝑐
(𝑖)
)

𝑠
𝑖=0

−𝑚0

)

  
 
. 

 

(3.58) 

As 𝛽 occurs in the distribution 𝐹(𝑚) it appears on both sides of the equation. In numerical experiments, 

Kijko (2017) finds that iteration of the equation quickly converges. This was also the finding of the current 

author. A rough estimate of the standard deviation of the estimator (3.58) is merely that of the Aki–Utsu 

estimator, which is approximately (Aki, 1965) 
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𝜎𝛽 =
𝛽

√𝑛0
 (3.59) 

 

In the second estimator by Kijko and Smit (2017), iteration is avoided, and their derivation starts from the 

same point as their derivation of the estimator (3.58). However, it will not be derived here, as it is quite 

intuitive, taking a form resembling estimator (3.49). Kijko (2017) merely substitutes the time fraction 𝜏𝑖 =
𝑡𝑖

𝑡
  for the fraction of events 𝑟𝑖 =

𝑛𝑖

𝑛
. 

 

𝛽̂ = (
𝜏1

𝛽̂01
+
𝜏2

𝛽̂02
+⋯+

𝜏𝑠

𝛽̂0𝑠
)

−1

, 

 

(3.60) 

 

and 𝛽̂0𝑖 is estimated using the standard Aki–Utsu estimator over the respective sub-catalogue. Note that 

these methods present "weights" that differ from the original extended Aki–Utsu estimator (3.49). The 

Kijko (2017) method disregards the fact that there are fewer data points in some catalogues because of 

different levels of completeness, and only considers the time span of the catalogue, corresponding to the 

estimated ratio of the number of events in a Poisson process with the same intensity 𝜆. Intuitively, this 

appears to render it inferior to estimator (3.49). However, such assumption disregards the fact that the 

relative number of events stems from a significantly more complex derivation of this method, where a 

hypothetical number of events in a sub-catalogue are assumed above the chosen reference level 𝑚0.  

 

3.2.2. Estimator by Ordaz and Giraldo (2018) as a special case of the 

Kijko–Sellevoll procedure  

Ordaz and Giraldo (2018) attempt to improve on both the Aki–Utsu maximum likelihood estimator and 

that of Kijko and Smit (2012) for 𝛽 and 𝜆 by proposing a joint maximum likelihood estimation of the pair 

(𝛽, 𝜆). This is considered a theoretical improvement, as it uses not only the marginal likelihoods of 𝛽 and 

𝜆 but also their simultaneous likelihood. In addition, Ordaz and Giraldo (2017) show numerically that this 

estimation is superior to separate, mariginal maximum likelihood estimators. However, the current author 

showed that, surprisingly, the Ordaz and Giraldo (2018) equations present only a special case in the 

scheme developed by Kijko and Sellevoll (1989). When no extreme part of the catalogue is used, and it is 

supposed that 𝑚𝑚𝑎𝑥 = ∞ , the equations look exactly the same as those derived from the scheme by 

Kijko and Sellevoll (1989). The derivation of the likelihood functions differs slightly from that of Kijko and 

Sellevoll (1989) in that Ordaz and Giraldo (2018) use every single interval between consequtive 

earthquakes, whereas Kijko and Sellevoll (1989) use the total time span of each complete sub-catalogue. 

It turns out that these differences in the derivation lead to equivalent likelihood functions, as could be 
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expected because the likelihood functions derive from the same initial distributions of magnitude and 

inter-event time distribution. However, note that Kijko and Sellevoll (1989) use the probability of 

observing 𝑛𝑖 earthquakes in a time 𝑇𝑖 equation (3.44), whereas Ordaz and Giraldo (2017) use the the inter-

event time distribution. From a logical point of view, however, the equivalence of the characterisations in 

the Poisson process (as a counting process, or distribution of inter-event times) dictates that the outcome 

should be equivalent. The likelihood function that Ordaz and Giraldo (2017) arrive at is 

 

𝛽̂ = (
𝜏1

𝛽̂01
+
𝜏2

𝛽̂02
+⋯+

𝜏𝑠

𝛽̂0𝑠
)

−1

, 

 

(3.61) 

 

ℒ(𝜆0, 𝛽) =∏∏𝜆01
𝑁exp [−β∑𝑛𝑗

s

j=1

(𝑚0𝑗−𝑚0)] exp [−𝜆0∑𝑇𝑗

𝐿

𝑗=1

exp [−𝛽(𝑚0𝑗

𝑛𝑗

𝑖=1

𝑠

𝑗=1

−𝑚0)]]∏𝛽𝑛𝑗exp [−𝛽𝑛𝑗∑∑(𝑚𝑖,𝑗 −𝑚0𝑗)

𝑛𝑗

𝑗=1

𝑠

𝑖=1

]

𝐿

𝑗=1

, 

 

(3.62) 

where 𝜆0𝑗 is the seismic rate corresponding to earthquakes above the LoC 𝑚0𝑗. This corresponds exactly 

to the equations of Kijko and Sellevoll (1989) without the inclusion of the extreme part of the catalogue. 

The explicit equations given by Ordaz and Giraldo (2018) correspond to those obtained from the general 

closed-form solutions of Kijko and Sellevoll (1989). The explicit equations of Ordaz and Giraldo (2017) 

maximise the likelihood equation (3.46), whereas those of Kijko and Sellevoll (1989) span a wider range 

of cases (i.e. an imposed maximum magnitude, and an extreme [historical] part of the catalogue, which 

are ignored by Ordaz and Giraldo [2018]); however, the results are the same for the special case. 

The nonlinear system of two equations is 

 
𝑁

𝜆̂0
− 𝑇∗ = 0, 

 
 

(3.63) 

𝑁

𝑇∗
∑𝑇𝑗

∗(𝑚0𝑗 −𝑚0)

𝑠

𝑗=1

+
𝑁

𝛽̂
− (𝑄 + 𝑆) = 0 

 

(3.64) 

where 

 

𝑇𝑗
∗ = 𝑇𝑗 exp[−𝛽̂(𝑚0𝑗 −𝑚0)], 

 
(3.65) 
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𝑇∗ =∑𝑇𝑗
∗

𝐿

𝑗=1

, 

 
 

(3.66) 

 

𝑄 =∑𝑛𝑗(𝑚0𝑗 −𝑚0)

𝑠

𝑗=1

, 

 

(3.67) 

𝑆 =∑𝑆𝑗

𝑠

𝑗=1

, 

 

(3.68) 

𝑆𝑗 =∑(𝑚𝑖,𝑗 −𝑚0)

𝑛𝑗

𝑖=1

. 

 

(3.69) 

The exact details of the derivation of equivalence of the two estimators are given in Vermeulen and Kijko 

(2018). 

It has to be acknowledged that the 𝑏-value varies through space and time. Probably the first researchers 

to deal with this phenomenon are Shi and Bolt (1982), Guttorp and Hopkins (1986) and Ogata and Katsura 

(1993). Ogata and Katsura (1993) compose a likelihood function for parameters including 𝛽(𝑡, 𝑥, 𝑦), and 

use a cubic spline method to interpolate 𝛽(𝑡, 𝑥, 𝑦). Shi and Bolt present their general result, as discussed 

in the previous section, but they note that their results are applicable to the 𝑏-value varying in space and 

time. Guttorp and Hopkins (1986) use a running time window to estimate 𝛽(𝑡), showing that 

 

𝐸[𝛽̂(𝑡)] = 𝛽(𝑡) + 𝑂 (
1

𝐾𝑝
) + 𝑂(𝐾), 

 

(3.70) 

and 

 

𝑉𝑎𝑟[𝛽̂(𝑡)] = (
sinh (

Δβ
2 )

Δ
2

)

2

+ 𝑜 (
1

𝐾𝑝
), 

 

(3.71) 

for the estimator 
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𝛽̂ =
1

Δ
log (1 +

Δ

𝑀̅ −𝑀0
), 

 

(3.72) 

for a Poissonian rate 𝑝 and time window [𝑡 − 𝐾, 𝑡 + 𝐾], and bin width Δ. 

Cao and Gao (2002) observe temporal changes in the 𝑏-value beneath the northeastern Japan Island Arc 

over the period 1991–1995 relative to that over the period 1984–1990. According to Hutton et al. (2010), 

the 𝑏-value did not change much in southern California over the period 1932–2008. Wyss et al. (2000) 

note that asperities on faults have the lowest 𝑏-values. However, Wyss and Wiemer (2000) show that the 

7.3 magnitude Landers earthquake in 1992 caused a significant change in the 𝑏-value in much of southern 

California. 

Godano et al. (2014) note that several authors (listed in Godano et al., 2014) have investigated the spatial 

and temporal variability of the 𝑏-value and proposed various physical mechanisms for this variability 

(assuming that it is not caused by variability and/or bias in the statistical estimation). According to some 

other authors (also listed in Godano et al., 2014), the 𝑏-value does not vary significantly for tectonic 

earthquakes, based on the observation that the distribution of the seismic moment is quite stable in space 

and time. 

Godano et al. (2014) investigated the distribution of 𝑏-values. They consider three different regimes for 

the variability of the 𝑏-value, which are (1) it stems from the inclusion of the magnitudes below the 

magnitude of completeness, (2) the slope changes toward larger magnitudes, (3) the 𝑏-value does not 

take on a single value but varies stochastically in terms of space–time. Chan et al. (2012) estimated the 

spatial distribution of 𝑏-values in Taiwan one year prior to the occurrence of several large earthquakes, 

as shown in Figures 7 (a) and (b). The earthquakes were located in areas with slightly lower 𝑏-values than 

those of the surrounding areas. Furthermore, these anomalies in the 𝑏-values appear to evolve with time 

until the actual earthquake occurs. Similarly, in investigating the San Andreas Fault, Wiemer and Wyss 

(1997) hypothesise that "highly stressed asperities", which are potential regions for earthquakes, can be 

identified by low 𝑏-value anomalies. 
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Figure 7(a). Spatial distribution of 𝑏-values in Taiwan one year prior to the occurrence of several large 

earthquakes (from Chan et al., 2012).   
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Figure 7(b). Spatial distribution of 𝑏-values in Taiwan one year prior to the occurrence of several large 

earthquakes (from Chan et al., 2012).  



 

59 
 

Classic PSHA assumes that earthquakes follow a Poissonian distribution in time. The Poisson process is 

the result of events occurring independently. For a given time interval, the probability of having 𝑛 events 

is (Kramer, 1996) 

𝑃[𝑁 = 𝑛] =
(𝜆𝑡)𝑛𝑒−𝜆𝑡

𝑛!
. 

 
(3.73) 

The probability that at least one event occurs is 

 

𝑃[𝑁 ≥ 1] = 1 − 𝑒−𝜆𝑡 . 
 

(3.74) 

For small probabilities in a unit time interval, the following approximation can be made (Kijko, 2011) 

 

𝑃[𝑁 ≥ 1; 𝑡 = 1] = 1 − 𝑒−𝜆 = 1 − (1 − 𝜆 +
1

2
𝜆2 −⋯) ≈ 𝜆 

 

(3.75) 

If the RoE of earthquakes with magnitude 𝑚 were 𝜆𝑚, the RoE 𝜆𝑚1 of 𝑚1, with 𝑚1 > 𝑚 is related to 𝜆𝑚 

through the GR relation from the relationship 

 
𝜆𝑚1 = 𝜆𝑚(1 − 𝐹(𝑚1|𝑚𝑐 = 𝑚)), 

 
(3.76) 

where 𝐹(𝑚1|𝑚𝑐 = 𝑚) is the cumulative GR relation in distribution form. Characteristic of the Poisson 

process is that 𝜆 stays constant through time and, in many instances, this assumption is sufficient for 

hazard analysis. However, there is ample reason to believe that 𝜆 ≡ 𝜆(𝑡) varies with time. In the following 

section, this topic is considered in more detail. Most of the models dealt with in the next section are not 

readily implementable yet; however, they are discussed not only for the sake of completeness but also 

because research is required to incorporate these models and methods into readily implementable PSHA 

practice. 

 

3.3.  Non-Poissonian Seismicity Models  

3.3.1. Renewal processes 

The inter-event time distribution defines the renewal process completely (Polidoro et al., 2013). The 

renewal process is a generalisation of the stationary Poisson process, where the inter-event time 

distribution may take on different distributions from the exponential distribution. The result is a process 

where the probability of the next event is dependent on the time occurrence of the previous event. In 
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other words, the process is not ''memory-less'' as in the case of the Poisson process. For the property of 

''memory-lessness'' to hold, the inter-event time distribution has to be exponential. The term ''renewal 

process'' alludes to the property that the probability of the next event occurring in a time interval from 

the present depends on the time of occurrence of the previous event, but events prior to that have no 

effect. Therefore, the process, or more specifically, the ''memory'' of the process is reset. The most 

popular of such methods is probably the Brownian Relaxation Oscillator model introduced by Matthews 

et al. (2002). This model features a deterministic oscillator, moving between the minimum and maximum 

rupture potential, with a stochastic Brownian motion added to the motion of the oscillator. The authors 

of this method specifically decided not to attach any physical state variable to the rupture potential, as 

they view the total rupture potential that correlates with, but is not completely described by, such 

variables of the state as strain, stress, moment deficit, and the Coulomb stress history on a fault. The inter-

event time distribution resulting from this model is an inverse Gaussian distribution (Matthews et al., 

2002) 

 

𝑓(𝑡; 𝜇, 𝛼) =  (
𝜇

2𝜋𝛼2𝑡3
)
1/2

𝑒𝑥𝑝 [−
(𝑡 − 𝜇)2

2𝜇𝛼2𝑡
], 

 

(3.77) 

where 𝛼 is the coefficient of variation and 𝜇 is the mean recurrence interval length. Matthews et al. (2002) 

view the coefficient of variation as of greater importance than the standard deviation because of its role 

in the interpretation and use of the model. The coefficient of variation is also called the aperiodicity, as it 

describes how many inter-event times are clustered around the mean value (which may be seen as the 

period). The model by Matthews et al. (2002) is presented as a theoretical model that competes well with 

models chosen based on empirical analysis, such as the lognormal, Weibull, and gamma distributions. This 

model is attractive because it is not only derived theoretically but also competes well with the empirical 

models. 

The lognormal distribution is desirable for its wide application and familiarity, and because it relates 

closely to the normal distribution, whereas the Weibull and gamma models are desirable because of their 

wide application in failure analysis (Matthews et al., 2002), and because they include the exponential 

distribution of the Poisson process as a special case (Matthews et al., 2002). 

Pandey and van Noortwijk (2004) use the Erlang distribution for time-dependent structure reliability 

analysis. The substantiation is analogous to the argument used by Matthews et al. (2002) for the Brownian 

Passage-time model; however, in this instance, the added stochastic motion does not take on a normal 

distribution. Instead, a gamma distribution is used. Polidoro et al. (2013) note the applicability of the 

model to earthquake inter-event times, and that, compared with the Brownian Passage-time model, it 

allows the analytic formulation of the counting process. 
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3.3.2. Markov renewal processes 

These processes allow for dependence between the magnitude and arrival times of earthquakes while 

maintaining the renewal property (properties of the next arrival are independent of all but the last arrival) 

(Polidoro et al., 2013). The two models of note in this category (also the only two listed by Polidoro et al., 

2013) are the slip-predictable and the time-predictable models.  

The slip-predictable model represents a regime in which stress accumulates from a ground state for a 

random period of time, after which it reverts to the ground state again. The magnitude of the earthquake 

is determined by such a reduction in stress and is, therefore, dependent in a deterministic fashion on the 

time that has elapsed since the last event. The inter-event times are modelled by a Weibull distribution. 

Note that the distribution of inter-event times uniquely determines the distribution of magnitude 

(Polidoro et al., 2013). 

The time-predictable model, on the other hand, starts by specifying a fixed load state above the ground 

state at which rupture will take place. The rate at which the load increases is an exact function of time. 

The energy release, however, is random when the rupture takes place. The inter-event time between the 

last event and the next event is, therefore, dependent on the magnitude of the previous event (Polidoro 

et al., 2013). 

 

3.3.3. Earthquake clusters and aftershocks 

Earthquakes tend to occur as clearly recognisable clusters in time and space in some regions, such as 

Japan (e.g. Ogata, 1988) and California (USA) (e.g. Reasenberg and Jones, 1989). Usually, one earthquake 

is considered the main shock, those before it as foreshocks, and those after it as aftershocks. It is 

commonly assumed that the main shock should be the largest in the cluster (or sequence) of earthquakes. 

Omori (1894) proposes a mathematical relation, later generalised by Utsu and Ogata (1995), to describe 

the decay of aftershock rates with time after the main shock. The generalised version by Utsu and Ogata 

(1995) is given by 

 

𝜆𝐴(𝑡) =  
𝐾

(𝑡 − 𝑐)𝑝
, 

 

(3.78) 

where 𝜆𝐴 is the rate of aftershock occurrence, and 𝐾, 𝑐, and 𝑝 are constants. Equation (3.78) is often 

called the modified Omori's law or the Omori–Utsu formula. The modified Omori's law appears to be 

accepted generally. 

Yeo and Cornell (2005) devised a method to assess the hazard of aftershocks for a given main shock in a 

time-dependent fashion. They call their method aftershock PSHA (or APSHA). The essence of the method 
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is integration over a given time interval of a Gutenberg–Richter-type frequency-magnitude law that is 

scaled according to the modified Omori's law. Specifically, the mean RoS over a given time is given by 

 

𝜇̃(𝑦, 𝑡, 𝑇;𝑚𝑚) = {
10𝑎+𝑏(𝑚𝑚−𝑚𝑚𝑖𝑛) − 10𝑎

𝑝 − 1
[(𝑡 + 𝑐)1−𝑝 − (𝑡 + 𝑇 + 𝑐)1−𝑝]}

× ∬ 𝑃[𝑌 > 𝑦|𝑚, 𝑟]𝑓𝑅|𝑀(𝑟|𝑚)𝑓𝑀(𝑚;𝑚𝑚)𝑑𝑟𝑑𝑚

𝑚𝑚

𝑅 𝑚𝑚𝑖𝑛

, 

 

(3.79) 

where 𝑎 and 𝑏 are the constants of the GR relation, 𝑚𝑚 is the magnitude of the main shock, and 𝑚𝑚𝑖𝑛 is 

the lower limit of magnitudes of interest. The term in curly brackets is the Gutenberg–Richter-type FMSL 

that is scaled according to the modified Omori's law, and the integral term corresponds to the integral 

term on a typical PSHA used to rescale the seismicity rate (see, e.g. Kramer, 1996). 

Iervolino et al. (2014) devised a methodology to include aftershock sequences in a long-term PSHA using 

a modelling paradigm, where the main shock and the aftershocks are considered to occur in a single 

instant of time. They call this method sequence-PSHA (or SPSHA). They show that the effect of aftershocks 

on the exceedance of some measure of intensity over the long term can be accounted for by multiplying 

the recurrence rate of main shocks by an appropriate term. 

3.3.4. Seismic hazard analysis with the ETAS model 

The Epidemic Type Aftershock Sequence (ETAS) model, introduced by Ogata (1988), is not based on the 

assumption that all main shocks are greater than their aftershocks. Moreover, it allows for aftershocks to 

have aftershocks themselves, and an aftershock can have more than one main shock, or parent (Zhuang 

et al., 2012). In fact, this model does not distinguish clearly between main shocks and aftershocks. The 

recurrence rate of the ETAS model is given by: 

 

𝜆(𝑡) = 𝜇 +∑ 𝑐(𝑚𝑖)𝑔(𝑡 − 𝑡𝑖)

𝑡𝑖<𝑡

, 

 

(3.80) 

where 𝜇 is the main shock recurrence rate, 𝑚𝑖 is the magnitude of the 𝑖𝑡ℎ earthquake, and 𝑐(∙) and 𝑔(∙) 

specify the dependence of the aftershock recurrence rate depending on magnitude and time, respectively. 

In equation (3.80), the modified Omori's law is used often for the function 𝑔(𝑡 − 𝑡𝑖), and the PDF 

corresponding to the Gutenberg–Richter relation is used for 𝑐(𝑚𝑖). 

 Beauval et al. (2006) account for aftershocks by using Monte Carlo simulations of the ETAS model. 

Iervolino et al. (2014) mention the possibility for their model to be adapted to account for aftershocks 

occurring according to the ETAS model. 
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3.3.5. Seismic hazard analysis with other non-Poissonian models 

For a Poisson point process, the following approximation can be made 

 

Pr[𝑇 ≤ 𝑡] = 1 − 𝑒∫ 𝜆(𝑠)𝑑𝑠
𝑡

0 = 1 − (1 −∫ 𝜆(𝑠)𝑑𝑠
𝑡

0

+
1

2
[∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

]

2

−⋯)1 ≈ ∫ 𝜆(𝑠)𝑑𝑠
𝑡

0

, 

 

(3.81) 
 

where the last approximation holds if max
𝑠∈[𝑡0,𝑡)

{𝜆(𝑠) × 𝑡} were small. This is a generalisation of, e.g. Cornell 

and Winterstein (1988). Polidoro et al. (2013) provide the elegant and simple approximation  

 
Pr[𝑋 ≥ 𝑎|𝑁(𝑡0) & 𝑙𝑎𝑠𝑡 𝑒𝑣𝑒𝑛𝑡 𝑎𝑡 𝑡0]

≈ [1 − ∫ 𝑓𝑡(𝑠|Ηt)𝑑𝑠
𝑡

0

]

× ∫ 𝑃[𝐼𝑀 > 𝑎|𝑚, 𝑟] ∙ 𝑓(𝑚│𝑁(𝑡0) = 0 & 𝑁(𝑡0 + 𝑡) = 1)𝑑𝑚
𝑚𝑚𝑎𝑥

𝑚𝑚𝑖𝑛

. 

 

(3.82) 
 

Approximations (3.81) and (3.82) hold for several models used in practice; however, the general case is 

history dependent and, therefore, the analysis must be formulated carefully for the present time 𝑡0 , as 

well as the projected time. 

It is important to note that there are time-dependent models that are renewal point processes, i.e. the 

hazard rate depends merely on the time elapsed since the previous event, and fully history-dependent 

models, in which the complete history (or a large part of it) plays a role. 

