
 

 

 

Exploring the evolution of drug resistance in Mycobacterium 

tuberculosis using Whole Genome Sequencing data 

 

By 

 

Dillon Muzondiwa 

 

 

 

Submitted in partial fulfilment of the requirements for the degree 

Master of Science (Bioinformatics) 

 

 

in the 

 

Centre for Bioinformatics and Computational Biology, Department of 

Biochemistry, Genetics and Microbiology 

Faculty of Natural and Agricultural Sciences 

 

 

UNIVERSITY OF PRETORIA 

 

 

November 2019 



ii 

 

SUMMARY 

 

 

EXPLORING THE EVOLUTION OF DRUG RESISTANCE IN MYCOBACTERIUM 

TUBERCULOSIS USING WHOLE GENOME SEQUENCING DATA 

 

 

by 

 

Dillon Muzondiwa 

Supervisor:   Prof. O.N Reva 

Department: Biochemistry, Genetics and Microbiology 

University: University of Pretoria 

Degree: Master of Science (Bioinformatics) 

Keywords:  Mycobacterium tuberculosis, Antibiotic Resistance, Whole-genome 

sequencing, Clade-specific, single nucleotide polymorphism 

 

 

Mycobacterium tuberculosis (Mtb) remains a global challenge that has been worsened by the 

emergence of drug resistant strains of Mtb. We used publicly available Next Generation 

Sequencing (NGS) and drug susceptibility (DST) data to develop “Resistance sniffer”, an online 

software program for the rapid prediction of lineage and Mtb drug resistance. Based on the 

distribution of polymorphisms in the genomes of Mtb, we calculated the power of association 

between the polymorphisms in different clades of Mtb and resistance to 13 anti-TB drugs. Our 

data suggests that the development of drug resistance in Mtb is a stepwise process that involves 

the accumulation of polymorphisms in the Mtb genome. We carefully curated the polymorphisms 

based on their association powers to create a diagnostic key that captures patterns of these 

polymorphisms that can be used to predict lineage and drug resistance in Mtb. This diagnosis key 

was incorporated into the Resistance Sniffer tool, an online software program that we developed 

for the rapid diagnosis of drug resistance in Mtb. The tool was tested using sequence data from the 

South Africa Medical Research Council (SA-MRC). Our data suggests that the majority of the 
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strains in SA may have been brought by the arrival of European settlers while the more resistant 

strains may have been introduced in the region by Asian travellers later on. 

We next sought to determine non-random associations between polymorphic sites in genomes of 

Mtb. Using the attributable risk (Ra) statistical methods, we distinguished between functional 

associations and associations that may have been due to genetic drift events for different Mtb 

clades. We then integrated the (Ra) data with drug susceptibility and annotation data to generate 

networks in Cytoscape 3.71. These networks were then used to infer evolutionary trajectories that 

drive the emergence and fixation of the drug resistant phenotype in different clades of Mtb. 

We demonstrate that strains from the Lineage 1.2 are associated with less complex functional 

associations compared to the strains from other clades such as the Asian and Euro-American 

clades. Our data also shows that the predisposition of strains from the Asian clades to develop 

multi-drug resistance may be attributed to a complex network of functional interactions of 

mutations in genes that are involved in several aspects of Mtb physiology such as cell wall 

modelling, lipid metabolism, stress response and DNA repair. 
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Chapter 1-Introduction and Literature 

Review 
1.1 Introduction 

In 2017, there were an estimated 10 million new cases of tuberculosis (TB) and an estimated 1.6 

million deaths attributed to the disease [1]. Despite the drop in global TB incidence and mortality 

rates in recent years, a lot of work still needs to be done if we are to attain the 2030 targets of the 

End TB Strategy: to reduce TB deaths by 90% and TB incidence by 80% [2]. TB epidemiological 

studies have shown that strains of varying genotypes are fuelling the current epidemic with the 

majority of TB patients having acquired the disease through recent infection (transmission) [3]. 

The variation in Mycobacterium tuberculosis (Mtb) allelic frequencies in different settings also 

suggests that the evolution of different bacterial mechanisms is at play [3]. This has been further 

supported by the observed differences in virulence in Mtb sub-lineages. Comparative genomic 

studies have led researchers to suggest that single nucleotide polymorphisms, insertions and 

deletions have led to the evolution of the Mtb genome [4]. The aetiological agent, Mtb is a Gram-

positive bacilli characterized by a slow growth rate, dormancy, intracellular pathogenesis and 

genetic homogeneity [5]. The Mtb genome is made up of 4.4 mbp with a relatively constant G +C 

content of 65.6%, making it the second largest bacterial genome available after the Escherichia 

coli genome [5]. 

 

The emergence of drug-resistant TB (DR-TB) remains a major challenge in the war against TB. 

Since the introduction of antibiotics to the management of TB, drug resistance has always been a 

barrier to successful treatment [6]. The main reason for this can be attributed to the bacterial 

population’s mutational capacity which is a function of both the mutation rate and the size of the 

bacterial population. In the early days clinicians adopted monotherapy but soon replaced it with a 

more effective approach - multi-drug therapy due to rapid development of resistance [7]. 

According to the World Health Organization (WHO) [1], over 558 000 people had developed TB 

that was resistant to rifampicin (RR-TB), the most potent of the first line drugs [1], 82% of these 

were classified as multi-drug resistant TB (MDR-TB) [1]. MDR-TB is referred to TB that has 

developed resistance to the two most powerful drugs, rifampicin (RIF) and isoniazid (INH). 

Extensive drug resistance TB (XDR-TB) refers to MDR-TB strains that have developed further 
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resistance to any of the second line injectable drugs and at least one fluoroquinolone. With 8.5% 

of the MDR-TB cases now classified as XDR-TB in 2019 there is need to prioritize on the 

development of tools for the rapid and accurate diagnosis of DR-TB. Treatment of DR-TB remains 

a challenge, Gandhi et al. [8] reported that rapid progression to death was recorded in 98% of 

XDR-TB patients during an outbreak in KZN South Africa [8]. Other experts have also coined the 

term totally drug resistant TB (TDR-TB) to describe strains that are resistant to all the currently 

available drugs although there is no agreed definition of TDR-TB yet [9]. Treatment of drug 

resistant TB is challenging compared to treatment of drug susceptible disease with global success 

rates of less than 50% for MDR-TB. The treatment process is costly and is often associated with 

poor outcomes. The drugs used are also highly toxic and can lead to severe side effects such as 

permanent deafness and psychiatric disorders [10]. These challenges can lead to poor compliance 

with the treatment regime and this in turn reduces the cure rates and can even lead to the 

amplification of resistance [9, 11]. Accurate drug susceptibility testing (DST) profiles are also 

crucial in the improvement of treatment outcomes as they ensure that only the effective anti-TB 

drugs are prescribed and reduces exposure to ineffective and toxic drugs [9]. 

 

Early diagnosis and correct treatment is the key to the control of MDR-TB and incorrect treatment 

of TB can be catastrophic both at patient and population level [12]. Misdiagnosis and inadequate 

treatment of MDR-TB or XDR-TB can lead to the positive selection of resistant subpopulations 

and hence the creation of resistant strains de novo. This can also lead to an increase to the number 

of ineffective drugs against an already M/XDR-TB strain [12]. Conventional phenotypic DST is 

still culture-based and slow due to the slow growth rate of Mtb. The method also requires 

expensive infrastructure (biosafety level 3 laboratories) which is not accessible in most low middle 

income which carries the highest burden of TB. This means that DST results are only available 

after weeks to months which is often too late for the TB patient. For complex drugs such as 

ethambutol (EMB) and pyrazinamide (PZA), phenotypic DST is often inaccurate and often lacks 

reproducibility [2, 13]. Several rapid molecular assays have been developed for the diagnosis of 

DR-TB. The global roll out of the WHO endorsed Cepheid Xpert MTB/RIF and Ultra assays 

(Cepheid, Sunnyvale, CA, USA) has led to an increase in the number of detected RR-TB cases 

[14]. However despite their success, these technologies are still limited in the number of loci they 

can examine, the number of drugs that can be tested and the inability to account for indels  [9]. 

Major diagnostic gaps still remain to be covered, 558 000 people developed MDR/RR-TB in 2017 

of which only 160 684 cases were detected and notified. Of these cases, only 25% of the patients 

were put on a treatment regimen that included a second line drug [15]. These challenges makes 
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WGS more important in the management of TB than any other infectious disease [16]. Unlike in 

most other bacterial pathogens, resistance plasmids and horizontal gene transfer play no role in the 

acquisition of drug resistance in M. tuberculosis [17]. The main cause of drug resistance in M. 

tuberculosis is the accumulation of point mutations and indels in genes coding for drug targets or 

converting enzymes [9]. Recent studies have shown that alterations to these genes and their 

interactions are just the first step in a longer and more complex process. These mutations are now 

known to interact with mutations in other genes. These interactions known as epistasis, play an 

important role in the development of the drug resistant phenotype as they are known to compensate 

for the fitness cost that is incurred when resistance is acquired. There is a need for more knowledge 

in the understanding and accurate detection of these processes that lead to the resistant phenotype. 

This can lead to the development of better diagnostics protocols as well as improved control 

strategies. Unfortunately the current body of knowledge does not allow for the prediction of 

epistatic interactions a priori so the only option we have is to detect them empirically by studying 

the genetics of drug resistance [17]. Unlike the currently available molecular assays, which can 

only examine limited mutations in specific gene targets, WGS-based assays can provide a near 

complete view of the whole resistome. This means using WGS assays, we have the potential to 

detect resistance for all available anti-TB drugs unlike current methods which are limited to only 

5 drugs. WGS has the ability to detect rare mutations as well as indels that may not be detected by 

other molecular assays [2]. 

 

 

 

 

 

 

 

1.2 Mechanism of resistance to anti-TB drugs 
 

Figure 1.1 below summarizes the mechanisms of action of some of the main anti-TB drugs 

currently in clinical use. These can be classified into four groups mainly: i) inhibition of cell wall 

biosynthesis; ii) disruption of cell membranes synthesis and energetics; iii) inhibition of RNA 

synthesis; and iv) inhibition of protein synthesis. 

 



4 

 

 

 

 Figure 1. 1 Mechanisms of action of current TB drugs [18]. 

 

 

 

 

 

 

 

 

1.2.1 First line drugs 

1.2.1.1 Rifampicin 

MTB is associated with low metabolic activity as well as non-replication which are known factors 

as some of the driving factors of persistent infection [19-22]. Unlike most antibiotics currently in 

use which are only active against actively growing bacteria, rifampicin also known as rifampin is 

one of the most potent drugs in the fight against TB because of its effectiveness against actively 
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metabolizing and slow metabolizing bacilli [23-27]. The drug is known to disrupt the elongation 

of mRNA by binding to the beta subunit of RNA polymerase. Mutations clustered in codons 507-

533 of the rpoB gene which codes for the beta subunit of RNA polymerase are known to mediate 

RIF resistance. The rifampicin resistance determining region (RRDR) is known to harbour 

mutations that contribute to 96% of rifampicin resistant cases and has been exploited in the 

development of modern molecular based diagnostic assays particularly codons 526 and 531 [23]. 

It must also be noted that rifampicin resistance has been detected in some strains that lack any 

rpoB alterations or that harbour mutations outside the RRDR [28]. Most genotypic assays for 

detecting RIF resistance have been focused on the RRDR such that the role of non-RRDR 

mutations in RIF resistance is poorly understood. Further work is also needed in understanding the 

role of the environmental conditions that favour the emergence of specific rpoB mutations in MTB 

[22]. Mono-resistance to rifampicin is a rare phenomenon and almost all rifampicin resistant Mtb 

strains are also resistant to at least one more antibiotic [24]. For this reason, clinicians have always 

used rifampicin resistance as a surrogate marker for MDR-TB [29]. 

 

1.2.1.2 Isoniazid 

Isoniazid (INH) is one of the key components of current first-line regimens in the treatment of 

drug susceptible TB. Unlike rifampicin, INH is only potent against metabolically-active replicating 

bacilli [24]. INH is a prodrug which is activated by the catalase /peroxidase enzyme encoded by 

the katG gene [30]. The activated INH binds to the NADH-dependent enoyl-acyl carrier protein 

reductase which is encoded by the inhA gene. The binding is known to interfere with mycolic acid 

synthesis as well as disrupt multiple essential metabolic pathways. Mutations in the katG, inhA 

and its promoter regions have been implicated in INH resistance. The katG S315I, S315N and 

S315T polymorphisms have been identified as the most common mechanisms of INH resistance. 

Mutations in the inhA/mabA promoter regions are also known to lead to drug titration and hence 

varying levels of resistance [31]. The most common of these mutations is found at position 15 of 

the inhA promoter region and has been linked with low levels of INH monoresistance as well as 

cross resistance with ethionamide (ETA) which is a structural analogue of INH [23, 24]. Mutations 

in the active site of inhA lead to a reduction in the affinity of the INH-NAD product [23, 32, 33]. 

A recent MIC/mutation data review by Miotto et al. also associated INH resistance with mutations 

in kasA, furA, oxyR-ahpC and ndh genes which are involved in mycolic acid synthesis pathways 

[31]. 84% of global phenotypic INH resistance can be accounted for using these mutations [23, 
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34]. There is a growing body of evidence that suggests that INH resistance mediated by the katG 

S315T mutation is a precursor of rifampicin resistance which makes the mutation an ideal marker 

in the diagnosis of MDR-TB [35]. These findings highlights the importance of early detection of 

antibiotic resistance in the management of TB. 

 

1.2.1.3 Ethambutol  

Ethambutol (EMB)’s mechanism of action makes it one of the most important first line drugs in 

the treatment and management of TB. The drug disrupts several pathways of actively multiplying 

bacilli, most importantly those that are involved in arabinogalactan biosynthesis in the cell wall 

[36, 37]. This inhibition of arabinan polymerization helps to facilitate the permeability of other 

drugs that are used in TB treatment regimens leading to improved treatment outcomes. EMB 

resistance has been linked to mutations in the embCAB operon which encodes the mycobacterial 

arabinosyl transferase enzyme [23, 36, 37]. Mutations in codon 306 of the embB have been initially 

associated with EMB resistance and several studies have implicated mutations in this particular 

gene as a stepping stone to poly-drug resistance in MTB [38]. However a study by Hazbon et al. 

concluded that mutations in embB306 were not necessarily determinants of EMB resistance but 

rather act as markers of strains that are predisposed to develop resistance to multiple drugs [24, 

39]. Safi et al. performed several allelic exchange experiments that have demonstrated the 

complexity of the development of EMB resistance in MTB. Their study showed that contrary to 

earlier suggestions, acquisition of high level EMB resistance was a multi-step process [17]. It is 

also important to note that a third of EMB resistant isolates do not harbour any embB mutations, 

this suggests the existence of alternative mechanisms of EMB resistance [40]. The ubiA gene has 

also been linked to high levels of EMB resistance in certain African isolates [23]. The gene encodes 

decaprenyl-phosphate 5-phosphoribosyltransferase synthase, which is an important enzyme in cell 

wall synthesis pathways [41]. 

 

1.2.1.4 Pyrazinamide 

The introduction of the nicotinamide analogue pyrazinamide (PZA) as one of the first line 

antibiotics in the treatment of DS-TB has resulted in the reduction of treatment durations to just 

six months [24]. The drug is also important in the development and evaluation of new anti-TB 

regimens as it is included in Phase II and III of all DS-TB and DR-TB clinical trials [24, 42]. TB 
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lesions are known to harbour semi-dormant bacilli which are difficult to control with most of the 

commonly used antibiotics due to the acidic conditions [43]. However PZA is active at low pH 

levels which makes it a vital drug in the effective treatment of TB [44]. The enzyme 

pyrazinamidase/nicotinamidase (PZase) activates PZA to pyrazinoic acid which in turn disrupts 

the proton motive force which is essential for membrane transport [23, 24, 44]. Recent studies 

have also linked pyrazinoic acid and its n-propyl ester to the inhibition of fatty acid synthase I in 

Mtb [24, 45]. Although traditional dogma has always been centred on the PZA being dependent 

on low pH environments, recent studies have shown low pH and intra-bacterial acidification is not 

necessarily a prerequisite for PZA activity [46, 47]. However this does not mean that PZA 

generally works at neutral pH, irrespective of the bacilli’s metabolic state [48]. It rather shows that 

the bacterial metabolic state of the bacilli is a factor in determining the activity of the drug. PZA 

would still show activity at neutral pH in dormant persister Mtb even though it will be expected to 

show more activity at lower pH [48]. 

Although the mechanism of PZA resistance is poorly understood, mutations in the gene that 

encodes Pzase (pncA) and its promoter regions have been associated with PZA resistance. 

Mutations in this highly polymorphic gene have been attributed to 72% - 99% of PZA resistance 

[49, 50]. DST for PZA is highly inaccurate and challenging due to the low pH conditions required 

for the culture. The ribosomal protein I (rpsA) was initially suggested as a target of PZA, the drug 

was found to inhibit and trans-translation in Mtb [48]. However, this finding was recently 

disproved by Dillon et al. [47]. Recent studies have also shown that the aspartate decarboxylase 

(panD) is inhibited by PZA [51, 52]. The enzyme is involved in the synthesis of pantothenate and 

co-enzyme A, which is involved in energy production. Initially researchers were sceptical on panD 

as a drug target for pyrazinamide but a recent study by Gopal et al. confirmed the gene as a PZA 

drug target [53]. 

 

1.2.1.5 Streptomycin 

Streptomycin (SM) was the first antibiotic treatment for TB in 1944 [24, 48]. The aminocyclitol 

drug inhibits protein synthesis in slow-growing bacteria by irreversibly binding to the ribosomal 

protein S12 and 16S rRNA and therefore interfering with the binding of formyl-methionyl-tRNA 

to the 30S subunit of the bacterial ribosome. The drug rapidly developed resistance due to its 

overuse in the previous century. SM resistance is known to be mediated by mutations in the rpsL 

and rrs genes. The rpsL gene encodes the ribosomal protein S12 while the 16S ribosomal subunit 
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is encoded by the rrs gene. Mutations in the 7-methyl guanosine methyltransferase gene (gidB) 

have been associated with low level SM resistance. rpsL mutations have been attributed to 50% of 

SM resistance while rrs mutations account for approximately 15% of resistance to the drug [24, 

48]. Mutations in gidB gene which encodes 7-methylguanosine methyltransferase have also been 

associated with low level SM resistance. These mutations inhibit 16S ribosomal methylation 

leading to a reduction in the affinity between SM and the 16S ribosomal RNA (rRNA)-binding 

site [48, 54, 55]. 

