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Summary

Mosquitoes are long-legged, two winged flies that are responsible for the transmission
of many diseases such as Zika fever, malaria, yellow fever, chikungunya and dengue
hemorrhagic fever. Mosquito borne diseases account for substantial amount of para-
sitic and infectious diseases, they have profound effects on economic growth of many
developing countries. There have been continuous efforts to optimize and improve on
existing mosquito control strategies, as well as to develop new tools aimed at reducing
burden of mosquito borne diseases. Control strategies are either applied alone or in
combination depending on available resources, education, health risk and burden of
the disease.

The main aim of this thesis is to mathematically study three mosquito borne dis-
eases in the presence of control, the diseases are Zika fever (this is because, in addition
to the disease being transmitted vertically, it is the first mosquito borne disease known
to be transmitted sexually), yellow fever (because despite having effective vaccine for
the disease, it has continue to pose sporadic challenges in different regions of the
world), and malaria (because it has the highest global burden among mosquito borne
diseases despite continuous efforts to eradicate it).

Some major highlights of the thesis include: Roles of mosquito vertical transmission
in the transmission dynamics of mosquito borne diseases, and effects of incorporating
human-human transmission are evaluated. Assessment of impact of using different
control measures both in human and mosquito populations, and effects of controlling
population of adult male (non-disease transmitting) mosquitoes through sterilization
are conducted. Implication of incorporating aquatic stage of mosquito development in
models for the transmission of mosquito borne diseases, as well as effect of temperature
variation in the transmission dynamics of malaria are also studied.

In Chapter 1, brief introduction to the epidemiology of mosquito borne diseases
is presented. Basic results and definitions in mathematical epidemiology are also dis-
cussed. In addition, some important mathematical theories and definitions used in
subsequent chapters are also presented. A Zika model that incorporates vectorial ver-
tical transmission, human-human horizontal transmission, as well as human-mosquito
and mosquito-human transmissions is studied in Chapter 2. Another Zika model is
considered in Chapter 3, the model incorporated human-human transmission in the
presence of mosquito sterilization. In Chapter 4, a yellow fever model with vaccina-
tion, use of bed nets and mosquito control at both aquatic and non-aquatic stages
is constructed and analysed. Chapter 5 considered a temperature dependent malaria
model in the presence of control. General conclusion is given in Chapter 6.
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Chapter 1
General introduction

This thesis is aimed at mathematical study of three different mosquito borne diseases
in the presence of control measures. In particular, mathematical models for the trans-
mission dynamics of Zika virus, yellow fever and Malaria will be presented. Because the
thesis is presented in the form of articles that are either published or submitted to be
considered for publication, there are some overlaps of literature and theorems in some
chapters. In this chapter, brief introduction to physiology of mosquitoes, mosquito
borne diseases (MBD) and mosquito control are presented. In addition, basic math-
ematical and epidemiological concepts required for the understanding of subsequent
chapters are also presented.

1.1 Mosquitoes

Mosquitoes are delicate, long-legged two winged flies (order Diptera, family Culicidae)
that are easily recognized by their long proboscis and scaly wings and legs [70]. There
are over three thousand five hundred species and subspecies of mosquitoes in the
world [70, 92], the majority of mosquito species fall into three groups, commonly
referred to as the anophelines, the culicines, and the aedines [92]. Mosquitoes are
found everywhere in the world where standing water occurs, which is needed for the
development of their aquatic (immature) stages that include eggs, larvae and pupae
[92, 122]. Because of their ability to spread many deadly diseases, mosquitoes are
considered as the most important group of arthropods of medical importance on the
planet [92, 120].

1.2 Mosquito borne diseases

Mosquito borne diseases (MBD) are spread by blood-sucking female mosquitoes which
require blood for the development of their eggs. Usually, warm-blooded animals are
their common source of blood, but there are many mosquito species that feed on cold
blooded animals such as snakes, turtles, toads, frogs and other insects. Some mosquito
species are active at night or twilight while others are active during the daytime [70].
Mosquitoes use human blood almost exclusively to nurture their eggs [122]. The
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most important mosquitoes have a marked tendency of feeding on humans and are
exquisitely adapted to living around humans (domestic environments) [70, 92, 122].
Mosquitoes are responsible for the transmission of many important diseases, some of
which include Zika virus, yellow fever, malaria, Chikungunya, West Nile virus, dengue
haemorrhagic fever, and Japanese encephalitis [70, 95, 120]. MBD are responsible for
17% of the global burden of parasitic and infectious diseases. They result in avoidable
ill-health and death, economic hardship for affected communities and are a serious
impediment to economic development [95].

1.2.1 Mosquito control

Mosquito control simply refers to any or all methods (i.e., chemical, biological, envi-
ronmental, and genetic) used in reducing mosquito longevity, density, and/or human-
mosquito contact in an area [135]. A question of significant importance is whether
it necessary to eradicate the messenger (mosquito) when it is really the message
(pathogens and parasites) that is the enemy of public health [70]. On the other hand,
mathematical control theory deals with basic principles underlying the analysis and
design of control systems. To control an object means to influence its behavior so as
to achieve a desired goal [130].

1.2.1.1 Genetic and larval control

Genetic control refers to controlling mosquitoes by releasing sterile males or genetically
modified mosquitoes into an area [135]. On the other hand, larval control refers
to the management of aquatic (immature) mosquito life stages using environmental
management, larvicides, and biological control [135].

1.2.1.2 Adult mosquito management and personal protection

The management of adult mosquito population is aimed at reducing the population of
biting mosquitoes. This involves the use of adulticides (usually spread from aircrafts
and truck-mounted equipments), such as ultra-low volume application of malathionor
chlorpyrifos or chlorpyrifos + permethrin, thermal fogging with malathion or chlorpyri-
fos or chlorpyrifos + permethrin as space treatment against adult mosquitoes at night
or early morning when the air is calm, or applying insecticide residual spray as barrier
treatments to tall grasses, weeds, shrubs, fences and other harborages surrounding
parks, playgrounds and residences to help reduce adult mosquito populations [121].

Personal protection simply refers to mosquito control using methods like application
of repellents, use of bed nets and protective clothing to reduce exposure to mosquito
bite at an individual or community level [135].

1.2.1.3 Integrated mosquito management (IMM)

The integrated mosquito management scheme is a rational decision-making process
to optimize the use of resources for mosquito control [145]. It considers available
mosquito control techniques and integrate those appropriate measures that reduce
mosquito populations while keeping pesticides and other interventions to justifiable
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level. It is based on evidence and integrated management, promoting the use of a
range of interventions, alone or in combination, selected on the basis of local knowledge
about the mosquitoes and the disease [135, 145]. Integrated approaches can address
several diseases at a time, this is because some mosquitoes can transmit multiple
diseases and interventions are effective against different species [145].

1.2.2 Roles of mosquitoes in the ecosystem

Although mosquito borne diseases are deadly, there are however many positive impacts
of mosquitoes to our ecosystem. Elimination of mosquitoes might make the biggest
ecological difference in the Arctic tundra, where migratory birds depend on them [53].
The larvae of mosquitoes serve as food for fish and insect predators [70]. In fact, in
the absence of their larvae, hundreds of species of fish would have to change their
diet to survive [53]. Adult mosquitoes pollinate plants and are eaten by spiders, birds,
bats, reptiles, and amphibians. The larvae of several genera use a modified breathing
tube to pierce the stems and roots of aquatic plants to obtain oxygen, the botfly also
depends on mosquitoes to carry its larvae to hosts [53, 70].

1.3 Mathematical Preliminaries

In this section, we briefly discuss some basic definitions and results in the study of
dynamical systems that are relevant to this thesis and are not explicitly defined or
stated in the subsequent chapters.

1.3.1 Introduction

Consider the system of ordinary differential equation (ODE) below,

ẋ = f(x, t) x(0) = x0, (1.3.1)

where f : U × R+ → Rn with x ∈ U ⊂ Rn, t ∈ R+, n ∈ N and U open in Rn. The
system (1.3.1) is autonomous if the function f is explicitly independent of time. Most
of our study is restricted to the autonomous systems, hence for x ∈ U ⊂ Rn,

ẋ = f(x), x(0) = x0. (1.3.2)

Definition 1.3.1. By a solution of (1.3.2), we mean a continuously differentiable
function x : I(X)→ Rn such that x(t) satisfies (1.3.2), where I(X) is an interval of
R+ containing the origin [133].

Definition 1.3.2. System (1.3.2) defines a dynamical system in a subset E of Rn if
for every X ∈ E, there exist a unique solution of (1.3.2) which is defined and remains
in E for all t ∈ R+ [133].

Definition 1.3.3. Let U be an open subset of Rn. A function f : U → Rn is Lipschitz
if for all x, y ∈ U , there is a K called Lipschitz constant such that

||f(x)− f(y)|| ≤ K||x− y||.
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Here ||.|| stands for the Euclidean norm in Rn. If f is Lipschitz on every bounded
subset of Rn, then f is said to be globally Lipschitz [97].

Theorem 1.3.1. Let f : Rn → Rn be globally Lipschitz on Rn. Then there exist a
unique solution x(t) to (1.3.2) ∀ t ∈ R+. Therefore the system defines a dynamical
system in Rn [133].

Theorem 1.3.2. Let C ⊂ U ⊆ Rn × R+ be a compact set containing (x0, t0). The
solution x(t, t0, x0) can be uniquely extended forward in t up to the boundary of C
[151].

Definition 1.3.4. An equilibrium (stationary) point of (1.3.2) is a point x̄ ∈ Rn such
that x0 = x̄ and f(x̄) = 0.

Clearly, the constant function x(t) ≡ x̄ is a solution of (1.3.2) and by uniqueness
of solutions, no other solution curve can pass through x̄.

Theorem 1.3.3. Gronwall’s Lemma Let x(t) satisfy

dx

dt
≤ px+ q, x(0) = x0,

for p, q constants. Then for t ≥ 0

x(t) ≤ eptx0 +
q

p
(ept − 1), p 6= 0

and
x(t) ≤ x0 + qt, p = 0 [133].

1.3.2 Hartman-Grobman theorem

Let x̄ ∈ Rn be an equilibrium point of a dynamical system on E defined by (1.3.2).
Then x̄ is said to be:

1. stable if for any ε > 0, there exist δ = δ(ε) > 0 such that if ||x̄ − y(0)|| < δ,
then, ||x̄− y(t)|| < ε for all t ≥ 0,

2. locally attractive if ||x̄ − y(t)|| → 0 as t → ∞ for all ||x̄ − y(0)|| sufficiently
small,

3. locally asymptotically stable if x̄ is stable and locally attractive. For an asymp-
totically stable equilibrium point x̄ of (1.3.2), the set of all initial data x(0) such
that

lim
t→∞

Φ(t)x(0) = x̄

is said to be the basin of attraction of x̄,

4. globally attractive if (2) holds for any x(0) ∈ E, i.e. the basin of attraction of
x̄ is E,

5. globally asymptotically stable if (1) and (4) hold,
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6. unstable if (1) fails

Definition 1.3.5. The Jacobian matrix of f at the equilibrium x̄, denoted by Df(x̄),
is the matrix of partial derivatives of f evaluated at x̄ [97].

One of the easiest ways of investigating the stability of an equilibrium point (if the
derivatives do not vanish at the equilibrium) is by considering the linearized form of
(1.3.2) given by

U̇ = JU (1.3.3)

near x̄, where J = Df(x̄) is the Jacobian of the function f at x̄. It is assumed that
f is differentiable.

Definition 1.3.6. Let x̄ be an equilibrium solution of (1.3.2), x̄ is called a hyperbolic
equilibrium point if none of the eigenvalues of Df(x̄) have zero real part [151]. An
equilibrium point that is not hyperbolic is called non hyperbolic.

Let X and Y be two topological spaces.

Definition 1.3.7. A function f : X → Y is a homeomorphism if it is continuous,
bijective with a continuous inverse [97].

Definition 1.3.8. A function h : X → Y is a C1 diffeomorphism if it is invertible
and both h and it’s inverse (h−1) are C1 maps [97].

Consider two functions f : Rn → Rn and g : Rm → Rm.

Definition 1.3.9. f and g are said to be conjugate if there exist a homeomorphism
h : Rn → Rm such that g(h(x)) = h(f(x)), x ∈ Rn [97].

Definition 1.3.10. A Cr(r ≥ 1) function Φ : U × R+ → Rn, U ⊂ Rn is called a
flow for (1.3.2) if it satisfies the following properties

• Φ(x0, 0) = x0

• Φ(x0, s+ t) = Φ(Φ(x0, s), t)

Definition 1.3.11. The set of all points in a flow Φ(t;xo) for (1.3.2) is called the
orbit or trajectory of f(x) with initial condition x0, we write the orbit Φ(x0). When
we consider t ≥ 0, we say that, Φ(t;xo) is a forward orbit or forward trajectory.

Proposition 1.3.4. If f and g are Ck conjugate, k ≥ 1, and x0 is a fixed point of f ,
then the eigenvalues of Df(x0) are equal to the eigenvalues of Dg(h(x0)).

Theorem 1.3.5. (Hartman and Grobman) Assume that f : Rn → Rn is of class
C1 and consider a hyperbolic equilibrium point x̄ of the dynamical system defined
by (1.3.2). Then there exist δ > 0, a neighborhood N ⊂ Rn of the origin and a
homeomorphism h defined from the ball B = {x ∈ Rn : ||x− x̄|| < δ} onto N such
that

u(t) = h(x(t)) solves (1.3.3) if and only if x(t) solves (1.3.2).

The direct application of the Hartman-Grobman theorem is that an orbit structure
near a hyperbolic equilibrium solution is qualitatively the same as the orbit structure
given by the associated linearized (around the equilibrium) dynamical system.

Theorem 1.3.6. Suppose all the eigenvalues of Df(x̄) have negative real parts. The
equilibrium solution x̄ of the non linear vector field (1.3.2) is asymptotically stable
[151].
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1.3.3 Lyapunov functions

A function V : Rn −→ R is said to be positive definite if,

• V (x) > 0, for all x 6= 0,

• V (x) = 0, if and only if x = 0,

• V (x) −→∞ as x −→∞.

The function V is locally positive definite if there exists U ⊂ Rn containing a fixed
point x̄ such that

• V (x̄) = 0,

• V (x) > 0 for all x ∈ U\{x̄}.

Definition 1.3.12. Assume that (1.3.2) defines a dynamical system on an open subset
U ⊂ Rn and x̄ is an equilibrium point. A function V ∈ C1(U,R) is called a Lyapunov
function of the system (1.3.2) for x̄ on a neighborhood B ⊂ U of x̄ if

V̇ (x) := lim
h→0

V (x+ hf(x))− V (x)

h
= 5V (x).f(x) ≤ 0, ∀x ∈ B, (1.3.4)

where V̇ (x) is the directional derivative of V in the direction of f . If in addition,
V (x̄) = 0 and V (x) > 0 ∀x ∈ U\{x̄}, then V is said to be a positive definite
Lyapunov function at x̄.

Theorem 1.3.7. Let V be a positive definite Lyapunov function of the dynamical
system (1.3.2) on a neighborhood U of an equilibrium point x̄. Then x̄ is stable. If,
in addition, V̇ (x) < 0 ∀x ∈ U\{x̄}, then x̄ is asymptotically stable, and x̄ is unstable
if V̇ (x) > 0, ∀x ∈ U\{x̄}.

1.3.4 Limit sets and invariance principle

Epidemiology models generally deal with population dynamics, thus it is important to
consider non-negative feasible regions where the property of non-negativity is preserved.

Definition 1.3.13. Let x(t) be a solution of (1.3.2). A point p is said to be a positive
limit of x(t), if there exists a sequence {tn} with tn −→ ∞ as n −→ ∞, such that
x(tn) −→ p as n −→ ∞. The set of all positive limit points of x(t) is called the
positive limit set of x(t).

Definition 1.3.14. Let φ be the flow of (1.3.1). A point x0 ∈ Rn is called ω-limit
point of x ∈ Rn, denoted by ω(x), if there exists a sequence {tn}, tn −→ ∞ such
that,

φ(tn, x) −→ x0.

Similarly, a point x0 ∈ Rn is called α-limit point of x ∈ Rn, denoted by α(x), if there
exists a sequence {tn}, tn −→ −∞ such that,

φ(tn, x) −→ x0.
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The set of all ω-limit points of a flow is called the ω-limit set, while the set of all
α-limit points of a flow is called the α-limit set [151].

Definition 1.3.15. A set M is said to be an invariant set with respect to the au-
tonomous ODE given by (1.3.2) if,

x(0) ∈M ⇒ x(t) ∈M,∀t ∈ R.

That is, if any trajectory starts in M , it will stay in M for all time [131].

If we restrict t ≥ 0 in the above definition, then M is said to be positively invariant
set. In other words, any solution in a positively invariant set remains there for all
positive time.

Theorem 1.3.8. (LaSalle’s invariance principle)
Let x̄ be an equilibrium point of (1.3.2) defined on Ω ⊂ Rn. Let V be a positive definite
Lyapunov function for x̄ on the set Ω. Furthermore let Ωa = {x ∈ Ω̄ : V̇ (x) = 0} and
if

S = {the union of all trajectories that start and remain in Ωa for all t > 0},

that is, S is the largest positively invariant subset of Ωa such that S ⊂ Ω, then x̄ is
globally asymptotically stable on Ω if and only if it is globally asymptotically stable on
S [151].

1.4 Mathematical epidemiology

This section is aimed at discussing some of the basic principles and methods associated
with modelling in epidemiology.

1.4.1 Incidence function

Let N be total human population in a community. Divide N into non-intersecting
compartments of susceptible (S), infectious (I) and immune (R). Disease incidence
is defined as the infection rate of susceptible individuals through their contact with
infectious individuals [36, 139]. It is characterized by an incidence function (that
describes the mixing pattern within a community), and infections are transmitted
through contact.

The number of times an infectious individual comes into contact with other mem-
bers per unit time is defined as the contact rate C(N), let β0 be a probability of
infection by every contact, then β0C(N) is called the effective contact rate, it shows
the ability of an infected individual to infect others (depending on environment, tox-
icity of pathogen, etc.). Therefore, the mean adequate contact rate of an infective

to susceptible individuals is β0C(N) S(t)
N(t)

, which is called the infection rate. Further-
more, the total number of new infected individuals resulting per unit time at time t is
β0C(N) S(t)

N(t)
I(t), which is called the incidence of a disease.

If C(N) = kN , the incidence is β0kS(t)I(t) = βS(t)I(t) (where β0k = β is the
transmission coefficient) is called the bilinear incidence or simple mass-action incidence
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[134]. When C(N) = k, the incidence becomes β0k
S(t)
N(t)

I(t) = β s(t)
N(t)

I(t) (where

β0k = β), this type of incidence function is termed as the standard incidence [134].
For malaria (mosquito borne disease), Chitnis et.al proposed a function (b =

b(NH , NV )) to model the total number of mosquito bites on humans as

b = b(NH , NV ) =
σV σHNVNH

σVNV + σHNH

=
σV σH

σV
NV
NH

+ σH
NV ,

where σV is the number of times one mosquito would want to bite humans per unit
time if humans were freely available, σH is the maximum number of mosquito bites a
human can have per unit time [27]. NV and NH are respectively total mosquito and

human populations. They defined bHbH(NH , NV ) = b(NH ,NV )
NH

as the number of bites

per human per unit time, and bV = bV (NH , NV ) = b(NH ,NV )
NV

as the number of bites
per mosquito per unit time [27].

Other contact rates were also proposed, such as those with saturation as intro-
duced by Dietz in 1982 [134] and Heesterbeek and Metz in 1993 [21], with contacts
respectively given by

C(N) =
αN

1 + ωN
, and, C(N) =

αN

1 + bN +
√

1 + 2bN

satisfying

C(0) = 0, C ′(N) ≥ 0,
(C(N)

N

)′
≤ 0 lim

N→∞
C(N) = C0 [134].

Other incidences for special cases such as βSpIq, βSpIq

N
are also been used [134].

1.4.2 Basic reproduction number

One of the most important results in mathematical epidemiology is that, for epidemic
models, there is difference in epidemic behavior when the average number of secondary
infections caused by a single infectious individual in a wholly susceptible population,
over the course of his/her infection, called the basic reproduction number (R0), is less
than one and when this quantity exceeds one [30, 59]. The famous threshold criterion
states that: The disease can invade the population if R0 > 1, whereas it cannot
invade the population if R0 < 1 [43, 139]. Mathematically, if R0 < 1, the disease-
free equilibrium is approached by solutions of the model describing the situation. If
R0 > 1, the disease-free equilibrium is unstable and solutions flow away from it,
there is also an endemic equilibrium with a positive number of infective individuals,
therefore, the disease remains in the population [30]. However, the situation may be
more complicated with more than one stable equilibrium when the basic reproduction
number is less than one.
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1.4.2.1 Non-periodic reproduction number

The next generation method is used to establish the local asymptotic stability of the
disease-free equilibrium (DFE). The method was first introduced by [43] and refined
for epidemiological models by [139].

Consider a heterogeneous population whose individuals are distinguishable by their
disease status and can be grouped into n homogeneous compartments. The idea is
based on computing a matrix whose (i, j) element represents the number of secondary
infections in compartment i caused by an individual in compartment j. We refer to
disease compartment as the compartment where individuals are infected. We should
note that, we will consider the disease compartment in a broader way compared to
the clinical method, hence it includes stages of infections like exposed stage, in which
infected individuals are not necessarily infectious.

Suppose there are n disease compartments and m non disease compartments,
and let x ∈ Rn and y ∈ Rm be the sub populations in each of these compartments.
Further, we denote by Fi the rate at which secondary infections increase the ith disease
compartment and by Vi, the rate at which disease progression, death and recovery
decrease the ith compartment. The compartmental model can then be written in the
form

x
′

i = Fi(x, y)− Vi(x, y), i = 1, 2, ...n,

y
′

j = gj(x, y), j = 1, 2, ...,m.
(1.4.5)

Note that the decomposition of the dynamics into F and V and the designation of
compartments as infected or uninfected may not be unique; different decompositions
correspond to different epidemiological interpretations of the model.

The derivation of the basic reproduction number is based on the linearization of
the ODE model about a disease-free equilibrium. For an epidemic model with a line
of equilibria, it is customary to use the equilibrium with all members of the population
susceptible. We assume:

• Fi(0, y) = 0 and Vi(0, y) = 0 for all y = 0 and i = 1, ..., n.

• The disease-free system y
′

= g(0, y) has a unique equilibrium that is asymp-
totically stable, that is, all solutions with initial conditions of the form (0, y)
approach a point (0, y0) as t → ∞. We refer to this point as the disease-free
equilibrium.

The first assumption says that all new infections are secondary infections arising from
infected hosts; there is no immigration of individuals into the disease compartments.
It ensures that the disease-free set, which consists of all points of the form (0, y), is
invariant. That is, any solution with no infected individuals at some point in time will
be free of infection for all time. The second assumption ensures that the disease-free
equilibrium is also an equilibrium of the full system. The uniqueness of the disease-
free equilibrium in the second assumption is required for models with demographics.
Although it is not satisfied in epidemic models, the specification of a particular disease-
free equilibrium with all members of the population susceptible is sufficient to validate
the results.
Next, we assume:
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• Fi(x, y) ≥ 0 for all nonnegative x and y and i = 1, ..., n.

• Vi(x, y) ≤ 0 whenever xi = 0, i = 1, ..., n.

•
∑n

i=1 Vi(x, y) ≥ 0 for all nonnegative x and y.

The reasons for these assumptions are that the function F represents new infections and
cannot be negative, each component Vi represents a net outflow from compartment i
and must be negative (inflow only) whenever the compartment is empty, and the sum∑n

i=1 Vi(x, y) represents the total outflow from all infected compartments. Terms in
the model leading to increases in

∑n
i=1 xi are assumed to represent secondary infections

and therefore belong to F.
Suppose that a single infected person is introduced into a population originally

in the absence of disease. The initial ability of the disease to spread through the
population is determined by an examination of the linearization of (1.4.5) about the
disease-free equilibrium (0, y0). It is easy to see that the assumption Fi(0, y) =
0,Vi(0, y) = 0 implies

∂Fi
∂yj

(0, y0) =
∂Vi
∂yj

(0, y0) = 0

for every pair (i, j). This implies that the linearized equations for the disease com-
partments x are decoupled from the remaining equations and can be written as

x
′
= (F − V )x, (1.4.6)

where F and V are the n× n matrices with entries

F =
∂Fi
∂xj

and V =
∂Vi
∂xj

.

Because of the assumption that the disease-free system y
′

= g(0, y) has a unique
asymptotically stable equilibrium, the linear stability of the system (1.4.5) is completely
determined by the linear stability of the matrix (F − V ) in (1.4.6).

The number of secondary infections produced by a single infected individual can
be expressed as the product of the expected duration of the infectious period and the
rate at which secondary infections occur [59].

Definition 1.4.1. The Matrix K = FV −1 is referred to as the next generation matrix
for the system (1.4.5) at the disease-free equilibrium [59].

The (i, j) entry of K is the expected number of secondary infections in compart-
ment i produced by individuals initially in compartment j, assuming, of course, that
the environment experienced by the individual remains homogeneous for the duration
of its infection [59].

Lemma 1.4.1. The basic reproduction number R0 = ρ(FV −1) = maxλ{|λ| : λ is
an eigenvalue of FV −1} and the disease-free equilibrium is asymptotically-stable if
R0 < 1 and unstable if R0 > 1 [59].

Notice that Periodic reproduction number and Type reproduction number are dis-
cussed in subsequent chapters.
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1.4.3 Backward Bifurcations

Bifurcation analysis is the mathematical study of changes in qualitative properties of
solutions of a system of differential equations when changing its parameters. These
changes in the dynamics of the system are called bifurcations. The parameter values
where they occur are called bifurcation points. By analysing the existence of behavior
of the model in such points, one can derive much about the systems properties.

It is well known in disease transmission modeling that a disease can be eradicated
when the basic reproduction number R0 < 1. However, when a backward bifurcation
occurs, stable endemic equilibria may also exist for R0 < 1, this means that, the
condition that R0 < 1 is only a necessity, but not sufficient to guarantee the elimination
of the disease, indeed, the quantity R0 must be reduced further to avoid endemic states
and guarantee eradication. The scenario is qualitatively described as follows: in the
neighborhood of 1, for R0 < 1, a stable disease-free equilibrium coexists with stable
endemic equilibrium. The endemic equilibrium disappears by saddle-node bifurcation
when R0 is decreased below a critical value Rc < 1 [24, 66].

Definition 1.4.2. A forward bifurcation occurs when R0 crosses unity from below; a
small positive asymptotically-stable equilibrium appears and the disease-free equilib-
rium losses its stability.

Definition 1.4.3. Backward bifurcation happens when R0 is less than unity; a small
positive unstable equilibrium appears while the disease-free equilibrium and a larger
positive endemic equilibrium are locally-asymptotically stable [26].

 
 
 



Chapter 2
Zika virus with vertical transmission in
mosquitoes and horizontal transmission
in humans

General introduction

In this chapter, a Zika model that takes into account vertical transmission in mosquitoes,
and human-human sexual transmission is constructed and rigorously analysed for its
qualitative properties. The model also considers the conventional human-mosquito
and mosquito-human Zika transmission.

Abstract

We construct and analyse a compartmental model for the transmission dynamics of
Zika virus. In addition to horizontal transmissions (human-mosquito, mosquito-human
and human-human), the model also incorporates vertical transmission of Zika virus
in mosquito population, therefore, both aquatic and non-aquatic stages of mosquito
development are considered. The aquatic stage is divided into infectious and non-
infectious compartments, depending on whether oviposition is by infected mosquito
(and the virus is vertically transmitted) or otherwise. The basic offspring number
(N0), basic reproduction number (R0), and type reproduction number (TI) of the
model are computed. The relationship between type and basic reproduction numbers
are established. Using the method based on center manifold theory, the model is shown
to undergo backward bifurcation. Furthermore, condition under which the system does
not undergo backward bifurcation at R0 = 1 is obtained. Global asymptotic stability
of the disease free equilibrium (DFE) is presented under those conditions. Numerical
simulations, local and global sensitivity analysis of the model parameters are also
presented.
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2.1 Introduction

Currently, emerging infectious diseases such as Zika virus (Zv) are of great socioe-
conomic importance, especially due to their numerous modes of transmissions. Zv is
an arthropod-borne virus (arbovirus) that is related to West Nile virus, yellow fever,
dengue and Japanese encephalitis, this is because their primary mode of transmission
is through bites by Aedes mosquitoes (usually Aedes aegypti and Aedes albopictus).
The clinical presentation of Zika infection is not specific (mild fever, rash, arthral-
gia, and conjunctivitis), it is also often confused with other diseases like dengue
and Chikungunya [103, 105]. In addition to the conventional human-mosquito and
mosquito-human modes of transmissions of the disease, human vertical transmission
of Zv is linked to incidences of microcephaly and Guillain-Barr syndrome [98, 125].
Direct (human-human) transmissions (due to sexual contacts) have also been reported
[58, 60, 104]. Furthermore, vertical transmission within Aedes aegypti and Aedes al-
bopictus have also been observed, and it may even play significant role in the spread
and maintenance of the disease [31, 54, 88, 90, 137]. Cases of vertical transmissions in
other mosquito borne flavivirus such as yellow fever, Chikungunya and dengue, which
could even be the probable mechanism for the persistence of arboviruses during periods
that are unfavorable for horizontal transmission have been reported [68, 75, 87].

Gao et al [61] constructed a deterministic model for the transmission dynamics of
Zika without demographic factors, but took into account sexual transmission of the
disease. Brauer et al [22] considered another model with direct (sexual) transmis-
sion and computed the basic reproduction number. Agusto et al [4] analysed gender
structured compartmental model with further subdivisions (compartments) based on
disease status, and also considered sexual transmission. Agusto et al [5] presented
another Zika model with vertical transmission in humans. Maxian et al [96] developed
a model that evaluated the relative contribution of sexual transmission route to the
overall epidemic. Imran et al [74] also considered vertical transmission in both human
and mosquito populations with constant recruitment. Although vertical transmission in
humans is attributed to microcephaly and Guillain-Barr syndrome, it is ignored in this
study, and this is due to the fact that symptomatic children usually receive adequate
treatment and hence, their transmission is assumed to be negligible.

Adams and Boots [2] constructed a dengue model with vertical transmission in
the mosquito population. Both the aquatic and non-aquatic stages were considered
in their model which assumes a constant oviposition, where fraction of the eggs be-
come infected. We extend the formulation of [2] to capture vertical transmission at
the point of oviposition (transovarial transmission), by considering oviposition that is
proportional to the population of reproductive mosquitoes (infected and non-infected),
where fraction of the eggs laid by infected mosquitoes are transmitted vertically.

The work is organized as follows; Introduction to Zika virus and review of related
literature is presented in Section 2.1. The compartmental model for the transmission
dynamics of Zika is constructed and rigorously analysed for its dynamical features in
Section 2.2. Numerical and sensitivity analysis is presented in Section 2.3.
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2.2 Model formulation

The designed model assumes a homogeneous mixing of the human and mosquito pop-
ulations, so that each mosquito bite has equal chance of transmitting (acquiring) the
disease to (from) susceptible (infectious) human. The model divides the total human
population at a time t into non-intersecting compartments according to their disease
status as susceptible (SH), infectious (IH), and recovered (RH) humans. Notice that,
recovery here refers to the case where the virus is cleared from the blood stream, but
it may still be present in the sperm cells and saliva, and hence the probability of sexual
(vaginal or oral) transmission [58, 60, 104], so that the total human population at
time t is given by,

NH(t) = SH(t) + IH(t) +RH(t).

The mosquito population is split according to their developmental stages, that is
aquatic (which includes egg, larvae and pupae) and the non-aquatic (adult) stages.
The aquatic (A) mosquito population is further sub-divided into infected (AI) and
non-infected (AN) mosquitoes, so that the total mosquito population in the aquatic
stage is given by

A(t) = AN(t) + AI(t)

Similarly, the total adult mosquito population (NV ) is sub-divided into susceptible
(SV ) and infected (IV ), so that the total mosquito population at the non-aquatic
stage is given by

NV (t) = SV (t) + IV (t).

The susceptible human population is generated via recruitment of humans (by birth or
immigration) into the population (at a rate bH). This population is decreased following
infection, which could be acquired via sexual contact with infectious humans at a rate

λHH =
βHH

(
IH + ηHRH

)
NH

(2.2.1)

or from infectious mosquitoes at a rate

λMH =
βV HIV
NV

(2.2.2)

where βHH = ρHHbHH is an effective contact rate between infectious and susceptible
humans, ρHH is a probability of sexual transmission from infectious to susceptible
humans and bHH is a sexual contact rate between infectious and susceptible humans,
ηH is a reduction parameter in the transmissibility of recovered humans when compared
with infectious humans, similarly, βV H = ρV HbV H is an effective contact rate between
infectious mosquitoes and susceptible humans, ρV H is a probability of transmission
from infectious mosquitoes to susceptible humans and bV H is a biting rate of infectious
mosquitoes. Therefore, the force of infection in human population (which is the sum
of (2.2.1) and (2.2.2)) is given by

λH =
βHH

(
IH + ηHRH

)
NH

+
βV HIV
NV

(2.2.3)
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Individuals in each human compartment reduce due to natural death (at a rate µH).
So that the rate of change of susceptible human population is given by

dSH
dt

= bH − λHSH − µHSH .

The population of infected humans (IH) increases through the infection of susceptible
humans (at the rate λH). This population is decreased by recovery (at a rate γH) and
due to Zika infection (at a rate δH). This gives

dIH
dt

= λHSH − (δH + γH + µH)IH .

The population of recovered humans is generated by recovery of infected individuals
(at the rate γH) and reduces due to natural death. So that

dRH

dt
= γHIH − µHRH .

The population of non-infected aquatic mosquitoes (AN) is generated through ovipo-
sition by susceptible (SV ) or infectious (IV ) mosquitoes at rates φV and ηV φV re-
spectively (where ηV is the proportion of non-infected eggs). Oviposition rate per
susceptible and infectious female mosquitoes is assumed to be proportional to their
density, since breeding site can only support limited number of aquatic mosquitoes,
we assume a maximum aquatic mosquito effect with a carrying capacity K, similar
formulation was considered by [45, 46]. This population is decreased by maturation
(at a rate bV ) and natural death (at a rate µA). Similar to [46, 61, 140], it is assumed
that K ∝ NH , which implies K = mNH . Therefore

dAN
dt

= φV

(
1− AN + AI

K

)[
SV + ηV IV

]
− bVAN − µAAN

The population of infected aquatic mosquitoes (AI) is generated by oviposition of
infected eggs laid by infectious mosquitoes (through vertical transmission at a rate
1 − ηV ). Similarly, maximum aquatic mosquito effect is considered. This population
is reduced by maturation (at the rate bV ) and natural death (at the rate µA). This
gives

dAI
dt

= φ
(

1− AN + AI
K

)
[1− ηV ]IV − bVAI − µAAI .

The population of susceptible adult mosquitoes (SV ) is generated by maturation of
non-infected aquatic mosquitoes (at the rate bV ) and decrease by infection at a rate

λHM =
βHV IH
NH

(2.2.4)

where βHV = ρHV bHV is an effective contact rate between infectious humans and
susceptible mosquitoes, ρHV is a probability of transmission from infectious humans
to susceptible mosquitoes and bHV is a biting rate of susceptible mosquitoes and due
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to natural death (at a rate µV ). So that

dSV
dt

= bVAN − λHMSV − µV SV .

Finally, the population of infectious adult mosquitoes (IV ) is generated by maturation
of infected aquatic mosquitoes (at the rate bV ), by infection of susceptible mosquitoes
at the rate λHM and decrease due to natural death (at the rate µV ). So that

dIV
dt

= λHMSV + bVAI − µV IV .

2.2.1 Incidence function

The most commonly used forms of disease transmissions is either the density-dependent
(mass action) or the frequency-dependent (standard incidence). Although there is no
rule of choice, standard incidence has thrive in modelling vector and sexually trans-
mitted diseases [79]. Thus, the choice of the transmission functions given by (2.2.3)
and (2.2.4). Furthermore, it is a known fact that, for the total number of bites to be
conserved, the total number of mosquitoes bites must be equal to the total number
of bites received by humans [19, 22, 62, 108]. Thus,

βV H(NH , NV )NH = βHVNV ,

therefore

NV =
βV H(NH , NV )

βHV
NH , (2.2.5)

Substituting (2.2.5) into (2.2.2) we have

λH = λMH + λHH =
βHV IV + βHH

(
IH + ηHRH

)
NH

. (2.2.6)

2.2.2 Model equations

The above formulation gives the model for the transmission dynamics of Zika virus with
human-human transmission and vertical transmission in mosquito population, which
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is represented by the following system of equations

dSH
dt

= bH − λH
SH
NH

− µHSH ,

dIH
dt

= λH
SH
NH

− δHIH − γHIH − µHIH ,

dRH

dt
= γHIH − µHRH ,

dAN
dt

= φV

(
1− AN + AI

K

)[
SV + ηV IV

]
− bVAN − µAAN ,

dAI
dt

= φV

(
1− AN + AI

K

)
[1− ηV ]IV − bVAI − µAAI ,

dSV
dt

= bVAN − βHV
IH
NH

SV − µV SV ,

dIV
dt

= βHV
IH
NH

SV + bVAI − µV IV .

(2.2.7)

With the assumption that all the model parameters are positive and initial conditions
are non-negative. In addition, since AN + AI = A we have

dA

dt
= φV

(
1− A

K

)
[SV + IV ]− bVA− µAA. (2.2.8)

Lemma 2.2.1. The following biologically feasible region

Ω =

{
SH , IH , RH , AN , AI , SV , IV ∈ R7

+ : SH + IH +RH ≤
bH
µH

,

AN + AI ≤ K, SV + IV ≤
KbV
µV

} (2.2.9)

is positively-invariant with respect to the model (2.2.7).

Proof. Since the system (2.2.7) is C1 in R7
+, local existence and uniqueness of solution

obviously follow. Observe from (2.2.8) that AN + AI ≤ K. Also, let NV = SV + IV ,
then by Gronwall’s lemma we have

NH(t) ≤ NH(0)e−µH t +
bH
µH

(
1− e−µH t

)
and

NV (t) ≤ NV (0)e−µV t +
KbH
µV

(
1− e−µV t

)
,

(2.2.10)

which are bounded and hence solution exists for all t ≥ 0. In addition, NH(t) ≤ bH
µH

if NH(0) ≤ bH
µH

, and NV (t) ≤ KbV
µV

if NV (0) ≤ KbV
µV

. Consequently, solution of the
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Figure 2.1: Model diagram showing the interaction between mosquitoes and humans.

model with initial condition in Ω remains in Ω for all t ≥ 0. �

2.2.3 Analysis of mosquito only population

In this section, we analyse the model (2.2.7) in the absence of humans. Consider the
mosquito component of the model (2.2.7) given by

dAN
dt

= φV

(
1− AN

K

)
SV − bVAN − µAAN ,

dSV
dt

= bVAN − µV SV .
(2.2.11)

In the absence of interaction with humans, the average number of offspring produced
by a single female mosquito through out her entire lifespan, in the presence of abundant
resources, space and absence of disease is given by

N0 =
φV bV

(bV + µA)µV
. (2.2.12)

It is interpreted as follows. The probability that an aquatic mosquito mature to
be an adult female mosquito is bV

bV +µA
, where 1

bV +µA
is the average time spent at

aquatic stage, and bV is the rate at which aquatic mosquitoes mature to become fe-
male mosquitoes. The life expectancy of adult female mosquito is 1

µV
, while φV is

their oviposition rate, thus the average number of eggs laid by a female mosquito is
φV
µV

. Therefore (2.2.12) is the average number of offspring produced by a susceptible

mosquito in her entire life (basic offspring number).
The mosquito component of the model given by (2.2.11) has an extinction disease
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Table 2.1: Description of variables and parameters used for the model given by (2.2.7).

Variable Interpretation

SH Population of susceptible humans
IH Population of infectious humans
RH Population of recovered humans
NH Total population of humans
AN Population of non-infected aquatic mosquitoes
AI Population of infected aquatic mosquitoes
SV Population of susceptible mosquitoes
IV Population of infectious mosquitoes
A Total population of aquatic mosquitoes
NV Total population of adult female mosquitoes

Parameter Interpretation
φV Oviposition rate of mosquitoes
γH Recovery rate for humans
bH Recruitment rate of humans
bV Maturation rate of mosquitoes
µH Natural death rate of humans
µV Natural death rate of adult mosquitoes
µA Natural death rate of aquatic mosquitoes
ηV Rate (proportion) of non-vertical transmission
K Mosquito carrying capacity
m Ratio of mosquitoes to humans (number of mosquitoes per human)
ηH Modification parameter for the transmission by recovered humans
δH Disease induced death rate of humans
bV H Biting rate of infected mosquitoes
bHV Biting rate of susceptible mosquitoes
ρV H Probability of transmission from infectious mosquito to humans
ρHV Probability of transmission from infectious humans to mosquito
bHH Sexual contact rate between infectious and susceptible humans
ρHH Probability of sexual transmission from infectious to susceptible

humans
βV H Transmissions rate from infectious mosquitoes to susceptible humans
βHV Transmissions rate from infectious humans to susceptible mosquitoes
βHH Transmissions rate from sexually infectious humans to susceptible humans
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free equilibrium E0, and non-extinction disease free equilibrium E1 given by

E0 =
(
A∗N , A

∗
I , S

∗
V , I

∗
V

)
=
(

0, 0, 0, 0
)
, (2.2.13)

and

E1 =
(
A∗N , A

∗
I , S

∗
V , I

∗
V

)
=
(
K[1− 1

N0

], 0,
bVK
µV

[1− 1

N0

], 0
)
. (2.2.14)

To establish the stability of E0 and E1, we use the following Theorem.
Consider an autonomous dynamical system given by ẋ = f(x), where D ⊆ Rn

+

and f : D −→ Rn
+ is continuous. Then

Theorem 2.2.2. [8] Let a, b ∈ D be such that a < b, [a, b] ⊆ D and f(b) ≤ 0 ≤ f(a).
Then the system defines a (positive) dynamical system on [a, b]. Moreover, if [a, b]
contains a unique equilibrium q, then q is globally asymptotically stable on [a, b].