A general history-dependent model, such as the ETAS model, can become almost overly complex, 

as  𝜆(𝑢|Ηt) = 𝜆(𝑢|Ηt0)+ 𝜆(𝑢|Ηt0) must be accounted for. This implies that the hazard rate at the time 

t0 + t (i.e. t time units from now) depends on both the history Ηt0  up until the present and the Ηt0+t|Ηt0, 

i.e. what happens in t time units from now. This can render approximations (3.81) and (3.82) void, 

unfortunately. In such an instance, the sum has to be evaluated  

 

𝑃[𝐼𝑀 > 𝑖𝑚] = ∑𝑃[𝐼𝑀 > 𝑖𝑚|𝑁(𝑡0)

∞

𝑛=1

∩ 𝑁(𝑡) = 𝑛] × 𝑃[𝑁(𝑡) = 𝑛|𝑁(𝑡0) = 0], 

 

(3.83) 

where IM is some intensity measure, and N(t) is the counting process. The second term is an integral over 

a random process (Daley and Vere-Jones, 2007), of which the theory is beyond the scope of the current 

work. However, Beauval et al. (2006) did conduct an investigation by using Monte Carlo simulations. 
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As regards the models that do allow practically applicable PSHA, such as those discussed in section 2, 

equation (3.82) holds. It is worth noting the series of approximations from which equation (3.82) follows 

(Polidoro et al., 2013) 

 
𝑃[𝐼𝑀 > 𝑖𝑚| 𝑁(𝑡0) = 0] 

= ∑𝑃[𝐼𝑀 > 𝑖𝑚|𝑁(𝑡0) = 0 ∩ 𝑁(𝑡) = 𝑛] × 𝑃[𝑁(𝑡) = 𝑛|𝑁(𝑡0) = 0]

∞

𝑛=1

 

 
≈ 𝑃[𝐼𝑀 > 𝑖𝑚|𝑁(𝑡0) = 0 ∩ 𝑁(𝑡) = 1] × 𝑃[𝑁(𝑡) = 1|𝑁(𝑡0) = 0] 

 
≈ 𝑃[𝐼𝑀 > 𝑖𝑚|𝑁(𝑡0) = 0 ∩ 𝑁(𝑡) = 1] × 𝑃[𝑁(𝑡) ≥ 1|𝑁(𝑡0) = 0] 

 
= 𝑃[𝐼𝑀 > 𝑖𝑚|𝑁(𝑡0) = 0 ∩ 𝑁(𝑡) = 1] × {1 − 𝑃[𝑁(𝑡) = 0|𝑁(𝑡0) = 0] 

= 𝑃[𝐼𝑀 > 𝑖𝑚|𝑁(𝑡0) = 0 ∩ 𝑁(𝑡) = 1] × ∫ 𝑃[𝐼𝑀 > 𝑖𝑚|𝑚, 𝑟] ∙ 𝑓𝑀|𝑁(𝑡0)=0∩𝑁(𝑡)=1(𝑚)𝑑𝑚
𝑚

. 

 

(3.84) 

The physical interpretation of these approximations is that the hazard can be approximated by the 

probability of one event occurring, as the rest of the events have a negligible effect on probability in typical 

situations, such as long recurrence intervals of earthquakes. This is the so-called first-event approximation 

(Cornell and Winterstein, 1988).  

The first-event approximation is useful in all the instances described in Polidoro et al. (2013). These 

include the Brownian Passage-time model (or inverse Gaussian renewal process), the inverse Erlang 

renewal process, the inverse gamma renewal process, the homogeneous Poisson process, the slip-

predictable model, and the time-predictable model. Note, however, that it only holds for the first-event 

approximation and the hazard function ℎ𝑡(∙) effectively resets when a new event occurs.  

Once the overhead seismicity rate becomes large, the probability of the actual renewal of the process has 

to be dealt with and integrated over all the possible courses the process might take. No analytical 

approximations appear to have been reported in the literature for an instance of the overhead seismicity 

not being small enough to allow for the first-event approximation. Cornell and Winterstein (1988) use 

numerical models (Monte Carlo models) to determine hazard. Therefore, the use of analytic 

approximations is constrained to instances with low seismicity, unless new analytic forms can be 

developed for more general cases. Nevertheless, the first-event approximation is probably applicable in 

most instances (see, e.g. Cornell and Winterstein, 1988). 

A useful property that holds in many instances (exceptions include the Markov renewal processes) is that 

both 𝜆 and ℎ for a lower magnitude can be rescaled for higher magnitudes as (derived from Cornell and 

Winterstein, 1988) 

 
𝜆𝑚2 = 𝜆𝑚1(1 − 𝐹𝑀(𝑚2|𝑚𝑚𝑖𝑛 = 𝑚1)), 

 
(3.85) 
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ℎ𝑚2 = ℎ𝑚1(1 − 𝐹𝑀(𝑚2|𝑚𝑚𝑖𝑛 = 𝑚1)), 

 

where 𝑚2 > 𝑚1, and 𝐹𝑀 is the distribution function of magnitude. 

Unfortunately, one of the fundamental equations of classical PSHA is refuted in the general case of a point 

process, which is that the probability of exceeding an event at least once in a given time period is  

 
𝑃[𝑌 > 𝑦; 𝑡] =  1 − exp [−𝜆(𝑦) ∙ 𝑡] 

 
(3.86) 

For a non-homogeneous Poisson process 𝜆,∙ 𝑡 can be replaced by Λ(𝑡) ≔ ∫ 𝜆(𝑡)𝑑𝑡
𝑡

𝑡0
, but the exponential 

distribution in equation (3.86) can usually be replaced exactly by the inter-event time cumulative 

distribution function (CDF). The disadvantage is that much of the simplicity of equation (3.86) is lost, as 

well as the ''memory-lessness'' property of the exponential distribution. 

An ideal generalisation of the classic PSHA would probably be that in which locally "flat" approximations 

can keep the desirable properties of the homogeneous Poisson process. Because the deviation is often 

not far from the idealised case of the homogeneous Poisson process, such approximations might not be 

too farfetched. Two relevant studies in this regard are the Weibull distribution used by Cornell and 

Winterstein (1988) and the introduction of the compound/Bayesian distribution, mentioned by Cornell 

and Winterstein (1988) and used by Kijko and Graham (1999). 

Cornell and Winterstein (1988) introduced a Weibull model for both inter-event time and magnitude. This 

is an elegant generalisation of the exponential distribution, including the exponential distribution as a 

special case. The Weibull model allows more weight in the tail, enabling "characteristic" inter-event times 

and magnitudes. Further, the Weibull model allows the assessment of the traditional hazard parameters. 

 

3.3.6. Weibull model of Cornell and Winterstein (1988).  

Cornel and Winterstein (1988) generalised the Poisson process by extending the inter-event time 

distribution to a Weibull model that includes the exponential distribution of the Poisson process as a 

special case 

 

1 − 𝐹𝜏(𝑡) = 𝑃[𝜏 > 𝑡] ≈ exp [−(
𝑉𝜏! 𝑡

𝐸[𝜏]
)

1
𝑉𝜏
], 

 

(3.87) 

where 𝑉𝜏 = (𝑣𝑎𝑟[𝑇])
1

2 /𝐸[𝜏] is the coefficient of variation, also called aperiodicity (Zhuang et al., 2012.) 

The value of 𝑉𝜏 is commonly between 1 and 0, for which the approximation (3.87) holds for deterministic, 

periodic behaviour 𝑉𝜏 = 0 (i.e. no random scatter), and for the Poisson model 𝑉𝜏 = 1 (standard deviation 
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of inter-event time is equal to its expected value). The hazard function associated with approximation 

(3.87) takes the form 

 

ℎ(𝑡0) =
𝑓𝜏(𝑡0)

1 − 𝐹𝜏(𝑡)
≈
(𝑉𝜏 − 1)!

𝐸[𝜏]
(
𝑉𝜏! 𝑡0
𝐸[𝜏]

)
(1−𝑉𝜏) 𝑉𝜏⁄

. 

 

(3.88) 

 

A similar model is used for magnitude so that the extended Gutenberg–Richter FMSL is 

 

ln[𝑁(𝑚)] ≈ 𝛼 − [𝛽(𝑚 −𝑚0)]
1/𝑉𝑀 ,   𝑚 ≥ 𝑚0 

 

(3.89) 
 

with 𝑉𝑀 = (𝑣𝑎𝑟[𝑀])
1

2/𝐸[𝑀]. 

Nemati (2015) investigated the varying rates and migration of seismicity in Northern Iran, including the 

Alborz seismotectonic province, which is the area south of the Caspian sea, the Kopeh Dagh (also referred 

as the Kopet Dagh) seismotectonic province, which lies directly east of the Kopeh Dagh province, and the 

Azerbaijan seismotectonic province just west of the Alborz province. Nemati (2015) hypothesises that the 

local migration of seismicity in the Alborz seismotectonic province, evident in aftershocks, could be 

related to the regional migration of seismicity. The study by Nemati (2015) indicates that periods of higher 

and lower seismicity in this area could be distinguished clearly. In Azerbaijan, it appears that the east of 

the region was seismically active in the period 1801–1895, but the west was active during 1930–1934, and 

recent seismicity is mostly uniform in the north. A cumulative plot of events clearly shows that different, 

discrete periods of varying seismicity occur. In the Kopeh Dagh area, large seismic events appear to have 

migrated from east to west over the last two centuries. A cumulative plot of this clearly shows discrete 

periods of varying seismicity. According to Nemati (2015), there is a clear westward migration of seismicity 

in the north of Iran, which is logical in the context of the tectonic dynamics of the area.  

Goldfinger et al. (2013) propose that exceptionally long cycles can occur in fault activity, which can only 

be investigated by palaeoseismic studies. However, unless these cycles include abrupt changes, they have 

no effect on seismic hazard assessments and the 𝑏-value, as the period over which the cycles occur render 

them nearly stationary. However, acceptance of the concept of very long cycles of seismicity does 

contribute to the assessment of the maximum possible earthquake 𝑚𝑚𝑎𝑥, as is discussed in the next 

chapter. 

There appears to be a global increase in seismicity. However, Omnetti (2013) dismisses this as an artefact 

of a random time series, whereas Bufe and Perkins (2005) believe it is an indication of the Earth "behaving 

as a coherent tectonic system''.  

Awoyemi et al. (2017) studied the variation of the 𝑏-value with space and time for the African and parts 

of the Eurasian plates. In their study, as regards temporal variations, a certain number of events were 
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selected for a moving window (Figure 8, for example) and, for spatial variations, grid points were 

calculated for a constant radius.  

 

3.4. Solution to Simultaneous 𝒃-value and Seismicity Variations 

Kijko et al. (2016) present an elegant solution to variations in the 𝑏-value and seismicity, both spatially 

and temporally. This is the compound distribution, in which a parameter in the distribution of a random 

variable is also a random variable (DeGroot, 2005). Benjamin (1968) and Campbell (1982, 1983) are 

probably the first to implement compound distributions in seismic hazard analysis. They employ the 

gamma distribution for both the 𝑏-value and the mean seismic activity 𝜆. The PDF of the gamma 

distribution has a form  

 

𝑓𝑋(𝑥) = 𝑥
(𝑞−1)

𝑝𝑞

Γ(𝑞)
exp(−𝑝𝑥) ,   𝑥, 𝑝, 𝑞 > 0, 

 

(3.90) 

in which Γ(𝑞) is the gamma function 

 

Γ(𝑞) = ∫ 𝑦𝑞−1 exp(−𝑦)𝑑𝑦
∞

0

, 

 

(3.91) 

where the parameters 𝑝 and 𝑞 are related to the mean 𝜇𝑥 and variance 𝜎𝑥
2 by the relations 

 

𝜇𝑥 =
𝑞

𝑝
, 

 

(3.92) 

 

𝜎𝑥
2 =

𝑞

𝑝2
. 

 

(3.93) 
 

Mixing the GR distribution with the gamma distribution, where 𝑝𝛽 =
𝜇𝛽

𝜎𝛽
2  and 𝑞𝛽 = (

𝜇𝛽

𝜎𝛽
)
2

, the density 

distribution is obtained (denoting 𝜇𝛽 by 𝛽) 

 

𝑓𝑀(𝑚|𝑝𝛽 , 𝑞𝛽) = 𝐶𝛽𝛽 (
𝑝𝛽

𝑝𝛽 +𝑚𝑚𝑎𝑥 −𝑚𝑐
)

𝑞𝛽+1

 

 

(3.94) 

where 
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𝐶𝛽 = [1 − (
𝑝𝛽

𝑝𝛽 +𝑚𝑚𝑎𝑥 −𝑚𝑐
)

𝑞𝛽

]

−1

 

 
(3.95) 

If, in the same way, the variation of 𝜆 with a gamma distribution were modelled, with 𝑝𝜆 =
𝜇𝜆

𝜎𝜆
2 and                

𝑞𝜆 = (
𝜇𝜆

𝜎𝜆
)
2
, the compound Gamma–Poisson distribution is obtained (Benjamin, 1968) 

 

𝑃𝑛(𝜆, 𝑡, 𝑝𝜆 , 𝑞𝜆) =
Γ(𝑛 + 𝑞𝜆)

𝑛! Γ(𝑞𝜆)
(
𝑝𝜆

1 + 𝑝𝜆
)
𝑞𝜆
(

𝑡

𝑡 + 𝑝𝜆
)
𝑛

. 

 

(3.96) 

The gamma distribution is dynamic and versatile, i.e. it is ideal to model the distribution of 𝛽 and 𝜆. 

 

3.5. Comparative Study 

The current author conducted a comparison on a number of selected estimators [(3.32), (3.46), (3.49), 

(3.58), and (3.60)] by employing Monte Carlo simulations. Estimator (3.32) is the Weichert (1986) 

maximum likelihood estimator based on magnitude intervals (classes). Estimator (3.46) is the Kijko and 

Sellevoll (1989) likelihood equation, maximised to estimate the parameters. Estimator (3.49) is the 

extended Aki–Utsu estimator (Kijko and Smit, 2012). This is a pure maximum-likelihood-based solution, of 

which the basis is the Aki–Utsu estimator [equation (1)], extended to accommodate incomplete 

catalogues. Estimators (3.58) and (3.60) are based on and motivated by the extended Aki–Utsu estimator. 

The number of earthquakes is extrapolated to a lower reference magnitude, on which the estimates are 

subsequently based. The current author is critical of the estimator (3.60); however, his reservations are 

based merely on intuition. 

The particulars of the inputs for the Monte Carlo simulations and the results are reported in Tables 1 (a) 

and (b). 

Synthetic catalogue: 

𝜷 =2.303, (b=1), mmax = 7.0, m0 = 3.0;  λ0 = 100; 

Complete part 1 50 years duration. mc1 = 4.2 

Complete part 2 50 years duration. mc2 = 4.0 

Complete part 3 50 years duration. mc3 = 3.6 

Complete part 4 50 years duration. mc4 = 3.0 
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Table 1 (a). Results of 𝛽 assessments by different procedures. The assessments are based on 10 000 

simulated catalogues.  

  
Kijko–Smit, 2012 

 
Kijko, 2017 (1) 

 
Kijko, 2017 (2) 

Kijko–
Sellevoll, 

1989 

Weichert, 

1986 

Mean 2.1903 2.0947 2.0866 2.1821 2.0046 

Standard 
deviation 

0.0265 0.0395 0.0432 0.0269 0.0337 

MSE (mean 
square error) 

0.0133 0.0448 0.0485 0.0153 0.0899 

Bias -0.1125 -0.2080 -0.2160 -0.1207 -0.2980 

99% confidence 
interval 

[2.1289, 2.2538] 
(span: 0.1249) 

[2.0060, 2.1917] 
(span: 0.1857) 

[1.9884, 
2.1900] 

(span: 0.2061) 

[2.1196, 
2.2465] 

(span: 0.1269) 

[1.9271, 
2.0857] 

(span: 0.1586) 

95% confidence 
interval 

[2.1460, 2.2335] 
(span: 0.0875) 

[2.0314, 2.1614] 
(span: 0.1300) 

[2.0170, 
2.1585] 

(span: 0.1415) 

[2.1370, 
2.2260] 

(span: 0.0890) 

[1.9503, 
2.0609] 

(span:0.1106) 

 

Synthetic catalogue: 

𝜷 = 2.303, (b=1), mmax = 9.0, m0 = 3.0;  λ0 = 100; 

Complete part 1 50 years duration. mc1 = 4.2 
Complete part 2 50 years duration. mc2 = 4.0 
Complete part 3 50 years duration. mc3 = 3.6 
Complete part 4 50 years duration. mc4 = 3.0 

 

Table 1 (b).  Results of 𝛽 assessments by different procedures. The assessments are based on 10 000 
simulated catalogues.  

  
Kijko–Smit, 2012 

 
Kijko, 2017 (1) 

 
Kijko, 2017 (2) 

Kijko–
Sellevoll, 

1989 

Weichert, 
1986 

Mean 2.1903 2.0947 2.0866 2.1821 2.0046 

Standard 
deviation 

0.0265 0.0395 0.0432 0.0269 0.0337 

MSE 0.0133 0.0448 0.0485 0.0153 0.0899 

Bias -0.1125 -0.2080 -0.2160 -0.1207 -0.2980 

99% confidence 
interval 

[2.1289, 2.2538] 
(span: 0.1249) 

[2.0060, 2.1917] 
(span: 0.1857) 

[1.9884, 
2.1900] 

(span: 0.2016) 

[2.1196, 
2.2465] 

(span: 1.269) 

[1.9271, 
2.0857] 

(span: 0.1586) 

95% confidence 
interval 

[2.1460, 2.2335] 
(span: 0.0875) 

[2.0314, 2.1614] 
(span: 0.1300) 

[2.0170, 
2.1585] 

(span: 0.1415) 

[2.1370, 
2.2260] 

(span: 0.0890) 

[1.9503, 
2.0609] 

(span: 0.1106) 
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As the results indicate, the performance of all the estimators is quite similar, with the performance of the 

Kijko–Smit (2012) procedure and the Kijko–Sellevoll procedure appearing slightly superior. However, 

more variation in parameters 𝑚𝑐𝑖, 𝜆0, and 𝑚𝑚𝑎𝑥 are required to arrive at any firm conclusions. Some 

estimators perform better in one part of (𝑚𝑐𝑖, 𝜆0, 𝑚𝑚𝑎𝑥) space, whereas others can perform better in 

other parts of the space. A study on their performance with varying 𝑏-values should also be considered to 

enhance the results, as, in reality, the 𝑏-value does vary and is uncertain. The findings of this brief study 

do not facilitate any clear conclusion about the superiority of any of the methods investigated, or their 

applicability for use in PSHA.  

 

 

Figure 8. Variation of 𝑏-value with space and time for the African and parts of the Eurasian plates (from 

Awoyemi et al., 2017).   
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Figure 9(a). Performance of the first estimator of Kijko (2016). The synthetic catalogue consists of four 
sub-catalogues, each of 50 years duration, and at levels of completeness 4.2, 4.0, 3.6, and 3.0. The thick 
solid line indicates the value of the estimator, thin solid lines indicate 1 standard deviation, and the dashed 
lines indicate the 95% and 99% confidence limits. 
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Figure 9(b). Performance of the Kijko (2016) second estimator. The synthetic catalogue consists of four 

sub-catalogues, each of duration of 50 years at levels of completeness of 4.2, 4.0, 3.6, and 3.0. The thick 

solid line indicates the value of the estimator, thin solid lines indicate 1 standard deviation, and the dashed 

lines indicate the 95% and 99% confidence limits. 
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Figure 9(c). Performance of the Weichert (1986) estimator. The synthetic catalogue consists of four sub-

catalogues, each of 50 years duration at levels of completeness of 4.2, 4.0, 3.6, and 3.0. The thick solid 

line indicates the value of the estimator, thin solid lines indicate 1 standard deviation, and the dashed 

lines indicate the 95% and 99% confidence limits. 
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Figure 9(d). Performance of the extended Aki–Utsu estimator (Kijko and Smit, 2016). The synthetic 

catalogue consists of four sub-catalogues, each of 50 years duration, at levels of completeness of 4.2, 4.0, 

3.6, and 3.0. The thick solid line indicates the value of the estimator, thin solid lines indicate 1 standard 

deviation, and the dashed lines indicate the 95% and 99% confidence limits. 
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Figure 9(e). Performance of the Kijko–Sellevoll (Kijko and Sellevoll, 1989) estimator. The synthetic 

catalogue consists of four sub-catalogues, each of 50 years duration, at levels of completeness of 4.2, 4.0, 

3.6, and 3.0. The thick solid line indicates the value of the estimator, thin solid lines indicate 1 standard 

deviation, and the dashed lines indicate the 95% and 99% confidence limits. 

 

However, the results of this study do appear to indicate that the Weichert (1980) estimator is biased at 

lower activity rates (relating to fewer observations). As indicated by the results (Tables 1[a] and [b]), the 

other estimators to some extent outperform the Weichert (1980) estimator. Similar deductions can be 

made from the simulations, of which the results are shown in Figures 9(a–e). The performance of the 

other estimators is extremely similar. Using estimator (3.58) is not recommended, because of its 

complexity and the need for iteration. Either estimator (3.46) or estimator (3.60) can be used, depending 

on which is more applicable. 
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4. Area-Characteristic, Maximum Possible Earthquake Magnitude 𝒎𝒎𝒂𝒙 

“The problem of evaluating the maximum earthquake possible for a particular seismic region has always 

occupied one of the central places in seismology. This is attributable, on the one hand, to the fact that the 

maximum possible magnitude 𝑀𝑚𝑎𝑥 is one of the parameters of the earthquake recurrence law [i.e. the 

Gutenberg–Richter law], and on the other hand, to the fact that the possible destructive consequences of 

earthquakes in a particular region, as well as the seismic resistant construction norms determined by them, 

are quite dependent on 𝑀𝑚𝑎𝑥.” (Pisarenko, 1991). 

 

4.1. Parametric Estimators 

The first notable estimator for 𝑚𝑚𝑎𝑥 was probably that derived by Pisarenko (1991) and Pisarenko et al. 

(1996). The latter is a statistically optimal estimate of 𝑚𝑚𝑎𝑥 , i.e. it is unbiased and has minimum variance 

in an ideal case, where the magnitude is defined well and no uncertainty exists in the parameters. The 

estimator derives from the Rao–Blackwell theorem, which states that, given an unbiased estimator for a 

parameter 𝜃, conditional to a complete sufficient statistic, it gives the minimum variance unbiased 

estimator 𝜃̅ of 𝜃. Now, 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠  is a completely sufficient statistic. An unbiased estimator for 𝑚𝑚𝑎𝑥 is 

(Pisarenko, 1996) 

 

𝑚̂𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 +

𝐹(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 )

𝑛𝑓(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 )

, 

 

(4.1) 

where n is a number of seismic events. By using (4.1.) and the sufficient statistic 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠  , the minimum 

variance unbiased estimator is derived, given by 

 

𝑚̅̂𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 +

1

𝑛𝑓(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 |𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 )
. 