 

1.2.2 Second line drugs 

1.2.2.1 Injectable drugs 

Kanamycin (KAN), amikacin (AMK) and capreomycin (CM) are the second line injectable drugs 

currently used in the management of TB [24]. Although the two aminoglycosides AMK and KAN 

and the cyclic polypeptide CM have different mechanisms of action, the three antibiotics exert 

their effect by inhibiting protein synthesis. The aminoglycosides are known to bind to the 16S 

rRNA in the 30S subunit of the MTB ribosome while CM disrupts translation and is understood 

to inhibit phenylalanine synthesis in MTB ribosomes [56]. Mutations in the rrs gene are 

understood to confer high level resistance to these drugs [57, 58]. Mutations in the rRNA 

methyltransferase tlyA have also been associated with CM resistance. These mutations are known 

to determine the absence of methylation activity [24, 59]. Mutations a1401g and g1484t in the rrs 

gene are known to be high confidence markers of resistance for the three drugs with the former 

associated with 70%-80% of CM and AMK resistance and 60% KAN resistance [23, 60]. Recent 

studies have also reported on cross resistance between the three drugs which is expected since the 

antibiotics share the same drug target. Low level resistance to kanamycin has been attributed to 

mutations at position -10 and -35 of the eis promoter [24]. Up to 80% of clinical isolates exhibiting 

low-level kanamycin resistance harbour these mutations [61, 62]. Cycloserine (CS) is another 

bacteriostatic agent that has been used six decades [48, 63, 64]. The drug, which is a cyclic analog 

to D-alanine inhibits peptidoglycan biosynthesis by blocking the conversion of L-alanine into D-

alanine. Its use in TB treatment has been limited by its link to neurological toxicity. Currently the 

drug is only prescribed for only proven DR-TB cases. The genetic basis of CS resistance remains 

elusive despite recent studies that have linked mutations in the L-alanine dehydrogenase (alr), D-

alanine (ald) and D-alanine ligase (ddlA) genes. Another challenge is that similar to PZA, the loss-
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of-function mutations within the ald gene (1116 bp) are not confined to a specific region which 

makes it difficult to predict CS-resistance profiles using genotypic data [65].   

 

1.2.2.2 Fluoroquinolones 

Fluoroquinolones (FQ) are some of the most potent anti-TB currently prescribed as second-line 

treatment drugs for DR-TB. Newer generation FQs, such as levofloxacin and moxifloxacin are 

becoming important components of DR-TB treatment regimens [66]. FQs inhibit transcription 

during bacterial cell replication by binding to DNA gyrase. The tetramer type II topoisomerase 

consists of two subunits α and β which are encoded by the gyrA and gyrB genes which are 

responsible for the catalysis of DNA supercoiling [67]. Genetic mutations in those two genes are 

known to confer FQ resistance in MTB with gyrA gene harbouring most of these mutations. The 

quinolone resistance determining regions (QRDRs) are located between codons 74 and 113 and 

codons 500 and 538 of the gyrA gene [68, 69]. Codons 88, 90, 91 and 94 of the gyrA QRDR are 

known to harbour most of the common FQ mutations while often rare, mutations in gyrB have 

been linked with low levels of FQ resistance. It is important to note that there is also a mutation at 

position 95 in gyrA which is not associated with FQ resistance since it is also found in susceptible 

Mtb isolates [70]. An interesting finding by Aubry et al. showed that the simultaneous occurrence 

of T80A and A90G in gyrA led to hyper-susceptibility to a number of quinolones [24, 71]. 

Resistance to FLQ is one of the indicators of the development of XDR-TB. It is imperative to fully 

elucidate the full mechanism of FQ resistance because low level resistance in some of the new 

generation FQs has been recently reported. 

 

1.2.2.3 Ethionamide 

Ethionamide (ETA), derived from isonicotinic acid, is a structural analogue of INH [23]. The 

prodrug is activated by the mono-oxygenase enzyme to inhibit the binding of the enoyl-acyl carrier 

protein reductase and therefore inhibit cell wall synthesis. ETA resistance is believed to be caused 

by mutations in the ethA gene which encodes the mono-oxygenase enzyme [72, 73]. Mutations in 

the transcriptional repressor gene ethR as well as the inhA-gene and its promoter have also been 

associated with ETA resistance. Several studies have also revealed the role of inhA mutations in 

ETA/INH co-resistance. Mutations in these two genes are known to account for 70% of ETA 
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resistance [73]. Further investigations are required to fully elucidate the mechanism of resistance 

in ETA. 

 

1.2.2.4 Para-aminosalicyclic acid (PAS) 

PAS is one of the first antibiotics used in the treatment of TB together with streptomycin. The 

prodrug forms part of the second line regimens prescribed for DR-TB. Elucidating the mechanism 

of PAS resistance has been challenging until recently due to its gastrointestinal toxicity and low 

potency when compared to RIF and PZA [48]. PAS an analogue of para-amino benzoic acid, is a 

competitive inhibitor of dihyropteroate synthase which is involved in the folate synthesis pathway 

[24]. The prodrug is activated by thymidylate synthase and the activated drug competes for the 

enzyme with p-amino benzoic acid to inhibit iron uptake [74]. Mutations in the thyA gene have 

been identified as the main mechanism of resistance, accounting for 40% of PAS resistance [23, 

75]. Mutations in the folC gene which encodes dihydrofolate synthase were also detected in 

clinically resistant strains [76]. The usage of PAS as an anti TB drug has been low due to its high 

toxicity levels and side effects and more work still needs to be done in fully decoding the 

mechanism of PAS resistance in MTB. 

 

1.2.3 New and repurposed drugs 

1.2.3.1 Bedaquiline 

Bedaquiline (BDQ) is classified under the diarylquinolones, a new class of compounds used in the 

treatment of TB. The drug which has been a success in high burden countries exerts its action by 

targeting mycobacterial ATP synthase to inhibit bacterial respiration [77]. The drug is effective 

against dormant bacilli which makes it highly effective in treating both DS-TB and MDR-TB 

especially when prescribed together with PZA [77]. BDQ exerts its action by inhibiting 

mycobacterial ATP synthesis as it binds to the C subunit of the F0 complex of ATP synthase which 

is encoded by the atpE gene [48, 78]. In 2005 in vitro studies by Andries et al. implicated mutations 

in the atpE gene with BDQ resistance [77]. The gene encodes the bacterial F1F0 proton synthase 

which is involved in ATP synthesis as well as membrane energetics [23, 79]. Mutations in the 

Rv0678 gene have also been linked with BDQ resistance as well as cross resistance with 

clofazimine. pepQ mutations have also been linked with low level resistance to BDQ as well as 

clofazimine. Cross resistance of both drugs has been attributed to the upregulation of the mmpL5 
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which encodes the MmpL5 efflux pump [48]. The lack of DST data for new and repurposed 

antibiotics is still a challenge that needs to be addressed if we are to determine the complete 

mechanism of resistance to BDQ. 

 

1.2.3.2 Clofazimine 

Clofazimine (CFZ) was discovered in 1954. Initially the drug was used for the treatment of leprosy 

as it was ineffective against TB [80]. Studies have proved that CFZ is active against MDR-TB 

which led to the WHO recommending the drug as part of the new standardized short course 

regimen for DR-TB [81]. It must be noted that although the drug was approved by the FDA in 

1986, its use in the treatment of DR-TB has not been approved by any stringent regulatory body 

and it is therefore prescribed “off-label” [82]. The exact mechanism of CFZ action is unknown, 

however studies performed in M. smegtmatis suggests that it is a prodrug which is activated by 

NAD dehydrogenase, to release reactive oxygen species upon re-oxidation by oxygen [23, 83]. 

Mutations in Rv0678 have been linked to CFZ resistance together with mutations in pepQ and 

Rv1979c genes [84, 85]. Resistance to CFZ has also been associated with BDQ as explained above. 

The mechanism of action of CFZ is poorly understood due to its limited use as it is associated with 

adverse side effects. More studies still need to be done in order to fully exploit the capabilities of 

this drug in TB management. 

 

1.2.3.3 Linezolid 

Linezolid is the first oxazolidinone to be approved for the treatment of TB [86]. The drug is a 

protein synthesis inhibitor which exerts its effect by binding to the V domain of the 50S subunit 

of the mycobacterium ribosome [23, 87]. Linezolid resistance has been linked to mutations in the 

23S (rrL) gene [22]. In vitro studies have associated mutations G2061T and G2572T in the rrL 

gene with high level linezolid resistance [88]. The study went on to report that no alterations to the 

rrL gene were found in isolates that bore low level linezolid resistance. The role of rrL mutations 

in linezolid resistance was further supported by Bloemberg et al. who detected A2572C and 

G2576T mutations in a patient with linezolid resistant TB [89]. Studies by Zimekov et al. have 

also implicated a mutation in the rplC gene in the development of linezolid [90]. The gene encodes 

the L3 protein on the 50S ribosome and the C154R mutation is the most frequent among linezolid 

resistant isolates [90]. Linezolid has been shown to improve treatment outcomes in complicated 
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MDR-TB as well as XDR-TB cases thus it will be of great benefit to elucidate its mechanisms of 

resistance [91]. 

 

1.2.3.4 Pretonamid and Delamid 

Pretonamid and Delamid are classified under the nitroimidazole group of antibiotics [92, 93]. Both 

compounds are prodrugs that are activated by deazaflavin-dependent nitro-reductase which is 

encoded by the ddn gene [23]. The enzyme breaks down the prodrug into des-nitro-imidazole and 

two other unstable metabolites. Des-nitro-imidazole produces reactive nitrogen species as well as 

nitric oxide which may promote host-macrophages acting against MTB [94-96]. Delamid, 

formerly known as OPC-67683 is known to influence the synthesis of the bacterial cell walls by 

inhibiting methoxy-mycolic and keto-mycolic acids [97]. Mutations in ddn and fgd1 genes which 

are involved in the activation of the prodrug as well as mutations in fbiA, fbiB and fbiC have been 

associated with resistance to both drugs [23, 95]. The fbi genes encode for proteins involved in the 

F420 biosynthetic pathway.  

 

 

 

Table 1. 1 A summary of anti-TB antibiotics and possible mechanisms of drug resistance. 

Antibiotic Abbreviation Mechanism of 

action 

Mutated genes 

associated with 

drug resistance 

Amikacin,Capreomy

cin,Kanamycin 

AMK, CM, KAN Inhibits protein 

synthesis through 

ribosomal binding. 

rrs, eis, tlyA [57]. 

Cycloserine CS Cell wall 

biosynthesis 

inhibitor. 

alr, ddlA, cycA [98, 

99]. 

Ethambutol EMB The drug disrupts 

several pathways of 

actively multiplying 

bacilli, most 

embB, ubiA [100].  
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importantly those 

that are involved in 

arabinogalactan 

biosynthesis in the 

cell wall.  This 

inhibition of 

arabinan 

polymerization helps 

to facilitate the 

permeability of other 

drugs that are used in 

TB treatment. 

Ethionamide ETH Structural analogue 

of INH (Dookie et 

al.,2018). The 

prodrug is activated 

by the mono-

oxygenase enzyme to 

inhibit the binding of 

the enoyl-acyl carrier 

protein reductase and 

therefore inhibit cell 

wall synthesis. 

ethA, mshA, ndh, 

inhA, inhA promoter 

[101]. 

Isoniazid INH INH is a prodrug 

which is activated by 

the catalase 

/peroxidase enzyme 

encoded by the katG 

gene [30]. The 

activated drug 

interferes with 

mycolic acid 

synthesis. 

katG, inhA, inhA-

promoter [102]. 
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Fluoroquinolones FLQ Inhibit bacterial 

replication by 

blocking DNA 

gyrase important for 

the replication 

pathway. 

 gyrA and gyrB [67]. 

Para-amino 

salicyclic acid 

PAS A para- amino 

benzoic acid that 

inhibits folate 

synthesis. 

thyA [23]. 

Pyrazinamide PZA Disrupts the proton 

motive force which 

is essential for 

membrane transport. 

pncA [13]. 

Rifampicin RIF The drug is known to 

disrupt the 

elongation of mRNA 

by binding to the beta 

subunit of RNA 

polymerase. 

rpoB [22]. 

Streptomycin SM Inhibits protein 

synthesis by 

irreversibly binding 

to the ribosomal 

protein S12 and 16S 

rRNA and therefore 

interfering with the 

binding of formyl-

methionyl-tRNA to 

the 30S subunit of 

the bacterial 

ribosome.  

rrs and rpsL [103], 

gidB [55],whib7 

[104]. 
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1.3 The evolutionary path of drug resistance in Mycobacterium 

tuberculosis 

1.3.1 Fitness and epistasis 

The evolutionary trajectory which leads to drug resistance in MTB is heavily influenced by two 

factors: bacterial fitness and epistasis [17, 105-107]  (see Figure 1.2 below). Epistasis is defined 

as a set of genetic interactions where the phenotypic effect of one mutation is dependent on the 

presence of one or more mutations [17]. Bacterial fitness is defined as the ability to adjust 

metabolism in order to adapt to a certain environment. Bacterial fitness can be summarised as a 

function of growth rate, transmissibility and virulence [17, 108, 109]. Any polymorphism that 

reduces bacterial fitness relative to the wild-type strain is said to carry a fitness cost [17]. Drug 

resistance mutations are generally known to carry a fitness cost in MTB [23]. However it is 

important to note that, this fitness cost is influenced by various factors such as strain genetic 

background and compensatory evolution. Certain MTB strains which harbour DR mutations with 

no fitness cost have been reported [108]. Although observations in clinical settings have also 

shown selection for minimum or no fitness cost mutations, data on the relative transmissibility of 

MDR-TB strains has been inconclusive when compared to DS strains [110]. Borrell et al. further 

suggests that fitness of drug resistant strains is a heterogeneous entity [111]. MDR-TB and XDR-

TB is also rampant in regions in HIV pandemic regions, suggesting that DS strains might be more 

fit than fully DR strains [110]. Although this might be true for regions like sub-Saharan Africa, for 

countries in the eastern bloc of Europe and the former Soviet Union, prevalence rates of MDR-TB 

are still high despite their low HIV prevalence rates [111, 112]. The success of MDR strains in 

these regions can be explained by the role of compensatory evolution to mitigate the effects of 

fitness cost overtime. The frequency of the Beijing strains in these regions also supports the 

hypothesis that the strain genetic background plays a role in the development of drug resistance. 

 

Despite the importance of epistasis in circumventing the fitness cost incurred by DR mutations in 

MTB, very few studies have been done until recently using WGS strategies. Epistasis can be 

classified as either positive epistasis when the mutations are beneficial or negative epistasis for 

deleterious mutations [111, 113, 114]. Several studies have reported on the occurrence of certain 

drug resistant mutations having a different fitness effects on strains with varying genetic 

backgrounds [115]. When the bacterial genome carries multiple DR mutations, the overall fitness 

cost of resistance will not only depend on the cumulative fitness costs of individual mutations but 
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on the epistatic interactions between those mutations as well. Positive epistasis is observed when 

the overall fitness cost of resistance is less than what would be observed when we add the effects 

of the individual DR mutations [111]. Subsequently, negative epistasis is observed when the fitness 

cost of carrying multiple DR mutations is more than what would be observed when we sum up the 

fitness effects of each individual mutation. Positive epistasis drives the evolution of MDR-TB by 

mitigating the fitness cost associated with it while negative epistasis decelerates the evolution of 

MDR-TB by inflating the fitness cost [111, 113]. Secondary mutations can also influence the 

evolution of MDR-TB by causing positive epistasis. Several studies on compensatory evolution 

have shown that certain non-DR mutations are involved in the evolution of many drug-resistant 

bacterial species [116]. Allelic exchange and directed mutagenesis experiments found that 

inserting compensatory mutations into wild-type DS strains led to a deleterious loss of fitness, 

thereby highlighting the effects of epistasis [111, 113, 117, 118]. 

 

The currently available body of knowledge does not allow us to theoretically predict epistatic 

interactions, the only possible way is to detect them empirically is through studying the genetics 

of drug resistance [17, 119]. The advent of WGS technologies resulted in a number of studies 

focusing on the evolution of drug resistant MTB. The use of anti-TB drugs imposes strong selective 

pressure on MTB populations [120] so despite the fact that these studies use different approaches 

which include phylogenetic, mutation frequency analysis and molecular epidemiology, the shared 

aim is to identify bacterial genes under positive evolutionary selection by drug pressure [17]. 

Trauner et al. reviewed some of these studies which were done recently [17]. In their review they 

identified not only known drug targets but other novel bacterial genes and intergenic regions whose 

function may be ancillary to DR mutations as shown in Figure 1.3 below. Genes that were found 

to be under positive selection in the presence of antibiotics were mainly involved in cell wall 

synthesis and homeostasis, transcriptional control, lipid metabolism and purine metabolisms. 

Further investigation of these findings can be beneficial in drug target discovery as well as broaden 

our understanding of MTB drug resistance [17, 121, 122]. Given the importance of RIF as an anti-

microbial drug, it is not surprising that a number of studies on bacterial fitness have been focused 

on the rpoB gene [22]. A study by Gagneux et al. showed that mutation rpoB S450L which is one 

of the most frequent RIF resistant mutations in the clinic also carries the lowest fitness cost [123]. 

This mutation is known to be abundant among MDR-TB strains and has also been associated with 

a propensity to acquire compensatory mutations within the RNA polymerase genes (rpoA, rpoB, 

rpoC) [17]. Several studies on the transmissibility of MTB strains have associated these mutations 

with improved transmissibility [124-126]. One of the most important studies that confirms the role 
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of the mutations in restoring bacterial fitness were done by Brandis et al. Working on Salmonella 

enterica, the team demonstrated that the acquisition of these mutations improved the growth rate 

of slow growing rpoB mutants in RIF media [127, 128]. In 2013 Borrell et al. demonstrated 

positive epistasis between gyrA mutations and some rpoB alleles using M. smegmatis [129]. Their 

study showed that the mutants that carried specific combinations of gyrA and rpoB alleles were 

fitter than those strains harbouring single resistance determinants during competitive growth under 

standard conditions in vitro [22]. It is important to note that the same gyrA/rpoB SNP combinations 

were also identified in clinical XDR-TB isolates [129]. These findings suggests the need for further 

investigation on the link between transcription rate and DNA supercoiling in the evolution of 

MDR-TB. Certain INH mutations have also been linked with positive epistasis with the rpoB gene 

and thereby predisposing certain isolates to the development of MDR-TB. A further understanding 

of epistasis signals in MTB will also help in guiding the prescription of certain drugs in the 

treatment of TB. This will also prevent the fuelling of evolution into high level drug resistance and 

also to protect the effectiveness of new antibiotics. 