Rewriting (2.2.11) in the form ẋ = f(x), where f : D −→ R2
+ and D ⊆ R2

+.
Then we have the following result

Theorem 2.2.3. The extinction equilibrium E0 is globally asymptotically stable (GAS)
when N0 ≤ 1 and unstable otherwise. The equilibrium E1 exists and LAS when N0 > 1.

Proof. Consider [a, b] = [0, b] ⊆ R2
+, where b = (p, (bV +µA)p

φV
) and p > 0. It is easy to

see that f(0) = 0, and

f(b) =

−[bV + µA
]
p2

K

bV p[1− 1
N0

]

 therefore f(b) < 0 provided N0 ≤ 1. (2.2.15)

Thus, f(b) ≤ 0 ≤ f(0) provided N0 ≤ 1. By Theorem (2.2.2), the system given by
(2.2.11) defines a positive dynamical system on [0, b] and E0 is GAS on [0, b]. Moreover,
since p is arbitrary, b can be extended to be bigger than any x ∈ R2

+. Hence the result
holds on R2

+. The second part of the proof follows by linearization. �
The epidemiological implication of Theorem (2.2.3) is that, if the basic offspring num-
ber can be brought to a value below unity, mosquito population would go to extinction
and horizontal transmission between humans and mosquitoes can be avoided.

2.2.4 Mosquito extinction DFE

Let E2 be the DFE of (2.2.7) when the basic offspring number of the mosquito popu-
lation (N0) is less than or equal to one, that is

E2 =
(
S∗H , E

∗
H , I

∗
H , R

∗
H , A

∗
N , A

∗
I , S

∗
V , E

∗
V , I

∗
V

)
=
( bH
µH

, 0, 0, 0, 0, 0, 0, 0
)
. (2.2.16)

Local stability of E2 can be established using the next generation method [139]. We
employ the approach described by [22, 44, 139] to compute the next generation matrix
(K).
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The matrix F for the new infection terms and V for the transmission terms are
given, respectively by,

F =


βHH βHHηH 0 βHV

0 0 0 0

0 0 0 φV (1−ηV )
N0

0 0 0 0

 , V =


K1 0 0 0
−γH µH 0 0

0 0 K2 0
0 0 −bV µV

 ,

(2.2.17)
where K1 = γH + µH + δH , K2 = µA + bV . The next generation matrix with large
domain (KL) is

KL = FV −1 =


βHH βHHηH 0 βHV

0 0 0 0

0 0 0 φV (1−ηV )
N0

0 0 0 0

×


1
K1

0 0 0
γH

K1µH

1
µH

0 0

0 0 1
K2

0

0 0 bV
K2µV

1
µV



=


βHH(µH+ηHγH)

K1µH

βHHηH
µH

βHV bV
K2µV

βHV
µV

0 0 0 0

0 0 φV (1−ηV )bV
N0K2µV

φV (1−ηV )
N0µV

0 0 0 0

 .

(2.2.18)
Thus, using the approach of [44] with an auxiliary matrix E, the NGM (K) is

K = ETKLE = ETFV −1E =

(
βHH(µH+ηHγH)

K1µH

βHV bV
K2µV

0 φV (1−ηV )bV
N0K2µV

)
, where E =


1 0
0 0
0 1
0 0

 ,

(2.2.19)
Therefore the mosquito extinction basic reproduction number denoted by R1 is given
by

R1 = max
{
RHH ,RV V

}
where RHH = βHH(µH+ηHγH)

K1µH
and RV V = φV (1−ηV )bV

N0K2µV
= 1 − ηV . The NGM with

large domain, (KL), is always the matrix with highest dimension, therefore the NGM
(K) eliminates irrelevant information and has detailed biological meaning (which we
employed in the interpretation of R0 that comes later) [44].

Theorem 2.2.4. If N0 ≤ 1. The mosquito extinction disease free equilibrium E2

is globally asymptotically stable when the basic reproduction number R1 ≤ 1 and
unstable otherwise.

Proof. By Theorem (2.2.3), the extinction equilibrium of the mosquito component of
(2.2.7) (IV = 0) is GAS when N0 ≤ 1, thus the model reduces to an SIR model with
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infection by both I and R compartments. The function

V = R1IH +R1
βHHηH
µH

RH , (2.2.20)

is a suitable Lyapunov function where,

V̇ = R1

(
βHH

IH
NH

SH + βHHηH
RH

NH

SH −K1IH

)
+R1

βHHηH
µH

(
γHIH − µHRH

)
,

= R1IH

(
βHH

SH
NH

+ βHH
ηHγH
µH

−K1

)
+R1RH

(
βHHηH

SH
NH

− βHH
ηH
µH

µH

)
,

≤ R1K1IH

(
βHH

[µH + ηHγH ]

K1µH
− 1
)

+R1βHHRH

(
ηH − ηH

)
since

SH
NH

≤ 1,

= R1K1IH

(
R1 − 1

)
.

(2.2.21)
Thus, V̇ ≤ 0 if R1 ≤ 1 with V̇ = 0 if and only if IH = RH = 0. Furthermore, the
largest compact invariant set in {(SH , IH , RH , AN , AI , SV , IV ) ∈ Ω : V̇ = 0} is the
set E2. Using LaSalle’s invariance principle, every solution with initial conditions in Ω
converge to the DFE (E2) provided that N0 ≤ 1 and R1 ≤ 1. �

It is worth mentioning that, this situation is biologically less plausible due to the
absence of mosquitoes in the population. We now consider the case when N0 > 1.

2.2.5 Mosquito persistent DFE

Let E3 be the DFE of (2.2.7) when the basic offspring number of the mosquito popu-
lation is greater than one (N0 > 1), then

E3 =
(
S∗H , I

∗
H , R

∗
H , A

∗
N , A

∗
I , S

∗
V , I

∗
V

)
=
( bH
µH

, 0, 0,K[1− 1

N0

], 0,
bV
µV
K[1− 1

N0

], 0
)

(2.2.22)
Using similar approach to that of Section 2.4.4, the next generation matrix K is given
by

K =

(
βHH(µH+ηHγH)S∗H

N∗HK1µH

βHV S
∗
H

N∗HµV
βHV S

∗
V

N∗HK1

φV (1−ηV )bV
N0K2µV

)
=

(
RHH RV H

RHV RV V

)
. (2.2.23)

Thus, the basic reproduction number (which is the spectral radius of K) is given by

R0 =
1

2

(
RV V +RHH +

√(
RHH −RV V

)2

+ 4RHVRV H

)
, (2.2.24)

whereRHV =
βHV S

∗
V

N∗HK1
andRV H =

βHV S
∗
H

N∗HµV
, withRHH andRV V as presented in Section

2.4.4.

Lemma 2.2.5. The disease free equilibrium E3 of the model represented by (2.2.7) is
locally asymptotically stable if R0 < 1, and unstable if R0 > 1 [139].
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The threshold quantity R0 is the basic reproduction number. It is the average number
of secondary cases generated by a single infectious individual that is introduced into a
completely susceptible population throughout its period of infectivity. It is interpreted
as follows. A sexually infectious (infected or recovered) human can transmit the disease
sexually to a susceptible human. The number of new human-human sexual infection
generated by an infected human (IH) (near DFE) is the product of its infection rate
(βHH
N∗H

) and the average time spent in the infected class ( 1
K1

). In a similar way, the

number of new sexual transmissions by a recovered human (near DFE) is the product
of its infection rate (βHHηH

N∗H
), the average lifespan of a recovered human ( 1

µH
) and the

probability that an individual survives compartment IH and moves to RH compartment
(γH
K1

). So that the average human to human infection (noting that S∗H = N∗H) is given
by

RHH =
βHH
N∗HK1

S∗H +
βHHηHγH
N∗HK1µH

S∗H =
βHH(µH + ηHγH)

K1µH
. (2.2.25)

Susceptible humans acquire infection from infected mosquitoes following effective con-
tact capable of disease transmission. The number of human infections generated by
an infected mosquito (near DFE) is given by the product of its rate of infection (βHV

N∗H
)

and the average duration in infected class ( 1
µV

). Thus, (noting that S∗H = N∗H)

RHV =
βHV
N∗HµV

S∗H =
βHV
µV

. (2.2.26)

Similarly, susceptible mosquitoes acquire infection following effective contact with an
infected human (IH). The number of infections in the class SV generated by one
infected human (near the DFE) is the product of the infection rate of infected humans
(βHV
N∗H

) and the average time spent in the infected class ( 1
K1

). Therefore

RV H =
βHV
N∗HK1

S∗V (2.2.27)

Unlike transstadial transmission which may occur at a different stage, transovarial
transmission is direct, hence, the number of vectorial vertical transmissions is the
percentage of infection passed by an infected mosquito per oviposition (RV V = 1−ηV ).
The basic reproduction number is therefore given by (2.2.24).

For a homogeneous population, the basic reproduction number defines the thresh-
old for control or elimination of a disease. This is not always the case for a heteroge-
neous population. In fact R0 could be of less importance when effort is to be targeted
at a particular host, or if the cycle of infection includes other types such as vectors
[123]. Therefore it is imperative to compute another threshold quantity named the
type reproduction number.

2.2.6 Type reproduction number

The type-reproduction number T is a threshold quantity that correctly determines
the critical control effort for a heterogeneous population [72]. A method to estimate
the required effort(s) needed to control an infectious disease by targeting a specific
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sub-population of hosts, considering the fact that infection will pass through other
sub-populations before causing secondary infections is described by [72, 123]. Let K
be the next generation matrix with large domain and the host types 1, 2 and 3 denote
the populations of IH , AI and IV . The type i reproduction number is given by

TI = eTK(I − (I − P )K)−1e, (2.2.28)

where I is an identity matrix, P is a projection matrix and e is a unit vector with all
elements equal to zero except the ith. Let

K =


K11 K12 K13 K14

0 0 0 0
0 0 K33 K34

K41 0 0 0

 ,

where,

K11 =
βHH(µH + ηHγH)

K1µH
, K12 =

βHHηH
µH

, K13 =
βHV bV
K2µV

,

K14 =
βHV
µV

, K33 =
φV (1− ηV )bV
N0K2µV

, K34 =
φV (1− ηV )

N0µV
, K41 =

βHV S
∗
V

N∗HK1

,

so that from (2.2.28) the type-reproduction number for infectious human is given by

T1 = K11 +
K13K34K41

1−K33

+K41K14 = RHH +
RHVRV H

1−RV V

. (2.2.29)

This is the expected number of cases in humans caused by one infected human in a
completely susceptible population, the infection might be directly or through chains of
infections passing through individuals of other types, it singles out the required control
effort when targeting the human population [72]. If R0 > 1, after some simplifications
it can be shown that

RHVRV H >
(
1−RV V

)(
1−RHH

)
= ηV

(
1−RHH

)
. (2.2.30)

On the other hand R0 < 1 implies

RHVRV H <
(
1−RV V

)(
1−RHH

)
= ηV

(
1−RHH

)
. (2.2.31)

Now T1 < 1 if

RHH +
RHVRV H

1−RV V

< 1 =⇒ RHVRV H <
(
1−RV V

)(
1−RHH

)
.

Thus, T1 < 1 ⇐⇒ R0 < 1. Similarly, the type-reproduction number for infected
aquatic mosquito AI is given by

T2 =
K11 +K14K41

1 +K14K41 −K11

=
RHH +RHVRV H

1 +RHVRV H −RHH

. (2.2.32)
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It is the expected number of cases within aquatic mosquitoes generated by one infected
aquatic mosquito in a completely susceptible population of mosquitoes. Observe that
infection does not occur directly at this stage, it has to pass through chains of infections
between mosquitoes and humans. It is straightforward to see that T2 < 1 =⇒ RHH <
1
2
.

The expected number of cases by one infected mosquito in a population of com-
pletely susceptible mosquitoes denoted by T3 is given by

T3 =
K11

1−K11

=
RHH

1−RHH

. (2.2.33)

Likewise for infection to occur at this stage, it has to pass through chains of infections
between humans to mosquitoes. Also T3 < 1 =⇒ RHH < 1

2
. Notice that the next

generation matrix here cannot be used to compute the type reproduction number of
recovered humans, this is because no new infection occurs by RH population.

2.2.7 Endemic equilibrium (EE) and backward bifurcation (BB)

In this section we compute the endemic equilibrium of the model (2.2.7), and analyse
the direction of bifurcation at R0 = 1.

2.2.7.1 Endemic equilibrium

Though the endemic equilibrium of the system given by (2.2.7) is not straight forward,
by letting AI + AN = A with the fact that A ≤ K, it can be shown that the model
has a unique EE provided N0 > 1 given by

S∗∗H =
bH

λ∗∗H + µH
, I∗∗H =

λ∗∗H bH

K1

(
λ∗∗H + µH

) , R∗∗H =
λ∗∗H bHγH

K1

(
λ∗∗H + µH

)
µH

,

A∗∗ =
KK2µV

(
N0 − 1

)
bV

, A∗∗N =
φV

(
1− A∗∗

K

)[
S∗∗V + ηV I

∗∗
V

]
K2

,

A∗∗I =
φV

(
1− A∗∗

K

)
[1− ηV ]I∗∗V

K2

, S∗∗V =
bV φV

(
1− A∗∗

K

)[
S∗∗V + ηV I

∗∗
V

](
λ∗∗V + µV

)
K2

,

I∗∗V =
λ∗∗V K2bVA

∗∗ + bV µV φV

(
1− A∗∗

K

)
[1− ηV ]I∗∗V(

λ∗∗V + µV

)
K2µV

,

(2.2.34)
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where

λ∗∗H =
βHV I

∗∗
V + βHHI

∗∗
H + βHHηHR

∗∗
H

N∗∗H
,

and

λ∗∗V = βHV
I∗∗H
N∗∗H

, N∗∗H = S∗∗H + I∗∗H +R∗∗H .

Some previous studies on vector borne disease models that undergo backward bifur-
cation (a phenomenon where stable DFE coexists with a stable EE when R0 < 1)
include [18], [24], [27], [35] and [62].

2.2.7.2 Backward bifurcation (BB)

Here, we apply the method described by [26, 139], which is based on center manifold
theory to prove the existence of backward bifurcation or otherwise at R0 = 1 for the
model (2.2.7). Let,(

SH , IH , RH , AN , AI , SV , IV
)

=
(
x1, x2, x3, x4, x5, x6, x7

)
,

so that the total human population, and total mosquito population at aquatic and
non-aquatic stages are respectively given by

NH = x1 + x2 + x3, A = x4 + x5, and NV = x6 + x7.

The transformed model (2.2.7) is represented by

dx1

dt
= bH −

(βHV x7 + βHHx2 + βHHηHx3

x1 + x2 + x3

)
x1 − µHx1,

dx2

dt
=
(βHV x7 + βHHx2 + βHHηHx3

x1 + x2 + x3

)
x1 − δHx2 − γHx2 − µHx2,

dx3

dt
= γHx2 − µHx3,

dx4

dt
= φV

(
1− x4 + x5

K

)[
x6 + ηV x7

]
− bV x4 − µAx4,

dx5

dt
= φV

(
1− x4 + x5

K

)
[1− ηV ]x7 − bV x5 − µAx5,

dx6

dt
= bV x4 −

βHV x2

x1 + x2 + x3

x6 − µV x6,

dx7

dt
=

βHV x2

x1 + x2 + x3

x6 + bV x5 − µV x7.

(2.2.35)

The associated forces of infection are given by

λH =
βHV x7 + βHHx2 + βHHηHx3

x1 + x2 + x3

x1, λV =
βHV x2

x1 + x2 + x3

x6.
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Let R0 = 1, so that RHVRV H = (1 − RV V )(1 − RHH). Suppose βHV = β∗HV is
chosen to be the bifurcation parameter. The Jacobian matrix (J∗) at the DFE with
βHV = β∗HV is given by

J∗ =



−µH −βHH −βHHηH 0 0 0 −β∗HV
0 βHH −K1 βHHηH 0 0 0 β∗HV
0 γH −µH 0 0 0 0

0 0 0 −φV bV
µV

−K2(N0 − 1) K2µV
bV

K2µV ηV
bV

0 0 0 0 −K2 0 K2µV (1−ηV )
bV

0 −β∗HV S
∗
V

S∗H
0 bV 0 −µV 0

0
β∗HV S

∗
V

S∗H
0 0 bV 0 −µV


.

The Jacobian has left (vI) and right (wI) eigenvectors associated with the zero eigen-
value respectively given by

v1 = 0, v2 =
1

S∗HK2µ2
V η

2
V

(
βHHγHηH + µ2

H

)
+ S∗V β

2
HV µ

2
H

(
[1− ηV ] +K2ηV

) ,
v3 =

βHHηH
µH

v2 v4 = 0, v5 =
βHV bV
K2µV ηV

v2, v6 = 0, v7 =
βHV
µV ηV

v2,

(2.2.36)
and

w1 = −K1

µH

(
RHH +RHVRV H

1

ηV

)
w2 w2 = S∗HK2µ

2
Hµ

2
V η

2
V ,

w3 =
γH
µH

w2, w4 = −βHV S
∗
V (1− ηV )

S∗HbV ηV
w2,

w5 =
βHV S

∗
V (1− ηV )

S∗HbV ηV
w2, w6 = − βHV S

∗
V

S∗HµV ηV
w2, w7 =

βHV S
∗
V

S∗HµV ηV
w2.

(2.2.37)

Using the afore listed vectors in (2.2.36) and (2.2.37) we have

a =
n∑

k,i,j=1

VkWIWj
∂2fk
∂xI∂xj

(0, 0) =
−2w2

2v2

N∗HK

[
2βHHS

∗
HK(γHηH + µH)(γH + µH)

µ2
H

+

8β2
HV

S∗VK
µV ηV

+
β2
HV S

∗
VK(γH + µH)

µV µHηV
+ βHV S

∗
VK
(4µH + 5γH

µH
− 3

K1

µH
{RHH+

RHVRV H

(1−RV V )
}
)]

(2.2.38)
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while,

b =
n∑

k,i=1

vkwI
∂2fk

∂xI∂φV
(0, 0) =

S∗Vw2v2

S∗H

( βHV
µV ηV

+ 8
)
> 0. (2.2.39)

Since b is positive, it follows from Theorem 4.1 in [26] that the Zika model (2.2.7)
will undergo backward bifurcation if the bifurcation coefficient a given by (2.2.38) is
positive. �

The public health impact of BB phenomenon of model (2.2.7) is that the epidemiolog-
ical requirement of having the threshold quantity (R0) to be less than unity is although
necessarily, but no longer sufficient for effective control of the disease. Hence the cause
of such phenomenon is now explored.

2.2.8 Non-existence of backward bifurcation

Observe that

4µH + 5γH
µH

− 3
K1

µH

[
RHH +RHVRV H

]
≤ 5(µH + γH)

µH
− 3

K1

µH

[
RHH +RHVRV H

]
.

(2.2.40)
So that if δH = 0 and K1 reduces to γH + µH , then we have

a ≤−2K1w
2
2v2

N∗HK

[
2βHHS

∗
HK(γHηH + µH)

µ2
H

+
8β2

HV S
∗
VK

K1µV ηV
+
β2
HV S

∗
VK

µV µHηV
+

3βHV S
∗
VK

µH

(5

3
− {RHH +

RHVRV H

(1−RV V )
}
)]
.

(2.2.41)

Corollary 1. The Zika model (2.2.7) does not undergo backward bifurcation atR0 = 1
if δH = 0.

The result of the Corollary is consistent with that obtained numerically by Chitnis
et. al [27] in their Malaria model which does not incorporate aquatic stages.

2.2.9 Global stability of the DFE (E3)
The global asymptotic stability of the DFE (E2) obtained when N0 ≤ 1 is proved by
Theorem (2.2.4). We use the method described in [77] to find the threshold condition
under which the DFE (E3) will be GAS with respect to a positively invariant region Ω.

The system is rewritten in a pseudo-triangular form as follows. From (2.2.7) and
the property of the DFE, it is easy to see that the first equation of the system can be
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rewritten in the form

dSH
dt

= bH − βHV
IV
NH

SH − βHH
IH
NH

SH − βHHηH
RH

NH

SH − µHSH ,

= bH − βHV
IV
NH

SH − βHH
IH
NH

SH − βHHηH
RH

NH

SH − µHSH − bH + µHS
∗
H ,

= −µH(SH − S∗H)− βHV
IV
NH

SH − βHH
IH
NH

SH − βHHηH
RH

NH

SH .

(2.2.42)
The equation of the aquatic mosquitoes can also be rewritten in the form

dAN
dt

= φV

(
1− A

K

)[
SV + ηV IV

]
−K2AN ,

= φV

(
1− A

K

)[
SV + ηV IV

]
−K2AN − φV

(
1− A∗N

K

)
S∗V +K2A

∗
N + φV

SV
K
A∗N

− φV
SV
K
A∗N ,

= −(AN − A∗N)
(
K2 + φV

SV
K

)
+ φV (SV − S∗V )

(
1− A∗N

K

)
+ φV ηV IV

(
1− A

K

)
− φV

SV
K
AI .

(2.2.43)
Similarly,

dAI
dt

= φV

(
1− [AI + AN ]

K

)
(1− ηV )IV − bVAI − µAAI ,

= φV (1− ηV )IV − φV (1− ηV )IV
AI
K
− φV (1− ηV )IV

AN
K
−K2AI ,

= −AI
(
K2 + φV (1− ηV )

IV
K

)
+ φV (1− ηV )IV

(
1− AN

K

)
.

(2.2.44)

Furthermore, the fourth equation of the system (2.2.7) is rewritten as

dSV
dt

= bVAN − βHV
IH
NH

SV − µV SV ,

= bVAN − βHV
IH
NH

SV − µV SV − bVA∗N + µV S
∗
V ,

= −µV (SV − S∗V ) + bV (AN − A∗N)− βHV
IH
NH

SV .

(2.2.45)

From the above simplification the system given by (2.2.7) can therefore be re-written
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in a pseudo-triangular form as
ẋ1 = A11(x)(x1 − x̄1) + A12(x)x2

ẋ2 = A22(x)x2,

(2.2.46)

where x1 = (SH , AN , SV )T represents the naive (uninfected) component of the model
(2.2.7), x2 = (IH , RH , AI , IV )T represents the infectious part of (2.2.7), x̄1 = (S∗H , A

∗
N , S

∗
V )T

is the DFE and

A11(x) =

−µH 0 0

0 −
(
K2 + φV

SV
K

)
φV
(
1− A∗N

K

)
0 bV −µV

 ,

A12(x) =

−βHH SH
NH

−βHHηH SH
NH

0 −βHV SH
NH

0 0 −φV SV
K φV ηV

(
1− A

K

)
−βHV SV

NH
0 0 0

 ,

A22(x) =


−m11 βHHηH

SH
NH

0 βHV
SH
NH

γH −µH 0 0
0 0 −m33 m34

βHV
SV
NH

0 bV −µV

 ,

(2.2.47)

where m11 = K1+βHH
SH
NH

, m33 = K2+φV (1−ηV ) IVK and m34 = φV (1−ηV )
(
1−A∗N

K

)
.

Theorem 2.2.6. Consider (2.2.7). Let Ω ⊂ Rn1+n2
+ be a positively-invariant set. If

1. The system (2.2.7) is defined on the positively invariant set Ω ⊂ Rn1+n2
+ .

2. The sub-system ẋ = A11(x)(x1 − x̄1) is globally asymptotically stable at the
equilibrium x̄1.

3. For any x ∈ Ω, the matrix A22(x) is Metzler and irreducible.

4. There exists an upper bound matrix Ā22 for the setM = {A22(x)/x ∈ Ω}, with
the property that either Ā22 /∈ M or if Ā22 ∈ M(i.e., Ā22 = maxΩM), then
for x̄ ∈ Ω such that Ā22 = A22(x̄), then x̄ ∈ R7 × {0} (the DFE sub-manifold
contains the points where the maximum is attained).

5. The stability modulus of Ā22 satisfies α(Ā22) ≤ 0.

Then, the associated DFE is GAS in Ω [77].

A similar technique was also employed by [45, 46, 136] for other mosquito borne
diseases. The set Ω defined by (2.2.9) was shown to be positively invariant with
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respect to the system (2.2.7). At E3, A∗ = K(N0−1
N0

), thus the eigenvalues of the
associated A11(x) matrix given by (2.2.47) are

−µH and − 1

2

(
K2 + µV +

φV SV
K

)
± 1

2

√(
K2 + µV +

φV SV
K

)2

− 4
SV
K
φV µV ,

using the fact that
(
K2 +µV + φV SV

K

)2

− 4SVK φV µV =
(
K2 +µV − φV SV

K

)2

> 0, and(
K2 + µV + φV SV

K

)2

− 4SVK φV µV =
(
K2 + µV − φV SV

K

)2

<
(
K2 + µV + φV SV

K

)2

,

the eigenvalues of the Metzler matrix A11(x) are all real and negative. Therefore the
subsystem ẋ1 = A11(x)(x1 − x̄1) is globally asymptotically stable.

Definition 2.2.1. A square matrix A is said to be reducible if it has the form

A =

(
A1 A2

0 A3

)
(2.2.48)

where A1 and A3 are square matrices of order at least 1 or if A can be transformed
into the form (2.2.48) by simultaneous permutations of rows and columns [55]. It
is irreducible otherwise. Alternatively, a square matrix is irreducible if and only if its
associated digraph is strongly connected.

Lemma 2.2.7. Let M be a Metzler matrix which is block decomposed as follows

M =

(
A B
C D

)
(2.2.49)

where A and D are square matrices. Then M is Metzler stable if and only if A and
D− CA−1B are Metzler stable.

Observe that RHH < 1 implies βHH < K1. Let M∗
H = bH

δH+µH
, then NH ≥ M∗

H and

SH ≤ NH , so that 1
M∗H
≥ 1

NH
and SH

NH
≤ 1 in Ω with equality at the DFE. Furthermore

AN ≤ K and SV ≤ S∗V
N0

N0−1
in Ω. Thus, the matrix A22(x) is Metzler irreducible (see

Figure 2.2), hence conditions 1-3 of Theorem (2.2.6) are satisfied. The following
matrix Ā22(x) given by

Ā22(x) =


−
(
K1 − βHH

)
βHHηH 0 βHV

γH −µH 0 0
0 0 −K2 φV (1− ηV ) 1

N0
βHV S

∗
V N0

(N0−1)M∗H
0 bV −µV

 (2.2.50)

is Metzler and an upper bound of A22(x) ∈ Ω provided RHH < 1. Thus, condition 4
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of Theorem (2.2.6) is satisfied. In the case of the matrix Ā22 we have

A =

(
−
[
K1 − βHH

]
βHHηH

γH −µH

)
, B =

(
0 βHV
0 0

)
,

C =

(
0 0

βHV S
∗
V N0

(N0−1)M∗H
0

)
, D =

(
−K2 φV (1− ηV ) 1

N0

bV −µV

)
.

(2.2.51)

Under the condition that RHH < 1, it is easy to verify that A is Metzler stable. Also

D− CA−1B =


−K2 φV (1− ηV ) 1

N0

bV −µV
[
1− β2

HV S
∗
V N0

K1M∗HµV (N0−1)
[

1−βHH (γHηH+µH )

K1µV

]]
 . (2.2.52)

Let Z =
N∗HN0

M∗H(N0−1)
. Then D− CA−1B is Metzler if

β2
HV S

∗
VN

∗
HN0

K1N∗HM
∗
H(N0 − 1)

[
1−RHH

]
µV

=
RHVRV H

(1−RHH)
Z < 1. (2.2.53)

and Metzler stable if

K2µV

(
1− RHVRV H

(1−RHH)
Z −RV V

)
≥ 0 =⇒ RHVRV H

(1−RHH)
Z +RV V ≤ 1.

(2.2.54)

Notice that for N0 > 1, Z =
N∗HN0

M∗H(N0−1)
> 1, therefore, the two conditions given by

(2.2.53) and (2.2.54) are equivalent to

RHVRV H

(1−RHH)(1−RV V )
≤ 1

Z
=
M∗

H(N0 − 1)

N∗HN0

< 1 and,
RHVRV H

(1−RHH)
<
M∗

H(N0 − 1)

N∗HN0

.

Thus, the necessarily and sufficient conditions for the GAS of E3 with respect to Ω is
that RHH < 1 and RHVRVH

(1−RHH)
Z +RV V ≤ 1.

Theorem 2.2.8. The DFE (E3) of the model (2.2.7) with respect to Ω is GAS if

the associated human-human reproduction number RHH = βHH(µH+γHηH)
K1µH

< 1, and
RHVRVH
(1−RHH)

Z +RV V ≤ 1.

Notice that RHVRVH
(1−RHH)

Z+RV V ≤ 1 is equivalent to RHVRVH
(1−RHH)(1−RV V )

≤ M∗H(N0−1)

N∗HN0
, since

M∗
H ≤ N∗H and N0 − 1 < N0, then RHVRVH

(1−RHH)
Z +RV V ≤ 1 suffices that R0 ≤ 1.
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Figure 2.2: Strongly connected directed graph (di-graph) associated with the matrix
A22(x). The square matrix A22(x) is thus irreducible (as the figure shows a strongly
connected associated di-graph).

We next consider a special case for a positively invariant subset Ω∗ of Ω given by

Ω∗ =

{
SH , IH , RH , AN , AI , SV , IV ∈ R7

+ : SH + IH +RH ≤
bH
µH

, AN + AI ≤ K,

SV ≤ S∗V =
KbV
µV

[
1− 1

N0

]
, ≤ SV + IV ≤

KbV
µV

}
.

(2.2.55)
With respect to Ω∗, it can be shown that the condition for the global asymptotic
stability of the DFE E3 is RHH < 1 and RHVRVH

(1−RHH)(1−RV V )
≤ M∗H

N∗H
.

If δH = 0 (M∗
H = N∗H), the condition reduces to RHVRVH

(1−RHH)(1−RV V )
≤ 1. It should

be observed that in Ω∗, Ā22 = A22(x̄1, 0) provided δH = 0. Therefore, in addition to
RHH < 1, the condition for the GAS of E3 is RHVRVH

(1−RHH)(1−RV V )
≤ 1 =⇒ R0 ≤ 1.

Corollary 2. The DFE (E3) of the model (2.2.7) with respect to Ω∗ is GAS if δH = 0,

the associated human-human reproduction number RHH = βHH(µH+γHηH)
K1µH

< 1, and
R0 ≤ 1.

The proof can also be done using Corollary 4.4 of [77].

2.3 Numerical simulation and sensitivity analysis

Some numerical simulations, local and global sensitivity analysis of the basic repro-
duction number (R0) with respect to the model parameters are presented. Parameter
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Table 2.2: Parameter values used in numerical simulations, with low baseline values
that gives R0 = 0.1156 < 1, while R0 = 2.9268 > 1 for the high baseline

Parameter Range Low baseline High baseline References

γH 0.07− 0.33 day−1 0.14 day−1 0.08 day−1 [110]
m 1− 10 2 5 [61, 140]
ηH 0− 1 day−1 0.04 day−1 0.08 day−1 assumed
ηV 0− 1 day−1 0.95 day−1 0.90 day−1 [2, 31]
δH 0.001 day−1 0.001 day−1 0.001 day−1 [33, 62]
φV 1− 14 day−1 4 day−1 6 day−1 [45, 46]
bH 10− 103 day−1 30 day−1 10 day−1 [19, 62]
bV 0.05− 0.5 day−1 0.05 day−1 0.1 day−1 [46, 140]
1
µA

3− 4 days 3 days 4 days [45, 46]
1
µV

4− 35 days 7 days 20 days [7, 61]
1
µH

50− 70 years 65 years 50 years [45, 46]

bV H 0.3− 1 day−1 0.3 day−1 0.5 day−1 [96, 7]
bHV 0.3− 1 day−1 0.414 day−1 0.823 day−1 [96, 7]
ρV H 0.1− 0.75 day−1 0.25 day−1 0.55 day−1 [7, 61]
ρHV 0.5− 1 day−1 0.35 day−1 0.45 day−1 [7, 61]
bHH 0− 0.20 day−1 0.02 day−1 0.02 day−1 [96]
ρHH 0− 1 day−1 0.01 day−1 0.01 day−1 [61, 96]
βHH 0− 0.2 day−1 0.0002 day−1 0.0002 day−1 [61, 96]
βHV 0.15− 1 day−1 0.145 day−1 0.37 day−1 [61, 96]

ranges and values in Table 2.2 for high (R0 > 1) and low (R0 < 1) transmission
regions are used.

2.3.1 Numerical simulations

From the parameter values in Table 2.2, low transmission baseline has R0 = 0.1156 <
1 and N0 = 3.65. On the other hand, for high transmission baseline we obtained
R0 = 2.9268 > 1 while N0 = 34.29. Some numerical simulations for the Zika model
(2.2.7) are performed for the two baseline parameter values. Figure 2.3 and Figure 2.4
depict the simulation of the Zika model showing infected humans (IH) approaching
the endemic equilibrium when R0 > 1, and approaching the DFE when R0 < 1
respectively. Figure 2.5 shows cumulative new cases in humans with different values
of ηV , such that as ηV approaches 0 and 1−ηV approaches 1, that is proportion vertical
transmission increases, the cumulative number of new human Zika cases increases.

2.3.2 Sensitivity analysis of R0

For a function depending on some parameters, the relative change in the function due
to change in parameters can be measured using elasticity index. For a parameter α
and a function R0, the elasticity index is given by

ΥR0
α =

∂R0

∂α
× α

R0

. (2.3.56)
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Figure 2.3: Simulation of the model (2.2.7) with infected humans converging to the
EE when R0 = 2.9268 > 1 and different initial conditions.
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Figure 2.4: Simulation of the model (2.2.7) showing infected humans with different
initial conditions converging to the DFE when R0 = 0.1156 < 1.
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Figure 2.5: Simulation of the model (2.2.7) showing the cumulative number of new
Zika cases in humans with different values of ηV and R0 = 2.0510 > 1.

Because an explicit formula for the basic reproduction number is obtained, the above
formula (2.3.56) can be used to analyse the sensitivity of R0 with respect to the model
parameters. Using parameter values in Table 2.2 for both low and high transmission
regions, the sensitivity index is given in Table 2.3 according to their degree of correlation
with R0. For comparison, line plot for the sensitivity index of R0 for both low and
high regions are give in Figure 2.6.

Although the same set of parameters are positively and negatively correlated with
R0 for both low and high transmission regions, there are wide margins for some pa-
rameters as the value of R0 increases, in particular the parameter v = 1−ηV . Because
of the observed variations for the sensitivity of R0 as parameter values change, there
is therefore the need for more reliable sensitivity analysis which follows.

2.3.3 Global sensitivity analysis

Local sensitivity analysis is best suited when input parameters are known with little
uncertainty. However, due to the uncertain nature of biological parameters, it is essen-
tial to perform global sensitivity analysis of the Zika model (2.2.7). Global sensitivity
analysis allows other parameters to vary as the effect of a certain parameter is esti-
mated. Using parameter ranges in Table 2.2, the partial rank correlation coefficient
(PRCC) of the model parameters were computed and presented in Figure 2.7 with
the output as the basic reproduction number. For instance, the proportion of vertical
transmission v = 1− ηV is the most positively correlated to R0 while µV is the most
negatively correlated.
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Table 2.3: Local sensitivity index of R0 to the parameters of the Zika model (2.2.7)
evaluated at the baseline parameter values (R0 = 0.1156 in column 2 andR0 = 2.9268
in column 4) given in Table 2.2. Parameters are arranged from the most to the least
sensitive. Where v = 1− ηV .

Parameter Sensitivity (R0) Parameter Sensitivity (R0)

v +0.74352 βHV +0.91592
βHV +0.23176 bV +0.46779
bV +0.15384 K +0.45796
K +0.11588 µH +0.40756
µH +0.09284 βHH +0.05049
φV +0.04366 ηH +0.05006
βHH +0.02472 v +0.03359
ηH +0.02300 φV +0.01376
δH −0.00100 δH −0.00627
µA −0.03796 µA −0.00983
bH −0.11588 γH −0.45177
γH −0.11657 bH −0.45796
µV −0.27542 µV −0.92968
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Figure 2.6: Line plot for the comparison of the local sensitivity index of R0 to the
model parameters with low transmission having R0 < 1, and high transmission for
R0 > 1. Where v = 1− ηV .

 
 
 



Zika with vertical transmission 38

Parameters

P
R

C
C

−1.0

−0.5

0.0

0.5

1.0

βhh η µh γ δ βhv bv bh Κ v µv φ µa

Figure 2.7: PRCC plot of the model parameters using R0 as the output function.
Ranges of parameter values are as presented in Table 2.2.

Conclusion

Zika model that incorporates both vectorial vertical and sexual transmission of Zika
virus is constructed and analysed. Some of the key findings include.

• The population of mosquito has a threshold parameter (basic offspring number
N0) which controls the extinction or existence of the mosquito population, such
that if it is less than or equal to one, the mosquito population dies out and
persist otherwise.

• In the case when N0 ≤ 1, the disease can be controlled if the associated repro-
duction number for human-human transmission is less than or equal to unity.

• The model undergo backward bifurcation (at R0 = 1) when the basic offspring
number is greater than one. The cause of the bifurcation is disease induced
death rate in humans.

• Relationships between the type reproduction numbers and the basic reproduction
number are computed, with infected human type reproduction number (T1) most
closely related to R0.

• The condition for the global stability of disease free equilibrium E3 is RHH < 1
and

RHVRVHN0N∗H
M∗H(N0−1)(1−RHH)

+RV V ≤ 1.

• Numerical simulation shows that increase in the proportion of vertical transmis-
sion in mosquitoes increase the cumulative number of Zika cases in humans.
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• The most positively correlated parameter to the basic reproduction number is
the proportion of vertical transmission in mosquito population (1− ηV = v).

 
 
 



Chapter 3
Mathematical modelling of Zika virus
with mosquito sterilization

This work has appeared in

Danbaba UA, Garba SM. Modeling the transmission dynamics of Zika with sterile insect
technique. Math Meth Appl Sci. 2018;1-26. https://doi.org/10.1002/mma.5336.

General introduction

In this chapter, we study a model for the transmission dynamics of Zika with mosquito
sterilization. The model considers the interaction of humans and mosquitoes (where
both aquatic and non-aquatic stages are considered) in a population.

Abstract

A deterministic model for the transmission dynamics of Zika is designed and rigorously
analysed. A model consisting of mutually exclusive compartments representing the
human and mosquito dynamics takes into account both direct (human-human) and
indirect modes of transmissions. The basic offspring number of the mosquito popula-
tion is computed and condition for existence and stability of equilibria is investigated.
Using the centre manifold theory, the model (with and without direct transmission)
is shown to exhibit the phenomenon of backward bifurcation (where a locally asymp-
totically stable disease free equilibrium coexists with a locally asymptotically stable
endemic equilibrium) whenever the associated reproduction number is less than unity.
The study shows that the models with and without direct transmission exhibit the same
qualitative dynamics with respect to the local stability of their associated disease-free
equilibrium and backward bifurcation phenomenon. The main cause of the backward
bifurcation is identified as Zika induced mortality in humans. Sensitivity (local and
global) analysis of the model parameters are conducted to identify crucial parameters
that influence the dynamics of the disease. Analysis of the model shows that an in-
crease in the mating rate with sterile mosquito decreases the mosquito population.
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Numerical simulations, using parameter values relevant to the transmission dynamics
of Zika are carried out to support some of the main theoretical findings.

3.1 Introduction

Zika is a mosquito borne disease caused by Zika virus (Zv) of genus Flavivirus. The
virus was first identified in Uganda in 1947, through a monitoring network of sylvatic
yellow fever in rhesus monkeys. Five years later, human infection was identified in
Uganda and Tanzania. Since then, Zika outbreaks have been recorded in Africa,
Americas, Asia and the Pacific [149]. The disease is primarily transmitted by a bite
of an infected mosquito, mainly Aedes aegypti (a mosquito species that transmits
yellow fever, dengue, Chikungunya, West Nile virus, and Japanese encephalitis viruses)
[71, 149]. The virus is also transmitted through sexual contact between humans [58,
60, 42, 149], blood transfusion and parental transmission [149]. Recently, incidences
of congenital neurological disorder (microcephaly) and auto-immune (Guillain-Barr
syndrome) complications have been attributed to growing number of Zika incidences
especially in the Americas [98, 149].

Unfortunately there is no specific treatment for Zika infection available. Fluid
replacement therapy is used for individuals with symptoms such as fever, rash or
arthralgia [149]. Although there is no effective vaccine for Zika at the moment, a
number of candidate vaccines are undergoing various phases of clinical trials. One
of the recent is the experimental vaccine known as rZIKV/D4∆30-713 developed by
scientist at the National Institute of Allergy and Infectious Diseases (NIAID), which
is being evaluated in a phase 1 clinical trial (initiated in August 2018) [156]. It is
acknowledged that mosquito control is one of the most important tools in the control
and/or prevention of mosquito borne diseases (such as dengue and Zika). One of the
most promising methods to control Zika is the Sterile Insect Technology (SIT), which
is non-polluting method of insect control that relies on the release of sterile male
mosquitoes. Mating of released sterile males with wild female mosquitoes leads to
non-hatching of eggs and this results in the decline of the wild mosquitoes population
[8, 47, 80, 112].