 

(4.2) 

The best unbiased estimator of the variance of 𝑚̅̂𝑚𝑎𝑥 is 

 

𝑣𝑎𝑟̂[𝑚̅̂𝑚𝑎𝑥] =
1

𝑛2𝑓(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 |𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 )2
. 

 

(4.3) 

Pisarenko et al. (1996) present estimations of 𝑚𝑚𝑎𝑥 when the apparent magnitude is considered when 

parameters are uncertain, and when the LoC changes with time (i.e. incomplete catalogues).  
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Pisarenko (1991) proposes a method to determine the 1 − 𝛼 upper confidence limit of 𝑚𝑚𝑎𝑥. In the case 

of the GR relation, it is given by 

 

𝑚𝑚𝑎𝑥,1−𝛼 = 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 −

1

𝛽
ln [

1 − (1 − 𝛼
1
𝑛)exp [𝛽(𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 −𝑚𝑐)]

𝛼
1
𝑛

], 

 

(4.4) 

or, in a more general instance of a frequency-magnitude distribution 𝐹(𝑚) 

 

Pr [𝑚𝑚𝑎𝑥 < 𝐹−1 (𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 ; 𝛼

1
𝑛)] = 1 − 𝛼, 

 

(4.5) 
 

which leads to 

 

Pr[𝑚𝑚𝑎𝑥 < 𝑧] = 1 − [𝐹(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 ; 𝑧)]𝑛. 

 
(4.6) 

This is known as the fiducial distribution function (Pisarenko, 1991; Kijko and Singh, 2011).  

"The fiducial distribution function 𝑃𝑟[𝑚𝑚𝑎𝑥 < 𝑧] has the following sense: for any true value of the 𝑚𝑚𝑎𝑥 

parameter and for the sample statistics [𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 ] corresponding to it the inequality 𝑚𝑚𝑎𝑥 < 𝑧 is satisfied 

with the probability." (Pisarenko, 2001). 

 

Pr[𝑚𝑚𝑎𝑥 < 𝑧] = 1 − [𝐹(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 ; 𝑧)]𝑛, 𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 ≤ 𝑧 < ∞, 
 

(4.7) 

as 𝑧 → ∞, Pr[𝑚𝑚𝑎𝑥 < 𝑧] tends to a value less than unity. According to Pisarenko (2001), "it can be 

assumed formally that in this case the upper limit for 𝑚𝑚𝑎𝑥 is equal to ∞.'' Pisarenko elaborates on the 

instances where Pr[𝑚𝑚𝑎𝑥 < 𝑧] can be considered to have interpretable meaning and, as regards the 

other instances, corresponds to instances when inadequate data are available to assess 𝑚𝑚𝑎𝑥. "To be 

sure, the upper limit ∞ provides no information on the maximum possible magnitude, but formally it is 

convenient to assume that with some positive probability [𝛼] the upper limit assumes the value ∞." 

(Pisarenko, 1991). Although this interpretation appears convenient, the meaning of this statistic is 

controversial. Kijko and Graham (1998) derived the same estimator using a different approach. Given a 

uniform distribution, with observations (𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛), the unbiased estimator of the upper limit of the 

distribution, 𝑥𝑚𝑎𝑥 has a form (Gibowicz and Kijko, 1994) 

 

𝑥𝑚𝑎𝑥 =
𝑛 + 1

𝑛
𝑥𝑚𝑎𝑥
𝑜𝑏𝑠 . 

 

(4.8) 
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The relation (4.8) is based on the fact that any cumulative distribution 𝐹(𝑥) follows a uniform distribution 

in the interval (0,1), which results in the following relation 

 

1 =
𝑛 + 1

𝑛
𝐹(𝑥max 

𝑜𝑏𝑠 |𝑥𝑚𝑎𝑥). 

 

(4.9) 

By assuming that 𝐹(𝑥max 
𝑜𝑏𝑠 |𝑥𝑚𝑎𝑥) is the bounded GR relation, Gibowicz and Kijko (1994) solve equation 

(4.9) for 𝑚𝑚𝑎𝑥 to obtain the following estimator for the maximum magnitude  

 

𝑚̂𝑚𝑎𝑥 =
1

𝛽
𝑙𝑛 {𝑒−𝛽𝑚𝑐 − [𝑒−𝛽𝑚𝑐 − 𝑒−𝛽𝑚𝑚𝑎𝑥

𝑜𝑏𝑠
]
𝑛 + 1

𝑛
}. 

 

(4.10) 

Kijko and Graham (1998) obtain a version of the Pisarenko estimator (4.2) from relation (4.9) by 

approximating a solution to 𝑚𝑚𝑎𝑥 through a Taylor expansion, with the further approximation that 

𝐹(𝑚max 
𝑜𝑏𝑠 |𝑚𝑚𝑎𝑥) ≅ 1 

 

𝑚̂𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 +

1

𝑛𝑓(𝑚𝑚𝑎𝑥;𝑚𝑚𝑎𝑥)
. 

 

(4.11) 

Because 𝑚𝑚𝑎𝑥 appears on both sides of equation (4.11), it is solved through iteration with the first 

approximation of 𝑚𝑚𝑎𝑥 as 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 , which renders the first iteration of (4.10) the same as an estimator 

(4.2). Kijko (2004) states that estimator (4.11) was probably first derived by Tate (1959). For the GR 

relation (4.11), the first iteration takes the form 

 

𝑚̂𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 +

1 − exp[−𝛽(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 −𝑚𝑐)]

𝑛𝛽exp[−𝛽(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 −𝑚𝑐)]

 

 

(4.12) 

Iteration of equation (4.12) is not guaranteed to converge, but it is more likely to do so with a larger 

number of observations. Exact conditions for conversion of this iteration procedure are derived by 

Vermeulen and Kijko (2017). The variance that Kijko and Graham (1998) give for estimator (4.12) is 

 

𝑉𝑎𝑟[𝑚̂𝑚𝑎𝑥] = 𝑣𝑎𝑟[𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 ] +

𝑛 + 1

𝑛3
[
1 − exp [−𝛽(𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 −𝑚𝑐)

βexp [−𝛽(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 −𝑚𝑐)

]

2

. 

 

(4.13) 

The variance given by Pisarenko et al. (1996) applied to the GR relation would be 
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𝑉𝑎𝑟[𝑚̂𝑚𝑎𝑥] =
1

𝑛2
[
1 − exp [−𝛽(𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 −𝑚𝑐)

βexp [−𝛽(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 −𝑚𝑐)

]

2

. 

 

(4.14) 

Equations (4.13) and (4.14) are almost equivalent, although equation (4.14) does not take the standard 

error of 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠  into consideration. 

Kijko and Graham (1998) present another estimator for 𝑚𝑚𝑎𝑥 , derived from that of Cooke (1979). From 

this derives the estimator 

 

𝑚̂𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 +∫ [𝐹(𝑚)]𝑛𝑑𝑚

𝑚𝑚𝑎𝑥

𝑚𝑐

, 

 

(4.15) 

where 𝑛 denotes the number of events. Using the empirical distribution and an asymptotic approximation 

for a large number 𝑛 of observations, Cooke (1979) derives the following estimator from (4.15) 

 

𝑚̂𝑚𝑎𝑥 = 2𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 − (1 − 𝑒−1)∑ 𝑒−𝑖𝑚𝑟𝑎𝑛𝑘:𝑛−𝑖

𝑛−1

𝑖=0

 

 

(4.16) 

However, Cooke (1979) does not discuss the variance of the estimators.  

Kijko and Sellevoll (1989) derive the following approximation for the integral term in (4.15) if a GR relation 

were assumed 

 

∆=
𝐸1(𝑛2) − 𝐸1(𝑛1)

𝛽exp (−𝑛2)
+ 𝑚𝑐exp (−𝑛), 

 

(4.17) 

where 𝑛1 = 𝑛/{1 − exp[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]}, 𝑛2 = 𝑛1exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)], and 𝐸1(𝑧) = ∫ exp(𝜁) /
∞

𝑧

𝜁 𝑑𝜁. The approximate variance of the estimator is 

 

𝑉𝑎𝑟[𝑚̂𝑚𝑎𝑥] = 𝑉𝑎𝑟[𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 ] + [

𝐸1(𝑛2) − 𝐸1(𝑛1)

𝛽exp (−𝑛2)
+ 𝑚𝑐exp (−𝑛)]

2

. 

 

(4.18) 

Kijko and Singh (2011), in addition, provide an exact solution for equation (4.15) in the instance of a GR 

distribution 
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𝑚̂𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 +

(𝑚𝑚𝑎𝑥 −𝑚𝑐) +
1
𝛽
∑

(−1)𝑛

𝑖
(
𝑛
𝑖
)𝑛

𝑖=1 (1 − exp [−𝑖𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)])

(1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐])
𝑛

. 

 

(4.19) 

The approximate variance of this estimator is  

 

𝑚̂𝑚𝑎𝑥 = 𝑣𝑎𝑟[𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 ] + [

(𝑚𝑚𝑎𝑥 −𝑚𝑐) +
1
𝛽
∑

(−1)𝑛

𝑖 (
𝑛
𝑖
)𝑛

𝑖=1 (1 − exp [−𝑖𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)])

(1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐])
𝑛 ]

2

. 

 

(4.20) 

Based on extensive numerical tests (Kijko and Smit, 2017), it appears that the exact solution is not superior 

to its approximate counterpart (4.18). In the current author’s experience, one problem is the calculation 

of factorials that derive from binomial expansion. This quickly produces extremely large numbers that 

make scaling and exact calculation a most challenging task. In addition, the approximate solution is much 

simpler and more elegant.  

Acknowledging the fact that 𝛽 and seismicity could vary in time, Kijko and Graham (1998) provide a mixed 

(known also as a compound or Bayesian) distribution (Kijko and Graham, 1998), which can be applied to 

estimators (4.1), (4.11), and (4.15). This involves the assumption that 𝛽 varies according to a gamma 

distribution, with parameters 𝑝 =  𝛽/(𝜎𝛽)
2 and 𝑞 = (𝛽/𝜎𝛽)

2
. The distribution of 𝛽 is treated as a prior 

distribution and the resulting posterior is used as the frequency-magnitude relation. This relation is given 

by (Campbell, 1982)  

 

𝑓𝑀(𝑚) =

{
 

 
0                         𝑓𝑜𝑟 𝑚 < 𝑚𝑐

𝛽𝐶𝛽 (
𝑝

𝑝 +𝑚 −𝑚𝑐
)
𝑞+1

 𝑓𝑜𝑟 𝑚𝑐 ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥

     0                          𝑓𝑜𝑟 𝑚 > 𝑚𝑚𝑎𝑥

, 

 

(4.21) 

and 

 

𝐹𝑀(𝑚) =

{
 

 
0 𝑓𝑜𝑟 𝑚 < 𝑚𝑐

𝐶𝛽 [1 − (
𝑝

𝑝 +𝑚 −𝑚𝑐
)
𝑞

] 𝑓𝑜𝑟 𝑚𝑐 ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥

1 𝑓𝑜𝑟 𝑚 > 𝑚𝑚𝑎𝑥

 . 

 

(4.22) 

Raschke (2012) develops an estimator for 𝑚𝑚𝑎𝑥 from the fiducial distribution in equation (4.6), used by 

Pisarenko (1991), and discussed by Kijko (2004) and Kijko and Singh (2011). Raschke eliminates the 

problem noted by Kijko and Singh (2011) that 𝑃[𝑚𝑚𝑎𝑥 < ∞] < 1 by its normalisation renders it a point 
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estimate. Specifically, the normalised distribution for 𝑚̂𝑚𝑎𝑥 for 𝑛 observations and a given 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠  is given, 

on its support, by 

 

𝐹𝑚𝑚𝑎𝑥
(𝑚̂𝑚𝑎𝑥) =

1 − (
𝐹∗(𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 )
𝐹∗(𝑚̂𝑚𝑎𝑥)

)
𝑛

1 − 𝐹∗(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 )𝑛

, 𝑚𝑚𝑎𝑥 ≥ 𝑚̂𝑚𝑎𝑥
𝑜𝑏𝑠 , 

 

(4.23) 

where 𝐹∗(∙) is the original untruncated cumulative distribution. If the exponential distribution were 

substituted by the original GR CDF, the resulting CDF takes the form 

 

𝐹𝑚𝑚𝑎𝑥
(𝑚̂𝑚𝑎𝑥) =

1 − (
1 − exp[−𝛽(𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 −𝑚𝑐)]
1 − exp[−𝛽(𝑚̂𝑚𝑎𝑥 −𝑚𝑐)]

)
𝑛

1 − (1 −
1 − exp (𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 )
1 − exp (𝑚𝑐)

)
n , 𝑚𝑚𝑎𝑥 ≥ 𝑚̂𝑚𝑎𝑥

𝑜𝑏𝑠 , 

 

(4.24) 

and the PDF on its support is 

 

𝑓𝑚𝑚𝑎𝑥
(𝑚̂𝑚𝑎𝑥) =

{1 − exp[−𝛽(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 −𝑚𝑐)]}

𝑛
𝑛𝛽exp[−𝛽(𝑚̂𝑚𝑎𝑥 −𝑚𝑐)]

{1 − exp[−𝛽(𝑚̂𝑚𝑎𝑥 −𝑚𝑐)]}
n+1(1 − {1 − exp[−𝛽(𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 −𝑚𝑐)]}
𝑛
)

𝐹𝑚𝑚𝑎𝑥
(𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 −𝑚𝑐)
. 

 

(4.25) 

The support of the two distributions are [𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 ,∞). Raschke (2012) proposes the expectation of 

𝑓𝑚𝑚𝑎𝑥
(𝑚̂𝑚𝑎𝑥) as a point estimate for 𝑚𝑚𝑎𝑥. Obviously, the median is also a possible estimator, but this 

has not been investigated. The expected value of 𝑓𝑚𝑚𝑎𝑥
(𝑚̂𝑚𝑎𝑥) has been tested thoroughly by Raschke 

(2012) and the results obtained indicate superior performance. This expected value is asymptotically 

mean and median unbiased, as the density becomes a delta function for 𝑛 → ∞. 

Vermeulen and Kijko (2017) investigated the estimation of 𝑚𝑚𝑎𝑥 using the Method of Moments 

(Vermeulen and Kijko, 2017), as described by Dixit and Nasiri (2008). Moments of the sample are used to 

calculate the truncation point of an exponential distribution. However, according to the literature, using 

this method appears to have become uncommon, and the maximum likelihood method is often preferred. 

Nevertheless, this method is still worth investigating. Using this method requires the shift transformation 

𝑥𝑖 = 𝑚𝑖 −𝑚𝑐. As shown by Vermeulen and Kijko (2017), the estimate of the truncation point of an 

exponential distribution given by Dixit and Nasiri (2008) takes the form  

 

𝑥𝑚𝑎𝑥 =
−3𝑊𝑌 + 𝑛𝑍 + 𝐷

1
2

2(𝑛𝑌 − 2𝑊2)
, 

 

(4.26) 



 

82 
 

where 𝐷 = 𝑛2𝑍2 − 15𝑊2𝑌2 − 14𝑛𝑊𝑌𝑍 + 12𝑛𝑌3 + 16𝑊3𝑍, 𝑊 = 𝑛𝑟1, 𝑌 = 𝑛𝑟2, 𝑍 = 𝑛𝑟3 , 𝑟1 = ∑ 𝑥𝑖𝑖 , 

𝑟2 =
1

𝑛
∑ 𝑥𝑖

2
𝑖 , and 𝑟3 =

1

𝑛
∑ 𝑥𝑖

3
𝑖 . That is, 𝑟𝑖 is the 𝑖𝑡ℎ moment. 

The following analytic expression gives the approximate variance of the moment estimator 

 
𝑣𝑎𝑟[𝑥𝑚𝑎𝑥(𝒓)] = [∇𝑥𝑚𝑎𝑥(𝒓)]

𝑇 ∗ 𝑫(𝒓) ∗ [∇𝑥𝑚𝑎𝑥(𝒓)]. 
 

(4.27) 

If the correlation between moments were ignored, 𝑫(𝒓) takes the form 

 

𝑫(𝒓) =

[
 
 
 
 
 
 
𝑟2 − 𝑟1

2

𝑁
0 0

0
𝑟2 − 𝑟1

2

𝑁
0

0 0
𝑟2 − 𝑟1

2

𝑁 ]
 
 
 
 
 
 

, 

 

(4.28) 

 

[∇𝑥𝑚𝑎𝑥] = [

−4𝑟1 3𝑟2 2𝑟1
1 𝑟1 −6𝑟2
0 −1 2𝑟1

] ∗

[
 
 
 
 
 
 
 
 𝐴2𝐴3(𝐴2

2 − 4𝐴1𝐴3)
−
1
2 + (𝐴2

2 − 4𝐴1𝐴3)
1
2

2𝐴2
2

−−−−−−−−−−−−−−−−−

−1+ 𝐴2(𝐴2 − 4𝐴1𝐴3)
1
2

2𝐴1
−−−−−−−−−−−−−−−−−

−
2𝐴1(𝐴2

2 − 4𝐴1𝐴3)

2𝐴1 ]
 
 
 
 
 
 
 
 

, 

 

(4.29) 

where 𝐴1 = 𝑟2 − 2𝑟1
2, 𝐴2 = 3𝑟1𝑟2 − 𝑟3, and 𝐴3 = 2𝑟1𝑟2 − 𝑟3. Investigation using numerical experiments 

has shown that this approximation is generally too large by up to an order of magnitude, indicating room 

for improvement. Practically, however, it is feasible to resort to jackknife or bootstrap procedures. 

Furthermore, it is a sensible option to use bootstrap or jackknife resampling to determine approximate 

variance and as a check for the approximate variance in the analytic form given above. Vermeulen and 

Kijko (2017) find that the moment estimator generally provides estimates of 𝑚𝑚𝑎𝑥 lower than the 

maximum observed magnitude and, at times, extremely unrealistically large values. From bootstrap 

resampling, it appears that the distribution of the estimator is heavy tailed, or nearly so, which explains 

the behaviour of the estimator. Furthermore, using a jackknife approach for comparison, the use of 

estimator (4.26), when ignoring the correlation between moments, yields incorrect results, although of 

the same order as the correct value. 
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4.2. Non-parametric Estimators 

Robson and Whitlock (1964) employ the theory of bias for estimation, originally developed by Quenouille 

(1956). In particular, an estimate of the bias of the 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠  is subtracted as an estimate of 𝑚𝑚𝑎𝑥 according 

to the method by Quenouille (1956) to obtain an improved estimator of 𝑚𝑚𝑎𝑥. Robson and Whitlock 

(1964) specifically note that the estimator 

 

𝑚̂𝑚𝑎𝑥 = 2𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 −𝑚𝑛−1, 

 
(4.30) 

has variance similar to 𝑚̂𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 , but has the advantage that it is mean unbiased to the order 𝑛−3 

and asymptotically median unbiased. In equation (4.30), 𝑚𝑛−1 denotes the second largest observed 

magnitude. The approximate variance of this estimator is (Kijko and Singh, 2011) 

 

𝑉𝑎𝑟(𝑚̂max) = 5𝜎𝑀
2 + (𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 −𝑚𝑛−1)
2, 

 
(4.31) 

where a general estimator is derived 

 

𝑚̂𝑚𝑎𝑥 =∑(−1)𝑗 (
𝑘 + 1
𝑗 + 1

)𝑚𝑛−𝑗

𝑘

𝑗=0

, 

 

(4.32) 

where the maximum value of k = n-1. However, it was shown (Robson and Whitlock, 1964) that the 

efficiency of the estimator (4.32) actually decreases with increasing 𝑘. Furthermore, the estimator (4.32) 

is not guaranteed to be greater than or equal to 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 . The mean squared error of estimator (4.32) is 

given by 

 

𝐸(𝑚̂𝑚𝑎𝑥 −𝑚𝑚𝑎𝑥)
2 = (

2𝑘
𝑘
)𝑛−2 [

𝐹(𝑚𝑚𝑎𝑥)

𝐹′(𝑚𝑚𝑎𝑥)
]
2

+ 𝑂(𝑛−3), 

 

(4.33) 

where 𝐹(𝑚) is the untruncated version of the probability distribution of magnitude. 

The statistical theory of extreme values is a relatively new independent field of study. Here, referring to 

extreme values implies that they are the largest values in given periods of time or among a given number 

of observations. The initial theory was developed systematically, in chronological order, by Fréchet (1927), 

Fisher and Tippett (1928), Von Mises (1936), and Gnedenko (1943). Gnedenko (1943) was the first to 

rigorously lay out the theory developed by the previous authors, i.e. the work by Gnedenko (1943) is the 

culmination of the earlier studies. Pickands (1975) initiated the study of the theory of extreme values as 

a study field in its own right. 
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The basis of the EVT is that the distributions of extreme values all tend to the same generalised shape of 

distribution when rescaled and shifted, except for the anomalous theoretical instances where this 

distribution does not exist. This distribution is given by the formula 

 

𝛷𝛾(𝑥) = exp [−(1 − 𝛾𝑥)
−
1
𝛾]. 

 

(4.34) 

For the special case, when the distribution parameter 𝛾 = 0,  i.e. the distribution (4.34) takes the simple 

form  

 
𝛷0(𝑥) = exp(−𝑒

−𝑥). 
 

(4.35) 

In mathematical terms, there exist sequences 𝑎𝑛 and 𝑏𝑛, such that  

 
lim
𝑛→∞

𝐹𝑛(𝑎𝑛𝑥 + 𝑏𝑛) = 𝛷𝛾(𝑥), 

 
(4.36) 

for some 𝛾. According to the definition, 𝐹(𝑥) belongs to the domain of attraction of 𝛷𝛾(𝑥). The parameter 

𝛾 is referred to as the shape parameter. Only the instance 𝛾 ≤ 0 is of interest here, as finite distributions 

belong to the domain of attraction of 𝛷𝛾(𝑥) under this condition (De Haan and Ferreira, 2007 p. 19, 

Theorem 1.2.1.). 

