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Abstract

In this thesis, numerical solution procedures are developed for simulating chemical

phenomena. Mathematical models for phenomena involving flow, transport and reaction

of chemical species are computationally challenging to simulate due to stiffness, high de-

grees of freedom and spatial dependence. Such challenges are resolved (in this thesis)

by combining model decoupling techniques with compatible efficient numerical schemes.

Chemical phenomena is decomposed into well-mixed chemical systems, poorly-mixed sys-

tems (or spatial dependent kinetics) and flow with reactive transport systems. Mathe-

matical models for the systems are Ordinary Differential Equations (ODEs), parabolic

Partial Differential Equations (PDEs) and hyperbolic PDEs, respectively. In the ODE

model, stiffness is resolved by positivity-preserving implicit schemes while the large de-

grees of freedom is reduced by stoichiometric and continuous-time iteration methods. In

the parabolic model, model decoupling techniques are employed to reduce the degrees of

freedom while Implicit-Explicit numerical schemes are presented for resolving stiffness.

Further, numerical schemes that have dispersion-dissipation-preserving properties have

also been discussed. In the hyperbolic model, model decoupling techniques have been pre-

sented for reducing the degrees of freedom while shock-capturing, well-balanced numerical

schemes have been presented for resolving nonlinear hyperbolic effects. The results from

experiments show that the proposed numerical solution procedures can efficiently resolve

the challenges in simulating chemical phenomena.
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Chapter 1

Background to chemical reaction

phenomena

Chemical equilibrium and chemical kinetics are the two main interesting research themes

in chemical reaction phenomena and have received considerable attention over many

decades. Chemical kinetics is a research discipline that tries to quantify the time-

dependent dynamics of a chemical system before equilibrium is established [37]. Chemical

reaction processes can be found in several scientific disciplines (including Environmental

Science, Pharmacology, Biology, Biomedical Sciences and Medical Science [81] ), thus,

chemical kinetic problems have received considerable attention from scientists with dif-

ferent backgrounds.

Mathematical modelling has been a corner stone in the development of chemical ki-

netic theory, for more than two centuries. In 1850, a German scientist published an

article on hydrolysis of sucrose, in which a mathematical model was used to adequately

establish a link between thermodynamics and chemical reactions [37]. Differential models

have been employed to accurately describe the dynamics of simple chemical systems such

as bimolecular reactions. Exponential and polynomial models have aided in the develop-

ment of collision theory, transition state theory, Arrhenius equation, mass action law and

many more significant theories in chemical reactions [37].

Over the past two centuries, the chemical systems that have been considered in kinetic

studies have been relatively simple, thus, accurate models were simple and could easily

be analysed without computers. However, the systems in modern times are complex and

1



large (e.g. refinement of petroleum involves thousands of molecules engaged in thousands

of reactions [37, 95]). Consequently, mathematical modelling of modern chemical systems

is challenging. Research questions can still be answered by means of computer simulation,

however, the approach is constrained by scarcity of resources (e.g. memory). Thus, it is

necessary to develop efficient computer simulation approaches for chemical phenomena.

Generally, kinetic studies can be classified into detailed and reduction kinetic approaches

(that encompass decomposition and lumping approaches).

Decomposition approaches include the Quasi-Steady-State (QSS) approximation [37,

125, 149], Partial Equilibrium approximation (PEA) [149, 46, 124, 70, 68], rate-determining

[37], Computational Singular Perturbation (CSP) [125, 91, 93] and others can be found

in [172, 47, 55, 131, 92, 69, 80, 152]. Decomposition approaches are developed based on

a fact that intermediate reactions proceed faster than overall reactions, thus, resulting in

a wide time-scale variation within the system [37, 125, 124]. Consequently, the system

is decomposed into fast, medium and slow sub-systems where further assumptions are

employed to obtain smaller models. Sensitivity analysis has been employed to distinguish

the fast groups from the slow ones, some research [125, 27, 136, 51] have reported success

while others reported short falls [125, 1, 22, 40]. With decomposition approaches, only

few parameters are needed to build models and simulation is less expensive. However,

the approaches oversimplify the kinetics to an extent that accuracy is lost and the models

are not consistent with the reality. Other properties of the decomposition methods have

been discussed in [125, 104, 165, 58, 59].

Lumping approaches are developed based on the fact that there are several species

or reactions (within the large chemical system) that have a common property. Those

individual reactions/species that have the common property are grouped together and

studied as one component called a lump [37]. All model reduction techniques (including

lumping techniques) are not exact since the resulting models do not describe the detailed

kinetics.

The detailed kinetic approaches are developed to study the time-dependent behaviour

of the entire chemical system. Resulting models are non-linear differential equations that

characteristically lack analytical solutions, except for a few simple chemical systems.

As a result, numerical schemes are employed to approximate or simulate the solution.
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The detailed kinetic approaches are consistent and accurate but are however, expensive

(sometimes infeasible) to implement.

The focus of this thesis is on simulating the kinetics of chemical reactions (i.e. simula-

tion of the transient aspect of chemical reaction phenomena). The law of mass action and

other physical laws are applied to derive differential equations that model the kinetics of

chemical reactions. The resulting differential equations are nonlinear, stiff and have high

degrees of freedom [119, 188, 120, 146]. Due to lack of exact solutions in the general case,

numerical schemes are developed as alternative methods of solution. However, combining

accurate numerical schemes with the already high degrees of freedom yields an expensive

simulation. This thesis combines model decoupling methods with compatible accurate

numerical schemes, for the purpose of efficiently simulating chemical kinetic phenomena.

Numerical simulation of the kinetics of three groups of chemical reaction systems will

be considered in this study. The first group consists of chemical reactions that occur

in well-stirred (also known as well-mixed) environments. Time is the only independent

variable of such systems. The second group (called reactive transport systems or poorly-

mixed systems) consists of chemical reactions that occur alongside physical processes such

as diffusion and advection. The third group (called flow and reactive systems) consists of

chemical systems that occur in a fluid flow environment (specifically, shallow water flow

environment). The second and third groups are spatially-dependent in addition to the

time-dependence.

The rest of the thesis is organised into six chapters. In Chapter 2, modelling of

reactive flow systems is presented and analysed. In Chapter 3, modelling and simulation

of well-stirred chemical systems is discussed. In Chapter 4, modelling and simulation

of reactive transport systems is discussed. Dispersion preserving schemes for reactive

transport systems are discussed in Chapter 5. Numerical simulation of flow and reactive

systems is discussed in Chapter 6, followed by the conclusion in Chapter 7.
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Chapter 2

Preliminary: reactive flow modelling

In this chapter, the kinetics of flow and reactive transport processes are modelled and

analysed, using physical conservation laws and the shallow water principle. Properties

such as hyperbolicity and nonlinear effects of the derived shallow water model are pre-

sented. Riemann problems and elementary wave solutions have also been discussed.

Riemann problems of Euler’s models (in gas dynamics) and shallow water model (in hy-

drodynamics) have been discussed in literature. The discussion here, on the Riemann

problem is an application of known results in [100, 161], thus, the results are not novel.

2.1 Shallow water flow model

In this section, a mathematical model is derived using physico-chemical laws and shallow

water principle. A rectangular reference frame is considered, where the x and y axes frame

the horizontal plane and z axis is vertical. The three dimensional spatial differential

operator is denoted by ∇ =
�

∂
∂x
, ∂
∂y
, ∂
∂z

�
and the velocity vector is denoted by ve =

(ue, ve, we).

The governing equations for fluid flow and associated phenomena are derived from a

physical principle, which says that the rate of change of an extensive property of a fluid

occupying a volume, is the balance between fluxes and the rate of creation or destruction

of the property in the volume [168, 43, 76]. In a smooth domain, the principle is a

4



differential equation that can be written as follows:

∂Φ

∂t
+∇ · J− SΦ = 0, (2.1)

where Φ is density of the extensive property, J is a flux vector and SΦ is the source/sink

term for the extensive property. If the mass of the carrier fluid (with density ρe and fluxes

J = ρeve flowing without sources or sinks) is considered as the extensive property, the

conservation principle (2.1) yields [76]:

∂ρe
∂t

+∇ · ρeve = 0, (2.2)

known as the continuity equation. If momentum is the extensive property of the fluid,

the density Φ = ρeve quantifies momentum density, the flux is a balance of convective

processes, fluid pressure (denoted pe) and stresses (T ) (i.e. J = ρeveve + peδ − T
where δ is a unit tensor) and the source terms are body forces such as gravity (i.e.

SΦ = ρeg, g = (0, 0,−g) and g is the acceleration due to gravity) [168, 43]. Thus,

balancing momentum in an elementary volume (i.e. applying principle (2.1)) yields:

∂ρeve

∂t
+∇ · ρeveve = −∇pe +∇ · T + ρeg. (2.3)

The discussion here is limited to a Newtonian fluid that is inviscid, incompressible

and has constant density. Under such flow conditions, the continuity and momentum

equations (2.2) and (2.3) reduce in terms, to the incompressible Euler model [168, 76]:

∂ue

∂x
+

∂ve
∂y

+
∂we

∂z
= 0, (2.4)

∂ue

∂t
+

∂u2
e

∂x
+

∂ueve
∂y

+
∂weue

∂z
= − 1

ρe

∂pe
∂x

, (2.5)

∂ve
∂t

+
∂ueve
∂x

+
∂v2e
∂y

+
∂vewe

∂z
= − 1

ρe

∂pe
∂y

, (2.6)

∂we

∂t
+

∂uewe

∂x
+

∂vewe

∂y
+

∂w2
e

∂z
= − 1

ρe

∂pe
∂z

− g. (2.7)

5



If the fluid is carrying chemical species with concentrations denoted by Ue and dif-

fusivities in the x, y, z directions, respectively denoted by Γx,Γy,Γz, then, the extensive

property has density Φ = Ue and the flux J is a balance of diffusion and advection. Thus,

balancing species concentration in an elementary volume (i.e. applying principle (2.1))

yields:

∂Ue

∂t
+

∂ueUe

∂x
+

∂veUe

∂y
+

∂weUe

∂z

=
∂

∂x
Γx∂Ue

∂x
+

∂

∂y
Γy ∂Ue

∂y
+

∂

∂z
Γz ∂Ue

∂z
+ SU , (2.8)

where SU denotes chemical reactions.

In the system (2.4)-(2.8) there are as many equations as unknowns, thus, a solution

may be obtained if appropriate boundary and initial conditions are specified. However,

analytical solutions are not always feasible and numerical solutions are challenging and

expensive due to the high space dimension and degrees of freedom of the concentration

vector. Consequently, the incompressible Euler model is approximated (using approprite

assumptions) to make it more tractable. Moreover, some flow problems have negligible

vertical scales compared to horizontal scales, such problems are classified as shallow water

flow problems [76, 153, 100, 161, 160]. It is assumed in this section, that the reactive flow

problem under consideration obeys the shallow water principle.

Further, the underlying principle that vertical scales are negligible (as compared to

the horizontal scales) imply that vertical acceleration (i.e the left hand side of (2.7)) is

negligible [76, 153, 100, 161, 160]. Thus, the Right Hand Side (RHS) of (2.7) is zero.

That is:

− 1

ρe

∂pe
∂z

− g = 0. (2.9)

Integrating (2.9) from the reference water depth h(x, y, t), to any water depth z yields

the hydrostatic pressure function:

pe = ρeg(h− z). (2.10)

Further, from the hydrostatic pressure function (2.10), one can obtain the following pres-

sure gradients across x and y directions:
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∂pe
∂x

= ρeg
∂h

∂x
. (2.11)

and

∂pe
∂y

= ρeg
∂h

∂y
. (2.12)

The pressure gradients (2.11) and (2.12) are independent of z, which imply that the

x, y velocity components ue and ve are independent of the z coordinate. Applying the

pressure derivatives (2.11) and (2.12) in the Euler model (2.4)-(2.8) can be restated as

follows:

∂ue

∂x
+

∂ve
∂y

+
∂we

∂z
= 0, (2.13)

∂ue

∂t
+

∂u2
e

∂x
+

∂veue

∂y
+

∂weue

∂z
= −g

∂h

∂x
, (2.14)

∂ve
∂t

+
∂ueve
∂x

+
∂v2e
∂y

+
∂vewe

∂z
= −g

∂h

∂y
, (2.15)

and

∂Ue

∂t
+

∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
= SU , (2.16)

where Jx = ueUe − Γx ∂Ue

∂x
, Jy = veUe − Γy ∂Ue

∂y
and Jz = weUe − Γz ∂Ue

∂z
.

The system (2.13)-(2.16) has one equation less than system (2.4)-(2.8) and therefore,

is less expensive to solve. However, there are more unknowns than equations in system

(2.13)-(2.16). This is due to the presence of we, the z velocity component (that is assumed

insignificant under the shallow water assumption). To eliminate the redundant unknown,

the system is averaged over depth and boundary conditions are employed to simplify the

resulting averaged equations.

There are two relevant boundaries (located at zb and zs along the vertical axis ) in

the three dimensional domain where conditions necessary for deriving the shallow water
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model must be specified. The bottom topography of the channel denoted by η(zb, x, y),

is assumed fixed in time and impermeable, and the free-surface denoted by H(zs, x, y, t)

that is under the influence of gravity and atmospheric pressure. This variable quantifies

the total depth (i.e. H = h+ η) and is also known as water surface [187].

The following no-normal flow and diffusion conditions are imposed at the bottom

boundary denoted η(zb, x, y) :

ue
∂η

∂x
+ ve

∂η

∂y
+ we = 0, Γx

∂η

∂x
= Γy

∂η

∂y
= 0 and

Jx(η)
∂η

∂x
+ Jy(η)

∂η

∂y
+ Jz(η) = 0. (2.17)

Further, no-normal flow and diffusion conditions are also imposed at the free boundary

denoted H(x, y, t) :

∂H

∂t
+ ue

∂H

∂x
+ ve

∂H

∂y
− we = 0, Γx

∂H

∂x
= Γy

∂H

∂y
= 0 and

Ue(H)
∂H

∂t
+ Jx(H)

∂H

∂x
+ Jy(H)

∂H

∂y
− Jz(H) = 0. (2.18)

Moreover, the depth-averaged unknown variables are defined as follows:

ue = u =
1

h

� H

η

uedz, ve = v =
1

h

� H

η

vedz,

Γx = Γxs =
1

h

� H

η

Γxdz, Γy = Γys =
1

h

� H

η

Γydz, (2.19)

Sh =

� H

η

SUdz and U =

� H

η

Uedz.

Further, the original parameters/variables ue, ve,Γx,Γy and Ue are related to the

averaged quantities by the following expressions:

ue = ue + u�
e, ve = ve + v�e,

Γx = Γx + Γ�
x, Γy = Γy + Γ�

y, and (2.20)

Ue = Ue +U�
e, (2.21)

where u�
e, v

�
e,Γ

�
x,Γ

�
y and U�

e are mean deviations from the quantities ue, ve,Γx,Γy and

Ue respectively. Employing the depth-averaged quantities given by (2.19) and their
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relations given by (2.20), the unknown quantity we in the system (2.13)-(2.16) can easily

be eliminated.