Since the introduction of SIT, numerous mathematical models have been developed
and used to quantify the impact of SIT on the transmission dynamics of vector borne
diseases (VBDs). These models fall into two main categories, namely, the deterministic
or process-based models (which represent the dynamics of the disease using differential
equations) some of which include [8, 12, 47, 51, 52] (and some of the references
therein), and the statistical models (mainly stochastic processes which are typically
based on the use of time-series data to describe the correlation, or relationship, between
VBDs and the vector population). In this study, we extend the model designed in [8] by
incorporating additional compartments for infectious mosquitoes (sterilized and non-
sterilized) and human population. This allows us to assess the potential impact of
sterilization on both mosquito and disease control. Furthermore, the model assumes
that disease transmission between humans is possible, the recent findings which confirm
the Zika transmission via sexual contact between humans include [58, 60, 96, 42,
149]. The purpose of incorporating sexual transmission is to investigate the potential
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impact of combined direct (human-to-human) and indirect (human-vector-human)
Zika transmission.

The work is organized as follows. A Zika model, which incorporates the dynamics
of mosquitoes (sterilized and non-sterilized) and humans is formulated and analysed
in Section 3.2. Mosquito-only model is analysed in Section 3.3. Analysis of the model
in the absence of direct (human-to-human) transmission is presented in Section 3.4.
The model with direct transmission is analysed in Section 3.5. Sensitivity analysis is
performed in Section 3.6, while numerical simulation is reported in Sections 3.7.

3.2 Model formulation

The model assumes a homogeneous mixing of human and vector (mosquito) popu-
lations, so that each mosquito bite has equal chance of transmitting the virus to a
susceptible human (or acquiring infection from infectious human) in the population.
The total human population at time t, denoted by NH(t) is split into mutually exclu-
sive compartments of susceptible (SH(t)), infected (IH(t)) and recovered (RH(t)), so
that

NH(t) = SH(t) + IH(t) +RH(t).

Similarly, the total mosquito population is split into aquatic (immature) and non-
aquatic (adult) stages. For mathematical tractability, the aquatic stages (eggs, larvae
and pupae) are lumped into one compartment denoted by A(t). The adult mosquito
population (non-aquatic stage) at time t is sub-divided into seven mutually exclusive
compartments consisting of non-fertilized adult female mosquitoes (Y (t)), fertilized
non-sterile susceptible females (FN(t)), fertilized sterile susceptible females (those
that could lay eggs but do not hatch due to mating with sterile male mosquitoes)
(FS(t)), fertilized non-sterile infected females (FNI(t)), fertilized sterile infected fe-
males (FSI(t)), sterile (MS(t)) and non-sterile (MN(t)) male mosquitoes. Sterile
male mosquitoes are injected into the population at a constant rate. Thus, the total
mosquito population at time t is given by

NV (t) = Y (t) + FN(t) + FS(t) + FNI(t) + FSI(t) +MN(t) +MS(t).

It is assumed that humans can acquire infection following effective contact with infec-
tious mosquitoes in the FNI or FSI classes at a rate λH1 given by

λH1 = βV H
(FNI + η1FSI)

NV

, (3.2.1)

where βV H = ρV Hξ1 is the effective contact rate between infectious mosquitoes and
susceptible humans, it is defined as the product of the transmission probability from
an infectious mosquito to susceptible human (ρV H) and the biting rate of infectious
mosquitoes (ξ1). The modification parameter 0 < η1 < 1 accounts for the assumed
reduction in transmissibility of mosquitoes in FSI class in comparison to those in
FNI class. Furthermore, it is assumed that humans can acquire Zika infection from
infectious humans (in IH or RH class) via sexual contact at a rate λH2 (this is in
line with some recent clinical studies which suggest that, high viral load was found in
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the semen and saliva of recovered patients weeks after recovery, hence, there is high
chance of direct vaginal or oral sex transmission by recovered humans [48, 58, 60,
42, 149, 156]). It is worth mentioning that Zika is the first Flavivirus known to be
transmitted sexually by infectious humans [60]. Thus,

λH2 = βHH
(IH + η2RH)

NH

,

where βHH = ρHHξ2 is the effective contact rate between infectious and susceptible
humans, which is the product of the transmission probability from infectious humans
to susceptible humans (ρHH) and contact rate (usually sexual) between infectious
and susceptible humans (ξ2). The modification parameter 0 < η2 < 1 accounts for
the assumed reduction in transmissibility of recovered humans (including fraction of
recovered females) in comparison to infectious humans, so that the force of infection
of humans is given by

λH = λH1 + λH2 = βV H
(FNI + η1FSI)

NV

+ βHH
(IH + η2RH)

NH

. (3.2.2)

Similarly, a susceptible mosquito can acquire Zika infection from an infectious human
at a rate λV (the force of infection of mosquitoes), given by

λV = βHV
IH
NH

,

where βHV = ρHV ξ3 is the effective contact rate between infectious humans and
susceptible mosquitoes; it is defined as the product of the transmission probability
from an infectious human to a susceptible mosquito (ρHV ) and the biting rate of
susceptible mosquitoes (ξ3).

3.2.1 Incidence functions

In this section, the functional form of the incidence functions for the transmission
dynamics of Zika will be derived. Using the well known fact that for mosquito borne
diseases, the total number of bites made by mosquitoes must be equal to the total
number of bites received by humans (see [19, 22, 34, 62, 108] for detailed justification),
for the number of bites to be conserved, the following equation must hold

βV H(NH , NV )NH = βHVNV ,

hence

NV =
βV H(NH , NV )

βHV
NH . (3.2.3)

Substituting (3.2.3) in (3.2.1) gives

λH1 =
βHV
NH

(FNI + η1FSI),
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so that

λH = λH1 + λH2 =
βHV (FNI + η1FSI) + βHH(IH + η2RH)

NH

. (3.2.4)

3.2.2 Dynamics of human population

The population of susceptible humans is generated by birth or immigration at a con-
stant rate bH . This population is decreased by acquiring infection after receiving
adequate amount of bites capable of disease transmission from an infectious mosquito
(at the rate λH1) or via sexual transmission by an infectious human (at the rate λH2)
and by natural death at a rate µH . This gives

dSH
dt

= bH − λHSH − µHSH .

The population of infectious humans is generated by infection of susceptible humans
at the rate λH , and decreases due to recovery (at a rate γH), natural death (at the
rate µH) and disease induced death (at a rate δH), so that

dIH
dt

= λHSH − δHIH − γHIH − µHIH .

The population of recovered humans is generated by the recovery of infectious indi-
viduals (at the rate γH) and reduces due to natural death (at the rate µH). Thus,

dRH

dt
= γHIH − µHRH .

3.2.3 Dynamics of mosquito population

The population of mosquitoes in the aquatic stage (eggs, larvae and pupae) is in-
creased through oviposition by reproductive mosquitoes at a rate φV . This popula-
tion decreases due to natural death at a rate µV (note that apart from sterile male
mosquitoes, it is assumed that natural death occurs in all other mosquito compart-
ments at the same rate µV ), by density dependent death at a rate µ, maturate and
move out of aquatic stage at a rate bV . Thus,

dA

dt
= φV FNI + φV FN − µA2 − µVA− bVA.

The population of non-sterile male mosquitoes evolves directly from the aquatic stage
at a rate (1− r)bV , and decreases due to natural death. Thus,

dMN

dt
= (1− r)bVA− µVMN .

Sterile male mosquitoes (MS) are released into the population at a rate ω(t) at time
t. However, due to some environmental and geographical factors that may affect the
mixing of sterile and wild mosquitoes, such as location of mosquito breeding site, it
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is convenient to assume that, only a fraction p of the released mosquitoes will join
the wild mosquito population. It is further believed that the sterile mosquitoes are in
several ways the same as wild mosquitoes. In particular, they are able to mate with wild
female mosquitoes. However, there are some differences, which include a change in
mating competitiveness due to irradiation and population distributions (which depend
on the released formula that could depends on the breeding site and feeding ground).
The differences in mating competitiveness can be captured by a modification parameter
g which represents the mean mating competitiveness of the sterile male mosquitoes
[8, 34, 73], so that, if the number of wild mosquitoes equivalent of sterile mosquitoes
is given by MS, then the actual number of released sterile male mosquitoes is 1

pg
MS.

Therefore, the population of sterile male mosquitoes increases at a rate pgω(t) at time
t (see for instance [8]). This population decreases due to natural death at a rate µS
(it also depends on the procedure), so that

dMS

dt
= pgω − µSMS.

It is assumed that mating of female mosquitoes with sterile male mosquitoes results
to non-hatching of their eggs (that is, they lay infertile eggs). Thus, under the previ-
ously stated assumptions and adjustments to MS, it is convenient to assume that the
mosquitoes in the MS and MN classes have equal chances of mating. Thus, a female
mosquito has probability MS

MS+MN
of mating with sterile male mosquito and probability

MN

MS+MN
of mating with non-sterile male mosquito. Adult female mosquitoes evolve

from the aquatic stage at a rate rbVA, they mate with non-sterile male mosquito and
progress to FN compartment at a rate αMN

MS+MN
, or with a sterile male mosquito and

move to FS compartment at a rate αMS

MS+MN
(where α is total mating rate). Note that

the total mating rate MS

MS+MN
+ αMN

MS+MN
= α remain the same. Thus, we have

dY

dt
= rbVA−

αMS

MN +MS

Y − αMN

MN +MS

Y − µV Y.

The population of mosquitoes in the FN class is generated from compartment Y
through mating of female mosquitoes with a non-sterile male mosquitoes (MN). In
order to nourish their eggs before oviposition, they need blood, and hence they will
probably bite an infectious human and move to the FNI compartment at the rate λV .
This population is reduced due to natural death, so that

dFN
dt

=
αMN

MN +MS

Y − λV FN − µV FN .

Similarly, the population of mosquitoes in the FS class is generated through mating of
adult female mosquitoes with sterile male mosquitoes. This population is decreased
by infections following contact with infectious humans and progress to the FSI com-
partment at a rate λV . This gives

dFS
dt

=
αMS

MN +MS

Y − λV FS − µV FS.
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The population of mosquitoes in the FNI class is generated by the infection of
mosquitoes in FN class, and are decreased by natural death. Hence,

dFNI
dt

= λV FN − µV FNI .

Finally, the population of mosquitoes in the FSI class is generated from FS after biting
an infectious human. Thus,

dFSI
dt

= λV FS − µV FSI .

3.2.4 Model equations

Since there are only two mating possibilities, either with sterilized or non-sterilized
male mosquitoes, we let MS

MN+MS
= θ, so that MN

MN+MS
= 1 − θ. Thus, the Zika

transmission model is given by the following system of non-linear differential equations
(a flow diagram of the model is given in Figure 3.1 and the associated variables and
parameters are described in Table 3.1)

H
um

an
s



dSH
dt

= bH − λHSH − µHSH ,

dIH
dt

= λHSH − δHIH − γHIH − µHIH ,

dRH

dt
= γHIH − µHRH ,

M
os

qu
it

o
es



dA

dt
= φV FNI + φV FN − µA2 − µVA− bVA,

dY

dt
= rbVA− αY − µV Y,

dFN
dt

= α(1− θ)Y − λV FN − µV FN ,

dFS
dt

= αθY − λV FS − µV FS,

dFNI
dt

= λV FN − µV FNI ,

dFSI
dt

= λV FS − µV FSI ,

dMN

dt
= (1− r)bVA− µVMN ,

dMS

dt
= pgω(t)− µVMS.

(3.2.5)
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Notice that, the last equation of (3.2.5) is controlled externally and it is independent
of the other compartments. Therefore, given ω(t) continuous, as a linear equation it
has the solution

MS(t) = e−µSt
(
MS(0) +

∫ t

0

eµSjpgω(j)dj
)
. (3.2.6)

It is worth mentioning that model (3.2.5) was also considered in a conference proceed-

µH

µH

µV

µV

rbv
(1 – r)bV

µV

µS

µV

µVµV

H

H

µH

H

bH

V(FN,I+ FN)

pg

(1- )

V V

MN

FSIFNI

FSFN

Y

A

IH

SH

RH

MS

Figure 3.1: Schematic diagram of the model (3.2.5).

ing (reference [34] by the same authors). The focus and approach of the two studies
are however different. This study gives a thorough rigorous theoretical and constructive
analysis of the model, such as the global stability and backward bifurcation property,
global sensitivity analysis, we also consider the model with and without human-human
Zika transmission. The Zika model (3.2.5), to the author’s knowledge is the first to
incorporate sterile insect technique with both direct and indirect transmission modes.
The model extends some Zika transmissions models and sterile insect technique (SIT)
models in the literature, such as those in [4, 8, 12, 22, 47, 51, 52, 61, 74], by for
instance:

• Incorporating mosquito sterilization in the model for the transmission of Zika,
which is not considered in [4, 22, 61, 74].

• Incorporating the aquatic and non-aquatic stages of mosquitoes which allows us
to evaluate the effects of the mosquito reproduction and sterilization on disease
transmission, which is not considered in [8, 12, 22, 51, 52, 61].

• Allowing for the transmissions of Zika by both infectious and recovered humans,
whereas only transmission by infectious human is assumed in [22, 61].
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• Considering sub compartments of fertilized mosquitoes, that to our knowledge
is not considered in the literature.

To understand the impact of controlling mosquito population, it is imperative to con-
sider the mosquito-only population in the presence of sterilization. Thus, the following
section.

3.3 Theoretical analysis of the mosquito-only model

Here, we carry out analysis of mosquito population in the absence of interaction with
infectious humans, by considering the compartment for the non infectious mosquito
population only, given by

dA

dt
= φV FN − µA2 − µVA− bVA,

dY

dt
= rbVA− αY − µV Y,

dFN
dt

= α(1− θ)Y − µV FN ,

dFS
dt

= αθY − µV FS,

dMN

dt
= (1− r)bVA− µVMN .

(3.3.7)

3.3.1 Basic offspring number of the mosquito population

The basic offspring number of the mosquito population is given by

N0 =
φV rbV α(1− θ)

(bV + µV )(α + µV )µV
. (3.3.8)

It can be interpreted as follows. A successful oviposition occurs after a female mosquito
mates with a non-sterile (wild) male mosquito, which fertilizes and lays eggs. The
average duration spent in aquatic stage by mosquito is 1

bV +µV
(where bV is the rate at

which mosquitoes transform from aquatic to non-aquatic stage). Let r be the fraction
of aquatic mosquitoes that become females, the probability that an egg survives the
aquatic stage and becomes an adult female mosquito is

rbV
bV + µV

. (3.3.9)

Similarly, 1
(α+µV )

is the average duration spent by a female mosquito in Y compartment.

The rate at which a mosquito in compartment Y move to compartment FN (through
mating with male mosquitoes in MN compartment) is α(1− θ). Thus, the probability
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Table 3.1: Description of variables and parameters for the model (3.2.5).

Variable Interpretation

SH Population of susceptible humans
IH Population of infected humans
RH Population of recovered humans
A Population of aquatic mosquitoes
MS Population of sterile male mosquitoes
MN Population of non-sterile male mosquitoes
M Total male mosquito population
Y Population of non-fertilized female mosquitoes
FS Population of fertilized sterile susceptible female mosquitoes
FN Population of fertilized non-sterile susceptible female mosquitoes
FSI Population of fertilized sterile infected female mosquitoes
FNI Population of fertilized non-sterile infected female mosquitoes

Parameter Interpretation

bH Recruitment rate of humans
γH Recovery rate of humans
µH Natural death rate of humans
δH Disease induced death rate of humans
α Mating rate of mosquitoes
bV Maturation rate of mosquitoes
φV Oviposition rate of fertilized female mosquitoes
θ Mating probability of a sterilized male mosquito
µV Natural death rate of non-sterilized mosquitoes
µS Natural death rate of sterilized male mosquitoes
µ Density dependent death rate of aquatic mosquitoes
r Proportion of matured mosquitoes that are female
η1 Modification parameter for reduced infectiousness of

sterilized mosquitoes in comparison to non-sterilized mosquitoes
η2 Modification parameter for reduction in infectiousness

of recovered humans in comparison to infected humans
ρHH Transmission probability from infectious to susceptible humans
ρV H Transmission probability from infectious mosquitoes to

susceptible humans
ρHV Transmission probability from infectious humans to susceptible

mosquitoes
βHH Rate of infection from infectious to susceptible humans
βV H Rate of infection from infectious mosquitoes to susceptible humans
βHV Rate of infection from infectious humans to susceptible mosquitoes
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that a female mosquito successfully moves from class Y to class FN is given by

α(1− θ)
(α + µV )

. (3.3.10)

Furthermore, let the average lifespan of a mosquito in FN class be 1
µV

, and φV be its
oviposition rate, then the average number of eggs deposited by each mosquito in FN
compartment during its lifetime is given by

φV
µV

. (3.3.11)

The product of the quantities in equations (3.3.9), (3.3.10) and (3.3.11) gives the
number of offspring produced by a single female mosquito that mates with a non-
sterile male mosquito in its entire lifespan.
Thus, If N0 > 1, then the mosquito population persist, otherwise, if N0 ≤ 1 then,
the mosquito population goes to extinction and the indirect (human-mosquito-human)
transmission can be eliminated.

3.3.2 Existence and stability of equilibria in mosquito popula-
tion

Setting the right hand side of the equations of system (3.3.7) to zero gives the following
equilibria

E0 = (A∗, Y ∗, F ∗N , F
∗
S ,M

∗
N) =

(
A∗,

rbVA
∗

K3

,
(1− θ)αrbVA∗

K3µV
,
θαrbVA

∗

K3µV

(1− r)bVA∗

K3µV

)
(3.3.12)

where
K1 = δH + γH + µH , K2 = bV + µV , and K3 = α + µV ,

and A∗ satisfies

(A∗)2 +
K2

µ

[
1− φV rbV α(1− θ)

K2K3µV

]
A∗ = 0,

or equivalently

A∗
[
A∗ +

K2

µ
(1−N0)

]
= 0. (3.3.13)

The roots of A∗ are controlled by the magnitude of N0.
If N0 ≤ 1, then, the only biologically meaningful root of equation (3.3.13) is A∗ = 0,
which corresponds to the trivial (or mosquito extinction) equilibrium, E1, given by

E1 = (A∗, Y ∗, F ∗N , F
∗
S ,M

∗
N) = (0, 0, 0, 0, 0). (3.3.14)

It is worth mentioning that the equilibrium, E1, is biologically less attractive due to
the absence of mosquitoes in the population. However if N0 > 1, then, the system

 
 
 



Zika with sterilization 51

(3.3.7), has a non-zero positive equilibrium, E2, given by

E2 =
(
A∗, Y ∗, F ∗N , F

∗
S ,M

∗
N

)
=
(
A∗,

bV rA
∗

K3

,
bV rα(1− θ)A∗

K3µV
,
bV θαrA

∗

K3µV
,
bV (1− r)A∗

K3µV

)
(3.3.15)

where A∗ = K2

µ
(N0 − 1) > 0.

Theorem 3.3.1. For the mosquito-only model (3.3.7), the extinction equilibrium, E1,
is globally asymptotically stable (GAS) if N0 ≤ 1 and unstable otherwise. In addition,
the positive equilibrium, E2, is locally asymptotically stable if N0 > 1.

Proof. We shall give the proof of the first part of Theorem (GAS of E1) using
similar approach to that in [8]. In particular Theorem 6 of [8], reproduced below for
convenience will be used.
Consider ẋ = f(x), where D ⊆ Rn and f : D −→ Rn is continuous. Then we have
the following result

Theorem 3.3.2. [8] Let a, b ∈ D be such that a < b, [a, b] ⊆ D and f(b) ≤ 0 ≤ f(a).
Then ẋ = f(x) defines a (positive) dynamical system on [a, b]. Moreover, if [a, b]
contains a unique equilibrium q then q is globally asymptotically stable on [a, b].

To apply Theorem (3.3.2) to system (3.3.7), let p ∈ R+ > 3(µV +bV )
µ

and Ap be
chosen so large such that

Ap ≥ p,

FNp =
µV + bV + µAp

2φV
Ap ≥ p,

Yp =
µV FNp

2α(1− θ)
=
µV (µV + bV + µAp)

4φV α(1− θ)
Ap ≥ p,

FSp =
θFNp

(1− θ)
=
θ(µV + bV + µAp)

2φV (1− θ)
Ap ≥ p,

Mp =
2bv(1− r)Ap

µV
≥ p.

(3.3.16)

Further, let bp = (Ap, Yp, FNp , FSp ,Mp)
T , and consider the interval [0, bp] ∈ R5

+. Then

f(bp) =


− (µV +bV +µAp)

2
Ap

rbVAp

(
1− µV +bV +µAp

4N0(µV +bV )

)
−µV Fp
−µV φV FNp

2(1−θ)
−(1− r)bvAp

≤

− (µV +bV +µAp)

2
Ap

rbVAp

(
1− 1

N0

)
−µV Fp
−µV φV FNp

2(1−θ)
−(1− r)bvAp

< 0, provided N0 ≤

1.

Therefore in the interval [a, b] = [0, bp] ∈ R5
+, the condition f(b) ≤ 0 ≤ f(a) =

f(bp) ≤ 0 ≤ f(0) is satisfied. However since p is arbitrary, then bp can be selected

 
 
 



Zika with sterilization 52

larger than any x ∈ R5
+. Thus the system defines a positive dynamical system on

R5
+. Moreover if N0 ≤ 1, E1 is unique in [0, bp] and thus, E1 is globally asymptotically

stable.
For local stability of the non-zero equilibrium E2, we use the property of eigenvalues
of the Jacobian matrix J1 below.

J1 =


−P1 0 φV 0 0
rbV −K3 0 0 0
0 P2 −µV 0 0
0 θα 0 −µV 0

(1− r)bV 0 0 0 −µV

 ,

where P1 = 2µA∗ + µV + bV = 2K2(N0 − 1) + µV + bV , and P2 = (1 − θ)α.
Notice that the system given by (3.3.7) is cooperative on R5

+, that is, growth in any
compartment has positive effect on the growth of other compartments. Equivalently,
a system is cooperative if the non-diagonal elements of its Jacobian matrix are non-
negative.
Clearly, −µV is an eigenvalue of J1. The remaining eigenvalues satisfy

λ3 + λ2(P1 +K3 + µV ) + λ(K3µV + P1K3 + P1µV ) + P1K3µV

(
1−

bV φV αr(1− θ)
K3µV (K2 + 2µA∗)

)
= 0

(3.3.17)

Applying Routh-Hurwitz criterion and Lienard-Chipart test [81], the roots of a poly-
nomial of degree three are negative if and only if ai > 0 with i = 0, 1, 2, 3 and
a1a2 − a3 > 0.
Its clear from (3.3.17) that a0, a1 and a2 are positive, while the sign of a3 = P1K3µV

(
1−

N0

2N0−1

)
depends on N0. Also,

a1a2 − a3 = (K3 + P1 + µV )(K3µV + P1K3 + P1µV ) + P2bV φV r − P1K3µV > 0.

If N0 > 1, then a3 > 0. On the other hand 1 − N0

2N0−1
< 0 if and only if N0 < 1,

hence, E2 is locally asymptotically stable. �

The epidemiological implication of Theorem 3.3.1 is that the model (3.3.7) does not
undergo backward bifurcation when N0 ≤ 1 (since E1 is GAS when N0 ≤ 1). Thus
bringing the value of N0 to below unity is a sufficient condition for the control of a
mosquito population, which could be achieved by increasing the mating rate of sterile
mosquitoes (θ).
The full model is now analysed for its dynamical features, by first of all considering
the model in the absence of direct (human-human) transmission.
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3.4 Analysis of the model (in the absence of direct
transmission)

Here, we analyse the model (3.2.5) in the absence of human-human transmission
(obtained by setting βHH = 0), so that, the forces of infections are now given by

λH =
βHV (FNI + η1FSI)

NH

and , λV = βHV
IH
NH

. (3.4.18)

3.4.1 Disease-free equilibrium (DFE)

The model (3.2.5) with (3.4.18) has the following disease-free equilibrium

E3 =
(
S∗H , I

∗
H , R

∗
H , A

∗, Y ∗, F ∗N , F
∗
S , F

∗
NI , F

∗
SI ,M

∗
N

)
=
( bH
µH

, 0, 0,
K2

µ
[N0 − 1],

bVK2r[N0 − 1]

K3µ
,
bVK2αr(1− θ)[N0 − 1]

K3µV µ
,
bVK2θαr[N0 − 1]

K3µV µ
, 0, 0,

bVK2(1− r)[N0 − 1]

K3µV µ

)
.

(3.4.19)
Notice that:
If N0 ≤ 1, then, the only DFE of the model (3.2.5) is the trivial equilibrium (corre-
sponding to human population free of mosquitoes), E31, given by

E31 = (S∗H , I
∗
H , R

∗
H , A

∗, Y ∗, F ∗N , F
∗
S , F

∗
NI , F

∗
SI ,M

∗
N) =

(
bH
µH

, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

(3.4.20)
This coincides with the mosquito extinction equilibrium, E1, which is shown to be GAS
in Theorem 3.3.1.
If N0 > 1, then, the system (3.2.5), has a non-zero positive disease-free equilibrium,
E32 (which corresponds to human population in the presence of mosquitoes), given by

E32 =
(
S∗H , I

∗
H , R

∗
H , A

∗, Y ∗, F ∗N , F
∗
S , F

∗
NI , F

∗
SI ,M

∗
N

)
=
( bH
µH

, 0, 0,
K2

µ
[N0 − 1],

bVK2r[N0 − 1]

K3µ
,
bVK2αr(1− θ)[N0 − 1]

K3µV µ
,
bVK2θαr[N0 − 1]

K3µV µ
, 0, 0,

bVK2(1− r)[N0 − 1]

K3µV µ

)
.

(3.4.21)
As stated in Section 3.2, the equilibrium E31 is less attractive. Thus, the stability of
E32 is now explored.
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3.4.1.1 Local stability of the DFE (E32)

The local stability of the DFE, E32 (for the case when N0 > 1) can be established
using the next generation operator method on the system given by model (3.2.5). The
matrices F (for the new infection terms) and V (of the transition terms) are respec-
tively, given by

F =


0 0 βHV η1βHV
0 0 0 0

βHV
F ∗N
N∗H

0 0 0

βHV
F ∗S
N∗H

0 0 0

, V =


K1 0 0 0
−γH µH 0 0

0 0 µV 0
0 0 0 µV

.

Following [139], the basic reproduction number of the Zika model (3.2.5) about E32,
with the forces of infection given by (3.4.18) (and N0 > 1) is

R1 = ρ(FV −1) =

√
β2
HV bV αrK2(N0 − 1)

[
θη1 + (1− θ)

]
N∗HK1K3µ2

V µ
. (3.4.22)

Lemma 3.4.1. The DFE (E32), of the model (3.2.5) with (3.4.18) (and N0 > 1) is
locally-asymptotically stable (LAS) if R1 < 1, and unstable if R1 > 1 [139].

The epidemiological implication of Lemma 2 is that, there will not be a disease
outbreak for a small influx of infectious mosquitoes in the community if R1 < 1, and
therefore the disease eventually dies out.

3.4.2 Interpretation of R1

In the absence of direct transmission (when βHH = 0), the threshold quantity (R1)
is defined as the expected number of secondary cases generated by an infected case
introduced into a completely susceptible population. It can be interpreted as follows.
Susceptible humans can acquire infection following effective contact with infectious
mosquitoes (in FNI or FSI classes). The number of human infections generated by
mosquitoes in the FNI class (near the DFE) is given by the product of the infection
rate of infectious mosquitoes in the FNI class (βHV

N∗H
= βHV µH

bH
), the average duration in

the FNI class ( 1
µV

), and the probability that a female mosquito survives the fertilized

non-sterilized class (FN), and move to the FNI compartment (α(1−θ)
µV

). This gives

(noting that S∗H = bH
µH

)

βHV µHα(1− θ)
bHµ2

V

S∗H =
βHV α(1− θ)

µ2
V

. (3.4.23)

Similarly, the number of human infections generated by infectious mosquitoes in the
FSI class (near the DFE) is given by the product of the infection rate of mosquitoes
in the FSI class (βHV η1

N∗H
= βHV η1µH

bH
), the average duration in the FSI class ( 1

µV
), and

the probability that a female mosquito survives the fertilized and sterilized class (FS)
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and move to FSI compartment ( αθ
µV

), so that

βHV µHαθη1

bHµ2
V

S∗H =
βHV αθη1

µ2
V

. (3.4.24)

Therefore, the sum of (3.4.23) and (3.4.24) gives the average number of new human
infections generated by infectious mosquito (sterilized or non-sterilized). This gives

RV H =
βHV α(1− θ)

µ2
V

+
βHV αθη1

µ2
V

=
βHV α

[
θη1 + (1− θ)

]
µ2
V

. (3.4.25)

The number of mosquitoes infection generated by infectious human (near the DFE),
is given by the product of infection rate of infectious humans (βHV

N∗H
= βHV µH

bH
), and

the average duration of humans in the infectious class 1
K1

, so that (with Y ∗ = A∗bV r
K3

)

RHV =
βHV
N∗HK1

Y ∗ =
βHV bV µHr

K1K3bH
A∗. (3.4.26)

The geometric mean of (3.4.25) and (3.4.26) gives the associated reproduction number

(noting that A∗ = K2(N0−1)
µ

> 0)

R1 =

√
β2
HV bV µHαrK2(N0 − 1)

[
θη1 + (1− θ)

]
bHK1K3µ2

V µ
=
√
RHVRV H ,

where the quantities RHV and RV H are the reproduction thresholds associated with
Zika transmission from human to mosquitoes and from mosquito to humans, respec-
tively.

3.4.3 Endemic equilibrium and backward bifurcation

Let,
E4 =

(
S∗∗H , I

∗∗
H , R

∗∗
H , A

∗∗, Y ∗∗, F ∗∗N , F
∗∗
S , F

∗∗
NI , F

∗∗
SI ,M

∗∗
N

)
(3.4.27)

represents an arbitrary positive endemic equilibrium point of the model (3.2.5) in the
absence of human-human transmission. Furthermore, let

λ∗∗H =
βHV F

∗∗
NI + βHV η1F

∗∗
SI

S∗∗H + I∗∗H +R∗∗H
, λ∗∗V = βHV

I∗∗H
S∗∗H + I∗∗H +R∗∗H

. (3.4.28)

 
 
 



Zika with sterilization 56

be the associated forces of infections at steady-state. Solving the equations of model
(3.2.5) at steady state gives

S∗∗H =
bH

λ∗∗H + µH
, I∗∗H =

λ∗∗H bH
K1(λ∗∗H + µH)

, R∗∗H =
λ∗∗H bHγH

K1µH(λ∗∗H + µH)
,

A∗∗ =
K2

µ

(
N0 − 1

)
, Y ∗∗ =

rbVK2

K3µ

(
N0 − 1

)
, F ∗∗N =

bV rα(1− θ)K2

K3µ(λ∗∗V + µV )

(
N0 − 1

)
,

F ∗∗S =
bV rαθK2

K3µ(λ∗∗V + µV )

(
N0 − 1

)
, F ∗∗NI =

bV λV rα(1− θ)K2

K3µV µ(λ∗∗V + µV )

(
N0 − 1

)
,

F ∗∗SI =
bV λV rαθK2

K3µV µ(λ∗∗V + µV )

(
N0 − 1

)
, M∗∗

N =
(1− r)bVK2

µV µ

(
N0 − 1

)
.

(3.4.29)
Since the endemic equilibrium is dependent on λ∗∗V and λ∗∗H , it is imperative to find
the possible roots of λ∗∗H , which can be used to evaluate λ∗∗V . This can be achieved by
substituting S∗∗H , I

∗∗
H , R

∗∗
H , F

∗∗
NI and F ∗∗SI from (??) in (3.4.28). After some algebraic

simplification, it can be shown that, λ∗∗H satisfies

a0(λ∗∗H )5 + a1(λ∗∗H )4 + a2(λ∗∗H )3 + a3(λ∗∗H )2 + a4λ
∗∗
H = 0, (3.4.30)

where

a0 =βHV b
2
Hµ

2
HK1(µH + γH) + b2

HK1µHµV (µH + γH)2,

a1 =2βHV b
2
Hµ

3
HK1(µH + γH) + βHV b

2
Hµ

3
HK

2
1+

2b2
HK

2
1µ

2
HµV (µH + γH) + 2b2

Hµ
2
HK1µV (µH + γH)2 −R2

1K
3
1b

2
Hµ

2
HµV ,

a2 =2βHV b
2
HK

2
1µ

4
H + βHV b

2
Hµ

4
HK1(µH + γH) + 4b2

HK
2
1µ

3
HµV

(µH + γH) + b2
HK

3
1µ

3
HµV + b2

Hµ
3
HK1µV (µH + γH)2 − 3R2

1K
3
1b

2
Hµ

3
HµV ,

a3 =2K3
1µ

4
Hb

2
HµV +K2

1b
2
Hµ

5
HβHV + 2K2

1b
2
Hµ

4
HµV (µH + γH)− 3R2

1K
3
1b

2
Hµ

4
HµV ,

a4 =b2
HK

3
1µ

5
HµV (1−R2

1).
(3.4.31)

Clearly, λ∗∗H = 0 is a root of (3.4.30), which corresponds to the DFE. Notice from
(3.4.31) that a0 > 0 and a4 > 0 (a4 < 0) whenever R1 < 1 (R1 > 1). Further, the
signs of the remaining coefficients (a1, a2 and a3) depend on the magnitude of the
associated parameters, different possibilities can be obtained by permuting their signs
as presented in Table 3.2.

Theorem 3.4.2. The model (3.2.5) in the absence of human-human transmission has
i) Unique endemic equilibrium if R1 > 1 as in Cases 2, 4, 8 and 10 in Table 3.2.
ii) Two or more endemic equilibrium if R1 < 1 as in Cases 3, 5, 7, 9, 11, 13, and 15
in Table 3.2.
iii) No endemic equilibrium if R1 < 1, as in Case 1 in Table 3.2.

Theorem 3.4.2 (Case (ii)) indicates the possibility of backward bifurcation (where the
locally-asymptotically stable DFE co-exists with a locally-asymptotically stable endemic
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equilibrium when R1 < 1) in the model (3.2.5) (see, for instance, [62, 63, 64]).
Furthermore, this is investigated using the center manifold theory below. We claim
the following result.

Theorem 3.4.3. The Zika model (3.2.5) in the absence of direct transmission under-
goes backward bifurcation at R1 = 1, whenever the bifurcation coefficient denoted by
ã given by (3.4.34) in Appendix B is positive.

Proof. To prove the existence of backward bifurcation for the model given by (3.2.5),
a method, which is based on the Centre Manifold Theory [26, 139], is used. The
following change of variables are made on the model given by (3.2.5). Let,(
SH , IH , RH , A, Y, FN , FS, FNI , FSI ,MN

)
=
(
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

)
,

and hence, the total human and mosquito populations are:

NH = x1 + x2 + x3 and NV = x4 + x5 + x6 + x7 + x8 + x9 + x10.

Using vector notation, we have,

X =
(
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

)T
,

and,
dX

dt
=
(
f1, f2, f3, f4, f5, f6, f7, f8, f9, f10

)
,T
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and therefore the transformed model (3.2.5) is represented by

dx1

dt
= f1 = bH −

(βHV x8 + βHV η1x9 + βHHx2 + βHHη2x3

x1 + x2 + x3

)
x1 − µHx1,

dx2

dt
= f2 =

(βHV x8 + βHV η1x9 + βHHx2 + βHHη2x3

x1 + x2 + x3

)
x1 − x2K1,

dx3

dt
= f3 = γHx2 − µHx3,

dx4

dt
= f4 = φV x6 + φV x8 − µx2

4 −K2x4,

dx5

dt
= f5 = rbV x4 −K3x5,

dx6

dt
= f6 = α(1− θ)x5 −

βHV x2x6

x1 + x2 + x3

− µV x6,

dx7

dt
= f7 = αθx5 −

βHV x2x7

x1 + x2 + x3

− µV x7,

dx8

dt
= f8 =

βHV x2x6

x1 + x2 + x3

− µV x8,

dx9

dt
= f9 =

βHV x2x7

x1 + x2 + x3

− µV x9,

dx10

dt
= f10 = (1− r)bV x4 − µV x10,

(3.4.32)

so that the forces of infection are given by

λH =
βHV x8 + βHV η1x9

x1 + x2 + x3

x1, λV =
βHV x2

x1 + x2 + x3

.

Let β∗HV be chosen as a bifurcation parameter obtained by solving for βHV = β∗HV ,
when R0 = 1, given by

β∗HV =

√
K1N∗H

F ∗N + η1F ∗S
. (3.4.33)

The Jacobian of the system (3.4.32), evaluated at the DFE, E32, is given by
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J∗ =



−µH 0 0 0 0 0 0 −β∗HV −β∗HV η1 0
0 −K1 0 0 0 0 0 β∗HV β∗HV η1 0
0 γH −µH 0 0 0 0 0 0 0
0 0 0 j1 0 φV 0 φV 0 0
0 0 0 rbV −K3 0 0 0 0 0

0 −βHV F
∗
N

N∗H
0 0 j3 −µV 0 0 0 0

0 −βHV F
∗
S

N∗H
0 0 αθ 0 −µV 0 0 0

0
βHV F

∗
N

N∗H
0 0 0 0 0 −µV 0 0

0
βHV F

∗
S

N∗H
0 0 0 0 0 0 −µV 0

0 0 0 j2 0 0 0 0 0 −µV


,

where j1 = −2µA∗ − K1, j2 = (1 − r)bV , j3 = α(1 − θ). The Jacobian (J∗) of
the linearised system has a simple zero eigenvalue (with all other eigenvalues having
negative real part). Thus, the centre manifold theory can be used to analyse the
dynamics of the system (3.4.32) around βHV = β∗HV .

For the case were equation (3.4.33) holds, the matrix J∗ has left eigenvectors
associated with zero eigenvalue given by v = [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10]T

v1 = 0, v2 =
1

µ2
HN

∗
Hµ

2
V + β2

HV µ
2
H

(
F ∗N + η1F ∗S

) , v3 = 0, v4 = 0,

v5 = 0, v6 = 0, v7 = 0, v8 =
βHV v2

µV
, v9 =

βHV η1v2

µV
, v10 = 0,

and the right eigenvector (of the zero eigenvalue) denoted by w = [w1, w2, w3, w4,
w5, w6, w7, w8, w9, w10]T has elements given by:

w1 = −K1w2

µH
RHVRV H w2 = N∗Hµ

2
Hµ

2
V , w3 =

γHw2

µH
, w4 = 0, w5 = 0,

w6 = −βHV F
∗
Nw2

N∗HµV
, w7 = −βHV F

∗
Sw2

N∗HµV
, w8 =

βHV F
∗
Nw2

N∗HµV
, w9 =

βHV F
∗
Sw2

N∗HµV
,

w10 = 0.

It can be shown, by computing the non-zero partial derivatives of the right-hand func-
tions, that the associated backward bifurcation coefficients, ã and b̃, are respectively,
given by (see Theorem 4.1 in [26])

ã =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0) =

−2K1w
2
2v2

N∗H

[
RHVRV H

(2
(
γH + µH

)
µH

+
βHV
µV

)
− K1R2

HVR2
V H

µH

] (3.4.34)
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Table 3.2: Number of possible roots for (3.4.30) for R1 < 1 and R1 > 1.

Case a0 a1 a2 a3 a4 Value of R1 Sign change Real roots

1 + + + + + R1 < 1 0 0
2 + + + + - R1 > 1 1 1
3 + + + - + R1 < 1 2 0, 2
4 + + + - - R1 > 1 1 1
5 + + - + + R1 < 1 2 0, 2
6 + + - + - R1 > 1 3 1, 3
7 + + - - + R1 < 1 2 0, 2
8 + + - - - R1 > 1 1 1
9 + - - - + R1 < 1 2 0, 2
10 + - - - - R1 > 1 1 1
11 + - + - + R1 < 1 4 0, 2, 4
12 + - + - - R1 > 1 3 1, 3
13 + - + + + R1 < 1 2 0, 2
14 + - + + - R1 > 1 3 1, 3
15 + - - + + R1 < 1 2 0, 2
16 + - - + - R1 > 1 3 1, 3

and

b̃ =
n∑

k,i=1

vkwi
∂2fk

∂xi∂φV
(0, 0) =

βHV v2w2K2bV (N0 − 1)rα
(

[1− θ] + η1θ
)

N∗HK3µ2
V µ

> 0

(3.4.35)
Since the bifurcation coefficient, b is positive, it follows from Theorem 4.1 in [26] that
the Zika model (or its transform equivalent (3.4.31)) will undergo backward bifurcation
if the bifurcation coefficient, ã, given by (3.4.34), is positive. �

The public health implication of backward bifurcation phenomenon of the model (3.2.5)
is that the classical epidemiological requirement of having the reproduction number
(R1) to be less than unity, while necessary is no longer sufficient for the effective
control of the disease. In other words, the backward bifurcation property of the model
(3.2.5) makes effective Zika control difficult. Further, as a consequence, it is instruc-
tive to try to determine the cause of the backward bifurcation phenomenon in the
model (3.2.5). This is explored below.