 

1.3.2 The role of efflux pump systems in MTB drug resistance 

The MTB genome is enriched with a large number of efflux pumps (148 genes coding for 

membrane transport peptides) which facilitates the expulsion of antibiotics from the bacterial cell 

[22]. These efflux pump belong to the major facilitator super family, the resistance nodulation 

division family and to the small drug resistance family [130]. Although wild type cells naturally 

express drug efflux pumps, the presence of mutations within regulatory genes as well as antibiotics 

is also known to induce drug efflux pump expression. The role of efflux pump systems in the 

development of MDR-TB has been a hot topic of research over the past few years [17, 131]. 

Several studies on clinical strains have reported on the overexpression of a number of efflux 

systems upon exposure to some of the widely used anti-TB drugs. Unlike drug target 

polymorphisms which usually cause high-level resistance, the overexpression of efflux pumps 

results in the reduction of intracellular levels of anti-TB drugs leading to the development of low-

level resistance [130-132]. Studies have also reported on the vast overlap in substrate specificity 

among the efflux pumps present in Mtb [130, 133]. Work by Louw et al. and Ainsa et al. also 

showed that the same efflux pump can induce cross tolerance to structurally and mechanistically 

diverse substrates [130, 134, 135]. These findings supports the evidence that the rapid and non-

specific ability of the efflux pumps to extrude highly noxious compounds can lead to the 

development of MDR phenotype [132, 136]. Strains utilizing these efflux systems might be 
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positively selected in the presence of suboptimal, low anti-TB drug concentrations. These low 

level resistant bacterial subpopulations may survive standardized treatment until a classical high 

level polymorphism emerges leading to the development of high level MDR [130, 136-139]. The 

differential expression of efflux pumps may also partly explain why some observed clinical strains 

harbouring the same resistance polymorphisms can have different phenotypic DST profiles [130, 

140]. Efflux pump inhibitors are compounds capable of reducing the MICs of several anti-TB 

drugs in DR-TB strains [23, 130]. The introduction of efflux pump inhibitors as an adjunctive 

therapy in TB treatment regimens has the potential to reduce the duration of TB treatment [23, 

130-132, 141, 142]. However it is important to note that exposing MDR-TB strains to efflux 

inhibitors does not simply translate to the restoration of full susceptibility, as resistance 

determining polymorphisms might have been acquired in other other genes that are not associated 

by these compounds [130]. 

 

1.3.3 The role of deficient DNA repair systems in the evolution of Mtb drug 

resistance 

DNA repair systems are known to directly influence the type and frequency of mutations in 

bacteria [130]. For this reason, there has been growing interest in studying the role of DNA repair 

mechanisms in the evolution of drug resistance. Impaired DNA repair mechanisms are known to 

increase mutations rates and therefore positively select for DR bacterial strains. Ebrahimi-Rad et 

al. identified missense mutations in the putative anti-mutator (mut) genes in strains from the 

Beijing lineage [23, 143]. Strains from the Beijing lineage have been associated with a higher 

propensity to develop into MDR/XDR-TB strains when compared to strains from other lineages 

[144]. The team further hypothesized that increased mutation rates as a result of missense mut gene 

mutations could be linked to the prevalence of MDR in Beijing strains. These findings suggest the 

need for further studies in the link between these repair systems and drug resistance in Beijing 

strains. The combined use of modern tools such as WGS together with other traditional 

experimental methodologies such as Luria Delbruck fluctuation analysis [145, 146] has also 

enabled researchers to quantify the determinants of Mtb mutations in the setting of host infection 

[147]. A study by Ford et al. used Luria Delbruck fluctuation analysis to determine differences in 

mutation rates between strains of Mtb [147]. In their study, they reported that East Asian strains 

acquired resistance to multiple antibiotics at significantly higher rates (1.78 – 37.07 fold) compared 

to Euro-American strains [147]. Mutation rates have also been shown to be elevated in strains 

grown in environments containing sub-inhibitory concentrations of certain drugs, particularly 
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those whose primary mechanism is DNA damage such as fluoroquinolones [130, 148]. Recent 

transcriptional studies using GWAS in MTB have shown that DNA repair clusters are up-regulated 

in isolates that have been exposed to FLQ [130, 149, 150]. The use of quinolones has been linked 

with the development of resistance to other antibiotics of different classes [151, 152]. Although 

INH is not directly involved in DNA metabolic processes, the drug has also been linked to 

increased mutations rates in Mtb [153, 154]. Due to the importance of FLQs and INH in the 

management of TB, further interrogation of these findings is needed. 

 

1.3.4 The role of strain genetic background 

The global genetic diversity of Mtb is made up of seven distinct phylogenetic lineages [155]. 

Despite this genetic variation being small compared to other bacterial pathogens, the Mtb strain 

genetic background has been shown to influence bacterial fitness and drug susceptibility in vitro 

[111]. This means that strains that carry the same resistance mutation can have variable drug 

susceptibility profiles due to a difference in fitness costs. A study by Zaczeck et al. demonstrated 

that mutations in the rpoB genes resulted in different levels of rifampin resistance in strains from 

different phylogenetic lineages of Mtb [156]. Similar results were also observed in katG and inhA 

mutations that confer resistance to isoniazid. Certain lineages are also known to be highly 

associated with the MDR/XDR-TB phenotype and are highly transmissible [108, 110, 157-161]. 

Work by Gagneux et al. using strains from lineage 4 and lineage 2 demonstrated that the same 

histidine to aspartic acid mutation on codon 526 of the rpoB gene resulted in different fitness 

deficits in MTB strains from the two lineages [108, 130]. These studies were further supported by 

recent work by Castro et al. who investigated the role of strain genetic background in the evolution 

of FLQ resistance [162]. The team reported that the Mtb strain genetic background led to a 

significant variation in the frequency of resistance to ofloxacin [162]. The study also reported on 

a positive association between the resistance profiles of clinical isolates and those from in vitro 

isolates [155]. These findings highlights the importance of identifying the lineage of the infectious 

Mtb strain(s) in any diagnostic approach as some of the Mtb lineages might have acquired some 
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unique features prior to expanding [30].

 

 

Figure 1. 2 Factors that determine the evolution of drug resistance in Mtb [111]. 

 

1.3.5 Cross resistance and hetero-resistance 

Traditional dogma is rooted on the premise that Mtb infection is homogeneous, the use of WGS in 

recent studies has challenged this notion and suggested that the level of heterogeneity is much 

higher than previously thought. Several mechanisms by which Mtb heterogeneity in an individual 

arise have been suggested and these include (1) simultaneous infection by multiple strains (2) super 

infection or re-infection by a newer strains (3) the spontaneous emergence of genetic diversity 

during the course of infection [147, 163, 164]. The management of DR-TB is further complicated 

by hetero-resistance which occurs when both resistant and susceptible strains coexist within a 

specimen from a single patient. According to Cohen et al. [165], hetero-resistance is found in 

5.38% of DR-TB and emerges either as a result of infection with different Mtb isolates or through 

the acquisition of mutations within a clonal Mtb population. Culturing of Mtb isolates often fails 

to account for hetero-resistance within samples which can lead to inaccurate results during pDST. 

This can have serious implications in patient management as a result of incorrect prescription of 

TB drug regimens. There is a need for diagnostic approaches that are sensitive enough to account 

for the role of low frequency variants in the emergence of DR-TB even before it is detectable by 
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conventional pDST. Several studies have reported on the variability that occurs at DR loci within 

an individual patient [155, 166-168]. Low frequency variants (<1-5% of the population) have been 

known to alternate their frequency as the infection progresses. This observed micro-heterogeneity 

has led to suggestions that there is a shuffling and sampling of the mutational landscape by Mtb 

until the fixation of one particular mutation eventually occurs [155, 165, 166]. The evolution of 

heterogeneity of drug resistance is beyond the scope of this review but for more information, 

readers are referred to a review by Gagneux et al.[155] which explains on the role of natural 

selection and genetic drift in the evolution of Mtb and the emergence of drug resistance. 

1.4 Whole genome sequencing in TB management 

The advent of NGS technologies was a game changer in the use of sequencing methodologies in 

clinical microbiology [31, 48, 169, 170]. Analysis of the high throughput data generated from 

WGS has led to the reconstruction of the Mtb phylogeny and thus expanding on our knowledge 

on the global distribution of Mtb [171, 172]. The high resolution of WGS has also been exploited 

in TB epidemiology as it allows us to track transmission dynamics through the analysis of SNPs 

in the Mtb genome. The use of WGS combined with social network analysis can be beneficial in 

managing outbreaks. A pilot study by Daum et al. in 2012 showed the potential of using NGS to 

detect Mtb drug resistance using the Ion Torrent Personal Genome Machine (Thermo Fisher 

Scientific Inc., Waltham, MA, USA) [170]. Their approach was superior to traditional molecular 

diagnostic methods in that, it allowed for the sequencing of the entire gene lengths, instead of 

specific loci of interests [48]. The work was subsequently followed by another study in 2013 which 

sequenced whole genomes of Mtb on Illumina (San Diego, CA, USA) NGS platforms for 

epidemiological and rapid molecular DST [48, 173, 174]. WGS has been shown to be superior 

when compared to conventional phenotypic diagnostic methods [48, 175]. WGS assays have been 

associated with high sensitivity for species identification (93%, 95% CI: 90-96%) and drug 

susceptibility (93%, 95% CI: 91-95 %) [48, 175]. The clinical turnaround time for WGS-based 

DST is twenty four hours which is an enormous improvement when compared to conventional 

pDST which takes at least takes 28 days to report. The rapidity of WGS DST offers a number of 

advantages in the management of TB as it allows for faster and more effective treatment and hence 

reduces onwards transmission by reducing the time of infectivity. The use of WGS is also cost 

effective compared to pDST as it produces DST results for the queried antibiotics simultaneously 

and thus eliminating the need for at least seven different molecular assays [48]. 
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Figure 1. 3 Several gene interactions mediates drug resistance in Mtb. Genes are plotted according to their 

approximate genome position. Genes in bold are known to be directly associated with the DR phenotype. Lines 

represent putative epistatic interactions between DR genes and other secondary genes that play a role in drug 

resistance [17]. 

 

A number of different approaches in adopting WGS technologies in TB control have been 

formulated to date. Although these studies were from diverse research interests such as molecular 

epidemiology, phylogenetics, population genomics and pharmacology, the unifying aim of these 

studies was to have a deeper knowledge in the genetic mechanisms driving the evolution of drug 

resistance in Mtb [17]. In 2013, Köser et al. were one of the pioneers in the use of WGS in the 

rapid diagnosis of TB [174]. In their study they extracted and sequenced DNA directly from a 

positive MGIT tube. Their findings were not only consistent with pDST results (MDR-TB) but 

also went on further to detect mixed infection in the sample. The referral laboratory had reported 

resistance to nine antibiotics but WGS analysis further predicted resistance to five more antibiotics. 

This study highlighted the superiority of WGS in predicting antibiotic resistance in Mtb as it has 

potential to reduce the diagnostic time from weeks to only a few days, with the time taken to obtain 

positive culture being the only limiting factor [174]. Rodwell et al. from the Global Consortium 

for Drug–Resistant TB Diagnostics researched the feasibility of using mutations that were highly 

associated with the MDR/XDR-TB phenotype. In their study they analysed 417 Mtb isolates from 
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high burden regions in 4 countries. The team used Sanger sequencing to sequence eight genes 

(katG, inhA, rpoB, gyrA, gyrB, rrs, eis, tlyA) which are known to be highly associated with 

resistance to some of the commonly used TB antibiotics [176]. A review by Van Niekerk et al. 

highlighted some of the limitations of this approach such as the failure to account for the 

phylogenetic backgrounds of the investigated strains as well as the need for purifying the Mtb 

DNA and amplifying the genes of interests before identifying the presence of mutations [30]. 

Initial studies in the application of WGS in DR-TB management did not account for the role of 

interactions between mutations that may be associated with the DR-TB phenotype. A ground 

breaking study by Cui et al. used the bioinformatics software GBOOST to quantify and calculate 

the interactions of SNP pairs and identify gene pairs associated with drug resistance [177]. In their 

approach the team analysed two datasets that contained known DR strains as well as some pan-

susceptible strains. A standard variant calling protocol was employed and the identified variants 

were filtered to remove phylogenetically related variants using the PLINK software [30, 177]. 

Using a chi squared test approach implemented in GBOOST, SNP-SNP interactions were 

identified. The output was filtered to select for non-synonymous mutations as well as gene pairs 

that contained at least one drug target gene. The study identified SNP pairs for INH, RIF, EMB, 

ETH but an interesting finding in this project was the abundance of gene pairs that consisted of 

the gene targets and the unique Pro-Pro-Glu (PPE) family of proteins which are abundant in the 

Mtb genome. Further research is needed to identify the possible role of these proteins in the 

development of DR-TB. 

The plummeting cost of sequencing has also allowed research groups to study Mtb resistance on a 

much larger scale. One impactful study was done by Walker et al. [16] who did an analysis on 

3651 drug resistant and susceptible Mtb genomes. Their study sought to predict resistance to eight 

first-line and second-line drugs using a compiled library of 232 genetic determinants of resistance 

in 23 candidate gene [165]. The results of this study showed high levels of accuracy with a mean 

specificity of 98% and 92% sensitivity. This suggests that our current knowledge on the genetic 

determinants of DR-TB can be reliably used to predict resistance to antibiotic drugs with great 

accuracy especially for the first-line drugs. A recent study by the 100,000 Genomes Project and 

Comprehensive Resistance Prediction for Tuberculosis (CRYPTIC) Consortium also supported 

these findings [165, 178]. Focusing on only first line drugs, the team analysed whole genome 

isolates of 10209 Mtb isolates using a comprehensive catalogue of mutations carefully curated 

from literature. Their results were consistent with the early findings of Walker et al. with a mean 

sensitivity of over 90%. One hallmark of this study was the improvement in the sensitivity of PZA 

predictions (91.3%) compared to 57% that was reported by Walker et al. [16, 165]. Despite these 
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high accuracy rates associated with using these known resistance mutations, our current catalogue 

of resistance determinants is still limited, up to 30% of INH resistant and 5% RIF resistant Mtb 

isolates do not harbour any mutations in the drug targets genes [130, 131]. Determinants of 

resistance still remain elusive for 10-40% of clinically resistant isolates [121]. Prediction of 

resistance to second line drugs and some complex drugs such as PZA is still challenging. 

 

To address some of these challenges, genome-wide association study (GWAS) approaches have 

been implemented for Mtb [16, 165]. It is important to note that GWAS was initially designed to 

exploit the high rates of turnover and high throughput of human genomic data in order to identify 

variants in natural populations linked to phenotypic traits by statistical association [30]. The 

adoption of GWAS in bacterial studies has not been satisfactory due the nature of their population 

structures which reduces statistical power or produces false positives [179]. However the clonal 

nature of non-recombining microbes allows us to make associations between spurious variations 

and particular phenotypes. This has led to some researchers using GWAS approaches in order to 

identify novel resistance mutations. However, experimental validation of most of these GWAS 

predictions has not been performed [165]. Despite that, a number of new resistance determinants 

identified by these approaches have been successfully validated. The use of GWAS for antibiotic 

resistance in TB is further limited by the relatively low number of phenotypically resistant strains. 

Farhat et al. recently combined minimum inhibitory concentration (MIC) testing with GWAS to 

identify resistance genes in 1452 clinical Mtb isolates [180]. In their study they confirmed 

association at 13 non-canonical loci with two of them involving non-coding regions [180]. This 

novel approach was the first one that was able to quantify the proportion of the DR phenotype that 

is explained by genetic variation. The study further highlighted on how the complexity of the 

mechanisms driving the evolution of drug resistance limits the use of GWAS in drug resistance 

studies. For example, the step wise acquisition of DR mutations means that association 

conditioning is impossible in the absence of the primary gene mutation [180]. 

 

1.4.1 Challenges in using Whole Genome sequencing 

Despite the huge strides that have been undertaken in adopting WGS in TB research, several 

limitations that can result in the misinterpretation of the data still exist within the current 

sequencing methodologies. Most of the WGS-based applications such as DR-TB diagnosis, 

population and phylogenetic analysis rely on the resolution of WGS in identifying SNPs. INDELs 

can be easily identified by the absence of expected reads or the presence of novel contigs relative 
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to the reference  [147]. Several studies have also attributed the variability among mycobacteria to 

the loss of entire genes [181-183]. However, the identification of polymorphisms in repetitive 

regions, gene duplications chromosomal rearrangements and copy number changes of tandem 

repeats become challenging when using NGS methods and this can lead to a significant impact in 

the interpretation of the biological data especially when using single read technology  [147]. The 

use of paired-end read technology addresses some of these limitations as it gives better resolution 

for these problematic regions. 

 

Several repetitive regions are scattered within the Mtb genome, the sequencing of some of these 

regions is challenging when using short read sequencing technology [184]. This is problematic 

because several genes with significant biological meaning are located in some of these repeat 

regions. Some of these genes include the pncA, esx, PPE and PE whose involvement in Mtb drug 

resistance will be discussed in the following chapters. The detection of genomic duplications in 

Mtb is also challenging when using short read sequencing methods because of ambiguity in 

genome assembly [184]. Roberts et al. found out that some Beijing strains harbour a large scale 

duplication of ~350kb in the Rv3128-Rv3427 [147, 185]. This region is also the location of the 

transcriptional regulator DosR which regulates the response to hypoxia. Using short read 

sequencing technology for a region like this would result in several ways of building contigs 

making it difficult to identify the polymorphism. Advances in longer read sequencing methods as 

well as improved assembly technologies allows us to overcome some of these challenges [186]. 

1.4.2 WGS-based software tools for the prediction of drug resistance in Mtb 

1.4.2.1 Mykrobe Predictor TB version 0.1.3  

The software tool designed for Mtb as well as Staphylococcus aureus takes raw sequence data as 

input and generates a user friendly report within three minutes on a personal computer [187]. The 

tool is specifically designed to detect low-frequency resistance mutations and detected minor 

alleles in the DR loci are included in the output report even though they are not interpreted [188]. 