Firstly, integrate the continuity equation (2.13) over the depth as follows:

� H

η

∂ue

∂x
dz +

� H

η

∂ve
∂y

dz +

� H

η

∂we

∂z
dz = 0. (2.22)

Apply Leibniz rule of integration to the integrals in (2.22) to obtain:

∂

∂x

� H

η

uedz +
∂

∂y

� H

η

vedz −
�
ue(H)

∂H

∂x
+ ve(H)

∂H

∂y
− we(H)

�

−
�
ue(η)

∂η

∂x
+ ve(η)

∂η

∂y
+ we(η)

�
= 0. (2.23)

Apply boundary conditions (2.17) and (2.18) in Equation (2.23) to obtain:

∂

∂x

� H

η

uedz +
∂

∂y

� H

η

vedz +
∂h

∂t
= 0. (2.24)

Use definition (2.19) in (2.24) to obtain:

∂hu

∂x
+

∂hv

∂y
+

∂h

∂t
= 0. (2.25)

Secondly, integrate the x−momentum equation (2.14) over the water column and

apply Leibniz rule of integration to obtain:

∂

∂t

� H

η

uedz +
∂

∂x

� H

η

u2
edz +

∂

∂y

� H

η

uevedz − ue(H)
�∂H
∂t

+ ue(H)
∂H

∂x

+ ve(H)
∂H

∂y
− we(H)

�
− ue(η)

�
ue(η)

∂η

∂x
+ ve(η)

∂η

∂y
+ we(η)

�

= −gh
∂h

∂x
. (2.26)

Apply boundary conditions (2.17) and (2.18) in Equation (2.26) to obtain:

∂

∂t

� H

η

uedz +
∂

∂x

� H

η

u2
edz +

∂

∂y

� H

η

uevedz = −gh
∂h

∂x
. (2.27)

Apply definitions (2.19) and (2.20) in the integral equation (2.27) to obtain:

∂hu

∂t
+

∂

∂x

� H

η

(ue + u�
e)(ue + u�

e)dz +
∂

∂y

� H

η

(ue + u�
e)(ve + v�e)dz

= −gh
∂h

∂x
. (2.28)
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Simplify (2.28) to obtain:

∂hu

∂t
+

∂huu

∂x
+

∂huv

∂y

= −gh
∂h

∂x
− ∂

∂x

� H

η

u�
eu

�
edz −

∂

∂y

� H

η

u�
ev

�
edz. (2.29)

Using arguments similar to those used to obtain (2.29), the depth-averaged y−momentum

equation (2.15) can be written as follows:

∂hv

∂t
+

∂huv

∂x
+

∂hvv

∂y

= −gh
∂h

∂y
− ∂

∂x

� H

η

u�
ev

�
edz −

∂

∂y

� H

η

v�ev
�
edz. (2.30)

Thirdly, integrate the species transport equation (2.16) over the water column and

apply Leibniz rule of integration to obtain:

∂

∂t

� H

η

Uedz +
∂

∂x

� H

η

Jxdz +
∂

∂y

� H

η

Jydz −
�
Ue(H)

∂H

∂t
+ Jx(H)

∂H

∂x

+ Jy(η)
∂η

∂y
− Jz(η)

�
−

�
Jx(η)

∂η

∂x
+ Jy(η)

∂η

∂y
+ Jz(η)

�

= Sh. (2.31)

Apply boundary conditions (2.17) and (2.18) in Equation (2.31) to obtain:

∂

∂t

� H

η

Uedz +
∂

∂x

� H

η

Jxdz +
∂

∂y

� H

η

Jydz = Sh. (2.32)

Use definitions (2.19) in (2.32) to obtain:

∂hU

∂t
+

∂

∂x

� H

η

ueUedz +
∂

∂y

� H

η

veUedz

=
∂

∂x

� H

η

Γx
∂Ue

∂x
dz +

∂

∂y

� H

η

Γy
∂Ue

∂y
dz + Sh. (2.33)

Apply definitions (2.19) and (2.20), the zero-diffusion boundary conditions (2.17) and

(2.18) in (2.33) and simplify to obtain:

∂hU

∂t
+

∂huU

∂x
+

∂hvU

∂y
=

∂

∂x
Γxs

∂hU

∂x
+

∂

∂y
Γys

∂hU

∂y

− ∂

∂x

� η

zl

(u�
eU

�
e − Γ�

x

∂Ue

∂x
)dz − ∂

∂y

� η

zl

(v�eU
�
e − Γ�

y

∂Ue

∂y
)dz

+ Sh. (2.34)
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The integrals in (2.29), (2.30) and (2.34) are corrections for the averaged terms. These

integrals may be approximated or determined through experimental data. A popular pro-

cedure is to replace the correction terms by empirical expressions that represent Coriolis

force, wind forces, bottom friction etc [182, 114, 111]. In this discussion, an empirical

expression that quantifies bottom friction is used to close the momentum equations and

the correction terms in (2.34) are considered negligible. Consequently, a one dimensional

form of the closed reactive-shallow model states that:

∂h

∂t
+

∂hu

∂x
= 0, (2.35)

∂hu

∂t
+

∂

∂x
(hu2 +

1

2
gh2) = −gh

∂η

∂x
− gC2|u|u

h4/3
, (2.36)

∂hU

∂t
+

∂

∂x
huU =

∂

∂x
Γ
∂hU

∂x
+ Sh, (2.37)

where C is the manning coefficient.

2.2 Hyperbolicity and non-linear effects

In this section, properties such as hyperbolicity and consequence of the non-linearity of

the reactive-shallow water model are presented. The one dimensional form of the model

is a balanced law and the homogeneous part is a conservation law. The model is analysed

in both primitive and conservative formulations. Definitions relevant to the presentation

are presented first, followed by the main results.

Definition 2.1 (Balanced laws). Balanced laws are partial differential equations that can

be expressed as follows (in one space dimension) [100, 161, 160, 53]:

∂Q

∂t
+

∂

∂x
f(Q) = S(Q), (2.38)

where

Q =




q1

q2
...

qM



, f(Q) =




f1(Q)

f2(Q)
...

fM(Q)



, and S(Q) =




s1(Q)

s2(Q)
...

sM(Q)



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Q denotes the vector of M conserved variables, f(Q) denotes the vector of fluxes and

S(Q) denotes a vector of sources for the conserved variables. The Jacobian of the flux

vector function f(Q) is a matrix defined as follows:

A(Q) =




∂f1
∂q1

∂f1
∂q2

· · · ∂f1
∂qM

∂f2
∂q1

∂f2
∂q2

· · · ∂f2
∂qM

...
...

...
...

∂fM
∂q1

∂fM
∂q2

· · · ∂fM
∂qM



. (2.39)

Definition 2.2 (Eigenvalues and Eigenvectors). The eigenvalues λi of a matrix A are

the zeros of the characteristic polynomial [100, 161, 160]:

|A− λI| = det(A− λI) (2.40)

where I is the identity matrix. A right eigenvector of a matrix A corresponding to an

eigenvalue λi of A is a vector K(i) = [k1, k2, . . . , kM ]T satisfying

AK(i) = λiK
(i). (2.41)

Similarly, a left eigenvector of a matrix A corresponding to an eigenvalue λi of A is a

vector L(i) = [l1, l2, . . . , lM ] such that

L(i)A = λiL
(i). (2.42)

Definition 2.3 (Hyperbolic system [100, 161, 53]). The balanced law (2.38) is said to be

hyperbolic if A has M real eigenvalues λ1, . . . ,λM and a corresponding set of M linearly

independent right eigenvectors K(1), . . . ,K(M). The system is said to be strictly hyperbolic

if the eigenvalues λi are all distinct.

Proposition 2.1. The Shallow water model (2.35)-(2.36) with chemical transport (2.37)

is hyperbolic with eigenvalues given by:

λ1 = u− c, λ2 = u, λ3 = u+ c

where c =
√
hg is called celerity, and corresponding linearly independent eigenvectors are
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given by:

K(1) = α1




1

u− c

U


 , K(2) = α2




0

0

1


 , and K(3) = α3




1

u+ c

U


 ,

where U is any element of vector U and α1,α2,α3 are real numbers. The model is strictly

hyperbolic for a wet bed problem.

Proof. The shallow water model with reactive transport given by Equations (2.35)-(2.37)

can be written in the form:

∂

∂t




h

hu

hU


+

∂

∂x




hu

hu2 + 1
2
gh2

huU


 =




0

−gh∂η
∂x

− gγC2|u|u
h4/3

∂
∂x
Γ∂hU

∂x
+ Sh


 (2.43)

Thus, the vectors for conserved quantities, fluxes and sources are respectively given

by:

Q =




h

hu

hU


 , f(Q) =




hu

hu2 + 1
2
gh2

huU


 , and S(Q) =




0

−gh∂η
∂x

− gγC2|u|u
h4/3

∂
∂x
Γ∂hU

∂x
+ Sh


 . (2.44)

For any component U of the unknown vector U, the Jacobian of the flux vector f(Q)

is given by:

A(Q) =




0 1 0

c2 − u2 2u 0

−uU U u


 . (2.45)

The characteristic polynomial of A(Q) is given by:

det(A− λI) = (λ− u)(λ2 − 2uλ− (c2 − u2)) (2.46)

= (λ− u)(λ− (u+ c))(λ− (u− c)). (2.47)
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Thus, by definition the eigenvalues of A(Q) are λ1 = u− c, λ2 = u, and λ3 = u+ c. The

linearly independent vectors

K(1) = α1




1

u− c

U


 , K(2) = α2




0

0

1


 , and K(3) = α3




1

u+ c

U


 ,

and eigenvalues λ1,λ2 and λ3 satisfy definition (2.2), that is,




0 1 0

c2 − u2 2u 0

−uU U u







α1

α1(u− c)

α1U


 = α1(u− c)




1

u− c

U


 implying AK(1) = λ1K

(1), (2.48)




0 1 0

c2 − u2 2u 0

−uU U u







0

0

α2


 = uα2




0

0

1


 implying AK(2) = λ2K

(2) (2.49)

and



0 1 0

c2 − u2 2u 0

−uU U u







α3

α3(u+ c)

α3U


 = (u+ c)α3




1

u+ c

U


 implying AK(3) = λ3K

(3). (2.50)

Thus K(1),K(2) and K(3) are right eigenvectors corresponding to the eigenvalues λ1,λ2

and λ3 respectively. For a wet bed problem the water depth is positive (i.e. h > 0)

implying a positive celerity (i.e. c > 0) and completely distinct eigenvalues. Hence, the

system is strictly hyperbolic.

Moreover, model (2.35)-(2.37) can also be formulated using primitive or physical vari-

ables h, u, and U. Simple expansion of the derivatives and algebraic manipulations yield

the following quasi-linear system [161, 160]:

∂W

∂t
+ B(W)

∂W

∂x
= S(W), (2.51)

where
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W =




h

u

U


 , B(W) =




u h 0

g u 0

0 0 u


 and S(W) =




0

−g ∂η
∂x

− gγC2|u|u
h7/3

1
h

∂
∂x
Γ∂U

∂x
+ 1

h
Sh


 .

Proposition 2.2. The quasi-linear system (2.51) is hyperbolic with eigenvalues given by:

λ1 = u− c, λ2 = u, λ3 = u+ c

where c =
√
hg and corresponding linearly independent eigenvectors are given by:

R(1) = β1




h

−c

0


 , R(2) = β2




0

0

1


 , and R(3) = β3




h

c

0


 ,

where U is a component of U and β1, β2 and β3 are real numbers. The system is strictly

hyperbolic for a wet bed problem.

Proof. For any component U of the concentration vector U the characteristic equation

of the Jacobian matrix B(W) is given by:

det(B− λI) = (λ− u)
�
(λ− u)2 − gh

�
(2.52)

= (λ− u)(λ− (u+ c))(λ− (u− c)). (2.53)

Thus, by definition the eigenvalues of A(W) are λ1 = u− c, λ2 = u, and λ3 = u+ c.

The linearly independent vectors

R(1) = β1




h

−c

0


 , R(2) = β2




0

0

1


 , and R(3) = β3




h

c

0


 ,

and eigenvalues λ1,λ2 and λ3 satisfy definition (2.2), that is,




u h 0

g u 0

0 0 u







hβ1

−cβ1

0


 = (u− c)β1




h

−c

0


 implying BR(1) = λ1R

(1), (2.54)
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


u h 0

g u 0

0 0 u







0

0

β2


 = uβ2




0

0

β2


 implying BR(2) = λ2R

(2) (2.55)

and 


u h 0

g u 0

0 0 u







hβ3

cβ3

0


 = (u+ c)β3




h

c

0


 implying BR(3) = λ3R

(3). (2.56)

Thus R(1),R(2) and R(3) are right eigenvectors corresponding to the eigenvalues λ1,λ2

and λ3 respectively. For a wet bed problem the water depth is positive (i.e. h > 0)

implying a positive celerity (i.e. c > 0) and completely distinct eigenvalues. Hence, the

system is strictly hyperbolic.

Furthermore, small-amplitude waves such as gravity waves can be investigated using

a linearised form of the shallow water model. Suppose the fluid is flowing at a constant

velocity u0 and has a constant depth h0, then the gravity waves propagate at speeds

λ1 = u0 − c0, λ2 = u0, and λ3 = u0 + c0 with celerity c0 =
√
gh0. Note that λ1 and λ2

families of waves propagate with speeds ±c0 relative to the fluid velocity and can assume

any sign (i.e. positive or negative) depending on a dimensionless critical number called

Froude number defined by:

F =
|u|
c
. (2.57)

The depth of a fluid varies across a wave as the depth of a trough is shallow compared

with the depth of a crest [100, 161, 53]. Since the celerity (which measures speed relative

to the fluid velocity) depends on depth, the speed varies across a particular wave as

the crest propagates faster than the trough. If the depth of the fluid is exceedingly

greater than the amplitude of the wave (i.e. flows involving small amplitude waves), then

variations in speed across the wave are negligible and the linearised model can adequately

capture the physics of the flow phenomenon. However, the speed variations across the

wave are not negligible if the amplitude is larger, the non-linear model is employed in

such flow cases. The consequence of non-linearity is expansion and compression of the

wave, that can lead to the development of nearly discontinuous parts (known in literature

as shocks or hydraulic jumps), discontinuities and rarefactions [100, 161].
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2.3 Characteristic fields

Each eigenvalue λi(Q) or eigenvector K(i)(Q) defines a characteristic field called λi−field

or K(i)−field [100]. The characteristic fields are either linearly degenerate or genuinely

nonlinear. Given an M dimensional vector Q = (q1, q2, . . . , qM), the gradient of each

eigenvalue λi(Q) in the M dimensional vector space is given by [100, 161, 160, 53]:

∇λi(Q) =
� ∂

∂q1
λi(Q),

∂

∂q2
λi(Q), . . . ,

∂

∂qM
λi(Q)

�T

. (2.58)

Definition 2.4 (Genuinely non-linear and linearly degenerate fields). Characteristic

fields (corresponding to the eigenvalue-eigenvector pair λi −K(i)) that satisfy [100, 161,

53]:

∇λi(Q) ·K(i)(Q) = 0, (2.59)

(where �·� denotes dot product in phase space) are said to be linearly degenerate, otherwise,

are said to be genuinely non-linear.

Proposition 2.3 (Fields in conservative formulation). For the conservation law (i.e.

homogeneous part of the balanced law):

∂Q

∂t
+

∂

∂x
f(Q) = 0 (2.60)

where vector Q and flux function f(Q) are defined as in (2.43), the characteristic field

corresponding to λ2 is linearly degenerate while λ1 and λ3−fields are genuinely non-linear.

Proof. The gradient of the eigenvalue λ2(Q) is given by:

∇λ2(Q) =
�
− u

h
,
1

h
, 0
�T

. (2.61)

Thus, the dot product in phase space of the gradient ∇λ2(Q) and corresponding eigen-

vector K(2)(Q) is given by:

∇λ2(Q) ·K(2)(Q) =




−u
h

1
h

0


 ·




0

0

α2


 = 0. (2.62)
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Moreover, the gradient of the eigenvalue λ1(Q) is given by:

∇λ1(Q) =
�
− u

h
− 1

2

�
g/h,

1

h
, 0
�T

. (2.63)

Thus the dot product in phase space of the gradient ∇λ1(Q) and corresponding eigen-

vector K(1)(Q) is given by:

∇λ1(Q) ·K(1)(Q) =




−u
h
− 1

2

�
g/h

1
h

0


 ·




α1

α1(u− c)

α1U


 = α1

�−c

h
− 1

2

�
g/h

�
�= 0. (2.64)

Further,

∇λ3(Q) =
�
− u

h
+

1

2

�
g/h,

1

h
, 0
�T

. (2.65)

Thus, the dot product in phase space of the gradient ∇λ3(Q) and corresponding eigen-

vector K(3)(Q) is given by:

∇λ3(Q) ·K(3)(Q) =




−u
h
+ 1

2

�
g/h

1
h

0


 ·




α3

α3(u+ c)

α3U


 = α3

� c

h
+

1

2

�
g/h

�
�= 0. (2.66)

Hence, λ1 and λ3−fields are genuinely non-linear.

Proposition 2.4 (Fields in primitive formulation). Given the quasi-linear system:

∂W

∂t
+ B(W)

∂W

∂x
= 0, (2.67)

with vector W and Jacobian matrix B(W) defined as in (2.51), the characteristic field

corresponding to λ2 is linearly degenerate while λ1 and λ3−fields are genuinely non-linear.