3.4.4 Non-existence of Backward bifurcation

Consider the model (3.2.5) with Zika induced death assumed to be negligible (obtained
by setting δH = 0) so that, K1 reduces to µH + γH , thus we have the coefficients in
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(3.4.31) reduces to

a0 =βHV b
2
Hµ

2
HK

2
1 + b2

HK
3
1µHµV ,

a1 =3βHV b
2
Hµ

3
HK

2
1 +K3

1b
2
Hµ

2
HµV (4−R2

1),

a2 =3βHV b
2
HK

2
1µ

4
H + 3K3

1b
2
Hµ

3
HµV (2−R2

1)

a3 =βHVK
2
1b

2
Hµ

5
H +K3

1b
2
Hµ

4
HµV (4− 3R2

1), a4 = b2
HK

3
1µ

5
HµV (1−R2

1).

(3.4.36)

Clearly a0 > 0, the sign of a1, a2, a3, and a4 depend on the magnitude of R1. Noticed
that, if R1 ≤ 1, there is no sign change, hence, by Routh-Hurwitz criterion, there is
no endemic equilibrium whenever R1 ≤ 1.

Lemma 3.4.4. The Zika model in the absence of direct transmission given by (3.2.5),
with δH = 0 has no endemic equilibrium whenever R1 ≤ 1.

The epidemiological implication of Lemma 3.4.4 is that the Zika model without
direct transmission given by (3.2.5), with δH = 0 does not undergo backward bifur-
cation (since the occurrence of backward bifurcation requires the existence of at least
two equilibria when R1 < 1).

Furthermore, it is worth noticing that, substituting δH = 0 in the expression for the
bifurcation coefficient ã, given by equation (3.4.34) in Appendix B reduces ã reduces
to

ã =
−2w2

2v2

N∗H

[RHVRV HK
2
1

µH

(
2−RHVRV H

)
+
RHVRV HK1βHV

µV

]
< 0, (3.4.37)

provided R1 ≤ 1. Thus, it follows from Theorem 4.1 of [26] that, the model (3.2.5)
does not undergoes backward bifurcation if the disease induced death rate is negligible.
This result is similar to that obtained numerically by Chitnis et al [27] in their malaria
model.
The Zika model with both direct (human-human) and indirect (human-mosquito-
human) transmission is now analysed for its dynamical features. The aim is to find
out if incorporating direct transmission will change the dynamics of the disease.

3.5 Analysis of the model with direct transmission

In this section, we consider the full Zika model in the presence of human-human
transmission (i.e with the forces of infection given by (3.2.1) and (3.2.4)).

3.5.1 Disease-free equilibrium

The model (3.2.5) (with direct transmission) has two disease-free equilibria given by:

E5 =
(
S∗H , I

∗
H , R

∗
H , A

∗, Y ∗, F ∗N , F
∗
S , F

∗
NI , F

∗
SI ,M

∗
N

)
=

(
bH
µH

, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
,

(3.5.38)
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which occurs when N0 ≤ 1. And

E6 =
(
S∗H , I

∗
H , R

∗
H , A

∗, Y ∗, F ∗N , F
∗
S , F

∗
NI , F

∗
SI ,M

∗
N

)
=
( bH
µH

, 0, 0,
K2

µ
(N0 − 1),

rbVK2(N0 − 1)

K3µ
,
(1− θ)αrbVK2(N0 − 1)

K3µV µ
,
θαrbVK2(N0 − 1)

K3µV µ
, 0, 0,

(1− r)bVK2(N0 − 1)

K3µV µ

)
,

(3.5.39)
which is obtained when N0 > 1.

3.5.2 Local stability of E6
The local stability of the DFE, E6, is established using the next generation method on
model (3.2.5). The F and V matrices about E5 are respectively given by

F =


βHH η2βHH βHV η1βHV

0 0 0 0

βHV
F ∗N
N∗H

0 0 0

βHV
F ∗S
N∗H

0 0 0

, V =


K1 0 0 0
−γH µH 0 0

0 0 µV 0
0 0 0 µV

.

Following [139], the associated reproduction number of the system model (3.2.5) (with
N0 > 1) denoted by R0 is given by

R0 =
βHH

(
η2γH + µH

)
2K1µH

+√[βHH(η2γH + µH
)

2K1µH

]2

+
β2
HV bV rαµHK2(N0 − 1)

[
θη1 + (1− θ)

]
K1K3bHµ2

V µ
.

=
1

2

(
RHH +

√
R2
HH + 4RV HRHV

)
.

where, RHH is the threshold quantity associated with the direct (human-to-human)
transmissions.

Lemma 3.5.1. The disease-free equilibrium (E6), of model (3.2.5) with (3.2.1),
(3.2.4) and N0 > 1 is locally asymptotically stable if R0 < 1, and unstable if R0 > 1
[139].

The threshold quantity RHH can be interpreted as follows. The number of new
human-human infections (via sexual transmission), generated by an infectious human
(IH) (near the DFE) is given by the product of the infection rate of infectious human

(
βHHS

∗
H

N∗H
), and the average duration in the infectious class ( 1

K1
), this gives

βHH
K1

. (3.5.40)
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Similarly, the number of new human infections generated by humans in the RH class
(near the DFE), is given by the product of the infection rate of infectious human

(
βHHη2S

∗
H

N∗H
), the probability that human survives the infectious class IH and move to

recovered class (γH
K1

), and the average duration in the recovered class ( 1
µH

), this gives

βHHη2γH
K1µH

. (3.5.41)

Hence, the sum of (3.5.40) and (3.5.41) gives the threshold quantity associated with
the human-human Zika transmissions

RHH =
βHH
K1

+
βHHη2γH
K1µH

=
βHH

(
µH + η2γH

)
K1µH

. (3.5.42)

Notice that in the absence of direct Zika transmission, R0 = R1. This result is
consistent with those obtained in Brauer et al [19] and Chitnis et al [29] for epidemic
model of vector borne diseases with both direct and indirect transmissions.

3.5.3 Endemic equilibrium and backward bifurcation

Let

E7 =
(
S∗∗∗H , I∗∗∗H , R∗∗∗H , A∗∗∗, Y ∗∗∗, F ∗∗∗N , F ∗∗∗S , F ∗∗∗NI , F

∗∗∗
SI ,M

∗∗∗
N

)
, (3.5.43)

represents an arbitrary positive endemic equilibrium point (EE) of the model (3.2.5).
Furthermore, let

λ∗∗∗H =
βHV (F ∗∗∗NI + η1F

∗∗∗
SI ) + βHH(I∗∗∗H + η2R

∗∗∗
H )

S∗∗∗H + I∗∗∗H +R∗∗∗H
, λ∗∗∗V = βHV

I∗∗∗H

S∗∗∗H + I∗∗∗H +R∗∗∗H

be the associated forces of infections at the steady-state. Solving equations of model
(3.2.5) at the steady-state (with N0 > 1) gives

S∗∗∗H =
bH

λ∗∗∗H + µH
, I∗∗∗H =

λ∗∗∗H bH
K1(λ∗∗∗H + µH)

, R∗∗∗H =
λ∗∗∗H bHγH

K1µH(λ∗∗∗H + µH)
,

A∗∗∗ =
K2

µ

(
N0 − 1

)
, Y ∗∗∗ =

rbVK2

K3µ

(
N0 − 1

)
, F ∗∗∗N =

bV rα(1− θ)K2

K3µ(λ∗∗∗V + µV )

(
N0 − 1

)
,

F ∗∗∗S =
bV rαθK2

K3µ(λ∗∗∗V + µV )

(
N0 − 1

)
, F ∗∗∗NI =

bV λ
∗∗∗
V rα(1− θ)K2

K3µV µ(λ∗∗∗V + µV )

(
N0 − 1

)
F ∗∗∗SI =

bV λ
∗∗∗
V rαθK2

K3µV µ(λ∗∗∗V + µV )

(
N0 − 1

)
, M∗∗∗

N =
(1− r)bVK2

µV µ

(
N0 − 1

)
.

(3.5.44)
we claim the following result.

Theorem 3.5.2. The Zika model (3.2.5) with direct transmission undergoes backward
bifurcation at R0 = 1, whenever the bifurcation coefficient denoted by ã2 given by
equation (3.5.45) is positive.
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Proof. Using similar approach as in the proof of Theorem 3.4.3. It can be shown that
the associated bifurcation coefficient ã, is now given by

ã2 =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0) =
−2K1w

2
2v2

N∗H

[RHH

(
γH + µH

)
µH

+

2RHVRV H

(
γH + µH

)
µH

+
RHVRV HβHV

µV
−K1

(RHHRV HRHV

µH
+
R2
HVR2

V H

µH

)]
(3.5.45)

and

b̃2 =
n∑

k,i=1

vkwi
∂2fk

∂xi∂φV
(0, 0) =

2βHV v2w2K2bV (N0 − 1)rα
(

[1− θ] + η1θ
)

N∗HK3µ3
V µ

> 0.

(3.5.46)
�

Notice that if δH = 0, then K1 reduces to γH + µH and ã2 reduces to

ã2 =
−2w2

2v2

N∗H

[RHHK
2
1

µH

(
1−RHVRV H

)
+
RHVRV HK

2
1

µH

(
2−RHVRV H

)
+

RHVRV HK1βHV
µV

]
< 0,

(3.5.47)
provided R0 ≤ 1.

Lemma 3.5.3. The Zika model (3.2.5) does not undergoes backward bifurcation at
R0 = 1 if δH = 0.

Thus, as in Section 4, this result completely rules out the existence of backward
bifurcation when δH = 0.

3.6 Sensitivity analysis

Sensitivity analysis is a tool used in studying the variation of an output of a model due
to change in the input parameters. We perform both local sensitivity analysis (where
all other parameters are held at a certain baseline) for the basic reproduction number
(R0), and global sensitivity analysis, where a multidimensional parameter space is
studied globally [91].

3.6.1 Local sensitivity analysis of R0 with respect to model
parameters

The basic reproduction number (R0) is used to measure the potential impact of a
disease. Using elasticity index, we perform local sensitivity analysis of the parameters
of R0. The method is used to measure the percentage change of a parameter say α,
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Table 3.3: Two sets of parameter values used in numerical simulations, with low
baseline values that gives R0 = 0.2461 < 1, while R0 = 4.3250 > 1 for the high
baseline values

Parameters Range (day−1) Low baseline High baseline References
r (0, 1) 0.5 0.5 [47, 51]
δH 0.001 0.001 0.001 [33, 62]
θ (0, 1) 0.2 0.4 assumed
α (0, 1) 0.7 0.7 [47]
µ 0.00001 0.00001 0.00001 [8]
φV 100− 200 100 120 [32]
bH 30 30 30 [19]
bV 0.05− 0.1 0.05 0.08 [45, 46, 47]
η1 (0, 1) 0.5 0.5 assumed
η2 (0, 1) 0.04 0.2 assumed
γH 0.059− 0.167 0.14 0.08 [110]
ξ1 0.3− 1 0.3 0.5 [61, 96, 93]
ξ2 0.01− 0.20 0.001 0.01 [96]
ξ3 0.3− 1 0.3 0.5 [96, 93]
µV 0.029− 0.25 0.25 0.09 [61, 93]
µH 0.00004 0.00004 0.00004 [45, 46, 47]
ρHH 0− 1 0.02 0.04 [61, 96]
ρV H 0.1− 0.75 0.2 0.7 [61, 93]
ρHV 0.3− 0.75 0.3 0.5 [61, 93]

with respect to a percentage change of a quantity say R(α). The normalized sensitivity
index (elasticity indices) of R(α) with respect to α is [28],

ΥR
α =

∂R

∂α
× α

R
.

Using the parameter values in Table 3.3, we give the sensitivity index of the parameters
for low and high baseline values in Table 3.4. For both low and high transmission
regions, R0 is most negatively correlated to µV , where ΥR0

µV
= −0.71355 in low region

and ΥR0
µV

= −0.66732 in high region, both are followed by bH and µ (note that

ΥR0
bH

= ΥR0
µ ). Similarly, R0 is most positively correlated to r then bV and βHH in

both regions. Given that

R0 =
RHH

2
+

√(
RHH

2

)2

+RHVRV H (3.6.48)
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where RHH , RV H and RHV are as defined in (3.5.42), (3.4.25) and (3.4.26) respec-
tively. The computation of sensitivity index is presented as follows:

ΥR0
βHH

=
RHH

2R0

(
1 +

RHH

2
√

(RHH
2

)2 +RHVRV H

)
,

ΥR0
φV

=
RHVRV HN0

2R0(N0 − 1)
√

(RHH
2

)2 +RHVRV H

,

ΥR0
α =

RHVRV HN0(K3 − 1)2

2R0K2
3α(N0 − 1)

√
(RHH

2
)2 +RHVRV H

,

ΥR0
η2

=
βHHη2γH
2R0K1µH

(
1 +

RHH

2
√

(RHH
2

)2 +RHVRV H

)
,

ΥR0
η1

=
RHVRV Hθη1

2R0

[
θη1 + (1− θ)

]√
(RHH

2
)2 +RHVRV H

,

ΥR0
µV

= −
RHVRV HµV

[
K3 +K2(N0 − 1)

]
2K2K3R0(N0 − 1)

√
(RHH

2
)2 +RHVRV H

,

ΥR0
bV

=
RHVRV H

2K2(N0 − 1)R0

√
(RHH

2
)2 +RHVRV H

(
2N0K2 − 2bV − µV

)
,

ΥR0
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Table 3.4: Sensitivity index of R0 with respect to parameters of the model (3.2.5) for
R0 = 0.2461 < 1 and R0 = 4.3250 > 1 using the values of Table 3.3

Parameter Low baseline Sensitivity index High baseline Sensitivity index
r 0.5 +0.40271 0.5 +0.41333
δH 0.001 −0.00344 0.001 −0.00662
θ 0.2 −0.07344 0.4 −0.18978
γH 0.14 −0.19457 0.08 −0.19978
α 0.7 +0.10598 0.7 +0.04709
µ 0.00001 −0.19610 0.00001 −0.20585
φV 100 +0.20661 120 +0.20749
η1 0.5 +0.02179 0.5 +0.05146
η2 0.04 +0.28729 0.2 +0.32992
µV 0.2 −0.71355 0.09 −0.66732
µH 0.00004 −0.09133 0.00004 −0.12435
bH 30 −0.19610 30 −0.20585
bV 0.05 +0.40096 0.08 +0.41274
βHV 0.09 +0.39219 0.25 +0.41169
βHH 0.0001 +0.28934 0.0004 +0.33075

3.6.2 Global sensitivity analysis

Unlike local sensitivity analysis, global sensitivity analysis allows other parameters to
vary as the effect of a certain parameter is estimated. Using ranges and baseline
values in Table 3.3 (high baseline), the partial rank correlation coefficient (PRCC) of
the model parameters were computed and presented in Figure 3.2. Total infectious
humans (IH +RH) is taken as the output function. Other parameters considered are
defined as k2 = bV + µV and k3 = α + µV . Also k4 = αθ and k8 = α(1 − θ) are
the rates of fertilization of FN and FS compartments respectively, k5 = (1 − r)bv
and k9 = rbV are respectively the rates of maturation to MN and Y compartments.
Input parameters were sampled using Latin Hypercube Sampling (LHS) method (a
statistical method for generating a sample of plausible collections of parameter values
from a multidimensional distribution), and a total of 1000 simulations were ran. The
value of the PRCC in Figure 3.2 gives the correlation between the parameters and the
chosen output (IH +RH). The parameters with large PRCC values are considered to
be the most important (in determining the value/size of the chosen response function).
The figures shows that the total infectious humans is most positively correlated to bH
and negatively correlated with φV , γH and k5 thus they can be targeted in reducing
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the number of infectious humans.
The Scatter plots of the most sensitive parameters (that is bH , φV , γH and k5) are

presented in Figure 3.3. The vertical axis represent the residual of the linear regression
between the rank transformed values of the parameters bH , φV , γH and k5 and the
transformed values of other parameters. The ordinate gives the residual of the linear
regression between the rank-transformed values of the output function (IH +RH) and
the transformed values of all other parameters.
The value of the PRCC of the threshold parametersR1 andR0 are given in Figures 3.4
and 3.5, respectively. In either case, µV is the most negatively correlated parameter to
the threshold quantities, followed by θ, µ and bH . Thus, this sensitivity study shows
the significance of θ in controlling both R1 and R0.
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Figure 3.2: PRCC plots of the various parameters of the model (3.2.5), using total
infectious humans (IH +RH) as the output function.
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Figure 3.3: Scatter plots of the most sensitive parameters bH , γH , φV and k5.

3.7 Numerical simulations

In this section, the Zika model (3.2.5) is simulated using parameter values in Table 3.3,
this is aimed at illustrating some of the established analytical results in the previous
sections. Two different set of parameter values are used, the low baseline values give
R0 = 0.2461 < 1, while the high baseline values give R0 = 4.3250 > 1. Different
simulations were obtained using both low and high baseline parameter values for com-
parison purposes. Initial conditions used through out our simulations are SH(0) = 600,
IH(0) = 20, RH(0) = 0, A(0) = 2400, Y (0) = 500, FN(0) = 300, FS(0) = 100,
FNI(0) = 100, FSI(0) = 50, and MN(0) = 150.

Figure 3.6 and Figure 3.7 depict population of infected humans with different initial
conditions. Figure 3.6 shows the convergence of solution profile to the disease-free
equilibrium when R0 = 0.2461 < 1 and Figure 3.7 shows the convergence of solutions
to a non zero equilibrium (endemic equilibrium) when R0 = 4.3250 > 1. The solution
profile of the model (3.2.5) showing cumulative number of new Zika cases in humans,
with different values of θ (the probability of a female mosquito mating with a sterile
male mosquito) is illustrated in Figure 3.8. The figure shows how increase in the value
of θ can drastically reduce the cumulative new human cases. As such, introduction
and successful mating of female mosquitoes with sterile male mosquitoes is negatively
correlated to new human cases. In Figure 3.9, the effect of θ on the population
of reproductive mosquitoes is shown, as the value of θ increases, total reproductive
mosquitoes is reduced. Figure 3.10 and Figure 3.11 give a comparison between solution
profile of the model showing total number of adult mosquitoes with varying values of
φV and θ respectively, both have positive effect in reducing the size of adult mosquito
population, although θ can be controlled (through increase in the release of sterile
male mosquitoes at the right location), φV is not easily controlled.
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Figure 3.4: PRCC plots of the various parameters of the Zika model (3.2.5), using R1

as the output function. Parameter ranges used are in Table 3.3.
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Figure 3.6: Simulation of the model (3.2.5) showing solution profile of infected hu-
mans. Parameter values used are as given in Table 3.3, with different initial conditions
so that R0 = 0.2461 < 1.
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Figure 3.7: Simulation of the model (3.2.5) showing solution profile of infected hu-
mans. Parameter values used are as given in Table 3.3, with different initial conditions
so that R0 = 4.3250 > 1.
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Figure 3.8: Simulation of the model (3.2.5) showing the cumulative number of new
cases in human population. Parameter values used are as given in Table 3.3, with
various values of θ (chances of mating with sterilized male mosquitoes).
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Figure 3.9: Simulation of the model (3.2.5) showing solution profile of reproductive
mosquitoes. Parameter values used are as given in Table 3.3, with θ = 0.2, θ = 0.4,
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Figure 3.10: Simulation of the model (3.2.5) showing the total number of adult
mosquitoes. Parameter values used are as given in Table 3.3, with φV = 100,
φV = 80, φV = 60 and φV = 40 which respectively give N0 = 19.6491, N0 = 15.7193,
N0 = 11.7895 and N0 = 7.8596.
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Figure 3.11: Simulation of the model (3.2.5) showing the number of reproductive
mosquitoes. Parameter values used are as given in Table 3.3, with θ = 0.2, θ = 0.4,
θ = 0.6 and θ = 0.8 which respectively give N0 = 19.6491, N0 = 14.7368, N0 =
9.8246 and N0 = 4.9123.
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Conclusion

In this study, we design a new deterministic model for the transmission dynamics of
Zika in a population consisting of humans and mosquitoes. The model which adopts a
standard incidence formulation incorporates the aquatic stage of mosquito development
and mosquito sterilization. Some of the key findings of the study are as follows.

1. The mosquito extinction equilibrium, E0, is shown to be globally-asymptotically
stable when the associated threshold quantity (N0) called the basic offspring
number is less than unity.

2. An increase in the mating rate of sterilized mosquitoes, could be sufficient to
bring the value of N0 to value less than unity, there by decreases the mosquito
population.

3. The model (with N0 > 1) in the absence of direct transmission undergoes
backward bifurcation, where the stable DFE co-exist with a stable endemic equi-
librium when the associated reproduction number is less than unity. This study
identifies a sufficient condition for the emergence of backward bifurcation in the
model, namely disease induced death in humans (δH = 0).

4. Similarly, the model with direct transmission also undergoes backward bifurcation
at R0 = 1. The backward bifurcation property can be removed when the Zika-
induced mortality in humans is negligible (δH = 0). Thus, the major parameter
responsible for backward bifurcation in both models (with and without direct
transmission) is the disease-induced mortality in humans. This result is similarly
shown by Garba et al [62] for dengue model and numerically for a Malaria model
by Chitnis et al [27].

5. The DFE of both models (with and without direct transmissions) in the presence
of mosquito population (when N0 > 1) are shown to be locally-asymptotically
stable when the associated reproduction numbers are less than unity.

6. The two models exhibit the same qualitative dynamics with respect to the lo-
cal stability of the associated disease-free equilibrium and backward bifurcation
phenomenon.

7. Using elasticity index (local sensitivity analysis), it is shown that, the most
effective parameter for the control of the basic reproduction number in both
areas of high and low transmission is mosquito death rate.

 
 
 



Chapter 4
Stability analysis and optimal control for
yellow fever virus

General introduction

A yellow fever model with vertical transmission in mosquito population, mosquito
control, vaccination and use of treated bed nets is constructed and rigorously analysed
for its qualitative properties. Optimal control and sensitivity analysis are also presented.
This Chapter is under review [37].

Abstract

In this work, a deterministic model for the transmission dynamics of yellow fever virus
in a human-mosquito setting in the presence of control is constructed and rigorously
analyzed. In addition to horizontal transmissions, vertical transmission of yellow fever
within mosquito population is also considered. The model is analysed for its qualitative
properties, where the mosquito-only component is shown to have a globally asymptot-
ically stable equilibrium, whenever the basic offspring number (N0) of the mosquito
population is less than or equal to unity. The vaccinated and type reproduction num-
bers of the autonomous model are computed. Also, condition for global asymptotic
stability of the disease free equilibrium of the autonomous form of the model when
N0 > 1 is computed. Optimal control theory is applied to the non-autonomous version
of the model and optimal controls are characterized. Numerical simulations to assess
the effect of fractional vaccine dosing on the vaccinated reproduction number, global
sensitivity analysis (where vaccinated reproduction number is most sensitive to the
rate of vertical transmission of mosquitoes), and simulations for the optimal control
model are also presented.

4.1 Introduction

Yellow fever (YF) is an acute viral haemorrhagic fever that is transmitted by mosquitoes
of the Aedes and Haemogogus species. It is endemic in Africa, Central and South
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America, where approximately one billion people in fourty seven countries are at risk.
Symptoms of the disease include fever, headache, jaundice, muscle pain, nausea, vom-
iting and fatigue [13, 129, 147, 144]. In broad terms, YF can either be jungle or
urban. Jungle YF occurs in tropical rain-forest and it is usually transmitted to humans
by incidence, in Africa, it is transmitted by Aedes africanus while in South America by
Haemagogus species [15, 147, 144]. Urban YF is transmitted by Aedes aegypti, it is
characterized by rapid amplification, capacity for international spread and devastating
effect on public health, economic, social and political life [144]. The agent of YF
(yellow fever virus) is an arthropod-borne viruses (arboviruses), a group of viruses that
are transmitted among vertebrate hosts by arthropod vectors and must replicate in
both vertebrate and vector to perpetuate transmission [13, 15]. The host vertebrates
in the case of YF are primates where as the host arthropods are normally mosquitoes.
Once a mosquito is infected, it lives with the disease for the rest of its life and hence
they can be considered as the reservoir for the virus, on the other hand, monkeys have
brief viremias and can be considered to be amplifying hosts [15].

Unfortunately, the threats posed by YF have largely been forgotten, just a bit more
than a century ago, it was a source of terror, decimating populations of cities, destroy-
ing economies and driving political choices. Extensive, repeated epidemics in North
American and European port cities during the 18th and 19th centuries spread panic,
shutting down affected cities and killing hundreds of thousands of people [144]. De-
spite the availability of very effective YF vaccine, the disease has however continuously
persist in Africa and South America, often with high mortality rate [13]. For instance,
the world health organization reported that between 1st of July 2017 and 28th of
February 2018, there were 723 confirmed human cases of YF that were reported in
Brazil, with at least 237 deaths [148]. In general terms, fourty seven countries are
either YF endemic or have some regions that are YF endemic, thirty four of those
countries are in Africa with thirteen in South and Central America. A modelling study
based on African data sources estimated that, the burden of YF during 2013 was
between 84,000 to 170,000 severe cases, and 29,000 to 60,000 deaths [144].

Vertical transmission of YF virus occurs when orally infected female mosquitoes
pass the virus to their progeny (transovarial transmission) [41]. First evidence of ver-
tical transmission of YF virus was reported as far back as 1997 [57]. Apart from
experimental proof for the vertical transmission of YF, entomological surveys also pro-
vided more evidence of vertical transmission of YF virus by mosquitoes. The virus was
isolated from wild males and recently emerged adults from larvae collected in the field
[41]. In fact, during dry seasons (when mosquito breeding is not favourable), YF virus
survival can be attributed to vertical transmission from infected female mosquitoes
to their eggs, at which point the viral particles are stable for long periods and can
be reactivated when the progeny emerges under better conditions [15, 132]. Thus,
vertical transmission is incorporated in this study.

YF has attracted less modeling attention when compared with other mosquito
borne diseases such as malaria, dengue, West Nile and Zika virus. To study popu-
lation dynamics of YF mosquitoes (Aedes aegypti), Dye [49] proposed an appropri-
ate continuous time model that described a field population of adult Aedes aegypti
mosquito. Recently, Martorano et al constructed and analysed a compartmental model
for the transmission of YF with vaccination [94], although vertical transmission is not
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accounted for in their model, both aquatic and non-aquatic stages of mosquito devel-
opment were considered. An urban YF epidemic model was also formulated and used
to study the 2016 YF outbreak in Luanda, Angola by Zhao et al [157]. The complex
vector-host dynamics of the system was explored by taking into account mosquito
abundance, vaccination and asymptomatic infections in the human population, their
model successfully fits the time series of weekly reported YF cases and deaths dur-
ing the epidemic in Angola [157]. Monica et al [101] looked at a YF model in a
human-vector-primate setting with vaccination in human population. To estimate the
incubation periods of YF virus in both human and mosquito populations, four sta-
tistical models of incubation periods were fitted with historical data in [76]. In this
work, we extend the model in [94] by incorporating vertical transmission in mosquito
population, in addition to vaccination, the proposed model also incorporates the use
of treated bed nets, larvicides and adulticides in mosquito control.

The work is organized as follows: Introduction to YF, short review of relevant
literature, brief introduction to vaccination, vector control, treatment and eliminating
YF strategy are discussed in Section 4.1. An autonomous deterministic model for the
transmission dynamics of YF is constructed and its basic properties are presented in
Section 4.2. Threshold quantities and stability analysis of equilibria are also explored.
In addition, condition for the global asymptotic stability of the disease free equilibrium
(DFE) is presented in Section 4.2. Optimal control analysis for the non-autonomous
form of the model is discussed in Section 4.3. Sensitivity analysis and numerical
simulations are presented in Section 4.4.

4.1.1 Vaccination

After the isolation of YF in 1927, there were unsuccessful efforts to produce inactivated
vaccines in the early 20th century, thus, subsequent developments focused on live virus
products and yield the production of a safe, effective vaccine against YF called the 17D
strain, it was originally developed by Theiler and Smith in 1936 by attenuating the wild-
type Asibi strain in mouse and chick tissue [13, 99]. YF vaccines are manufactured
by inoculation of 17D virus seed into chicken embryos and harvesting the infected
embryos under standards developed by World Health Organization (WHO) [99]. One
dose of the effective, affordable and safe YF vaccine can provides lifelong immunity
[144].

4.1.2 Treatment

There is no specific treatment for YF infection, but care to specifically treat cases
of dehydration, liver failure, fever and kidney failure is often administered to improve
outcomes. Thus, early detection and good supportive treatment in hospitals improve
possibility of survival. In the case of bacterial infections, it can also be treated with
antibiotics [147].
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4.1.3 Vector control

Mosquito control is an important (perhaps the most important) component of prevent-
ing and controlling transmission of vector borne diseases. It requires knowledge of both
mosquito biology and local conditions to be used in choosing the best interventions
(habitat modification, water management, sanitation or pesticides) on a site-specific
basis [126]. Only the use of pesticides is considered in this work, it can be achieved
either by the use of adulticides (agents to clear adult mosquitoes) or larvicides (agents
aimed at eliminating potential mosquito breeding sites) [126, 147]. Adulticides are
most often applied as a very fine ultra low-volume (ULV) droplet spray from a truck
or aircraft, it is usually organophosphate insecticides and/or synthetic pyrethroids and
their combinations [121, 126]. Some larvicide agents are specific to mosquitoes and
when used according to directions will have relatively little impact on the environment
and human health. They can prevent the emergence of adult mosquitoes for up to 1
month, which decreases labour costs [126].

4.1.4 Eliminating Yellow Fever Epidemics (EYE) Strategy

The most powerful known tool to prevent YF infection is vaccination. One vaccine
dose can provide life-long immunity at an affordable rate of 1 US dollar. Angola was
in 2016 hit by an unprecedented outbreak of urban YF which spread to beyond its
boarders and generated local transmissions. The epidemic created an urgent need for
more than 28 million doses of YF vaccines, the demand exhausted the existing global
vaccine supply. It also diverted health authorities from tackling other important public
health issues, which impacted on health care delivery in general [144, 147].

In order to ensure adequate supply of vaccine especially in high risk regions, the
Eliminate Yellow Fever Epidemics (EYE) strategy, steered by World Health Organi-
zation, UNICEF and Gavi, the Vaccine Alliance was inaugurated. The vision of EYE
is to have a world without YF epidemics. Its mission is to coordinate international
action and help countries at risk of the disease to prevent outbreaks and prepare the
inevitable cases, to minimize suffering, damage and spread through early and reliable
detection as well as a rapid and appropriate response. The initiative has three strategic
objectives: they include protecting at-risk populations, preventing international spread,
and containing outbreaks rapidly [144].

4.2 Yellow fever model

Following compartmental modeling approach, total human population at time t, de-
noted by NH(t) is divided into five mutually exclusive compartments of susceptible
(SH(t)), vaccinated (VH(t)), exposed (EH(t)), infected (IH(t)) and recovered (RH(t))
humans, so that

NH(t) = SH(t) + VH(t) + EH(t) + IH(t) +RH(t).

Susceptible human population is generated at a constant rate bH , fraction of which
are vaccinated at a rate cV which wanes at a rate ωH , because the vaccination is
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not perfect, vaccinated individuals get infection at a reduced rate (which depends on
vaccine efficacy) in comparison to susceptible humans. After infection, individuals
move to exposed class before the disease progresses, when they move to infected class
at a rate γH , infected humans recover and move to recovered class at a rate τH ,
humans die naturally at a rate µH and due to disease in the infected compartments
at a rate δH .

Mosquito population is split into aquatic (immature) and non-aquatic (mature)
stages, this is aimed at incorporating vertical transmission and to allow for assessing the
impact of controlling mosquitoes using larvicides (to eliminate potential breeding sites).
For mathematical tractability, different development stages of the aquatic mosquito
population (eggs, larvae and pupae) are lumped into a single compartment denoted
by A. Aquatic mosquitoes are further divided into infectious (AI) and non-infectious
(AN) mosquitoes, thus, the total mosquitoes population at the aquatic stage at time
t, is given by

A(t) = AI(t) + AN(t).

Aquatic mosquitoes mature to adulthood at a rate bV , die naturally at a rate µA and
due to the use of larvicides at a rate cL = rLeL (where rL is the rate of applying
larvicides and eL is the efficacy of larvicides). The total mosquito population at non-
aquatic stage (adult) at time t, denoted by NV (t), is sub-divided into susceptible
(SV (t)) and infectious (IV (t)) mosquitoes, so that

NV (t) = SV (t) + IV (t).

Matured susceptible mosquitoes get infection and move to infectious class, they die
naturally at a rate µV and due to the use of adulticides at a rate cA = rAeA (where
rA is the rate of applying adulticides and eA is the efficacy of adulticides). Once a
mosquito is infected, it remains with the infection. Only female matured mosquitoes
are considered (since male mosquitoes are not infectious).

In addition to the use of vaccination, larvicides and adulticides for the control of
mosquitoes, prevention effort by reducing mosquito-human contact through the use of
treated bed-net is also incorporated.

4.2.1 Incidence function

The frequency-dependent (standard) incidence function is the most widely used form
of incidence in vector borne disease models. Infection from mosquitoes to humans
occur after an infectious mosquito bites a susceptible human at a rate bV H , let ρV H
be a transmission probability from an infectious mosquito to susceptible human, then
the infection rate of humans is βV H = ρV HbV H . Therefore the force of infection in
humans is given by

λH = ρV HbV H
IV
NV

= βV H
IV
NV

. (4.2.1)

Similarly, let βHV = ρHV bHV be the rate at which susceptible mosquitoes acquire
infection from infectious human, where ρHV is the probability of transmission from an
infectious human to a susceptible mosquito and bHV is the biting rate of a susceptible
mosquito. Then the force of infection in mosquito population (due to horizontal
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Figure 4.1: Schematic diagram of the model (4.2.5).

transmission) is given by

λV = ρHV bHV
IH
NH

= βHV
IH
NH

. (4.2.2)

Since mosquitoes bite both susceptible and infected humans, for the total number of
bites to be conserved, it is assumed that the total number of bites by the mosquitoes
must be equal to the total number of bites received by humans (and this depends on
the total sizes of the populations of humans and mosquitoes), see [19, 22, 34, 35, 62,
64, 108]. Thus

βV H(NH , NV )NH = βHVNV , so that, NV =
βV H(NH , NV )

βHV
NH , (4.2.3)

Substituting equation (4.2.3) into equation (4.2.1), we have

λH = βHV
IV
NH

. (4.2.4)

4.2.2 Model equations

Let cB = rBeB be a rate of reducing mosquito-human contact through the use of
bed nets, where rB is the rate of using treated bed-nets and eB is the efficacy of
bed nets. The time independent YF transmission model with vertical transmission,
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vaccination, mosquito-human prevention and mosquito control is represented by the
following system of equations;

H
um

an
s



dSH
dt

= bH + ωHVH − cV SH − βHV (1− cB)
IV
NH

SH − µHSH ,

dVH
dt

= cV SH − βHV (1− cB)(1− ε) IV
NH

VH − ωHVH − µHVH ,

dEH
dt

= βHV (1− cB)
IV
NH

[
SH + (1− ε)VH

]
− γHEH − µHEH ,

dIH
dt

= γHEH − δHIH − τHIH − µHIH ,

dRH

dt
= τHIH − µHRH ,

(4.2.5)

M
os

qu
it

o
es



dAN
dt

= φV

(
1− A

K

)[
SV + (1− ηV )IV

]
− bVAN − µAAN − cLAN ,

dAI
dt

= φV ηV

(
1− A

K

)
IV − bVAI − µAAI − cLAI ,

dSV
dt

= bVAN − βHV (1− cB)
IH
NH

SV − µV SV − cASV ,

dIV
dt

= βHV (1− cB)
IH
NH

SV + bVAI − µV IV − cAIV .

It is assumed that, all the model parameters are positive and initial conditions are
non-negative. In addition, let AN + AI = A so that

dA

dt
= φV

(
1− A

K

)
[SV + IV ]− bVA− µAA− cLA, (4.2.6)

which is the standard formulation for aquatic mosquitoes where breeding sites are
limited by number of aquatic mosquitoes they can support, see [45, 46].

Lemma 4.2.1. The following biologically feasible region of the model (4.2.5)

Ω =

{
SH , VH , EH , IH , RH , AN , AI , SV , IV ∈ R9

+ : SH + VH + EH

+ IH +RH ≤
bH
µH

, AN + AI ≤ K, SV + IV ≤
KbV

µV + cA

} (4.2.7)

is positively-invariant and attracting.

Proof. It is easy to see that solution to the system (4.2.5) exists locally and it is
unique ((4.2.5) is C1 in R10

+ ). Observe from (4.2.6) that AN + AI ≤ K. Also by
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Gronwall’s lemma we have

NH(t) ≤ NH(0)e−µH t +
bH
µH

(
1− e−µH t

)
,

NV (t) ≤ NV (0)e−(µV +cA)t +
KbH

µV + cA

(
1− e−(µV +cA)t

)
,

(4.2.8)

which are bounded and hence solution exists for all t ≥ 0. In addition, NH(t) ≤ bH
µH

if

NH(0) ≤ bH
µH

, and NV (t) ≤ KbV
µV +cA

if NV (0) ≤ KbV
µV +cA

. Consequently, solution of the

system (4.2.5) with initial condition in Ω remains in Ω for all t > 0 (the ω-limits set
of the system are contained in Ω). �

Having obtained the positively-invariant and attracting domain for the system
(4.2.5), it is sufficient to consider the asymptotic properties of the dynamics of the
flow generated by the system.

4.2.3 Mosquito only equilibria

Consider the mosquito component of the model given by (4.2.5) in the absence of
interaction with humans, by direct computation, we obtained a threshold termed as
the basic offspring number (N0) given by

N0 =
φV bV

(bV + µA + cL)(µV + cA)
. (4.2.9)

It is defined as the average number of offspring produced by a female mosquito in
her entire lifespan in the absence of interaction with humans. It can be interpreted as
follows: The average time spent by a mosquito at the aquatic stage is 1

bV +µA+cL
, while

bV is the rate at which aquatic mosquitoes mature to become female mosquitoes, thus,
bV

bV +µA+cL
is the probability that an aquatic mosquito mature to be an adult female

mosquito. The average life expectancy of an adult female mosquito is 1
µV +cA

, whereas
φV is the oviposition rate of a female mosquito, therefore the total average number of
eggs laid by a female mosquito is φV

µV +cA
. Consequently (4.2.9) is the basic offspring

number of a mosquito. The mosquito component of (4.2.5) has an extinction disease
free equilibrium E0 given by,

E0 =
(
A∗N , A

∗
I , S

∗
V , I

∗
V

)
=
(

0, 0, 0, 0, 0
)
, (4.2.10)

obtained when N0 ≤ 1 and non-extinction disease free equilibrium E1 that is obtained
when N0 > 1 given by

E1 =
(
A∗N , A

∗
I , S

∗
V , I

∗
V

)
=
(
K[1− 1

N0

], 0,
bVK

[µV + cA]
[1− 1

N0

], 0
)
. (4.2.11)

Let f : G −→ R4 be continuous where G ⊆ Rn. Consider a system given by ẋ = f(x),
then the following theorem follows.

Theorem 4.2.2. [8] Let a, b ∈ G be such that a < b, [a, b] ⊆ G and f(b) ≤ 0 ≤ f(a).
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Table 4.1: Description of the variables and parameters for the model (4.2.5).

Var Interpretation

SH Susceptible humans
VH Vaccinated humans
EH Exposed humans
IH Infected humans
RH Recovered humans
AN Non-infected aquatic mosquitoes
AI Infected aquatic mosquitoes
SV Susceptible mosquitoes
IV Infected mosquitoes
NH Total human population
NV Total matured mosquitoes
NM Total mosquito population

Par Interpretation Range Ref

cV Successful rate of vaccination 0− 0.043/day [94, 114, 129]
ε Vaccine efficacy 0.8− 0.99/dose [67, 99, 114]
ωH Waning rate of vaccination (0, 1)/dose [94]
cB Rate of successful use of bed net 0− 0.95 [20]
bH Recruitment rate of humans 10− 800/day [3, 19]
µH Natural death rate of humans 3×10−5-6×10−5/day [7, 62, 94]
γH Progression rate of YF 0.167− 0.3/day [147, 76, 157]
δH Disease induced death rate of humans 0.0001− 0.0004/day [34, 94]
τH Recovery rate of humans 0.25− 0.33/day [94, 147, 157]
µA Natural death rate of aquatic mosquito 0.2− 0.33/day [45, 46]
µV Natural death rate of mosquitoes 0.0287− 0.25/day [7, 94, 157]
cL Mosquito death rate due to larvicides (0, 1)/day Assumed
cA Mosquito death rate due to adulticides (0, 1)/day [18, 20]
φV Mosquito oviposition rate (1, 50)/day [8, 45, 46]
ηV Vertical transmission rate (0, 1)/oviposition [41, 57]
bV Mosquito maturation rate 0.05− 0.1/day [8, 45, 46]
K Mosquito carrying capacity 5× 101 − 9.8× 107 [3, 94]
bHV Biting rate of mosquitoes 0.3− 1/day [7, 45, 157]
ρHV Transmission probability from IH to SV 0.5− 1/day [7, 157]
ρV H Transmission probability from IV to SH 0.1− 0.75/day [7, 45, 157]
βV H Infection rate of humans 0.03− 0.75/day [7, 157]
βHV Infection rate of mosquitoes 0.15− 1/day [7, 157]
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Then ẋ = f(x) defines a (positive) dynamical system on [a, b]. Moreover, if [a, b]
contains a unique equilibrium q then q is globally asymptotically stable on [a, b].

Theorem 4.2.3. The extinction equilibrium E0 is globally asymptotically stable (GAS)
when N0 ≤ 1 and unstable otherwise. The equilibrium E1 exists and it is locally
asymptotically stable (LAS) when N0 > 1.