The program and its source code can be freely downloaded on Github (https:\\github.com\iqbal-

lab\Mykrobe-predictor\release). Despite Mykrobe Predictor being an automatic tool, the end-user 

is still required to use the command line when using the program for batch uploads. The program 

also requires sequence files to be merged before they are analysed and this may cause some 

technical challenges for the end-user. 
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1.4.2.2 CASTB version 1.5 

The comprehensive analysis server for the Mycobacterium tuberculosis complex is a web server 

(http://castb.ri.ncgm.go.jp/CASTB) that can analyse Mtb WGS data. The server uses a SNP 

catalogue to infer drug resistance to six drugs which are INH, EMB, RIF, PZA and ciprofloxacin 

(CFX) [188, 189]. The prediction result output (R=resistant; <blank>=not resistant) does not 

include a report of which variants were detected or how they were interpreted. Results are stored 

on the server for up to seven days. A recent review by Schleusener et al. on WGS-based tools 

criticized CASTB on its heavy reliance on automation and its lack of detailed output reports [188]. 

 

1.4.2.3 TBProfiler 

TBProfiler (http:\\tbdr.lshtm.ac.uk) is another web-server for the prediction of antibiotic resistance 

in Mtb directly from raw sequence data [9]. The tool uses a catalogue of 1325 polymorphisms 

(including SNPs and indels) to infer the DR profiles for 11 anti-TB drugs [188]. The output also 

includes additional information on the phylogenetic background of the queried strains as well as 

further mutations in 22 candidate genes. However, TBProfiler does not offer any dedicated export 

and storage functionality [188]. An offline version of TBProfiler can be downloaded although data 

querying in batch mode requires proficiency in using the command-line. Updating the tool also 

requires advanced computational skills as it involves modifying the program’s source code. 

 

1.4.2.4 KvarQ 

KvarQ (http://github.com/kvarq/kvarq/releases) is a software tool that scans fastq files for known 

variants [190]. The tool requires Python and a C compiler as dependencies [188]. Unlike other 

software that analyse raw sequence data as input, the tool extracts the required information directly 

from the sequencing reads without any need to align every read to a reference genome. Users can 

interact with the tool via the command-line or through the graphical user interface. KVarQ output 

is given in the ‘JavaScript Object Notation’ (json) format [188]. Updating the resistance catalogue 

also requires advanced skills as this involves changing the python files which make up the 

program’s test-suites. 

 

http://castb.ri.ncgm.go.jp/CASTB
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1.4.2.5 PhyResSE version 1.0 

PhyResSE (http://phyresse.org) is a free to use web server that processes raw WGS data to predict 

for lineage and drug resistance profiles in Mtb [191]. PhyResSE integrates well established 

methods from FastQC, BWA, QualiMap, SAM tools and others with a broad spectrum of 

experimentally validated cases acquired at the Leibniz Lung Centre of Research Centre Borstel 

[191]. The tool‘s mutation library consists of 301 polymorphisms that are used to predict for drug 

resistance as well as 239 SNPs in 135 genes used for phylogenetic typing [188]. The tool offers a 

detailed output (batch mode) report of all mutations in csv file format. Unlike the other tools, 

PhyResSE allows the users to easily update its catalogue of variants [188]. This allows users to 

improve the accuracy of the program as they gain more understanding on the genetic basis of drug 

resistance in Mtb. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://phyresse.org/
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Table 1. 2 A summary of current WGS-based programs for the detection of DR in Mtb [188].  

 

 

1.5 Summary 

Although it is one of the oldest diseases known to man, tuberculosis remains the leading global 

infectious killer. Despite a drop in the global incidence of the disease in the recent years, the 

persistence of drug resistant strains remains a stumbling block in achieving the goal of totally 

eradicating TB. Early diagnosis and correct treatment remain as limiting factors in TB control 

especially in low to middle income countries which carry a large portion of the disease burden. 

Referral laboratories in these settings still rely on traditional DST methods for DR-TB diagnosis. 

Rapid molecular assays have been successfully developed for DR-TB diagnosis and this has led 

to the WHO endorsing the Xpert-Ultra MTB assay. The global roll out of this technology has led 

to the improvement in DR-TB diagnosis, however, serious diagnosis gaps still remain due to the 

limitations of these technologies. The elucidation of the Mtb genome was a game changing 

milestone in TB research as it provided a more comprehensive view on Mtb physiology. Whole 

Genome sequencing has proved to be an attractive option in informing TB treatment decision as 

well as monitoring drug resistance patterns in high burden settings. However for us to be able to 

fully harness its potential, there is need for a thorough understanding of the genetic mechanisms 
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of resistance in Mtb. Several WGS-based assays for the diagnosis and management of DR-TB 

have been successfully developed over recent years. However, the uptake of these technologies in 

the referral laboratory setting has been hindered by the data complexities associated with WGS as 

well as a lack of bioinformatics skills among clinical microbiologists. The recent years have seen 

a number of WGS-based user-friendly platforms being developed. Despite an improvement in the 

user-experience, the success of these platforms depend on our understanding of the genetic basis 

of drug resistance in Mtb. 

 

1.6 Project Overview 

Traditional dogma has always assumed that resistance to an anti-TB drug can be attributed to a 

once-off acquisition of a resistance-conferring mutation. In this study we hypothesized that the 

antibiotic resistant phenotype in Mtb is associated with a specific pattern of multiple polymorphic 

sites in the Mtb genomes which can be used as reliable signatures of drug resistance even if only 

fragments of the genome are available for analysis. We further hypothesized that the step wise 

acquisition of drug resistance mutations follows an order of events whereby the acquisition of one 

mutation facilitates the acquisition of other additional mutations leading to the further development 

of drug resistance. The objective of this project is to develop an online tool for the prediction of 

drug resistance in Mycobacterium tuberculosis using NGS data and to develop an evolutionary 

model of the emergence of Mtb drug resistance. Our clade-based approach will employ a novel 

GWAS derivative to calculate the power of association between a clade and resistance to a specific 

anti-TB drug. This approach will allow for the identification of novel polymorphisms which may 

be associated with the DR-TB phenotype. Drug susceptibility is often reported as either 

“Resistant” or “Susceptible” and this often results in the incorrect classification of strains with low 

levels of resistance. Our program will report resistance as a probability and users will be able to 

identify strains that might develop full resistance in future. The program will allow users to upload 

files in different NGS file formats generated from different stages of the genome completion 

process. Program design and implementation are covered by Chapter 2. 

 

In Chapter 3, we will use attributable risk statistics to further identify functional associations 

between mutations that were strongly associated with the DR phenotype. Attributable risk 

networking will then be used to infer the evolutionary pathways that drive drug resistance in 

different clades of Mtb. 
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The aim of this project is to elucidate the mechanisms of mutations in the Mtb genome with the 

bigger goal of gaining more understanding of the dynamics that drive the evolution of drug 

resistance in this pathogen. The main goals of this project include: 

 

1. To optimize the accuracy of an alpha version of the program “Resistance Sniffer” so that 

it identifies the lineage as well as the drug susceptibility profile of Mtb strains and test its 

validity using real life Mtb sequences with well-characterized drug susceptibility and 

phylogenetic profiles provided by the partnering team from the TB platform of the SA 

Medical Research Council. 

2. To expand the number of antibiotics that can be analysed by the Resistance Sniffer program 

and allow processing of genome sequence datasets in different file formats including raw 

NGS-generated fastq read files, genomic sequences in FASTA and GenBank formats as 

well as VCF variant calling files to cater for the needs of different potential users. 

3. To identify clade-specific patterns of polymorphisms and confirm the role of compensatory 

mutations in drug resistance. 

4. To provide the Resistance Sniffer program with a functionality of predicting the likelihood 

of a given TB strain to acquire drug resistance in future by identifying specific mutations 

preceding the development of antibiotic resistance.  

5. Develop an evolutionary model for the emergence and fixation of Mtb drug resistance. 
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Chapter 2-Resistance Sniffer development 

and Implementation 
2.1 Introduction 

In the previous chapter, we highlighted on how the success of WGS sequencing in the control of 

TB is mainly dependent on our understanding of the genetic basis of drug resistance in Mtb. In 

order to fully harness the power of WGS, there is a need to set clear rules on the interpretation of 

variants detected using these approaches [192]. Ideally, the goal would be to assemble a high-

quality library of genetic determinants of resistance which can then be implemented in DR-TB 

diagnostics platforms. For first line drugs such as INH and RIF whose mechanism of action have 

been extensively studied, the current body of knowledge is sufficient enough to distinguish 

between mutations that are associated with the drug-resistant phenotype and those that are not. 

However, for second line drugs and other drugs with complex mechanisms of action identification 

of such variants becomes challenging. Although in vitro allelic exchange experiments have been 

successfully used to identify significant resistance variations, this approach is not feasible for DR-

TB diagnosis due to a number of limitations [193]. These methods are expensive, tedious and also 

limited to a small number of loci. In silico association studies have been successfully used in 

numerous settings to interrogate suspected genetic determinants of resistance particularly in 

nonessential genes, where numerous loss of function mutations can lead to the development of 

drug resistance [16, 192]. 

 

Despite the popularity of Genome-Wide Association Studies (GWAS) in identifying variants in 

natural populations linked to phenotypic features by statistical association, its use in bacterial 

populations has been minimal due to challenges that arise as a result of bacterial population 

structures [30]. Genomic diversity in bacteria may be moulded by population stratification, a 

phenomenon where there is an occurrence of subgroupings of strains that are on average more 

related to each other than other individuals in the broader population [179, 194]. This leads to 

spurious associations whereby associations are a result of genetic proximity rather than due to the 

phenotype of interest. Population stratification is widely rampant in highly clonal bacteria such as 

Mtb, and in other bacterial species with separate geographic or host-associated subpopulations 

[179, 195]. 

The use of traditional GWAS in Mtb studies is complicated by its high linkage disequilibrium 

(LD) as well as strong population structure due to its high clonality [196]. Population stratification 
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can lead to false associations while correcting for the problem can lead to a decrease in association 

power.  

 

In this study we used a novel GWAS derivative as well as a larger sample size to control population 

structure as well as boosting association power. This approach allows for the detection of other 

novel resistance determinants which have not been reported yet. 

 

2.2 Data download and preparation 

Mutation data in the form of 2501 variant call format (VCF) files were downloaded from the 

GMTV database (https://mtb.dobzhanskycenter.org/cgi-bin/beta/main.py#custom/world). The 

database consists of data from Mycobacterium tuberculosis isolates sourced from different regions 

of the Russian Federation and worldwide. The database integrates drug resistance profiles, 

epidemiology, TB clinical outcome, year and place of isolation as well as molecular biology data 

[197]. The metadata includes information on drug resistance trials with respect to the following 

antibiotics: amikacin (AMK), capreomycin (CM), cycloserin (CS), ethambutol (EMB), 

ethionamide (ETH), isoniazid (INH), fluoroquinolones (FLQ), kanamycin (KAN), ofloxacin 

(OFL), para-amino salicyclic acid (PAS), pyrazinamide (PZA), rifampicin (RIF) and streptomycin 

(SM). The database also provides information on the phylogenetic clade of each sample. The 

quality of the microbiological, WGS and spoligotyping data is guaranteed by the institutions that 

provided the data to the database [197]. The dataset was further split to create a training dataset of 

1300 samples. The validation dataset consisted of 1201 samples whose antibiotic phenotype data 

was available for all the drugs included in this study. An independent testing dataset of 742 Mtb 

genome sequences was obtained from the SA-MRC. We also obtained an additional testing dataset 

for lineage classification which consisted of 77 Mtb strains isolated in Sierra Leone (ENA 

accession number: PRJEB7727) from the PATRIC database [198]. Strains from this database have 

been described in previous studies [188, 191, 199]. 

 

2.3 Phylogenetic Lineage classification 

M. tuberculosis H37Rv reference genome (NC_000962.3) was used to determine the 

polymorphisms. In addition to this data, discriminative single nucleotide polymorphisms (SNPs) 

were identified by whole genome alignment against reference genomes of M. bovis (NC_016804, 

NC_020245, NC_012207, NC_008769 and NC_002945) and M. canettii (NC_015848, 
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NC_019950, NC_019965, NC_019951 and NC_019952) available from the NCBI database. 

Variant calling was performed using Mauve 2.3.1 [200]. 

2.4 Construction of the diagnostic key 

In total, 58,025 SNPs and indels leading to amino acid substitutions were selected for the analysis 

of their associations with Mtb clades and antibiotic resistance patterns. Allelic states and locations 

of SNPs associated with antibiotic resistance were obtained from the TB Drug Resistance Mutation 

Database (https://tbdreamdb.ki.se/Info/Default.aspx) [201]. 

Discriminative power of SNPs used for distinguishing between Mtb clades and/or drug sensitive 

versus drug resistant variants in the same clade was calculated by the following equation: 

   (1) 

where A∩B is the number of strains in the clades A and B sharing the same allelic state of the 

locus k; NA and NB – sample sizes of the clades A and B, respectively. Power values were in the 

range from 0 to 1. 

The output was filtered down to exclude polymorphisms in the PPE and PGRS gene as well as 

well-known lineage markers. SNPs with the highest discriminative power values were then 

selected to create the diagnostic key as explained below. 

2.5 Resistance Sniffer algorithm 

The program, Resistance Sniffer, was developed in Python 2.7 (also compatible with Python 2.5) 

and implemented as an on-line tool at http://resistance-sniffer.bi.up.ac.za/. The program is also 

available for download, with example input files, from http://resistance-

sniffer.bi.up.ac.za/Mycobacterium_tuberculosis/help/ as a stand-alone tool. The accepted input 

includes complete sequences in Genbank or FASTA formats; sequences of predicted genes or 

proteins in FASTA format, uncompressed VCF files and raw Illumina fastq paired-end read files. 

The program maps raw sequences to the embedded reference genome sequence (M. tuberculosis 

H37Rv, NC_000962.3). The detected patterns of polymorphisms are then processed using the 

diagnosis key, which consists of a catalogue of clade-specific polymorphisms and genetic 

determinants of antibiotic resistance. The diagnosis key consists of bifurcating splits for each 

decision point (Figure 2.1). At each intermediate node, the program calculates normalized counts 
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of power values (Eq. 1) of diagnostic polymorphisms depending on the states of these sites in the 

given genome. As the program was designed to perform predictions based on partially sequenced 

genomes, the program does not expect to receive the states of all polymorphic sites assigned for a 

split and tries to make a decision based on the available sites. Optimally, the score for one 

bifurcating branch is expected to be 1.0, and for another branch – 0.0. If the maximal score is 

below 0.75, the program explores both alternative branches to avoid an erroneous decision on a 

top-level split. Moreover, reaching the leaf-node corresponding to an Mtb clade, the program tries 

a possibility that the strain may belong to a sister clade sharing similar polymorphisms. It must be 

emphasized that in this work we did not attempt to distinguish between phylogenetically 

significant traits and convergent polymorphisms. No conclusions regarding the phylogenetic 

relatedness between clades should be drawn from the neighbouring of the clades in the diagnostic 

key in Figure 2.1. 

 

It should be noted that in many cases there are no clear borders between Mtb clades and 

intermediate strains do exist, hence in instances where the program cannot reach a confident 

conclusion with regards to strain affiliation, the program returns two top-scored clades.  

 

 
 

Figure 2. 1 The decision tree implemented in Resistance Sniffer. Leaf nodes shown in green denote Mtb clades: 

EAI – East African and Indian (Lineage 1.1); L1.2 – lineage 1.2; Bj – Beijing strains (lineage 2); CAS – Central 

Asian Strains (lineage 3); Xt – X-type strains; L4.1 – lineage 4.1 (H37Rv type strain); Ur – Ural strains (lineage 

4.2); L4.3 – lineage 4.3; Hr – Haarlem strains (subtype of lineage 4.3); St – S-type (subtype of lineage 4.3); L7 – 

lineage 7; Mb – M. bovis and Mc – M. canettii (related to lineages 5 and 6). Intermediate nodes represent groups of 

clades. Antibiotic resistance nodes are:  amikacin (AMK), capreomycin (CM), cycloserin (CS), ethambutol (EMB), 
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ethionamide (ETH), isoniazid (INH), fluoroquinolones (FLQ), kanamycin (KAN), ofloxacin (OFL), para-amino 

salicyclic acid (PAS), pyrazinamide (PZA), rifampicin (RIF) and streptomycin (SM). 

 

Contrary to a general belief in the existence of DR mutations common for all Mtb strains, this 

approach proceeds from an assumption of parallel drug resistance evolution in Mtb clades which 

resulted in the creation of different clade-specific patterns of polymorphic sites associated with the 

antibiotic resistance phenotype [30]. Each clade node of the diagnostic key consists of associated 

sets of polymorphic sites which distinguish between antibiotic resistant and antibiotic sensitive 

variants for every Mtb clade. Using the same method described in the clade identification step 

above, the program calculates normalized counts of polymorphisms associated with the drug 

sensitivity (SenCount) and drug resistance (ResCount). In the next step, antibiotic resistance scores 

(q values) are calculated for every individual antibiotic by equation 2. 

 

𝑞 =
1+(

1+𝑅𝑒𝑠𝐶𝑜𝑢𝑛𝑡

1+𝑆𝑒𝑛𝐶𝑜𝑢𝑛𝑡
) 

2
  (2) 

In the following step, the resistance value (R) and the standard error (Err) are calculated by 

equations 3 and 4, respectively. 

𝑅 = 𝑞 × 2(2×𝑅𝑒𝑠𝐶𝑜𝑢𝑛𝑡−1)
   (3) 

𝐸𝑟𝑟 =
2𝑞(1−𝑞)×2(2×𝑅𝑒𝑠𝐶𝑜𝑢𝑛𝑡−1)

√𝑁−1
  (4) 

In Eq. 4, N is the number of diagnostic sites found in the given genome. 

 

Figure 2.1 details the sequence of steps taken by the program in assigning the clade to the sample. 

This is followed by determining whether the strain is resistant or susceptible to each of the 

antibiotics. It must be noted that the number of antibiotics a strain may be resistant to depends on 

the clade affiliation of the given strain. East African and Indian (EAI) clade, Lineage 7 and 

M. canettii are considered to be sensitive to all antibiotics by default since the antibiotic metadata 

from GMTV and SA MRC indicated that none of the isolates belonging to these clades were 

resistant to any antibiotic. However, this does not rule out the possibility of the future discovery 

of antibiotic resistance in some of these strains. M. bovis isolates are set by default to be resistant 
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to PZA [202] while sensitive to all the other antibiotics [203]. Antibiotic resistance diagnostic keys 

will be added to these nodes when more data becomes available. 