Two functions of interest will be defined. Define 𝑈(𝑛) ≔  𝐼𝑁𝑉(
1

1−𝐹
) where 𝐼𝑁𝑉(∙) refers to the inversion 

operator.  

Suppose that for some positive function 𝑎 and some positive or negative function 𝐴 with lim
𝑡→∞

𝐴(𝑡) = 0, 

 

𝐷(𝑥) ≔ lim
𝑡→∞

𝑈(𝑡𝑥) − 𝑈(𝑡)
𝑎(𝑡)

−
𝑥𝛾 − 1
𝛾

𝐴(𝑡)
, 𝑥 > 0, 

 
 

(4.37) 

is some function that is not a multiple of 
1−𝑥𝛾

𝛾
 and not identically zero. The functions 𝑎 and 𝐴 are referred 

to, respectively, as first order and second order auxiliary functions.  

An alternative formulation of EVT is that, given a distribution function 𝐹(𝑥) 
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lim
𝑡→∞

1 − 𝐹(𝑡 + 𝑥)

1 − 𝐹(𝑡)
= 𝐻(𝑥|𝑡) = 1 − (1 + 𝛾

𝑥

𝑠
)
−
1
𝛾
, 

 

(4.38) 

where s is called the scale parameter. The instance where 𝛾 = 0 is interpreted as the limiting case 1 −

exp (
𝑥

𝑠
). This is interpreted as the shape that the tail of the distribution takes on. Equation (4.38) is referred 

to as the Generalized Pareto Distribution (GPD). 

Kijko and Singh (2011) note that combining the results from Cooke (1979) and Robson and Whitlock (1964) 

leads to the estimator  

 

𝑚̂𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 + (2𝜉)−1(𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 −𝑚𝑛−1). 

 
(4.39) 

Close examination reveals that −𝜉 is, in fact, the shape parameter of the extreme value distribution to 

which domain of attraction the distribution of magnitude values belongs (see De Haan and Ferreira, 2007, 

p.19, equation 1.2.3, and p.12, corollary 2.1.4.2). The case considered by Cooke (1979, 1980) is that for 

which 𝜉 > 0. Cooke (1980) also presents the numerical values of 𝑎𝑖, for different values of 𝜉 in the 

equation 

 

𝑚̂𝑚𝑎𝑥 =∑𝑎𝑖𝑚𝑛−𝑖+1

𝑛

𝑖=1

. 

 

(4.40) 

It is noted in Cooke (1979, 1980) and Kijko and Singh (2011) that, for a truncated distribution, 𝜉 = −1. In 

this instance 

 

𝑚̂𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 +

1

2
(𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 −𝑚𝑛−1). 

 

(4.41) 

The approximate variance for this estimator is (Kijko and Singh, 2011) 

 

𝑉𝑎𝑟(𝑚̂max) = 0.5[3𝜎𝑀
2 + 0.5(𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 −𝑚𝑛−1)
2]. 

 
(4.42) 

Cooke (1979 and 1980) presents coefficients 𝑎𝑖  in equation (4.40) for different values of 𝜉. The assumption 

throughout the current work up to now was that the distribution of magnitudes is truncated at 𝑚𝑚𝑎𝑥. 

However, possibly, the cut-off of the distribution might not be a sharp truncation, such that 𝑓(𝑚𝑚𝑎𝑥) is 

some finite positive number and 𝑓(𝑚) = 0 for 𝑚 > 𝑚𝑚𝑎𝑥. It is quite possible, for instance, that in the 

very end tail of the distribution, 𝑓(𝑚) deviates slightly from the GR law in that it tends to zero in a 
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continuous fashion and 𝑓(𝑚𝑚𝑎𝑥) = 0. In such an instance, 𝜉 can differ from −1, and the results obtained 

by Cooke could be useful. Coefficients for 𝑎𝑖  in equation (3.40) are given in Tables 3 (a–d) for different 

values of 𝛾, where 𝛾 is the parameter defined in the above discussions on the EVT and the GPD, and           

𝛾 = −𝜉. 

 

Table 3 (a). Coefficients for equation 4.40; 𝛾 =
1

2
. 

R A1 A2 A3 A4 A5 A6 A7 Square 
error 

2 2 -1      0.667 

3 1.636 0.273 -0.909     0.545 

4 1.440 0.240 0.160 -0.840    0.480 

5 1.314 0.129 0.146 0.109 -0.788   0.438 

6 1.224 0.204 0.136 0.102 0.082 -0.748  0.408 

7 1.257 0.293 0.239 0.096 0.077 0.064 -0.716 0.386 

 

Table 3 (b). Coefficients for equation 4.40; 𝛾 =
1

3
. 

R A1 A2 A3 A4 A5 A6 A7 Square 
error 

2 2.5 -1.5      0.564 

3 1.951 0.585 -1.537     0.440 

4 1.654 0.496 0.372 -1.523    0.373 

5 1.463 0.439 0.329 0.269 -1.501   0.330 

6 1.328 0.398 0.299 0.244 0.210 -1.479  0.300 

7 1.226 0.368 0.276 0.226 0.193 0.171 -1.459 0.277 

 

Table 3 (c). Coefficients for equation 4.40; 𝛾 =
1

4
.  

R A1 A2 A3 A4 A5 A6 A7 Square 
error 

2 3 -2      0.532 

3 2.273 0.909 -2.182     0.403 

4 1.882 0.753 0.602 -2.237    0.334 

5 1.632 0.653 0.522 0.448 -2.255   0.289 

6 1.456 0.583 0.466 0.399 0.355 -2.260  0.258 

7 1.325 0.530 0.424 0.363 0.323 0.294 -2.259 0.235 
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Table 3 (d). Coefficients for equation 4.40; 𝛾 =
1

5
.  

R A1 A2 A3 A4 A5 A6 A7 Square 
error 

2 3.5 -2.5      0.518 

3 2.598 1.237 -2.855     0.384 

4 2.117 1.008 0.840 -2.964    0.313 

5 1.811 0.863 0.719 0.634 -3.027   0.268 

6 1.598 0.761 0.634 0.560 0.509 -3.062  0.236 

7 1.439 0.685 0.571 0.504 0.458 0.424 -3.082 0.213 

 

The value of 𝜉 can be determined by employing the techniques described in De Haan and Ferreira (2007). 

These include the Pickands estimator, the maximum likelihood estimator, the moment estimator, and the 

negative Hill estimator. 

Suppose (𝑚1,𝑚2, 𝑚3, … ,𝑚𝑛) are observations ordered from smallest to largest. It is assumed that          

𝛾 = 0. Fraga Alves and Neves (2014) propose the estimator, as applied to the estimation of 𝑚𝑚𝑎𝑥 by 

Vermeulen and Kijko (2017)  

 

𝑚̂𝑚𝑎𝑥 = 𝑚𝑛 +∑𝑎𝑖,𝑘(𝑚𝑛−𝑘 −𝑚𝑛−𝑘−𝑖)

𝑘−1

𝑖=0

, 

 

(4.43) 

with 𝑎𝑖,𝑘 ≔ −ln (2)−1[ln(𝑘 + 𝑖) − ln (𝑘 + 𝑖 + 1)] (𝑎𝑖,𝑘 > 0 is a requirement), 𝑖 = 1,2, … , 𝑘, such that 

∑ 𝑎𝑖,𝑘 = 1
𝑘−1
𝑖=0 . The choice of 𝑘 is made from a sequence such that lim

𝑛→∞
(𝑘𝑛) = ∞, and lim

𝑛→∞

𝑘𝑛

𝑛
= 0. Values 

𝑘 = [(ln (𝑛)]𝑟 with 𝑟 ∈ (0,2] are recommended by Fraga Alves and Neves (2014). The value of 𝑘 might 

not be an integer, as it should be. However, it is practical to merely round it to the nearest integer. The 

asymptotic distribution of the quantity 
1

𝑎̂(𝑛/𝑘)
(𝑚̂𝑚𝑎𝑥 −𝑚𝑚𝑎𝑥) can be used to estimate confidence 

intervals to the estimate, where 𝑎̂(𝑛/𝑘) is an empirical auxiliary function. The asymptotic distribution of 
1

𝑎̂(𝑛/𝑘)
(𝑚̂𝑚𝑎𝑥 −𝑚𝑚𝑎𝑥) is given by 

 

𝐹(𝑧) = exp{exp(z)} −
ln 2

2
−

λ

ln 2
, 

 

(4.44) 

where 𝜆 ⋍
(ln (2))2

2
. To obtain 𝑎̂(𝑛/𝑘) , Fraga Alves and Neves (2014) propose the maximum likelihood 

estimator 

 

𝑎̂(𝑛/𝑘) =
1

𝑘
∑(𝑚𝑛−𝑖,𝑛 −𝑚𝑛−𝑘,𝑛)

𝑘−1

𝑖=0

. 
(4.45) 
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Accordingly, the distribution (4.44) can be used to estimate the variance and confidence intervals of the 

estimator (4.44).  

Vermeulen and Kijko (2017) note that the assumption 𝛾 = 0 can be controversial. The case where an 

extreme value distribution with 𝛾 = 0 is bounded is a relatively singular instance. It can be shown that all 

the derivatives at the end point must be zero. However, the results from Vermeulen and Kijko (2017) 

obtained in Monte Carlo simulations using this method are satisfactory. 

In the instance where 𝛾 < 0, the tail end can be estimated by a routine maximum likelihood estimation. 

Vermeulen and Kijko (2017) investigate this estimator. From Coles (2001), the joint likelihood equation of 

𝛾 and 𝑠 in the GPD is derived [see equation (4.32)] 

 

𝑙(𝑠, 𝛾) = −𝑘log𝑠 − (1 −
1

𝛾
)∑log (1 +

𝛾𝑚𝑖

𝑠
)

𝑘

𝑖=1

, 

 

(4.46) 

which should be maximised to obtain the maximum likelihood estimator (𝛾𝑀𝐿𝐸 , 𝑠̂𝑀𝐿𝐸) of (𝛾, 𝑠). The 

maximum likelihood estimator of the end point of the distribution is then given by (De Haan and Ferreira, 

2007) 

 

𝑚∗̂ = 𝑚𝑛 −
𝑠̂𝑀𝐿𝐸
𝛾𝑀𝐿𝐸

. 

 

(4.47) 

Note that the term 
𝑠̂𝑀𝐿𝐸

𝛾̂𝑀𝐿𝐸
 is negative and is still of the form 𝑚𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥

𝑜𝑏𝑠 + ∆. The asymptotic distribution 

of the variable 𝜁 = √𝑘𝛾2
𝑚∗̂−𝑚∗

𝛾
 is given by De Haan and Ferreira (2006) to determine the variance and 

confidence limits of 𝑚∗̂. Vermeulen and Kijko (2017) replace the quite complex statement of the variance 

by  

 

𝑣𝑎𝑟[𝑚∗̂] = 𝑣𝑎𝑟 [𝑚𝑛 −
𝑠̂𝑀𝐿𝐸
𝛾𝑀𝐿𝐸

] 

≈ 𝑣𝑎𝑟[𝑚𝑛] − (
𝑠̂𝑀𝐿𝐸
𝛾𝑀𝐿𝐸

)
2

(
𝑣𝑎𝑟[𝑠̂𝑀𝐿𝐸]

𝑠̂𝑀𝐿𝐸
2 +

𝑣𝑎𝑟[𝛾𝑀𝐿𝐸]

𝛾𝑀𝐿𝐸
2 − 2

𝑐𝑜𝑣[𝑠̂𝑀𝐿𝐸 , 𝛾𝑀𝐿𝐸]

𝑠̂𝑀𝐿𝐸 , 𝛾𝑀𝐿𝐸
), 

 

(4.48) 

''where 𝑣𝑎𝑟[𝑠̂𝑀𝐿𝐸], var[𝛾𝑀𝐿𝐸], and 𝑐𝑜𝑣[𝑠̂𝑀𝐿𝐸,𝛾𝑀𝐿𝐸] are readily estimated by calculating the inverse 

information matrix of (𝑠̂𝑀𝐿𝐸 , 𝛾𝑀𝐿𝐸), and 𝑣𝑎𝑟[𝑥𝑛] corresponds to the standard error of the determination 

of the largest value 𝑥𝑛" (Vermeulen and Kijko, 2017).  

The results obtained by Vermeulen and Kijko (2017) using the maximum likelihood method are somewhat 

biased toward larger values; in other words, the estimate is conservative. However, the bias vanishes 
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asymptotically. The method is quite generic, and the assumptions about the shape of the tail are minimal. 

This is a positive aspect, as there is considerable controversy about the shape of the upper tail (see e.g. 

Pisarenko and Sornette, 2004; Kagan and Schoenberg, 2001; Pisarenko et al., 2003; Pisarenko and 

Sornette, 2006). (Digressing slightly, the EVT has been found ideal to analyse the properties of the upper 

tail of the FMD.)  

Another direct consequence of the EVT is that 

 

lim
𝑡→∞

1 − 𝐹(𝑡 + 𝑔(𝑡)𝑥)

1 − 𝐹(𝑡)
= 1 − (1 + 𝛾𝑥)

−
1
𝛾, 

 

(4.49) 

for some function 𝑔(𝑡). Beirlant et al. (2017) propose, what they call, the Truncated GPD Estimator. Fix 𝑡, 

the threshold above which magnitude values in the tail of the distribution are considered. Their estimator 

of 𝑚𝑚𝑎𝑥 is given by 

 

𝑚̂𝑚𝑎𝑥 = 𝑚𝑛−𝑘,𝑛 +
𝑔(𝑡)̂𝑘
𝛾𝑘

[
 
 
 
 

(

 
 1 − 𝑘

(1 −
𝑔(𝑡)̂𝑘
𝛾𝑘

(𝑚𝑛 −𝑚𝑛−𝑘)
𝛾̂)
)

 
 
− 1

]
 
 
 
 

, 

 

(4.50) 

where 𝑘 is such that 𝑡 = 𝑚𝑛−𝑘. The estimation (𝛾𝑘, 𝑔(𝑡)̂𝑘) of (𝛾, 𝑔(𝑡)) is done using the maximum 

likelihood method (see Beirlant et al., 2017 for more detail). The estimator is applied to different values 

of 𝑘 (equivalently 𝑡). It can be represented in a diagram similar to that of the Hill plot. An approximate 

100(1 − 𝛼)% upper confidence bound for 𝑚̂𝑚𝑎𝑥 is given by 

 

𝑚̂𝑚𝑎𝑥 − (ln𝛼 + 1)
(𝑘 + 1)2

(𝑛 + 1){[1 − 𝐹𝑡(𝑚̂𝑚𝑎𝑥)] 𝐹𝑡(𝑚̂𝑚𝑎𝑥)⁄ }

× (1 +
(𝑘 + 1)

(𝑛 + 1){[1 − 𝐹𝑡(𝑚̂𝑚𝑎𝑥)] 𝐹𝑡(𝑚̂𝑚𝑎𝑥)⁄ }
)

𝛾̂𝑘 𝛾𝑘
2

𝑔(𝑡)̂𝑘
, 

 

(4.51) 

where 𝐹𝑡(𝑚) =
𝐹(𝑚+𝑡)

𝐹(𝑡)
. 

Another estimator that Beirlant et al. (2017) propose is, what they call, the Truncated Pareto Estimator. 

Because magnitude has been established empirically to follow an exponential distribution, the tail does 

not tend to a Pareto distribution, as heavy tails do. However, the exponential distribution of magnitude 

implies a Pareto distribution of energy 𝐸. It is easy to show that if a random variable X that follows an 

exponential distribution, 𝑌 = 𝑒𝑋, follows a Pareto distribution. Beirlant et al. (2016) propose a method 

for estimating the end point of a truncated Pareto distribution, to which the Truncated Pareto Estimator 
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refers. Accordingly, the Truncated Pareto Estimator can be applied to seismic energy values that are 

related to the moment magnitude through the relation (Lay and Wallace, 1995) 

𝐸 = 2 × 101.5(𝑀−1) = exp[ln 2 + (𝑀 − 1)1.5 ln 10]. 

Denote the random variable energy by 𝐸, and the value under investigation by 𝑒. Using the method by 

Beirlant et al. (2016), the truncation point of the Pareto distribution for the model of 𝐸 is then estimated 

by 

 

𝑒̂𝑚𝑎𝑥 = 2 × 10
(𝑚𝑛−𝑘−1)

(

 
 (
2 × 101.5(𝑚𝑛−𝑘−1)

2 × 101.5(𝑚𝑛−1)
)
1/𝛾̂𝐸,𝑘

−
1

𝑘 + 1

1 −
1

𝑘 + 1
)

 
 

−𝛾̂𝐸,𝑘

, 

 

(4.52) 

then  

 

𝑚̂𝑚𝑎𝑥 =
log10 (

𝑒̂𝑚𝑎𝑥
2 )

1.5
+ 1. 

 

 
(4.53) 

Again, the estimation should be done for different values of 𝑘 and plotted with 𝑘 on the abscissa and 

𝑚̂𝑚𝑎𝑥 on the ordinate. An approximate upper 100(1 − 𝛼)% confidence bound is given by  

 

𝑚̂𝑚𝑎𝑥 −
(𝑘 + 1)2𝛾̂𝐸,𝑘(ln𝛼 + 1)

(𝑛 + 1){[1 − 𝐹𝐸,𝑘(𝑒̂𝑚𝑎𝑥)] 𝐹𝐸,𝑘(𝑒̂𝑚𝑎𝑥)⁄ }
1.5 ln 10⁄ . 

 

(4.54) 

Leaving the EVT aside, another non-parametric estimator for 𝑚𝑚𝑎𝑥 was developed by Kijko et al. (2001) 

for instances where the FMD is not modelled easily by a specific distribution. This is typical for mining 

areas and seismicity associated with volcanic activity. In this instance, the FMD is modelled by a sum of 

Gaussian kernel distributions. The distribution function takes the form 

 

𝐹𝑀(𝑚) =

{
 
 

 
 

0 𝑓𝑜𝑟 𝑚 < 𝑚𝑐

∑ [Φ(
𝑚 −𝑚𝑖
ℎ

) − Φ(
𝑚𝑐 −𝑚𝑖

ℎ
)]𝑛

𝑖=1

∑ [Φ(
𝑚𝑚𝑎𝑥 −𝑚𝑖

ℎ
) − Φ(

𝑚𝑐 −𝑚𝑖
ℎ

)]𝑛
𝑖=1

   𝑓𝑜𝑟 𝑚𝑐 ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥

1 𝑓𝑜𝑟 𝑚 > 𝑚𝑚𝑎𝑥

, 

 

(4.55) 

and the density function 
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𝑓𝑀(𝑀) =

{
 
 

 
 

0 𝑓𝑜𝑟 𝑚 < 𝑚𝑐

(ℎ√2𝜋)
−1
∑ exp [−

1
2 (
𝑚𝑐 −𝑚𝑖

ℎ
)
2
]𝑛

𝑖=1

∑ [Φ(
𝑚𝑚𝑎𝑥 −𝑚𝑖

ℎ
) − Φ(

𝑚𝑐 −𝑚𝑖
ℎ

)]𝑛
𝑖=1

𝑓𝑜𝑟 𝑚𝑐 ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥

1 𝑓𝑜𝑟 𝑚 > 𝑚𝑚𝑎𝑥

, 

 

(4.56) 

where Φ(∙) is the error function and ℎ is a smoothing factor. The smoothing factor ℎ is of paramount 

importance. Kijko et al. (2001) used what is called least squares cross-validation, described in Silverman 

(2018). Without going through the derivation, which can be found in Kijko et al. (2001), ℎ turns out to be 

the solution of the equation 

 

∑{
1

√2
[
(𝑚𝑖 −𝑚𝑗)

2

2ℎ2
− 1] exp [−

(𝑚𝑖 −𝑚𝑗)
2

4ℎ2
] − 2 [

(𝑚𝑖 −𝑚𝑗)
2

ℎ2
− 1]

𝑖,𝑗

× exp [−
(𝑚𝑖 −𝑚𝑗)

2

2ℎ2
]  } − 2𝑛 = 0. 

 

(4.57) 

Estimators (4.2), (4.9), or (4.15) can be applied subsequently to 𝐹𝑀(𝑚) and 𝐹 = 𝑓𝑀(𝑚) in equations (4.5) 

and (4.5), respectively. Note that although a trial has not yet been conducted on the application of 

estimators (4.3) to (4.9), they are clearly valid estimators. 

 

4.3. Least Squares and the 𝑳𝒑 Norm 

The least squares approach has also been applied to the estimation of the pair (𝛽,𝑚𝑚𝑎𝑥), but the validity 

of this estimator is questionable, as is the application of the least squares approach to determine the 𝑏-

value. If the least squares approach can be applied, the minimisation of the 𝐿1 norm is also a suitable 

alternative, as it is less sensitive to outliers. The 𝐿1 norm is defined as 

 

Φ(𝛉) =∑|𝐹𝑀(𝑚𝑖) − 𝐹̂𝑀(𝑚𝑖)|

𝐧

𝐢=𝟏

, 

 

(4.58) 

where 𝛉 is varied, so as to minimise Φ(𝛉). In this instance, = (𝛽,𝑚𝑚𝑎𝑥). The function 𝐹̂𝑀(𝑚𝑖) is the 

empirical distribution function and is given by 𝐹̂𝑀(𝑚𝑖) =
𝑖

𝑛+1
. Further, Kijko (1994) describes a procedure 

to determine the best value for 𝑝 in the 𝐿𝑝 norm, where the 𝐿𝑝 norm is similarly defined as 
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Φ(𝛉) =∑|𝐹𝑀(𝑚𝑖) − 𝐹̂𝑀(𝑚𝑖)|
𝑝

𝐧

𝐢=𝟏

. 

 

(4.59) 

As mentioned in Chapter 3, the generalised least squares method is more suitable when determining the 

𝑏-value on an unbounded exponential distribution, as done by Guttorp (1987). Vermeulen and Kijko 

(2017) attempted to introduce 𝑚𝑚𝑎𝑥 and add it as a parameter to minimise the Mahalanobis distance, 

i.e. 𝚯 = (𝛽,𝑚𝑚𝑎𝑥) is to be varied. The details of the procedure are exactly the same as those for the case 

in the method of Guttorp (1987), described in Chapter 3. However, in numerical experiments, Vermeulen 

and Kijko (2017) found that this procedure was not suitable, as ''the generalised least squares (GLS) 

method implemented with the results of Guttorp (1987) does not always provide a (unique) solution... 