Proof. Using the eigenvalues (i.e. λ1(W),λ2(W) and λ3(W)) and right eigenvectors

(i.e. R(1)(W),R(2)(W) and R(3)(W)) of the Jacobian matrix B(W), the proof follows

analogously as in the conservative formulation (2.60) presented above.
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2.4 Riemann problem and wave solutions

Existence and uniqueness of solutions to partial differential equations depend on initial

and boundary conditions. In this section, a well-posed reactive-shallow water model is

presented and general solutions are constructed. As shown in Section 2.2 above, waves

that are initially smooth soon develop discontinuities, it is therefore, appropriate to anal-

yse the model with discontinuous initial data. For the purpose of the analysis here, the

conservative formulation of the reactive-shallow water model is considered on a bound-

less flow domain and discontinuous initial data set is assumed. The resulting initial-value

problem (IVP) is generally known as Riemann problem [100, 161, 160, 53].

Using the conservative formulation, the reactive-shallow water Riemann problem

states that, find Q such that:

∂Q

∂t
+

∂

∂x
f(Q) = 0, in −∞ ≤ x ≤ ∞,

(2.68)

Q(x, 0) = Q0(x) =




QL for x < 0

QR for x > 0

where vector Q and flux function f(Q) are defined as in (2.43). Symbols QL and QR

respectively denote left and right data states which are written explicitly as follows (for

each UL in UL and UR in UR):

QL =




hL

hLuL

hLUL


 and QR =




hR

hRuR

hRUR


 . (2.69)

The general solution of the Riemann problem (2.69) consists of four states (i.e.

QL,Q∗L,Q∗R,QR) separated by three waves that include contact and shock or rarefaction

waves, see illustration in Figure 2.1. Consequently, there are four possible wave patterns

in the general solution, as depicted in Figure 2.2. The main task of the Riemann problem

is to find the intermediate states using the left and right data states available. However,
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connections between data states are established using wave relations such as Riemann

invariants, Rankine Hugoniot jump conditions and entropy conditions [100, 161, 160, 53].

t

x

Q∗L
QL

Q∗R

QR

Left data

state
Right data

state

u− c

u

u+ c

Left
Rightintermediate

state intermediate
state

Figure 2.1: Structure of the general solution of the Riemann problem

t

x

t

x

t

x

t

x

Rarefaction wave

Contact wave
Shock wave

Shock wave

Contact wave
Rarefaction wave

Shock wave

Contact wave
Shock wave

Rarefaction wave

Contact wave

Rarefaction wave

Figure 2.2: Possible wave patterns of the Riemann problem

Definition 2.5 (General Riemann invariants). Given a general hyperbolic system of the
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quasi-linear form [100, 161, 160, 53]:

∂W

∂t
+ B(W)

∂W

∂x
= 0, (2.70)

with W = (W1,W2, . . . ,WM)T and an eigenvector corresponding to the eigenvalue λi

denoted by R(i) = (R
(i)
1 , R

(i)
2 , . . . , R

(i)
M )T , then general Riemann invariants are relations

that satisfy the following M − 1 ordinary differential equations:

dW1

R
(i)
1

=
dW2

R
(i)
2

= · · · = dWM

R
(i)
M

. (2.71)

Definition 2.6 (Rankine Hugoniot jump condition). Given a general hyperbolic system

of the conservative form [100, 161, 160, 53]:

∂Q

∂t
+

∂

∂x
f(Q) = 0, (2.72)

where Q is the vector of unknowns and f(Q) is a vector of fluxes, the Rankine Hugoniot

jump condition states that at a discontinuity:

fR − fL = S(QR −QL) (2.73)

where S denotes speed of the discontinuity, fR = f(QR), fR = f(QR) and subscripts R

and L denote right and left states of the discontinuity, respectively.

2.4.1 Rarefaction waves

Across a rarefaction wave, the left and right data states are connected through a smooth

region in a genuinely non-linear field where characteristics diverge and Riemann invariants

apply [100, 161, 160, 53]. Since the λ1 and λ3 characteristic fields of the hyperbolic

system under consideration are genuinely non-linear, waves associated with them include

rarefactions. A rarefaction wave associated with the λ1 characteristic field is called a left

rarefaction (depicted in Figure 2.4) while a rarefaction associated with λ3 is called a right

rarefaction (see Figure 2.3) [160].

Proposition 2.5 (Right rarefaction wave relations). Given the left and right data states

of a right rarefaction in primitive variables, i.e.,

W∗R =




h∗R

u∗R

U∗R


 and WR =




hR

uR

UR


 (2.74)
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respectively, then:

u∗R − 2c∗R = uR − 2cR and U∗R = UR, (2.75)

where c∗R =
√
gh∗R and cR =

√
ghR.

u∗R − c∗R uR − cR

t

x

W∗R WR

Figure 2.3: Right rarefaction wave

Proof. The right eigenvector of the λ3 characteristic field in the primitive formulation is

given by:

R(3) = α3(h, c, 0)
T , (2.76)

where c =
√
gh. Thus, the generalised Riemann invariants associated with the λ3 eigen-

value satisfy:

dh

α3h
=

du

α3c
=

dU

0
, (2.77)

Firstly, by solving the differential equation:

dh

α3h
=

du

α3c
, (2.78)
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the following expression is obtained:

u− 2c = constant. (2.79)

Thus, by applying initial data (2.74) in (2.79) yields:

u∗R − 2c∗R = uR − 2cR. (2.80)

Secondly, solving the differential equation:

du

α3c
=

dU

0
, (2.81)

yields:

U = constant. (2.82)

Thus, applying initial data (2.74) in (2.82) yields:

U∗R = UR. (2.83)

Proposition 2.6 (Left rarefaction wave relations). Given the left and right data states

of a left rarefaction in primitive variables, i.e.,

WL =




hL

uL

UL


 and W∗L =




h∗L

u∗L

U∗L


 (2.84)

respectively, then:

uL + 2cL = u∗L + 2c∗L and UL = U∗L, (2.85)

where cL =
√
ghL and c∗L =

√
gh∗L.

Proof. The right eigenvector of the λ1 characteristic field in the primitive formulation is

given by:

R(3) = α1(h,−c, 0)T , (2.86)
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t

x

W∗LWL

u∗L − c∗LuL − cL

Figure 2.4: Left rarefaction wave

where c =
√
gh. Thus, the generalised Riemann invariants associated with the λ1 eigen-

value satisfy:

dh

α1h
= − du

α1c
=

dU

0
. (2.87)

Thus, algebraic manipulations of the differential equations (2.87) yield:

u+ 2c = constant and U = constant. (2.88)

Furthermore, by applying initial data (2.84) in (2.88) yields:

uL + 2cL = u∗L + 2c∗L and UL = U∗L. (2.89)

2.4.2 Contact waves

Across a contact wave, characteristics are parallel, Rankine Hugoniot condition and Rie-

mann invariants hold and the data states are connected by a single jump discontinuity in

a linearly degenerate field [100, 161, 160, 53]. Since the λ2 characteristic of the hyperbolic

24



system under consideration is linearly degenerate, the wave associated with it is a contact

wave (depicted in Figure 2.5).

Proposition 2.7 (Contact wave relations). Given the left and right data states of a

contact wave in primitive variables, i.e.,

W∗L =




h∗L

u∗L

U∗L


 and W∗L =




h∗R

u∗R

U∗R


 (2.90)

respectively, then:

h∗L = h∗R and u∗L = u∗R. (2.91)

W∗L

W∗R

t

x

S∗

Figure 2.5: Middle contact wave

Proof. The right eigenvector of the λ2 characteristic field in the primitive formulation is

given by:

R(3) = α2(0, 0, 1)
T , (2.92)

Generalised Riemann invariants associated with the λ2 eigenvalue satisfy:

dh

0
=

du

0
=

dU

α2

. (2.93)
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Thus, algebraic manipulations of the differential equations (2.93) yield:

h = constant and u = constant. (2.94)

Moreover, applying initial data (2.84) in (2.94) yields:

h∗L = h∗R and u∗L = u∗R. (2.95)

2.4.3 Shock waves

Across a shock wave, the data states are connected by a single jump discontinuity in

a genuinely non-linear field where the Rankine Hugoniot and entropy conditions apply

[100, 161, 160, 53]. Solutions of hyperbolic systems involving shocks are not unique, thus,

the entropy inequality:

λi(QL) > Si > λi(QR) (2.96)

where Si is the shock speed, determines a physically relevant solution. Since shock waves

are associated with genuinely non-linear characteristic fields, shocks can be associated

with the λ1 and λ3 characteristics of the hyperbolic system under consideration. A shock

wave associated with the λ1 characteristic field is called a left shock (shown in Figure

2.6) while the one associated with λ3 is called a right shock (depicted in Figure 2.7).

Proposition 2.8 (Left shock wave relations). Given the left and right data states in

primitive variables:

WL =




hL

uL

UL


 and W∗L =




h∗L

u∗L

U∗L


 (2.97)

respectively, separated by a left shock wave of speed SL, the following relations hold across

the shock:

U∗L = UL, h∗L =
−hL + hL

�
1 + 8(FL − FS)2

2
, u∗L = uL − cL

�
1− hL

h∗L

�
(FL − FS),

(2.98)

where cL =
√
ghL is the celerity and FL = uL

cL
, FS = SL

cL
are Froude numbers.
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t

x
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Figure 2.6: Left shock wave

Proof. Given the shock speed SL, velocities at the left and right side of the shock can be

expressed in terms of the shock speed as follows:

uL = ûL + SL and u∗L = û∗L + SL, (2.99)

where ûL and û∗L are variables in a frame of reference where the shock speed is zero.

Thus, by using (2.99) variables in the conservative formulation can be transformed into

conservative variables in the frame of reference where the shock speed is zero, as follows:

WL =




hL

hLûL

hLUL


 and W∗L =




h∗L

h∗Lû∗L

h∗LU∗L


 . (2.100)

Applying the transformed left and right data states (2.100) and the flux function f(Q)

defined in (2.43), the Rankine Hugoniot jump condition states that:

h∗Lû∗L = hLûL, (2.101)

h∗Lû
2
∗L +

1

2
gh2

∗L = hLû
2
L +

1

2
gh2

L, (2.102)

h∗Lû∗LU∗L = hLûLUL. (2.103)

It follows immediately by the mass flux Equations (2.101) and (2.103) that:

U∗L = UL. (2.104)

Further, denoting the mass flux across the left shock by φL, it follows from Equation

(2.101) that the mass flux is constant across the shock, i.e.:
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h∗Lû∗L = hLûL = φL. (2.105)

Thus,

û∗L =
φL

h∗L
, and ûL =

φL

hL

. (2.106)

Expressing the momentum flux equality (2.102) in terms of the mass flux φL yields:

φL(ûL − û∗L) =
1

2
g(h2

∗L − h2
L). (2.107)

Applying the velocity expressions (2.106) in the momentum flux equality (2.107) and

manipulating algebraically yields:

φL =

�
1

2
gh∗LhL(h∗L + hL). (2.108)

From the transformation (2.99), û∗L − ûL = u∗L − uL, thus, applying original velocity

variables with the mass flux expression (2.108) in the momentum flux equality (2.107),

and manipulating algebraically yields:

u∗L = uL − (h∗L − hL)

�
1

2
g
(h∗L + hL)

h∗LhL

. (2.109)

Moreover, the velocity transformation (2.99) can also be expressed in terms of the

mass flux using (2.106) as follows:

uL =
φL

hL

+ SL. (2.110)

Applying the mass flux expression (2.108) in (2.110) and manipulating algebraically yields

the following expression for the shock speed:

SL = uL − cL

�
1

2
h∗L

(h∗L + hL)

h2
L

, (2.111)

where cL =
√
ghL. Writing the shock expression (2.111) in terms of Froude numbers

yields:

FL − FS =

�
1

2
h∗L

(h∗L + hL)

h2
L

. (2.112)
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Equation (2.112) is quadratic in h∗L, and has roots given by:

h∗L =
−hL ± hL

�
1 + 8(FL − FS)2

2
. (2.113)

However, h∗L ≥ hL for a left shock, thus, expression (2.112) implies FL − FS ≥ 1.

Therefore, the relevant root of the quadratic (2.112) is given by:

h∗L =
−hL + hL

�
1 + 8(FL − FS)2

2
. (2.114)

Furthermore, applying the shock expression (2.111) and using (2.112) in the velocity

expression (2.109) yields:

u∗L = uL − cL

�
1− hL

h∗L

�
(FL − FS). (2.115)

Proposition 2.9 (Right shock wave relations). Given the left and right data states in

primitive variables:

W∗R =




h∗R

u∗R

U∗R


 and WR =




hR

uR

UR


 (2.116)

respectively, separated by a right shock wave of speed SR, the following relations hold

across the shock:

U∗R = UR, h∗R =
−hR + hR

�
1 + 8(FL − FS)2

2
, u∗R = uR + cR

�
1− hR

h∗R

�
(FL − FS),

(2.117)

where cR =
√
ghR is the celerity and FR = uR

cR
, FS = SR

cR
are Froude numbers.

Proof. Given the shock speed SR, velocities at the left and right side of the shock can be

expressed in terms of the shock speed as follows:

uR = ûR + SR and u∗R = û∗R + SR, (2.118)

where ûR and û∗R are variables in a frame of reference where the shock speed is zero.

Thus, by using (2.118) variables in the conservative formulation can be transformed into

conservative variables in the frame of reference where the shock speed is zero, as follows:
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Figure 2.7: Right shock wave

WR =




hR

hRûR

hRUR


 and W∗R =




h∗R

h∗Rû∗R

h∗RU∗R


 . (2.119)

Applying the transformed left and right data states (2.119) and the flux function f(Q)

defined in (2.43), the Rankine Hugoniot jump condition states that:

h∗Rû∗R = hRûR, (2.120)

h∗Rû
2
∗R +

1

2
gh2

∗R = hRû
2
R +

1

2
gh2

R, (2.121)

h∗Rû∗RU∗R = hRûRUR. (2.122)

It follows immediately by the mass flux Equations (2.120) and (2.122) that:

U∗R = UR. (2.123)

Further, denoting the mass flux across the left shock by φR, it follows from Equation

(2.120) that the mass flux is constant across the shock, i.e.,:

−h∗Rû∗R = −hRûR = φR. (2.124)

Thus,

û∗R = − φR

h∗R
, and ûR = −φR

hR

. (2.125)
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Expressing the momentum flux equality (2.121) in terms of the mass flux φR yields:

φR(û∗R − ûR) =
1

2
g(h2

∗R − h2
R). (2.126)

Applying velocity expressions (2.125) in the momentum flux equality (2.126) and

manipulating algebraically yields:

φR =

�
1

2
gh∗RhR(h∗R + hR). (2.127)

From the transformation (2.118), û∗R−ûR = u∗R−uR, thus, applying original velocity

variables with the mass flux expression (2.127) in the momentum flux equality (2.127),

and manipulating algebraically yields:

u∗R = uR + (h∗R − hR)

�
1

2
g
(h∗R + hR)

h∗RhR

. (2.128)

Moreover, the velocity transformation (2.118) can also be expressed in terms of the

mass flux using (2.125) as follows:

uR = −φR

hR

+ SR. (2.129)

Applying the mass flux expression (2.127) in (2.129) and manipulating algebraically

yields the following expression for the shock speed:

SR = uR + cR

�
1

2
h∗R

(h∗R + hR)

h2
R

, (2.130)

where cR =
√
ghR. Writing the shock expression (2.130) in terms of Froude numbers

yields:

FR − FS =

�
1

2
h∗R

(h∗R + hR)

h2
R

. (2.131)

Equation (2.131) is quadratic in h∗R, and has roots given by:

h∗R =
−hR ± hR

�
1 + 8(FR − FS)2

2
. (2.132)

However, h∗R ≥ hR for a right shock, thus, expression (2.131) implies FR − FS ≥ 1.

Therefore, the relevant root of the quadratic (2.132) is given by:

h∗R =
−hR + hR

�
1 + 8(FR − FS)2

2
. (2.133)
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Furthermore, applying the shock expression (2.130) and using (2.131) in the velocity

expression (2.128) yields:

u∗R = uR + cR

�
1− hR

h∗R

�
(FR − FS). (2.134)

2.5 Summary: reactive flow modelling

Reactive flow refers to fluid flow that involves chemical reactions. Mathematical models

for reactive flow processes are differential equations that are derived by the application

of physical laws such as conservation of mass, momentum and energy.