 

Program validation was performed on 1201 Mtb strains from GMTV and 742 strains from 

SA MRC, which were provided with antibiotic resistance/susceptibility patterns. The program 

performance was characterized by sensitivity (SENS), specificity (SPEC), Positive Predictive 

Value (PPV) and Negative Predictive Value (NPV) as shown in equations 5-8: 

𝑆𝐸𝑁𝑆 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (5) 

𝑆𝑃𝐸𝐶 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
  (6) 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (7) 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
  (8) 

In Eqs. 5-8, TP – number of true positive predictions; FP – false positives; TN – true negatives; 

and FN – false negatives. 

2.5.1 Program Interface 

The complexity of bioinformatics tools often deters would-be users from adopting WGS-based 

tools in the clinical setting. In this study we sought to develop a user friendly platform that can be 

easily accessed online at http://resistance-sniffer.bi.up.ac.za/Mycobacterium_tuberculosis. The 

link directs the users to the home page which contains information about the tool’s usage 

instructions as well as links to the offline version as shown in Figure 2.2 below. The end-user 

interacts with the system by simply clicking on the browse button. This opens up a dialog box that 

allows the user to select the desired input file from the local hard drives. Once selected, the file is 

uploaded and processed by clicking on the upload and compare button as shown below. In this 

project we aimed to develop a tool that is applicable to different stages of the genome completion 

process and hence the tool is compatible with most of the standard NGS file types from raw reads 

to SNP level. The user interface provides information on the accepted input file formats. The 

interface also allows the user to provide their email address if they wish to be notified once the 

analysis has been completed. The fastq file upload menu allows the user the option to either upload 

single read files or use paired-end read files as input. 

http://resistance-sniffer.bi.up.ac.za/Mycobacterium_tuberculosis
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The interface also comes with a download menu which allows the users to download an offline 

version of the tool. This stand-alone version allows for the batch upload of genomic sequences. 

This improvement in automation can be useful in a large referral laboratory setting which has to 

process larger amounts of sequence data. Figure 2.3 shows the help and download button for the 

program where users can access a compressed version of the program for offline use. Figure 2.4 

shows the structure of the subfolders that make up the offline version of the program. Assuming 

that the user of the offline version has basic knowledge of the command-line, the queried files are 

copied to the input folder as shown in Figure 2.5. The program can be run on any computer 

provided that Python 2.5 or 2.7 is installed by executing the run.py script shown in Figure 2.4. 

Assuming that there are no errors and the program is running well, the user’s command line shell 

will display the progress of the analysis as shown in Figure 2.6. Upon completion, the program 

writes the output files in the output folder shown in Figure 2.4.  
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Figure 2. 2 Web user interface of Resistance Sniffer depicting the accepted input file types 

. 

 

Figure 2. 3 Local version of the program is available from the Help and Download Web-site. 
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Figure 2. 4 Structure of subfolders of the local version of the program Mtb_resistance_sniffer. 

 

 

Figure 2. 5 Example input files in the folder “input”. 

 

 

 

Figure 2. 6 Program run in the Command Prompt window. 

 

 

Figure 2.7 below shows a schematic diagram of the Resistance Sniffer workflow. The program 

processes the input files depending on their formats and the identified variants in the genotyping 

module are compared against the identification table which makes up the diagnosis key. The data 

is then processed by the statistical evaluation module. It is important to note that the processing of 

raw fastq reads is not available on the offline version of the program because the Bowtie 2 aligner 

is embedded on the server side. The identification table is in simple text format as shown in Figure 

2.8, this allows for flexibility in the application of the program meaning that the program can be 

easily updated to include newly discovered variants. The program can be easily adapted for other 

pathogens as well by simply creating an identification table applicable for that specific pathogen. 
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Figure 2. 7 Schematic diagram of the Resistance Sniffer workflow. 

 

 

Figure 2. 8 The diagnosis key of the Resistance Sniffer 
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2.5.2 Output visualization 

Most DR-TB databases approach the drug resistant phenotype as a binary entity which means that 

a strain is classified as either resistant or susceptible. However, our study suggests that the 

progression to the drug resistant phenotype is a stepwise process which highlights the need to 

develop ways to account for intermediate levels of drug resistance as well. Resistance Sniffer 

outputs the results as a bar plot of the probability that the strain is drug sensitive or drug resistant 

to the thirteen antibiotics. Figure 2.9 shows several examples of graphical outputs of the program. 

The drug susceptibility pattern estimated for the strain TB0775 from GMTV is demonstrated in 

Figure 2.9A. The strain was predicted to belong to the Beijing clade. The program prediction shows 

that this isolate has a high likelihood to be resistant to INH, KAN and SM, and may have an 

intermediate resistance towards FLQ, OFL, PAS and RIF. The experimentally detected profile of 

drug susceptibility available for this strain from GMTV confirms resistance to INH, SM and RIF, 

and sensitivity to EMB which agrees with the software prediction. This strain was not tested for 

other antibiotics.  

 

Figure 2.9B shows the prediction of drug resistance for a highly fragmented assembly of a clinical 

isolate from the SAMRC. The strain was assigned with equal likelihoods of belonging to either 

CAS or to X-type. It may be possible that the queried sequence is from an intermediate variant; 

however, the ambiguity could be attributed to the quality of sequencing. Only small fractions of 

diagnostic sites were found in the sequences which resulted in an increased standard error of R-

value estimation depicted on the plot by an increased length of black vertical whiskers. 

Nevertheless, the program predicted a high likelihood that this strain may be resistant to ETA, 

KAN and OFL, and may also show an intermediate resistance to CM, EMB, FLQ, INH, RIF and 

SM. Because the program could not distinguish between CAS and X-type, patterns of resistance 

were analysed for both these clades and the biggest R-values were selected. Resistance to PAS was 

not expected for either CAS or X-type isolates as there were no such isolates in the training dataset 

used for this program. This is why the program set this strain sensitive to PAS by default without 

any estimation. Setting of the drug sensitivity by default is depicted by short grey bar. Only a few 

diagnostic sites needed for PZA resistance prediction were found in this fragmented genome and 

they were uninformative. For example, in PZA sensitive CAS isolates, a Met residue is expected 

on the 134th codon of the Rv0040c gene while Ile is expected on the same locus for PZA resistant 

isolates.  In the given strain, Val was found on this locus, a finding that does not fit with the 



42 

 

expectations. The program marked this antibiotic on the plot with a short red bar indicating an 

insufficiency in the information to make any decision.  

 

In Figure 2.9C, isolate ERS458164 from Sierra Leone was predicted as M. bovis clade, which also 

includes predominantly drug susceptible Western African and M. africanum isolates. The current 

version of the program was not designed to analyses the drug resistance in this clade due to lack 

of published data. The program displays by default that the isolate is most likely susceptible to all 

antibiotics except for the vaccination M. bovis strains reported to be PZA resistant [202] that is 

indicated by highlighting the PZA resistance in the output file. 

 

In Figure 2.9D, an example is given of the analysis of historical DNA, in NGS format, obtained 

from human remains of an individual who died from tuberculosis in XVIII century in Hungary 

[204]. The current analysis confirmed the affiliation of the Mtb strain with lineage 4 as reported in 

the original paper but with a better precision of the identification to the sub-lineage 4.3, which is 

common in Europe. This strain already possessed many mutations specific to future multidrug 

resistant Mtb variants of this lineage; however, this strain most likely was still susceptible to all 

antibiotics (sensitivity coef. 0.55).  

 

Both the online and stand-alone program implementations also return a text output file listing the 

states of all diagnostic sites in addition to the graphical output in SVG file format. Resistance 

Sniffer predicts the resistance to antibiotics by analysing patterns of diagnostic polymorphisms in 

genome sequences. The actual resistance of a bacterium to antibiotics may be affected by some 

other factors that the program does not consider, particularly epigenetic modifications. For 

example, a recent study on the application of a new drug, FS-1, which causes the reversion of 

multidrug resistant bacteria back to the sensitive phenotype showed that the pattern of drug 

resistant mutations remained unchanged in the strains with reversed susceptibility to antibiotics 

[205]. Thus, the strains with reversed antibiotic sensitivity due to epigenetic modifications will be 

predicted as resistant by the pattern of diagnostic polymorphisms. Moreover, the same study 

showed that Mtb isolates from experimentally infected laboratory guinea pigs showed a range of 

antibiotic susceptibility values due to natural variations within the population even though all the 

animals were infected with the same MDR-TB strain. Hence the antibiotic resistance prediction is 

probabilistic by nature. The Resistance Sniffer program estimates a rough likelihood for an isolate 

to be resistant to one of thirteen antibiotics or to be sensitive to all of them. These estimations are 
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recorded in the text output file or may be displayed on the screen when the mouse pointer is placed 

over the bar on the plot (see Figure 2.9A). 

 

 

Figure 2. 9 Drug resistance predictions by Resistance Sniffer for the strains (A) TB0775; (B) 1324269.3; (C) 

1773.5459 and (D) Hungarian mummy isolate. White columns show sensitivity to antibiotics with the confidence 

above 55%; red columns predict the resistance with the confidence above 55%; and orange columns show 

intermediate results. The green column depicts the likelihood for this strain to be sensitive to all 13 antibiotics. 

Estimated R-values are shown along the vertical axis. Standard errors of calculation are depicted by black vertical 

whiskers. Antibiotic resistance nodes are:  amikacin (AMK), capreomycin (CM), cycloserin (CS), ethambutol 

(EMB), ethionamide (ETH), isoniazid (INH), fluoroquinolones (FLQ), kanamycin (KAN), ofloxacin (OFL), para-

amino salicyclic acid (PAS), pyrazinamide (PZA), rifampicin (RIF) and streptomycin (SM). 

 

2.6 Evaluation and Results 

2.6.1 Phylogenetic clade classification 

The accuracy of this tool depends on the correct classification of the phylogenetic lineage of the 

Mtb sequences. The precision of the program Resistance Sniffer for lineage classification was 

assessed using lineage information from the original GMTV test dataset, as well as lineage 

information provided for in the Sierra Leone dataset. It is important to note that lineage information 
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was not available for all the samples from the SA-MRC, 121 samples from the GMTV as well as 

for 11 of the Sierra Leone samples. The program was able to perform lineage classification for all 

samples in our test dataset with >95% accuracy. The main reason for discordance in classifying 

samples from the GMTV database can be attributed to the lack of the database’s resolution in 

classifying sub-lineages of Mtb. Classification errors were also observed for 4 strains from the 

Sierra Leone dataset (ERS457923, ERS457211, ERS457423, and ERS457331) which were 

misclassified as either CAS, Beijing or Lineage 1.2. The predicted clades for the GMTV and SA-

MRC strains whose lineage information was not available is shown in Figure 2.10. 

 

 

Figure 2. 10 Frequencies of clades assigned to Mtb strains from GMTV and SA MRC.  

 

The GMTV database is predominantly constituted by Mtb strains isolated in Russia, while SA 

MRC presents clinical isolates from South Africa. The majority of the GMTV strains belong to 

the highly virulent Beijing clade, European lineage 4.3, Asian lineage 4.1 (type strain lineage from 

India) and Ural clade-specific for central Russia. European lineage 4.3 is even more prevalent 
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among South African isolates. It is followed by the S-type variants of this lineage, Beijing and 

CAS clades. The prevalence of the Euro-American strains among the South African isolates is an 

interesting finding which requires further research with emphasis on investigating the possible 

introduction of the disease as a result of colonial migration. EAI clade is present among South 

African isolates but not frequent, probably because of relatively lower virulence. Asian clades, 

Ural and lineage 4.1 were not found among the SA MRC isolates. 

 

2.6.2 Power of association 

In all the phylogenetic clades, the PE, PPE gene family were highly associated with resistance to 

antibiotics. This gene family consists of surface-exposed cell wall proteins which are known to 

affect cell wall structure and permeability and some have been shown to be antigens [121]. The 

association of these genes with the DR mutations is further complicated by homoplasy as these 

genes are known to be highly polymorphic, however the association of this family of genes with 

drug resistance is an important area of research. There was also a high association of mutations 

that code for genes that are involved in cell wall homeostasis such as ppsA, murD, pks and ponA1. 

Rifampicin resistance in Lineage 4.3 was highly associated with several mutations in the ppsC, 

mas and ppsA genes, a finding which may suggest that the PDIM biosynthesis system may play a 

leading role in the evolution of drug resistance in this clade.  

 

The mutations in the gidB have been previously associated with the development of low level SM 

resistance in Mtb [206]. Our study found significant association between SM resistance in the 

Beijing clade and gid mutations at position 16, 48 and 210 of the Mtb genome. Mutations in the 

Rv3908 mutT4 were also highly associated with DR in the Beijing, CAS, Lineage 1.2, X-type and 

lineage 4.3. However our method did not identify any association between this locus and lineage 

4.1, S-type and Ural. This finding adds weight to the growing consensus that suggests that the high 

propensity of strains in some clades such as the Beijing clade to develop into MDR-TB strains can 

be attributed to elevated mutation rates as a result of missense mutations in the mut gene [143]. 

Contrary to what we observed in the mut gene, mutations in the Rv1316 ogt gene were highly 

associated with drug resistance in the Ural, Haarlem, lineage 4.3 and X-type clade but were absent 

in the Beijing, Lineage 4.1, CAS and S-type clades. The ogt is responsible for the removal of 

methyl groups from 06-methylguanine in the DNA repair process. Another interesting finding in 

our study was that unlike in the other clades, the X-type clade was not associated with any 
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mutations in the inhA, eis and tlyA mutations which have been previously associated with low level 

resistance and resistance to second-line aminoglycosides. As expected, mutations in the embCAB 

operon were highly associated with ethambutol resistance. We further investigated the role of these 

mutations by incorporating all the identified embCAB mutations in the Beijing clade into the 

Resistance Sniffer program and analysing the text output for the identified mutations in our Beijing 

samples. The only variation was observed in the embB gene at position 406, 354 and 306 which 

suggests that mutations in the B subunit of the operon may be the cause of ethambutol resistance 

in Mtb. Only two loci were highly associated with kanamycin resistance in both the CAS and 

Beijing strains. These were tlyA Q216R and Rv0007 G291D. There is a need to further investigate 

the possible role of these two mutations in the development of drug resistance in these two clades. 

 

2.6.3 Accuracy of antibiotic resistance prediction 

In total, 1,201 Mtb strains from GMTV and 742 strains from SA MRC were characterized by their 

sensitivity to one or several antibiotics resulting in 8,559 data entries. This information was used 

to validate and test the performance of the Resistance Sniffer program. Antibiotic resistance was 

predicted by R-values calculated by Eq. 3. This equation returns values in the range of 0 to 2; 

however, for the majority of tested strains R-values were below 1.0, and those strains showing 

higher R-values were antibiotic resistant. The program was set to reduce R-values to 1.0 if they 

were bigger. 

 

Assignment of strains as sensitive or resistant with respect to a given antibiotic was performed by 

setting a cut-off R-value. If the cut-off value is 0, all the strains will be deemed resistant and fall 

either into true positive (TP) or false positive (FP) categories. Sensitivity of the program will be 

maximal (1.0) and specificity will be minimal (0.0). Conversely, all the strains will be deemed 

sensitive and fall into either the true negative (TN) or false negative (FN) categories with the cut-

off value of 1.0. The R cut-off value was gradually changed from 0 to 1 with a step of 0.25 and the 

distribution of FP, FN, TP and TN strains was evaluated by Eqs.5-8. The calculated specificity and 

sensitivity of the program for different cut-off values are shown in Figure 2.11 
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Figure 2. 11 Sensitivity and specificity of antibiotic resistance prediction with different R cutoff values. Vertical 

lines depict borders set in the program to distinguish between sensitive, potentially resistant and antibiotic resistant 

Mtb strains. 

 

Resistance R-value above of 0.75 predicts the strain to be resistant against the given antibiotic with 

the likelihood of 55% or above. If the R-value is below 0.3, the strain is sensitive to the antibiotic 

with the likelihood 55% or above. The strains with intermediate R-values are either sensitive or 

resistant with equal likelihoods. This area of uncertainty has an important biological meaning as it 

depicts Mtb strains which may currently be sensitive but very close to gaining the resistance in the 

near future and should be marked as potentially dangerous. Using Resistance Sniffer on our test 

dataset we obtained higher sensitivity and specificity for both first line drugs INH and RIF (90-

96%).  

 

Testing of the program on 77 Mtb isolates from Sierra Leone characterized by sensitivity to EMB, 

INH, PZA, RIF and SM, or at least to one or several of these antibiotics (in total 285 strains per 

antibiotic measurements in Supplementary file 3) was performed with different cut-off R-values. 

Average values of sensitivity (0.5) and specificity (0.5) were achieved under an assumption that a 

strain is resistant to an antibiotic if the estimated R-value ≥ 0.25. An increase of the R-value cut-

off led to a rapid increase in specificity and decrease in sensitivity. To improve the program 

performance, an additional parameter ‘Sensitive’ was introduced to reflect in the program output. 

This parameter was calculated as 1 ─ average of the top 6 R-values determined for different 

antibiotics. The rational of this approach was that a multidrug resistant Mtb strain may very likely 
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show some level of resistance to other antibiotics even if no specific genetic determinants of the 

specific antibiotic resistance were found. The optimal program performance was achieved with the 

R-value cut-off 0.3 under an assumption that the strain is resistant to all antibiotics if the Sensitivity 

coefficient is equal or lower than 0.2. With these settings, the susceptibility to antibiotics was 

correctly predicted in 184 cases and the resistance was correctly predicted in 19 cases. There were 

41 false susceptibility predictions and 41 false resistance predictions. Calculated sensitivity and 

specificity were 0.32 and 0.82, respectively. As no data on the reliability of applied DST 

techniques was made available, it is not possible to judge whether the false negative and false 

positive predictions should be attributed to the experimental procedures of drug susceptibility 

testing or to the program algorithm. It should be noted that antibiotic resistance profiling of Mtb 

isolates in bacteriological laboratories is an error-prone procedure showing a relatively weak 

correlation with the clinical response due to slow growth rate of this bacterium and bad 

standardization of the procedures [207]. The accuracy is even worse when the data originates from 

different laboratories. It is expected that the sensitivity and specificity of the program cannot 

exceed the accuracy of the training dataset but it seems that the antibiotic resistance prediction by 

Resistance Sniffer does not add significantly to the expected level of errors of laboratory drug 

resistance trials. The meaning of antibiotic resistance likelihood predicted by Resistance Sniffer 

will be discussed in more detail below. 