The sensitivity of the inversion procedure to the parameter mmax causes a number of problems. In some 

instances, it is possible for the minimum to be obtained with mmax at infinity, which can be described 

intuitively as an inability to detect the required magnitude endpoint." (Vermeulen and Kijko, 2017). "On 

other occasions, a minimum of residuals would be reached at a value of mmax that is close to but less than 

the maximum observed magnitude. Attempts to find a minimum to the generalised squared residual 

function were often unsuccessful, which probably indicates that the method is not able to detect mmax, 

as it tends to put the value of mmax at infinity. Note that employing a catalogue with a larger range does 

not improve the situation; that is, the method does not perform well with a [larger] magnitude range of 

𝑚𝑚𝑖𝑛 −𝑚𝑐. Consequently, in practice, it appears that a range of one order of magnitude is too large. The 

reason for this counter-intuitive result is that although the effect of the truncation is mostly detected in 

the larger magnitude values, the smaller values are allocated the largest weight." (Vermeulen and Kijko, 

2017). 

 

4.4.  Toward a Theory of the Kijko-Sellevoll Estimator 

The Kijko-Sellevoll estimator was initially formulated by Kijko (1988) by the development of an estimator 

of the expected value of the maximum earthquake that could possibly occur within the time span of the 

catalogue, given the maximum observed magnitude within the catalogue. By using the moment 

generating function, Kijko (1988) arrived at a formulation that turns out to be an excellent approximation 

of and almost equivalent to the estimator commonly known as the Kijko–Sellevoll estimator (equation 

4.60 below). In the meantime, Kijko (2004) had established a link with the work of Cooke (1979, 1980). 

The estimator is now used often but little mathematical formalism behind it is established. Here, the work 

of Haraala and Orosco (2016, 2018a, 2018b) is presented as a mathematical formalism and a step toward 

a theory behind the Kijko–Sellevoll estimator. 

Haraala and Orosco (2016, 2018a, 2018b) established some essential and elegant mathematical formalism 

behind the Kijko–Sellevoll estimator, stated here, for the purpose of clarity, as 
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𝑚𝑚𝑎𝑥 = 𝐸(𝑀𝑛|𝑚𝑚𝑎𝑥) + ∫ {
1 − exp [−𝛽(𝑥 − 𝑚𝑐)]

1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
}

𝑛

𝑑𝑥
𝑚𝑚𝑎𝑥

𝑚𝑐

. 

 

(4.60) 

Central to the theory are the functions that are referred to by Haraala and Orosco (2016, 2018a, 2018b) 

as the Kijko–Sellevoll functions, 𝑓𝑛
𝑘𝑠1, 𝑓𝑛

𝑘𝑠2, and 𝑓𝑛
𝑘𝑠3 , which satisfy 

 

𝐸(𝑀𝑛|𝑚𝑚𝑎𝑥) = 𝑚𝑚𝑎𝑥 −
1

𝛽
𝑓𝑛
𝐾𝑆1(𝑧), 

 

(4.61) 

 

𝐸(𝑀𝑛|𝑚𝑚𝑎𝑥) = 𝑚𝑚𝑖𝑛 +
1

𝛽
𝑓𝑛
𝐾𝑆2(𝑧), 

 

(4.62) 

 

𝑉𝑎𝑟(𝑀𝑛|𝑚𝑚𝑎𝑥) =
1

𝛽2
𝑓𝑛
𝐾𝑆3(𝑧), 

 

(4.63) 

where 𝑧 = 𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐) and are given in closed (analytical) form by 

 

𝑓𝑛
𝐾𝑆1(𝑥) = ∑

(1 − 𝑒−𝑥)𝑘

𝑘 + 𝑛

∞

𝑘=1

, 

 

(4.64) 

𝑓𝑛
𝐾𝑆2(𝑥) = ∑

𝑛

𝑘

(1 − 𝑒−𝑥)𝑘

𝑘 + 𝑛
,

∞

𝑘=1

 

 

(4.65) 

𝑓𝑛
𝐾𝑆3(𝑥) = ∑

2𝑛

2𝑛 + 𝑘
{∑

1

𝑛 + 𝑗

𝑘−1

𝑗=1

}
(1 − 𝑒−𝑥)𝑘

𝑘 + 𝑛

∞

𝑘=1

. 

 

(4.66) 

To show that (4.59) has a unique solution, the function 𝑔 is defined as 

 

𝑔(𝔪) = 𝔪 − 𝐸(𝑀𝑛|𝑚𝑚𝑎𝑥) − ∫ 𝐹𝑀𝑛(𝑥)𝑑𝑥
𝔪

𝑚𝑚𝑖𝑛

. 

 

(4.67) 

Differentiating 𝑔 (without going into much detail), the following is obtained 

 

𝑔′(𝔪) = −𝑛∫ [𝐹𝑚(𝑥|𝔪)]
𝑛−1

𝜕

𝜕𝔪
𝐹𝑚(𝑥|𝔪)𝑑𝑥

𝔪

𝑚𝑚𝑖𝑛

≥ 0, 
(4.68) 
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for all 𝔪 ∈ [𝑚𝑐 ,∞), i.e. the function is monotone decreasing. Furthermore, the point 𝔪 =  𝐸(𝑀𝑛|𝑚𝑚𝑎𝑥) 

is negative. Therefore, equation (4.67) has a unique solution. This is extremely important, as it is proof 

that the estimator, if it did exist, will always have a unique solution. This is indeed an important result. 

Lasocki and Urban (2011) found that the simple iterative scheme diverges, which, under close 

examination, is also apparent from the study by Haraala and Orosco (2016). 

Attempting to find an exact solution of the integral in (4.60), Haraala and Orosco (2016) apply the so-

called "integration by parts" technique iteratively until the integral terms no longer appear. This results in 

the sum  

 

∫ {
1 − exp [−𝛽(𝑥 − 𝑚𝑐)]

1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
}

𝑛

𝑑𝑥
𝑚𝑚𝑎𝑥

𝑚𝑚𝑖𝑛

=
1

𝛽

𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐) − ∑
{1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]}

𝑘

𝑘
𝑛
𝑘=1

1 − 𝑒𝑥𝑝[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
. 

 

(4.69) 

Using the identity (Abramowitz and Stegun, 1964) 

 

− log(1 − 𝑧) = ∑
𝑧𝑘

𝑘

∞

𝑘=1

, 

 

(4.70) 

and writing 

 
𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐) = −log (1 − (1 − exp[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]) 

=∑
(1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)])

𝑘

𝑘

∞

𝑘=1

, 

 

(4.71) 

and setting 𝑧 = exp[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)], it is possible to express(4.69) in the form 

 

∫ {
1 − exp [−𝛽(𝑥 − 𝑚𝑐)]

1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
}

𝑛

𝑑𝑥
𝑚𝑚𝑎𝑥

𝑚𝑚𝑖𝑛

=
1

𝛽

∑
{1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]}

𝑘

𝑘
∞
𝑘=𝑛+1

1 − 𝑒𝑥𝑝[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
. 

 

(4.72)  

By dividing each term by the denominator and re-indexing, the following is obtained 

 

∫ {
1 − exp [−𝛽(𝑥 − 𝑚𝑐)]

1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
}

𝑛

𝑑𝑥
𝑚𝑚𝑎𝑥

𝑚𝑚𝑖𝑛

=
1

𝛽
∑

{1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]}
𝑘

𝑘 + 𝑛

∞

𝑘=1

. 
(4.73) 
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Therefore, the series in equation (4.73) is a representation of the function 𝑓𝑛
𝐾𝑆1, as seen in equation (4.61).  

Equation (4.73) is not only a more compact and more elegant representation of the series in question but 

also it is numerically much more stable. However, the rate of convergence is extremely slow. Sequence 

transformations for conversion acceleration can be used to address this problem effectively. Haraala and 

Orosco (2016) present an algorithm for such a transformation that is most effective and improves the rate 

of convergence by approximately 16 orders of magnitude. 

 From the function 𝑓𝑛
𝐾𝑆2 derives another representation of the expected maximum value in terms of the 

true maximum value 

 

𝐸(𝑀𝑛|𝑚𝑚𝑎𝑥) = 𝑚𝑐 +∫ [1 − 𝐹𝑀(𝑛)
(𝑚|𝑚𝑚𝑎𝑥)]

𝑚𝑚𝑎𝑥

𝑚𝑐

𝑑𝑚 

 

(4.74) 

where  

 

∫ [1 − 𝐹𝑀(𝑛)
(𝑚|𝑚𝑚𝑎𝑥)]

𝑚𝑚𝑎𝑥

𝑚𝑐

𝑑𝑚 

 

(4.75) 

is the first representation of the function 𝑓𝑛
𝐾𝑆2 [compare with equation (4.62)] multiplied by the 

coefficient 
1

𝛽
. Expression (4.75) can be written as 

 

(𝑚𝑚𝑎𝑥 −𝑚𝑐) − ∫ 𝐹𝑀(𝑛)
(𝑚|𝑚𝑚𝑎𝑥)

𝑚𝑚𝑎𝑥

𝑚𝑐

𝑑𝑚. 

 

(4.76) 

Replacing (𝑚𝑚𝑎𝑥 −𝑚𝑐) and ∫ 𝐹𝑀(𝑛)
(𝑚|𝑚𝑚𝑎𝑥)

𝑚𝑚𝑎𝑥

𝑚𝑐
𝑑𝑚 by the corresponding series in equations (4.71) 

and (4.73), respectively, the expression is obtained 

 

1

𝛽
∑

(1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)])
𝑘

𝑘

∞

𝑘=1

−
1

𝛽
∑

{1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]}
𝑘

𝑘 + 𝑛

∞

𝑘=1

 

=
𝑛

𝛽
∑

(1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)])
𝑘

𝑘(𝑘 + 𝑛)

∞

𝑘=1

. 

 

(4.77) 

Accordingly, the function 𝑓𝑛
𝐾𝑆2 can be represented by the series 
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𝑛∑
(1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)])

𝑘

𝑘(𝑘 + 𝑛)

∞

𝑘=1

. 

 

(4.78) 

Note that the relation between the functions 𝑓𝑛
𝐾𝑆1 and 𝑓𝑛

𝐾𝑆2 is 

 

𝛽(𝑚𝑐 −𝑚𝑚𝑎𝑥) = 𝑓𝑛
𝐾𝑆−1(𝛽(𝑚𝑐 −𝑚𝑚𝑎𝑥)) + 𝑓𝑛

𝐾𝑆−2(𝛽(𝑚𝑐 −𝑚𝑚𝑎𝑥)). 

 
(4.79) 

Equation (4.79) provides a way of expressing the KS-2 function as a formula involving a finite sum 

 

𝑓𝑛
𝐾𝑆−2(𝛽(𝑚𝑐 −𝑚𝑚𝑎𝑥))

=
[(1 − 𝑒𝑥𝑝[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)])

𝑛 − 1]𝛽(𝑚𝑐 −𝑚𝑚𝑎𝑥) + ∑
(1 − 𝑒𝑥𝑝[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)])

𝑘

𝑘
𝑛
𝑘=1

(1 − 𝑒𝑥𝑝[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)])
𝑛

. 

 

(4.80) 

However, Haraala and Orosco (2016) do not recommend the use of equation (4.80) to calculate 

𝑓𝑛
𝐾𝑆2 independently because of numerical instabilities. Instead, KS-1 is to be calculated first and equation 

4.78 can then be used to calculate the value of the KS-2 function. The reason for having a KS-2 function as 

well is that it presents a natural way of estimating 𝑚𝑚𝑎𝑥, in that KS-2 has an inverse function satisfying 

 
                                        𝑓−1(𝛽[𝐸(𝑀𝑛|𝑚𝑚𝑎𝑥) − 𝑚𝑐]) = 𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐), 
 

(4.81) 

and it does not diverge as 𝑚𝑚𝑎𝑥 approaches infinity, whereas the KS-1 function does. Haraala and Orosco 

(2018a) show that the KS-2 function maps the interval [𝑚𝑐 ,∞] onto [𝑚𝑐 , 𝑚𝑐 + 1/𝐻𝜂]. Accordingly, using 

equation (4.81), any quantity above 𝑚𝑐 + 1/𝐻𝜂 will map 𝑚𝑚𝑎𝑥 beyond infinity. 

Haraala and Orosco (2018a) prove that the KS functions exist for all real numbers. Haraala and Orosco 

(2018b) present a superior algorithm to calculate generalised harmonic numbers using the Ramanujan 

harmonic expansion. 

In the process, two more special functions are defined that are related closely to well-known special 

functions. These are the Incomplete Beta Function of the Second Kind and the Incomplete Psi Function of 

the Second Kind (Abramowitz and Stegun, 1964). The Kijko–Sellevoll functions are related to these special 

functions, which, in turn, relate to the well-known Beta and Psi functions.  

The Incomplete Beta Function 𝐵𝑥(𝑎, 𝑏) is given by (Abramowitz and Stegun, 1964) 

 

𝐵𝑥(𝑎, 𝑏) = ∫
𝑡𝑎−1

(1 − 𝑡)𝑏−1
𝑑𝑡

𝑥

0

. 
(4.82) 
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Analogous with the Incomplete Beta Function, Haraala and Orosco (2018a) define the Incomplete Beta 

Function ℬ𝑥(𝑝) of the Second Kind as 

 

ℬ𝑥(𝑝) = ∫(
𝑡

𝑥
)
𝑝−1 1

1 − 𝑡
𝑑𝑡

𝑥

0

. 

 

(4.83) 

The functions 𝐵𝑥 and ℬ𝑥 are related as 

 

ℬ𝑥(𝑝) =
𝐵𝑥(𝑝, 0)

𝑥𝑝−1
. 

 

(4.84) 

It is found that 

 
𝐸(𝛽(𝑚𝑚𝑎𝑥 −𝑚)|𝑚𝑚𝑎𝑥) = ℬ𝑡𝑚𝑎𝑥(𝜂 + 1), 

 
(4.85) 

where 𝑡𝑚𝑎𝑥 = 1 − exp [𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)], and 𝜂 is the frequency of observation (usually a whole number). 

Analogous to the Incomplete Beta Function, Haraala and Orosco (2018a) define the Incomplete Psi 

Function as 

 

𝜓𝑥(𝑧) = ∫
1 − 𝑡𝑧−1

1 − 𝑡
𝑑𝑡 − 𝛾

𝑥

0

, 

 

(4.86) 

where 𝛾 is a Euler–Mascheroni constant. The Incomplete Psi Function of the Second Kind is defined as 

 

𝛹𝑥(𝑧) = ∫ (1 − (
𝑡

𝑥
)
𝑧−1

)
1

𝑡 − 1
𝑑𝑡 − 𝛾

𝑥

0

. 

 

(4.87) 

Then, it is found that  

 
𝐸(𝑚|𝑚𝑚𝑎𝑥) = 𝛹𝑡𝑚𝑎𝑥(𝜂 + 1). 

 
(4.88) 

It may be seen that 𝛹𝑡𝑚𝑎𝑥(𝜂 + 1) behaves as a harmonic number 𝐻𝜂 when 𝑚𝑚𝑎𝑥 → ∞, i.e. when 𝑡𝑚𝑎𝑥 →

1. In other words, for integral values of 𝜂,  
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𝐸(𝑚|𝑚𝑚𝑎𝑥)~∑
1

𝜂

𝜂

𝑘=1

. 

 

(4.89) 

Note that, for the positive real values, 𝐻𝜂 is defined as 

 

𝐻𝜂 = ∫
1 − 𝑡𝜂

1 − 𝑡
𝑑𝑡

1

0

. 

 

(4.90) 

In Haraala and Orosco (2018b), as a corollary to determining a practical way of solving the harmonic series 

in 𝑓𝑛
𝐾𝑆3, the Ramanujan expansion of harmonic numbers is revisited and is generalised naturally to all 

generalised harmonic numbers (defined over the positive real numbers and not only the integer values). 

The study by Haraala and Orosco (2018b) is devoted in large part to proving that this generalisation holds. 

Most important to note is that the Ramanujan expansion employs triangular numbers 𝑚 =
𝜂(𝜂+1)

2
 for the 

harmonic number 𝐻𝜂 and the Bernoulli numbers. The Bernoulli numbers are discussed in some detail 

because of their importance in the Ramanujan expansion. Equally important to consider is the error term 

when using a finite portion of the Ramanujan expansion because of the consequences when applying this 

expansion in the numerical calculation of harmonic numbers. It has been found that this error quickly 

becomes exceedingly small as the number of expansion terms increases. The implication is that using the 

Ramanujan expansion would be more efficient than the algorithms used generally to compute harmonic 

numbers, e.g. those implemented in MATLAB, a widely used computer programming language 

(MathWorks, USA). Accordingly, resulting from the study by Haraala and Orosco (2018b), the Ramanujan 

expansion is found most useful in reducing computational complexity and, although a formal comparison 

of the computational complexity has not been conducted, this opinion is based on empirical evidence. 

 

5. Seismic Source Characterisation and Seismic Zones 

5.1. Seismic Zoning 

It is customary practice in PSHA to define seismic source features geometrically and in terms of location 

for use in the hazard analysis, with each feature (zone or fault line) assigned its specific, constant seismicity 

parameters. The Senior Seismic Hazard Analysis Committee (SHHAC; Budnitz et al., 1997) document 

Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on uncertainty and use of experts 

(Budnitz et al., 1997) remains the main reference for constructing seismic source zone models. Each zone 

or fault line, defined by its geometry, shape, and location (a line, or feature, or area in space), is assigned 

the parameter combination (𝑚𝑚𝑎𝑥, 𝑏, 𝜆) (or, more generally, an FMRL and a temporal recurrence model). 
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Budnitz et al. (1997) define four different types or categories of seismic sources, namely, Type 1, faults 

(represented as linear or planar features), Type 2 "Area sources enclosing concentrated zones of 

seismicity", Type 3 "Regional area sources", and Type 4 "Background area sources". 

Budnitz et al. (1997) define a seismic source as a region of the crust of the Earth with quite uniform seismic 

characteristics and which is dissimilar to those of adjacent sources. These authors contend that some 

variation in the seismicity parameters (𝑎- and 𝑏-values) within a given seismic source is permissible. 

However, typically, some factors are considered uniform in a seismic source, such as the distribution of 

𝑚𝑚𝑎𝑥 and the probability of activity (Budnitz et al., 1997). 

Fault geometry, Type 1, is necessarily carried out in detail, and the dip and extent of the fault plane are 

determined. This is a well-established, routine task for geologists and geophysicists and the accuracy is 

quite acceptable. Type 2 becomes somewhat more difficult when multiple possible sources are identified 

but specific source locations cannot be delineated. As shown in Figure 10, the boundaries of concentrated 

seismicity can be constructed artificially, excluding a small number of earthquakes; therefore, boundaries 

are uncertain. Bender (1986) proposes a distributed model, of which the boundaries are referred to as 

"fuzzy" boundaries by Budnitz et al. (1997). 

 

 

Figure 10. A seismic source [zone] is a construct developed for seismic hazard analysis as a means of 

approximating the locations of earthquake occurrences. (Figure and caption from Budnitz et al., 1997).  

 

According to the guidelines of Budnitz et al. (1997), the first task is to identify the seismic source zones. 

However, these authors refer to Thenhaus (1983), who is of the opinion that ill-defined procedures are 
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used to delineate seismic source zones. Furthermore, according to Thenhaus (1983), there is no single 

standard to delineate seismic source zones across a vast area, such as that of the USA, owing to the non-

uniform appropriate seismological, geological, and geophysical information available for areas with such 

differing tectonic and geologic settings. Thenhaus (1983) states, as noted in Budnitz et al. (1997), that 

seismicity in the USA is associated ambiguously with a geologic structure, which only serves to compound 

the problem. Therefore, according to Budnitz et al. (1997), as the evaluation and interpretation of the 

available information depend strongly on individual expert judgment or opinion, different source zones 

can be defined differently by different experts. 

Budnitz et al. (1997) define the procedures used in delineating seismic source zones somewhat more 

rigorously; however, arguably, there is still room for improvement. Various guidelines have been 

proposed for the interpretation of the different types of information; however, this still, "depend[s] 

strongly on the individual judgment or the opinion" (Bender, 1986). 

Seismic sources of Types 3 and 4 suffer even more from the problems pointed out by Bender (1986). "The 

area-source boundaries enclose regions that earth scientists believe are relatively uniform with respect 

to the PSHA application" (Budnitz et al., 1997). 

The "fuzzy" boundaries suggested by Bender (1986) are generally not used. According to Budnitz et al. 

(1997), the uncertainties in source boundaries are employed in hazard analysis by identifying alternative 

source configurations, each having its own relative weight or credibility. This weighting scheme adds 

another dimension of expert opinion, with inherent, possibly subjective, bias. 

Table (4) summarises the data types employed to define the types of seismic sources and the relative 

usefulness of each data type by Budnitz et al. (1997). According to Budnitz et al. (1997), ''relative 

usefulness'' refers to how sound the technical basis is that the data provide for the source definition. This 

table does provide a set standard; however, it remains an arbitrary choice and there is room for a 

substantial difference of opinion. 

 

5.2. Frankel Alternative to Seismic Source Zoning 

An alternative to the Cornell (1968) concept of zoning is proposed by Frankel (1995). This method does 

not utilise expert opinion at all and is purely data driven; in other words, the seismic source characteristics 

are deduced from the data only by using statistical methods. This method contrasts with the traditional 

seismic zoning method. 

"One of the motivations for directly using the smoothed historical seismicity is to get away from the 

judgments involved in drawing seismic source zones in a region where the causative structures of seismicity 

are largely unknown, such as the central and eastern U.S. In some respects, our approach goes against a 

recent trend in seismic hazard analysis for using several experts to choose separate sets of source zones." 

Frankel (1995). 
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Table 4. Data Used to Assess Seismic Source Locations and Geometries and Their Relative Usefulness” 

(Table caption and data from Budnitz et al., 1997). 