In Section 2.1, a continuity equation, species transport and momentum equations were

derived by applying a physical principle that governs mass and momentum transport in

an elementary volume. Simplifying assumptions were applied to the flow model to derive

Euler’s model that is coupled with chemical transport equations. Further, the shallow

water principle was applied to the Euler model and averaged over depth to yield reactive-

shallow water flow model.

In Section 2.2, the hyperbolicity of the shallow water flow with chemical transport has

been discussed. Due to non-linearity and hyperbolicity of the model, the solution of the

model admits shocks (also known as hydraulic jumps), discontinuities and rarefactions,

which are not usually present in linear flow problems.

In Section 2.3, characteristic fields were discussed where two of the three eigenvalues

and corresponding eigenvectors have been shown to be linearly degenerate and one was

shown to be genuinely non-linear.

In Section 2.4, a Riemann problem and its solution structure have been discussed.

The general solution of the Riemann problem was constructed using wave relations such

as the Rankine Hugoniot condition, entropy inequality and Riemann invariants. Shock-

capturing numerical schemes will be presented in subsequent chapters for the efficient

simulation of reactive flow processes.

32



Chapter 3

Modelling and simulating chemical

kinetics

The kinetics of well-stirred chemical reactions are modelled and simulated in this chapter.

Existence of nonnegative and conservative solutions of the resulting model have been

discussed. A stoichiometric method for reducing the high degrees of freedom (of the

model) and other model decoupling methods have been discussed. Stiffness-resolving

numerical schemes that preserve nonnegativity and conservativity, and are compatible

with the decoupling methods have been presented. The goal here, is to develop an

efficient modelling and simulation procedure for simulating the kinetics of well-stirred

chemical reaction systems. Numerical experiments have been performed to validate the

model decoupling methods and to verify the numerical schemes.

Remark: The discussion in this chapter has been published, see [3].

3.1 Chemical kinetic modelling

Spatially independent chemical phenomena (referred to as chemical kinetic processes)

characteristically occur in several steps called elementary reactions. A collection of all the

elementary steps in a chemical process is called a mechanism. In general, chemical kinetics

studies mechanisms and speed with which a particular chemical phenomenon proceeds

[6, 7, 72, 81]. Balanced stoichiometric equations are used to represent mechanisms and

polynomials called rate laws are used to quantify the speed with which the reaction
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occurs. In some chemical processes, some elementary steps are reversible (thus involve

forward and backward directions) while others are irreversible (involve only a forward

direction). Since the irreversible steps are reversible steps where the backward direction

vanishes, the reversible approach is adapted here to simplify the presentation, without

loss of generality.

If there are N chemical species participating in M elementary steps of a particular

chemical process, where Nf,r species participate in the forward direction and Nb,r species

participate in the backward direction of the rth elementary step, then the mechanism can

be expressed as follows [37, 3]:

Nf,r�

i=1

ar,iAr,i �
Nb,r�

j=1

br,jBr,j, r = 1, . . . ,M, (3.1)

where ar,i and br,j are stoichiometric coefficients for the species Ar,i and Br,j in the rth

elementary reaction. In general,
�M

r=1(Nf,r+Nb,r) �= N due to the presence of networking

species (i.e. species engaged in more than one elementary reaction).

Denote the global set (i.e. set of all the species in the chemical process) whose

cardinality is N by C and the vector of species concentrations by U ∈ RN
+ (where R+

denotes non-negative real numbers). Denote the set of species in the rth elementary step

whose cardinality is Nr = Nf,r +Nb,r, by Cr. This set Cr ⊆ C is defined by putting the

species in the forward direction in the first Nf,r positions of Cr, followed by the species

in the backward direction. Thus, by the stoichiometric equation (3.1),

Cr = {Ar,1, Ar,2, . . . Ar,Nf,r
, Br,1, Br,2, . . . , Br,Nb,r

},

and corresponding vector of concentrations Ur ∈ RNr
+ , is given by:

Ur = ([A]r,1, [A]r,2, . . . [A]r,Nf,r
, [B]r,1, [B]r,2, . . . , [B]r,Nb,r

), r = 1, 2, . . . ,M,

where [A]r,1 denotes concentration of species Ar,1. Moreover, if αααr = (αr,1,αr,2, . . . ,αNr)

is the set of orders for reactants and σσσr = (σr,1, σr,2, . . . , σr,Nr) is the set of stoichiometric

numbers for the chemical species in Cr, then the rate law for the rth elementary step

(3.1) is defined by [37, 3]:

Rr(U) = Rr(Ur) = Kfr

Nf,r�

i=1

U
αr,i

r,i −Kb,r

Nr�

j=Nf,r+1

U
αr,j

r,j , r = 1, . . . ,M (3.2)
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where Kf,r, Kb,r are the forward and backward reaction constants, respectively. With

rate law (3.2), the expression that governs the evolution of any species in the global set

C, is given by [37, 3]:

dUk

dt
=

M�

r=1

σkrRr(U), k = 1, . . . , N, (3.3)

where t is the time variable, σkr is the stoichiometric number of the kth species in the

rth elementary step. Thus, system (3.3) is a coupled system of N ordinary differential

equations (ODEs) that must be solved to obtain species concentration profiles over time.

A complete initial value problem (IVP) can be stated that, find U : R+ −→ RN
+ such

that:

dU

dt
= σR(U(t), t), t ∈ [0, T ),

U(t = 0) = U0, (3.4)

where T is final time, σ ∈ RN×M is the stoichiometric matrix and R : RN ×R+ −→ RM

is a vector of the M rate laws. The rest of the discussion in this section will assume that

the stoichiometric matrix is non-trivial (i.e. each row or column contains at least one

non-zero entry), is conservative (i.e. the vector e = (1, 1, . . . , 1)Tr (where Tr indicates

transpose) is orthogonal to range(σ)) and has full rank (i.e. rank(σ) = M). The following

conditions are imposed on the rate laws R :

1. U = 0 implies Rr(U, t) = 0 and U > 0 implies Rr(U, t) > 0, for t > 0 and

r = 1, 2, . . . ,M.

2. There exist Zr(U, t) ∈ C0(R̄N
+ , R̄+) if σkr < 0, such that Zr(U, t) = 0 if U = 0,

Zr(U, t) > 0 if U > 0, and Rr(U, t) = Zr(U, t)Uk, for k = 1, 2, . . . , N.

3. Rr(U, t) ∈ C0(R̄N
+ , R̄+), Rr(·, t) is locally Lipschitz continuous in RN , uniformly in

t, and finally Rr(Ū, ·) ∈ L∞(R+) for Ū ∈ R̄N
+ .

Furthermore, with the conditions imposed on the stoichiometric matrix and reaction

rate law, the existence, uniqueness and non-negativity of the solution of the IVP (3.4) can

now be discussed as in [45, 71, 129]. The discussion here will make use of the following

Lemma that presents a classical global existence result (given in [61]):
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Lemma 3.1. Assume that a function G(x, t) is defined in a closed extended domain Ȳ

where Y = Ω × (t1, t2) and Ω ∈ RN . If G is continuous in an open subset D ⊂ Y, and

that G is uniformly continuous in t and locally Lipschitz continuous with respect to x

contained in D, further, if there are constants K1, K2 ∈ R+ such that:

�G(x, t)� ≤ K1 +K2�x�, for all (x, t) ∈ Ȳ ,

then for all initial conditions (V0, t0) ∈ Y, there exist at least one solution to the IVP:

dV(t)

dt
= G(V(t), t), t ∈ (t1, t2),

V(t0) = V0.

Furthermore, in the following discussion, the p−norm of a vector V ∈ RN will be

denoted by:

�V�p =
� N�

k=1

|Vk|p
� 1

p ,

and for any matrix A ∈ RN×M , the p−norm will be denoted by:

�A�p = sup
�V�p=1,V∈RM

�AV�p.

Moreover, let a slope function be defined as F(U, t) = σR(U(t), t) and a constant be

defined as Λ = �U0�1 such that a convex set Ω ⊂ RN is defined as:

Ω = {V ∈ R̄N
+ : �V�1 ≤ Λ}.

Trivially, the initial data U(t = 0) = U0 = 0 if Λ = 0, thus by the first condition

imposed on the rate law, U(t) = 0 for all t. Therefore, we focus on the non-trivial case

where Λ > 0. Consequently, the slope function is modified as follows:

F̃(U, t) = F(H(U), t), (3.5)

where H(U) is a unique projector of U on Ω defined as:

H(U) =




U, if U ∈ Ω,

Λ
�U)�1U, Otherwise.

(3.6)

The uniqueness of H(U) is due to the convexity of Ω.
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Proposition 3.1. If the conditions imposed on the stoichiometric matrix and rate laws

are satisfied, the projector H in (3.6) is Lipschitz continuous while the modified slope

function (3.5) is bounded, Lipschitz continuous in the first argument and uniformly in t.

Proof. Firstly, if U1,U2 ∈ Ω then

H(U1)−H(U2) = U1 −U2,

which implies

�H(U1)−H(U2)�1 = �U1 −U2�1.

And if U1,U2 �∈ Ω then �U1�1 > Λ and �U2�1 > Λ, thus,

H(U1)−H(U2) = Λ
� U1

�U1�1
− U2

�U2�1

�

< U1 −U2.

Hence for any U1,U2 ∈ RN ,

�H(U1)−H(U2)�1 ≤ �U1 −U2�1

Secondly, for any U ∈ RN , we have:

sup
t∈R+,U∈RN

�F̃(U, t)�1 = sup
t∈R+,U∈RN

�F(U, t)�1

≤ �σ�1 sup
t∈R+,U∈RN

�R(U(t), t)�1 < ∞.

Further, for any U1,U2 ∈ RN ,

F̃(U1, t)− F̃(U2, t) = σ
�
R(H(U1), t)−R(H(U2), t)

�
.

Since R(U, t) is Lipschitz continuous there exists a Lipschitz constant �, such that:

�R(U1, t)−R(U2, t)�1 ≤ ��U1 −U2.�1

Therefore, we have :

�F̃(U1, t)− F̃(U2, t)�1 ≤ �σ�1 �R(H(U1), t)−R(H(U2), t)�1
≤ ��σ�1 �H(U1)−H(U2)�1.

Hence

�F̃(U1, t)− F̃(U2, t)�1 ≤ ��σ�1 �U1 −U2�1.
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Proposition 3.2 (Existence, uniqueness and positivity of solution). If the conditions

imposed on the stoichiometric matrix σ and rate laws R in (3.4) are satisfied, then for

any initial condition U(0) = U0, the IVP:

dU(t)

dt
= F̃(U(t), t), t ∈ (0, T )

U(0) = U0,

has a unique non-negative solution U ∈ [C1(R+)]
N , where F̃ is the modified slope function

defined in (3.5). Moreover, for all t ≥ 0, U(t) > 0 if U0 > 0.

Proof. Firstly, the modified slope function F̃ is continuous in the open domain RN ×R+,

thus, setting D = RN × R+ satisfies the first condition in Lemma 3.1. By Proposi-

tion 3.1, F̃ is Lipschitz continuous with respect to U and uniformly in t, in the domain

RN × R+, thus satisfies the second condition of Lemma 3.1. Further, the bounded-

ness of F̃ (shown in Proposition 3.1) shows that there exists constants K1 = 0 and

�σ�1 supt∈R+,U∈RN �R(U(t), t)�1 < ∞, thus, the third condition is satisfied.

Secondly, it can be shown that the solution remains non-negative for all non-negative

initial conditions. Trivially, if U(0) = 0 the concentration profiles for all the species

remain U(t) = 0 for all t ≥ 0, since the first condition on the rate law R in (3.4) is

satisfied. To prove the non-trivial case, let J−
k be the set of indices r for which σkr < 0

and J+
k be the set of indices r for which σkr ≥ 0. Since the second condition on R is

satisfied, there exist Zr(U, t) ∈ C0(R̄N
+ , R̄+) such that the governing evolution equations

for the species can be reformulated as:

dUk(t)

dt
=

�

r∈J−
k

σkrZr(U(t), t)Uk +
�

r∈J+
k

σkrRr(U(t), t), k = 1, 2, . . . , N. (3.7)

Further, by setting ϕk(t) = −�
r∈J−

k
σkrZr(U(t), t) and φk(t) =

�
r∈J+

k
σkrRr(U(t), t),

the reformulation (3.7) becomes:

dUk(t)

dt
= −ϕk(t)Uk(t) + φk(t), k = 1, 2, . . . , N. (3.8)

Since the conditions imposed on the rate laws R, are satisfied, the parameters ϕk(t)

and φk(t) in (3.8) (that are continuous function of t ) are non-negative whenever U is
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non-negative. Moreover, from (3.8), a further reformulation can be obtained as:

� t

0

d

dθ

�
e
� θ
0 ϕk(τ)dτUk(θ)

�
dθ =

� t

0

e
� θ
0 ϕk(τ)dτφk(θ)dθ, k = 1, 2, . . . , N. (3.9)

By setting

Wk(t) = e
� t
0 ϕk(τ)dτUk(t), k = 1, 2, . . . , N. (3.10)

we obtain from (3.9) that:

Wk(t) = Wk(0) +

� t

0

e
� θ
0 ϕk(τ)dτφk(θ)dθ, t > 0, k = 1, 2, . . . , N. (3.11)

Due to the non-negativity of the parameters (i.e. ϕk ≥ 0 and φk ≥ 0 for k = 1, 2, . . . , N)

in expressions (3.10) and (3.11), the solution remains non-negative (i.e. Uk(t) ≥ 0 for t ∈
[0, T )). Otherwise, there exist some species with index k, such that the concentration

Uk(0) ≥ 0 while Uk(T ) < 0. If Uk(0) ≥ 0 it follows from expression (3.10) that Wk(T ) < 0,

however, from expression (3.11) it follows that Wk(T ) > 0, which is a contradiction. Fur-

ther, all components whose initial concentrations were positive remain positive. Other-

wise, there exist some component k, such that Uk(0) > 0 while Uk(T ) = 0. If Uk(0) ≥ 0

it follows from expression (3.10) that Wk(T ) = 0, while from expression (3.11) it follows

that Wk(T ) > 0, which is a contradiction.

Finally, since F̃(U, t) = F(H(U), t) we have d
dt
H(U(t)) = σR(H(U), t), thus, due to

the conservation property of the stoichiometric matrix, eTr d
dt
H(U(t)) = 0. Consequently,

it follows that eTrH(U(t)) = Λ, where Λ = eTrH(U(0)) ≥ 0. The non-negativity property

implies that for all t ≥ 0, �H(U(t))�1 = Λ. Further, it follows that F̃ = F and H(U(t)) =

U(t) along the solution curve. The solution is unique since it is contained in a compact

set of RN .

Proposition 3.3 (Conservativity of solution). The solution U of the IVP (3.4) conserves

mass (i.e. eTrU = constant) if the stoichiometric matrix is conservative (i.e. e ∈
Ker(σTr)). Conversely, if the rate law conditions (i.e. three conditions state under

(3.4)) are satisfied, eTrU is constant and rank(σ) = M, then e ∈ Ker(σTr).

Proof. If the stoichiometric matrix is conservative (i.e. e ∈ Ker(σTr)) we have eTrσ = 0.
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Thus, from the IVP (3.4), we obtain:

eTr dU

dt
= eTrσR(U(t), t),

= 0.

It then follows that the total mass eTrU = constant is preserved in all time t ≥ 0.

Conversely, if the solution preserves mass, then we have eTrU(t) = Λ, for all t ≥ 0,

where Λ is a constant. Thus, we have eTr d
dt
U = 0, which implies from the IVP (3.4) that

eTrσR(U(t), t) = 0. Since the stoichiometric matrix has full rank (i.e. rank(σ) = M) and

all the conditions imposed on the rate law are satisfied R �= 0, it follows that eTrσ = 0.

Hence, we have e ∈ Ker(σTr).

3.2 Model decoupling methods

The total number of chemical species N that participate in a particular chemical kinetic

process is usually very large, thus, the rate law (3.3) is an N−dimensional polynomial

where N is very large. Further, in many chemical processes several elementary processes

are involved, thus, the total number of elementary reactions (i.e M) is also very large.

The large number of species coupled with the large number of elementary processes

result in models with large degrees of freedom and subsequently, result in complicated

numerical algorithms. Moreover, the large degrees of freedom is due to coupling of the

N species. Thus, although very few (chemical species) profiles are usually of interest

in laboratory experiments and numerical simulation studies, the governing IVP for the

species of interest can not be solved without applying decoupling methods. In this section,

some decoupling methods (that are more appropriate for chemical kinetic processes) are

presented.