 

2.6.4 Case Studies 

In this section we consider two examples of how a tool like Resistance Sniffer can be used in a 

futuristic practical setting. Figure 2.12 below shows the predicted resistance profile for strain 

1397850 which was isolated in South Africa. From the output the program predicts probability of 

resistance to both INH and RIF for this strain to be slightly below 0.20. This indicates that the 

particular strain is non-MDR-TB. In an ideal clinical setting, treatment outcomes for this patient 

can be improved by carefully increasing the dosages of the first-line drugs. Although our tool 

predicts EMB, ETA, OFL and SM resistance, traditional DST results for this sample would 

indicate that the strain is susceptible to all drugs and this would be followed by a standardised anti-

TB drugs regimen. However this is dangerous because a standardised regimen might result in 

inadequate dosing which might amplify resistance and risk the transmission of resistant strains at 

population level. In future we hope that a program like Resistant Sniffer will not only enable the 

clinician to identify isolates that are likely to become resistant but will also integrate other valuable 

information such as the extent to which mixed infection is affecting treatment outcome. This will 
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of course require the adoption of a universally accepted NGS-based-diagnostics reporting 

standard. Until pDST methods improves, prediction of EMB resistance must always be treated 

with caution due to the challenges associated with reproducing pDST results for the antibiotic. The 

high resistance value predicted for ETA in this sample can also alert clinicians to further 

investigate the possibility of the future development of cross-resistance with INH. 

 

 

Figure 2. 12 Resistance Sniffer output for an isolate predicted to be a lineage 1.2 strain. 

 

 

 

Figure 2.13 below shows a strain that is likely to belong to either Lineage 4.3 or Lineage 4.1. Our 

program predicts the sample to be MDR-TB which means that a more complicated drug regimen 

is needed for the patient. The necessary intervention for such a patient would require that the 

infected patient be quarantined until successful treatment to avoid transmission. The clinicians will 

also have to be cautious about introducing new or repurposed drugs such as bedaquiline in the 

treatment regimens as this might result in the development of resistance to these new generation 

antibiotics. The use of novel resistance reversion chemotherapy such as FS-1 [205] could also be 

considered. On a public health level, an adequate response will involve screening of individuals 

who had contact with the TB patient to ensure that the MDR-TB strains is not transmitted further. 

In the case of an outbreak caused by such a strain, the adequate response would involve prioritizing 

all resources towards curtailing infection. 
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Figure 2. 13 Resistance Sniffer output for an isolate predicted to be a lineage_4.3 or lineage_4.1. 

 

2.7 Discussion 

Resistance polymorphisms appear to be clade-specific, which means that some mutations are more 

likely to be present in specific Mtb lineages [130, 201, 208]. There is also evidence suggesting that 

strains from certain lineages are predisposed to develop into MDR-TB strains [110, 157, 158]. In 

the present study we sought to identify clade-specific patterns of polymorphisms that may be 

associated with the drug resistant phenotype in Mtb. Multiple mutations associated with antibiotic 

resistance in Mtb are known from literature and are available from public databases (e.g. 

https://tbdreamdb.ki.se/Info/Default.aspx) [201]. However, for this study a decision was made to 

perform a de novo search for attributable mutations by calculating power coefficients (Eq. 1) of 

association between polymorphisms and the drug resistant phenotype for each antibiotic per clade. 

In many cases, but not always, highly scored polymorphisms were consistent with known drug 

resistance mutations in literature. Some of these highly scored polymorphisms were also located 

in genes associated with the antibiotic resistance and there is a need for further interrogation of 

these findings. Several examples are discussed below. 

Mutations in the embCAB operon have been known to be associated with resistance to EMB, 

particularly the substitutions in codons 306, 406 and 497 of embB [38]. The current study 

confirmed that in the Beijing clade several polymorphisms were highly scored on these loci, 

particularly in codons 306, 354 and 406 of the embB gene. Strain TB0012 has mutations in codons 

https://tbdreamdb.ki.se/Info/Default.aspx
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306 and 354 but shows a susceptible phenotype according to the GMTV database records. Strain 

TB0011 shows a resistant phenotype and possesses mutations in codons 354 and 406. Two other 

strains, TB0004 and TB0005, have mutations in all three codons although they both show a 

susceptible phenotype. These findings highlight the complexity of the development of antibiotic 

resistance in Mtb which requires accumulation of many other subordinate mutations acquired in a 

stepwise manner to develop sustainable drug resistance. This assumption was used as the basis of 

the Resistance Sniffer algorithm of estimation of the drug resistance likelihood by assessing the 

whole pool of genetic determinants biasedly distributed between antibiotic sensitive and resistant 

Mtb variants. This hypothesis was confirmed in numerous publications [100, 130, 209, 210]. 

However, it is also important to acknowledge that the discordance might also be a result of the 

challenges associated with the pDST for EMB. Mutations in embB only have been shown to result 

in slight increases in MIC values to EMB. This results in an overlap between the MIC distributions 

of wild-type strains and mutated strains [188]. However, secondary mutations are believed to 

increase the MIC further [210-212] hence identifying these secondary mutations is important in 

the diagnosis of EMB resistance. It was hypothesized that the mut genes may play a significant 

role in the acquisition of drug resistance in Mtb because missense mutations in these genes lead to 

higher mutations rates [130, 143]. Indeed, mutations in the mutT4 gene (Rv3908) were associated 

with the drug resistance phenotype of Mtb strains of the Beijing clade, but no specific mutations 

were found in the strains of lineage 4.1 and S-type lineage, which, in contrast to Beijing strains, 

usually do not develop a wide spectrum of drug resistance (see Figure 1). The Beijing clade has 

been associated with high levels of drug resistance and a higher propensity to develop into MDR-

TB and XDR-TB. The reason why Beijing isolates are often associated with MDR-TB remains 

elusive. Researchers have suggested that the strain background could be more efficient in 

mitigating the effects of fitness cost imposed by drug resistance [110, 159]. 

 

Another gene of interest in this study was ogt (Rv1316), which is known to remove methyl groups 

from O-6-methylguanine in DNA. Mutations in this gene were associated with SM resistance in 

Ural, Haarlem, lineage 4.3 and X-type clades. However, no significant associations with mutations 

in this gene and SM resistance were revealed in Beijing, CAS, S-type and lineage 4.1, which also 

have a high propensity to develop SM resistance but in a different way. Strangely enough, this 

study did not discover any significant correlation between mutations in genes inhA, eis and tylA 

and the drug resistance phenotype despite many publications linking these genes with drug 

resistance. Mutations in the inhA regulatory regions are known to confer low level INH and ETH 

resistance. The tylA and eis genes are both drug targets for the second-line injectable antibiotics. 
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This work discovered several mutations in the phenolpthiocerol synthesis polyketide gene (ppsC) 

and multifunctional mycoserosic acid synthase gene (masA) to be associated with rifampicin 

resistance in the lineage 4.3. A study by Bisson et al. [213] showed that the expression level of pps 

can be up to 10 fold higher in rpoB mutant strains relative to the RIF susceptible parent strain  

 

Our study suggests that the progression to the drug resistant phenotype is a stepwise process 

involving the accumulation of multiple mutations contributing to the antibiotic resistant 

phenotype. Alternative hypotheses involving rare drug resistance mutations in Mtb populations 

were proposed by other authors. For example, in the publication by Carvalho et al. [214] it was 

suggested that rare cases of resistance to D-cycloserine are caused by low frequency mutations in 

target genes, cycA, alr and ddlA, rather than fitness cost reduction mediated by other compensatory 

mutations. Our study confirmed the importance of cycA V67C, L322R and M343T alr, and T365A 

ddlA substitutions in the development of CS resistance; however, significant associations with 

multiple compensatory mutations linked to other antibiotic resistance were also observed. It may 

explain the insignificant fitness cost of the CS resistance mutations as they occur only in organisms 

already possessing the compensatory mutations. The Resistance Sniffer program may identify Mtb 

strains on a trajectory to developing drug resistance by accumulation of pre-requisite mutations, 

even if phenotypic DST results for these strains do not show any evidence of antibiotic resistance 

yet.  

 

The key to the total eradication of TB globally lies in early diagnosis and correct treatment. This 

has been hampered by the limitations in current laboratory methodologies in performing drug 

susceptibility testing. Current DST procedures for Mtb are time consuming, expensive and 

inaccurate, especially for the second line antibiotics. Horizontal gene transfer plays no role in the 

development of antibiotic resistance in Mtb. This makes WGS an attractive option in the diagnosis 

of TB as it has the potential to determine the full antibiogram provided we have detailed knowledge 

of all the genetic determinants of drug resistance [9]. In this study, we used a derivative of GWAS 

to identify clade-specific patterns of polymorphisms which showed a biased distribution regarding 

the drug resistant phenotype. The study was designed first of all as a proof of concept of the ability 

to predict drug resistance or the predisposition for drug resistance acquisition by Mtb isolates. 

However, the designed software tool, Resistance Sniffer, showed the sensitivity and specificity of 

the clade and the drug resistance identification similar to that of other available tools such as 

TBProfiler, MyKrobe, KvarQ and PhyResSE. A recent large-scale benchmarking comparison of 

the available tools on 6,746 Mtb isolated characterized by drug susceptibility patterns showed 
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applicability but also some limitations of the available tools (Ngo and Teo, 2019). According to 

this report, the specificity and sensitivity of the programs varied from 0.6 to 0.9 depending on 

which antibiotic was tested with the best results achieved when they are confirmed by more than 

one program. All the programs showed a much better ability to predict the absence of drug 

resistance rather than the specific drug resistance pattern. This is also true for the Resistance Sniffer 

program. It was not discussed in this review to which extent the performance of the program was 

affected by the level of fragmentation of the genome of interest as only whole genome sequences 

were used in the reported study. While the estimated sensitivity and specificity of Resistance 

Sniffer were lower than those of the above-mentioned programs, it should be noted that the current 

program was developed to analyse fragmented partial genome sequences including historical 

sequences (see Figure 2.9D) represented by different file formats. Particularly, unordered contigs 

of Mtb isolates from Sierra Leone in plain fasta format were used for the program evaluation The 

aim of the study was to estimate the propensity of a Mtb isolate to gain the antibiotic resistance 

rather than to delineate antibiotic resistant from antibiotic sensitive strains. The performance of 

the program may be improved in future studies by editing the diagnostic key table without the need 

to modify the program itself.  A limiting factor was the size of the training dataset of Mtb strains 

with known drug susceptibility profiles. For certain clades the number of available records was 

not sufficient to boost the association power. Although there are currently more than 20 drugs that 

are used in the treatment of TB, this study was limited to only thirteen antibiotics due to the 

unavailability of phenotypic DST data for the omitted drugs. As more data becomes available, the 

diagnostic key table of the program will be updated. 

 

It is expected that in the future NGS-based assays will replace phenotypic DST methods [215]. 

This study has demonstrated how whole or partial genome sequence data can be used to rapidly 

predict drug resistance in M. tuberculosis. However, it should be emphasized that the current 

version of the program was not designed for application in clinics or for assessing antibiotic 

treatment regiments. The major objective of the program was to provide scientists working in 

public health control institutes with reliable software to estimate the distribution of drug resistant 

infections by using NGS datasets in different stages of genome assembly including raw fastq files 

generated by sequencers. The study also acknowledges the recent efforts that has been made by 

several groups in harnessing the power of WGS in TB diagnosis as described in Chapter 1.4. 

However, a major concern that is often associated with WGS-based tools that are developed in 

academic settings is the lack of dedicated version control. Future work will involve ensuring the 

longevity of the analysis program constantly updating functionality according to the improved 
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understanding of the genetic basis of drug resistance in Mtb as well as improvements in sequencing 

technologies.  

This work also added to the current body of knowledge a valid suggestion that drug resistant 

phenotype is associated not with individual mutations but with clade-specific patterns of 

polymorphisms. Effective prediction of drug resistance should start from a proper identification of 

clade affiliation of Mtb isolates. 
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Chapter 3-The evolution of drug resistance in 

Mycobacterium tuberculosis  
 

3.1 Introduction 

In the previous chapter we used a clade based approach to determine the strength of association 

between each mutation and phenotypic resistance to 13 anti-TB drugs. We then created a catalogue 

of genetic determinants of resistance by manually curating polymorphisms that were highly 

associated with drug resistance in TB. The catalogue was then used in the creation of an online 

tool that predicts antibiotic resistance in Mtb using NGS data. However, our diagnostic approach 

is limited to our current understanding of the genetic basis of resistance. As our understanding of 

the mechanisms of resistance increasingly improves, it is becoming more clear that the 

mechanisms that lead to the emergence and success of resistant Mtb strains is much more complex 

than we previously anticipated. This has led to an increasing interest in Mtb resistance research 

thus helping to fill the gaps, inspiring new research and innovation in public health care. With the 

data we had available and previous work done in our group by Van Nierkerk et al. [30] we saw 

the potential to further broaden our research to determine non-random associations between 

polymorphic sites in genomes of Mtb. This will not only allow us to identify harbinger mutations 

that can allows us to predict resistance as early as possible [23], it will also allow us to minimise 

the discordance between genotype and phenotype in Mtb. In this chapter, several statistics that 

were introduced in the review by Van Nierkerk et al. [30] will be used, the most important being 

the Levin’s attributable risk statistic [216] (Ra), which will be used to identify functional and/or 

genetic drift associations between mutations in the Mtb genome by using equation (1) and equation 

(2) for a statistical validation of attributable risk values. Allele combination frequencies are 

denoted as PAB, PAb, PaB and Pab , while N represents the total number of the analysed Mtb strains. 

𝑅𝐴→𝑎|𝑏 =
𝑃𝐴𝐵𝑃𝑎𝑏−𝑃𝑎𝐵𝑃𝐴𝑏

(𝑃𝐴𝐵+𝑃𝑎𝐵)(𝑃𝑎𝐵+𝑃𝑎𝑏)
  (1) 

𝑆𝑡𝑑𝐸𝑟𝑟 = √
𝑃𝐴𝑏+𝑅𝑎𝐴→𝑎|𝑏(𝑃𝐴𝐵+𝑃𝑎𝑏)

𝑁×𝑃𝑎𝐵
  (2) 

In the case of co-dependence between a primary mutation and another secondary mutation, DR 

mutations will be denoted as mutations from initial allele A to allele a. The secondary site 

mutations will have the most frequent allele represented by B, while b represents all the other 
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alternative variants at that particular locus in the Mtb population. In cases where we have to 

estimate the risk of a drug resistance mutation from A to a in a subpopulation of organisms 

possessing the b allele at the secondary polymorphic site, we calculate the Ra parameter using the Eq. 

(1). The Fleiss’ standard error parameter StdErr is calculated by Eq. (2) [30]. Alternatively, in 

cases where the genotype is a meaning the drug resistance mutation is already present, we may 

estimate the risk of a subordinate compensatory mutation from B to b by Eq. (3) and Eq. (4) will 

be used to calculate the Fleiss’ standard error. 

 

𝑅𝐵→𝑏|𝑎 =
𝑃𝐴𝐵𝑃𝑎𝑏−𝑃𝑎𝐵𝑃𝐴𝑏

(𝑃𝐴𝐵+𝑃𝐴𝑏)(𝑃𝐴𝑏+𝑃𝑎𝑏)
  (3) 

 

𝑆𝑡𝑑𝐸𝑟𝑟 = √
𝑃𝑎𝐵+𝑅𝐵→𝑏|𝑎(𝑃𝐴𝐵+𝑃𝑎𝑏)

𝑁×𝑃𝐴𝑏
  (4) 

 

 Finally, Eqn. (5) will be used to calculate the range of confidence values for the calculated 

attributable risks. 

 

[1 − 𝐸𝑋𝑃(𝑙𝑛(1 − 𝑅𝑎) − 1.96 × 𝑆𝑡𝑑𝐸𝑟𝑟)] 𝑡𝑜 [1 − 𝐸𝑋𝑃(𝑙𝑛(1 − 𝑅𝑎) + 1.96 ×

𝑆𝑡𝑑𝐸𝑟𝑟)]  (5) 

 

The rationale of this approach was first introduced by Nierkerk et al. [30], who compared the 

functional associations between mutations in the Mtb genome. Considering the co-distribution 

between the katG S315T and stp D69Y mutations first, both mutation pairs are associated with 

high linkage disequilibrium values. Using the equations described above, we can see that the 

emergence of the katGS315T is significantly dependent on the presence of the stp D69Y (A→a|b 

= 91-99% CI). When we use the same approach to calculate the co-distribution of the same 

mutation in the katG gene and another concomitant mutation ppe35 L896S, this pair also shows a 

strong association >90%. At first glance one would be tempted to assume that both of the 

secondary mutations are essential for the emergence of the katG S315T mutations. However, stark 

differences are observed when we calculate B→b|a, which represents the dependence in the 

opposite direction. Here we can see that the distribution of the mutation stp D69Y is independent 

of the state of the katG locus with the attributable risk in the range 21% - 27%. In contrast, the 

distribution of the PPE35 gene polymorphism depends as much on the state of the katG locus as 

the katG polymorphism depends on the state of PPE35 that is over 90%. The high level of bi-

directional symmetry exhibited by the pair of katG and ppe35 polymorphisms suggests a strong 



57 

 

association between these mutations due to genetic drift. In other words, the specific mutation in 

ppe35 may be a genetic marker of the antibiotic resistant sub-population of Mtb but hardly any 

functional associations between these genes. By contrast, an apparent one-directional dependence 

of the katG mutation associated with drug resistance on the polymorphic state of stp mutation 

suggests that the stp mutation is a prerequisite mutation preceding the isoniazid resistance 

acquisition by Mtb conferred by the katG S315T mutation. Prerequisite mutations make it possible 

for bacteria to acquire the mutations necessary for the antibiotic mutations. Another important 

scenario to imagine is when a concomitant mutation in the Mtb population shows a one-directional 

dependence to a drug resistance mutation. This implies that the secondary mutation is acquired by 

the population as a compensatory mechanism to mitigate the fitness cost imposed by the drug 

resistance mutation. 

 

3.2 Materials and methods  

3.2.1 Data sourcing 

Data for this project was obtained from the GMTV database as described in the previous chapter. 