TYPE OF SOURCE DATA/BASIS FOR SOURCE RELATIVE 
USEFULNESS/CREDIBILITY 

Type 1: Faults Mapped fault with historical 
rupture 

1 

 Mapped Quaternary fault at 
surface 

1 

 Mapped localised Quaternary 
deformation, inferred fault at 

depth 
2 

 Borehole evidence for fault, 
especially in young units 

2 

 Geophysical evidence (e.g. seismic 
reflection) of fault at depth 

2 

 Map of pre-Quaternary faults 3 

Type 2: Concentrated Zone Concentrated zone of well-located 
instrumental seismicity 

1 

 Mapped fault(s) at surface or 
subsurface in proximity to 

seismicity 
1 

 Zone of historical/poorly located 
seismicity 

2 

 Structural features/trends parallel 
to seismicity zone 

2 

 Focal mechanisms/stress 
orientation 

3 

 Rapid lateral changes in 
structures/tectonic features 

3 

 
Type 3: Regional Zone 

Changes in spatial 
distribution/concentration/density 

of seismicity 
1 

 Regions of genetically related 
tectonic history 

1 

 Regions of similar structural styles 2 

 Changes in crustal thickness or 
crustal composition 

2 

 Regions of different geophysical 
signature 

3 

 Changes in regional stress 3 

 Changes in regional physiography 3 

Type 4: Background Zones Regional differences in structural 
styles/tectonic history 

1 

 Major physiographic/geologic 
provinces 

1 

 Changes in character of seismicity 3 
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Frankel (1995) explains that directly using the smoothed historical seismicity is based on an effort to do 

away with the subjective decisions related to having to delineate seismic source zones with mostly 

unknown causative structures of seismicity, e.g. the central and eastern U.S.A. The author affirms that the 

simple methodology used by Frankel (1995) produces values similar to the mean probability of 

exceedance obtained by a more complex EPRI study that employs teams of experts to determine sets of 

area source zones. 

Frankel cites Jacob et al. (1994) who used spatial smoothing on seismicity rates for low-magnitude 

earthquakes. Frankel (1995) expands on this approach, using spatially smoothed seismicity rates 

supplemented with a heuristic approach to incorporate the historical part of the catalogue. This 

incorporates the background seismicity that is supposed to incorporate prehistoric, geologically inferred 

seismicity (see Frankel, 1995, for more detail). The next chapter describes a more sophisticated, data-

driven approach to determining non-uniform spatial seismicity parameters. 

Although expert opinion has the potential to introduce bias and epistemic uncertainty, it must be 

recognised that, in many instances, it is still valuable and even necessary. In the following chapter, 

alternative methods for PSHA are discussed. Several of these methods allow for data-driven models, as 

well as including expert opinion in a rigorous manner that is acceptable in current scientific practice. 

 

6. Alternative Methods for PSHA 

As mentioned already, the seminal Cor68 paper serves as the inception of the study field known as 

Probabilistic Seismic Hazard Analysis. The Cor68 procedure has become an integral part of PSHA and the 

author (Cor68) makes a considerable contribution to the framework for PSHAs currently conducted. Cor68 

provides a method for determining the return periods of the level of strong ground motion at a particular 

site. It is important to note that Cor68 indicates the generality of the procedure, which the author applied 

in a specific instance, and which served as a case study in some sense.  

Originally, the procedure Cor68 developed was intended for engineers, and the author pertinently 

mentions the sources from which data could be obtained. Clearly, Cor68 realises the need for careful and 

accurate estimation of the data that seismologists and geologists can provide. As engineers are not 

expected or advised to employ such data outside their field of expertise, Cor68 does not discuss how these 

data should be recorded and processed into the form required by them. 

 It is important to note that modern PSHAs include procedures regarded by Cor68 as solely the province 

of seismologists and geologists; however, with regard to the information required by engineers. Although 

engineers are also involved in the processing of the data, geoscientists (seismologists and geologists) often 

carry out entire PSHA procedures. It must be noted here that such interchanging of the roles of experts 

can become problematic without proper protocol and, in the opinion of the current author, often no 

protocol is followed at all. 
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A typical PSHA is conducted by employing the Cornell–McGuire procedure, as follows: 

(1) Identification of the seismic sources (or seismic zones). 

(2) Estimating the largest possible earthquake 𝑚𝑚𝑎𝑥 that could occur in each zone. 

(3) Assuming a Gutenberg–Richter FMD, determining the 𝑏-value (or equivalently the 𝛽) and, 

assuming a Poisson process, determining the activity rate of each zone. Accordingly, the 

parameter vector 𝚯 = (𝛽, 𝜆) is introduced. A uniform distribution for 𝚯 is usually assigned to each 

source. Although this might not reflect reality at all, at the time of publication of Cor68, this was 

the extent of information available, as well as the methods allowed. However, this practice has 

persisted and is still employed today. Therefore, in practice, determining this value has evolved 

into a combined effort from engineers and geoscientists, with the teams of specialists 

collaborating to integrate different types of information into estimates of 𝚯. 

(4) Developing (or choosing) a ground motion prediction equation to estimate the actual strong 

ground motion parameters at the site, given an earthquake of magnitude 𝑚 at a distance 𝑟. 

Conveniently, the simplest form of GMPE is 𝑠(𝑚, 𝑟):= 𝑠 = 𝑐1 + 𝑐2𝑚+ 𝑐3ln (𝑟), resulting in an 

exponential frequency-ground-shaking relation. Currently, the foremost practitioners of PSHA 

insist on extremely specific GMPEs.  

(5) Using the information from the previous steps to obtain a function/graph/curve reflecting the 

probability of exceedance at the site under consideration. Using the Total Probability Theorem, 

the probability of exceedance of the strong ground motion parameter is calculated as a function 

of the distribution of seismic source FMD. The marginal distributions of magnitude and distance 

are summed over to produce a combined distribution function of the strong ground motion 

parameter. This is referred to by McGuire (1993) as a deductive procedure.  

Veneziano et al. (1984) propose a different approach, using only catalogue data, which McGuire (1993) 

refers to as the historical procedure. A method to fit a model to catalogue data is referred to by McGuire 

(1993) as a parametric-historic procedure. Veneziano et al. (1984) consider their proposed method 

complementary to what they refer to as traditional methods. As catalogue data are used, the explicit 

identification of source zones is bypassed. These authors present two different approaches, the first of 

which is entirely non-parametric and does not deal with the uncertainty of the estimate. The second 

approach derives from a vastly different paradigm, i.e. considering the probability of exceedance as a 

random variable. This latter method does make use of models that require the estimation of parameters. 

It appears from the available literature that the parametric-historic procedure is the same as the widely 

known "Parametric-historic" procedure of Kijko and Graham (1998, 1999), but the current author cannot 

find the procedure that Veneziano et al. (1984) allude to in the abstract of their report. In their idea of the 

parametric-historic procedure, Veneziano et al. (1984) propose a method to deal with catalogue 

incompleteness by using a computer program that is able to deal with incompleteness, as well as different 

types of data inputs and different GMPEs. However, despite a thorough literature search, the current 

author was unable to locate a description of this method. It appears to be practically lost. The idea 

summarised by Veneziano et al. (1984) is realised in the Parametric-historic procedure of Kijko and 

Graham (1998, 1999). 
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The deductive-type procedures are attractive, as they are able to account for all the types of deviations 

from the "standard" model, i.e., "it accounts for phenomena such as migration of seismicity, seismic 'gaps' 

or, in general, any nonstationary properties of seismicity. This is possible because the procedure is 

parametric by nature." (Kijko and Graham, 1998, 1999). The tool that is fundamental to the deductive 

methods is the logic tree, which allows for the incorporation of different numbers, models, and parameter 

values, among others, by a simple "tree-node" structure. Although the logic tree is not discussed in detail 

here, as various subtleties complicate understanding it, employing the tool does influence the outcome 

because it allows for a considerable subjective representation of the weights or probabilities. A hazard 

curve is subsequently calculated for each path by employing the Total Probability Theorem. 

As they were unsatisfied with the way non-quantitative data were handled, obscuring valuable catalogue 

data, Kijko and Graham (1998, 1999) resolved to reduce the "blurring effect" of bias on the parameter 

and resulting hazard. The procedure they developed is referred to as the "Parametric-historic" (P-H) 

procedure (Kijko and Graham, 1998, 1999), and this name is also used in the current research. The primary 

aim of developing the P-H procedure was to solve two particular deficiencies in the existing methods. 

These are the inability to employ the available data ''obscured'' in incomplete and uncertain catalogues, 

and overcoming the complication presented by the need to specify parameters. Many catalogues can be 

incomplete and uncertain, but the information they contain needs to be extracted, and tools are 

developed to solve the problem. Also, "a procedure that accepts the varying quality of different parts of 

the catalogue and does not require specification of seismic source zones would be an ideal tool for 

analysing and assessing the seismic hazard.'' (Kijko and Graham, 1998, 1999). The P-H procedure does 

require parameters to be specified; however, it is based on a model that assumes a Gutenberg–Richter 

FMSL and a Poisson process in time, which simplifies the setting of the parameters to the (𝑏, 𝜆,𝑚𝑚𝑎𝑥) 

(the parameters considered in detail in the previous chapters). It is most important to note here that the 

P-H procedure is inherently data driven.  

It might not be commonly known that the P-H procedure is capable of accommodating geological and 

geophysical information, the effect of active faults, predominant directivity of raptures, mixed 

information on known faults and less defined areas, different types of distances, and other information. 

This ability is enabled by the Bayesian formalism, because "...in each step, all the parameters are 

estimated by the maximum likelihood procedure." (Kijko and Graham, 1999). Therefore, the P-H 

procedure does not exclude the deductive paradigm and information — a thoroughly underappreciated 

attribute. In fact, the capacity of this procedure appears to be completely unknown and underutilised for 

reasons unknown but, probably, because the authors chose not to emphasise this outstanding feature, 

but only to allude to it with an obscure technical statement. Therefore, to promote this versatile feature, 

it is highlighted in the current study. However, the Bayesian formalism to incorporate information from 

relatively diverse types of data is not discussed here, as it is well represented in the literature. It is useful 

to note that the Bayesian update procedures are not difficult, although the Bayesian theory can be 

extremely complicated. A comprehensive comparison of the Cornell–McGuire and P-H procedures is 

provided in a recent study by Pavlenko (2016).  

A description follows of only the data-driven (or catalogue-driven) part of the procedure, which comprises 

two steps. In the first, an area around the site of interest is isolated as the area where any earthquakes 
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produced could still influence the risk. For this area, the model parameters of the FMD and the activity 

rate parameter, which describes the rate at which earthquakes are produced in the area, are applicable 

to the area. In the second step, the focus is on the specific site, and the most applicable GMPE is 

implemented to calculate the distribution of the strong ground motion parameter, given the magnitude 

and distance that were selected.  

In the first step, a catalogue of seismic events is used, including the prehistoric, geologically induced 

events (for the sole purpose of comparison with the estimation of 𝑚𝑚𝑎𝑥). The catalogue can be visualised 

conceptually, as in Figure 11. The historical part of the catalogue is considered the part that contains only 

extremely large events recorded before the existence of recording instrumentation such as seismographs. 

The magnitudes of the earthquakes are inferred from historical analysis of the effects of the earthquakes. 

Modified Mercalli intensity values (Modified Mercalli Intensity Scale) are used to determine and locate 

such earthquakes as accurately as possible; however, the events obtained are subject to high estimation 

error. The second part of the catalogue, recorded instrumentally, contains sections with decreasing levels 

of completeness, along with an increase in the sensitivity of the seismic network, which is attributed to 

improved instrumentation, expanded networks, and advanced analysis techniques, among others. The 

catalogue entries within a distance 𝑅𝐿 = max {𝑟} are isolated and used as the working catalogue. 

Representative estimates (in this instance, mostly MLEs) of the parameters (discussed in the previous 

sections) are obtained. Each parameter is introduced in an ideal case, where the representation of the 

underlying process is a stationary Poisson process, and the catalogue is completely homogeneous, with 

the LoC not being time dependent. Progressively, generalisations of estimation methods are introduced 

for the purpose of dealing with non-homogeneous, incomplete catalogues, which derive from a more 

complete and realistic representation of what practitioners of PSHA have to contend with. In addition to 

the need to include in the estimation methods the capability to deal with an incomplete instrumental 

catalogue, it is desirable and ideal to incorporate the historical part that is derived from Mercalli Intensity 

estimates from historical records (no instrumental records are available for this part). A solution to 

achieving such incorporation is proposed by Kijko and Sellevoll (1989). The fundamental assumption 

(which validates, invalidates, or justifies the use of an approximation) is the following hypothesis 

(hypothesis 1): that, in historical times, only the strongest earthquakes in a time period would have been 

noted, with the rest remaining unnoted. It cannot be overemphasised how important it is that the 

methodology of analysis of the extreme part of the catalogues is based on hypothesis 1.  

The methodology of the P-H procedure of Kijko and Graham (1998, 1999) is presented formally as follows. 

Denote by 𝐹(𝑚) the upper bounded Gutenberg–Richter distribution. The notation used by Kijko and 

Sellevoll (1989) is convenient and compact (in addition, the formality of using capital letters for random 

variables is used); therefore, their notation is adopted here. Following the adoption by Kijko and Sellevoll 

(1989) of the representation of 𝐹(𝑚) used by Page (1968), Cosentino et al. (1977) derive 

 

𝐴1 = 𝑒
−𝛽𝑚0 , 

 

𝐴2 = 𝑒
−𝛽𝑚𝑚𝑎𝑥 , 

 

(6.1) 
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𝐴(𝑥) = 𝑒−𝛽𝑥. 
 

Then, 𝐹(𝑚) is expressed as 

 

𝐹(𝑥) =
𝐴1 − 𝐴(𝑥)

𝐴1 − 𝐴2
. 

 

(6.2) 

The objective here is to construct a joint likelihood function over the entire catalogue. Therefore, the 

innovative, but often neglected and underappreciated likelihood function for the historical part of the 

catalogue developed by Kijko and Sellevoll (1989) is implemented here. The likelihood function is 

constructed as follows. 

It is customary practice to model seismic activity as a Poisson process with intensity 𝜆, which results in the 

probability that an event will occur within a time 𝑡, given by 

 
𝑃[#𝑋 ≥ 1] = 𝑒𝑥𝑝[−𝜆𝑡] 

 
(6.3) 

To obtain the probability that an event will occur with a size lower than the specified threshold magnitude 

𝑚0, it is necessary to rescale 𝜆 to 𝜈0 = 1 − 𝐹(𝑚0), such 

 
𝑃[𝑋 ≤ 𝑚0] = 𝑒𝑥𝑝[−𝜈0𝑡] 

 
(6.4) 

And, once again rescaling for a specific or arbitrary value of 𝑥, the desired likelihood becomes 

 

𝑙0 = 𝑒𝑥𝑝 [−𝜈0𝑡 (
𝐴2 − 𝐴(𝑥)

𝐴2 − 𝐴10
)] 

 

(6.5) 

where 𝐴10 = exp (−𝛽𝑥0). This comprises the first part of the PDF likelihood function for the historical 

part of the catalogue. Astonishingly, this PDF captures the likelihood properties of observation in terms 

of both time and magnitude. 

For the rest of the catalogue, the likelihood function is uncomplicated, requiring only consideration of the 

change in the magnitude of completeness 𝑚𝑖 for each sub-catalogue. The relevant equations, already 

introduced, are repeated here, with that capturing parameter 𝛽, as follows 
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𝑙𝑖𝛽 = 𝛽
𝑛𝑖exp(−𝛽∑𝑋𝑖𝑗

𝑛𝑖

𝑗=1

) (𝐴1𝑖 − 𝐴2)
𝑛𝑖⁄  

 

(6.7) 

where 𝐴1𝑖 = exp (−𝛽𝑚𝑖), and the likelihood function capturing the time of observation 

 
𝑙𝑖𝜆 = 𝑐𝑜𝑛𝑠𝑡 exp(−𝜈𝑖𝑇𝑖)(𝜈𝑖𝑇𝑖)

𝑛𝑖 , 
 

𝑣𝑖 = 𝜆(1 − 𝐹(𝑚𝑖)) 
 

(6.8) 

denoting 

 
𝑙𝑖 = 𝑙𝑖𝜆 ∙ 𝑙𝛽 . 

 
(6.9) 

The full joint likelihood function is 

 

𝐿(𝛽, 𝜆|𝑋) =∏𝐿𝑖

𝑠

𝑖=0

(𝛽, 𝜆|𝑋𝑖) 

 

(6.10) 

This is the full likelihood function for the catalogue around the site of interest, which must be maximised 

to obtain an estimate of (𝜆, 𝛽). In most instances, the magnitude values in the catalogue are also 

uncertain, and it is common to assume that the error in magnitude values are distributed normally. In 

such instance, the combined density and distribution functions, respectively, of "apparent" magnitude 

following the GR law and, having a normally distributed error, becomes 

 
𝑓𝑀(𝑚|𝑚𝑐 , 𝑚𝑚𝑎𝑥, 𝜎𝑀) = 𝑓𝑀(𝑚|𝑚𝑐 , 𝑚𝑚𝑎𝑥)𝐶(𝑚, 𝜎𝑀), 

 
(6.11) 

 
𝐹𝑀(𝑚|𝑚𝑐 ,𝑚𝑚𝑎𝑥, 𝜎𝑀) = 𝐹𝑀(𝑚|𝑚𝑐 , 𝑚𝑚𝑎𝑥)𝐷(𝑚, 𝜎𝑀), 

 
(6.12) 

 
 

𝐶(𝑚, 𝜎𝑚) =
𝜒2

2
[erf (

𝑚𝑚𝑎𝑥 −𝑚

√2𝜎𝑀
) + erf (

𝑚 −𝑚𝑚𝑎𝑥

√2𝜎𝑀
− 𝜒)], 

 
 

(6.13) 
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𝐷(𝑚, 𝜎𝑀) =

{𝐴1 [𝑒𝑟𝑓 (
𝑚 −𝑚𝑐

√2𝜎𝑀
+ 1)] + 𝐴2 [𝑒𝑟𝑓 (

𝑚𝑚𝑎𝑥 −𝑚

√2𝜎𝑀
− 1)] − 2𝐶(𝑚, 𝜎𝑀)𝐴(𝑚)}

2[𝐴(𝑚)]
, 

 

(6.14) 

where 𝜎𝑀 is the standard deviation of earthquake magnitude determination, 𝐴(𝑚) = exp(−𝛽𝑚), 𝐴1 =

exp (−𝛽𝑚𝑐), 𝐴2 = exp (−𝛽𝑚𝑚𝑎𝑥), erf (∙) is the error function, with 𝜒 = 𝛽𝜎𝑀/√2, being unbounded from 

both ends.  

The functions are scaled as follows 

 

𝑓𝑀(𝑚|𝑚𝑐 ,𝑚𝑚𝑎𝑥, 𝜎𝑀) = 𝑓𝑀(𝑚|𝑚𝑐 ,𝑚𝑚𝑎𝑥, 𝜎𝑀)/[1 − 𝐹𝑀(𝑚𝑐|𝑚𝑐 , 𝑚𝑚𝑎𝑥, 𝜎𝑀)] 
 

(6.15) 

and 

 

𝐹̃𝑀(𝑚|𝑚𝑐 ,𝑚𝑚𝑎𝑥 , 𝜎𝑀) =
𝐹𝑀(𝑚|𝑚𝑐 ,𝑚𝑚𝑎𝑥, 𝜎𝑀) − 𝐹𝑀(𝑚𝑐|𝑚𝑐 , 𝑚𝑚𝑎𝑥, 𝜎𝑀)

[1 − 𝐹𝑀(𝑚|𝑚𝑐 , 𝑚𝑚𝑎𝑥, 𝜎𝑀)]
 

 

(6.16) 

 

 

Figure 11. Conceptualisation of an earthquake catalogue including the prehistoric, historic, and 

instrumental parts of the catalogue, where 𝑇𝑔  denotes gaps in observations (Figure from Smit et al., 2019).  
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The "apparent" activity rate is 

 

𝜆̃(𝑚) = 𝜆(𝑚)exp (𝜒2) 
 

(6.17) 

The likelihood functions have to be adjusted accordingly. 

The extreme value distribution, the distribution of the strongest earthquake in magnitude range 

<𝑚0,𝑚𝑚𝑎𝑥 > and within a time span t becomes 

 

𝑓𝑀
𝑚𝑎𝑥(𝑚|𝑚0,𝑚𝑚𝑎𝑥, 𝑡) =

𝜆̃0𝑡𝑓𝑀(𝑚|𝑚0,𝑚𝑚𝑎𝑥, 𝜎𝑀)𝑒𝑥𝑝[−𝜆̃0𝑡{1 − 𝐹̃𝑀(𝑚|𝑚0,𝑚𝑚𝑎𝑥, 𝑡, 𝜎𝑀)}]

1 − exp (−𝜆̃0𝑡)
 

 

(6.18) 

and the likelihood function for the extreme part of the catalogue takes the form 

 

𝑙0 = 𝑐𝑜𝑛𝑠𝑡∏𝑓𝑀
𝑚𝑎𝑥 (𝑚0𝑗|𝑚0, 𝑚𝑚𝑎𝑥, 𝜎𝑀0𝑗

)

𝑛0

𝑗=1

. 

 

(6.19) 

For the instrumental part of the catalogue, the likelihood functions take the form 

 

𝑙𝑖𝛽(𝛽) =∏𝑓𝑀 (𝑚𝑖𝑗|𝑚𝑐
𝑖 , 𝑚𝑚𝑎𝑥 , 𝜎𝑀𝑖𝑗

)

𝑛𝑖

𝑗=1

, 

 

(6.20) 

and 

 

𝑙𝑖𝜆(𝜆, 𝛽) = 𝑐𝑜𝑛𝑠𝑡(𝜆̃𝑖𝑡𝑖)
𝑛𝑖 exp(−𝜆̃𝑖𝑡𝑖), 

 

(6.21) 

where 

 

𝜆̃𝑖 = 𝜆̃(𝑚𝑐
𝑖 ) = 𝑣𝑖 exp(𝜒

2), 

 
 

(6.22) 

and 𝑣𝑖 = 𝜆(1 − 𝐹(𝑚𝑖)), and, denoting the full likelihood function for a sub-catalogue by 
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𝑙𝑖(𝛽, 𝜆) = 𝑙𝑖𝜆(𝜆, 𝛽) ∙ 𝑙𝑖𝛽(𝛽), (6.23) 

the full likelihood function to be maximised is 

 

ℒ(𝛽, 𝜆) =∏𝑙𝑖

𝑠

𝑖=0

(𝜆, 𝛽). 