3.2.1 Stoichiometric decoupling method

During chemical kinetic processes, mass (concentration) of a particular species increases

when the species is formed from other species, and decreases when it is converted into

other species. The mass increment or loss of a particular species is referred to as mass

(or concentration) transformed, and an expression that balances the mass of a particular
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chemical species at any given time is referred to as mass balanced expression [45, 171]. Let

U0 represent a vector of initial concentrations, UT represent the vector of transformed

species concentrations and US quantify mass added or removed from the system. Mass

balance expression for a chemical system can be written as follows:

U = U0 +US +UT . (3.12)

If mass of a species increase, the transformed concentrations has a positive value

for that particular species, but has a negative value for all species that contributed to

the mass increment of that particular species. A species transformed concentration is

the product of the its stoichiometric number and the extent of reaction [7]. Denote the

extent of reaction by χ, then the mass balance expression for any species i, in a single

reaction can be written as follows:

Ui = U0i + σiχ+ USi
, i = 1, 2, . . . , N. (3.13)

If a constant concentration of the species is introduced or removed during the reaction

process, USi
is constant. Thus, applying the mass balance expression (3.13) in the ODE

(3.4) and manipulating algebraically yields:

dχ

dt
= Kf

Nf�

i=1

�
U0i + σiχ+ USi

�αi

−Kb

N�

j=Nf+1

�
U0j + σjχ+ USj

�αj

. (3.14)

Observe in ODE (3.14) that the extent of reaction χ, is the only variable that must be

solved for. Once the extent of reaction is known, the mass balance expression (3.13) is

employed to compute concentration profiles for all the species. It is sometimes feasible to

solve ODE (3.14) analytically, however, numerical procedures are employed in the general

case due to model non-linearity issues.

Most natural systems are not closed, thus, chemical systems are able to exchange

materials with their surroundings at any time. Due to the exchange of materials USk

is time-dependent, thus, ODE (3.14) does not hold in the general case. In such time

dependent case, an expression for the extent of reaction can be obtained from the mass
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balance expression (3.13) as follows [37, 3]:

χ = − 1

σk

�
U0k + USk

�
+

1

σk

Uk, k ∈ {1, . . . , N}. (3.15)

Applying the extent of reaction (3.15) in the mass balance expression (3.13), the

following holds:

Ui = di +
σi

σk

Uk, i = 1, 2, . . . , N, k ∈ {1, . . . , N}, k �= i, (3.16)

where

di = U0i + USi
− σi

σk

�
U0k + USk

�
.

Using expression (3.16) in ODE (3.3) yields a decoupled set of ODEs that govern

the evolution of chemical species in a mechanism that involves one elementary step.

The decoupled ODEs have slope functions that are polynomials in one variable (i.e.

concentration Uk of the kth chemical species) that are written explicitly as follows:

1

σk

dUk

dt
= Kf

Nf�

i=1

�
di +

σi

σk

Uk

�αi

−Kb

N�

j=Nf+1

�
dj +

σj

σk

Uk

�αj

, k ∈ {1, . . . , N}. (3.17)

Moreover, it is an easy task to extend the reformulation to multi-step reactions. Since

the reaction proceeds in multi-steps, species mass balances are obtained for each species

i, in the rth step as follows:

Ur,i = U0r,i + σr,i χr + USr,i
, i = 1, 2, . . . , Nr, r = 1, . . . ,M (3.18)

where χr is extent of the r
th reaction, U0r,i denotes initial concentration and USr,i

denotes

sources/sinks. If n denotes the index of the species of interest in the subsetUr of chemical

species in the rth reaction, then it follows from mass balance expression (3.18), that the

extent of the rth reaction is given by:

χr = − 1

σr,n

�
U0r,n + USr,n

�
+

1

σr,n

Ur,n, n ∈ {1, . . . , Nr}. (3.19)

Applying the extent of reaction (3.19) in the mass balance expression (3.18) yields:

Ur,i = dr,i +
σr,i

σr,n

Ur,n, i = 1, . . . , Nr, r = 1, . . . ,M, n ∈ {1, . . . , Nr} (3.20)
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where

dr,i = U0r,i + USr,i
− σr,i

σr,n

�
U0r,n + USr,n

�
.

Consequently, it follows from the rate law (3.2) and expression (3.20) that the stoi-

chiometrically decoupled set of ODEs is given by:

dUk

dt
=

M�

r=1

σkr

�
Kf,r

Nf,r�

i=1

�
dr,i +

σr,i

σkr

Uk

�αr,i

−Kb,r

Nr�

j=1+Nf,r

�
dr,j +

σr,j

σkr

Uk

�αr,j
�
,

k ∈ {1, . . . , N}. (3.21)

3.2.2 Other decoupling methods

Mathematical formulations of most dynamical systems often lead to ODEs (whether linear

or non-linear) in the generalized form [176]:

dU

dt
= F(U, t), t ∈ [0, T ), U(0) = U0, (3.22)

where U ∈ RN and F : RN × R+. Several research efforts have been made to deter-

mine how the generalized time dependent ODE (3.22) can be solved efficiently [176].

Solution procedures for (3.22) can be classified into two, namely, direct and decompo-

sition/iterative methods [176, 115, 109]. With the direct approach, all the differential

equations in the system are discretized identically with the same integration method and

simulated within common constraints [176]. However large systems usually introduce fur-

ther constraints such as stiffness, where some components propagate faster than others.

Thus, the direct approach is inefficient for large systems [176, 115, 109]. Instead, the sys-

tem can be decomposed (decoupled) into subsystems where appropriate techniques are

employed for each subsystem [96]. According to the authors in [96] decomposition can

be achieved by tearing or through relaxation. With the tearing method, decomposition

takes advantage of the structure (e.g. block diagonal, sparsity etc.) of the Jacobian of

the slope function F, thus, computational complexity largely depends on the structure of

the Jacobian [96]. Relaxation approaches on the other hand, reduce complexity without

regards to the structure of the Jacobian [96].

With the relaxation approach, the ODEs are decoupled from each other before numer-

ical schemes are applied. This approach (also known as Waveform relaxation) has been
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applied extensively to decouple models in circuit theory and wave propagation problems

[176, 115, 109]. In this section, the waveform relaxation methods are employed to de-

couple the system (3.22), that models chemical processes. Since the approach decouples

the individual ODEs in the system, it is convenient to express ODE system (3.22) in

component form as follows:

dUk

dt
= Fk(U, t), t ∈ [0, T ), U(0) = U0, k = 1, 2, . . . , N. (3.23)

Observe in (3.23) that concentrations U of all the species must be available in order

to evaluate the slope function Fk. Thus, ODE (3.23) is still coupled with the other ODEs

in the system (3.22). Among several techniques developed to decouple (3.23), Picard-

Lindelov methods that include Successive-Over-Relaxation, Gauss-Jacobi and Gauss-

Seidel techniques, will be considered here. Applying Gauss-Jacobi relaxation approach

to (3.23) yields the following continuous-time iteration [14]:





d
dt
U i+1
k = Fk(U

i
1, . . . , U

i
k−1, U

i+1
k , U i

k+1, . . . , U
i
N , t),

U i+1
k (0) = U0,i, k = 1, 2, . . . , N, t ∈ [0, T ), i = 0, 1, . . . .

(3.24)

Similarly, by employing the Gauss-Seidel waveform relaxation to decouple, ODE (3.23)

yields the following continuous-time iteration [14]:





d
dt
U i+1
k = Fk(U

i+1
1 , . . . , U i+1

k−1, U
i+1
k , U i

k+1, . . . , U
i
N , t),

U i+1
k (0) = U0,i, k = 1, 2, . . . , N, t ∈ [0, T ), i = 0, 1, . . . .

(3.25)

Finally, by employing Successive-Over-Relaxation (SOR) to decouple, ODE (3.23)

yields the following continuous-time iteration [14]:





d
dt
Ū i+1
k = Fk(U

i+1
1 , . . . , U i+1

k−1, Ū
i+1
k , U i

k+1, . . . , U
i
N , t),

Ū i+1
k (0) = U0,i,

U i+1
k = ωU i

k + (1− ω)Ū i+1
k , k = 1, 2, . . . , N, t ∈ [0, T ), i = 0, 1, . . . ,

(3.26)

where ω is a real parameter. If the parameter ω = 0 the Successive-Over-Relaxation

(SOR) approach reverts to the Gauss-Seidel waveform relaxation.
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3.3 Application: acid mine generation and neutral-

ization

Among many other chemical systems acidic mine generation and neutralization will be

presented here and used as application problems throughout this thesis.

3.3.1 Acid generation (pyrite oxidation)

During mining of minerals, pyrite is exposed in large quantities to air and water. This

exposure leads to oxidation and subsequent acidification of water bodies. Further, the

acidic water has high solubility which enables it to dissociate other minerals that contain

metal ions. The final result is an environmental pollutant that has severe adverse effects

on ecological systems. The balanced stoichiometric equations for the pollutant generation

are as follows [94, 50, 147]:

FeS2 + 3.5O2 +H2O � Fe2+ + 2SO2−
4 + 4H+, (3.27)

Fe2+ +H+ + 0.25O2 � Fe3+ + 0.5H2O, (3.28)

FeS2 + 14Fe3+ + 8H2O � 15Fe2+ + 2SO2−
4 + 16H+. (3.29)

Thus, the respective rate laws for the balanced stoichiometric equations (3.27)-(3.29)

can be written out as follows:

RO2 = Kf1[FeS2][O2]−Kb1[Fe2+][H+][SO2−
4 ], (3.30)

RFe3+ = Kf2[FeS2][Fe3+]−Kb2[Fe2+][H+][SO2−
4 ], (3.31)

RFe2+ = Kf3[O2][Fe2+]. (3.32)

It follows from stoichiometric equations (3.27)-(3.29) and rate laws (3.30)-(3.32) that

the governing equations for the species that are participating in the acid generation, are

given by the following autonomous system of ODEs:

dU

dt
= F(U), (3.33)
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where U =
�
[H+], [FeS2], [O2], [Fe2+], [SO2−

4 ], [Fe3+]
�Tr

and F(U) =
�
2RO2 +16RFe3+ −

RFe2+ , − RO2 − RFe3+ , − 3.5RO2 − 0.25RFe2+ , RO2 + 15RFe3+ − RFe2+ , 2RO2 +

2RFe3+ , − 14RFe3+ +RFe2+
�Tr

.

The amount of acidity of the water is determined by the amount of hydrogen ion

generated, thus, the species of interest here is the hydrogen ion H+. However, the ODE

for the hydrogen ion in system (3.33) cannot be isolated and solved alone, due to coupling

(with other species concentrations) through the slope function F(U). Even if the waveform

decoupling methods are employed the entire system (3.33) (with six degrees of freedom)

must be solved in each time step (this has computational cost implications). This problem

can be avoided if the stoichiometric method is applied to decouple (3.33) instead of the

waveform approach. If the stoichiometric method is applied to system (3.33), the ODE

for the hydrogen ion becomes:

d[H+]

dt
= D1 +D2[H

+] +D3[H
+]2 +D4[H

+]3, (3.34)

where U0 =
�
[H+]0, [FeS2]0, [O2]0, [Fe2+]0, [SO

2−
4 ]0, [Fe3+]0

�Tr
is initial data, US =

�
[H+]S, [FeS2]S, [O2]S, [Fe2+]S, [SO

2−
4 ]S, [Fe3+]S

�Tr
is secondary sources,

C20S = [FeS2]0 + [FeS2]S + 0.5([H+]0 + [H+]S), C30S = [O2]0 + [O2]S + 7
4
([H+]0 +

[H+]S), C40S = [Fe2+]0 + [Fe2+]S − 0.5([H+]0 + [H+]S), C50S = [SO2−
4 ]0 + [SO2−

4 ]S −
([H+]0 + [H+]S), C202S = [FeS2]0 + [FeS2]S + 1

16
([H+]0 + [H+]S), C404S = [Fe2+]0 +

[Fe2+]S − 15
16
([H+]0 + [H+]S), C505S = [SO2−

4 ]0 + [SO2−
4 ]S − 2

16
([H+]0 + [H+]S), C606S =

[[Fe3+]0+[[Fe3+]S+
14
16
([H+]0+[H+]S), C03S = [O2]0+[O2]S−0.25([H+]0+[H+]S), C04S =

[Fe2+]0 + [Fe2+]S − ([H+]0 + [H+]S),

D1 = 2.9Kf1C20SC30S + 23.2Kf2C202SC606S − 1.45Kf3C04SC03S

D2 = −Kf1

�7
2
C20S + C30S

�
− 2Kb1C40SC50S −Kf2

�
14C202S + C606S

�

−Kb2

�
2C404S + 15C505S

�
−Kf3

�
0.25C04S + C03S

�

D3 =
7

4
Kf1 −Kb1

�
2C40S + C50S

�
+

14

16
Kf2 −Kb2

�
2C404S + 15C505S

�
− 0.25Kf3

D4 = −Kb1 −
30

16
Kb2.

It can be observed that ODE (3.34) is completely decoupled and thus, can be solved

independently to obtain the hydrogen ion profile at all times. Thus, instead of solving

46



six ODEs in each time step, only one ODE will be solved if the stoichiometric method is

applied to decouple.

3.3.2 Acid neutralization: limestone

Due to the abundance of limestone, several neutralization techniques have been developed

for remediating acidic mines. The calcite in limestone neutralizes the hydrogen ions if

the limestone comes into contact with the acidic water. The balanced stoichiometric

equations for the calcite neutralization are as follows [130, 126]:

CaCO3 +H+ � Ca2+ +HCO−
3 , (3.35)

CaCO3 +H2CO3 � Ca2+ + 2HCO−
3 , (3.36)

CaCO3 +H2O � Ca2+ +HCO+
3 +OH−. (3.37)

Let KH+ denote forward reaction constant in (3.35), KH2CO3 denotes forward reaction

constant in (3.36) and KH2O denotes forward reaction constant in (3.36). If KCa2+ is the

backward reaction rate constant then the experimentally determined rate law for the

entire calcite neutralization is given by [130, 126]:

RCaCO3 = KH+ [H+]∗ +KH2CO3 [H2CO3]
∗ +KH2O[H2O]∗

−KCa2+ [Ca2+]∗[H2CO−
3 ]

∗, (3.38)

where symbol []∗ indicates ion activity. Since the earlier presentation involved concen-

tration (but not activities), it is appropriate to convert the activities into concentration.

Further, data available in [126] shows that KH2CO3 [H2CO3]
∗ + KH2O[H2O]∗ is negligi-

ble, thus will be neglected here. Thus, by neglecting the terms [H2CO3]
∗ +KH2O[H2O]∗

in (3.38) and following discussion in [156, 155, 94] on activity-concentration conversion

yields:

RCaCO3 = F ([H+], [Ca2+], [HCO−
3 ]) = Kf [H

+]−Kb[Ca2+][HCO−
3 ], (3.39)

where Kf = KH+ηH+ , Kb = KCa2+ηHCO−
3
ηCa2+ and ηHCO−

3
, ηCa2+ ηH+ are activity coeffi-

cients.
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Therefore, the relevant balanced stoichiometric equation for the calcite neutralization

is (3.35) and the rate at which the neutralization occurs is given by (3.39). The following

information can be extracted from (3.35) and (3.39):

C = (CaCO3, H+, Ca2+, HCO−
3 ), U = ([CaCO3], [H+], [Ca2+], [HCO−

3 ]),

Nf = 2, N = 4, U0 = ([CaCO3]0, [H+]0, [Ca2+]0, [HCO−
3 ]0), US = ([CaCO3]S,

[H+]S, [Ca2+]S, [HCO−
3 ]S),α = (0, 1, 1, 1), and β = (−1, − 1, 1, 1). (3.40)

Applying data (3.40) in the generalized species reaction ODE system (3.3) with rate

law (3.3), yields the governing equations for the species CaCO3, H+, Ca2+, HCO−
3 ,

given by:

−d[CaCO3]

dt
= Kf [H

+]−Kb[Ca2+][HCO−
3 ], (3.41)

−d[H+]

dt
= Kf [H

+]−Kb[Ca2+][HCO−
3 ], (3.42)

d[Ca2+]

dt
= Kf [H

+]−Kb[Ca2+][HCO−
3 ], (3.43)

d[HCO−
3 ]

dt
= Kf [H

+]−Kb[Ca2+][HCO−
3 ]. (3.44)

The goal in the neutralization process is to reduce to acceptable levels the high con-

centration of hydrogen ions in the water. Thus, the species of interest in the calcite

neutralization, is the hydrogen ion which is governed by ODE (3.42) in the system (3.41)

-(3.44). However, ODE (3.42) cannot be isolated and solved due to coupling in the slope

function. Instead of solving ODE system (3.41) -(3.44) (with four degrees of freedom) in

each time step, the stoichiometric method can be applied to significantly reduce compu-

tational cost.