The collated data of all 2501 Mtb strains were then used to calculate the mutation frequencies for 

all the clades in our analysis. Our initial analysis on the strength of association between 

polymorphisms in the Mtb genome and phylogenetic clade has shown strong associations between 

some well-known drug resistance mutations with specific Mtb clades. The analysis also identified 

some novel possible determinants of resistance. This analysis was further confirmed by the 

validation dataset which we used on our online prediction program. Strains from the Beijing, 

Haarlem and Lineage 4.3 lineages harboured polymorphisms that were highly associated with drug 

resistance while Lineage 1.2, Ural and X-type strains harboured a few of these mutations. These 

findings were consistent with the phenotypic data which showed that strains from the former clades 

were highly associated with MDR/XDR-TB while the latter clades appeared to harbour more 

susceptible strains. The Fisher’s exact test with Bonferroni adjustment was used to confirm these 

findings. 

 

3.2.2 Functional associations between Mtb mutations 

As in the previous chapter, we took a lineage-based approach to classify mutations which have 

been associated with DR according to clade affiliation. We then applied the Ra methods described 
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above to generate co-dependence data between drug resistant mutation pairs for each clade. We 

further selected only those associations where there is no overlap between A→a|b and B→b|a 

indicating one-directional dependence between polymorphisms. The co-dependence information 

was integrated with the pDST metadata from GMTV and annotation information from the 

Tuberculosis Drug Resistance Mutation Database (TBDream) database as input for the creation of 

directed DR functional association networks in Cytoscape 3.7.  Using Cytoscape 3.7, it was 

possible to create a mapping from A→a|b to B→b|a, where the emergence of the primary mutation 

depended on the presence of a mutation on the secondary locus. The reverse mapping B→b|a to 

A→a|b represents the dependence in the opposite direction. In our approach, we define the 

mutations as nodes which are linked by edges where a dependence between two mutations exists. 

To infer evolutionary trajectories, we used three different node colours, green to indicate a 

mutation where the evolutionary path started, blue for nodes where evolution is still in progress 

and orange to represent mutations where evolution has ended and that mutation is fixed. 

 

3.4 Results 

3.4.1 Lineage 1.2 

For Lineage 1.2, the network is small with only a few paths connecting the mutations. Strains in 

Lineage 1.2 are generally known to be drug susceptible [217]. The only mutations that were found 

in known drug targets were in the gyrA gene, which is known to be associated with resistance to 

fluoroquinolones. Our study suggests that mutations in the frdC (Rv1554) gene may be 

prerequisites to the acquisition of mutations in gyrA. The gene frdC is known to affect quinol 

binding [218] although there is a need to investigate its possible role in Mtb control. Our findings 

also suggest that mutations in pepD also precede the acquisition of gyrA mutations in this Mtb 

clade. The gene pepD is a stress response protein whose loss of function subsequently affects the 

expression of other stress response determinants in Mtb [219]. Exposure to antibiotics is known to 

induce a complex stress response in Mtb, which results in changes in metabolic activity leading to 

the development of drug resistance. Our study also suggests that the well documented stp (Rv2333) 

[220] efflux pump may compensate for the loss of fitness that might result from the mutations in 

gyrA. The role of the hypothetical conserved protein Rv1378 in compensating for FLQ resistance 

also needs to be investigated. 
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Mtb is enriched with lipoproteins that have been linked to its virulence as well as drug resistance 

[221]. In this study we found a link to the possible role of mutations in the lppB genes which are 

likely   compensated by several mutations in the lppA gene, developing multidrug resistance along 

the way as evidenced by the increase in the number of resistant drugs as the evolution progresses 

and terminates with lprf gene mutations. The recX gene is a negative regulator of recA which is a 

central protein in the bacterial response to DNA damage [222]. The acquisition of the recX 

mutation is likely as a response to DNA damage imposed by the action of fluoroquinolones. A 

study by Gillespie et al. [148] reported that the exposure of Mtb isolates to sub-inhibitory 

concentrations of fluoroquinolones leads to an elevation in mutation rates.   

 

  
Figure 3. 1 Evolutionary network of the DR mutations for the Lineage 1.2 clade. Strains from this clade have been 

associated with better treatment outcomes and high drug susceptibility. The green-coloured nodes represent 

mutations where the evolutionary path has emerged, the blue nodes represent mutations where evolution is still in 

progress and orange nodes represent mutations where evolution has ended. The size of the nodes are proportional to 

the number of drugs associated with the mutation. 

 
3.4.2 Haarlem lineage 

Our findings in this clade suggest a complex form of interaction which involves some of the main 

drug targets of Mtb leading to the development of MDR-TB. Our analysis suggests a possible 

central role of mutations in a putative dehydrogenase /reductase gene (Rv1928) as a starting point 

of the path to resistance to a number of important TB drugs. According to our analysis, 

polymorphisms in this locus facilitate the development of further mutations in embB, which are 

believed to be associated with the resistance to ethambutol [223]. Interestingly they in turn provoke 

accumulation of mutations in rpoB followed by mutations in rpsL with this evolutionary path 

ending with mutations in katG, all of them rendering the resistance to rifampicin [224], 
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streptomycin  and isoniazid [103]. These findings suggests that the development of MDR-TB in 

this clade starts with the development of low level resistance to ethambutol, which facilitates 

further resistance to rifampicin followed by resistance to streptomycin and ending with the fixation 

of high level resistance to isoniazid. Our data also suggested an alternative path, which also 

bypasses the development of mutations in embB and rather follows a trajectory that involves 

mutations in ethA facilitating the acquisition of rpoB, which then follows the same path that 

involves the acquisition of mutations in embB and finally in katG. It is also important to note that 

the ethA gene encodes a structural analogue of isoniazid, which is activated by the 

catalase/peroxidase enzyme encoded by the katG gene. Moreover, mutations in ethA and katG 

have been associated with ethionamide and isoniazid cross-resistance [225]. The involvement of 

both ethA and embB in the initial stages of the evolutionary path of DR-TB in Haarlem also adds 

weight to our hypothesis which suggests that the development of MDR-TB is a stepwise process 

whereby the initial acquisition of a single mutation facilitates the further acquisition of additional 

mutations resulting in a path that starts with an intermediate level of resistance and ends with the 

MDR-TB phenotype. Both ethA and embB have been linked with low-level ethionamide/isoniazid 

and ethambutol resistance respectively while katG mutations are known to confer  high-level 

resistance to isoniazid [226]. Another possible evolutionary path suggested by our analysis 

involves Haarlem strains acquiring mutations in the pncA gene which encodes the drug target for 

pyrazinamide [227] which in turn facilitates the accumulation of rpoB mutations before ending the 

evolution with the fixation of katG mutations. This evolutionary pathway suggests that the order 

of resistance in some Haarlem strains is as follows PZA, RIF, SM, and INH. Another locus of 

interest in this evolutionary trajectory is the gene that encodes lactate dehydrogenase lldD2 

(Rv1872c), which seems to play a role as an alternative termination point of the drug resistance 

evolution. It must be noted that pathways which involve the encoded enzyme may be responsible 

for the development of a mono-drug-resistance in Haarlem strains [228].  

 

Several efflux pumps mutations such as those in mmpl and fadD may also play compensatory roles 

in the development of MDR-TB in Mtb strains of the Haarlem lineage as evidenced by their 

intermediary role in this complex system. Another finding of our analysis that might need further 

investigation is the link between mutations in the Rv2319c stress protector, which precede the 

acquisition of mutations in the error prone Rv2839 initiation factor (infB), which has been shown 

to reduce fitness in Salmonella [229]. Mutations in the infB have also been associated with the 

development of clarithromycin resistance in H. pylori [229]. It is also important to note that the 
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same stress protector (Rv2319) is also linked to the development of mutations in the Rv1047 gene, 

which has been associated with drug tolerance and the development of drug resistance [230]. The 

loss of functionality of the DNA repair machinery may also play a role in the evolution of DR-TB 

in the Haarlem clade.  

 

 
 
Figure 3. 2 Evolutionary network of DR for the Haarlem clade. The green-coloured nodes represent mutations 

where the evolutionary path has emerged, the blue nodes represent mutations where evolution is still in progress and 

orange nodes represent mutations where evolution has ended. The size of the nodes are proportional to the number 

of drugs associated with the mutation. 

 

3.4.3 Ural lineage 

The Central Asian clade Ural, also known as the lineage 4.2, is a sister clade of the North American 

Haarlem clade also cited as a sub-lineage of the lineage 4.3 [208]. Compared to the Haarlem clade, 

the network generated from the Ural strains was less complex. An interesting hub in this network 

involves the rpsL gene as an intermediate for various pathways. One such pathway terminates at 

the groEL gene (Rv0440), which encodes a chaperonin that has been implicated in the development 

of resistance to aminoglycoside [231, 232]. Aminoglycosides, such as streptomycin, are known to 

exert their effect by causing a translational misreading [233]. From the created network of 

attributable risks (Figure 3.3) we can infer that the development of resistance to aminoglycosides 

may require some compensatory mutations in this chaperonin. In this pathway, the drug resistance 
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evolution starts with mutations in Rv0516, which is associated with the responses to osmotic stress 

[234]. Disruption of this gene function has been shown to modify peptidoglycan thickness as well 

as enhancing drug resistance [234]. This is followed by acquisition of mutations in rpsL, which is 

involved in streptomycin resistance as described in Chapter 1. This leads to acquisition of 

mutations in murA, which has been attributed with the development of resistance to fosfomycin 

[235], an antibiotic which is no longer in use. The evolutionary path then terminates with mutations 

in the groEL gene. This pathway suggest that the resistance to aminoglycosides is facilitated by 

the loss of cell wall remodelling function in Mtb and is further compensated for by the over-

expression of chaperonin genes [231, 232]. It is important to note that this evolutionary path also 

contains alternative starting loci such as the fadD34 gene, which encodes an efflux pump. An 

interplay of defective stress response systems coupled with an over expression of efflux pumps 

may be the gateway to aminoglycoside resistance. 

 

 
 
Figure 3. 3 Evolutionary network of DR mutations for the Ural clade. The green-coloured nodes represent 

mutations where the evolutionary path has emerged, the blue nodes represent mutations where evolution is still in 

progress and orange nodes represent mutations where evolution has ended. The size of the nodes are proportional to 

the number of drugs associated with the mutation. 

 

3.4.4 Asian (Lineage 2) clades 

The Beijing clade has been associated with hyper-virulence and propensity to develop into MDR-

TB strains. In our analysis, we further grouped the Beijing, CAS, and X-type clades under one 

group. Figure 3.4 shows a complex evolutionary network that involves mutations in cell wall 
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permeability and drug efflux pump systems. These mutations may speed up the evolutionary clock 

and facilitate the emergence of other secondary mutations. 

 

In this network, a mutation involving the katG gene was identified at the 315 codon location. This  

mutation is an intermediary in several evolution pathways of drug resistance development which 

includes other genes involved in DNA repair (dnaQ), transport and efflux pump systems (tatD), 

and cell wall biosynthesis (ppsA) as the final points of these evolutionary pathways. One pathway 

of this network involves mutations in the efflux pump proteins esx and whiB6 preceding the 

acquisition of drug resistance mutations in katG. This path ends with acquisition of mutations in 

the DNA repair gene dnaQ. This may suggest that changes in the efflux pump systems facilitate 

the initial development of the resistance to isoniazid, which in turn is compensated by several other 

mutations which arise as a result of elevated mutation rates. Several studies have reported on the 

elevated mutation rate in Mtb of the Beijing clade [236]. The increase in the mutation rate can be 

attributed to the mutation in the DNA proof-reading protein [236, 237]. This inference can be 

further supported by established links between embB mutations and mutations in the efflux pump 

genes. Ethambutol is included in TB first line regimens because its mechanism of action disrupts 

mycobacterial cell permeability and thus allows for the improved uptake of other TB drugs. From 

the network of attributable risks, we can further hypothesize that the low level resistance to 

ethambutol, coupled with the increased activity of efflux pump proteins results in an environment 

associated with sub-inhibitory concentration of antibiotics, which is conducive for the selection of 

DR strains. Our data supports the findings of several studies that have shown that rifampicin 

resistance emerges after the strain has already developed isoniazid resistance [23, 35, 238]. We 

can further hypothesize the hyper-mutator phenotype due to disrupted DNA repair machinery 

further facilitates the rapid acquisition of multiple compensatory mutations which restores the 

fitness of the now MDR-TB strain. 

 

In our analysis, we identified a single rpoB mutation that is followed by mutations in several genes 

responsible for transmembrane transport as well as cell wall maintenance systems. It is also 

important to note that mutations in rpoB also preceded mutations in the dnaQ gene, although 

mutations in this gene have been linked with elevated mutation rates in E. coli [239], recent studies 

have shown that Mtb does uses a different DNA proof-reading machinery which involves the DNA 

polymerase DNAE1 exonucleases instead of the canonical dnaQ exonuclease [240, 241]. 
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Our study identified an interesting short evolutionary path starting with an acquisition of rpoB 

mutations followed by mutations in Rv3711c, which encodes a possible DNA polymerase III. 

There is need to investigate on how the loss of rpoB function may be compensated by mutations 

in this gene. DnaQ is a homolog of gram-negative 3’-5’ exonuclease subunit, which is responsible 

for DNA proof-reading. This compromised fidelity system may be a key to the acceleration of 

mutation rate, which further leads to the development of resistance to other drugs. For example, 

mutations or deletions in the dnaQ gene in E. coli have been attributed to raising the mutation rate 

100- 1000 fold [242, 243].  

 

One mutation in the pncA gene is followed by three terminal mutations, 2 of which are located in 

the ppsA gene as shown in the network. A possible role of this gene in Mtb drug resistance was 

explained earlier on. Another locus of interest is tatD gene (Rv1008), which encodes a probable 

deoxy-ribonuclease. This mutation was also a terminal point in several evolutionary pathways 

which started with the acquisition of rpoB mutations. 

 

Our attributable risk networking data also revealed a direct link between a mutation in the cycA 

gene and the rpsL 43 mutation. This may suggest a possible role of cycloserine resistance 

conferring mutations in alleviating the fitness cost associated with the aminoglycoside resistance 

mutations. 
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Figure 3. 4 Evolutionary network of DR in the combined Asian clade. The node sizes are proportional to the 

number of drugs that specific mutations was linked to. The green-coloured nodes represents mutations where the 

evolutionary path has emerged, the blue nodes represent mutations where evolution is still in progress and orange 

nodes represent mutations where evolution has ended.  

 

Figure 3.5 shows the previous network on Figure 3.4 with the node sizes representing node 

degrees, i.e. the numbers of linked neighbour nodes. This plot can give us an indication of which 

mutations play a central role in the evolution of drug resistance in Asian Mtb strains. The  rpsL 

gene seems to play a central role as an evolution hub of the Asian strain. Interestingly, this mutation 

seems to directly interact with all of mutations in the drug target genes except for rpoB, pncA and 

embB. This finding may suggest that the introduction of aminoglycosides in the treatment schemes 

triggered the MDR-TB evolution in this clade. Figure 3.5 also highlights several main loci playing 

the central role as compensatory mutations. These include two genes involved in membrane 

transport (Rv1258c and Rv2434), a transcriptional regulator (Rv0823c) and the well-known gene 

rpoC, which has been previously associated with the restored fitness and improved transmission 

in MDR strains [125]. Although not shown in the network, several PPE and PE-PGRS family gene 

mutations also seem to play an important role in fitness restoration, the notable being the ones 

occurring in the PPE13 protein. 
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Figure 3. 5 Evolutionary network of DR mutations for the combined Asian clades. In this visualization, the size of 

the nodes are proportional to the node degree. The green-coloured nodes represent mutations where the evolutionary 

path has emerged, the blue nodes represent mutations where evolution is still in progress and orange nodes represent 

mutations where evolution has ended. 

 

 3.4.5 Lineage 4 

In our analysis we further combined the European, American and Central Asian strains (Lineage 

4.3, Haarlem and Ural clades) into one group Lineage 4. As expected, the combined data produced 

a more complex network as shown in Figure 3.6. From this network we identified some interesting 

mutations which were initially missed when the networks were created for individual clades. One 

such mutation is in cycA, which is linked to thirty five other mutations forming a sub-network that 

starts with mutations in genes that are involved in the pthiocerol dimycocerosate (PDIM) pathway, 

membrane transport and lipid metabolism. The cycA mutation forms an intermediary hub for 

several drug resistance development paths ending with an acquisition of 2 mutations in the 

hypothetical protein Rv2323c. There is a need to investigate the possible role of this gene in 

compensating for cycloserine resistance. Interestingly, the cycA mutation is also directly linked to 

another mutation in rpoC. Mutations in the rpoC gene have been known to play a role in mitigating 

fitness costs that are associated with MDR-TB [125]. Another mutation of interest that was 

identified in this network is located in the embC gene. The emb operon is a point of active research 

on the evolution of MDR-TB. Our previous networks have identified mutations only in the B 
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subunit of this operon. In this network, a mutation in embC preceded the acquisition of another 

mutation in birA, which is a biotin operon repressor. This evolutionary path ends up with an 

acquisition of 2 mutations in the membrane protein genes mmpS1 (Rv0403). Interestingly, this 

pathway starts with resistance to AMK but terminates with further resistance to several other drugs 

leading to the XDR-TB phenotype. Interactions between these genes are likely linked to adaptive 

changes of the mycobacterial cell wall taking place during the evolution of drug resistance. 

Another mutation of interest in this clade is in ddlA, which encodes D-alanine-D-alanine ligase. 

This gene has been previously linked with cycloserine resistance [244]. In our analysis, ddlA 

mutations are followed by three mutations in other genes leading to the development of further 

resistance to other additional drugs. Two of these possible compensatory mutations are of 

unknown function while one is in the isdB gene, which is involved in the isoprenoid biosynthesis 

pathway. The current network also identified two important gyrA mutations, the first one was a 

terminal point for several drug resistance pathways that started with mutations in the following 

genes: transcriptional regulatory protein Rv3833, the phosphate transporter pitA, which have been 

linked to the compensatory evolution [245] and also in the membrane transport protein Rv3447c. 

The second gyrA mutation is an intermediate step in a pathway that ends with an acquisition of a 

mutation in Rv3383c gene. The possible role of this gene in compensating for fluoroquinolone 

resistance fitness cost requires further investigation. Another path includes initial mutations in 

rpsL followed by mutations in several transporter genes and in groEL as it was in the Asian Mtb 

strains. 