Proof. By rewriting the mosquito component of (4.2.5) in the form of ẋ = f(x) and

considering the interval [a, b] = [0, b] ∈ R2
+, where b = (q, (bV +µA+cL)q

φV
) with q > 0.

Clearly f(a) = f(0) = 0 while

f(b) =

− q2

K

[
bV + µA + cL

]
bV q[1− 1

N0
]

 < 0 provided N0 ≤ 1. (4.2.12)

Therefore f(b) ≤ 0 ≤ f(0) provided N0 ≤ 1, thus by Theorem (4.2.2), the mosquito
component of the system given by (4.2.5) defines a positive dynamical system on [0, b],
moreover, the equilibrium (E0) is GAS on [0, b]. Because q is arbitrary, b can be chosen
such that its bigger than any x ∈ R2

+. Hence the result holds on R2
+. The second part

of the proof follows by linearization.
The epidemiological implication of Theorem (4.2.3) is that, if the basic offspring

number can brought to below 1, mosquito population goes to extinction and horizontal
transmission can be avoided.

4.2.4 Disease free equilibria

The disease free equilibrium of the model given by (4.2.5) depends on N0. If N0 ≤ 1
a mosquito free DFE E2 is obtained, while a mosquito persistent equilibrium E3 is
obtained when N0 > 1. Thus

E2 =
(
S∗H , V

∗
H , E

∗
H , I

∗
H , R

∗
H , A

∗
N , A

∗
I , S

∗
V , I

∗
V

)
=
(bH(ωH + µH)

K1µH
,
cV bH
K1µH

, 0, 0, 0, 0, 0, 0,

0
)
,

(4.2.13)
while

E3 =
(
S∗H , V

∗
H , E

∗
H , I

∗
H , R

∗
H , A

∗
N , A

∗
I , S

∗
V , I

∗
V

)
=
(bH(ωH + µH)

K1µH
,
cV bH
K1µH

, 0, 0,

K
[
1− 1

N0

]
, 0,
KbV
K5

[
1− 1

N0

]
, 0, 0

)
,

(4.2.14)
where K1 = cV +ωH +µH , K2 = γH +µH , K3 = δH + τH +µH , K4 = bV +µA + cL
and K5 = µV + cA.

Following [139], the linear stability of the disease free equilibria can be established
using the next generation operator method on the model (4.2.5).
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4.2.4.1 Stability of E2

For E2, the matrix of new infection terms and that of transition terms are respectively
given by

F =


0 0 0 0

βHV (1−cB)
[
S∗H+V ∗H(1−ε)

]
N∗H

0 0 0 0 0

0 0 0 0 φV ηV
N0

0
βHV (1−cB)S∗V

N∗H
0 0 0

 ,

V =


K2 0 0 0
−γ K3 0 0
0 0 K4 0
0 0 −bV K5

 .

(4.2.15)

The next generation matrix with large domain (KL = FV −1) is

KL =


0 0

βHV bV (1−cB)
[
S∗H+V ∗H(1−ε)

]
N∗HK4K5

βHV (1−cB)
[
S∗H+V ∗H(1−ε)

]
N∗HK5

0 0 0 0

0 0 φV bV ηV
N0K4K5

φV ηV
N0K5

0 0 0 0

 , (4.2.16)

Thus using the approach of [44] with an auxiliary matrix E, the NGM (K) is

K = ETKLE = ETFV −1E =

0
βHV bV (1−cB)

[
S∗H+V ∗H(1−ε)

]
N∗HK4K5

0 φV ηV bV
N0K4K5

 , (4.2.17)

where

E =


1 0
0 0
0 1
0 0

 ,

Therefore the mosquito extinction basic reproduction number is Rvv = φV ηV bV
N0K4K5

= ηV .

Lemma 4.2.4. The mosquito extinction DFE given by E2 is locally asymptotically
stable if the vectorial vertical transmission reproduction number Rvv = ηV ≤ 1 and
unstable otherwise [139].

The mosquito extinction disease free equilibrium is of less interest (as it is highly
unattainable), it can easily be shown to be globally asymptotically stable when N0 ≤ 1.
Next we look at the DFE obtained in the presence of mosquitoes (N0 > 1).
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4.2.4.2 Stability of E3

For the case of E3 when N0 > 1, applying similar method to that of section 2.4.1.,
the NGM with large domain KL is given by

0 0
βHV bV (1−cB)

[
S∗H+V ∗H(1−ε)

]
N∗HK4K5

βHV (1−cB)
[
S∗H+V ∗H(1−ε)

]
N∗HK5

0 0 0 0

0 0 φV ηV bV
N0K4K5

φV ηV
N0K5

βHV S
∗
V (1−cB)γH

N∗HK2K3

βHV S
∗
V (1−cB)

N∗HK3
0 0

 .

(4.2.18)
Thus using the approach of [44] with an auxiliary matrix E, the NGM (K) is

K =

 0
βHV bV (1−cB)

[
S∗H+V ∗H(1−ε)

]
N∗HK4K5

βHV (1−cB)
[
S∗H+V ∗H(1−ε)

]
N∗HK5

0 φV ηV bV
N0K4K5

φV ηV
N0K5

βHV S
∗
V (1−cB)γH

N∗HK2K3
0 0

 ,

(4.2.19)
where

E =


1 0 0
0 0 0
0 1 0
0 0 1

 .

Thus, the vaccinated reproduction number is

R0v =
ηV
2

+

√[ηV
2

]2
+
β2
HV S

∗
V (1− cB)2γH

N∗HK2K3K5

[
1− V ∗H

N∗H
ε
]

(4.2.20)

The threshold quantity, R0v is the average number of new secondary cases that one
infection can produce in a totally naive population, where a fraction of the population
is vaccinated.

4.2.4.3 Threshold analysis and vaccine impact

Here we analyse impact of a single dose and a fractional dosing of vaccine. Since not
all vaccines have positive impact in a population, it is therefore instructive to first of
all assess the impact of YF vaccine. In the absence of vaccination (S∗H = N∗H when
V ∗H = 0), the vaccinated reproduction reduces to

R0 = R0v

∣∣∣∣
V ∗H=0

=
ηV
2

+

√(ηV
2

)2

+
β2
HV S

∗
V (1− cB)2γH

N∗HK2K3K5

. (4.2.21)

Notice that R0v ≤ R0 since
V ∗Hε

N∗H
≥ 0. Thus, vaccination of individuals will have

positive impact in the community by reducing the value of the associated reproduction
number R0.
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Furthermore, the impact of vaccination can be analysed qualitatively by differentiating
R0v with respect to the fraction of vaccinated individuals (V ). It can be shown that

∂R0v

∂V
=

−β2
HV S

∗
V (1− cB)2γHε

2K2K3K5N∗H

√[
ηV
2

]2
+

β2
HV S

∗
V (1−cB)2γH

(N∗H)2K2K3K5

[
S∗H + V ∗H(1− ε)

] < 0. (4.2.22)

Thus, R0v is a decreasing function of V . Since the reproduction number measures
disease burden, for whatever fraction of the population that is vaccinated with whatever
level of efficacy, the vaccination will have a positive impact in disease control.

4.2.4.4 Standard dosing

Based on the available clinical data [144], the minimum standard dose administered
should preferentially contain 3000 international units (IU)/dose, but no less than 1000

IU/dose. Let V =
V ∗H
N∗H

(V ≤ 1) be the fraction of the vaccinated individuals at the

steady state when standard dose of YF vaccine is issued. Then solving for R0v = 1
we obtained

Vc =
1

ε

[
1−

{
1− ηV

}
N∗HK2K3K5

β2
HV S

∗
V (1− cB)2γH

]
. (4.2.23)

Thus, for the vaccination to be effective in bringing R0v < 1, the fraction of vaccinated
individuals (Vc) at steady state must be greater than the vaccinated threshold ratio
(V > Vc) defined in 4.2.23.

Notice that if ηV = 1, that is the case when all eggs laid by infected female
mosquitoes are infected, then there is no amount of vaccination that will make R0v < 1
(in this settings) since the critical vaccination rate reduces to Vc = 1

ε
> 1.

Lemma 4.2.5. The DFE, E3, of the model (4.2.5) is locally-asymptotically stable if
ηV < 1 and V > Vc. It is unstable otherwise.

The proof follows from Theorem 2 of [139] and the fact that R0v < 1 if and only if
ηV < 1 and V > Vc.

4.2.4.5 Fractional dosing

The best way to stretch vaccine supplies and protect as many people as possible to
stop the spread of yellow fever in emergency situations is by using fractional dosing.
Based on the available evidence, the Strategic Advisory Group of Experts (SAGE) on
Immunization affirms that a fractional dose can be used as part of an exceptional
response when there is a large outbreak and a shortage of vaccine [144, 147]. In the
case of dose fractionation, a smaller amount of antigen would be used per dose in
order to increase the number of persons who can be vaccinated with a given quantity
of vaccine. Studies show that the yellow fever vaccine given as one fifth of the regular
dose, still provides full immunity against the disease for at least 12 months and likely
longer [144, 147]. This strategy was previously proposed to extend pre-pandemic
influenza vaccine supplies [152]. Suppose each dose of vaccination is fractioned into
m number of doses, so that the efficacy of the fractioned vaccine (eV f ) becomes
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eV f = ε
m

, then

Vcf =
m

ε

[
1−

{
1− ηV

}
N∗HK2K3K5

β2
HV S

∗
V (1− cB)2γH

]
= m× Vc > Vc

and

eV cf =
m

V

[
1−

{
1− ηV

}
N∗HK2K3K5

β2
HV S

∗
V (1− cB)2γH

]
= m× eV c > eV c.

Figure 4.2 shows the simulation of the vaccinated reproduction number as a function
of vaccine efficacy with single dose and fractionated 2-fold. Simulation of R0V (ε)
with fractioned 3-fold and 5-fold are depicted in Figure 4.3. Although when ε = 0,
all the simulations have the same value of R0V = R0 (about 1.143), the vaccinated
reproduction number becomes less than unity when ε > 0.4 (for a single dose), while
for the case of 2-fold fractionated vaccine, ε needs to be about 0.7 for R0V to be less
than unity, while for 3-fold and 5-fold fractionated vaccine, a higher vaccine efficacy,
ε is required to possibly bring R0V to a value below unity. This result is consistent
with those in [144],which stated that a fractional YF vaccination does not meet YF
vaccination requirements under the International Health Regulations (IHR).
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Figure 4.2: Vaccinated reproduction number (R0V ) as a function of efficacy of vacci-
nation with standard dose and fractionated 2-fold vaccines.
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Figure 4.3: Vaccinated reproduction number (R0V ) as a function of efficacy of vacci-
nation with fractionated 3-fold and 5-fold vaccines.

4.2.4.6 Global stability of E3

Here, conditions for global asymptotic stability of the DFE (E3) are explored using
the method described by [77]. The same approach was employed by [45, 46, 78].
Using the property of the DFE, the system given by (4.2.5) can be rewritten in a
pseudo-triangular form as follows,

dSH
dt

= bH − cV SH − βHV (1− cB)
IV
NH

SH − µHSH ,

= bH − cV SH − βHV (1− cB)
IV
NH

SH − µHSH − bH + cV S
∗
H + µHS

∗
H ,

= −K1(SH − S∗H)− βHV (1− cB)
IV
NH

SH .

(4.2.24)
Similarly the equation of vaccinated humans is rewritten as

dVH
dt

= cV SH − βHV (1− cB)(1− ε) IV
NH

VH − µHVH ,

= cV SH − βHV (1− cB)(1− ε) IV
NH

VH − µHVH − cV S∗H + µHV
∗
H ,

= −µH(VH − V ∗H) + cV (SH − S∗H)− βHV (1− cB)(1− ε) IV
NH

VH .

(4.2.25)
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Likewise the equation of non-infectious aquatic mosquitoes can be rewritten as

dAN
dt

=φV

(
1− A

K

)
SV + φV

(
1− A

K

)
(1− ηV )IV − bVAN − µAAN − cLAN ,

=− (AN − A∗N)
(
K4 + φV

SV
K

)
+
φV
N0

(SV − S∗V ) + φV (1− ηV )
(

1− A

K

)
IV

− φV
SV
K
AI ,

(4.2.26)
while

dSV
dt

= bVAN − βHV (1− cB)
IH
NH

SV − µV SV − cASV ,

= −K5(SV − S∗V ) + bV (AN − A∗N)− βHV (1− cB)
IH
NH

SV .

(4.2.27)

Following the above simplification, the system given by (4.2.5) can therefore be re-
written in a pseudo-triangular form as

ẋ1 = A11(x)
(
x1 − x∗1

)
+ A12(x)x2

ẋ2 = A22(x)x2

(4.2.28)

Where x1 = (SH , VH , RH , AN , SV )T represents the naive (uninfected) component of
the model (4.2.5), x2 = (EH , IH , AI , IV )T represents the infectious part of (4.2.5),
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x∗1 = (S∗H , V
∗
H , R

∗
H , A

∗
N , S

∗
V )T is the DFE and

A11(x) =


−K1 ωH 0 0 0
cV −µH 0 0 0
0 0 −µH 0 0

0 0 0 −(K4 + φV SV
K ) φV

N0

0 0 0 bV −K5

 ,

A12(x) =


0 0 0 −βHV (1− cB) SH

NH

0 0 0 −βHV (1− cB)(1− ε) SH
NH

0 τH 0 0

0 0 −φV SV
K φV (1− ηV )

(
1− A

K

)
0 −βHV (1− cB) SV

NH
0 0

 ,

A22(x) =


−K2 0 0

βHV (1−cB)
[
SH+(1−ε)VH

]
NH

γH −K3 0 0
0 0 −K4 φV ηV

(
1− A

K

)
0 βHV (1− cB) SV

NH
bV −K5

 .

(4.2.29)

Theorem 4.2.6. Consider (4.2.5). Let Ω ⊂ Rn1+n2
+ be a positively-invariant set. If

1. The system (4.2.5) is defined on the positively invariant set Ω ⊂ Rn1+n2
+ .

2. The sub-system ẋ = A11(x)(x1 − x∗1) is globally asymptotically stable at the
equilibrium x∗1.

3. For any x ∈ Ω, the matrix A22(x) is Metzler and irreducible.

4. There exists an upper bound matrix Ā22 for the setM = {A22(x)/x ∈ Ω}, with
the property that either Ā22 /∈M or if Ā22 ∈M(i.e., Ā22 = maxΩM), then for
x∗ ∈ Ω such that Ā22 = A22(x∗), then x∗ ∈ R7 × {0} (the DFE sub-manifold
contains the points where the maximum is attained).

5. The stability modulus of Ā22 satisfies α(Ā22) ≤ 0.

Then, the associated DFE is GAS in Ω [45, 77].

Recall that the model given by (4.2.5) is defined on a positively invariant domain
given by Ω in (4.2.7). Also straightforward computation shows that the eigenvalues
of A11(x) are real and negative. Therefore conditions 1 and 2 of (4.2.6) are satisfied,
for condition 3 of (4.2.6), the following definition is used.

Definition 4.2.1. A square matrix A is said to be reducible if it has the form

A =

(
A1 A2

0 A3

)
(4.2.30)
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1 

4 3 

2 

Figure 4.4: Strongly connected directed graph (di-graph) associated with the matrix
A22(x). The square matrix A22(x) is irreducible (as the figure is strongly connected).

where A1 and A3 are square matrices of order at least 1 or if A can be transformed
into the form (4.2.30) by simultaneous permutations of rows and columns [55]. It is
irreducible otherwise. Alternatively, A square matrix is irreducible if and only if its
associated digraph is strongly connected.

Figure 4.4 is the associated digraph of the matrix A22(x), and it is clear that it is
strongly connected. Thus condition 3 is satisfied. Likewise since SV ≤ KbV

µV +cA
=

S∗V
N0

N0−1
in Ω, A ≤ K, SH + (1− ε)VH ≤ NH , and L∗H = bH

δH+µH
≤ NH ≤ bH

µH
= N∗H

then the matrix

Ā22(x) =


−K2 0 0 βHV (1− cB)
γH −K3 0 0
0 0 −K4 φV ηV
0

βHV (1−cB)S∗V N0

L∗H(N0−1)
bV −K5

 , (4.2.31)

is an upper bound of A22(x). For condition 5 of Theorem (4.2.6), the following result
of [77] is applied.

Lemma 4.2.7. Let M be a Metzler matrix which is block decomposed

M =

(
A B
C D

)
(4.2.32)

where A and D are square matrices. Then M is Metzler stable if and only if A and
D− CA−1B are Metzler stable.
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In the case of Ā22(x) defined above, we have

A =

(
−K2 0
γH −K3

)
, B =

(
0 βHV (1− cB)
0 0

)
, C =

(
0 0

0
βHV (1−cB)S∗V N0

L∗H(N0−1)

)
,

D =

(
−K4 φV ηV
bV −K5

)
, D− CA−1B =

(
−K4 φV ηV

bV −K5

[
1− β2

HV (1−cB)2S∗V N0γH
L∗HK2K3K5(N0−1)

]) .
(4.2.33)

Therefore, D− CA−1B is Metzler matrix if

β2
HV (1− cB)2S∗VN0N

∗
HγH

L∗HK2K3K5(N0 − 1)N∗H
= RHVRV H

N0N
∗
H

L∗H(N0 − 1)
< 1 (4.2.34)

and it is stable if

K4K5

(
1−RHVRV H

N0N
∗
H

L∗H(N0 − 1)
−RV VN0

)
> 0

which implies RHVRV H
N0N

∗
H

L∗H(N0 − 1)
+RV VN0 ≤ 1.

(4.2.35)

It should be noted that, condition (4.2.35) is a generalization of condition (4.2.34).
Thus, satisfying condition (4.2.35) is sufficient for the GAS of the DFE, which is also
equivalent to

RHVRV H +RV V (N0 − 1) ≤
(

1− 1

N0

)L∗H
N∗H

. (4.2.36)

Theorem 4.2.8. The disease free equilibrium (E3) of the model (4.2.5) is globally

asymptotically stable if RHVRV H
N0N∗H

L∗H(N0−1)
+RV VN0 ≤ 1.

Corollary 3. Consider the subset Ω∗ of Ω defined in (4.2.7) given by

Ω∗ =

{
SH , VH , EH , IH , RH , AN , AI , SV , IV ∈ R9

+ : SH + VH + EH + IH +RH ≤

bH
µH

, AN ≤ K, AI ≤ K, SV + IV ≤
KbV

µV + cA
, SV ≤ S∗V =

KbV
(µV + cA)

[1− 1

N0

],
(
1− 1

N0

)
≤ A

K

}
,

(4.2.37)
then the equilibrium (E3) is globally asymptotically stable in the positively invariant
set Ω∗ if δH = 0 and R0 ≤ 1.
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4.2.5 Type reproduction numbers

If K is the next generation matrix with large domain and hosts 1, 2 and 3 represent
the populations of EH , AI and IV . The type i reproduction number is given by

Ti = eTK(I − (I − P )K)−1e, (4.2.38)

where I is an identity matrix, P is a projection matrix and e is a unit vector with all
elements equal to zero except the ith. Let

K =


0 0 k13 k14

0 0 0 0
0 0 k33 k34

k41 k42 0 0

 ,

where,

k13 =
βHV bV (1− cB)

[
S∗H + (1− ε)V ∗H

]
N∗HK4K5

, k14 =
βHV (1− cB)

[
S∗H + (1− ε)V ∗H

]
N∗HK5

,

K33 =ηV , k34 =
φV ηV
N0K5

, k41 =
βHV S

∗
V (1− cB)γH
N∗HK2K3

, k42 =
βHV S

∗
V (1− cB)

N∗HK3

.

Notice that kij is expected number of cases of type i produced by one infected in-
dividual of type j, so that from (4.2.38) the type-reproduction number for infected
humans is

T1 = k14k41 +
k13k34k41

1− k33

=
β2
HV (S∗V )2(1− cB)2

(N∗H)2K2
2

+
β2
HV S

∗
V (1− cB)2bV γV φV ηV

[
S∗H + (1− ε)V ∗H

]
(N∗H)2N0K2K3K4K2

5(1− ηV )
,

Observe that R0v < 1 implies

β2
HV S

∗
V (1− cB)2

[
S∗H + (1− ε)V ∗H

]
(N∗H)2K2K5

+ ηV < 1 (4.2.39)

Thus T1 < 1 implies R0v < 1. Similarly it can be shown that T3 < 1 and T4 < 1
implies R0v < 1.

4.2.6 Existence of endemic equilibrium

Let λ∗∗V =
βHV (1−cB)I∗∗H

N∗∗H
, λ∗∗H =

βHV (1−cB)I∗∗V
N∗∗H

and also recall that

dA

dt
= φV

(
1− A

K

)
(SV + IV )− bVA− µAA− cLA. (4.2.40)
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So that by solving for the fixed point of SV and IV in terms of A when λ∗∗V 6= 0 we
have

S∗∗V =
bVA

∗∗
N

λV +K5

, I∗∗V =
bV (λ∗∗V +K5)A∗∗I + λ∗∗V bVA

∗∗
N

K5(λ∗∗V +K5)
, S∗∗V + I∗∗V =

bVA
∗∗

K5

.

(4.2.41)
Thus, from (4.2.5) and (4.2.41), a unique non-zero endemic equilibrium is obtained
when N0 > 1 and it is given by

S∗∗H =
bH + ωHV

∗
H

λ∗∗H + µH
, V ∗∗H =

bHcV(
λ∗∗H (1− ε) + ωH + µH

)[
λ∗∗H + µH

] ,
E∗∗H =

λ∗∗H

(
S∗∗H + V ∗∗H (1− ε)

)
K2

, I∗∗H =
λ∗∗H γH

(
S∗∗H + V ∗∗H (1− ε)

)
K2K3

,

R∗∗H =
λ∗∗H γHτH

(
S∗∗H + V ∗∗H (1− ε)

)
K2K3µH

, A∗∗ =
K
(
N0 − 1

)
N0

,

A∗∗N =
φV

(
S∗∗V + εI∗∗V

)
N0K4

, A∗∗I =
φV ηV I

∗∗
V

N0K4

, S∗∗V =
bV φV

(
S∗∗V + εI∗∗V

)
(
λ∗∗V +K5

)
N0K4

,

I∗∗V =
λ∗∗V K2bVA

∗∗ + bV µV φV

(
1− A∗∗

K

)
[1− ε]I∗∗V(

λ∗∗V + µV

)
K2µV

,

(4.2.42)

4.3 YF model for optimal control

Usually, incidences of YF and other vector borne diseases are seasonality dependent
with their peaks during warm and rainy seasons, therefore it is reasonable to integrate
time dependent controls in the model, the goal of which is to show the possibility of
implementing time dependent controls while minimizing implementation cost.

Let the time dependent effort in preventing human-mosquito contacts through the
use of treated bed nets be u1(t), so that the contact rate between mosquitoes and
humans reduces by a factor (1−u1(t)) where 0 ≤ u1(t) ≤ 1. The effort in vaccinating
humans is u2(t) : 0 ≤ u2(t) ≤ 1. Similarly, the effort in the application of larvicides is
u3(t) : 0 ≤ u3(t) ≤ 1, while that of spraying adulticides is u4(t) : 0 ≤ u4(t) ≤ 1. For
instance, there is no any effort in controlling mosquitoes when u3(t) = u4(t) = 0, while
aquatic and mature mosquitoes die at maximum possible rates cL and cA respectively,
when u3(t) = u4(t) = 1. Maximum control is attained by the use of bed nets and
vaccination when u1(t) = 1 and u2(t) = 1, respectively and no effort invested when
u1(t) = u2(t) = 0. The autonomous system given by (4.2.5) is extended to include
the aforementioned time dependent controls. Let Φ(t) = ωH(1 − u2(t)), then the
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non-autonomous version of the model (4.2.5) is given by

H
um

an
s



dSH
dt

= bH + Φ(t)VH − βHV u1(t)(1− cB)
IV SH
NH

− µHSH − cV u2(t)SH ,

dVH
dt

= cV u2(t)SH − βHV u1(t)(1− cB)(1− ε)IV VH
NH

− Φ(t)VH − µHVH ,

dEH
dt

= βHV u1(t)(1− cB)
IV
NH

[
SH + (1− ε)VH

]
− γHEH − µHEH ,

dIH
dt

= γHEH − δHIH − τHIH − µHIH ,

dRH

dt
= τHIH − µHRH ,

(4.3.43)

M
os

qu
it

o
es



dAN
dt

= φV

(
1− A

K

)[
SV + (1− ηV )IV

]
− bVAN − µAAN − u3(t)cLAN ,

dAI
dt

= φV ηV

(
1− A

K

)
IV − bVAI − µAAI − u3(t)cLAI ,

dSV
dt

= bVAN − βHV u1(t)(1− cB)
IH
NH

SV − µV SV − u4(t)cASV ,

dIV
dt

= βHV u1(t)(1− cB)
IH
NH

SV + bVAI − µV IV − u4(t)cAIV .

Following the non-autonomous system given by (4.3.43), an optimal control problem
is formulated with the following objective (cost) functional

J
(
u1(t), u2(t), u3(t), u4(t)

)
=

∫ T

0

(
B1EH +B2IH +B3A+B4NV +B5cV SH+

D1u
2
1 +D2u

2
2 +D3u

2
3 +D4u

2
4

)
dt.

(4.3.44)
The interval [0, T ] represents the time through which various control measures are
implemented. The cost incurred due to human infection of YF (which is proportional
to the number of infected individuals) over the period of intervention is given by∫ T

0

(
B1EH +B2IH

)
dt,

where B1 and B2 are positive weight constants associated with exposed and infected
humans respectively. Similarly, the cost due to the presence of mosquitoes in the
community, which is proportional to the number of aquatic and adult mosquitoes is
given by ∫ T

0

(
B3A+B4NV

)
dt,
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where B3 and B4 are positive weight constants. Because of the short supply of YF
vaccine, in order to optimize the available vaccines, there is need to minimize the total
number of vaccines used over the period of intervention, thus the integral∫ T

0

B5cV (t)SHdt,

which measures the total number of vaccinated individuals during the period of in-
tervention is included in the objective functional, with B5 being a positive weight
constant. The positive terms D1, D2, D3 and D4 are weight constants for efforts in
the use of bed nets, vaccination, larvicides and adulticides respectively, and regularize
the optimal control. D1u

2
1, D2u

2
2, D3u

2
3, and D4u

2
4 describe the cost associated with

the aforementioned prevention and control measures. The degree of the cost functions
follow from the non-linearity of controls and the convexity of quadratic functions [128].
Similar assumption has been used in optimal control problems in epidemiology, see for
instance [18, 85, 107, 82, 119, 128] and some of the references therein.

The aim is to minimize infected humans and total mosquito population while
optimizing limited vaccines and keeping the cost of vaccination, use of treated nets
and application of pesticides low. Therefore we seek to optimize u∗1, u∗2, u∗3 and u∗4
such that

J(u∗1, u
∗
2, u
∗
3, u
∗
4) = min

u1,u2,u3,u4

{
J(u1, u2, u3, u4)|u1, u2, u3, u4 ∈ G

}
(4.3.45)

where

G =
{

(u1, u2, u3, u4)|ui : [0, T ] −→ [0, 1] is Lebesgue measurable, i = 1, 2, 3, 4
}

is the control set. The impact of each control does depends on adherence and effort,
if for example u1 = 1, production and distribution of bed nets is at maximum, but its
impact also depends on cB, likewise the remaining control functions.

4.3.0.1 Existence of optimal control

The existence of optimal control solution can be established using Theorem 4.1 and
Corollary 4.1 of [56].

Theorem 4.3.1. There exist an optimal control u∗1, u∗2, u∗3, u∗4 and corresponding
solution S∗H , V ∗H , E∗H , I∗H , R∗H , A∗N , A∗I , S

∗
V and I∗V that minimizes J(u1, u2, u3, u4)

over G.

Proof. Clearly the set of controls and state variables are non-empty and the control
set G is closed and convex. The integrand of the objective functional is convex on
G. Furthermore, the model is linear in the control variables and bounded by a linear
system in the state variables, thus, the existence of an optimal control is guaranteed
[18, 56].
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4.3.1 Optimality system

The necessarily conditions that optimal controls and their corresponding states must
satisfy are derived using Pontryagin’s Maximum Principle [107, 118], where the problem
of finding time-dependent control variables u∗1(t), u∗2(t), u∗3(t) and u∗4(t) that minimize
J is equivalent to the problem of minimizing the Hamiltonian function defined as

H(t, x,u, λ) = g(t, x,u) + λ(t)f(t, x,u)

where g(t, x,u) is the integrand of the objective functional (4.3.44) and λ(t) is the ad-

joint vector such that λ(t) =
(
λSH (t), λVH (t), λEH (t), λIH (t), λRH (t), λAN (t), λAI (t),

λSV (t), λIV (t)
)

satisfies

dλSH
dt

= − ∂H

∂SH
,

dλVH
dt

= − ∂H

∂VH
, ...,

dλIV
dt

= − ∂H
∂IV

.

The optimality equation is given by

∂H

∂u1

=
∂H

∂u2

=
∂H

∂u3

=
∂H

∂u4

= 0,

and transversality conditions as λSH (T ) = λVH (T ) = ... = λIV (T ) = 0. Therefore,

H =B1EH +B2IH +B3A+B4NV +B5cV SH +D1u
2
1 +D2u

2
2 +D3u

2
3 +D4u

2
4

+ λSH

[
bH + Φ(t)VH − cV u2(t)SH − βHV u1(t)(1− cB)

IV
NH

SH − µHSH
]

+ λVH

[
cV u2(t)SH − βHV u1(t)(1− cB)(1− ε) IV

NH

VH − Φ(t)VH − µHVH
]

+ λEH

[
βHV u1(t)(1− cB)

IV
NH

{
SH + (1− ε)VH

}
− γHEH − µHEH

]
+ λIH

[
γHEH − δHIH − τHIH − µHIH

]
+ λRH

[
τHIH − µHRH

]
+ λAN

[
φV

(
1− A

K

)[
SV + (1− ηV )IV

]
− bVAN − µAAN − u3(t)cLAN

]
+ λAI

[
φV ηV

(
1− A

K

)
IV − bVAI − µAAI − u3(t)cLAI

]
+ λSV

[
bVAN − βHV u1(t)(1− cB)

IH
NH

SV − µV SV − u4(t)cASV

]
+ λIV

[
βHV u1(t)(1− cB)

IH
NH

SV + bVAI − µV IV − u4(t)cAIV

]
,

(4.3.46)
where λSH , ...λIV are adjoint functions.

Theorem 4.3.2. Given an optimal control (u∗1, u
∗
2, u
∗
3, u
∗
4) and the corresponding state

solutions of the non-autonomous system given by (4.3.43), there exist adjoint functions
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satisfying

dλSH
dt

=µHλSH + u2(t)cV
[
λSH − λVH

]
+ βHV u1(t)(1− cB)

[
λSH − λEH

] IV
NH

+ βHV

u1(t)(1− cB)
[
λIV − λSV

] IHSV
(NH)2

+ βHV u1(t)(1− cB)
[
λEH − λSH

] IV SH
(NH)2

+

βHV u1(t)(1− cB)(1− ε)
[
λEH − λVH

] IV VH
(NH)2

−B5cV ,

dλVH
dt

=µHλVH + βHV u1(t)(1− cB)
[
λEH − λSH

]IV SH
N2
H

+ βHV u1(t)(1− cB)
[
λIV−

λSV
]IHSV
N2
H

+ βHV u1(t)(1− cB)(1− ε) IV
NH

[
λVH − λEH

]
+ βHV u1(t)(1−

cB)(1− ε)
[
λEH − λVH

]IV VH
N2
H

− ωH(1− u2(t))
[
λVH − λSH

]
,

dλEH
dt

=µHλEH + γH
[
λEH − λIH

]
+ βHV u1(t)(1− cB)

[
λEH − λSH

]IV SH
N2
H

+ βHV

u1(t)(1− cB)
[
λIV − λSV

]IHSV
N2
H

+ βHV u1(t)(1− cB)(1− ε)
[
λEH − λVH

]
IV VH
N2
H

−B1,

dλIH
dt

=(δH + µH)λIH + τH
[
λIH − λRH

]
+ βHV u1(t)(1− cB)

[
λEH − λSH

]IV SH
N2
H

+

βHV u1(t)(1− cB)
[
λSV − λIV

] SV
NH

+ βHV u1(t)(1− cB)(1− ε)
[
λEH − λVH

]
IV VH
N2
H

+ βHV u1(t)(1− cB)
[
λIV − λSV

]IHSV
N2
H

−B2,

dλRH
dt

=µHλRH + βHV u1(t)(1− cB)
[
λEH − λSH

]IV SH
N2
H

+ βHV u1(t)(1− cB)
[
λIV−

λSV
]IHSV
N2
H

+ βHV u1(t)(1− cB)(1− ε)
[
λEH − λVH

]IV VH
N2
H

,

dλAN
dt

=(µA + u3cL)λAN + bV
[
λAN − λSV

]
+
λANφV (SV + IV )

K
+
IV φV ηV
K

[
λAI−

λAN
]
−B3,

dλAI
dt

=(µA + u3cL)λAI + bV
[
λAI − λIV

]
+
λANφV (SV + IV )

K
+
IV φV ηV
K

[
λAI−

λAN
]
−B3,
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dλSV
dt

=(µV + u4cA)λSV + βHV u1(t)(1− cB)
[
λSV − λIV

] IH
NH

− φV
(

1− A

K

)
λAN

−B4,

dλIV
dt

=(µV + u4cA)λIV + βHV u1(t)(1− cB)(1− ε)
[
λVH − λEH

] VH
NH

+ βHV u1(t)

(1− cB)
[
λSH − λEH

] SH
NH

+
(

1− A

K

)
φV ηV

[
λAN − λAI

]
− φV

(
1− A

K

)
λAN

−B4,

with final time condition as λi(T ) = 0, i = 1, ..., 9. In addition, the optimal control
u∗j , j = 1, 2, 3, 4 are given by

u∗1 =



0, if
(
βHV (1−cB)

2NHD1

)
Q0 < 0

(
βHV (1−cB)

2NHD1

)
Q0, if 0 < βHV (1−cB)

2NHD1
Q0 < 1

1, if
(
βHV (1−cB)

2NHD1

)
Q0 > 1

(4.3.47)

where Q0 =
(
IV SH

[
λSH − λEH

]
+ IV VH(1− ε)

[
λVH − λEH

]
+ IHSV

[
λSV − λIV

])
,

while u∗2 is given by

u∗2 =



0, if (cV SH+ωHVH)
2D2

[
λSH − λVH

]
< 0

(cV SH+ωHVH)
2D2

[
λSH − λVH

]
, if 0 < (cV SH+ωHVH)

2D2

[
λSH − λVH

]
< 1

1, if (cV SH+ωHVH)
2D2

[
λSH − λVH

]
> 1,

(4.3.48)
also u∗3 is given by

u∗3 =



0, if cV
2D3

(
λANAN + λAIAI

)
< 0

cV
2D3

(
λANAN + λAIAI

)
, if 0 < cV

2D3

(
λANAN + λAIAI

)
< 1

1, if cV
2D3

(
λANAN + λAIAI

)
> 1

(4.3.49)
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and u∗4 is given by

u∗4 =



0, if cL
2D4

[
λSV SV + λIV IV

]
< 0

cL
2D4

[
λSV SV + λIV IV

]
, if 0 < cL

2D4

[
λSV SV + λIV IV

]
< 1

1, if cL
2D4

[
λSV SV + λIV IV

]
> 1

(4.3.50)

Proof. The non-autonomous system given by (4.3.43) together with the objective
functional given by (4.3.44) and (4.3.45) are converted into a problem of minimizing
the Hamiltonian, H, defined by (4.3.46). Therefore applying Pontryagin’s Maximum
Principle [107, 118], the proof follows.

4.4 Sensitivity analysis and numerical simulation

In this section, global sensitivity analysis using partial rank correlation coefficient
(PRCC) for the basic offspring number and vaccinated reproduction number are con-
ducted. Numerical simulations of the optimal control model given by (4.3.43) is also
presented.

4.4.1 Sensitivity analysis

Local sensitivity analysis is used to provide direct information on the effect of small
parameter perturbation, it evaluates the relative change in a function due to change
in a single parameter, where other parameters are kept at constant values. It does
not indicate the effect of simultaneous large perturbations in all model parameters.
Thus, the need for a more robust form of sensitivity analysis for a multidimensional
parameter space. The PRCC is a robust sensitivity measure for a non-linear but
monotonic relationships between inputs and output, with little correlation between the
inputs [91].

The PRCC of the basic offspring number (N0) and that of the vaccinated repro-
duction number (R0v) are computed with parameter ranges as presented in Table 4.1.
The PRCC for N0 shows that the threshold is more sensitive to cA and cL which are
negatively correlated to the threshold, while φV is the most positively correlated as
presented by Figure 4.5. On the other hand, R0V is most positively correlated to ηV ,
which is followed by βHV then K, while it is most negatively correlated to cA, cB and
then bH as presented by Figure 4.6.
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Parameters

P
R

C
C

−1.0

−0.5

0.0

0.5

1.0

bV µV φV µA cA cL

Figure 4.5: Partial rank correlation coefficient plots of the various parameters of the
model (4.2.5) using N0 as the output function.

Parameters

P
R

C
C

−1.0

−0.5

0.0

0.5

1.0

cB εV µH γh δH βHV bV bH κ ηV µV φV µA τH cV cA cL ωH

Figure 4.6: Partial rank correlation coefficient plots of the various parameters of the
model (4.2.5) using R0V as the output function.
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4.4.2 Numerical simulations

In this section, we use numerical simulations to investigate impacts of the optimal
control strategies employed in the model for the transmission dynamics of yellow fever.
We can numerically calculate the optimal control using a forward-backward sweep
method described by [86].

Basically, all the methods applied in solving optimal control problems can be clas-
sified in two different types; direct and indirect approaches [143]. Optimal control
problem in direct methods is transformed into a nonlinear programing problem. The
method directly optimize the cost functional using the parametrization of control by
approximating control and state vector with a sum of function expansion [113, 143].
Although it has the advantage of robust numerics with respect to initial guess, low ac-
curacy of results is noticed [113]. The indirect method (used in this thesis) is based on
Pontryaguines minimum principle, in this case, numerical simulations converge quickly
and the solutions are accurate if one starts with a good initial guess [113].

Using an iterative method with the fourth order Runge-Kutta procedure, solutions
for the state equations and their corresponding adjoint equations can be obtained. We
start with an initial guess for the adjoint variables, which is then used to solve the
state system by a forward Runge-Kutta fourth order procedure in time. The guessed
optimal control and the obtained solution to the state system are used as input to the
adjoint system, which is solved numerically in backward scheme using the transversality
condition. The controls are then updated using convex combination of the previous
controls and the value from the characterizations [86]. This updated control replaces
the initial control and the iterative process is repeated until the successive iterates of
control values are sufficiently close to the ones at the present iterations.

The following numerical values for the model parameters are used as in Table 4.1:

bH = 50; βHV = 0.375; cB = 0.5;ωH = 0.01;µH = 0.0000421; cV = 0.3; ε = 0.95;

γH = 0.3; δH = 0.0001; τH = 0.143; bV = 0.1;φV = 50;κ = 800000; ηV = 0.01;

µA = 0.22;µV = 0.29; cA = 0.2; cL = 0.2.

For the numerical values of the weight constants in the objective functional J , it
is important to note that the choices are made only for simulation purposes. Two
different set of values for the weight constants are considered in our simulations, in
both instances, minimizing the number of infected humans is given more priority over
minimizing adult mosquitoes, then aquatic mosquitoes i.e B2 ≥ B1 > B4 > B3 but
with the same cost (D1 = D2 = D3 = D4). However, in both the two cases, because
EH , IH and SH are at the same scale and smaller than mosquito populations, values
of their weight constants are chosen to be the same (i.e B1 = B2 = B5) and smaller
than those of mosquitoes, while B3 < B4 because aquatic mosquitoes are more than
adult mosquitoes. The weight constants for the controls (D1, D2, D3, D4) balance
cost associated with them, therefore two different choices were made for smaller and
higher costs, simulations were carried out for the two different choices.

Because controls for mosquito borne disease are not done throughout the year
(seasonal diseases), simulations are carried out for 200 days only.
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Using initial human populations of

SH(0) = 2000;VH(0) = 500;EH(0) = 500; IH(0) = 200;RH(0) = 50,

while those of mosquitoes as

AN(0) = 25000;AI(0) = 200;SV (0) = 1000; IV (0) = 500,

the impact of control and that of using different weight constants for the objective
functional is assessed. In order to regularize the objective functional, smaller constants
were chosen for the coefficients of the populations while larger constants for the con-
trol functions. Populations of infected mosquitoes, exposed, infected and recovered
humans are depicted.

1. Case 1: Simulations of the optimal control problem is carried out for the case
when

B1 = 0.1;B2 = 0.1;B3 = 0.001;B4 = 0.005;B5 = 0.1;D1 = 500;D2 = 500;

D3 = 500;D4 = 500.

Control profiles are given by Figure 4.7 and Figure 4.8, while populations of
exposed and infected humans with and without control are given by Figure 4.9A
and Figure 4.9B respectively. Exposed and infected humans reach the DFE faster
with control, initially, infected humans with control sparked up (which is due to
the imperfection of vaccination) before quickly reaching the DFE. Figure 4.10A
shows the population of recovered humans where the population with control
is bigger than those without control, this may be attributed to the fact that
recovery confers permanent immunity. Infectious mosquitoes (both aquatic and
adult) is presented by Figure 4.10B.