If it is assumed (just for simplification) that there is no secondary source for any

species (i.e. [CaCO3]S = 0, [H+]S = 0, [Ca2+]S = 0 and [HCO−
3 ]S = 0 ), then

applying the stoichiometric method (3.21) using data (3.40) yields the following decoupled
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set of ODEs governing the time evolution of species:

−d[CaCO3]

dt
= −Kb[CaCO3]

2 + λ1[CaCO3]− λ2, (3.45)

−d[H+]

dt
= −Kb[H

+]2 + λ3[H
+]− λ4, (3.46)

d[Ca2+]

dt
= λ5 − λ6[Ca2+]−Kb[Ca2+]2, (3.47)

d[HCO−
3 ]

dt
= λ7 − λ8[HCO−

3 ]−Kb[HCO−
3 ]

2. (3.48)

where

[CaCO3]H = [H+]0 − [CaCO3]0, [CaCO3]C = [H+]0 + [CaCO3]0,

[CaCO3]HC = [H+]0 + [CaCO3]0, λ1 = Kf +Kb

�
[CaCO3]C + [CaCO3]HC

�
,

λ2 = Kf [CaCO3]H −Kb

�
[CaCO3]C + [CaCO3]HC

�
,λ3 = Kf +Kb

�
[H+]0+ [HCO−

3 ]0

�
+

Kb

�
[H+]0+[Ca2+]0

�
,λ4 = Kb

�
[H+]0+[HCO−

3 ]0

��
[H+]0,+[Ca2+]0

�
, λ5 = Kf

�
[H+]0+

[Ca2+]0

�
, λ6 =

�
Kf +Kb[H

+]0 −Kb[Ca2+]0,
�
,λ7 = Kf

�
[H+]0 + [HCO−

3 ]0

�
,

λ8 =
�
Kf +Kb[H

+]0 −Kb[HCO−
3 ]0

�
.

It can be observed that all ODEs (3.45)-(3.48) are completely uncoupled and thus,

each ODE can be solved independently to obtain profiles for all species at all times.

Instead of solving four ODEs in each time step, only one ODE will be solved if the

stoichiometric method is applied to decouple (3.41)-(3.44).

3.3.3 Analytical results: calcite system

Eventually, the forward (i.e. dissolution) and backward (i.e. precipitation) reactions of

the calcite system (3.35) reaches equilibrium, where the rate of precipitation balances

with the rate of dissolution. The ratio of a forward and backward reaction of a system in

equilibrium is a constant called equilibrium constant. LetKeq be the equilibrium constant

of (3.35), then from rate law (3.41):

Keq =
[Ca2+][HCO−

3 ]

[H+]
=

Kf

Kb

. (3.49)

The analytical expression (3.49) is very useful for analysing the system that is in equilib-

rium.

Moreover,, with data (3.40), an exact solution for the calcite system (3.45)-(3.30) can
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easily be derived. Define some constants µ1 and µ2 as follows:

µ1 = Kf [H
+]0 −Kb[Ca2+]0[HCO−

3 ]0 and µ2 = −(Kf +Kb[Ca2+]0 +Kb[HCO−
3 ]0).

The exact solution of system (3.45)-(3.30) is given by:

[CaCO3] = [CaCO3]0 −
Θ1Θ2

�
1− exp−Kb(Θ1−Θ2)t

�

Θ2 −Θ1 exp−Kb(Θ1−Θ2)t
, (3.50)

[H+] = [H+]0 −
Θ1Θ2

�
1− exp−Kb(Θ1−Θ2)t

�

Θ2 −Θ1 exp−Kb(Θ1−Θ2)t
, (3.51)

[Ca2+] = [Ca2+]0 +
Θ1Θ2

�
1− exp−Kb(Θ1−Θ2)t

�

Θ2 −Θ1 exp−Kb(Θ1−Θ2)t
, (3.52)

[HCO−
3 ] = [HCO−

3 ]0 +
Θ1Θ2

�
1− exp−Kb(Θ1−Θ2)t

�

Θ2 −Θ1 exp−Kb(Θ1−Θ2)t
, (3.53)

where

Θ1 =
−µ2 −

�
µ2
2 + 4Kbµ1

−2Kb

and Θ2 =
−µ2 +

�
µ2
2 + 4Kbµ1

−2Kb

.

Furthermore, in pure water the calcite rate law (3.39) can be approximated by poly-

nomials in two variables. In pure water, the calcite precipitation rate has second order

dependence on the species Ca2+ and HCO−
3 , thus [4]:

Kb[Ca2+][HCO−
3 ] ≈ 2Kb

�
[Ca2+]

�2
, (3.54)

or

Kb[Ca2+][HCO−
3 ] ≈ 2Kb

�
[HCO−

3 ]
�2
. (3.55)

Consequently, applying approximations (3.54) and (3.55) in the rate law (3.38) of the

calcite dissolution-precipitation reaction (3.35) yields the following two variable polyno-

mials:

RCaCO3 = Kf [H
+]− 2Kb

�
[Ca2+]

�2
, (3.56)

and

RCaCO3 = Kf [H
+]− 2Kb

�
[HCO−

3 ]
�2
. (3.57)
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(a) Two-variable rate law (b) One-variable rate law

Figure 3.1: Rate profiles for the three-variable rate law (3.38), two-variable rate laws (3.56)

-(3.57) and one variable rate law (3.45)-(3.48). These profiles were computed with the aid of

the analytical solution (3.50)-(3.53).

In Figure 3.1, the original calcite rate law (3.39) that is a three-variable polynomial

is compared with approximations (3.56) - (3.57) (that are two-variable polynomials) and

rate laws (3.45)-(3.48) (that are one-variable polynomials obtianed with the stoichiomet-

ric method). It is clear from Figure 3.1 that, the one-variable rate law that has been

obtained using the stoichiometric decoupling method, is more accurate than the other

approximations. Moreover, the pure water case where the two-variable rate law applies,

rarely occurs and since the acid mine drainage problem occurs in the natural environ-

ment, approximations (3.55) - (3.56) are not always useful. Further, apart from accuracy

issues it is computationally expensive to employ the pure water approximations in simu-

lation studies, due to the fact that models resulting from such approximations have more

degrees of freedom.

3.4 Numerical schemes

In general, analytical solution to the IVP (3.4) are not possible due to complications (e.g.

non-linearity and stiffness [95, 28, 174, 35]) associated with the rate laws. Numerical

schemes serve as alternatives to exact solutions, however, only numerical schemes with im-

plicit [110] features are able to resolve stiffness efficiently [135]. Suitable implicit schemes
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for IVP (3.4) must preserve the non-negativity and conservation properties as well as

bound the model reduction errors introduced by model reduction methods [135, 133, 64].

In this section, fully implicit schemes are considered and presented as efficient schemes

for simulating the reduced model.

Even after the application of model reduction methods to (3.3), the equations gov-

erning the evolution of species with time, can be written in the general form:

dU

dt
= F(U, t), t ∈ [0, T ), (3.58)

U(0) = U0.

If Nt is the total number of time grid points, then the time step size Δt = T
Nt
, the nth

time in the discrete time interval is tn = nΔt, and tn+1 = tn + Δt. Thus, the first fully

implicit class of schemes (called theta schemes) for (3.58) states that for θ ∈ [0, 1] :

Un+1 −ΔtθF(Un+1, tn+1) = Un +Δt(1− θ)F(Un, tn) (3.59)

where Un+1 = U(tn +Δt) and Un = U(tn).

If θ = 0 theta scheme (3.59) is the first order consistent and conditionally stable

explicit Euler scheme also known as forward Euler scheme. If θ = 1, the theta scheme

(3.59) is the first order consistent and unconditionally stable implicit Euler scheme also

know as backward Euler scheme. If θ = 1
2
the theta scheme (3.59) is the second order

consistent and unconditionally stable Crank-Nicholson scheme. Convergence of these

schemes have been discussed extensively in [71].

Furthermore, another robust class of scheme for problem (3.58) is the diagonally

implicit Runge Kutta (DIRK) class of schemes. A second order diagonally implicit Runge-

Kutta (named DIRK2) that is parametrized by α states that:

U∗ = Un +ΔtF(U∗, t∗),

Un+1 − αΔtF(Un+1, tn+1) =
2α− 1

α
Un +

1− α

α
U∗. (3.60)

Among other values the parameter α = 1±
√
2
2

will be considered in this discussion. The

following lemma will be useful in the positivity discussions (involving theta and DIRK2

schemes) to proceed.

52



Proposition 3.4. If the conditions imposed on the stoiciometric matrix σ and rate laws

R in (3.4) are satisfied and σR(U, t) = Z(U, t)U, where Z(U, t) is an N × N matrix

that satisfies

Zkk ≤ 0, Zkr ≥ 0 if k �= r, and
N�

k=1

Zkr = 0,

then the matrix B = I− κaZ (where κa > 0) is an invertible M-matrix.

Proof. Since all the non-diagonal elements are non-positive, matrix B is a Z-matrix.

Further, all the diagonal elements are positive. Also, Matrix B is diagonally dominant

implying that, the real parts of its eigenvalues are positive (strictly). Hence B is an

invertible M-matrix.

Proposition 3.5 (Convervativity of schemes). If the conditions imposed on the stoicio-

metric matrix σ and rate laws R in (3.4) are satisfied then the theta scheme (3.59) and

DIRK2 (3.60) are conservative.

Proof. Firstly, since F(U, t) = σR(U, t) in the IVP (3.4), the theta scheme states that

in one time step:

Un+1 −ΔtθσR(Un+1, tn+1) = Un +Δt(1− θ)σR(Un, tn), for n = 0, 1, . . . . (3.61)

Since the conservative condition imposed on the stoichiometric matrix σ is satisfied,

eTrσ = 0, thus, we obtain from the theta scheme (3.60) that eTrUn+1 = eTrUn for n =

0, 1, . . . . Implying that eTrUn = eTrU0 for any n ≥ 0. Hence, the theta class of schemes

for the IVP (3.4) are conservative for any value of θ.

Secondly, DIRK2 scheme for IVP (3.4) states that in one time step:

U∗ = Un +ΔtσR(U∗, t∗),

Un+1 − αΔtσR(Un+1, tn+1) =
2α− 1

α
Un +

1− α

α
U∗. (3.62)

By conservativity of the stoichiometric matrix, we obtain from (3.62) that:

eTrU∗ = eTrUn,

eTrUn+1 =
2α− 1

α
eTrUn +

1− α

α
eTrU∗. (3.63)

It follows that eTrUn = eTrU0, for n ≥ 0. Hence, DIRK2 conserves the total mass in

all time.
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Proposition 3.6 (Positivity of theta schemes). Assume the conditions imposed on the

stoiciometric matrix σ and rate laws R in (3.4) are satisfied and that there exist an N×N

matrix Z(U, t) satisfying the properties in proposition 3.4, such that F(U, t) = Z(U, t)U.

If the minimum component of the slope function F evaluated at time tn is given by Fi =
�

r ZirU
n
r = min1≤k≤N

�
r ZkrU

n
r such that some threshold time step is defined by:

Δtc =





Ui

|Fi| θ = 0 and Fi < 0

∞ θ = 1 or Fi ≥ 0

Ui

(1−θ)|Fi| otherwise

then the theta scheme (3.59) preserves non-negative solution if Δt < Δtc.

Proof. Firstly, if the N × N matrix Z(U, t) exists F(U, t) = Z(U, t)U, thus, the theta

class of schemes for IVP (3.4) state that:

�
I−ΔtθZ(Un+1, tn+1)

�
Un+1 = Un +Δt(1− θ)Z(Un, tn)Un, for n = 0, 1, . . . . (3.64)

A scheme is non-negativity preserving if Un+1 ≥ 0 whenever Un ≥ 0. Consider a case

when θ = 0 (called explicit Euler or forward Euler scheme), scheme (3.64) reduces to:

Un+1 = Un +ΔtZ(Un, tn)Un, for n = 0, 1, . . . . (3.65)

Consequently, if Un ≥ 0 and F(Un, tn) = Z(Un, tn)Un ≥ 0 it follows from the right hand

side of (3.65) that Un+1 ≥ 0 for any time step Δt < Δtc = ∞. However, if Un ≥ 0 and

F(Un, tn) = Z(Un, tn)Un � 0 then there exist Fi = ZirU
n
r < 0 which is the minimun

component of F. Expressing (3.65) with regards to the minimum component yields:

Un+1
i = Un

i +ΔtFi, for n = 0, 1, . . . . (3.66)

Therefore, for non-negativity of (3.66) the time step must satisfy the constraint Δt < Ui

|Fi| .

Secondly, the case where θ �= 0 yields a scheme where a positive solution is sought

for the non-linear problem (3.64). Let Λθ = �Un�1 be a constant such that a convex

compact set is defined by:

Ωθ = {V ∈ RN : �V�1 ≤ Λθ, V ≥ 0}.
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Further, let Bθ(V) = I − θΔtZ(V, tn+1) matrix that is defined on Ωθ. Due to convexity

and compactness of Ωθ, matrix Bθ(V) is well-defined. Moreover, by Proposition (3.4)

Bθ(V) is a non-singular M-matrix. Since Bθ(V) is well-defined, the following fixed point

function is well-defined in Ωθ :

Φθ(V) = B−1
θ (V)

�
Un +Δt(1− θ)Z(Un, tn)Un

�
, V ∈ Ωθ, for n = 0, 1, . . . . (3.67)

Any fixed point of (3.67) is also a solution to the non-linear problem (3.64). Moreover,

the constructed fixed point function (3.67) satisfies:

Φθ(V)− θZ(V, tn)Φθ(V) = Un +Δt(1− θ)Z(Un, tn)Un. (3.68)

By exploiting the properties of matrix Z, it follows from (3.68) that eTrΦθ(V) =

eTrUn = Λθ, thus, �Φθ(V)�1 = Λθ. Furthermore, if Un ≥ 0 and θ = 0 (i.e. the implicit or

backward Euler scheme) from (3.67) it follows that Φθ(V) ≥ 0 for any time step Δt < ∞,

since Bθ(V) is well-defined. If Un ≥ 0, θ �= 0 and F = Z(Un, tn)Un ≥ 0 then Un +

Δt(1−θ)Z(Un, tn)Un ≥ 0 for any time step Δt < ∞. Otherwise, if F = Z(Un, tn)Un < 0

then there exist a negative minimum component of F (i.e. Fi = ZirU
n
r < 0). Thus, the

corresponding expression Un
i +Δt(1−θ)ZirU

n
r is non-negative ifUn ≥ 0 andΔt < Ui

(1−θ)|Fi| .

It follows from (3.67) that Φθ(V) ≥ 0 for any time step Δt < Ui

(1−θ)|Fi| , whenever θ �= 0

and Un ≥ 0.

Therefore, it is clear that Φθ : Ωθ −→ Ωθ, thus, employing Brouwer’s fixed point

theorem it can be concluded that there exist a fixed point V ∈ Ωθ that is a non-negative

solution to the non-linear problem (3.64). Hence, the theta class of schemes (3.59) pre-

serve non-negativity if Δt < Δtc.

Proposition 3.7 (Positivity of DIRK2 schemes). If there exist an N ×N matrix Z(U, t)

satisfying the properties in proposition 3.4 such that F(U, t) = Z(U, t)U then the DIRK2

scheme (3.60) preserves non-negativity for any time step Δt < ∞.

Proof. Since the N ×N matrix Z(U, t) exists and F(U, t) = Z(U, t)U, the DIRK2 class

of schemes for IVP (3.4) can be written as follows:

U∗ −ΔtZ(U∗, t∗)U∗ = Un,

Un+1 − αΔtZ(Un+1, tn+1)Un+1 =
2α− 1

α
Un +

1− α

α
U,∗ for n = 0, 1, . . . . (3.69)
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By proposition 3.4, the matrix I−ΔtZ(U∗, t∗) is a non-singular M-matrix. As a result

U∗ ≥ 0 whenever Un ≥ 0. Further, I−αΔtZ(Un+1, tn+1) is also a non-singular M-matrix,

thus, Un+1 ≥ 0 for any time step Δt < ∞ and for any value of the parameter α whenever

Un > 0. Hence the DIRK2 scheme (3.60) preserves non-negativity without constraints

on the time step size.