 

(6.24) 

Having obtained the parameters, Kijko and Graham (1999) show that the strong ground motion 

parameters are distributed according to an exponential law. It must be noted (as Cor1968 did) that 

complex integration limits are being ignored. However, in most instances, exponential distribution has 

been found an excellent model of the distribution of ground motion at a particular site. In the current 

author's opinion, supported by previous research (Vermeulen, 2014), it is advisable not to use the 

parameter 𝛾 =
𝛽

𝑐2
 or, if used, it should be done with caution. The maximum possible ground motion will 

be  

 
ln(𝑎𝑚𝑎𝑥) = 𝐺𝑀𝑃𝐸(𝑟𝑚𝑖𝑛,𝑚𝑚𝑎𝑥). 

 
(6.25) 

Given the uncertainties about the parameters, with the assumption that the parameters are Gaussian 

distributed, and that the parameters of the GMPE can be used to transform the distribution of magnitude 

and distance to strong ground motion, the standard deviation on 𝑙𝑛(𝑎𝑚𝑎𝑥) is 

 

𝜎𝑡𝑜𝑡𝑎𝑙 = √𝜎ln(𝑎𝑚𝑎𝑥)
2 + 𝑐2

2𝜎𝑀
2 + 𝜎𝑅

2(𝑐3 + 𝑐4 𝑟⁄ )2, 

 

(6.26) 

which allows evaluating ln(𝑎𝑚𝑎𝑥) at a certain confidence level. 

The P-H procedure has been found most useful in generating the estimated spatial distribution of Θ =

(𝛽, 𝜆, 𝑚𝑚𝑎𝑥). This eliminates the need for subjective "zoning" when data are used. Certainly, it is often 

desirable to include extra information, which can be done simply by a Bayesian formalism. 

Kijko and Graham (1998, 1999) list several studies on the application of a parametric-historic procedure, 

with probably the most well-known being that by Frankel (1995). The basic concept derives from 

determining area-characteristic parameters for a grid of points by employing statistical analysis. The most 

advanced and formal of these are those of Kijko and Graham (1998, 1999), with possible variations if 

applied rigorously. Methods usually advance continually, and the P-H procedure is mostly open to 
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extension. The methods mentioned in Vermeulen and Kijko (2017) and in Beirlant et al. (2017a, 2017b) 

can be used to estimate the maximum magnitude. Naturally, recent tools developed by Kijko et al. (2017) 

are utilised, as these represent the sequel to the methodology the P-H procedure is based on. 

The P-H procedure has the advantage of employing nearly all the catalogue data in a mathematically 

rigorous fashion. However, it should be emphasised that the Bayesian formalism enables the 

incorporation of data that differ from the catalogue data. Furthermore, the Bayesian formalism can 

allocate as much weight to the other data as to the catalogue data. The P-H procedure allows the 

mathematics for using the catalogue data to be made formal and provides a way for the information from 

the catalogue to not be distorted by quasi-quantitative incorporation into the analysis in such a way that 

the effect of such quasi-quantitative information on the analysis cannot be traced. The Bayesian formalism 

is defined and briefly described in the Glossary. This is done because it is not widely known how easily the 

maximum likelihood procedure can be extended by a simple Bayesian technique without having to 

consider the full details of Bayesian statistics. 

Alternatives to the P-H procedure have been proposed, but none as powerful for incorporating catalogue 

data. However, such procedures are worth mentioning here as a comparison with and possible extensions 

to the P-H procedure. 

The approach of Wang (2011) is considered a combination between PSHA and determinative seismic 

hazard analysis (DSHA), as, for a given location, a hazard curve is constructed employing the relation 

between magnitude, distance, the GMPE, and variability. The function 

 
𝑚 = 𝑔(𝑅, 𝐺𝑀𝑃𝐸, 𝜎𝜖), 

(6.27) 

is merely substituted into the GR scaling law 

 
1

𝜆
= 𝑒𝛼−𝛽𝑔(𝑅,𝐺𝑀𝑃𝐸,𝜎𝜖). 

 
(6.28) 

Subsequently, Wang (2011) determines the parameters from the catalogue but he does not have the tools 

that the P-H procedure provides. However, these tools can be used easily. If a grid of points were 

constructed determining 𝛼 and 𝛽 using the likelihood methods in the P-H procedure, this procedure is 

essentially no different from the P-H procedure. The method by Wang (2011) provides only another, 

different perspective by placing emphasis on a specific step in the procedure. It is clear that this leads to 

full deaggregation, and it is interesting to see here the actual log-linearity of the hazard curve for a given 

site.  

Although Araya and Der Kiureghian (1988) claim to propose a new method for PSHA, their method is 

actually not new but presents PSHA in its most generalised mathematical formulation. However, their 

paper is considered a landmark, as they discuss the fact that increasingly refined variables and models can 

be introduced in this general formulation. This is simply the Total Probability Theorem formulated to 
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emphasise explicitly that any number of factors can be accommodated. These authors also keep 

uncertainty separate throughout the analysis. The difference in the detail of their methodology is that 

they transform the distribution of variables to a Gaussian form. Such a practice could be useful but is 

beyond the scope of this work.  

The approach of Raschke (2014), referred to as the delta method, is strongly recommended to keep track 

of uncertainties (this is the same approach used by Araya and Der Kiureghian [1988]). Mulargia et al. 

(2017) criticise PSHA for not being verifiable, and an easy philosophical argument turns this into a problem 

related to the uncertainty of seismic hazard estimates and, particularly, the uncertainty of our knowledge 

about the uncertainty in hazard estimates. Given this situation, the certainty of our knowledge needs to 

be scrutinised, and our epistemic uncertainty about aleatory uncertainty must be handled conservatively. 

It is important to communicate epistemic uncertainty, whether it is incorporated in the uncertainty 

bounds of the hazard curve or as an additional figure. It is unfortunate that this is seldom done. 

 

7. Final Summary 

This thesis introduced (or revealed) Parameter Estimation in Probabilistic Seismic Hazard Analysis (PE-

PSHA) as a field of study in its own right, which, at the same time, is also an essential part of any PSHA. 

PSHA was introduced, as done by the Cornell–McGuire procedure, and the parameters for the models 

used in the Cornell–McGuire procedure were discussed briefly. These essential parameters are the 

Gutenberg–Richter 𝑏-value, RoS, and 𝑚𝑚𝑎𝑥. Substantiation was presented for considering PE-PSHA, a 

necessary but neglected part of PSHA, as a distinct study field. Information related to this field of study is 

scattered throughout the relevant body of literature and is, herewith, brought together in view of it being 

considered an integrated, essential part of PSHA. 

As the source of data, seismic catalogues are discussed briefly. Typically, an earthquake catalogue consists 

of a prehistoric part, a historical part, and an instrumental part, with subparts for which the minimum 

magnitude that can be detected reliably decreases with time as seismic instruments, networks, and 

processing methodologies become more advanced and, therefore, more sensitive. It is important to note 

that, ideally, all the data should be used despite it being easier to use only the instrumental part of a 

catalogue — a viewpoint that is reflected throughout the text. 

An essential parameter that is not a model parameter in PSHA but has to be determined to use catalogue 

data efficiently and obtain accurate estimates of model parameters, is the LoC of each subpart of the 

earthquake catalogue. The LoC is the point above which all earthquakes are recorded. The relevant 

methods discussed are those by Stepp (1972), Tinti and Mulgaria (1985), Maximum Curvature Method of 

Wiemer and Wyss (2000), goodness of fit method of Wiemer and Wyss (2000), method of Cao and Gao 

(2002) using 𝑏-value stability, and an alternative by Woessner and Wiemer (2005), Marsan (2003) method 

using 𝑏-value stability, Entire Magnitude Range method of Woessner and Wiemer (2005) (including the 

current author’s proposed slight modification), MBASS method by Amorèse (2007), and the method of 

Godano (2017) using the harmonic mean. A critical analysis, with some important considerations, is put 
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forward in rigorous logical and mathematical arguments. These include the proxy method of Mignan 

(2012) and Mignan et al. (2011), the MAXC, and the MBASS method. These critical considerations of 

estimation emphasise the fact that estimating the LoC is no simple matter. 

Next, the estimation of the 𝑏-value was discussed. The discussion started with the classic Aki–Utsu 

estimator, which is the maximum likelihood estimator (also derivable by the Method of Moments), in 

relation to the GR law holding for arbitrarily large magnitudes. This estimator assumes a homogeneous, 

complete instrumental catalogue. An approximate variance for the estimator is given. Shi and Bolt (1982) 

note that the estimator is biased for a limited amount of data (a typical problem with estimators) and they 

propose a correction. In addition, Shi and Bolt (1982) provide an estimate of the variance that takes into 

account slow spatial and temporal variation. Ogata and Yashima (1986) use a Bayesian approach to arrive 

at a probability distribution for the estimated 𝑏-value. The first estimator that takes 𝑚𝑚𝑎𝑥 into account is 

probably the modified Aki–Utsu estimator given by Page (1968). Marzocchi and Sandri (2003) note that 

estimators for the 𝑏-value, assuming arbitrarily large magnitudes, produce satisfactory results when 

(𝑚𝑚𝑎𝑥 −𝑚min ) ≥ 3 is a guideline.  

The next advancement in estimating the 𝑏-values is a correction for bias introduced because the data are 

not continuous but are grouped in intervals of approximately 0.01 for recent instrumental values and 0.1 

for older data. Guttorp and Hopkins (1986), Bender (1983), and Tinti and Mulgaria (1987) all derive 

maximum likelihood estimators for the 𝑏-value that account for magnitude grouping. 

The least squares approach was the first to be used by scientists because of its natural appeal to the linear 

trend of the GR plot. However, several authors have been critical for several reasons, which are justified 

rigorously (see references in section 4.3). Kijko (1994) proposes the minimisation of an optimal norm 

instead of the least squares method. However, the problem of asymmetry of the scatter of logarithmic 

transformation of data still poses a problem, as noted by Guttorp (1987), who derives a GLS estimator to 

solve the problem.  

The above-mentioned estimators still have the shortcoming of assuming a single homogeneous catalogue 

with one LoC. Stepp (1972) was probably the first to provide a way to divide a catalogue into its different 

subparts, with different LoC values. Stepp (1972) used a least squares approach to estimate 𝑏-values for 

each subpart, which is not optimal. Weichert (1980) and Rosenblueth (1986) both derived maximum 

likelihood estimators that simultaneously estimate the 𝑏-value and the RoS, and their methods take 

magnitude grouping into account. Kijko and Sellevoll (1989) provide a simultaneous maximum likelihood 

estimator for the 𝑏-value and the RoS with the incorporation of historical data. Unfortunately, their 

estimator does not take magnitude grouping into account. 

Kijko and Smit (2012) recognised the need for a simpler generalised estimator of the 𝑏-value for 

incomplete catalogues. One of the estimators they propose is an extension of the Aki–Utsu estimator, 

which has an extremely simple expression after the simplification of the expression. Ordaz and Giraldo 

(2017) derive a simultaneous maximum likelihood estimator for the 𝑏-value and RoS. However, as shown 

in the current study, this is only a special case of estimation by the method of Kijko and Sellevoll (1989), 

where no historical data are included.  
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A problem from the past that still needs attention is the variation of the 𝑏-value in space and time. This 

problem is addressed by Shi and Bolt (1982), Guttorp and Hopkins (1986), and Ogata and Katsura (1993). 

PSHA is mostly conducted assuming a constant (stationary) RoS (𝜆), and, symbolically, 𝜆(𝑡) ≡ 𝐾, with 𝐾 

some constant with units of (seismic events)/(unit time). In other words, the variation in RoS with time is 

assumed to be constant. This is completely justified in many instances, with the variation in the RoS being 

negligible. However, in many other instances, the variation in RoS with time is large enough to have an 

effect on the seismic hazard. In this thesis, prominent models were discussed, such as renewal processes, 

Markov renewal processes, the Omori-Utsu formula for earthquake clustering (specifically with 

aftershocks), and the ETAS model. 

For nonstationary Poissonian models, two reasonable approximations were given that could simplify the 

incorporation of time-varying RoS into seismic hazards, such as equations (3.82) and (3.83). Unfortunately, 

the history-dependent models make such elegant approximation much harder. For any time in the future, 

the RoS does not depend only on the time up to the present, but also on what happens from the present 

up to that point in the future. For approximation, the possibilities with their probabilities must be captured 

of what is to happen from the present until the point in time in future when the hazard is to be estimated. 

Up to the present, the Monte Carlo simulation has been almost the only way to analyse the hazard, if such 

models held in reality (and history dependence in seismicity is a reality). Polidoro et al. (2013) and 

Iervolino et al. (2014), in notable work, manage to incorporate aftershocks into an elegant integral formula 

in their sequence-PSHA. This formulation depends on the so-called first-event approximation, which 

means that hazard can be approximated by the first event occurring, of which Cornell and Winterstein 

(1988) present an explanation. Polidoro et al. (2013) describe instances where this theory will hold. No 

analytical approximations appear to exist in the literature where the overhead seismicity is not small 

enough for the first-event approximation to hold, in which case the Monte Carlo methods are resorted 

to. Under mild assumptions, where the RoS is not exactly Poisson and where the hazard depends on the 

time and magnitude of the last event (renewal model), Cornell and Winterstein (1988) propose a Weibull 

model that is a generalisation of the GR law. In this model, the RoS behaviour deviates somewhat from 

that of the Poissonian model and its ''memory-lessness'' property. 

Kijko et al. (2016) present a most elegant and notable model that allows for variation in both the 𝑏-value 

and the RoS. This is done in a manner similar to Bayesian incorporation of the variability of the parameters 

that are related to epistemic uncertainty; however, in this instance, the variability accounts primarily for 

physical variability, although it can be used to account for epistemic variability as well. The variation in 

both the 𝑏-value and the RoS is assumed to follow a gamma distribution. The reason for this is the versatile 

properties of this distribution, i.e. the many forms of distribution it is able to capture. This model is easily 

applied in traditional PSHA. 

Four promising estimators of the 𝑏-value were compared, which are those by Weichert (1980), Kijko and 

Sellevoll (1989), Kijko and Smit (2012), and Kijko and Smit (2016). A comparison was conducted with 

Monte Carlo simulation. Estimator (3.32) by Weichert (1980) appeared somewhat inferior in the cases 

modelled, and the performance of the others was quite similar. Estimator (3.47) by Kijko and Sellevoll 

(1989) and (4.61) by Kijko and Smit (2012) are preferred for their simplicity. 
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The parameter 𝑚𝑚𝑎𝑥 plays a vital role in PSHA but has received relatively little research attention. In this 

thesis, the estimation of 𝑚𝑚𝑎𝑥 from seismic catalogue, data was considered specifically. The focus was 

on finite (point) estimates, noting that giving the second moment or variation is essential. The following 

estimators and features were mentioned and discussed: 

- Tate–Pisarenko estimator (4.2) (Pisarenko, 1991; Pisarenko et al., 1996), which is the minimum 

variance unbiased estimator, and its elaborated form (4.11) given by Kijko (2004). 

- The fiducial distribution (4.7), used by Pisarenko (1991). 

- Cooke's (1979) estimators (4.14) and (4.15). 

- Kijko–Sellevoll estimator derived from (4.14) for the GR law and the derived cases presented in 

Kijko and Graham (1998), Kijko (2004), and Kijko and Singh (2011). These estimators include 

equations (4.16), (4.18), (4.20), and (4.21). 

- The Raschke (2012) estimator, which takes the form of the mean or median of the distribution 

(4.24). 

- The Method of Moments estimator (4.25), with a discussion of its variance, as done by the current 

author in Vermeulen and Kijko (2017). 

- Robson and Whitlock estimators (4.29) and (4.31). 

- Estimator (4.38), and variations and essential properties from Robson and Whitlock (1964), Cooke 

(1979), and Kijko and Singh (2011). 

- The estimator (4.40) from Cooke (1979, 1980) and Kijko and Sigh (2011), and estimator (4.39) 

from Cooke (1979, 1980). 

- A note by Vermeulen and Kijko (2017) on the connection between estimators (4.40), (4.39), and 

the modern EVT. 

- The method by Fraga Alves and Neves (2014) applied to the problem of estimating 𝑚𝑚𝑎𝑥 , and 

investigated by Vermeulen and Kijko (2017). 

- A maximum likelihood estimator based on the EVT (4.46) applied and investigated by Vermeulen 

and Kijko (2017). 

- Estimator (4.49) by Beirlandt et al. (2017). 

- Estimator (4.52) combined with (4.51) by Beirlandt et al. (2017). 

- Gaussian kernel method by Kijko et al. (2001). 

- The least squares procedure, the 𝐿1 norm (4.57), and the optimised 𝐿𝑝 norm (Kijko, 1994). The 

disadvantage of all of these error-norm-minimisation methods is that they do not function 

optimally for non-symmetrically distributed scatter. 

- Application by the current author, as in Vermeulen and Kijko (2017), of the Guttorp (1987) 

generalised least squares procedure to simultaneously estimate the 𝑏-value and 𝑚𝑚𝑎𝑥. Although 

the application of the generalised least squares problem did not prove to be quite practical, it is 

worth further investigation. 

Please refer to Chapter 4 for more detail in the discussion of these methods. 

The contribution by the current author is presented in the final section of Chapter 4, where the theory of 

the Kijko–Sellevoll estimator, as developed by Haraala and Orosco (2016, 2018a, 2018b), is summarised 
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in a less theoretical form and in a manner that clarifies the scientific applicability of the theory and makes 

this outstanding and novel work accessible, even to researchers less conversant with the mathematics. 

Seismic source characterisation was discussed and addressed in view of the Budnidz et al. (1997) 

guidelines for seismic zoning. The discussion takes the most critical view of normal zoning procedures 

because of the related oversimplification and non-optimal use of data. Alternative approaches are 

available but are not regularly employed, such as those of Frankel (1995) and Kijko and Graham (1999). 

The main problem with the zoning procedure is that it introduces a large amount of bias and epistemic 

uncertainty by relying directly, and solely, on expert opinion, which is left completely unaccounted for, or, 

at best, accounted for vaguely. The Bayesian formalism is suggested as a superior alternative, after 

employing the data optimally to delineate seismic source distribution. 

Finally, alternative approaches to PSHA were discussed. These include the historical approach of 

Veneziano et al. (1984) (of which the Earthquake Engineering Research Institute [ EERI] unfortunately 

refuses to release copies), the P-H procedure of Kijko and Graham (1998 and 1999), and that introduced 

by Wang (2011). 

 

8. Conclusion 

An earthquake magnitude catalogue for a given region (the part of interest here) consists of a series of 

earthquake event times, magnitude values, and (preferably) the estimated uncertainty of the magnitude 

values. The catalogue can be divided into two main parts, namely a historical part where only the largest 

events were recorded, and an instrumental part where networks of seismic stations record events quite 

accurately and, for practical purposes, record all events above the LoC within the region. With time, 

networks are upgraded and the LoC drops. This divides the instrumental part of the catalogue, once again, 

into smaller sub-catalogues with a unique LoC 𝑚𝑐
𝑖 . Gaps could be present in the instrumental part, with 

one particular gap common to many seismic catalogues being the period of the Second World War. The 

catalogue can be viewed as a marked point process, i.e. a point process where each point (or event) is 

assigned a value (magnitude). To fully characterise the marked point process, specification is needed for 

distribution of points on the real line (in time) and the distribution of the marking values (magnitude). In 

the current work, taking a perspective different from that of Reiter (1990), the process of PSHA is regarded 

as constructing a marked point process model for earthquake occurrences. This is traditionally done for a 

list of seismic source zones but can be done in an "area-characteristic" manner as well. Accordingly, from 

this perspective, the model construction of the marked point process is central to the analysis. Having 

chosen the Poisson process and a Gutenberg–Richter FMD, the problem is reduced to that of parameter 

estimation. For a complete PSHA, the ground motion has to be calculated for a given site; however, the 

perspective can be changed to view the calculation of ground motion probabilities as a "simple" 

transformation (the development of GMPEs is by no means simple but is viewed here as a given). This 

view is justified and useful, as it clearly places the focus on the primary task of seismologists related to an 

earthquake catalogue (input).  
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A typical PSHA is carried out using the assumption that earthquake occurrences can be modelled by a 

Poisson process in time and the bounded Gutenberg–Richter FMSL. Therefore, the essential parameters 

to be estimated for an earthquake hazard model are the Poissonian intensity (or seismic activity) rate 𝜆, 

the Gutenberg–Richter 𝑏-value (alternatively the 𝛽-value), and the maximum possible earthquake 

magnitude 𝑚𝑚𝑎𝑥. This is denoted by a parameter vector 𝚽 = (𝜆, 𝛽,𝑚𝑚𝑎𝑥). Accordingly, the 

determination of 𝚽 is vital in a typical PSHA study and is the main focus of the current work. It should be 

noted that other models can certainly be developed for use in modelling the temporal distribution and 

frequency-magnitude scaling law, in which 𝚽 takes a different form. However, the Poisson process is the 

simplest “marked” point process model, with seismic activity 𝜆, which, naturally, has an analogous 

parameter in more complex models. In addition, to a great degree, the bounded Gutenberg–Richter 

distribution is the most natural model to assume, for various reasons, e.g. it is simple and fulfils the 

maximum entropy criterion under exceptionally natural assumptions (Berrill and Davis, 1980). Other 

models also typically have an analogous value to 𝛽. A topic of intensive research is whether an upper 

bound 𝑚𝑚𝑎𝑥 can be attributed to the frequency-magnitude law. There is an intuitive appeal to assign 

𝑚𝑚𝑎𝑥 to the range of possible magnitudes; however, strong arguments by early seismologists 

demonstrate that it is necessary to impose 𝑚𝑚𝑎𝑥 for a realistic model (Kijko and Graham, 1998; and 

references therein). An upper bound is, indeed, necessary for any realistic model. The current author 

questions the validity of a sharp truncation in favour of a continuous decrease to zero from the left. The 

only difference is that the tail would take a shape that differs from the exponential model. However, if 

using the EVT to estimate 𝑚𝑚𝑎𝑥 and the value of the shape parameter was different from −1, the 

implication is that the end point is not a truncation (Cooke, 1979). Because of the nature of catalogues, 

i.e. missing data at lower magnitude values, another parameter, the auxiliary parameter, is of importance 

and is estimated for different subparts of an earthquake catalogue. This is called the level of completeness 

𝑚𝑐, defined as the magnitude level above which a hundred percent of all earthquakes are recorded. Below 

this level, some events are missed, typically at random. In time, 𝑚𝑐 usually decreases as instrumental 

networks and processing techniques become available. This implies that for a single catalogue, the 

different parts each have their own LoC 𝑚𝑐
𝑖 . A typical catalogue is conceptualised in Figures 10 and 11.  