 
 
Figure 3. 6 Evolutionary network of DR mutations for the combined Lineage 4 clades, the green-coloured nodes 

represent mutations where the evolutionary path has emerged, the blue nodes represent mutations where evolution is 
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still in progress and orange nodes represent mutations where evolution has ended. The size of the nodes are 

proportional to the number of drugs associated with the mutation. 

 

3.5 Discussion 

The evolution of drug resistance from first unrecognized mutations to the fixation of high-level 

drug resistance in Mtb populations remains elusive. Although earlier studies have identified 

several genetic determinants of antibiotic resistance, especially for the first-line drugs, the use of 

WGS has shown us that the paths leading to drug resistance are much more complex than 

previously anticipated. Mtb employs several strategies as a response to exposure to anti-TB drugs. 

Research has shown that several factors, which include the clade-specific genetic background, 

fitness cost and compensatory mechanisms play a significant role in the evolution of drug 

resistance in Mtb. Unfortunately, we cannot directly measure some of these factors experimentally. 

Mathematical modelling can be used to elucidate the interplay between these factors and how they 

influence each other and the DR-TB resistance. In this study we used a statistical model to identify 

functional associations between mutations which were highly associated with the DR phenotype 

in Mtb. We did this by determining co-dependencies of pairs of mutations and using the results to 

infer the order of acquisition of these mutations. We then combined this information together with 

pDST information as an input for attributable risk networks, which were visualized using the 

Cytoscape software. In this context, we defined a new approach of inferring and analysis of 

consequent mutations associated with DR development via their attributable risk values. 

Through the use of the attributable risk networks, we inferred the evolutionary trajectories of drug 

resistance development in different clades of Mtb. As we expected, the mechanisms governing the 

acquisition and fixation of drug resistance varied significantly between the clades. The analysis 

from these networks showed statistically reliable interactions between mutations in genes 

involving DNA replication-reparation systems, stress response, lipid metabolism and membrane 

transport genes as possible drivers of the evolution of drug resistance in Mtb. The Asian clade, 

particularly the Beijing lineage, was associated with the most complex network compared to other 

clades. A propensity to MDR-TB development in the Beijing lineage compared to other lineages 

can be linked to a partial disruption of DNA repair genes as a mechanism of increasing the genetic 

variability of the population. This may suggest that the evolution of drug resistance in this clade is 

fuelled by the elevated mutation rate as a result of altered DNA repair processes. This may also 

explain why the strains of this clade are more prone to developing into highly virulent and 

transmissible DR strains compared to strains from other lineages. This is further supported by our 
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finding in the Haarlem clade network, which also showed an involvement in DR development of 

mutations in DNA repair genes that was not reported before from the available literature. 

Compared to other strains of the Lineage 4, the strains of the Haarlem clade were more prone to 

develop MDR-TB. The Lineage 1.2 network was rather simple, involving just a few mutations. 

This observation explains why the strains of this clade are known to be mostly susceptible to 

antibiotics. The occurrence of the gyrase mutation pair in this clade may also explain the hyper-

susceptibility of strains belonging in this clade. Aubry et al. also did a functional analysis study 

that reported on the link between novel gyrase mutations and hyper-susceptibility in Mtb strains 

[71]. 

In our study, we also paid a special attention to mutations in well-characterized drug target genes. 

Interestingly enough, most of the pathways that linked these DR mutations have terminated with 

the acquisition of mutations in the katG gene. This finding may suggest that the resistance to 

isoniazid emerges first before the bacteria acquires additional resistance to other drugs. 

Interestingly, isoniazid was one of the first drugs prescribed for TB and it may be possible that 

some katG mutations resulted from diversifying selection rather than purifying selection. This 

suggestion can also be strengthened when we consider the role of rpsL mutations as a central hub 

of DR in networks generated from both the Asian and Lineage 4 strains. The early use of the 

aminoglycoside streptomycin in TB mono-therapy might have also resulted in the fixation of the 

rpsL mutations. 

The involvement of the mutations PPE and PE_PGRS genes was strongly suggested in our 

networks leading to a conclusion that some of these proteins may play a role in the evolution of 

DR in Mtb. In this study, a mutation in the PPE13 gene was the terminal point of several 

evolutionary pathways involving other MDR mutations. Previous studies have often discarded or 

ignored these abundant proteins due to their highly polymorphic nature, but as sequencing 

technologies improve, the value of investigating their role is immense. 

 

From this study we can propose a DR evolutionary model in Mtb that starts with mechanisms that 

ensure that the bacterium is exposed only to sub-inhibitory concentrations of antibiotics. As a 

survival mechanism, Mtb activates stress response proteins that in turn affect the fidelity of the 

DNA processes. This leads to the acquisition of DR mutations, which are further compensated for 

by additional mutations in secondary genes. The interaction of several lipid biosynthesis genes and 

membrane transport genes also suggests that the evolution of DR in Mtb involves a reconstitution 
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of the mycobacterial cell wall in order to maximize the efficiency in systems that control cell wall 

permeability. 

A study like this paves the way for future research that can be beneficial in the management of TB. 

Through the attributable risk network analysis we can enable identification of potential targets for 

DR-TB reversion drugs. There is also potential in identifying additional determinants of DR, which 

can be used as markers of intermediate steps of DR development in Mtb. Current pDST methods 

cannot detect the low level resistance and this often leads to inadequate dosage of anti-TB drugs 

and this in turn fuels the trajectory towards increased DR. Incorporating these in our catalogue of 

genetic determinants can further improve the performance of current WGS-based diagnostic tools. 

The information derived from analysing these networks can also be used in influencing therapeutic 

treatment regiments. For example, the low complexity of Lineage 1.2 networks may suggest that 

the treatment outcomes of patients infected with strains of this clade be improved with increased 

dosages of the standard regimen drugs, with a minimum risk of further fuelling drug resistance. 

On the other hand, the direct interaction between mutations in katG and rpsL genes in both the 

Asian and the Lineage 4 clades may suggest that clinicians prescribe a combination of isoniazid 

and second-line aminoglycosides with extreme caution to avoid fuelling the resistance of the 

antibiotics. The same is also true for regimens that require the use of fluoroquinolones and 

rifampicin simultaneously. 

 

We acknowledge a number of limitations in our study. First of all, there are no existing pathway 

models for DR interactions in Mtb, which can be used to benchmark our findings. As data on DR 

studies in Mtb continues to accumulate, there is a need for an integration of the information that 

can be used to build pathway models that can capture the complexity of the evolution of DR in 

Mtb. This “resistome” knowledgebase will need a careful curation as well as the ability to be 

integrated with other tools that are used in Mtb research. Another limitation of this study was that 

no functional predictions were done to determine the effects of the identified variants on protein 

structure. The use of strain H37Rv as an alignment reference in this study may also have resulted 

in some lineages markers to be incorrectly identified as functional variants.  

 Future work will require multi-disciplinary approaches where the use of such models will guide 

experimentalists, while the data they generate will be used to improve the quality of the output 

from our models. The unavailability of pDST data especially for the second line drugs also was a 

limitation in the construction of our statistical models as well as in selecting input parameters for 

these models. The quality of the output from mathematical models is largely dependent on the 
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quality of data that is used to formulate the model structure and to inform model parameters [130]. 

Another usual pitfall associated with mathematical models is the desire to accurately integrate the 

multiple facets of biological complexity, without becoming intensively technical and too tedious 

to parameterize.  
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Chapter 4-Concluding Remarks 
6.1 Major findings 

Here we have used WGS and statistical models to show that the antibiotic resistant phenotype in 

Mtb is associated with a specific pattern of multiple polymorphic sites in the Mtb genome. This is 

contrary to traditional dogma that was based on the once-off acquisition of a drug-resistance-

conferring mutation as the primary cause of drug resistance in Mtb. We further showed that these 

patterns of polymorphisms which are acquired in a stepwise manner can be used as reliable 

signatures of drug resistance even when only fragments of the genome are available for analysis. 

We demonstrated the potential use of these findings in further improving the rapidity of using 

WGS-based DR-TB diagnostic tools by cutting the turnaround time required to diagnose DR-TB. 

This was done by developing the Resistance Sniffer tool which can be used to predict drug 

resistance in Mtb using partial and complete Mtb sequences in a variety of file formats that are 

produced in different stages of the genome completion process. By integrating all the 

polymorphisms associated with resistance to 13 drugs in different clades of Mtb into a single 

diagnosis key, it was possible to simultaneously predict the lineage as well as the drug resistance 

profile of an Mtb sample. 

In this study we also identified clade-specific patterns of polymorphisms that are associated with 

the drug resistant phenotype. By comparing the identified patterns of polymorphisms, our data 

indicates that the emergence of a DR-associated mutation facilitates the acquisition of other 

additional mutations resulting in the further development of drug resistance. This finding indicates 

that drug resistance is rather continuous and not binary and highlights a major limitation in the 

way drug resistance is often reported (resistant or susceptible) with no indication of strains that 

might have developed intermediate resistance. This is problematic as it often results in clinicians 

oversimplifying resistance leading to the prescription of inadequate TB regimens that have the 

potential to select for DR strains. We addressed this problem when we were developing our 

Resistance Sniffer program by ensuring that the end user has an understanding of the level of 

resistance that is being reported in the output. 

6.1 The role of compensatory evolution 

Strains belonging to lineage 1.2 have been associated with high drug susceptibility and improved 

treatment outcomes when compared to strains from the East Asian, Beijing and Euro-American 

sublineages. Our data indicates that epistasis may be a major factor in the evolution of drug 

resistance in different clades of Mtb. In order to interpret the differences in the role of epistasis in 
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the different clades of Mtb, we used Levin’s attributable risk statistics to identify functional 

associations between DR affiliated mutations. From these data, we generated co-dependence 

networks for the different Mtb clades. From these networks we determined that not only 

compensatory mutations are responsible for the evolution of drug resistance in Mtb, instead we 

also identified some prerequisite mutations mainly in genes that are responsible for cell wall 

physiology and efflux pump systems. These mutations are likely to be responsible for ensuring 

that only sub-inhibitory concentrations of the antibiotics are absorbed by the bacterial cell. This 

suggestion is further cemented by the observed functional associations between mutations in the 

emb operon and several of these efflux pump mutations. Accurate dosage of ethambutol is 

notoriously difficult as it does not distribute easily in adipose tissue [246]. Our data indicates that 

the beginning of the evolution of drug resistance in Mtb is often associated with the emergence of 

low-level ethambutol resistance. 

Networks from the Asian clades also consisted of several mutations in genes that are responsible 

for DNA fidelity. These mutations though to a lesser extent, were also identified in the Euro-

American networks. This finding indicates that the association between MDR-TB and the Asian 

clades can be attributed to increased mutation rates in this clade. Our data also showed the 

involvement of several mutations in stress response as well as lipid metabolism genes. Finally, we 

developed a model of the evolution of Mtb drug resistance based on our observations of the 

mutation functional associations in the different clades. From this model we can suggest an 

evolutionary path that starts by the exposure of the bacterial cell to subinhibitory concentrations 

of antibiotics, this elicits the stress response mechanism most likely as a result of exposure to INH. 

This leads to the activation of error-prone DNA fidelity mechanisms resulting in the elevation of 

the basal mutation rates. The elevated mutation rates facilitates for the acquisition of additional 

mutations eventually leading to the development of high level MDR-TB. Our model emphasizes 

on the importance of adequate antibiotic dosage in the prevention of drug resistance and this has 

been supported by several studies in clinical acquired resistance [247-249]. Based on our findings, 

elucidating the mechanisms that link the DNA fidelity systems to fluctuations in mutation rates in 

Mtb which remain generally unknown would be invaluable. 
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6.2 Concluding remarks 

The Resistant Sniffer program is an online tool for the rapid prediction of antibiotic resistance in 

Mtb using complete genome as well as partial genome sequences. This project resulted in the 

following achievements: 

1. We identified patterns of polymorphisms in Mtb genomes which are associated with the 

drug resistant phenotype. We investigated how these patterns can be used as markers of 

drug resistance in a lineage specific way and estimated the reliability of these diagnostic 

polymorphisms for the lineage and drug resistance prediction. The hypothesis was that 

contrary to the traditional dogma of a once off acquisition of a DR mutation leading to DR-

TB, the antibiotic resistance phenotype is associated with clade-specific patterns of 

multiple polymorphic sites in Mtb genomes. The study demonstrated that these 

polymorphic sites can be used to identify the drug susceptibility profile as well as the 

lineages of Mtb strains even when only fragments of the genome were available for 

analysis. Using a GWAS derivative, we took a clade-based approach to identify patterns 

of polymorphic patterns, which were associated with resistance to 13 anti-TB drugs. These 

patterns were carefully curated to develop a diagnosis key for the Resistance Sniffer 

program 

2. A software tool for the rapid prediction of antibiotic resistance to 13 anti-TB drugs was 

successfully developed. The web address for the Resistant Sniffer program is 

http://resistance-sniffer.bi.up.ac.za/Mycobacterium_tuberculosis. The interface allows the 

users to upload NGS sequences in different widely used formats. For larger files, the user 

has the option to receive their results via email. The site also offers the user to download a 

compressed version of the program which can be used on a personal computer provided 

that Python 2.5 or 2.7 is installed. The site also comes with a help link to guide the users 

on how to run the program offline as outlined in Chapter 2.   

3. The Resistance Sniffer tool was validated using our validation dataset from the GMTV 

database and testing was done on our independent testing dataset from the South African 

Medical Research Council. We showed that the TB pandemic in South Africa may have 

been brought by European migration during colonial times while the resistance-prone 

Asian strains may have been brought to the country much later as a result of improved 

travel due to globalization. Our study also showed that the first-line drug predictions were 

associated with higher specificity and sensitivity compared to the second-line drugs whose 

mechanisms of action is poorly understood. 

http://resistance-sniffer.bi.up.ac.za/Mycobacterium_tuberculosis
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4. The use of NGS in the management of DR-TB is limited by our understanding of the 

genetic mechanisms that drive the evolution of drug resistance in MTB. As set out by the 

final goal of this project, we attempted to develop an evolutionary model for the emergence 

of MDR-TB. Using Levin’s attributable risk statistics, we identified functional associations 

between mutations that had been linked with drug resistance in the different clades of Mtb. 

We filtered out those associations that may have arisen due to genetic events and integrated 

the remaining data with annotation information as well as drug susceptibility information 

from the GMTV and TBDream databases to infer evolutionary networks based on the co-

dependencies of the mutations. Additionally we analysed these clade-specific networks to 

identify harbinger as well as compensatory mutations that are involved in the evolution of 

MDR-TB. We confirmed the role of epistasis in the development of drug resistance in Mtb. 

We also identified some polymorphisms in secondary sites that can be incorporated into 

the diagnostic key of our Resistance Sniffer program in order to improve its accuracy. 

5. The outcomes of this projects highlights the attractiveness of using NGS in the fight against 

DR-TB. The approach we took when we developed our online prediction not only 

addresses the challenge of the bioinformatics skills deficiency among clinicians but also 

provides a broader range in terms of the variety of NGS file formats that can be analysed 

on our platform. The output from our program also captures strains that may exhibit low 

to medium levels of resistance thus allowing clinicians to carefully monitor patients who 

are at risk of developing MDR-TB in future. In developing this program we were also 

aware of the rapid expansion in the knowledge base surrounding the genetic mechanisms 

of Mtb resistance, for this reason we ensured that our system can be easily updated by 

modifying the text based diagnosis key. This flexibility is not only limited to Mtb only, our 

system can be easily modified to analyse for other pathogens as well. 

6.  In line with the final goal this project we successfully created a model of the evolutionary 

trajectory of MDR-TB and assisted in understanding why some strains from certain 

lineages tend to be highly associated with MDR-TB. 

A manuscript was prepared by summarizing the results of this study and submitted for review to 

the International Journal of Medical Microbiology. 
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6.3 Future perspectives 

The magnitude of the global Mtb drug resistance burden remains a cause for concern with 

successful treatment outcomes estimated at 60% for MDR-TB and 35% for XDR-TB respectively 

[250, 251]. Given the well-documented association between DR-TB and mortality, tackling the 

drug resistance challenge is essential to curbing the high morbidity and mortality rates associated 

with TB. As global cases of MDR-TB and XDR-TB continue to rise, the need for new innovative 

diagnostic and treatment strategies becomes imperative. Fortunately, the advances in NGS 

technologies are proving to be a game changer in DR-TB detection. However, in order to fully 

exploit the potential of this platform in DR-TB diagnosis, there is a need to clarify the relationship 

between the genotype, phenotype and clinical outcomes. It is encouraging to note that initiatives 

such as the ReSeqTB [252] and the Comprehensive Resistance Prediction for Tuberculosis 

(CRypTIC) [253] have been set up to standardize the use  of NGS in DR-TB control. The WHO 

has already implemented WGS in drug resistance surveillance and is planning to evaluate 

sequencing technologies for routine genotypic DST in 2019 [1, 254]. Several countries (for 

example, the United Kingdom and the Netherlands) have also adopted WGS-guided solutions in 

their public health systems with more countries expected to follow suit [254]. Our partnering team 

at the SA-MRC (Pretoria) is planning to create a M. tuberculosis genome variation database that 

will integrate clinical, epidemiological and microbiological data with genome variations based on 

WGS data. We expect that such a project will benefit immensely from our predictive tool. We also 

expect the project to generate more Mtb sequence data which in turn will be used to update the 

Resistance Sniffer program and therefore improve the sensitivity and specificity of the program. 

The flexibility of our approach can also be exploited by end-users for other applications such as 

routine molecular epidemiology investigations, laboratory cross contamination assessment and the 

diagnosis of other pathogens [31, 255]. Performing NGS-based diagnosis directly from sputum 

would improve the turnaround time for DR-TB diagnosis even further as it bypasses the time-

consuming process of obtaining Mtb cultures before diagnosis. However, this is challenging due 

to the contamination of Mtb DNA by human DNA [256]. 

There is also a need to reconsider the “One size fits all” approach that has traditionally governed 

TB treatment. Several studies have recently recommended the need for individualized therapy for 

TB patients as a way for improving patient outcomes [215, 256]. Already rapid diagnosis platforms 

like Resistance Sniffer are able to simultaneously report on a wide range of drugs which makes it 

easier for clinicians to make well-informed decisions when crafting individualized treatment 

regimens based on patient outcomes. The recent interest in WGS-based DR-TB research has been 
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encouraging as witnessed by the number of publications that have been generated recently. In 

future, the TB research community will benefit immensely from the implementation of a “gold 

standard” to WGS data analysis in DR-TB diagnosis as it will ensure reproducibility and 

comparability of the different approaches to diagnosis. 
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