2. Case 2: In this case, simulations are carried out for the case when the weight
constants are taken as

B1 = 0.01;B2 = 0.01;B3 = 0.0001;B4 = 0.0005;B5 = 0.1;D1 = 50;D2 = 50;

D3 = 50;D4 = 50.

Similarly, control profiles are given by Figure 4.11 and Figure 4.12. Population of
exposed humans shows similar dynamics as that of Case 1 and it is presented by
Figure 4.13A, while simulation of infected humans, where population with control
shoot up before falling to the DFE is presented by Figure 4.13B. The population
of recovered humans shows wider margin between cases with and without control
in this instance compared to Case 1 as depicted by Figure 4.14A, also, population
of infected mosquitoes sporadically bumps up before reaching DFE as shown in
Figure 4.14B. Notice that, less effort and less costs are expended in this case in
comparison to Case 1.
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Figure 4.7: Simulations of the model (4.3.43) showing control profiles U1 and U2

for the case when B1 = 0.1; B2 = 0.1; B3 = 0.0001; B4 = 0.00001; B5 = 0.1;
D1 = 100; D2 = 100; D3 = 100; D4 = 100.
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Figure 4.8: Simulations of the model (4.3.43) showing control profiles U3 and U4

for the case when B1 = 0.1; B2 = 0.1; B3 = 0.0001; B4 = 0.00001; B5 = 0.1;
D1 = 100; D2 = 100; D3 = 100; D4 = 100.
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Figure 4.9: Simulations of the model (4.3.43) showing exposed humans and infected
humans for the case when B1 = 0.1; B2 = 0.1; B3 = 0.0001; B4 = 0.00001;
B5 = 0.1; D1 = 100; D2 = 100; D3 = 100; D4 = 100.
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Figure 4.10: Simulations of the model (4.3.43) showing recovered humans and popu-
lations of infected mosquitoes for the case when B1 = 0.1; B2 = 0.1; B3 = 0.0001;
B4 = 0.00001; B5 = 0.1; D1 = 100; D2 = 100; D3 = 100; D4 = 100.
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Figure 4.11: Simulations of the model (4.3.43) showing control profiles U1 and U2

for the case when B1 = 0.1; B2 = 0.1; B3 = 0.0001; B4 = 0.00001; B5 = 0.1;
D1 = 100; D2 = 100; D3 = 100; D4 = 100.
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Figure 4.12: Simulations of the model (4.3.43) showing control profiles U3 and U4 for
the case when B1 = 0.07; B2 = 0.09; B3 = 0.000001; B4 = 0.00000001; B5 = 0.05;
D1 = 1000; D2 = 4000; D3 = 1000; D4 = 4000.
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Figure 4.13: Simulations of the model (4.3.43) showing exposed humans and infected
humans for the case when B1 = 0.07; B2 = 0.09; B3 = 0.000001; B4 = 0.00000001;
B5 = 0.05; D1 = 1000; D2 = 4000; D3 = 1000; D4 = 4000.

0 20 40 60 80 100 120 140 160 180 200

200

400

600

800

1000

1200

Time (days)

R
ec

ov
er

ed
 h

um
an

s 
( 

R
H
 )

 

 
No control
With control

A

0 20 40 60 80 100 120 140 160 180 200

500

1000

1500

2000

2500

3000

3500

4000

Time (days)

T
ot

al
 in

fe
ct

io
us

 v
ec

to
rs

 (
 A

I +
 I V

 )

 

 
No control
With control

B

Figure 4.14: Simulations of the model (4.3.43) showing recovered humans and popula-
tions of infected mosquitoes for the case when B1 = 0.07; B2 = 0.09; B3 = 0.000001;
B4 = 0.00000001; B5 = 0.05; D1 = 1000; D2 = 4000; D3 = 1000; D4 = 4000.
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Conclusion

A yellow fever model with standard incidence force of infection is constructed and
analysed in this study. The model incorporated the use of treated bed nets and
vaccination as forms of prevention in humans, while the use of larvicides and adulticides
is used in controlling mosquito population. Some of the key results obtained include:

• There is a threshold that controls the persistent of mosquito population or oth-
erwise, the threshold is a reducing function of the rate of death of mosquitoes
due to use of larvicides and adulticides.

• The autonomous model has a locally-asymptotically stable disease-free equilib-
rium when the vaccinated reproduction number (R0V ) is less than unity. Al-
though there is the threshold vaccination required to bring the vaccinated re-
production number to below unity, the threshold (R0V ) is a reducing function
of the fraction of vaccinated reproduction number.

• The effect of dose fraction of vaccination is simulated by plotting the vaccinated
reproduction number as a function of single, 2, 3 and 5 fold vaccines. For
the parameter values used, for a single dose, 0.4 and above vaccine efficacy can
reduce R0V to below 1, while over 0.8 efficacy is needed for 2-fold. Even a 100%
effective vaccine can not bring R0V to below unity for 3 and 5-fold vaccine.

• The DFE of the autonomous model is GAS in the positively invariant region
Ω provided RHVRV H

N0N∗H
L∗H(N0−1)

+ RV VN0 < 1, while the DFE in the positively

invariant subset Ω∗ of Ω if R0V ≤ 1.

• Using Pontryagins maximum principle, the non-autonomous system is analysed
and the necessary conditions for existence of an optimal control were determined.

• Numerical simulations of the non-autonomous model (with optimal control) us-
ing different weight constants show that slight increase in control effort show
wide difference in the impact of control.

• Using sensitivity analysis, the vaccinated reproduction is most sensitive and pos-
itively correlated to the rate of vertical transmission, thus making it the most
important parameter to target in controlling R0V .

 
 
 



Chapter 5
Modeling the effect of temperature
variability on Malaria control strategies

General introduction

In this chapter, a malaria model that takes into account temperature changes is con-
structed and rigorously analysed in the presence of control. The model has a notable
feature of wholly susceptible class separated from other susceptible, as well as having
compartments with and without history of vaccination. The work is under review [38].

Abstract

In this study, a non-autonomous (temperature dependent) and autonomous (temper-
ature independent) models for the transmission dynamics of malaria in a population
are designed and rigorously analysed. The models are used to assess the impact of
temperature changes (which causes seasonality) on various control strategies. The au-
tonomous model is shown to exhibit the phenomenon of backward bifurcation, where an
asymptotically-stable disease-free equilibrium (DFE) co-exists with an asymptotically-
stable endemic equilibrium when the associated reproduction number is less than unity.
This phenomenon is shown to arise due to the presence of imperfect vaccines and
disease-induced mortality rate. Threshold quantities (such as the basic offspring num-
ber, vaccination and host type reproduction numbers) and their interpretations for the
models are presented. Conditions for local asymptotic stability of the disease -free
solutions are computed. Sensitivity analysis using temperature data obtained from
Kwazulu Natal Province of South Africa [111] is used to assess the parameters that
have the most influence on malaria transmission. The effect of various control strate-
gies (bed nets, adulticides and vaccination) were assessed via numerical simulations.

5.1 Introduction

Malaria is an important mosquito borne disease with a global distribution and signif-
icant public health burden. It is a life-threatening infection that is caused by Plas-

 
 
 



Malaria 111

modium parasite, spread and sustained through bites by female Anopheles mosquitoes
on susceptible and infected humans [150]. There are more than hundred species of
Plasmodium that can infect different animal species such as reptiles, birds and vari-
ous mammals [138], among which five species (P. falciparum, P. vivax, P. ovale, P.
malariae, and, P. knowlesi) specifically cause human infections [50, 150]. Out of the
aforementioned species, P. vivax (which is the dominant malaria parasite outside of
sub-Saharan Africa) and P. falciparum (the most prevalent malaria parasite on the
African continent and responsible for most malaria-related deaths globally) were re-
sponsible for 891,000 deaths in the period 2015-2016 [150].

The most important environmental variables that affect mosquito population are
suitable temperature and appropriate aquatic breeding sites. Temperature affects both
survival and development rate of mosquitoes while surface wetness limits the popula-
tion size of aquatic mosquitoes [127]. In addition, temperature is a key determinant
of environmental suitability for transmission of human malaria, modulating endemic-
ity in some regions and preventing transmission in others. The spatial limits of the
distribution and seasonal activities of malaria are sensitive to climate factors, as well
as the local capacity to control the disease [25]. The dynamics and distribution of
malaria strongly depend on the interplay between the parasite, the mosquitoes and
the environment [106, 116], it has recently been shown that mosquito and parasite
biology are influenced not only by average temperature, but also by the extent of the
daily temperature variation [17]. At the extremes, temperature regimes constrain the
geographical extent of the disease and, within this envelope, contribute to determin-
ing its intensity [65]. These constraints are temporally dynamic, with fluctuations in
transmission suitability and intensity driven by seasonal and inter-annual temperature
cycles. The importance of temperature as an environmental determinant of malaria
endemicity arises from a series of effects on the life cycles of the plasmodium parasite
and anopheles mosquitoes [65].

A number of mathematical models have been developed in the literature to gain in-
sights into the effects of temperature change in the transmission dynamics of mosquito
borne diseases in a community, see for instance [1, 3, 6, 50, 65, 89, 102, 106, 111,
116, 124, 153]. In particular, malaria has received lots of attention. Mordecai et al
[102] considered a non-linear response of mosquito and malaria parasite to tempera-
ture which are closely consistent with field data, the work which changed predictions
on how temperature change affects malaria predicts optimal malaria transmission at
250C. A malaria transmission model with periodic birth rate and age structure for the
vector population was rigorously analysed by Loy and Zhao [89]. The examination of
the process via which parasite development within the mosquito (extrinsic incubation
period) is expected to vary over time and space, as depending on the diurnal temper-
ature range and baseline mean temperature in Kenya and across Africa was presented
by Blanford et al. [17]. Agusto et al. [3] considered a temperature-dependent de-
terministic model that gave some qualitative insights into the effects of temperature
variability on malaria transmission dynamics, the model incorporated gradual increase
in infection-acquired immunity via repeated exposure to malaria infection. The impact
of variability in temperature and rainfall on the transmission dynamics of malaria in
age-structured population, with the dynamics of immature and mature mosquitoes
was also considered by Okuneye and Gumel [111]. A malaria model that qualitatively
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studied the effect of seasonal variations (wet and dry seasons) on the spread of malaria
was introduced and analysed by Dembele et al. [40], an explicit formulation for the
basic reproduction ratio and stability analysis of the disease free equilibrium was pre-
sented. Eikenberry and Gumel extensively review the idea of mathematical modeling
of climate change in the transmission dynamics of malaria [50].

Although, there have been tremendous success in the reduction of malaria cases
especially in Africa, nevertheless, mortality due to the disease incidences still remains
high in comparison to other infections. Over the years, there have been several initia-
tives aimed at ending malaria cases, some of which include WHOs Roll Back Malaria
program, the Multilateral Initiative in Malaria, the Medicines for Malaria Venture, the
Malaria Vaccine Initiative, and the Global Fund to Fight AIDS, TB and Malaria, which
supports the implementation of prevention and treatment programs [138]. In fact,
there is no single way of preventing malaria, however, there are a number of ways to
decrease the transmission of the disease which include the use of treated nets, as well
as the use of larvicides and adulticides to clear mosquito breeding sites and kill adult
mosquitoes, respectively. Although there is no specific effective vaccine for malaria at
the moment, a number of candidate vaccines targeting different stages of the malaria
parasite life-cycle have been developed or are currently under development, in partic-
ular, RTS,S/AS01 is a strong candidate for the prevention of Plasmodium falciparum
infection (the deadliest), in fact phase 3 trials of the vaccine has been completed [142].

Predicting the public health impact of a candidate malaria vaccine requires using
clinical trial data to estimate the vaccines efficacy profile, initial efficacy after vacci-
nation and the pattern through which the vaccine efficacy wanes over time. With an
estimated vaccine efficacy profile, the effects of vaccination on malaria transmission
can be simulated with the aid of mathematical models [142].

In this study, we consider both autonomous and non-autonomous deterministic
model for the transmission dynamics of malaria with control in the presence of tem-
perature variability. Notable feature of the model is that the host population is basi-
cally divided according to their vaccination status and the use of multiple control and
prevention strategies. The model further assumed that recovered individuals do not
become wholly susceptible. The work is organized as follows: A deterministic non-
autonomous malaria model is developed in Section 5.1. Basic dynamical properties of
the model are discussed in Section 5.2. In Section 5.3, analysis of the autonomous
model is performed, while backward bifurcation analysis is discussed in Section 5.4.
Analysis of the non-autonomous model is performed in Section 5.5, effect of control
strategies are discussed in Section 5.6. Sensitivity analysis and numerical simulations
are presented in Section 5.7.

5.2 Model formulation

The total human population at time t, denoted by NH(t) is divided into populations
of vaccinated and non-vaccinated individuals. The sub-population of non-vaccinated
individuals are further sub-divided into 5 mutually exclusive sub-population of wholly
susceptible (without ever been infected) (SU(t)), susceptible after recovery (WU(t)),
exposed (EU(t)), infected (IU(t)) and recovered (RU(t)) humans. Similarly, the sub-
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population of vaccinated individuals are sub-divided into wholly susceptible (SV (t)),
susceptible after recovery (WV (t)), exposed (EV (t)), infected (IV (t)) and recovered
(RV (t)) humans, so that the total human population at time t is given by

NH(t) = SU(t)+SV (t)+WU(t)+WV (t)+EU(t)+EV (t)+IU(t)+IV (t)+RU(t)+RV (t).

In order to assess the potential effect of temperature (seasonal) dependent oviposition
of mosquitoes, the population of mosquitoes are divided into aquatic and non-aquatic
stages. The aquatic stage (which involves egg, larva and pupa) is represented by
a single equation (AM(t)). The non-aquatic (matured) stage is further divided into
susceptible (MU(t)), exposed (ME(t)) and infected (MI(t)) mosquitoes. Thus, the
total adult mosquito population (in the non-aquatic stage) is given by

NV (t) = MU(t) +ME(t) +MI(t).

Note that, in this study only female mosquitoes are considered as male mosquitoes
are non-infectious. The model incorporates the use of larvicides (to clear aquatic
mosquitoes) and adulticides (to kill matured mosquitoes). In either case, the death
rates due to the use of larvicides and adulticides are proportional to successful rates
of applications of larvicides and adulticides.

5.2.1 Dynamics of humans

It is assumed that the population of wholly susceptible humans is generated by birth
(or immigration) at a constant rate ΠH . This population increases through the loss of
vaccination-acquired immunity by wholly vaccinated individuals (at a waning rate ωV ).
It is decreased by vaccination (at a rate ξV which move to the class of wholly vaccinated
humans). Proportion of this individuals (in SU class) acquire malaria infection following
effective contact with infectious mosquitoes in MI class at a temperature (seasonal)
dependent rate λH(T ), given by

λH(T ) =
βV HMI(t)

NV (t)
(1− εBαB)aM(T ),

where, the parameter βV H is a transmission probability from infectious mosquitoes to
susceptible humans. The parameter aM(T ) is a temperature dependent biting rate
of mosquitoes, 0 < εB < 1 represents efficacy rate of bed nets and αB measure
compliance rate in the use of bed nets. Therefore εBαB represents the use of insect
repellents to minimize contacts with mosquitoes. Natural mortality occurs in all human
classes at a rate µH so that

dSU(t)

dt
= ΠH + ωV SV (t)− ξV SU(t)− λH(T )SU(t)− µHSU(t).

The population of a wholly vaccinated individuals SV is generated by vaccination of
susceptible individuals at the rate ξV . This population decreases due to waning of
vaccine (at the rate ωV ), infection at the rate λH(T )(1− εV ) (where 0 < εV < 1 is a
vaccine efficacy) and by natural death (at the rate µH) so that
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dSV (t)

dt
= ξV SU(t)− λH(T )(1− εV )SV (t)− ωV SV (t)− µHSV (t).

The populations of non-vaccinated (WU) and vaccinated (WV ) susceptible individuals
(who are partially immune due to prior infection) is generated following loss of par-
tial immunity by recovered individuals that are non-vaccinated and vaccinated at the
rates τU and τV , respectively. These populations decrease by secondary infection at
a reduced rate λH(T )(1 − εW ) (where εW is a protection rate due to prior malaria
infection) and by natural death, so that

dWU(t)

dt
= τURU(t)− λH(T )(1− εW )WU(t)− µHWU(t),

dWV (t)

dt
= τVRV (t)− λH(T )(1− εW )WV (t)− µHWV (t).

The populations of non-vaccinated exposed (EU) and vaccinated exposed (EV ) in-
dividuals are generated by the infection of non-vaccinated (SU , WU) and vaccinated
(SV , WV ) individuals at the rates λH , λH(T )(1−εW ) and λH(1−εV ), λH(T )(1−εW ),
respectively. These populations reduces by progressing to non-vaccinated and vacci-
nated infectious classes at the rates σU and σV , respectively, and by natural death,
this gives

dEU(t)

dt
= λH(T )SU(t) + λH(T )(1− εW )WU(t)− σUEU(t)− µHEU(t),

dEV (t)

dt
= λH(T )(1− εV )SV (t) + λH(T )(1− εW )WV (t)− σVEV (t)− µHEV (t).

The populations of non-vaccinated infectious (IU) and vaccinated infectious (IV ) indi-
viduals are generated by progression of non-vaccinated and vaccinated exposed individ-
uals to the infectious classes at the rates σU and σV , respectively. These populations
decreases by recovery at the rates γU and γV , respectively, natural death and disease-
induced death at the rates δU and δV , respectively. This gives

dIU(t)

dt
= σUEU(t)− γUIU(t)− δUIU(t)− µHIU(t),

dIV (t)

dt
= σVEV (t)− γV IV (t)− δV IV (t)− µHIV (t).

The populations of non-vaccinated recovered (RU) and vaccinated recovered (RV )
individuals are generated by recovery of non-vaccinated and vaccinated infectious in-
dividuals at the rates γU and γV , respectively. The populations are reduces by loss of
partial immunity at the rates τU and τV , respectively, and natural death. So that

dRU(t)

dt
= γUIU(t)− τURU(t)− µHRU(t),

dRV (t)

dt
= γV IV (t)− τVRV (t)− µHRV (t).
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5.2.2 Dynamics of mosquitoes

In the presence of intervention (using larvicides), the population of aquatic mosquitoes
(eggs, larvae and pupae) increases through oviposition by reproductive mosquitoes at

a temperature dependent rate φA(T )
(

1 − αLεL

)
, where αL is a rate of applying

larvicides and εL is an efficacy of larvicides (so that αLεL = cL accounts for effec-
tiveness of larvicides). The growth of aquatic mosquitoes is moderated by a constant
environmental carrying capacity K. This population decreases by maturation at a
temperature dependent rate σA(T ), die naturally and due to the use of larvicides at a

rate µA(T )
(

1 + αLεL

)
, where µA(T ) is a temperature dependent death rate. Thus

dAM(t)

dt
= φA(T )

(
1−αLεL

)(
1−AM(t)

K

)
NV (t)−

[
σA(T )−µA(T )

(
1+αLεL

)]
AM(t).

The population of susceptible adult female mosquitoes (MU(t)) is generated by mat-
uration of aquatic mosquitoes at the temperature dependent rate σA(T ). It decreases
by acquiring infection following a substantial contact with an infectious human at a
temperature dependent infection rate λV (T ), given by

λV (T ) =
βHV
NH(t)

(1− εBαB)aM(T )
[
IU(t) + ηIIV (t) + ηURU + ηVRV

]
,

where, βHV is the probability of infection from infectious humans to susceptible
mosquitoes. The parameters ηI , ηU and ηV are modification parameters which ac-
count for the reduction in the infectivity of individuals in IV , RU and RV classes in
comparison to those in IU class, respectively. Similarly, the population is further de-

creases at a rate µV (T )
(

1+αAεA

)
, where µV (T ) is a temperature dependent death in

the absence of intervention, αA is a rate of applying adulticides and εA is an efficacy of
adulticides (so that αAεA = cA accounts for effectiveness of indoor residual spraying).
Thus

dMU(t)

dt
= σA(T )AM(t)− λV (T )MU(t)− µV (T )

(
1 + αAεA

)
MU(t).

The population of exposed mosquitoes in the ME(t) class is generated by the infection
of adult mosquitoes in the MU(t) class at the rate λV (T ). This population decreases
by progression to infectious class at a temperature dependent rate σM(T ) and die

naturally and due to the use of adulticides at the rate µV (T )
(

1 + αAεA

)
. Hence

dME(t)

dt
= λV (T )MU(t)− σM(T )ME(t)− µV (T )

(
1 + αAεA

)
ME(t).

Finally, the population of infectious mosquitoes in the MI(t) class is generated by
progression of mosquitoes in the ME(t) class to MI(t) class at the temperature de-
pendent rate σM(T ). It decreases due to natural death and the use of adulticides at
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the rate µV (T )
(

1 + αAεA

)
. This gives

dMI(t)

dt
= σM(T )ME(t)− µV (T )

(
1 + αAεA

)
MI(t).
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Figure 5.1: Schematic diagram of the model (5.2.1).

5.2.3 Model equations

The above formulation is represented by the following non-autonomous deterministic
system of non-linear ordinary differential equations (a flow diagram of the model is de-
picted by Figure 5.1 and the state variables and parameters of the model are described
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in Table 5.1 and Table 5.8 respectively):

dSU(t)

dt
= ΠH + ωV SV (t)− ξV SU(t)− λH(T )SU(t)− µHSU(t),

dSV (t)

dt
= ξV SU(t)− λH(T )(1− εV )SV (t)− ωV SV (t)− µHSV (t),

dWU(t)

dt
= τURU(t)− λH(T )(1− εW )WU(t)− µHWU(t),

dWV (t)

dt
= τVRV (t)− λH(T )(1− εW )WV (t)− µHWV (t),

dEU(t)

dt
= λH(T )SU(t) + λH(T )(1− εW )WU(t)− σUEU(t)− µHEU(t),

dEV (t)

dt
= λH(T )(1− εV )SV (t) + λH(T )(1− εW )WV (t)− σVEV (t)− µHEV (t),

dIU(t)

dt
= σUEU(t)− γUIU(t)− δUIU(t)− µHIU(t),

dIV (t)

dt
= σVEV (t)− γV IV (t)− δV IV (t)− µHIV (t),

dRU(t)

dt
= γUIU(t)− τURU(t)− µHRU(t),

dRV (t)

dt
= γV IV (t)− τVRV (t)− µHRV (t),

dAM(t)

dt
= φA(T )

(
1− αLεL

)(
1− AM(t)

K

)
NV (t)−

[
σA(T ) + µA(T )

(
1 + αLεL

)]
AM(t),

dMU(t)

dt
= σA(T )AM(t)− λV (T )MU(t)− µV (T )

(
1 + αAεA

)
MU(t),

dME(t)

dt
= λV (T )MU(t)− σM(T )ME(t)− µV (T )

(
1 + αAεA

)
ME(t),

dMI(t)

dt
= σM(T )ME(t)− µV (T )

(
1 + αAεA

)
MI(t).

(5.2.1)
For simulation purpose, a generalized temperature function given by,

T (t) = T0

[
1 + T1 cos

(
2π

365
(ωt+ φ)

)]
, (5.2.2)

will be used, where T0 is the mean annual temperature, T1 represents the variation
about the mean, ω measures the periodicity of the function and φ is the phase shift
of the function. Therefore the time dependent temperature T = T (t), the tem-
perature dependent parameters φA(T ), σA(T ), µA(T ), µV (T ), aM(T ) and σM(T )
are continuous, bounded, positive and ω−periodic functions. That is they belong to
L∞+ (0, ω,R+).
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Using similar argument to those in [27, 34, 35, 62, 89, 108] (and some of the references
therein) and the basic fact that for mosquito-borne diseases (such as malaria), the total
number of bites made by mosquitoes must equal the total number of bites received by
humans. Thus, for the number of bites to be conserved, the following equation must
hold

βHVNV = βV H(NH , NV )NH ,

so that

NV =
βV H(NH , NV )

βHV
NH .

Thus, the force of infection in human populations is now given by

λH(T ) =
βHVMI(t)

NH(t)
(1− εBαB)aM(T ). (5.2.3)

The non-autonomous malaria model (5.2.1), to the author’s knowledge is the first
to incorporate various control measures. The model extends some malaria transmis-
sions models in the literature, such as those in [1, 3, 6, 50, 65, 89, 106, 111, 116, 153],
by inter alia:

(I) Assuming that recovered individuals do not revert to wholly-susceptible class
because they enjoy reduced susceptibility to new malaria infection [3, 6];

(II) Incorporating vaccination and the use of treated bed nets in humans (this was
not considered in [3, 6, 111]);

(III) Including both the use of larvicides and adulticides in mosquito populations (this
was not considered in [1, 3, 6, 50, 65, 89, 106]);

(IV) Dividing human population into compartments based on malaria infection in line
with their vaccination status (this was not considered in [3, 6, 111]);

(V) Considering a reduced disease induced death rate, faster recovery rate and slower
winning of immunity for vaccinated humans, i.e δV ≤ δU , γV ≥ γU and τV ≤ τU ,
this was also not considered in [1, 3, 6, 50, 65, 89, 106, 116];

(VI) Incorporating the effect of endemicity of malaria by differentiating wholly sus-
ceptible from susceptible with prior infection, this was not considered in [3, 6,
65, 89, 106, 116, 153].

5.2.4 Temperature dependent parameters

Temperature is known to directly affects vector borne diseases in host vectors; in-
sects are poikilothermic and hence their internal temperature is greatly influenced
by environmental temperature, which affect their physiology, as well as exposing the
pathogen they carry to environmental temperature [116]. Using the formulations in
[23, 102, 124], the temperature dependent parameters of malaria model (5.2.1) are
defined either as Briere or Quadratic functions as follows. The temperature dependent:
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1. Oviposition rate (φA(T )) of mosquitoes is given by

φA(T ) = −0.153T 2 + 8.61T − 0.487.

2. Maturation rate (σA(T )) of aquatic mosquitoes is given by

σA(T ) = 0.000111(T − 14.7)
√

34− T , (0 ≤ T ≤ 34).

3. Death rate of aquatic mosquitoes is obtained from the formulation in [124] as

µA = 0.0025T 2 − 0.094T + 0.9.

4. Daily survival probability of adult mosquitoes (a function of the adult mosquito
mortality rate) also follows from [102] as

ρM(T ) = e−µV (T ) = −0.000828T 2 + 0.0367T + 0.522,

so that the temperature dependent mortality rate of adult mosquitoes (µV (T ))
is given by

µV (T ) = − ln(ρM(T )) = − ln(−0.000828T 2 + 0.0367T + 0.522).

5. Biting rate (aM) and parasite development rate (σM(T )) of adult mosquitoes
are respectively given by

aM(T ) = −0.000203T (T − 11.7)
√

42.3− T , (0 ≤ T ≤ 42.3)

and
σM(T ) = 0.000111(T − 14.7)

√
34.4− T , (0 ≤ T ≤ 34.4).

6. Finally the temperature dependent vector competence defined as the product
of the proportion of the bites by infective mosquitoes that infect susceptible
humans and the bites by susceptible mosquitoes on infectious humans that infect
susceptible mosquitoes [102] is given by

V (T ) = −0.54T 2 + 25.2T − 206.

The graphical representations of the temperature dependent parameters are presented
by Figure 5.2, Figure 5.3, Figure 5.4 and Figure 5.5.
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Table 5.1: Description of variables and parameters used for the model given by (5.2.1).

Variable Interpretation
SU(t) Population of non-vaccinated wholly susceptible humans
SV (t) Population of vaccinated wholly susceptible humans
WU(t) Population of non-vaccinated partially immune susceptible humans
WV (t) Population of vaccinated partially immune susceptible humans
EU(t) Population of non-vaccinated exposed humans
EV (t) Population of vaccinated exposed humans
IU(t) Population of non-vaccinated infected humans
IV (t) Population of vaccinated infected humans
RU(t) Population of non-vaccinated recovered humans
RV (t) Population of vaccinated recovered humans
NH(t) Total human population
AM(t) Population of aquatic mosquitoes
MU(t) Population of susceptible adult female mosquitoes
ME(t) Population of exposed adult female mosquitoes
MI(t) Population of infected adult female mosquitoes
NV (t) Total population of adult mosquitoes

Parameter Interpretation
ΠH Recruitment rate of humans
ξV , εV Rate, efficacy of vaccine
ωV Waning rate of vaccine
µH Natural death rate of humans
αB, εB Rate of using and efficacy of bed nets
εW Rate of protection due to prior infection
σU Progression rate of non-vaccinated exposed humans to infected class
σV Progression rate of vaccinated exposed humans to infected class
γV , γU Recovery rate of vaccinated, non-vaccinated infected humans
δV , δU Disease induced death rate of vaccinated, non-vaccinated infected humans
τV Rate of loosing partial immunity by recovered vaccinated humans
τU Rate of loosing partial immunity by recovered non-vaccinated humans
ηI Reduction parameter for transmission by vaccinated infected humans
ηV Reduction parameter for transmission by vaccinated recovered humans
ηU Reduction parameter for transmission by non-vaccinated recovered humans
K Carrying capacity of aquatic mosquitoes
αL, αA Rate of applying larvicides and adulticides
εL, εA Efficacy of larvicides and adulticides
βV H Probability of transmission from infected mosquito to humans
βHV Probability of transmission from infected humans to mosquito
aM(T ) Temperature dependent biting rate of mosquitoes
φA(T ) Temperature dependent oviposition rate of mosquitoes
σA(T ) Temperature dependent maturation rate of aquatic mosquitoes
σM(T ) Temperature dependent progression rate of mosquitoes from ME to MI

µA(T ) Temperature dependent natural death rate of aquatic mosquitoes
µV (T ) Temperature dependent natural death rate of non-aquatic mosquitoes
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Figure 5.2: Simulation of temperature (T ) dependent oviposition rate of adult
mosquitoes given by φA(T ) = −0.153T 2 + 8.61T − 97.7 and maturation rate of
aquatic mosquitoes given by σA(T ) = 0.000111T (T − 14.7)

√
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Figure 5.3: Simulation of temperature (T ) dependent death rate of aquatic mosquitoes
given by µA(T ) = 0.0025T 2 − 0.09T + 0.9 and daily survival probability of adult
mosquitoes given by σM(T ) = −0.000828T 2 + 0.0367T + 0.522.
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Figure 5.4: Simulation of temperature (T ) dependent death rate of adult mosquitoes
given by µV (T ) = − ln(−0.000828T 2 + 0.0367T + 0.522) and biting rate of adult
mosquitoes given by aM(T ) = 0.000203T (T − 11.7)
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Figure 5.5: Simulation of temperature (T ) dependent parasite development rate in
mosquitoes given by σM(T ) = 0.000111T (T −14.7)

√
34.4− T and vectorial capacity

of mosquitoes given by V (T ) = −0.54T 2 + 25.2T − 206.

5.2.5 Basic properties of the model (5.2.1)

The basic dynamical properties of the non-autonomous system given by (5.2.1) is
explored. Adding the first ten equations of the model (5.2.1) gives

dNH

dt
= ΠH − µHNH − δUIU − δV IV . (5.2.4)

Since
dNH

dt
≤ ΠH − µHNH . (5.2.5)

It follows that dNH/dt < 0 if NH(t) > ΠH/µH . Thus, a standard comparison theorem

can be used to show that NH(t) ≤ NH(0)e−µH t + ΠH
µH

(
1− e−µH t

)
, which is bounded.

Furthermore, letting µM(T ) = min{µA(T ), µV (T )}, and cM = min{αLεL, αAεA},
the total mosquito population (in both aquatic and non-aquatic stages) satisfies

dNV

dt
≤ φA(T )

(
1− cM

)(
1− AM(t)

K

)
NV (t)− µM(T )(1 + cM)NV .

Using similar approach to that of [89] and Gronwall’s lemma, the mosquito population
has a globally asymptotically periodic solution satisfying

N∗V (t) = e−
∫ t
0 µM (s)(1+cM )ds

[∫ t

0

{
φA(s)(1− cM)(1− AM(s)

K
)NV (s)e

∫ s
0 µM (k)(1+cM )dk

}
d(s) +

∫ ω
0

{
φA(s)(1− cM)(1− AM (s)

K )NV (s)e
∫ u
0 µM (n)(1+cM )dn

}
d(s)

e
∫ ω
0 µM (n)(1+cM )dn − 1

]
.

(5.2.6)
Also from [89], it is assumed that the mosquito population stabilizes at a periodic
state, thus for the continuous, bounded, positive and ω−periodic functions φA(T ),
σA(T ), µA(T ), µV (T ), aM(T ) and σM(T ), there exist a positive number h0, such
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that

φA(T )(1− cM)
(

1− AM(t)

K

)
L(t)−µM(T )(1 + cM)L < 0, for all L ≥ h0. (5.2.7)

Lemma 5.2.1. Consider the non-autonomous model (5.2.1) with non-negative initial
condition for all t ≥ 0. Then for any x ∈ C([0],R14

+ ), the model has a unique
non-negative solution through x that is ultimately bounded and uniformly bounded.

Let X ∈ C([0],R14
+ ) and G(t, x) := B(X)X + Z be the right hand side of

(5.2.1), where X = (SU , SV ,WU ,WV , EU , EV , IU , IV , RU , RV , AM ,MU ,ME,MI)
T ,

B(X) is the 14× 14 matrix of coefficients of the non-constant part of (5.2.1), while
Z = (ΠH , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .
It is clear that for all x ∈ C([0],R14

+ ), G(t, x) is continuous, and Lipschitzian in x, in

addition,
∂Gj(t,x)

∂xi
> 0 for all i = 1, 2, ...14 whenever xi ≥ 0 and xj = 0, thus existence

and uniqueness of solution through (0, X) is guaranteed [89]. Following the approach
of [45, 46, 111] and the fact that B(X) is Metzler and Z > 0, the system is positively
invariant in C([0],R14

+ ).

Moreover it follows from (5.2.5) and (5.2.7), that lim sup
t−→∞

NH(t) ≤ ΠH

µH
and

lim sup
t−→∞

(AM +MU +ME +MI −N∗V (t)) ≤ 0, where N∗V (t) is the unique ω−periodic

solution defined by (5.2.6). Furthermore, dNH(t)
dt

< 0 whenever NH(t) > ΠH
µH

and
dNV (t)
dt

< 0 if NV (t) > h0. Hence all solutions for the system given by (5.2.1) are
positive, ultimately and uniformly bounded [89].

5.3 Analysis of the Autonomous Model

In this section, we analyse the dynamics of the autonomous form of the model (5.2.1).
That is the case when the model parameters are temperature independent. Thus

aM(T ) = aM , φA(T ) = φA, σA(T ) = σA, µA(T ) = µA, σM(T ) = σM ,

µV (T ) = µV .

We first of all analyse mosquito-only model in the absence of interaction with humans
for its basic dynamical features.

5.3.1 Mosquito-only population model

In this section, we carry out analysis of mosquito-only population model in the absence
of interaction with humans. In the absence of humans, the model (5.2.1), reduces to
the following mosquito-only system:
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dAM(t)

dt
= φA(1− εLαL)

(
1− AM(t)

K

)
NV (t)− (σA + µAεLαL + µA)AM(t),

dMU(t)

dt
= σAAM(t)− (1 + εAαA)µVMU(t).

(5.3.8)
The system (5.3.8) has a threshold quantity called the basic offspring number denoted
by N0, given by

N0 =
φA(1− εLαL)σA

(σA + µAεLαL + µA)(1 + εAαA)µV
. (5.3.9)

The threshold quantity N0 can be interpreted as follows: The average time spent by
mosquito in the aquatic stage is given by 1/(σA + µAεLαL + µA), where σA is the rate
at which aquatic mosquitoes develop into an adult mosquito, so that the probability
that an aquatic mosquito develop into an adult female mosquito is given by

σA
σA + µAεLαL + µA

. (5.3.10)

In the absence of disease, the average life expectancy of an adult female mosquito
is given by 1

(1+εAαA)µV
, so that the average eggs laid by an adult female mosquito

throughout her life span is given by

φA(1− εLαL)

(1 + εAαA)µV
. (5.3.11)

Thus, the product of (5.3.10) and (5.3.11) gives the basic offspring number of the
mosquito-only population model.

The mosquito-only model (5.3.8) has two equilibria depending on N0. If N0 ≤ 1, then,
the system (5.3.8) has only the trivial equilibrium called an extinction equilibrium (E0)
given by

E0 = (0, 0).

If N0 > 1. Then, the system (5.3.8) has a non-trivial equilibrium given by

E1 =
[
K
(

1− 1

N0

)
,

KσA
(1 + εAαA)µV

(
1− 1

N0

)]
.

It is worth mentioning that the trivial equilibrium (E0) is biologically less attractive
since mosquitoes go extinct in the population. Rewriting the mosquito-only model
(5.3.8) in the form ẋ = f(x), where Ω∗ ⊆ R2

+ and f : Ω∗ → R2
+ is continuous. Then

we have the following results.

Theorem 5.3.1. The extinction equilibrium (E0) is globally asymptotically stable
(GAS) when N0 ≤ 1 and unstable otherwise. The non-trivial equilibrium (E1) exists
and is locally asymptotically stable (LAS) when N0 > 1.

We shall give the proof of the first part of Theorem 5.3.1 using similar approach to
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that in [8]. In particular, Theorem 6 of [8] reproduced below for convenience, will be
used.

Theorem 5.3.2. [8] Let a, b ∈ Ω∗ be such that a < b, [a, b] ⊆ Ω∗ and f(b) ≤ 0 ≤
f(a). Then the system defines a (positive) dynamical system on [a, b]. Moreover, if
[a, b] contains a unique equilibrium q then q is globally asymptotically stable on [a, b].

Proof. To apply Theorem 5.3.2 to system (5.3.8), let q > 0 and let AMq be so large
that the following inequalities hold:

AMq ≥ q,

MUq =
(σA + µAεLαL + µA)AMq

φA(1− cM)
≥ q.

(5.3.12)

Let [a, b] = [0, b] ⊆ R2
+, where b = (AMq, MUq)

′. It is easy to see that f(0) = 0 and

f(b) =

(
−
[
σA + εLαL + µA

]A2
Mq

K
σAAMq[1− 1

N0
]

)
(5.3.13)

so that f(b) < 0, provided N0 ≤ 1.
Therefore f(b) ≤ 0 ≤ f(0), whenever N0 < 1. Thus the mosquito component of

model (5.2.1) defines a positive dynamical system on [0, b] and E0 is GAS on [0, b].
But since q is arbitrary, b can be extended and the result holds on R2

+. The second
part of the proof follows straightforward by linearization. �

The epidemiological implication of Theorem (5.3.1) is that if the basic offspring number
can be brought to a value less than unity, then mosquito population will goes to
extinction and the diseases dies out in time (since no horizontal transmission).

5.3.2 Disease free equilibrium

The disease-free equilibrium (DFE) is the steady-state solution of the autonomous
system (form of model (5.2.1)) obtained in the absence of disease. The autonomous
form of (5.2.1) has two disease free equilibria depending on the magnitude of N0.
Suppose N0 ≤ 1 and the diseased compartments are zero, then the model has a
mosquito extinction DFE, E2, given by

E2 =

(
S∗U , S

∗
V ,W

∗
U ,W

∗
V , E

∗
U , E

∗
V , I

∗
U , I

∗
V , R

∗
U , R

∗
V , A

∗
M ,M

∗
U ,M

∗
E,M

∗
I

)

=

(
ΠH(ωV + µH)

µH(ωV + µH + ξV )
,

ΠHξV
µH(ωV + µH + ξV )

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

(5.3.14)

 
 
 



Malaria 126

If N0 > 1, then the model has a non-mosquito extinction DFE, E3 given by

E3 =

(
ΠH(ωV + µH)

µH(ωV + µH + ξV )
,

ΠHξV
µH(ωV + µH + ξV )

, 0, 0, 0, 0, 0, 0, 0, 0,K
(

1− 1

N0

)
,

KσA
(1 + αAεA)µV

(
1− 1

N0

)
, 0, 0

)
.

(5.3.15)
Notice that E2 is biologically less attractive (due to absence of mosquitoes), thus
we concentrate on E3. The local stability of E3 can be established using the next
generation method [139]. Let

K1 = ξV + µH , K2 = ωV + µH , K3 = σU + µH , K4 = σV + µH ,

K5 = γU + δU + µH , K6 = γV + δV + µH , K7 = τU + µH , K8 = τV + µH ,

K9 = σA + µA + µAαLεL, K10 = µV + µV αAεA, K11 = σM + µV + µV αAεA.
(5.3.16)

The matrices for new infection terms (F ) and of the transition terms (V ) are respec-
tively given by

F =



0 0 0 0 0 0 0
C1S∗U
N∗H

0 0 0 0 0 0 0
C2S∗V
N∗H

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0
C1M∗U
N∗H

C1ηIM
∗
U

N∗H

C1ηUM
∗
U

N∗H

C1ηVM
∗
U

N∗H
0 0

0 0 0 0 0 0 0 0


,

and

V =



K3 0 0 0 0 0 0 0
0 K4 0 0 0 0 0 0
−σU 0 K5 0 0 0 0 0

0 −σV 0 K6 0 0 0 0
0 0 −γU 0 K7 0 0 0
0 0 0 −γV 0 K8 0 0
0 0 0 0 0 0 K11 0
0 0 0 0 0 0 −σM K10


.
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and FV −1 is given by,

0 0 0 0 0 0
C1σMS

∗
U

K11K10N∗H

C1S∗U
K10N∗H

0 0 0 0 0 0
C2σMS

∗
V

K11K10N∗H

C2S∗V
K10N∗H

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

C1σUM
∗
U

K3K5N∗H
C3

C1σVM
∗
U

K4K6N∗H
C4

C1M∗U
K5N∗H

C5
C1M∗U
K6N∗H

C6
C1M∗UηU
K7N∗H

C1ηVM
∗
U

K8N∗H
0 0

0 0 0 0 0 0 0 0


where

C1 = βHV aM(1− εBαB), C2 = C1(1− εV ), C3 =
(
1 +

ηUγU
K7

)
,

C4 =
(
ηI +

ηV γV
K8

)
.