To date, there is no accepted, robust method to estimate 𝑚𝑐 , although various good methods based on 

sound arguments have been proposed. The first widely used method is that developed by Stepp (1972), 

and it is still used widely today. Subsequent methods have been developed, typically aimed at detecting 

the empirical distribution from linearity. Closely related to this are methods inspecting the stability of the 

estimated 𝑏-value, excluding consecutively larger magnitudes. The current author is critical of various 

workers not being conservative when using these methods. For example, in Wiemer and Wyss (2000), an 

accuracy measure is used in many of these methods, and 𝑚𝑐 is chosen to be the point where a statistic 

reaches a certain level of accuracy. However, often, toward higher magnitudes, a clear monotonous trend 

to even greater accuracy is present, which the current author regards as an indication that the desired 

value has not been reached yet. This opinion appears to be reflected in the results obtained by Godano 

et al. (2017). The current author does not claim to have any rigorous argument to substantiate such 

criticism but, intuitively, it simply appears more sensible to him. However, admittedly, this remains a 

matter of personal opinion. The estimator proposed by Godano et al. (2017), based on the value of the 

harmonic mean for magnitudes over a given threshold, appears to be the most robust method. 
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Furthermore, the current author is critical, but, here, on a sound basis, of the popular Maximum Curvature 

Method. In fact, the current author has shown rigorously and mathematically that this method is flawed, 

and it does not serve the purpose it is intended for. The exception is a theoretical case where no curvature 

is present over any interval, but the trend changes at a point (i.e. infinite curvature at one point). Kijko 

and Smit (2017a) derived an estimator (with alternative variations using the Method of Moments and the 

maximum likelihood method) of the 𝑏-value that does not explicitly require the estimation of 𝑚𝑐. The 

current author considers this a breakthrough, and this method should replace the customary practice of 

the explicit estimation of 𝑚𝑐. The opinion of the current author is based on Aki (1995, pers. comm. with 

A. Kijko) being so dissatisfied with the sensitivity to this parameter that he did not even include it in his 

landmark book Quantitative Seismology (Aki and Richards, 2002). For the sake of completeness, the 

estimation of 𝑚𝑐 as a parameter was discussed. Ideally, this can be viewed as data preparation and the 

actual parameter the estimation pertains to is defined earlier. 

The 𝛽-value and the seismicity rate 𝜆 are interlinked closely and are, therefore, often estimated as a pair 

𝚿 = (𝛽, 𝜆). Most often, for practical reasons, 𝛽 is estimated first and subsequently 𝜆. In some instances, 

however, they are estimated simultaneously. It must be emphasised that these two parameters are 

essential to the distributions defining the marked point process used to model seismicity, as they relate 

directly to parameters 𝑎 and 𝑏 in the GR relation. Gutenberg and Richter (1944) use a least squares 

regression on the cumulative distribution curve to determine the 𝑏-value, but the literature indicates that 

this method is criticised widely. It is not an adequate method for use because the assumption of normally, 

or even symmetrically distributed errors is not met. The Aki–Utsu estimator equation (1.9) is one of the 

first proposed methods and remains one of the most popular. It is effective for a single complete 

catalogue, for which the magnitude of completeness 𝑚𝑐 is known. Numerous modifications or 

alternatives to the Aki–Utsu estimator have been proposed, taking into account grouping (binning) of 

magnitudes in regular intervals (Bender, 1983; Guttorp and Hopkins, 1986), instances where a maximum 

likelihood is imposed (Page, 1968), and instances where incomplete catalogues are used (Weichert, 1980; 

Kijko and Sellevoll, 1989; Kijko and Smit, 2012; Ordaz and Giraldo, 2017). The current author has shown 

that the equations given by Ordaz and Giraldo (2017) indicate a special case of the estimator by Kijko and 

Sellevoll (1989). Guttorp (1987) partially solved the problem of the use of least squares regression by 

introducing the generalised least squares regression. However, because of the transformation on 

frequency data, the applicability of the method remains questionable. Another alternative is the least 

absolute value regression, which is less sensitive to outliers, or even an optimised 𝐿𝑝 norm proposed by 

Kijko (1994). The most popular methods are probably those of Weichert (1980) and Kijko and Sellevoll 

(2012) and, in the current study, they have been shown to provide quite similar results and, therefore, no 

distinction can be made as to which is superior or more appropriate. 

Models other than the stationary point process have been proposed, and they appear quite plausible. 

One of the major implications is that 𝜆 = 𝜆(𝑡) varies with time. Various explanations of the models have 

been presented; however, the only way to incorporate these models into hazard analysis is by considering 

𝜆 as varying stochastically (Kijko et al., 2017), or by employing one of the Monte Carlo simulations. In 

seismic hazard studies, the assumption of a stationary point process remains prominent, and the current 
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author foresees that the Kijko–Smit–Sellevoll–Bayes procedure will probably be of substantial value in the 

future. 

The estimation of 𝑚𝑚𝑎𝑥 is the final estimation of importance mentioned in the current study. Various 

methods are available, with none of them having been shown to be superior to the others. The estimators 

can be categorised into parametric estimators, semi- and non-parametric estimators, and EVT-based 

estimators. A minor, but possibly crucial aspect, is that, according to Cooke (1979), a sharply truncated 

distribution should have a shape parameter equal to 𝛾 = −1. However, this is often not the outcome 

when EVT-based methods are used. Nevertheless, there is no firm basis to reject slightly different shapes 

from 𝛾 = −1, i.e. this does not render these estimates invalid. 

Zones have been introduced as a primitive/preliminary method of delineating the spatial distribution of 

seismic sources. Zones are usually assigned a constant 𝚽 based on geological, geophysical, and seismic 

catalogue data. This method, however, does not use seismic catalogue data optimally and relies heavily 

on arbitrary boundaries set by teams of experts (geoscientists and engineers).  

The current author wishes to emphasise that the problem with an expert opinion is that it is highly 

subjective and has an epistemic uncertainty. Epistemic uncertainty in itself can become most problematic 

in that it is extremely hard to quantify, and the problem is compounded if the expert judgement were to 

quantify this. (The advanced topic of the handling of epistemic uncertainty is an active field of research 

[e.g., Khakzad, 2019; Knutti et al., 2019; Pedde et al. 2019; Randle et al., 2019] but is not applied in the 

field of parameter estimation in PSHA.) Bayesian formalisms have the ability to enable an expert opinion 

to supplement data with a lesser effect of subjective bias on epistemic uncertainty, as they allow the 

optimal use of data in a rigorous way before factoring in expert opinion. The concept of epistemic 

uncertainty is well summarised by McGuire (2004), and implementation of Bayesian formalism to the 

problem of estimating 𝑚𝑚𝑎𝑥 is done by Cornell (1994). Although this is an early application of the Bayesian 

formalism, it is still not standard practice in PSHA. 

 Some researchers have realised the need to optimise the use of seismic catalogue data, such as Frankel 

(1995), who recognised this deficiency and attempted to solve it. Later, Kijko and Graham (1999) 

developed a refined method, which allows the incorporation of geological and geophysical data, as well 

as expert opinion. This method allows for the determination of area-characteristic parameters 𝚽, 

describing a "floating earthquake" scenario, and a type of deterministic worst case scenario estimation. 

Applied to a grid of points, an estimation of the spatial distribution of 𝚽 can be obtained, avoiding 

traditional arbitrarily delineated zones. 

 

9. Further Research 

Further research is required to find optimal procedures for estimating the LoC, as, as was pointed out in 

Chapter 2, shortcomings in the methods remain. It is also obvious that finding a limiting point, the point 

where curvature commences (or stops if viewed from the opposite direction) on a histogram, is not 
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possible to accomplish without uncertainty. However, it remains an open question of what such an 

optimal procedure to estimate the LoC might be.  

Methods to estimate the 𝑏-value and RoS for incomplete catalogues simultaneously should be adapted 

for grouped magnitudes. Weichert (1980) does present a method for estimating both parameters, but the 

estimation of the RoS is based on a prior calculation of the 𝑏-value. 

A link could possibly be established between the maximum likelihood estimators of Guttorp and Hopkins 

(1986) and Bender (1983). This would enable combining their research and findings, and not having to 

choose between them, assuming that they are unrelated (if, in fact, they are related as hypothesised). A 

link could also possibly be established between the maximum likelihood estimators of Weichert (1980), 

Rosenblueth (1986), and Kijko and Sellevoll (1989).  

Further usable analytic/closed-form solutions can be derived for special instances of the Kijko–Sellevoll 

procedure. The ideal would be a closed-form solution for the instance where incomplete catalogues with 

a historical part can be incorporated. Closed-form solutions are preferable for the insight they afford into 

estimators, and for enabling further development of the estimators. 

Methods for the addition of different types of data into the Kijko–Sellevoll method by employing the 

Bayesian formalism have not been established properly. Because of the maximum likelihood formulation 

of the procedure, it is clear that this is possible, but the procedure is not established yet. 

Other alternatives to seismic zoning. The Bayesian formalism provides a method to incorporate expert 

opinion, as well as geological and geophysical data into a spatial distribution derived from earthquake 

catalogues. 

Investigation of possible modifications to the GLS procedure that would guarantee a solution. Because 

this procedure appears to be a valid method of estimating the 𝑏-value, incorporating 𝑚𝑚𝑎𝑥 into such 

calculation is definitely an aspect to consider. Modifications to the least squares procedure do exist, as do 

modifications to the GLS procedure.  

Study on the effects of uncertain or varying additional parameters in minimum variance unbiased models. 

As a possible starting point, compound distribution has been proposed as a model that incorporates 𝑏-

value uncertainty. A useful estimator could be a minimum variance unbiased estimator of these 

distribution parameters. 

Detailed investigation of the EVT for point estimators for 𝑚𝑚𝑎𝑥. The assumption of a truncated 

exponential model is inconsistent with some of the assumptions (it is an irregular case and has to be 

treated with particular care). The main question here is why these inconsistent assumptions do not affect 

the variation in the results. 

The extent of the applicability of expert opinion should be investigated. Neglecting this aspect would not 

be prudent and allocating it the main priority and using it as the main estimate to be modified by the data 

is not good practice, although this is the current practice. Bayesian procedures are the state-of-the-art, 

most applicable methodology to incorporate expert opinion, as it is easy to build a base model or estimate 
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and include expert opinion afterward using these formalisms. Furthermore, the subject of epistemic 

uncertainty in expert opinion has to be addressed in totality. 

The Kijko–Sellevoll method prompts speculation on whether it would be possible to devise a technique to 

determine whether the catalogue data have been used optimally in a formal mathematical or probabilistic 

context. The aim of the Kijko–Sellevoll formalism appears to be to exhaust the information that is 

extractable from the data to estimate the parameters. However, questions that arise are, e.g. is there a 

theoretically maximum amount of information that can be extracted from earthquake catalogue data? Is 

this limiting maximum attainable? 

Some excellent non-parametric estimators for 𝑚𝑚𝑎𝑥 are discussed in Chapter 4. The question is to what 

extent non-parametric methods can be used in other areas of parameter estimation. 

The problem of the convenient subdivision of the complete part of the catalogue has to be investigated. 

This implies that if the data from a part with a lower LoC were allocated to a part with a higher LoC, data 

that could have been used are discarded because of the higher LoC. Two notable publications dealing with 

this subject are by Stepp (1972) and Tinti and Mulgaria (1985); however, this is not sufficient, i.e. further 

research is required. 

Kijko and Sellevoll (1989) assume, with sound argument, that the historical part of the catalogue can be 

modelled by an extreme value distribution. However, this assumption has not been tested. 

The performance of the 𝑏-value estimators of Tinti and Mulgaria (1987), Guttorp (1986), and Bender 

(1983) for grouped magnitude data could be compared. 

The incorporation of time-varying models into regular PSHA practice should be investigated; for instance, 

further development relevant to the work of Cornell and Winterstein (1988). These authors noted their 

intention to initiate such research; however, this appears not to have been done. 

Techniques could be developed to incorporate and utilise the prehistoric part of earthquake catalogues. 
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11.    Glossary 

Incomplete catalogue: an earthquake catalogue that does not have one level of completeness over its 

entire time span. (Catalogues typically consist of, but are not restricted to, catalogues that contain a 

historical or extreme part in early years and an instrumental part, of which the level of completeness 

typically decreases with time). 

Support: the finite interval of a probability distribution function between which its values are neither zero 

nor one. In other words, the interval on the real line for which the values of the distribution falls within 

the interval (0,1) combined with its end points to make it a closed interval. In symbolic form, the support 

𝑆 of the distribution 𝐹 is the interval defined by {𝑥 𝜖 ∶ 0 < 𝐹(𝑥) < 1} ∪ {𝑠𝑢𝑝𝑟𝑒𝑚𝑢𝑚{𝑥 𝜖 ∶ 0 < 𝐹(𝑥) <

1}]}  ∪ {𝑖𝑛𝑓𝑖𝑚𝑢𝑚[{𝑥 𝜖 ∶ 0 < 𝐹(𝑥) < 1}]}. This happens to be a single interval. 

Supremum: the least (smallest) upper bound. 

Bayesian formalism: Statistical inference (such as parameter estimation and model estimation in this 

work) that is based on the Bayes Theorem. Specific to the purposes of parameter estimation, the Bayes 

Theorem states that the probability density 𝑝(𝜃|𝒙) of a parameter 𝜃, given the data vector 𝒙, may be 

estimated from a prior belief of the values 𝜃 in the form of a prior distribution 𝑝(𝜃), along with the 

probability distribution 𝑝(𝜃|𝒙) that the data are observed for a given value of 𝜃, as well as the total 

probability 𝑝(𝒙) of observing the data 𝒙. This is done by the formula 

𝑝(𝜃|𝑥) =
𝑝(𝜃)𝑝(𝑥|𝜃)

𝑝(𝜃)
 

where 𝑝(𝜃) is calculated by evaluating the integral ∫ 𝑝(𝜃)𝑝(𝑥|𝜃)𝑑𝜃
∞

−∞
. 

 



 

135 
 

Appendix I: Condition of Existence of the Tate–Pisarenko Solution of 

𝒎𝒎𝒂𝒙 

This appendix shows the derivation of the conditions for the Tate–Pisarenko estimator verbatim as it 

appears in: Vermeulen, P.J. and Kijko, A. (2017). More statistical tools for maximum possible earthquake 

magnitude estimation. Acta Geophysica 65(4): 579-587. 

In practice, it was noticed that when the Tate–Pisarenko method was applied in an iterative fashion, it 

diverged on some occasions. In this Appendix, a condition is presented for the convergence (and 

divergence) of this method. 

Let 𝑚 denote the unknown. Assume that 𝑚 is estimated by means of iteration, which means  

 

𝑚𝑖+1 = 𝑚0 −
1 − 𝑒𝑥𝑝[−𝛽(𝑚𝑖 −𝑚𝑚𝑖𝑛)]

𝑛𝛽 𝑒𝑥𝑝[−𝛽(𝑚𝑖 −𝑚𝑚𝑖𝑛)]
, 

 

(A1.1) 

or 

 

𝑚𝑖+1 = 𝑚0 −
1

𝑛𝛽
+

1

𝑛𝛽
𝑒𝑥𝑝[−𝛽(𝑚𝑖 −𝑚𝑚𝑖𝑛)]. 

 
(A1.2) 

 

Claim: There exists 𝑚, such that 

 

𝑚 = 𝑚0 −
1

𝑛𝛽
+
𝑒𝑥𝑝[−𝛽(𝑚𝑖−𝑚𝑚𝑖𝑛)]

𝑛𝛽
. 

 
(A1.3) 

Now let 𝑚′ = 𝛽(𝑚 −𝑚𝑚𝑖𝑛), therefore, 𝑚′ = 𝑚′0 − 1/𝑛 + 𝑒𝑥𝑝(𝑚′) /𝑛 for the iteration                                     

𝑚′𝑖+1 = 𝑚′0 − 1/𝑛 + 𝑒𝑥𝑝(𝑚′𝑖)/𝑛. 

Consider subsequently 

 

𝑚′ = 𝑚0
′ −

1

𝑛
+ 𝑒𝑥𝑝(𝑚′). 

 
(A1.4) 

Taking the shape of LHS and RHS into consideration (Figure A1), note that for equation (A1.4) to have 

exactly one root, it must be that LHS = RHS precisely, where the first derivatives of LHS and RHS coincide, 

that is, where the derivative of RHS = 1. This turns out to be where 𝑚′ = ln(𝑛) . Therefore, for one root 

it must be the case that 
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𝑙𝑛(𝑛) = 𝑚0
′ −

1

𝑛
+
𝑒𝑥𝑝[𝑙𝑛(𝑛)]

𝑛
, 

 
(A1.5) 

i.e. 

 

𝑙𝑛(𝑛) = 𝑚0′−
1

𝑛
+ 1, 

 

(A1.6) 

After further graphical consideration, it is found that the equation has no roots if (the curve moved 

vertically upward in Figure A1) 

 

𝑙𝑛(𝑛) < 𝑚0′−
1

𝑛
+ 1, 

 

(A1.7) 

and 

 

∴ 𝑙𝑛(𝑛) < 𝛽 (𝑚𝑚𝑎𝑥
𝑜𝑏𝑠𝑚𝑖𝑛 −

1

𝑛
+ 1). 

 
(A1.8) 

For large 𝑛, 

 

𝑙𝑛(𝑛) < 𝛽(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠𝑚𝑖𝑛 + 1). 

 

(A1.9) 

Equation (A1.4) has exactly two roots when (the curve moves vertically downward in Figure A1) 

 

𝑙𝑛(𝑛) > 𝑚0′−
1

𝑛
+ 1, 

 

(A1.10) 

or equivalently 

 

∴ ln(𝑛) > 𝛽(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 −𝑚𝑚𝑖𝑛) −

1

𝑛
+ 1. 

(A1.11) 

For large n,  

 

ln(𝑛) > 𝛽(𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 −𝑚𝑚𝑖𝑛) + 1. 

 

(A1.12) 



 

137 
 

 

Figure A1. The blue curve represents the curve(𝑚′) = 𝑚0 − 1/𝑛 + 𝑒𝑥𝑝(𝑚′)/𝑛, and the red line the unit 

function 𝑔(𝑚′) = 𝑚′.  

 

If a fixed point (solution) did exist, it would usually indicate two fixed points. In addition, the following can 

be stated:  

(1) It is possible for the smaller fixed point to be less than zero, and, therefore, smaller than 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 . 

In either event, the smaller fixed point is neither appropriate nor can it be verified easily, which is 

a possible point of convergence for iteration. If convergence does take place, it must converge to 

the larger fixed point. 

(2) If the larger fixed point were less than mmax
obs ., iteration would not converge, as it is clear that a 

point of convergence for the iteration would have to be larger than mmax
obs . 

(3) It can be verified graphically that if the smaller fixed point were much smaller than ln( 𝑛), the 

larger fixed point would be much larger than ln( 𝑛). 
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Appendix II: Asymptotic Equivalence of the Cooke-Kijko and Tate–

Pisarenko Estimators 

This appendix shows the derivation the asymptotic equivalence of the Cooke–Kijko estimator (also 

referred to as the Kijko–Sellevoll estimator in the text) and the Tate–Pisarenko estimator verbatim as it 

appears in: Vermeulen, P.J. and Kijko, A. (2017). More statistical tools for maximum possible earthquake 

magnitude estimation. Acta Geophysica 65(4): 579-587. 

It is known (Kijko and Singh, 2011) that both the generic equation of Cooke and the Tate–Pisarenko 

estimates produce asymptotically unbiased estimates, which strongly suggests a measure of equivalence 

between the two estimators. In this section, we show that Cooke's so-called generic equation, used with 

the truncated Gutenberg–Richter frequency-magnitude relation, and the Tate–Pisarenko method from 

Kijko and Singh (2011) are asymptotically equivalent for a large number of earthquakes. In most of the 

estimators that Kijko and Singh (2011) introduce, they make use of an equation in the form 

 

𝑚𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 + ∆. 

 

 
(A2.1) 

Specifically, Cooke's generic equation has 

 

∆= ∫ 𝐹(𝑥,𝑚𝑚𝑎𝑥)𝑑𝑥
𝑚𝑚𝑎𝑥

𝑚𝑐

, 

 

(A2.2) 

and the Tate–Pisarenko estimate has 

 

Δ =
1

𝑛 ⋅ 𝑓(𝑚𝑚𝑎𝑥)
, 

 

(A2.3) 

where 𝑓(⋅ |𝑚𝑚𝑎𝑥) and 𝐹(⋅ |𝑚𝑚𝑎𝑥), respectively, are the density and distribution functions of earthquake 

magnitudes, given the maximum magnitude. 

Let F(m|mmax) and f(m|mmax) take the form of the Gutenberg–Richter frequency-magnitude 

distribution  

 

𝐹(𝑚|𝑚𝑚𝑎𝑥) =  

{
 

 
            0,                           𝑚 < 𝑚𝑐

1 − exp [−𝛽(𝑚 −𝑚𝑐)]

1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
,   𝑚𝑐 ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥

                1,                          𝑚 > 𝑚𝑚𝑎𝑥

, 

 

 

(A2.4) 
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𝑓(𝑚|𝑚𝑚𝑎𝑥) =  

{
 

 
 0,                                  𝑚 < 𝑚𝑐

1 − exp [−𝛽(𝑚 −𝑚𝑐)]

1 − exp [−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
,   𝑚𝑐 ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥

        1,                                   𝑚 > 𝑚𝑚𝑎𝑥

, 

 

(A2.5) 

Subsequently, using equation (A2.2) with Cramer's approximation for large values of 𝑛, we have (Kijko 

and Singh, 2011) 

 

∆= ∫ exp[−𝑛(1 − 𝐹(𝑥|𝑚𝑚𝑎𝑥))]𝑑𝑥 .
𝑚𝑚𝑞𝑥

𝑚𝑐

 

 

(A2.6) 

Laplace's approximation (Compson, 2004) leads to an asymptotic evaluation of the integral (39), 

 

Δ =
exp[−𝑛(1 − 𝐹(𝑚𝑚𝑎𝑥|𝑚𝑚𝑎𝑥)]

𝑛𝑓(𝑚𝑚𝑎𝑥|𝑚𝑚𝑎𝑥)
=

1

𝑛𝑓(𝑚𝑚𝑎𝑥|𝑚𝑚𝑎𝑥)
, 

 

(A2.7) 

which is the Tate–Pisarenko estimate in equation (A2.3). 
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