3.5 Numerical experiments

Numerical experiments are conducted in this section to verify the numerical schemes

and model decoupling techniques that have been presented in the chapter. Accuracy

tests are performed on the numerical schemes to check convergence and then followed by

simulation cost experiments to check the robustness of the decoupling schemes.

3.5.1 Convergence test

All the decoupling schemes (i.e. stoichiometric, Gauss-Jacobi, Successive-Over-Relaxation

(SOR) and Gauss-Seidel decoupling methods) were applied to decouple the acid genera-

tion model (3.33) and calcite model (3.41)-(3.44), and then followed by an application of

the theta schemes (3.59) and DIRK2 schemes (3.60). Since the calcite model has an exact

solution, results are presented for the calcite model only. If the schemes are compatible

with the decoupling methods, the schemes must converge with grid refinement. An excel-

lent combination of the numerical schemes and decoupling methods must converge with

the appropriate order of the numerical scheme.

Since the Successive-Over-Relaxation (SOR) has a parameter ω, an experiment has

been conducted to determine suitable values for the SOR method. Table (3.1) shows the

results of the experiments, it can be observed that any value of ω ≤ 0.09 yields accurate

results for the SOR method. In the rest of the experiments the parameter is fixed at

ω = 0.09. Theoretical results for ω ∈ [0, 1] have been discussed in [176], therefore, the

experimental behaviour here is not surprising.

Firstly, convergence tests were performed on a combination of Crank-Nicholson scheme

(i.e. θ = 1
2
) and all the decoupling schemes. Figures 3.2a and 3.2a shows the results of

the experiments. The results indicate a decreasing hydrogen ion concentration across all
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the decoupling schemes. However, compared with the exact solution it is observed that

the stoichiometric method is more accurate than the other methods. This observation is

confirmed by the L∞ and L2 error profiles displayed by Figures 3.3a and 3.3b.

Secondly, convergence tests were performed on a combination of Backward Euler

scheme (i.e. θ = 1) and all the decoupling schemes. Figures 3.2c and 3.2d display the

results of the experiments. The results indicate a decreasing hydrogen ion concentration

across all the decoupling schemes. However, it can be observed that the stoichiometric

method is more accurate than the other methods. This observation is confirmed by the

L∞ and L2 error profiles displayed by Figures 3.3c and 3.3d.

Thirdly, convergence tests were performed on a combination of DIRK2 scheme (with

α = 1+0.5
√
2) and all the decoupling schemes. Results of the experiments are displayed

in Figures 3.2e and 3.2f. The results indicate a decreasing hydrogen ion concentration

across all the decoupling schemes. However, it can be observed that the stoichiometric

method is more accurate than the other methods. This observation is confirmed by the

L∞ and L2 error profiles displayed by Figures 3.3e and 3.3f.

Furthermore, orders of convergence have been computed for the schemes as applied

across the decoupling methods. Taylor expansion shows that the Crank-Nicholson scheme

and DIRK2 schemes are second order consistent while the Backward Euler scheme is first

order. Table 3.2 shows the results for the combination of each numerical scheme and the

stoichiometric method. It can be observed that all the schemes converge according to their

appropriate orders when combined with the stoichiometric method. However, Tables 3.3

-3.5 show that the schemes do not converge according to their appropriate orders when

combined with the other decoupling methods (i.e. Gauss-Jacobi, Gauss-Seidel and SOR).

3.5.2 Cost of simulation

Experiments were conducted to check cost of simulating the calcite model with all com-

binations of the numerical schemes and the decoupling methods. CPU time, CPU time

differences and relative CPU time were used to measure cost of simulations across differ-

ent grid resolutions. The CPU time differences and relative CPU time were computed

using the expressions:
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ω 0.9 0.7 0.5 0.09 0.001 0.005 0.0001

DIRK2 5.0999 2.7917 1.6003 0.6807 0.6562 0.6563 0.6562

Backward Euler 5.1278 2.8275 1.6120 0.5877 0.5345 0.5357 0.5342

Crank-Nicholson 5.010 2.7917 1.6001 0.6824 0.6582 0.6583 0.6582

Table 3.1: Errors (� · �2) of the backward Euler, DIRK2, and Crank-Nicholson schemes applied

to SOR decoupled calcite model (3.41)-(3.44). The errors where measured across varying values

of the parameter ω, Nt = 20, T = 25 with all other model parameters held constant. The actual

values in the table are 7 orders of magnitude smaller.

CPU time difference = CPUC − CPUS (3.70)

and

Relative CPU time =
CPUC − CPUS

CPUC

(3.71)

where CPUS is CPU time for the stoichiometric method and CPUC is CPU time for any

of the other methods. The final time was fixed at (T = 20) and a very fine grid (8000

time steps) were used to conduct the experiments. Note that the fine grid resolution was

selected on purpose to reduce the effect of discretization errors on the final simulated

results.

Crank-Nicholson scheme was applied to discretize after all the decoupling methods

(i.e. Gauss-Seidel, SOR, stoichiometric and Gauss-Jacobi methods) have been applied

to decoupled the calcite model (3.41) -(3.44). CPU time and CPU time differences were

computed using (3.70) and (3.71). Figures 3.4e and 3.4f display CPU time for all the

decoupling schemes against time steps. The general observation is that CPU time for all

the decoupling methods increased across increasing time steps. However, the CPU time

of the stoichiometric decoupling method is far smaller than the other methods. Further,

the observed increasing profile of the CPU difference in Figure 3.4f indicates that the cost

incurred by the stoichiometric–Crank-Nicholson approach reduces with grid refinement,

relative to the other methods.

Secondly, the Backward Euler scheme was applied to discretize after all the decoupling

methods (i.e. Gauss-Seidel, SOR, stoichiometric and Gauss-Jacobi methods) have been
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Stoichiometric method

Numerical scheme Nx

� · �∞ � · �2
Error Order Error Order

10 0.0452 - 0.0809 -

20 0.0110 2.0388 0.0273 1.5674

DIRK2 40 0.0027 2.0265 0.0095 1.5229

80 0.0007 1.9475 0.0033 1.5255

160 0.0002 2.0418 0.0012 1.4594

10 1.1901 - 2.2598 -

20 0.6448 0.8841 1.6520 0.6182

Backward Euler 40 0.3331 0.9533 1.1892 0.4743

80 0.1694 0.9756 0.8487 0.4867

160 0.0854 0.9881 0.6030 0.4931

10 0.0830 - 0.1213 -

20 0.0206 2.0100 0.0425 1.5130

Crank-Nicholson 40 0.0052 2.0141 0.0150 1.5025

80 0.0013 2.0000 0.0053 1.5009

160 0.0003 2.1155 0.0019 1.4800

Table 3.2: Errors and Orders of DIRK2, backward Euler and Crank-Nicholson schemes applied

to stoichiometrically decoupled model (3.46), computed across norms and time steps. The

actual error values in the table are 7 orders of magnitude smaller

applied to decoupled the calcite model (3.41) -(3.44). CPU time and CPU time differences

were computed using (3.70). Results of the experiments are displayed in Figures 3.4c and

3.4d. The observations are similar to those obtained with the Crank-Nicholson scheme.

Thirdly, Figures 3.4a and 3.4b display the CPU times and CPU time differences mea-

sured in the simulation involving combinations of DIRK2 scheme and all the decoupling

methods. The observations are very different from those obtained in the Crank-Nicholson

and Backward Euler cases.

Finally, relative CPU times were computed with expression (3.71) for all the combina-
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Gauss-Jacobi method

Numerical scheme Nx

� · �∞ � · �2
Error Order Error Order

10 3.2968 - 8.6763 -

20 1.6860 0.9675 6.1866 0.4879

DIRK2 40 0.8528 0.9833 4.3950 0.4932

80 0.4289 0.9915 3.1154 0.4964

160 0.2151 0.9957 2.2057 0.4981

10 3.8491 - 9.4241 -

20 2.0191 0.9308 6.9436 0.6182

Backward Euler 40 0.6742 1.5825 5.0227 0.4743

80 0.5246 0.3620 3.5942 0.4867

160 0.2641 0.3432 2.5571 0.4931

10 3.2776 - 8.6408 -

20 1.6809 0.9996 6.1728 0.4852

Crank-Nicholson 40 0.8515 0.9811 4.3898 0.4918

80 0.4286 0.9904 3.1135 0.4972

160 0.2150 0.9967 2.2050 0.4977

Table 3.3: Errors and Orders of DIRK2, backward Euler and Crank-Nicholson schemes applied

to Gauss-Jacobi decoupled calcite model (3.41)-(3.44), computed across norms and time steps.

The actual error values in the table are 7 orders of magnitude smaller.

tions of numerical schemes and decoupling methods. Figure 3.5 displays the results of the

experiments. It can be observed in Figures 3.5a and 3.5b that more than 76 percent CPU

time will be saved if stoichiometric decoupling method is applied with DIRK2 scheme to

solve the calcite model. Over 73 percent of CPU time will be saved if the stoichiometric

method is combined with Crank-Nicholson scheme. Figures 3.5c and 3.5d show that over

69 percent of CPU time will be saved if the stoichiometric method is combined with the

Backward Euler scheme.
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Gauss-Seidel method

Numerical scheme Nx

� · �∞ � · �2
Error Order Error Order

10 3.6351 - 9.7662 -

20 1.7694 1.0387 6.5624 0.5736

DIRK2 40 0.8736 1.0182 4.5266 0.5358

80 0.4341 1.0089 3.1618 0.5177

160 0.2164 1.0043 2.2228 0.5083

10 2.6798 - 7.6458 -

20 1.3459 0.9936 5.3422 0.5172

Backward Euler 40 0.6742 0.9973 3.7529 0.5094

80 0.3374 0.9987 2.6448 0.5049

160 0.1688 0.9991 1.8670 0.5024

10 3.6661 - 9.8386 -

20 1.7759 1.0457 6.5824 0.5827

Crank-Nicholson 40 0.8751 1.0211 4.5329 0.5381

80 0.4964 0.8180 3.1639 0.5187

160 0.2165 1.1971 2.2280 0.5060

Table 3.4: Errors and Orders of DIRK2, backward Euler and Crank-Nicholson schemes applied

to Gauss-Seidel decoupled calcite model (3.41)-(3.44), computed across norms and time steps.

The actual error values in the table are 7 orders of magnitude smaller.

3.6 Chapter summary

Numerical simulation of chemical kinetic processes is complicated by large numbers of

chemical species participating in several elementary reactions. The large number of chem-

ical species result in models with high degrees of freedom that are expensive to simulate.

Further, large numbers also result in stiffness that pose a severe constraint to some nu-

merical schemes. Concentrations of chemical species are non-negative thus, governing

models and solution procedures must ensure non-negativity. Solution procedures should

be constructed to reduce cost of simulation significantly without lost of accuracy. This is
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Successive-Over-Relaxation method

Numerical scheme Nx

� · �∞ � · �2
Error Order Error Order

10 3.2090 - 9.1567 -

20 1.6931 1.7483 6.8069 0.4278

DIRK2 40 1.1076 0.6122 5.6656 0.2647

80 0.8807 0.3307 5.4667 0.0519

160 0.7847 0.1665 5.1357 0.0902

10 2.6576 − 7.3989 −
20 1.6142 0.7193 5.8768 0.3323

Backward Euler 40 1.1254 0.5203 5.1733 0.1840

80 0.9020 0.3193 5.0287 0.0410

160 0.7977 0.1773 5.0267 0.0006

10 3.2370 - 9.2198 -

20 1.6958 0.9327 6.8237 0.4341

Crank-Nicholson 40 1.1078 0.6143 5.6704 0.2671

80 0.8807 0.3310 5.4680 0.0524

160 0.7848 0.1663 5.1360 0.0903

Table 3.5: Errors and Orders of DIRK2, backward Euler and Crank-Nicholson schemes applied

to Successive-Over-Relaxation decoupled calcite model (3.41)-(3.44), computed across norms

and time steps. The actual error values in the table are 7 orders of magnitude smaller.

achieved by combining numerical schemes with model reduction/decoupling techniques.

In Section 3.1, mathematical modelling of chemical kinetics has been provided. A

system of Ordinary Differential Equations (ODEs) have been derived to describe the

evolution of chemical species with time. Further, with the conditions provided in the

section, discussion on existence, uniqueness and non-negativity of solution for the ODE

system have been provided.

In Section 3.2, Model reduction/decoupling techniques have been presented for the

ODE system derived in Section 3.1. The stoichiometric method has been developed based
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on stoichiometry and mass balances. This method is most suitable when few of the many

species profiles are of interest. Other decoupling techniques such as the Successive-Over-

Relaxation (SOR), Gauss-Seidel and Gauss-Jacobi methods have also been presented.

In Section 3.3, chemical kinetic systems called acid mine generation and neutralization

have been presented as application problems. The stoichiometric method was applied

to both kinetic systems to significantly reduce their degrees of freedom. Further, the

accuracy of the method has been tested (using the calcite rate law). Results showed that

the stoichiometric method is very accurate.

In Section 3.4, numerical schemes for simulating the ODE system presented in Sec-

tion 3.3 has been discussed. Due to the stiffness constraint, only implicit schemes are

considered. Theta class of schemes and a second order diagonally implicit Runge Kutta

class of schemes (DIRK2) have been shown to be non-negativity preserving and satisfy

the conservation principle of the ODE system in Section 3.1.

In Section 3.5, numerical experiments have been conducted to verify the numerical

schemes, validate the decoupling methods and to check efficiency of the decoupling meth-

ods. One notable observation is that, the solution procedures do not converge to their

theoretical orders in the � · �2 norm. We suspect that the � · �2 norm is incompatible

with the solution procedures (i.e. schemes coupled with decoupling methods), however,

further studies will be conducted in future to confirm. However, the results showed that

all the schemes are compatible with the stoichiometric decoupling method and that the

stoichiometric method can significantly reduce simulation cost and maintain high accu-

racy.

Therefore, a combination of the non-negativity preserving schemes (i.e. implicit theta

and DIRK2 schemes) with the stoichiometric decoupling method provides an efficient

alternative tool for modelling and simulating chemical kinetic processes.
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(a) Crank-Nicholson/five time steps. (b) Crank-Nicholson/twenty time steps.

(c) Backward Euler/five time steps. (d) Backward Euler/twenty time steps.

(e) DIRK2/five time steps. (f) DIRK2/twenty time steps.

Figure 3.2: Numerical and analytical solutions for ODE (3.41), where Uk = [H+], T =

25, [H+]0 = 10−5, and Fk(t, [H
+]) = −Kb[H

+]2 + λ3[H
+] − λ4. The analytical solution is

Equation (3.51).
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(a) L2- errors/Crank-Nicholson scheme. (b) Max errors/Crank-Nicholson scheme.

(c) L2- errors/backward Euler scheme. (d) Max errors/backward Euler scheme.

(e) L2- errors/DIRK2 scheme. (f) Max errors/DIRK2 scheme.

Figure 3.3: Errors (L∞ and L2) of the numerical schemes, measured across decoupled models

and time steps. The actual error values in the figures are 7 orders of magnitude smaller.
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(a) CPU time/DIRK2 scheme. (b) CPU time difference/DIRK2 scheme.

(c) CPU time/B. Euler scheme. (d) CPU time difference/B. Euler scheme.

(e) CPU time/C. Nicholson scheme. (f) CPU time difference/C. Nicholson scheme.

Figure 3.4: CPU time and CPU time differences for Gauss Jacobi, Gauss Seidel and SOR,

using backward Euler, DIRK2 and Crank-Nicholson, measured across time steps (in the calcite

model).
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(a) DIRK2 scheme/8000 steps (b) DIRK2 scheme/12000 steps

(c) Backward Euler scheme/8000 steps (d) Backward Eulerscheme/12000 steps

(e) Crank-Nicholson scheme/8000 steps. (f) Crank-Nicholson scheme/12000 steps.