(5.3.17)

Using the approach of [44], the next generation matrix with small domain K =
ET (FV −1)E is given by

KS =


0 0

C1σMS
∗
U

K11K10N∗H

0 0
C2σMS

∗
V

K11K10N∗H
C1σUM

∗
U

K3K5N∗H
C3

C1σVM
∗
U

K4K6N∗H
C4 0


where,

E =



1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0


.

The dominant eigenvalue of KS is the vaccinated reproduction number (R0V ) given
by It follows then that the vaccinated reproduction number, denoted by, R0V , is given
by√

β2
HVM

∗
UσMa

2
M(1− εBαB)2

(N∗H)2K11K10

[S∗UσU
K3K5

(
1 +

γUηU
K7

)
+
S∗V σV (1− εV )

K4K6

(
ηI +

γV ηV
K8

)]

=
√
Q1 +Q2.

(5.3.18)
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where

Q1 =
β2
HV a

2
M(1− εBαB)2σMσUM

∗
US
∗
U

(N∗H)2K3K5K10K11

(
1 +

γUηU
K7

)
and

Q2 =
β2
HV a

2
M(1− εBαB)2(1− εV )σMσV S

∗
VM

∗
U

(N∗H)2K4K6K10K11

(
ηI +

γV ηV
K8

)
. (5.3.19)

Following Theorem 2 of [139], the following result is established.

Lemma 5.3.3. The DFE of the model (5.2.1) is locally asymptotically stable if R0V <
1, and unstable if R0V > 1.

The threshold quantity R0V , is the vaccinated reproduction number of the disease.
It represents the average number of secondary malaria cases that one infected case
can generate if introduced into a population where fraction are vaccinated and the
aforementioned control strategies (bed nets, adulticides and larvicides) are used. It
can be interpreted as follows.

Infection in humans occurs either in the class of non-vaccinated susceptible or vacci-
nated susceptible (due to vaccine failure and imperfection) classes. The number of
new human cases in SU class by an infected mosquito is the product of the infection
rate of infected mosquito (βHV aM (1−εBαB)

N∗H
), probability that a mosquito survives the

exposed class and move to infected class ( σM
K11

), the average life span of an infected

mosquito ( 1
K10

) and the total number of non-vaccinated susceptible humans at the
DFE. Thus we have

βHV aM(1− εBαB)σMS
∗
U

N∗HK10K11

=
βHV aM(1− εBαB)σMΠH(ωV + µH)

N∗HK10K11µH(ωV + µH + ξV )
. (5.3.20)

Similarly, the number of infections generated by an infected mosquito in the SV class is
the product of the infection rate of infected mosquito (βHV aM (1−εBαB)

N∗H
), the probability

that a mosquito survives the exposed class and move to infected class ( σM
K11

), the aver-

age life span of an infected mosquito ( 1
K10

), the reduced infection due to vaccination
(1− εV ), and the total number of non-vaccinated susceptible humans at the DFE. So
that we have

βHV aM(1− εBαB)σM(1− εV )S∗V
N∗HK10K11

=
βHV aM(1− εBαB)σM(1− εV )ΠHξV
N∗HK10K11µH(ωV + µH + ξV )

.

(5.3.21)
Mosquitoes get infection after sufficient contact with humans in either of IU , IV , RU

or RV classes. The number of infections caused by an individual in class IU is the
product of the infection rate of infectious humans (βHV aM (1−εBαB)

N∗H
), the probability

that an individual survives EU and move to IU class (σU
K3

), the average time spent in

IU class ( 1
K5

) and the total number of susceptible mosquitoes at the DFE. Therefore
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we have

βHV aM(1− εBαB)σUM
∗
U

N∗HK3K5

=
βHV aM(1− εBαB)σUKσAr

N∗HK3K5(αAεA + µV )

(
1− 1

N0

)
. (5.3.22)

Using similar argument as above, with ηI accounting for reduced infectivity of vacci-
nated infectious humans, the number of infections caused by humans in compartment
IV is given as

βHV aM(1− εBαB)σV ηIM
∗
U

N∗HK4K6

=
βHV aM(1− εBαB)σV ηIKσAr

N∗HK4K6(αAεA + µV )

(
1− 1

N0

)
. (5.3.23)

The number of mosquito cases generated by humans in class RU is the product of the
infection rate of humans (βHV aM (1−εBαB)

N∗H
), the probability that an individual survives

EU and move to IU class (σU
K3

), the probability that an individual survives IU and move

to RU ( γU
K5

), the average time spent in RU compartment 1
K7

, and the total number
of susceptible mosquitoes at DFE. With ηU accounting for the reduced infectivity of
recovered humans of class RU we have

βHV aM(1− εBαB)σUγUηUM
∗
U

N∗HK3K5K7

=
βHV aM(1− εBαB)σUγUηUKσAr

N∗HK3K5K7(αAεA + µV )

(
1− 1

N0

)
.

(5.3.24)
Using similar approach as above, with ηV ≤ ηU accounting for the reduced infectivity
of humans in compartments RV we have

βHV aM(1− εBαB)σV γV ηVM
∗
U

N∗HK4K6K8

=
βHV aM(1− εBαB)σV γV ηVKσAr

N∗HK4K6K8(αAεA + µV )

(
1− 1

N0

)
.

(5.3.25)
The total mosquito infection by non-vaccinated humans is the sum of (5.3.22) and
(5.3.24), while mosquito infection by vaccinated humans is the sum of (5.3.23) and
(5.3.25). Therefore the total mosquito to non-vaccinated humans and non-vaccinated
humans to mosquito infections is given by the product of (5.3.20) and ((5.3.22) +
(5.3.24)) given by

Q1 =
β2
HV a

2
M(1− εBαB)2σMσUM

∗
US
∗
U

(N∗H)2K3K5K10K11

(
1 +

γUηU
K7

)
(5.3.26)

while those between vaccinated humans and mosquitoes is given by product of (5.3.21)
and ((5.3.23) + (5.3.25)) as

Q2 =
β2
HV a

2
M(1− εBαB)2(1− εV )σMσV S

∗
VM

∗
U

(N∗H)2K4K6K10K11

(
ηI +

γV ηV
K8

)
(5.3.27)

Thus, the square root of the sum of (5.3.26) and (5.3.27) given by (5.3.18) gives the
vaccinated reproduction number.
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5.3.3 Analysis of vaccine impact

The vaccinated reproduction number is such an important threshold that is used to
determine whether a disease invade a community or dies out, such that reduction in
the vaccinated reproduction number reduces disease burden. On the other hand, it
was observed in the trial for RTS,S/AS01 vaccine that, the potential malaria vaccine
is expected to be imperfect, thus it is important to investigate whether or not any
widespread use of the malaria vaccine in a community will be beneficial (or not). This
can simply be assessed by differentiating the vaccinated reproduction number R0V

with respect to the fraction of vaccinated individuals at steady state V ∗H =
S∗V
N∗H

. Let

the basic reproduction number (in the absence of vaccine when ξV = 0) be given by

R0 =

√
β2
HVM

∗
UσMσUa

2
M(1− εBαB)2

N∗HK3K5K11K10

(
1 +

γUηU
K7

)
, (5.3.28)

furthermore, let F1 = min{K7, K8}, F2 = max{C3, C4}, F3 = min{K3, K4}, F4 =
min{K5, K6}, and σ = max{σU , σV }, then it is easy to see that

R0V ≤ R0M =

√√√√β2
HVM

∗
UF2σMa2

M(1− εBαB)2σ

N∗HK11K10N∗HF3F4

[
S∗U
N∗H

+
S∗V (1− εV )

N∗H

]
,

since R0V ≤ R0M then

∂R0V

∂V ∗H
≤ ∂R0M

∂V ∗H
= − εVR0

2(1− εV V ∗H)
< 0, since (1− εV V ∗H) > 0.

Thus, the vaccinated reproduction number is a decreasing function of V ∗H . Therefore
an imperfect malaria vaccine would have a positive impact in the community (that is an
increase in the fraction of vaccinated individuals leads to a corresponding decrease in
malaria burden). Threshold quantities for vaccination (V ∗C) and efficacy of vaccination
(ε∗C) can be obtained by letting R0V (V ∗H) = 1, so that

V ∗C =
S∗UK4K6σU(1 + γUηU

K7
)

N∗HK3K5σV (1− εV )(ηI + γV ηV
K8

)

(
N∗H
R2

0S
∗
H

− 1

)

and

ε∗C = 1−
S∗UK4K6σU(1 + γUηU

K7
)

N∗HK3K5V ∗HσV (ηI + γV ηV
K8

)

(
N∗H
R2

0S
∗
H

− 1

)
.

Lemma 5.3.4. The DFE (E3) of the model (5.2.1) is locally asymptotically stable if
V ∗H > V ∗C and unstable otherwise.

The proof is consequence of Lemma 5.5.3 and the fact that R0V < 1 provided
V ∗H > V ∗C .
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5.3.4 Type reproduction number

For a homogeneous system, the vaccinated reproduction number can be seen as the
control threshold required to eliminate the disease from a community. The case is
different in the case of multiple host types. The type-reproduction number (T) is
defined as

Ti = eTK(I − (I − P )K)−1e, (5.3.29)

where I is an identity matrix, P is a projection matrix, e is a unit vector with all
elements equal to zero except the ith term and K = FV −1 is the next generation
matrix with large domain. The type reproduction number correctly determines the
critical control effort for heterogeneous populations [72].
We should note from the next generation matrix (K = FV −1) that new infections
occur only in compartments EU , EV and ME, and therefore it can not be used to
compute the type reproduction number for other infected/infectious compartments
without new infection. Let the type reproduction numbers of compartments EU , EV
and ME be respectively denoted by T1, T2 and T3. From (5.3.29), it can be shown
that

T1 =

C2
1σMσUS

∗
UM

∗
UC3

K3K5K11K10(N∗H)2

1− C2C1σV σMS
∗
VM

∗
UC4

K4K6K11K10(N∗H)2

=
Q1

1−Q2

> 0, so that T1 < 1, implies Q1 +Q2 < 1.

(5.3.30)
Similarly,

T2 =

C2C1σV σMS
∗
VM

∗
UC4

K4K6K11K10(N∗H)2

1− C2
1σMσUS

∗
UM

∗
UC3

K3K5K11K10(N∗H)2

=
Q2

1−Q1

> 0, so that T2 < 1, implies Q1 +Q2 < 1

(5.3.31)
and,

T3 =
C2

1σMσUS
∗
UM

∗
UC3

K3K5K11K10(N∗H)2
+
C2C1σV σMS

∗
VM

∗
UC4

K4K6K11K10(N∗H)2
= Q1 +Q2 = R2

0V . (5.3.32)

But

R2
0V < 1⇐⇒ C2

1σMσUS
∗
UM

∗
UC3

K3K5K11K10(N∗H)2
+
C2C1σV σMS

∗
VM

∗
UC4

K4K6K11K10(N∗H)2
< 1. (5.3.33)

Hence it follows from (5.3.30), (5.3.31) and (5.3.32) that Ti < 1 (for i = 1, 2, 3)
implies R0V < 1 (and vice versa).

Ti is the expected number of cases in compartment i caused by one infected
individual of type i in a population where fractions are vaccinated, the infection might
be directly or through chains of infections passing through individuals of other types,
it singles out the required control effort when targeting the population of type i [72].
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5.4 Endemic equilibrium and backward bifurcation

In this section, a unique endemic equilibrium of the model is computed and the condi-
tions for the existence of backward bifurcation are also computed. In addition, impact
of backward bifurcation on disease control is also evaluated.

5.4.1 Endemic equilibrium

Let the endemic equilibrium (the case when λH 6= 0 and λV 6= 0) of the model (5.2.1)

be denoted by E∗∗ =
(
S∗∗U , S

∗∗
V ,W

∗∗
U ,W

∗∗
V , E

∗∗
U , E

∗∗
V , I

∗∗
U , I

∗∗
V , R

∗∗
U , R

∗∗
V

)
, where

S∗∗U =
M0ΠH

M0M2 − ωV ξV
, S∗∗V =

ΠHξV
M0M2 − ωV ξV

,

W ∗∗
U =

M0ΠHλ
∗∗
H σUγUτU(

M0M2 − ωV ξV
)(
K3K5K7M1 − λ∗∗HM3

) ,
W ∗
V =

M0ΠHλ
∗∗
H σV γV τV(

M0M2 − ωV ξV
)(
K4K6K8M1 − λ∗∗HM4

) ,
E∗∗U =

λ∗∗H

[
S∗∗U + (1− εW )W ∗∗

U

]
K3

,

E∗∗V =
λ∗∗H

[
S∗∗V + (1− εW )W ∗∗

V

]
K4

, I∗∗U =
λ∗∗H σU

[
S∗∗U + (1− εW )W ∗∗

U

]
K3K5

,

I∗∗V =
λ∗∗H σV

[
S∗∗V + (1− εW )W ∗∗

V

]
K4K6

, R∗∗U =
λ∗∗H σUγU

[
S∗∗U + (1− εW )W ∗∗

U

]
K3K5K7

,

R∗∗V =
λ∗∗H σV γV

[
S∗∗V + (1− εW )W ∗∗

V

]
K4K6K8

,

A∗∗M = K

[
1−

K9K10

[
λ∗∗V + µV + αAεA

]
φV σA

[
K10 + λ∗∗V

] ]
,

M∗∗
U =

A∗∗MσA
K10 + λ∗∗V

, M∗∗
E =

A∗∗Mλ
∗∗
V σA

K11

(
K10 + λ∗∗V

) , M∗∗
I =

A∗∗Mλ
∗∗
V σMσA

K10K11

(
K10 + λ∗∗V

)
(5.4.34)

so that

N∗∗H = S∗∗U + S∗∗V +W ∗∗
U +W ∗∗

V + E∗∗U + E∗∗V + I∗∗U + I∗∗V +R∗∗U +R∗∗V ,

M0 = λ∗∗H (1− εV ) + ωV + µH , M1 = λ∗∗H (1− εV ) + µH , M2 = λ∗∗H + ξV + µH ,

M3 = σUγUτU(1− εW ), M4 = σV γV τV (1− εW ),
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with

λ∗∗H (T ) =
βHVM

∗∗
I (t)

N∗∗H (t)
(1− εBαB)aM(T ),

and

λ∗∗V (T ) =
βHV
N∗∗H (t)

(1− εBαB)aM(T )
[
I∗∗U (t) + ηII

∗∗
V (t) + ηUR

∗∗
U + ηVR

∗∗
V

]
5.4.2 Backward bifurcation

Here we apply the method described in [26, 139] which is based on the use of centre
manifold theory to prove the existence of backward bifurcation for the model (5.2.1).
To apply that method, we carry out the following changes of variables. Let

SU = x1, SV = x2,WU = x3,WV = x4, EU = x5, EV = x6, IU = x7, IV = x8,

RU = x9, RV = x10, AM = x11,MU = x12,ME = x13,MI = x14,

so that

NH = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10, NV = x12 + x13 + x14,

and NV = x12 + x13 + x14.

The transformed malaria model (5.2.1) is represented by,

dx1

dt
= ΠH + ωV x2 − ξV x1 − λHx1 − µHx1,

dx2

dt
= ξV x1 − λH(1− εV )x2 − ωV x2 − µHx2,

dx3

dt
= τUx9 − λH(1− εW )x3 − µHx3,

dx4

dt
= τV x10 − λH(1− εW )x4 − µHx4,

dx5

dt
= λHx1 + λH(1− εW )x3 − σUx5 − µHx5,

dx6

dt
= λH(1− εV )x2 + λH(1− εW )x4 − σV x6 − µHx6,

dx7

dt
= σUx5 − γUx7 − δUx7 − µHx7

dx8

dt
= σV x6 − γV x8 − δV x8 − µHx8

(5.4.35)
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dx9

dt
= γUx7 − τUx9 − µHx9

dx10

dt
= γV x8 − τV x10 − µHx10

dx11

dt
= φA

(
1− x11

K

)
NV − σAx11 − αLεLx11 − µAx11

dx12

dt
= σAx11 − λV x12 − µV x12 − αAεAx12

dx13

dt
= λV x12 − σMx13 − µV x13 − αAεAx13

dx14

dt
= σMx13 − µV x14 − αAεAx14,

with the associated forces of infection given by

λH =
βHV x14(t)

NH

(1− εBαB)aM ,

and

λV =
βHV
NH(t)

(1− εBαB)aM

[
x7 + ηIx8 + ηUx9 + ηV x10

]
.

By letting R0V = 1 we have,

β2
HVM

∗
UσMa

2
M(1− εBαB)2

(N∗H)2K10K11

(S∗UσU
K3K5

[1 +
γUηU
K7

] +
S∗V σV (1− εV )

K4K6

[ηI +
γV ηV
K8

]
)

= 1,

(5.4.36)
suppose, further that βHV = β∗HV is chosen to be the bifurcation parameter. The
Jacobian matrix (J∗) at the DFE with βHV = β∗HV is given by

J∗ =

[
P1 P2

P3 P4

]
,

where

P1 =



−K1 ωV 0 0 0 0 0
ξV −K2 0 0 0 0 0
0 0 −µH 0 0 0 0
0 0 0 −µH 0 0 0
0 0 0 0 −K3 0 0
0 0 0 0 0 −K4 0
0 0 0 0 σU 0 −K5


,
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while,

P2 =



0 0 0 0 0 0 −Q0

0 0 0 0 0 0 −Q1

0 τU 0 0 0 0 0
0 0 τV 0 0 0 0
0 0 0 0 0 0 Q0

0 0 0 0 0 0 Q1

0 0 0 0 0 0 0


P3 =



0 0 0 0 0 σV 0
0 0 0 0 0 0 γU
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −Q2

0 0 0 0 0 0 Q2

0 0 0 0 0 0 0


,

and

P4 =



−K6 0 0 0 0 0 0
0 −K7 0 0 0 0 0
γV 0 −K8 0 0 0 0

0 0 0 −K9N0
φV
N0

φV
N0

φV
N0

−Q2ηI −Q2ηU −Q2ηV σA −K10 0 0
Q2ηI Q2ηU Q2ηV 0 0 −K11 0

0 0 0 0 0 σM −K10


.

where,

Q0 =
β∗HV S

∗
U(1− εBαB)

N∗H
, Q1 =

β∗HV S
∗
V (1− εBαB)(1− εV )

N∗H
,

Q2 =
β∗HVM

∗
U(1− εBαB)

N∗H
.

The Jacobian (J∗) of the linearized system has a simple zero eigenvalue (with all other
eigenvalues having negative real parts). Hence the theory based on center manifold
theory [26, 139] can be used to analysed the dynamics of the system (5.4.35). We
obtained the left eigenvector (v) corresponding to the zero eigenvalue denoted by

v =
[
v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14

]T
, where

v1 = 0, v2 = 0, v3 = 0, v4 = 0, v5 =
Q2σMσU
K3K5K11

(
1 +

γUηU
K7

)
v14,

v6 =
Q2σMσV
K4K6K11

(
ηI +

γV ηV
K8

)
v14, v7 =

Q2σM
K5K11

(
1 +

γUηU
K7

)
v14,

v8 =
Q2σM
K6K11

(
ηI +

γV ηV
K8

)
v14, v9 =

Q2σMηU
K7K11

v14, v10 =
Q2σMηV
K8K11

v14,

v11 = 0, v12 = 0, v13 =
σM
K11

v14 v14 = (β∗HV )2(1− αBεB)2M∗
UσM

(
S∗UσUQ11

+ S∗V σV (1− εV )Q12

)
+ (N∗H)2K11

[
K10 +K11

](
K3K4K5K6K7K8

)2
,

(5.4.37)
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where

Q11 =
[
K7(K3 +K5)(K7 + γUηU) +K3K5γUηU

](
K4K6K8

)2
, Q12 =

[
K8(K4+

K6) (K8ηI + γV ηV ) +K4K6γV ηV
](
K3K5K7

)2
.

The right eigenvector (w) is denoted by w =
[
w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11,

w12, w13, w14

]T
, with

w1 =
−
(
Q1K2 +Q2ωV

)
(
K1K2 − ωV ξV

) w14, w2 =
−
(
Q1ξV +Q2K1

)
(
K1K2 − ωV ξV

) w14,

w3 =
Q1σUγUτU
K3K5K7µH

w14, w4 =
Q2σUγV τV
K4K6K8µH

w14,

w5 =
Q1

K3

w14, w6 =
Q2

K4

w14, w7 =
Q1σU
K3K5

w14, w8 =
Q2σV
K4K6

w14,

w9 =
Q1σUγU
K3K7K5

w14, w10 =
Q2σV γVw14

K4K6K8

, w11 = 0, w12 =
K11

σM
w14,

w13 =
K10

σM
w14, w14 = (N∗H)2K11

(
K3K4K5K6K7K8

)2

,

The eigenvalues v14 and w14 are chosen so that the classical requirement that the dot
product of v and w satisfies v.w = 1. Clearly vi ≥ 0 while w1, w2 are negative (for
variables that are non-zero at DFE), such choice is justified by Remark 1 of [26] which
states;

Remark. The requirement that w is non-negative in the theorem is not necessary.
When some components in w are negative, we still can apply this theorem, but one
has to compare w with the actual equilibrium because the general parametrization of
the Centre Manifold before the coordinate change is,

W c =

{
x0 + c(t)w + h(c, φV ) : v.h(c, φV ) = 0, |c| ≤ c0, c(0) = 0

}
,

provided that x0 is a non-negative equilibrium of interest (usually x0 is the disease-free
equilibrium). Hence, x0 − 2bφV

a
> 0 requires that wj > 0 whenever x0(j) = 0. If

x0(j) > 0, then w(j) need not be positive [26].

It can be verified that v.w = 1, thus all the necessarily conditions for the application
of Lemma 3 and Theorem 4 of [139] as well as Theorem 4.1 of [26] are satisfied. After
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series of computations and simplifications we obtained

a =
n∑

k,i,j=1

vkwIwj
∂2fk
∂xI∂xj

(0, 0) = −2(β∗HV )2(1− εBαB)2w2
14v14

(N∗H)2

{M∗
UP1(1− εBαB)

K11(
P3 + P5 − P6 − P7

)
σM +N∗HP1 + P9S

∗
V (1− εBαB)(1− εV )

(
P3 + P4 − P6

)
+ P8S

∗
U(1− εBαB)

(
P2 + P5 − P7

)
+ P8P10(1− εBαB)

(
N∗HεW − S∗V

)
+ P9P11

(1− εBαB)
(
N∗HεW − S∗U

)
+ P9P11S

∗
V (1− εBαB)εV + P8P6S

∗
V (1− εBαB)+

P9P7S
∗
U(1− εBαB)(1− εV )

}
where,

P1 =
S∗Uβ

∗
HV σU

N∗HK3K5

(
1 +

γUηU
K7

)
+
S∗V β

∗
HV σV (1− εV )

N∗HK4K6

(
ηI +

γV ηV
K8

)
,

P2 =
S∗Uβ

∗
HV

N∗HK3

(
1 +

σU
K5

+
σUγU
K5K7

)
, P3 =

S∗Uβ
∗
HV

N∗HK3

(
1 +

σU
K5

+
σUγU
K5K7

+
τUσUγU
K5K7µH

)
,

P4 =
S∗V β

∗
HV (1− εV )

N∗HK4

(
1 +

σV
K6

+
σV γV
K6K8

)
,

P5 =
S∗V β

∗
HV (1− εV )

N∗HK4

(
1 +

σV
K6

+
σV γV
K6K8

+
τV σV γV
K6K8µH

)
,

P6 =
β∗HV

(
S∗UK2 + S∗V ωV (1− εV )

)
N∗H
(
K1K2 − ωV ξV

) , P7 =
β∗HV

(
S∗UξV + S∗VK1(1− εV )

)
N∗H
(
K1K2 − ωV ξV

) ,

P8 =
β∗HVM

∗
UσMσU

K3K5K11N∗H

(
1 +

γUηU
K7

)
, P9 =

β∗HVM
∗
UσMσV

K4K6K11N∗H

(
ηI +

γV ηV
K8

)
,

P10 =
β∗HV S

∗
UσUγUτU

N∗HK3K5K7µH
, P11 =

β∗HV S
∗
V σUγV τV (1− εV )

N∗HK4K6K8µH
,

while,

b =
n∑

k,i=1

vkwI
∂2fk

∂xI∂φV
(0, 0) =

β∗HVM
∗
UσMv14w14

(N∗H)2

[ S∗UσU
K3K5K11

(
1 +

γUηU
K7

)
+

S∗V σV
K4K6K11

(
ηI +

γV ηV
K8

)]
+
[β∗HV S∗UσMγUσU

N∗HK3K5K7

(
1 +

γUηU
K5

)
+
β∗HV S

∗
V (1− εV )

N∗HK4K6

σMσV

(
ηI +

γV ηV
K8

)]M∗
UσMv14w14

N∗HK11

> 0

Since b > 0, the direction of bifurcation depends on the sign of a, which can be
positive or negative, and a > 0 means the model (5.2.1) undergo backward bifurcation
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at R0V = 1 [26, 139]. Thus we claim the following result.

Theorem 5.4.1. The autonomous malaria model (5.2.1) undergo backward bifurca-
tion at R0V = 1 whenever the bifurcation coefficient a is positive.

5.4.3 Non-existence of backward bifurcation

It is well known that disease induced death rate and imperfect vaccination are some
of the major causes of backward bifurcation in vector borne disease models. Let
δU = δV = ωV = 0, then a reduces to

a =
n∑

k,i,j=1

vkwIwj
∂2fk
∂xI∂xj

(0, 0) = −2(β∗HV )2(1− εBαB)2w2
14v14

(N∗H)2

{
N∗HP1+

P4P9S
∗
V (1− εV ) + P2P8S

∗
U + P8P10

(
N∗HεW − S∗V

)
+ P9P11

(
N∗HεW − S∗U

)
+

P9P11S
∗
V εV + P8P6S

∗
V + P9P7S

∗
U(1− εV )

}

which is less than zero provided εW ≥ max
{
S∗V
N∗H
,
S∗U
N∗H

}
Lemma 5.4.2. The model (5.2.1) does not undergo backward bifurcation at R0V = 1

provided δU = δV = ωV = 0 and εW ≥ max
{
S∗V
N∗H
,
S∗U
N∗H

}
.

5.4.4 Impact of backward bifurcation on disease control

Since the direction of bifurcation at R0V = 1 depends on the sign of a, it is important
to investigate the effect of control measures on the direction of backward bifurcation.
Let a = 0, then we have

ε∗B =
1

αB

{
1 +

N∗HP1K11

Z1

}
(5.4.38)

where,

Z1 =M∗
UP1(1− εBαB)σM

(
P3 + P5 − P6 − P7

)
+ P9S

∗
VK11(1− εBαB)(1− εV )

(
P3

+ P4 − P6

)
+ P8S

∗
UK11(1− εBαB)

(
P2 + P5 − P7

)
+ P8P10K11(1− εBαB)(

N∗HεW − S∗V
)

+ P9P11K11(1− εBαB)
(
N∗HεW − S∗U

)
+ P9P11S

∗
VK11(1−

εBαB)εV + P8P6S
∗
VK11(1− εBαB) + P9P7S

∗
UK11(1− εBαB)(1− εV ),
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therefore for the direction of bifurcation at R0V to be forward, the vaccine efficacy εB
should be greater than ε∗B. Similarly,

ε∗V =
Z2

Z3

, (5.4.39)

where,

Z2 =
M∗

UP1(1− εBαB)σM
K11

(
P3 + P5 − P6 − P7

)
+N∗HP1 + P9S

∗
V (1− εBαB)

(
P3+

P4 − P6

)
+ P8S

∗
U(1− εBαB)

(
P2 + P5 − P7

)
+ P8P10(1− εBαB)

(
N∗HεW − S∗V

)
+ P9P11(1− εBαB)

(
N∗HεW − S∗U

)
+ P8P6S

∗
V (1− εBαB) + P9P7S

∗
U(1− εBαB),

and,

Z3 = P9S
∗
V (1− εBαB)

(
P3 + P4 − P6

)
+ P9P7S

∗
U(1− εBαB)− P9P11S

∗
V (1− εBαB),

and thus, for the direction of bifurcation at R0V = 1 to be forward, then εV > ε∗V .

5.5 Analysis of non-autonomous model

Consider the non-autonomous model given by (5.2.1) where the time dependent basic
offspring number given by

N0(t) =
φA(T )σA(T )r

(σA(T ) + εLαL + µA(T ))(µV (T ) + εAαA)
(5.5.40)

is strictly greater than 1. To find the disease-free state of the system given by (5.2.1),
we let EU(t) = EV (t) = IU(t) = IV (t) = RU(t) = RV (t) = ME(t) = MI(t) = 0 and
obtained a non-trivial disease-free state given by

E4 =

(
S∗∗U , S

∗∗
V ,W

∗∗
U ,W

∗∗
V , E

∗∗
U , E

∗∗
V , I

∗∗
U , I

∗∗
V , R

∗∗
U , R

∗∗
V , A

∗∗
M ,M

∗∗
U ,M

∗∗
E ,M

∗∗
I

)
=

(
ΠH(ωV + µH)

µH(ωV + µH + ξV )
,

ΠHξV
µH(ωV + µH + ξV )

, 0, 0, 0, 0, 0, 0, 0, 0, A∗∗M ,M
∗∗
U , 0, 0

)

where the pair (A∗∗M ,M
∗∗
U ) is the unique positive ω−periodic solution of

dA∗∗M(t)

dt
= φA(T )

(
1− A∗∗M(t)

K

)
N∗∗V (t)− σA(T )A∗∗M(t)− αLεLA∗∗M(t)− µA(T )A∗∗M(t)

dM∗∗
U (t)

dt
= σA(T )A∗∗M(t)− µV (T )M∗∗

U (t)− αAεAM∗∗
U (t),

 
 
 



Malaria 140

which is obtained when N0(t) > 1. On the other hand, a unique positive trivial
non-periodic solution is obtained when N0(t) ≤ 1.

5.5.1 Basic reproduction ratio

The local asymptotic stability of the positive periodic disease-free state (E4) can be
established using a threshold parameter called the basic reproduction ratio [141]. The
basic reproduction ratio for the model (5.2.1) is computed using the theory developed
by [141] and used for many periodic models such as [1, 3, 106, 89, 111, 153] and some
of the references therein.

Consider the disease classes of the model (5.2.1) given by

dEU(t)

dt
= λH(T )SU(t) + λH(T )(1− εW )WU(t)− σUEU(t)− µHEU(t),

dEV (t)

dt
= λH(T )(1− εV )SV (t) + λH(T )(1− εW )WV (t)− σVEV (t)− µHEV (t),

dIU(t)

dt
= σUEU(t)− γUIU(t)− δUIU(t)− µHIU(t)

dIV (t)

dt
= σVEV (t)− γV IV (t)− δV IV (t)− µHIV (t)

dRU(t)

dt
= γUIU − τURU − µHRU

dRV (t)

dt
= γV IV − τVRV − µHRV

dME(t)

dt
= λV (T )MU(t)− σM(T )ME(t)− µV (T )ME(t)− αAεAME(t)

dMI(t)

dt
= σM(T )ME(t)− µV (T )MI(t)− αAεAMI(t),

(5.5.41)
where λH(T ) and λV (T ) are as defined in (5.2.3). The matrix of new infection terms
F (t) and matrix of transfer in and out of infectious compartments V (t) are respectively
given by

F (t) =



0 0 0 0 0 0 0
S∗HG0

N∗H

0 0 0 0 0 0 0
S∗V G0(1−εV )

N∗H
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0
G0M∗U
N∗H

G0ηIM
∗
U

N∗H

G0ηUM
∗
U

N∗H

G0ηVM
∗
U

N∗H
0 0

0 0 0 0 0 0 0 0


,

 
 
 



Malaria 141

while,

V (t) =



G1 0 0 0 0 0 0 0
0 G2 0 0 0 0 0 0
−σU 0 G3 0 0 0 0 0

0 −σV 0 G4 0 0 0 0
0 0 −γU 0 G5 0 0 0
0 0 0 −γV 0 G6 0 0
0 0 0 0 0 0 G7 0
0 0 0 0 0 0 −σM G8


,

where,

G0 = βHV (1− εBαB)aM(T ), G1 = σU + µH , G2 = σV + µH ,

G3 = γU + δU + µH , G4 = γV + δV + µH , G5 = τU + µH , G6 = τV + µV ,

G7 = σM(T ) + µV (T ) + αAεA, G8 = µV (T ) + αAεA.

Notice that F (t) is non-negative and−V (t) is cooperative. Let K(t) =
(
EU(t), EV (t),

IU(t), IV (t), RU(t), RV (t),ME(t),MI(t)
)T

, then the linearization of (5.5.41) can be
re-written in the form

dK

dt
=
(
F (t)− V (t)

)
K(t).

Following the approach of [89, 141], let Y (t, s) and ΦT = Y (t, 0) respectively be
the evolution operator and monodromy matrix of the linear ω−periodic system dy

dt
=

−V y(t), t ≥ s, that is for each s ∈ R, the 8× 8 matrix Y (t, s) satisfies

dY

dt
= −V Y (t, s), Y (s, s) = I, t ≥ s,

where I is the identity matrix of order 8. Let ZT be the Banach space of all ω-
periodic functions equipped with the maximum norm and an ω-periodic function of s
denoted by α(s) be the initial distribution of infectious individuals in the community,
then the rate at which new infections are produced by an infected individual in the
community who were introduced at time s is given by F (s)α(s) [3, 89, 141]. Likewise
the distribution of new infected individuals from infections at time s and remain in the
infected compartments at a later time t is Y (t, s)F (s)α(s). Therefore

θ(t) =

∫ t

−∞
Y (t, s)F (s)α(s)ds =

∫ ∞
0

Y (t, t− a)F (t− a)α(t− a)da (5.5.42)

gives the cumulative distribution of new infections at time t that are produced by all
infected individuals (α(s)) introduced at sometimes before t.
Define the linear operator L : ZT −→ ZT by

(Lα)(s) =

∫ ∞
0

Y (t, t− a)F (t− a)α(t− a)da ∀t ∈ R, α ∈ ZT . (5.5.43)

If ρ(L) is the spectral radius of L, the basic reproduction ratio (R0T ) is given by ρ(L)
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[141]. It is easy to show that, in addition to Assumptions A1 to A5 satisfied by the
autonomous system, the non-autonomous model (5.2.1) can be shown to satisfy the
additional Assumptions A6 and A7 of [141]. Thus the following result follows from
Theorem

Theorem 5.5.1. The disease free state (E4), of the non-autonomous model (5.2.1)
is LAS if R0T < 1 and unstable if R0T > 1 provided N0(t) > 1.

5.6 Effect of control strategies

In this section, numerical simulations to assess impact of different control measures
(single or in combination) are carried out for both the autonomous and non-autonomous
models.

Simulations to assess effects of control strategies for the non-autonomous model
were carried out for the cities of Kigali, Niamey and Gulu, where values of the param-
eters for the generalized temperature function given by (5.2.2) were used (as given
in Table 3 of [3]). In addition, more simulations for the autonomous model (where
temperature values are fixed) based on control measures are also presented.

5.6.1 Effects of control on the non-autonomous model

Using the generalized temperature function given by (5.2.2), simulations were done
to assess the impact of low (administered at 0.1), medium (at 0.3) and high (at 0.5)
control measures. Three different control strategies are considered, namely;

(i) Bed nets and vaccination strategy;

(ii) Mosquito control (larvicides and adulticides) strategy;

(iii) Bed nets, vaccination and mosquito control strategy (Hybrid strategy).

Simulations are carried out for the functional form of aM , φA, σA, µA, σM and µV
(temperature dependent), while

ΠH = 70, βHV = 0.64, εW = 0.5, ωV = 0.1, τU = 0.1, τV = 0.02, γU = 0.015,

δU = 0.004, δV = 0.003, σU = 0.08, σV = 0.07, ηI = 0.7, ηU = 0.3, ηV = 0.1,

K = 100000, µH = 0.0000548, γV = 0.017.

The generalized temperature parameter values were fitted for some selected sub-
Saharan African countries from 2011-2013 and presented in Table 3 of [3]. Three
cities are selected for our simulations and parameters presented as follows:

City of Kigali with latitude −1.961 and longitude 30.078 has,

T0 = 20.5, T1 = 0.0455, ω = 0.9503, φ = −150.499.
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The city of Gulu, Uganda with latitude 2.763 and longitude of 32.294 has,

T0 = 23.5, T1 = 0.131, ω = 1.0349, φ = −125.4224.

Similarly, Niamey of Niger republic with latitude 13.516 and longitude 2.140 has,

T0 = 29.9, T1 = −0.139, ω = 0.9256, φ = −282.5711.

It should be observed that, Kigali has the lowest mean annual temperature, followed
by Gulu then Niamey, also Niamey has the smallest phase shift, then Kigali and Gulu.

As expected, the hybrid control is the most effective in reaching the DFE, reducing
the number of infected humans and cycles of infections in the three cities as presented
by Figure 5.12, Figure 5.13 and Figure 5.14. Similarly, the use of vaccination and bed
nets (Figure 5.9, Figure 5.10 and Figure 5.11) is more effective in reaching the DFE,
reducing the number of infected humans and cycles of infections in comparison with the
use of larvicides and adulticides (Figure 5.6, Figure 5.7 and Figure 5.8). Observe that
control is more effective in Kigali, the city with the smallest mean annual temperature
and moderate phase shift, where for hybrid control, the DFE is reached after 1,600
days in comparison to Gulu (4,500 days) and Niamey (4,000 days). Although the mean
annual temperature of Gulu is smaller than that of Niamey, control is more effective
in Niamey, this is attributed to the phase shift, where that of Gulu is bigger, thus, in
addition to mean annual temperature, phase shift also affects the impact of control.
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Figure 5.6: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with varying temperature for the city Kigali in Rwanda and the use
of larvicides and adulticides.
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Figure 5.7: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with varying temperature for the city Gulu in Uganda and the use
of larvicides and adulticides.
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Figure 5.8: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with varying temperature for the city Niamey in Niger republic and
the use of larvicides and adulticides.
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Figure 5.9: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with varying temperature for the city Kigali in Rwanda and the use
of larvicides and adulticides.
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Figure 5.10: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with varying temperature for the city Gulu in Uganda and the use
of larvicides and adulticides.
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Figure 5.11: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with varying temperature for the city Niamey in Niger republic and
the use of larvicides and adulticides.
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Figure 5.12: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with varying temperature for the city Kigali in Rwanda and the use
of larvicides and adulticides.
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Figure 5.13: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with varying temperature for the city Gulu in Uganda and the use
of larvicides and adulticides.
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Figure 5.14: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with varying temperature for the city Niamey in Niger republic and
the use of larvicides and adulticides.
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5.6.2 Effects of control on the autonomous model

In this section, we consider five main control strategies for the autonomous form of
the model, namely:

(i) Bed nets-only strategy;

(ii) Vaccination-only strategy;

(iii) Mosquito control-only (larvicides) strategy;

(iv) Bed nets and vaccination strategy;

(v) Bed nets, vaccination and mosquito control strategy (Hybrid strategy).

Using the functional definitions of aM , φA, σA, µA, σM and µV with fixed temperature
values at T = 20, 25 and 30 degrees (to obtain constant values), together with the
following parameter values:

ΠH = 450, βHV = 0.64, εW = 0.5, ωV = 0.1, ηV = 0.1, ηU = 0.3, τU = 0.1,

τV = 0.02, γU = 0.015, γV = 0.017, δU = 0.004, δV = 0.003, σU = 0.08,

σV = 0.07, ηI = 0.7,K = 150000, µH = 0.0000342.

The model will be simulated to assess the effectiveness of these strategies (imple-
mented singly or in combination).

Since we are interested in exploring the feasibility of disease elimination, these
simulations are carried out for the special case of the model where backward bifurcation
does not occur. In order to analyse the effect of the aforementioned control strategies
in the presence of temperature changes, three different sets of numerical simulations
are carried out, that is the cases where temperature (T ) is 200C, 250C and 300C.

5.6.3 Bed nets-only strategy

Here, the effect of using bed nets-only is assessed, by setting all other parameters
related to vaccination and mosquito control to zero, that is the case when ξV = εV =
αA = εA = αL = εL = 0. The model is simulated using the following levels of bed
nets effectiveness (with bed nets efficacy of 0.5):

(i) Low bed nets effectiveness: αB = 0.1 (i.e., only 10% of individuals uses bed
nets effectively);

(ii) Moderate bed nets effectiveness: αB = 0.2 (i.e., only 20% of individuals uses
bed nets effectively);

(iii) High bed nets effectiveness: αB = 0.5 (i.e., only 50% of individuals uses bed
nets effectively).

As expected, an increase in the rate of bed net use leads to a decrease in the number
of infected individuals. For instance, the resulting number of individuals corresponding
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Figure 5.15: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with: (A) When T = 20 having; R0V = 0.1233 when αB = 0.1,
R0V = 0.1103 when αB = 0.3, and R0V = 0.0973 when αB = 0.5 with N0 =
116.9812. (B) When T = 25 having; R0V = 0.3492 when αB = 0.1, R0V = 0.3125
when αB = 0.3, and R0V = 0.2757 when αB = 0.5 also with N0 = 116.7733.
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Figure 5.16: Simulations of the model (5.2.1) showing: (C) The total number of
infected humans (IU + IV ) with T = 30, showing R0V = 0.3052, N0 = 41.4528 when
αB = 0.1, R0V = 0.2731, N0 = 41.4528 when αB = 0.3, and R0V = 0.2410, N0 =
41.4528 when αB = 0.5. (D) Cumulative new cases in humans at T = 200C with
different levels of applications.

to the low, moderate and high bed nets use (for the case when the temperature is
taken to be 200C) is 18,000, 12,200 and 6,100, respectively (Table 5.2). Figure 5.15
shows the simulations of the model using different temperature levels and bed nets use,
from which it is evident that the use of bed nets is more effective when temperature
is 200C (as in Figure 5.15A), where the total number of infected humans is lower and
approach the DFE faster. The DFE is reached by the total infected humans when
T = 300C (as shown in Figure 5.16C) at almost half the time taken to reach the DFE
when T = 250C (where the total infected humans are at their peak when T = 250C;
Figure 5.15B). The cumulative number of new cases in humans with low, medium and
high rates of applying bed nets at T = 200C is depicted in Figure 5.16D.
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Table 5.2: Number of infected individuals using bed nets-only strategy.

Level of Temp at Temp at Temp at
bed net use 200C 250C 300C

Low (αB = 0.1) 18000 98000 80000
Moderate (αB = 0.3) 12200 82000 67000
High (αB = 0.5) 6100 68000 56000

5.6.4 Vaccination-only strategy

The effect of the use of vaccination only for temperatures of T = 200C, T = 250C
and T = 300C with vaccine efficacy of 0.75 is investigated. For the vaccination-only
strategy, we have αA = εA = αB = εB = αL = εL = 0. Simulation of the model
(5.2.1) are carried out to assess the impact of vaccination in reducing the malaria
burden under the following levels of vaccination effectiveness.

(i) Low vaccination effectiveness: ξV = 0.1 (i.e., only 10% of individuals are vacci-
nated effectively);

(ii) Moderate vaccination effectiveness: ξV = 0.3 (i.e., only 30% of individuals are
vaccinated effectively);

(iii) High vaccination effectiveness: ξV = 0.5 (i.e., only 50% of individuals are vac-
cinated effectively).

Similar to the use of bed nets, vaccination is more effective in reducing the total
number of infected humans and time taken to reach the DFE when the temperature
is 200C (Figure 5.17A), where as similar effect for both temperatures of 250C (Figure
5.17B) and 300C (Figure 5.18C) are obtained. A cumulative number of new cases
in humans with low, medium and high rates of vaccine application at T = 200C is
depicted in Figure 5.18D.

As expected the vaccination reproduction number decreases with increase in the
rate of application of vaccines. At T = 200C, total infected humans reach the DFE
in less than 1,200 days at most, while it reaches the DFE in about 8,000 days for the
case when T = 250C and less than 5,000 days when T = 300C as in Figure 5.17A,
Figure 5.17B and Figure 5.18C.
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Figure 5.17: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with: (A) T = 20 such that R0V = 0.2838 for ξV = 0.1, R0V =
0.3353 for ξV = 0.3, R0 = 0.3508 for ξV = 0.5 and N0 = 116.9812. (B) T = 25
such that R0V = 0.8036 for ξV = 0.1, R0V = 0.9493 for ξV = 0.3, R0V = 0.9931 for
ξV = 0.5 and N0 = 116.7733.
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Figure 5.18: Simulations of the model (5.2.1) showing: (C) The total number of
infected humans (IU + IV ) with T = 30 which implies R0V = 0.7000 for ξV = 0.1,
R0V = 0.8267 for ξV = 0.3, R0V = 0.8648 for ξV = 0.5 and N0 = 41.4528. (D)
Cumulative number of new human cases for T = 20 with different levels of applications.

5.6.5 Mosquito control-only strategy (adulticides strategy)

Here, the effect of the use of adulticides only with efficacy of 0.5 is simulated, that
is when αB = εB = αL = εL = ξV = εV = 0. Notice that the use of larvicides
only show no effect in the dynamics of infected humans (it mainly affects the basic
offspring number).
Further simulations were carried out to assess the impact of mosquito control-only
strategy using adulticides. The following levels of adulticides effectiveness are consid-
ered:

(i) Low adulticides effectiveness: αA = 0.1 (i.e., only 10% applies adulticides effec-
tive);

(ii) Moderate adulticides effectiveness: αA = 0.3 (i.e., only 30% applies adulticides
effective);
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(iii) High adulticides effectiveness: αA = 0.5 (i.e., only 50% applies adulticides
effective).

This control strategy shows the biggest positive effect in both reducing the total
number of infected individuals and the effect of using different levels of controls for
different temperatures compared to other forms of single controls. For T = 200C
(as shown in Figure 5.19A), mosquito control measure at the rate αA = 0.5 pushes
the total number of infected humans to reach the DFE at the shortest period in
comparison to when T = 250C (as in Figure 5.19B), and when T = 300C (Figure
5.20C). The cumulative number of new cases in humans with low, medium and high
rates of applying adulticides at T = 200C is depicted in Figure 5.20D.
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Figure 5.19: Simulations of the model (5.2.1) showing the total number of infected
humans (IU+IV ) with: (A) Obtained for T = 20, where R0V = 0.0957, N0 = 93.1507
for αA = 0.1, R0V = 0.0600, N0 = 66.1852 for αA = 0.3, and R0V = 0.0420, N0 =
51.3270 for αA = 0.5. (B) Obtained for T = 25, with R0V = 0.2786, N0 = 93.6979
for αA = 0.1, R0V = 0.1810, N0 = 67.1564 for αA = 0.3, and R0V = 0.1299, N0 =
52.3324 for αA = 0.5.
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Figure 5.20: Simulations of the model (5.2.1) showing: (C) The total number of
infected humans (IU + IV ) with T = 30, where R0V = 0.2670, N0 = 35.9381 for
αA = 0.1, R0V = 0.1954, N0 = 28.3856 for αA = 0.3, and R0V = 0.1510, N0 =
23.4562 for αA = 0.5. (D) Cumulative number of new cases in humans with different
level of interventions and T = 200C.
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5.6.6 Bed nets and vaccination strategy

The combined effect of the use of bed nets and imperfect vaccination are explored
here. Vaccine efficacy of 0.75 and bed net efficacy of 0.5 are used. For this simulation,
parameters related to other control strategies are set to zero (i.e., εA = αA = εB =
αB = 0).
The model is simulated using the following levels of bed nets and vaccination effec-
tiveness at various temperature levels (200C, 250C and 300C):

(i) Low bed nets and vaccination effectiveness: αB = ξV = 0.1 (i.e., only 10% of
individuals uses bed nets and vaccinated effectively);

(ii) Moderate bed nets and vaccination effectiveness: αB = ξV = 0.3 (i.e., only
30% of individuals uses bed nets and vaccinated effectively);

(iii) High bed nets and vaccination effectiveness: αB = ξV = 0.5 (i.e., only 50% of
individuals uses bed nets and vaccinated effectively).

As expected, the combined use of bed nets and vaccination is more effective than
the singular use of bed nets or vaccine. Figure 5.23 and Figure 5.24 depict the
simulations of the model (5.2.1) with the use of bed nets and vaccination, from which
it is evident that the total infected humans reach the DFE (for low, medium and
high application of controls) faster than the separate use of the controls for both
T = 200 (Figure 5.21A), T = 250C (Figure 5.21B), and T = 300C (Figure 5.22C).
The cumulative number of new cases in humans with low, medium and high rates of
applying bed nets and vaccines at T = 200C is depicted in Figure 5.22D.
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Figure 5.21: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with: (A) Obtained for T = 20, so that R0V = 0.2696 for
αV = αB = 0.1, R0V = 0.2850 for αV = αB = 0.3, and R0V = 0.2631 for
αV = αB = 0.5 with N0 = 116.9812. (B) Obtained for T = 25, so that R0V = 0.7634
for αV = αB = 0.1, R0V = 0.8069 for αV = αB = 0.3, and R0V = 0.7448 for
αV = αB = 0.5 with N0 = 116.7733.

 
 
 



Malaria 153

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7
x 10

4

Time (days)

T
ot

al
 in

fe
ct

ed
 h

um
an

s 
( 

I U
 +

 I V
 )

 

 
ξV = αB = 0.1

ξV = αB = 0.3

ξV = αB = 0.5

C

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (days)

T
ot

al
 in

fe
ct

ed
 h

um
an

s 
( 

I U
 +

 I V
 )

ξV = αB = 0.1

ξV = αB = 0.3

ξV = αB = 0.5

D

Figure 5.22: Simulations of the model (5.2.1) showing; (C) The total number of
infected humans (IU + IV ) with T = 30, such that R0V = 0.6650 for αV = αB =
0.1, R0V = 0.7027 for αV = αB = 0.3, R0V = 0.6486 for αV = αB = 0.5 and
N0 = 41.4528. (D) Cumulative number of cases in humans with different levels of
applications and T = 200C.

5.6.7 Hybrid strategy

The potential impact of using all controls are examined, using the following effective-
ness levels:

(i) Low effectiveness: εA = εL = αB = ξV = 0.1 (i.e., combined measures at only
10% effectiveness);

(ii) Moderate effectiveness: εA = εL = αB = ξV = 0.3 (i.e., combined measures at
only 30% effectiveness);

(iii) High effectiveness: εA = εL = αB = ξV = 0.5 (i.e., combined measures at only
50% effectiveness).

For high levels of intervention, the total number of infected humans is lower and reach
the DFE at a very short time for the different temperature levels used. For instance,
the total infected humans reach the DFE in less than 1,000 days when T = 200C as
depicted in (Figure 5.23A) and it reaches the DFE in about 3,000 days when T = 250C
(Figure 5.23B) and T = 300C (Figure 5.24C). The cumulative number of new cases in
humans with low, medium and high rates of applying bed nets, vaccines and adulticides
at T = 200C is depicted in Figure 5.24D.

 
 
 



Malaria 154

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (days)

T
ot

al
 in

fe
ct

ed
 h

um
an

s 
( 

I U
 +

 I V
 )

 

 
ξV = αA = αB = αL = 0.1

ξV = αA = αB = αL = 0.3

ξV = αA = αB = αL = 0.5

A

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6
x 10

4

Time (days)

T
ot

al
 in

fe
ct

ed
 h

um
an

s 
( 

I U
 +

 I V
 )

 

 
ξV = αA = αB = αL = 0.1

ξV = αA = αB = αL = 0.3

ξV = αA = αB = αL = 0.5

B

Figure 5.23: Simulations of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with: (A) Obtained when T = 20, such that R0V = 0.0692, N0 =
70.9784 for low, R0V = 0.0309, N0 = 34.1664 for medium, and R0V = 0.0171, N0 =
20.0347 for high controls. (B) Obtained when T = 25, such that R0V = 0.2017, N0 =
85.1115 for low, R0V = 0.0937, N0 = 51.5536 for medium, and R0 = 0.0533, N0 =
34.7858 for high controls.
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Figure 5.24: Simulations of the model (5.2.1) showing: (C) The total number of
infected humans (IU + IV ) when T = 30, such that R0 = 0.1932, N0 = 34.3476 for
low, R0V = 0.1010, N0 = 24.9232 for medium, and R0V = 0.0619, N0 = 19.0463 for
high controls. (D) Cumulative new cases in humans when T = 20 with different levels
of interventions.

5.7 Sensitivity analysis and Numerical simulation

In this section, the partial rank correlation coefficient (PRCC) of the parameters of
the vaccinated reproduction number for different temperature ranges are given. In
addition, numerical simulations of the model are also presented.

5.7.1 Sensitivity analysis

The partial rank correlation coefficient is a sampling based sensitivity index that mea-
sures the strength of the linear associations between a dependent variable (in this
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case the vaccinated reproduction number), and independent variables (its parameters)
after removing the linear effect of other parameter values. We consider the cases
for constant and various temperatures. Using the vaccinated reproduction number as
the output for temperature values for ranges 150C−200C, 200C−250C, 250C−300C,
300C−350C and that of constant parameter values with a confidence interval of 95%
and 1000 number of boots, the PRCC are obtained.

Table 5.3, Table 5.4, Table 5.5, Table 5.6 and Table 5.7 show the PRCC values,
bias, standard error, minimum and maximum confidence interval for each of the 27
parameters of the basic reproduction ratio with the aforementioned temperature in-
tervals and constant temperature, respectively. Similarly, Figures 5.25, 5.26 and 5.27
show the bar plot of the PRCC of the parameters of the basic reproduction ratio as
temperature varies and constant temperature. For the different temperature ranges,
the rate of vaccination ξV , efficacy of vaccination εV and rate of successful use of
bed nets CB show little variation as temperature varies. The rate of vaccination is
positively correlated to R0V due to the imperfect vaccine (not 100% effective), thus
vaccinated individuals can still be acquire infections.

The use of larvicides is positively correlated to R0V for temperature ranging from
150C-200C with PRCC value of +0.4099, but when the temperature range is from
200C-250C, the PRCC becomes negatively correlated to R0V with value of −0.0179,
it remains negative with PRCC value of −0.1008 when the temperature is between
250C-300C and returns to positive for temperature of 300C-350C having PRCC of
+0.1099, where as the PRCC is negative with value of −0.0381 in a constant temper-
ature settings. For the use of adulticides, negative correlation with R0V are obtained
with PRCC values of −0.8184, −0.7572, −0.6391, −0.7671 and −0.6159 for tem-
perature ranges of 150C−200C, 200C−250C, 250C−300C, 300C−350C and constant
respectively.

Disease induced death rates, which have been shown to be main causes of backward
bifurcations in mosquito borne diseases such as [27, 35, 62, 111] show wide variations as
temperature changes for both non-vaccinated infected and vaccinated infected humans,
PRCC values of δV = +0.0038, δV = −0.0103, δV = +0.0065, δV = −0.0227, and
δV = +0.0318 were obtained for temperature ranges of 150C−200C, 200C−250C,
250C−300C, 300C−350C and constant respectively. Similarly for the same temperature
ranges and constant, the PRCC values of δU = +0.0532, δU = −0.0379, δU =
+0.0326, δU = +0.0422, and δU = +0.0325 were respectively obtained. Variations
occur in other temperature dependent and temperature independent parameters as
presented in the Tables and Figures for the global sensitivity analysis.
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Table 5.3: PRCC for parameters of the basic reproduction ratio with temperature of
150C −200C

Para PRCC Bias Std. error Min. c.i. Max. c.i.

σU +0.0116573 −0.0007059 0.0327846 −0.0507698 +0.0733284
σV −0.0232599 −0.0011866 0.0319199 −0.0859427 +0.0387305
σA +0.0176615 +0.0002679 0.0319108 −0.0446594 +0.0827357
σM +0.1055920 +0.0002096 0.0336147 +0.0399197 +0.1682346
µH +0.1216671 −0.0004487 0.0335058 +0.0583749 +0.1891785
µV −0.0390433 −0.0011569 0.0330434 −0.1020185 +0.0305234
µA +0.0176899 +0.0013925 0.0323228 −0.0455994 +0.0791484
δV +0.0038029 −0.0010111 0.0340335 −0.0611271 +0.0690736
δU +0.0532007 −0.0004144 0.0324357 −0.0115217 +0.1187615
γU −0.2641840 +0.0003395 0.0308615 −0.3282315 −0.2061550
γV −0.2422403 −0.0005914 0.0328178 −0.3056412 −0.1780375
τU −0.0734964 −0.0015532 0.0319108 −0.1341357 −0.0135771
τV +0.0115517 −0.0025839 0.0312943 −0.0466292 +0.0706519
ΠH −0.3772186 −0.0032223 0.0320140 −0.4432971 −0.3160064
φA −0.4343937 −0.0007132 0.0294558 −0.4954435 −0.3774096
cA −0.8183722 −0.0026977 0.0121513 −0.8432971 −0.7961376
cL +0.4098845 +0.0020502 0.0294757 +0.3485913 +0.4682076
cB −0.6670218 +0.0000797 0.0181261 −0.7034560 −0.6336552
κ +0.4298697 −0.0008229 0.0302802 +0.3714995 +0.4885408
βHV +0.4945893 +0.0010630 0.0263685 +0.4471908 +0.5457829
aM +0.2805036 +0.0014569 0.0311481 +0.2195653 +0.3425459
εV −0.3686739 −0.0058365 0.0293159 −0.4263527 −0.3100787
ωV +0.2823186 −0.0010166 0.0321963 +0.2227506 +0.3458825
ηU +0.0454152 +0.0035739 0.0338749 −0.0191098 +0.1110642
ηV +0.0339887 +0.0004213 0.0347059 −0.0376288 +0.0972901
ηI +0.3039816 −0.0003942 0.0318035 +0.2397632 +0.3678769
ξV +0.5238138 +0.0097502 0.0259621 +0.4761949 +0.5741889
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Table 5.4: PRCC for parameters of the basic reproduction ratio with temperature of
200C−250C.

Para Original Bias Std. error Min. c.i. Max. c.i.

σU +0.0272416 −0.0007902 0.0327054 −0.0360532 +0.0937781
σV −0.0073296 −0.0006006 0.0328427 −0.0699371 +0.0585221
σA +0.0924912 +0.0014401 0.0316656 +0.0281105 +0.1533272
σM +0.0944706 −0.0000784 0.0325518 +0.0332401 +0.1623727
µH +0.1127021 +0.0000767 0.0316062 +0.0482402 +0.1711439
µV −0.0200803 −0.0008417 0.0328245 −0.0830335 +0.0488403
µA −0.0566776 −0.0001684 0.0329911 −0.1215934 +0.0070602
δV −0.0102746 −0.0017691 0.0340915 −0.0700897 +0.0622394
δU −0.0379350 +0.0007999 0.0340594 −0.0300189 +0.1049511
γU −0.2487736 +0.0008432 0.0326861 −0.3148316 −0.1842316
γV −0.2480796 −0.0003195 0.0310429 −0.3157813 −0.1869417
τU −0.0495361 −0.0009234 0.0334424 −0.1146326 +0.0179481
τV +0.0197085 −0.0015089 0.0331141 −0.0439765 +0.0853165
ΠH −0.3473466 +0.0000988 0.0300609 −0.4084650 −0.2871868
φA −0.0364459 +0.0007974 0.0319624 −0.1012336 +0.0273710
cA −0.7571855 +0.0003732 0.0133595 −0.7854990 −0.7318509
cL −0.0179992 +0.0005700 0.0318969 −0.0796521 +0.0423534
cB −0.6201653 +0.0006721 0.0187960 −0.6598916 −0.5838745
κ +0.3893278 −0.0013335 0.0307154 +0.3278164 +0.4527466
βHV +0.4631499 −0.0003937 0.0267489 +0.4131450 +0.5186893
aM +0.1232240 +0.0008872 0.0325427 +0.0600620 +0.1882611
εV −0.3162192 +0.0003416 0.0295568 −0.3722439 −0.2576412
ωV +0.2622113 −0.0003436 0.0309711 +0.2010132 +0.3242911
ηU +0.0545866 +0.0010445 0.0324711 −0.0074782 +0.1179109
ηV +0.0385358 +0.0002086 0.0330906 −0.0253969 +0.1084278
ηI +0.2768270 +0.0003028 0.0297059 +0.2187766 +0.3324457
ξV +0.4844347 +0.0001834 0.0251479 +0.4376538 +0.5357899
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Table 5.5: PRCC for parameters of the basic reproduction ratio with temperature of
250C−300C.

Para Original Bias Std. error Min. c.i. Max. c.i.

σU +0.0483804 −0.0004057 0.0333765 −0.0186168 +0.1125817
σV +0.0114802 −0.0011647 0.0309363 −0.0532153 +0.0730034
σA +0.0597791 +0.0012013 0.0332133 −0.0042205 +0.1216877
σM +0.0445856 −0.0004296 0.0327879 −0.0216979 +0.1082284
µH +0.1068126 −0.0004946 0.0321849 +0.0445602 +0.1664874
µV −0.0645414 −0.0009126 0.0331577 −0.1262763 +0.0088067
µA −0.0559747 +0.0003682 0.0329798 −0.1186303 +0.0069229
δV +0.0064994 −0.0015801 0.0336362 −0.0546403 +0.0768521
δU +0.0326299 +0.0003169 0.0335178 −0.0318403 +0.1004987
γU −0.2750038 +0.0006289 0.0326875 −0.3405111 −0.2100418
γV −0.2766534 −0.0002737 0.0313243 −0.3389869 −0.2153664
τU −0.0510142 −0.0006659 0.0335426 −0.1156434 +0.0156466
τV +0.0060012 −0.0001283 0.0326736 −0.0553695 +0.0731931
ΠH −0.3874218 −0.0007302 0.0297809 −0.4455378 −0.3277662
φA +0.0033342 +0.0010076 0.0331209 −0.0621007 +0.0649226
cA −0.6390782 +0.0002818 0.0202658 −0.6832559 −0.6026203
cL −0.1007759 +0.0001927 0.0337962 −0.1660626 −0.0351183
cB −0.6519635 +0.0003658 0.0185159 −0.6902679 −0.6162609
κ +0.4161619 −0.0017819 0.0299235 +0.3567321 +0.4768279
βHV +0.5029739 +0.0005889 0.0264660 +0.4526908 +0.5545998
aM +0.0784946 −0.0001587 0.0333855 +0.0185815 +0.1444017
εV −0.3477630 −0.0004523 0.0290541 −0.4048732 −0.2903114
ωV +0.3007633 −0.0007619 0.0301747 +0.2451951 +0.3628431
ηU +0.0854023 +0.0002371 0.0335750 +0.0193157 +0.1534979
ηV +0.0207561 +0.0000308 0.0335975 −0.0416263 +0.0882889
ηI +0.3051394 −0.0001698 0.0303403 +0.2476859 +0.3683635
ξV +0.4968967 +0.0000247 0.0254239 +0.4482705 +0.5473321
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Table 5.6: PRCC for parameters of the basic reproduction ratio with temperature of
300C−350C.

Para Original Bias Std. error Min. c.i. Max. c.i.

σU +0.0451980 −0.0005944 0.03296141 −0.0155342 +0.1097078
σV +0.0080809 −0.0014946 0.03216838 −0.0561889 +0.0695945
σA −0.0232658 +0.0007003 0.03218964 −0.0884070 +0.0367905
σM +0.1068015 −0.0000438 0.03214870 +0.0438982 +0.1708055
µH +0.1069910 −0.0004608 0.03147377 +0.0463622 +0.1691896
µV −0.1075564 −0.0004600 0.03417210 −0.1743457 −0.0394728
µA +0.0040081 +0.0001087 0.03221020 −0.0606068 +0.0692966
δV −0.0226984 −0.0014608 0.03351764 −0.0894162 +0.0425969
δU +0.0422372 +0.0004247 0.03338551 −0.0233578 +0.1107938
γU −0.2767289 +0.0009461 0.03165590 −0.3407932 −0.2150720
γV −0.2379078 −0.0005803 0.03091655 −0.3003231 −0.1780435
τU −0.0707100 −0.0003518 0.03182795 −0.1300137 −0.0067869
τV +0.0068589 −0.0008134 0.03346120 −0.0575232 +0.0741217
ΠH −0.4010288 −0.0003367 0.02914214 −0.4605973 −0.3408796
φA −0.0889220 +0.0013691 0.03294498 −0.1566463 −0.0267232
cA −0.7671031 +0.0004052 0.01390989 −0.7967973 −0.7413719
cL +0.1099999 +0.0016757 0.03264374 +0.0441499 +0.1753972
cB −0.6612125 +0.0007278 0.01704738 −0.6980249 −0.6295967
κ +0.4223961 −0.0016396 0.02881096 +0.3652521 +0.4794296
βHV +0.5113951 +0.0002744 0.02441461 +0.4649900 +0.5586622
aM +0.0072425 −0.0000582 0.03334982 −0.0593828 +0.0734986
εV −0.3639675 +0.0002173 0.02810343 −0.4221400 −0.3112162
ωV +0.2973694 −0.0006766 0.03052003 +0.2401928 +0.3577935
ηU +0.0610768 +0.0009632 0.03264673 −0.0017988 +0.1241164
ηV +0.0234672 +0.0000817 0.03262804 −0.0404243 +0.0881068
ηI +0.3308712 +0.0002972 0.02985926 +0.2721758 +0.3928036
ξV +0.5098077 +0.0006601 0.02482458 +0.4606819 +0.5583210
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Table 5.7: PRCC for parameters of the basic reproduction ratio with constant.

Para Original Bias Std. error Min. c.i. Max. c.i.

σU +0.0537072 −0.0000335 0.03142014 −0.0065539 +0.1154683
σV −0.0270326 −0.0013361 0.03069721 −0.0909801 +0.0308928
σA +0.4461772 +0.0000156 0.02649914 +0.3933939 +0.4959988
σM +0.3510576 +0.0009426 0.03105527 +0.2909725 +0.4157925
µH +0.1090479 −0.0010750 0.03327486 +0.0467657 +0.1769173
µV −0.1843498 +0.0007244 0.03158123 −0.2477469 −0.1209180
µA +0.0215627 −0.0000023 0.03148113 −0.0402444 +0.0853352
δV +0.0317568 −0.0012651 0.03219245 −0.0305051 +0.1000426
δU +0.0324881 −0.0003282 0.03379430 −0.0318886 +0.0979736
γU −0.2687226 +0.0001583 0.03116736 −0.3283692 −0.2040955
γV −0.2629236 −0.0001416 0.03073967 −0.3235758 −0.2050292
τU −0.0525523 +0.0005959 0.03168751 −0.1132575 +0.0147820
τV +0.0380073 +0.0001263 0.03334126 −0.0272727 +0.1051935
ΠH −0.3428469 −0.0007563 0.03105764 −0.4012005 −0.2843012
φA +0.0174543 −0.0002773 0.03422852 −0.0476062 +0.0827469
cA −0.6159261 +0.0004929 0.02160704 −0.6576728 −0.5746723
cL −0.0381227 +0.0020628 0.03327691 −0.1092252 +0.0236732
cB −0.6559501 +0.0002602 0.01775010 −0.6918969 −0.6237530
κ +0.4245334 −0.0012985 0.02804146 +0.3755547 +0.4856456
βHV +0.5049071 +0.0003461 0.02369151 +0.4600162 +0.5533423
aM +0.5617064 +0.0004058 0.02354306 +0.5165672 +0.6088471
εV −0.3690131 −0.0001147 0.02917487 −0.4256369 −0.3135196
ωV +0.2531897 −0.0001845 0.03223262 +0.1924038 +0.3192285
ηU +0.0561337 +0.0008215 0.03287014 −0.0142383 +0.1240309
ηV +0.0144269 −0.0013924 0.03449365 −0.0490704 +0.0864574
ηI +0.3183981 +0.0001165 0.02926591 +0.2595554 +0.3769897
ξV +0.4727052 +0.0002722 0.02628378 +0.4225355 +0.5231252
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Figure 5.25: Partial rank correlation coefficient (PRCC) of the model parameters with
R0V as the output function for temperature between 150C - 200C and between 200C
- 250C respectively.
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Figure 5.26: Partial rank correlation coefficient (PRCC) of the model parameters with
R0V as the output function for temperature between 250C - 300C and 300C - 350C
respectively.
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Figure 5.27: Partial rank correlation coefficient (PRCC) of the model parameters with
R0V as the output function and constant temperature.
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5.7.2 Numerical simulations

We fix temperature values for the non-autonomous model (5.2.1), so that each of
the temperature dependent parameter becomes constant. For simulation purposes,
two different sets of parameter values that give R0V = 0.297 < 1, N0 = 14.2 and
R0V = 6.457 > 1, N0 = 104.4 were chosen within the ranges given in Table 5.8. Initial
populations are given by SU(0) = 2000; SV (0) = 1000; WU(0) = 1000; WV (0) = 500;
EU(0) = 500; EV (0) = 300; IU(0) = 200; IV (0) = 50; RU(0) = 150; RV (0) = 40;
AM(0) = 2500; MU(0) = 1500; ME(0) = 1000; MI(0) = 800. In order to simulate
the effect seasonal variation, we use the generalized temperature function given by [3]
as follows where T0 is the mean annual temperature, T1 represents the variation about
the mean, ω measures the periodicity of the function and φ is the phase shift of the
function.

The solution profile of the model (5.2.1) showing the total number of infected
humans (IU + IV ) when R0V < 1 and when R0V > 1 are given in Figure 5.28 and
Figure 5.29 respectively. The total infected humans approach the DFE when R0V < 1
and approach an endemic equilibrium when R0V > 1. Figure 5.30 and Figure 5.31
respectively show disease prevalence in humans as a function of rate of successful use
of larvicides (cA) and function of vaccine efficacy (εV ) with other control variables
been fixed. Figure 5.32 also show disease prevalence as a function of the successful
rate of using bed nets (cB) with other controls fixed. It should be noted that the rate
of successful use adulticides have a small marginal effect in the disease prevalence.
Figure 5.33 show the vaccinated reproduction number as a function of vaccine efficacy
when R0V = 6.457 > 1 with R0V < 1 when the efficacy of the vaccination is above
90%.

For the simulation of the seasonal variations, the constants coefficients of (5.2.2)
are chosen from the values in Table 3 of [3]. Simulation for the total infected humans
(IU + IV ) of the autonomous and non-autonomous models are compared for the city
of Ati in republic of Chad by Figure 5.34 (where T0 = 29.1, T1 = 0.1137, ω = 1.0159
and φ = −155.5315), while that of Tchibanga in Gabon with coefficients T0 = 24.8,
T1 = 0.0434, ω = 1.0044 and φ = −71.74437 is given by Figure 5.35. Similarly,
the comparison for Lodwar in Kenya (where T0 = 26.3, T1 = 0.129, ω = 1.0023 and
φ = −128.2092) is given by Figure 5.36, and Figure 5.37 depict the comparison for the
city of Bamako Mali where T0 = 27.2, T1 = 0.120, ω = 0.9734 and φ = −109.7449.
In each of the cases there are fluctuations in the periodic case while the constant
approach an endemic equilibrium point, although they have different frequencies and
amplitude, they all fluctuate within the same region.

Simulation of the model (5.2.1) showing the total number of infected mosquitoes
with periodic temperature function given by T (t) = T0

[
1 + T1 cos

(
2π
365

(ωt + φ)
)]

,
where the population fluctuates without extincting over a long period of time for the
city of Ati in republic of Chad and Lodwar in Kenya are respectively given by Figure
5.38 and Figure 5.39.
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Table 5.8: Values and ranges for the temperature-independent parameters of the model
given by (5.2.1). Two choices of parameter values for which R0V < 1 and R0V > 1
for the autonomous system are respectively given in column three and column four.

Para Ranges R0V < 1 R0V < 1 References

ΠH 10-800/day 100 30 [3, 62]
ωV 0-1/day 0.1 0.1 Assumed
ξV 0-1/dose 0.3 0.6 [117]
εV 0-1/dose 0.3 0.3 [117, 142]
µH 0.00003-0.00006/day 0.0000342 0.0000548 [27, 62, 109]
αB 0-1 0.2 0.8 [117]
εB 0-1 0.5 0.5 Assumed
εW 0-1 0.5 0.5 Assumed
τU 0.000055-0.011/day 0.1 0.1 [3, 27, 109]
τV 0.000055-0.011/day 0.02 0.02 [3, 27, 109]
ηI 0 - 1 0.6 0.7 [62, 111]
ηU 0 - 1 0.3 0.3 [62, 111]
ηV 0 - 1 0.1 0.1 [62, 111]
σU 0.067-0.2/day 0.08 0.08 [27, 109, 89]
σV 0.077-0.2/day 0.07 0.07 [27, 109, 89]
γU 0.0014-0.017/day 0.015 0.015 [3, 27, 109]
γV 0.0014-0.017/day 0.016 0.017 [3, 27, 109]
δU 0.0001-0.0004/day 0.0015 0.004 [3, 27, 109]
δV 0.0001-0.0003/day 0.001 0.003 [3, 27, 109]
K 50-3300000 10000 50000 [3, 83, 124]
φA 1-500/day 20 40 [83, 89, 124]
σA 0.02-0.27/day 0.2 0.2 [109, 83, 124]
αL 0-1 0.6 0.2 Assumed
αA 0-1 0.625 0.375 Assumed
εL 0-1 0.5 0.5 Assumed
εA 0-1 0.8 0.8 Assumed
σM 0.029-0.33/day 0.5 0.7 [109, 27, 89]
µA 0.001-0.2/day 0.1 0.019 [3, 109, 89]
µV 0.04762-0.07143/day 0.0529 0.04762 [27, 62, 109]
aM 0.1-1/day 0.4 0.6 [3, 27, 109]
βV H 0.0027-0.64/day 0.44 0.64 [3, 27, 62]
βHV 0.072-0.64/day 0.44 0.64 [3, 27, 109]
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Figure 5.28: Simulation of the model (5.2.1) showing the total number of infected hu-
mans (IU+IV ) with different initial conditions approaching the disease free equilibrium
when R0V < 1.
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Figure 5.29: Simulation of the model (5.2.1) showing the total number of infected
humans (IU + IV ) with different initial conditions approaching an endemic equilibrium
when R0V > 1.
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Figure 5.30: Simulation of the model (5.2.1) showing the disease prevalence with
different rate of successful use of adulticides and R0V < 1.
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Figure 5.31: Simulation of the model (5.2.1) showing the disease prevalence when
R0V < 1 with different efficacy of vaccine.
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Figure 5.32: Simulation of the model (5.2.1) showing the disease prevalence with
different rate of successful use of bed nets and R0V < 1.
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Figure 5.33: Simulation of the vaccinated reproduction number (R0V ) as a function
of the efficacy of vaccination (εV ).
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Figure 5.34: Simulation of the model (5.2.1) showing the total number of infected
humans with constant and periodic temperature given by the generalized temperature
function T (t) = T0

[
1+T1 cos

(
2π
365

(ωt+φ)
)]

for the city of Ati in Chad when R0V > 1.
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Figure 5.35: Simulation of the model (5.2.1) showing the total number of infected
humans with constant and periodic temperature given by the generalized temperature
function T (t) = T0

[
1+T1 cos

(
2π
365

(ωt+φ)
)]

for the city of Tchibanga in Gabon when
R0V > 1.
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Figure 5.36: Simulation of the model (5.2.1) showing the total number of infected
humans with constant and periodic temperature given by the generalized temperature
function T (t) = T0

[
1 + T1 cos

(
2π
365

(ωt + φ)
)]

for the city of Lodwar in Kenya when
R0V > 1.
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Figure 5.37: Simulation of the model (5.2.1) showing the total number of infected
humans with constant and periodic temperature given by the generalized temperature
function T (t) = T0

[
1 + T1 cos

(
2π
365

(ωt + φ)
)]

for the city of Bamako in Mali when
R0V > 1.
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Figure 5.38: Simulation of the model (5.2.1) showing the total number of infected
mosquitoes with periodic temperature given by the generalized temperature function
T (t) = T0

[
1 + T1 cos

(
2π
365

(ωt+ φ)
)]

for the city of Ati in Chad when R0V > 1.
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Figure 5.39: Simulation of the model (5.2.1) showing the total number of infected
mosquitoes with periodic temperature given by the generalized temperature function
T (t) = T0

[
1 + T1 cos

(
2π
365

(ωt+ φ)
)]

for the city of Lodwar in Kenya when R0V > 1.
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Conclusion

A new mathematical model to assess the effect of temperature on control strategies in
the transmission dynamics of malaria, is constructed and analysed. Some of the main
findings of this study are summarized below:

(I) The autonomous mosquito-only model has a threshold quantity called the ba-
sic offspring number with the property that, if the threshold quantity (N0) is
less than or equal to unity, the mosquito population goes to extinction, and it
establishes if (N0) > 1.

(II) The autonomous model version of system (5.2.1) has two disease-free equilibria,
the mosquito-extinction equilibrium (E2) which is globally-asymptotically stable
(GAS) when the basic offspring number (N0) is less than unity and the non-
mosquito-extinction equilibrium (E3) which is locally asymptotically stable when
R0V ≤ 1.

(III) The autonomous model undergoes the phenomenon of backward bifurcation,
which could be removed for a special case when malaria induced death rates
(δU = 0 and δV = 0) and the vaccine waning rate are negligible (ωV = 0).

(IV) Relationship between the vaccinated reproduction number and the type repro-
duction numbers is established, where it is shown that Ti < 1 (i = 1, 2, 3),
provided R0V < 1 (and Ti ⇔ R0V ). This result suggest that, malaria can be
control by targeting certain groups in the population.

(V) The non-autonomous model (5.2.1) has a disease-free equilibrium (E4), which
is locally asymptotically stable whenever the associated reproduction ratio is less
than one and unstable otherwise.

(VI) The partial rank correlation coefficient for the use of larvicides is positively cor-
related with the vaccinated reproduction number when the temperature ranges
between 150C−200C and 300C−350C, thus within those temperature intervals,
use of larvicides may impede effort aimed at reducing malaria infection.

(VII) The successful use of adulticides (cA), bed nets (cB) and vaccine efficacy (εV )
are negatively correlated with the vaccinated reproduction number within all the
temperature ranges.

(VIII) For non-control parameters, the most positively correlated parameters within
all ranges are the mosquito carrying capacity (K), probability of disease trans-
mission (βHV ), reduction parameter in the transmission of infected vaccinated
humans and rate of vaccination (ξV ). On the other hand, recovery rates γU , γV
and human recruitment rate (ΠH) are the most negatively correlated in all the
temperature ranges.

(IX) Numerical simulation of the model, using appropriate demographic and epidemi-
ological data for Kwazulu Natal province of South Africa, show that (for the case
where backward bifurcation does not occur), the hybrid strategy which combines
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all the strategies (that is combined use bed nets, vaccination and adulticides) is
more effective than singular use of the aforementioned control strategies, that
can lead to malaria elimination in the province.

(X) Simulations of the model show that high vaccine efficacy is required to reduce
the vaccinated reproduction number to a value below unity. Further, a singular
effective use of bed nets can result in effective control of malaria in a community
provided the bed net coverage and the bed net efficacy are high enough (at least
60 % each).

 
 
 



Chapter 6
Conclusion and future work

This thesis considered three different mathematical models for the transmission dy-
namics of mosquito borne diseases. All the models studied were deterministic and
standard incidence formulations were used in the construction of their forces of infec-
tions. In Chapter 2 and Chapter 3, models for the transmission of Zika virus were
studied, while transmission dynamics of yellow fever was studied in Chapter 4, and in
Chapter 5, autonomous and non-autonomous malaria models were studied.

6.0.3 Conclusion

Although conclusions at the end of Chapter 2, Chapter 3, Chapter 4 and Chapter 5
were given, general conclusions are given as follows;

1. In the case of mathematical models for the transmission dynamics of mosquito
borne diseases, where aquatic stages of mosquito development are incorporated,
population of mosquito has a threshold parameter called the basic offspring num-
ber (N0), which controls the extinction or persistence of mosquito population,
such that if the threshold is less than or equal to one, mosquito population dies
out and persist otherwise. In the case of models with mosquito control, the
threshold is a reducing function of the rate of death of mosquitoes due to use
of control.

2. For models of mosquito borne diseases with human-human transmission, the
requirement for the control of the disease in a population where N0 ≤ 1 is that,
the associated human-human basic reproduction number to be less than or equal
to unity.

3. The disease free equilibriums of the models when their respective basic offspring
numbers are greater than one were shown to be locally-asymptotically stable
when the associated basic reproduction numbers are less than unity.

4. In line with results from previously studied mosquito borne diseases with standard
incidence force of infection. The model (with N0 > 1) in the absence of direct
transmission undergoes backward bifurcation, where the stable DFE co-exist
with a stable endemic equilibrium when the associated reproduction number is
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less than unity. It was shown that, disease induced death rate in humans is
the major cause of the phenomenon for models without vaccination, where as
imperfect vaccination is also another cause for models with vaccination.

5. Although the rate of direct human-human transmission is positively correlated
to the basic reproduction number (increases disease burden), it was shown that
it does not affect the existence or otherwise of backward bifurcation.

6. As the type reproduction number excludes total number of infections from one
individual to individuals of its kind in a heterogeneous populations. There exist
relationships between the type reproduction numbers and the basic reproduc-
tion number, with infected human type reproduction number (T1) most closely
related to the basic reproduction number.

7. Conditions for the global asymptotic stability of disease free equilibria were also
established for the autonomous models.

8. For the models with vaccination, the threshold vaccination and vaccine efficacy
required to bring the vaccinated reproduction number (R0V ) to below unity
were computed, in addition, it was shown that the threshold (R0V ) is a reducing
function of the fraction of vaccinated individuals.

9. In the models with vertical transmission, it was shown using sensitivity analysis
that the vaccinated/basic reproduction numbers are most sensitive and positively
correlated to the rate of vertical transmission, thus making it the most important
parameter to target in controlling the threshold.

6.0.4 Future work

In the future, the model presented in Chapter 2 can be extended to incorporate ver-
tical transmission within human population (as it was attributed to been the cause
of congenital neurological disorder and auto-immune complications), to do this, the
human population need to be extended to a sex structured form with a non-constant
(varying) recruitment rate of humans, thereby substantially increasing the number of
equations. In addition, density dependence mortality rate in humans, as well as tem-
perature variations to capture seasonal variation can also be incorporated into the
model.

For the model in Chapter 3, aside from extensions similar to those of Chapter 2, the
model can be extended to incorporate time dependent release of sterilized mosquitoes
(different release functions to capture different circumstances can be tested), thus a
non-constant mating probability will be considered and optimal control analysis be
done. The model in Chapter 4 can similarly incorporate temperature changes, as well
as time dependent controls. The model in Chapter 5 can also incorporate a non-
constant recruitment rate in humans and time dependent control, so as to consider an
optimal control problem.
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