Figure 3.5: Relative CPU time for Gauss-Jacobi, Gauss-Seidel and SOR methods using DIRK2,

Backward Euler and Crank-Nicholson schemes, measured across time steps in the calcite model.
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Chapter 4

Reactive transport modelling and

simulation

Models for chemical reactions that occur in transport processes (such as advection and

diffusion), are characteristically nonlinear and challenging to simulate due to stiffness,

high degrees of freedom and spatial heterogeneity. In this chapter, the stoichiometric

procedure is extended to non-linear reactive transport models to reduce their high de-

grees of freedom. Second order accurate numerical schemes that are compatible with the

stoichiometric method have been presented.

Remark: Simulation studies on linear reactive transport modelling has been published

in [2], however, the results presented here are under review.

4.1 Introduction

Over the past five decades, there has been a growing interest in spatio-temporal reactions

due to the ability of such reactions to produce fascinating patterns [62, 78]. The first

reported chemical oscillatory system was in the 1950s [15, 44]. In 1952, Turing [164]

showed that spatio-temporal patterns can form from a coupled set of non-linear reactions

and diffusion. The origin of chemical instability has been studied by [116]. Stability of

first-order exothermic reactions in a continuous stirred tank reactor has been discussed

in [5], and advance dynamics that are due to chemical reactions in industrial processes

have been discussed in [42].
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Furthermore, in 1978 it was shown (theoretically in [84] and experimentally in [29])

that diffusive transport could induce instability in isothermal chemical systems. The

authors in [52, 33], have discussed chemical instabilities in the non-isothermal systems.

Further, in [122, 121, 159] several chemical reactors have been designed to study insta-

bilities in both temporal and spatio-temporal chemical systems. Instabilities (pattern

formation) can also occur in convecting fluids that involve chemical reactions and have

been discussed in [106, 108, 134]. For Convection-diffusion-reaction systems, instabilities

have been reported by [62].

Over the years, research (both theoretical and experimental) has been conducted

on relatively smaller systems where analytical results are available. However, modern

chemical systems are large, thus, require other approaches for analyses. The focus of

this study is numerical simulation of spatio-temporal systems that involve non-linear

convection, diffusion and reactions. The models for such systems are nonlinear, stiff and

have high degrees of freedom, thus, are computationally expensive to simulate. The goal

is to reduce simulation cost using model reduction methods and compatible high order

numerical schemes that can resolve stiffness and non-linearities.

In Section 4.2, a nonlinear reactive transport model is presented and the stoichimetric

method is applied to reduce the degrees of freedom to any degree of interest. In Section

4.3, a fully nonlinear model that describes neutralization of acidic effluent water is pre-

sented, and the stoichiometric method is applied to reduce the degrees of freedom. In

Section 4.4, semi-implicit numerical schemes are proposed for the fully nonlinear models.

In Section 4.5, numerical experiments are conducted to verify the numerical schemes and

to validate the stoichiometric decoupling method, and the chapter is concluded in Section

4.6.

4.2 Modeling reactive transport systems

General fully nonlinear models for reactive transport processes are presented here. The

models are composed of nonlinear terms that describe convection, diffusion and reactions

that occur simultaneously in spatially varying chemical processes. The models are derived

by applying the law of Mass action (discussed in Chapter 3) to close the general transport
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equation that was presented in Chapter 2.

Firstly, a two-dimensional non-porous rectangular domain Ωd (with boundaries lo-

cated at Lx and Ly units in the x, y directions, respectively) is considered, in which a

fluid flows uniformly with hydraulic conductivity denotedKh, in a time period T. Further,

denote the fluid velocities in the x, y directions, respectively by v = (u, v). If the fluid

(here taken as water) carries a chemical species whose concentration is denoted by Uk,

and that, the Darcy flow approximation holds, then by conserving species mass across

an elementary volume yields a generalised non-linear convection-diffusion-reaction model

written as follows:

v = −Kh∇p (4.1)

∂Uk

∂t
+

∂

∂x
fx(Uk,v) +

∂

∂y
f y(Uk,v) =

∂

∂x
(Γx ∂

∂x
Uk) +

∂

∂y
(Γy ∂

∂y
Uk) + Sk, (4.2)

k = 1, . . . , Ns, ((x, y), t) ∈ Ωd × [0, T )

where p is the fluid pressure, fx(Uk,v), f
y(Uk,v) denote advective fluxes in the x, y

directions, Γx,Γy denote nonlinear diffusivities of the species in the fluid and Sk is a

real-valued function that quantifies the rate of addition/reduction of species k.

The source term Sk in the reactive transport model 4.2 must be defined, in order

to complete the modelling. For the spatio-temporal chemical systems (under considera-

tion here) where the mass action law applies, the kinetic model for well-mixed chemical

systems (i.e. Equation (3.3)) is used for the closure. Thus, closure of the model yields:

v = −Kh∇p (4.3)

∂Uk

∂t
+

∂

∂x
fx(Uk,v) +

∂

∂y
f y(Uk,v) =

∂

∂x
(Γx ∂

∂x
Uk) +

∂

∂y
(Γy ∂

∂y
Uk)

+
M�

r=1

σkr

�
Kfr

Nf,r�

i=1

U
αr,i

r,i −Kb,r

Nr�

j=Nf,r+1

U
αr,j

r,j

�
,

(4.4)

k = 1, . . . , Ns, ((x, y), t) ∈ Ωd × [0, T ).

However, the Partial Differential Equations (PDEs) in the closed model (4.3)-(4.4) are

coupled through the source terms. A standard simulation procedure includes the use of
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waveform relaxation methods discussed in Chapter 3. However, the standard procedure

is computationally expensive especially if concentration profiles of few species are of

interest. Thus, stoichiometric decoupling is proposed here for closure of the Equation

(4.2). Consequently, the stoichiometric closure (i.e. using Equation (3.21)) yields:

v = −Kh∇p (4.5)

∂Uk

∂t
+

∂

∂x
fx(Uk,v) +

∂

∂y
f y(Uk,v) =

∂

∂x
(Γx ∂

∂x
Uk) +

∂

∂y
(Γy ∂

∂y
Uk)

+
M�

r=1

σkr

�
Kf,r

Nf,r�

i=1

�
dr,i +

σr,i

σkr

Uk

�αr,i

−Kb,r

Nr�

j=1+Nf,r

�
dr,j +

σr,j

σkr

Uk

�αr,j
�
, (4.6)

k = 1, . . . , Ns, ((x, y), t) ∈ Ωd × [0, T ).

In subsequent sections of this chapter, the large model (4.3)-(4.4) will be simulated

using Gauss-Jacobi decoupling, thus, we refer to the model as Gauss-Jacobi decoupled

model or large model, and the model resulting from stoichiometric closure is referred to

as stoichiometric model or reduced model.

4.3 Modelling acid mine drainage

The closed transport equations above are general models, however, specific models can be

obtained by using kinetic data that are specific to a particular chemical kinetic system.

The particular system considered here is from Environmental Chemical Engineering and

the motivation for this choice follows the work in [48], where the processes that occur

in laboratory experiments involving neutralization of acidic effluents in cartridges have

been accurately analysed using a reactive transport model. Here, the efficiency of the

two modelling/closure procedures are validated using the acid drainage problem.

As mentioned in Chapter 3, experimental data in [126] shows that reactions (3.36)

and (3.37) contribute insignificantly compared with reaction (3.35), thus reaction (3.35)

is considered in the spatio-temporal case. Consequently, the chemical species present are:

C =
�
CaCO3, H

+, Ca2+, HCO−
3

�
,

corresponding concentration and source/sink vectors are given respectively, by:

U =
�
U1, U2, U3, U4

�
and S =

�
S1, S2, S3, S4

�
.
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Except for calcite CaCO3(k = 1) that has a zero reaction order, the reaction orders for

all the other species are ones (these orders have been obtained from the rate law provided

in [126]). Thus, by the law of mass action the rate of reaction is a polynomial in four

variables, which can be expressed as follows:

R(U1, U2, U3, U4) = KfU2 −KbU3U4. (4.7)

Hydrogen ions (k = 2) are responsible for acidity of the effluent water, therefore,

treatment of the effluent water implies neutralization of the hydrogen ions. Thus, hy-

drogen ion (H+) is the species of interest in the investigation. Using stoichiometry and

equation (4.7), the reactive transport equation for hydrogen ions is given by:

∂U2

∂t
+

∂

∂x
fx(U2) +

∂

∂y
f y(U2) =

∂

∂x
(Γx ∂

∂x
U2) +

∂

∂y
(Γy ∂

∂y
U2)−KfU2 +KbU3U4, (4.8)

The solution of PDE (4.8) can provide sufficient information about the limestone

method of neutralizing the acid (hydrogen ions). However, current concentrations of

calcium ions (U3) and hydrocarbonate ions (U4) must be available to enable solution of

PDE (4.8). Two transport equations must be solved simultaneously with PDE (4.8) after

applying Gauss-Jacobi decoupling. The extra two transport equations are as follows:

∂U3

∂t
+

∂

∂x
fx(U3) +

∂

∂y
f y(U3) =

∂

∂x
(Γx ∂

∂x
U3) +

∂

∂y
(Γy ∂

∂y
U3) +KfU2 −KbU3U4, (4.9)

and

∂U4

∂t
+

∂

∂x
fx(U4) +

∂

∂y
f y(U4) =

∂

∂x
(Γx ∂

∂x
U4) +

∂

∂y
(Γy ∂

∂y
U4) +KfU2 −KbU3U4.

(4.10)

However the high degrees of freedom of PDE system (4.8)-(4.10) will increase com-

putational cost especially for stiff problems. A remedy is to apply the stoichiometric

method to reduce the system’s degrees of freedom. Firstly, define the initial data of the

species by the vector:

U0 =
�
U10, U20, U30, U40

�
,
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and assume that there are no sources or sinks (a closed reactor) so that the source/sink

vector is given by:

US =
�
0, 0, 0, 0

�
.

There is only one stoichiometric equation in the limestone neutralization process, thus

M = r = 1. In this case, the global variables (i.e. α,C, σ, Kb) for species information are

the same as the local variables (i.e. α1,C1, σ1, Kb,1). Given the neutralization reaction

(3.35), we have the following input data for the stoichiometric decoupling procedure:

C1 = C =
�
CaCO3, H

+, Ca2+, HCO−
3

�
, α1 = α =

�
0, 1, 1, 1

�
,

σ1 = σ =
�
− 1,−1, 1, 1

�
Nf,1 = 2, N1 = 4, Kf,1 = Kf , Kb,1 = Kb. (4.11)

The species of interest is H+ which corresponds to the index k = 2 in the global

vector C, and index n = 2 in the local vector C1. Thus using input data (4.11) in (3.2)

and manipulating algebraically yields a single-variable polynomial rate law in U2 only,

given by:

∂U2

∂t
= S2(U2) = αH1U

2
2 + αH2U2 + αH3, (4.12)

where αH1 = Kb, αH2 = −Kf +Kb

�
2U20+U40+U30

�
and αH3 = Kb

�
U10+U40

��
U20+

U30

�
.

Thus, by replacing the source/sink term −KfU2 +KbU3U4 in PDE (4.8) with (4.12),

we obtain a decoupled transport equation for the limestone neutralization method, as

follows:

∂U2

∂t
+

∂

∂x
fx(U2) +

∂

∂y
f y(U2) =

∂

∂x
(Γx ∂

∂x
U2) +

∂

∂y
(Γy ∂

∂y
U2)

+ αH1U
2
2 + αH2U2 + αH3. (4.13)

Observe that PDE (4.13) is free from the current concentrations of the other species

except in the coefficients αH1,αH2 and αH3, that have been calculated from the initial

and source data for all the species.
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4.4 Numerical schemes

The simultaneous occurrence of advection, diffusion and reaction in reactive transport

models poses an interesting stiffness challenge in numerical simulation [73, 169]. In such

models, stiffness result from/across the three processes unlike the well-mixed models

where stiffness occurs among reaction terms only. Similar to the well-mixed models,

stiffness may be resolved by implicit numerical schemes, however, high degrees of freedom

and dependence on space variables make fully implicit schemes expensive [73]. An efficient

numerical procedure is to apply explicit discretizations to non-stiff terms and implicit

discretizations to stiff terms, without explicitly splitting the PDE. Such an approach is

generally known as additive splitting. Another approach is to first apply operator splitting

techniques to the PDEs, thus, explicitly splitting the advection, diffusion and reactions

terms. In both approaches, the resulting numerical schemes are called IMplicit-EXplicit

(IMEX) schemes. However, explicit splitting techniques have accuracy issues and do not

preserve transient balances [169]. Therefore, the IMEX schemes that result from additive

splitting are considered here.

The goal here is to present second order low cost numerical schemes that are suitable

for stiff spatio-temporal chemical systems and are compatible with the stoichiometric

decoupling method. The method of lines (MOL) discretization procedure where the

spatial derivatives are discretized first, will be employed here.

4.4.1 Spatial discretization

The stoichiometrically decoupled model will be compared with the original large model

in order to establish efficacy, thus, we find it appropriate to reduce the spatial dimension

to one, to enable visual comparison of numerical solutions. Thus, using vector notations,

the 1-D version of the non-linear convection-diffusion-reaction model (4.1)-(4.2) is written

as follows:

u = −Kh
dp

dx
, (4.14)

∂U

∂t
+

∂

∂x
f =

∂

∂x
(Γ

∂

∂x
U) + S, ∈ [0, Lx]× [0, T ) (4.15)
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where f(U, u) is the species advective flux that could be linear or non-linear and Γ is

the diffusivity tensor (assumed diagonal) that depends on the concentration vector U.

For the purposes of numerical investigations, we denote diffusivity of the kth chemical

species by Γkk, and define Buckley-Leverett, Burgers and linear advective fluxes for the

kth species respectively as follows:

fk(Uk, u) = 4u
U2
k

4U2
k − (1− Uk)

, fk(Uk, u) =
u

2
U2
k and fk(Uk, u) = uUk,

where Uk is k
th components of the vector U. Diffusivity functions (i.e. Γkk) will be defined

later in the discussion.

Furthermore, we apply the method of lines (MOL) discretization procedure. Spurious

oscillations could develop near reaction fronts and boundaries if suitable techniques are

not employed to discretize the advection term. These oscillations could result in nega-

tive concentration values that have no physical and chemical meaning. Thus we apply

finite difference WENO (third order) procedure with Lax-Friedrichs flux splitting to dis-

cretize the advection term. Applying a conservative finite difference approximation to

the advection term in (4.15) at the ith node xi, yields:

∂

∂x
f |xi

≈ 1

Δx

�
f̂i+ 1

2
− f̂i− 1

2

�
, (4.16)

where Δx is the spatial step size and f̂i+1 is a numerical flux. A third order WENO

reconstruction/approximation of the numerical flux is considered, thus:

f̂i+ 1
2
= w0

�1
2
f(Ui) +

1

2
f(Ui+1)

�
+ w1

�
− 1

2
f(Ui−1) +

3

2
f(Ui)

�
, (4.17)

where

wr =
αr

α1 + α2

, αr =
dr

(�+ βr)2
, r = 0, 1,

the linear weights are d0 = 2
3
, d1 = 1

3
, the smoothness indicators are β0 =

�
f(Ui+1) −

f(Ui)
�2
, β1 =

�
f(Ui)−f(Ui−1)

�2
and � = 10−3 is a parameter taken to ensure a non-zero

denominator. Further, a Lax-Friedrich splitting of the flux is performed to incorporate

upwinding in the final numerical schemes, thus:

f+(U) =
1

2

�
f(U) + αU

�
, f−(U) =

1

2

�
f(U)− αU

�
, (4.18)
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where α = maxU |f �(U)|, f+(U) is the positive wind part and f−(U) is the negative part.

The derivative corresponding to diffusion is discretized using the second order central

differencing approximation as follows:

∂

∂x
(Γ

∂

∂x
U)|xi

≈ Γ
�Ui+1+Ui

2

�

(Δx)2
Ui+1 −

�Γ
�Ui+1+Ui

2

�

(Δx)2
+

Γ
�Ui+Ui−1

2

�

(Δx)2

�
Ui

+
Γ
�Ui+Ui−1

2

�

(Δx)2
Ui−1. (4.19)

Applying approximations (4.16) and (4.19) in equation (4.15), the semi-discrete form

of the reactive transport model states that, find Ũ such that:

∂Ũ

∂t
= Fd(Ũ) + Fa(Ũ) + S(Ũ), ∈ [0, T ) (4.20)

where Ũ = (U1,U2, . . . ,UNx), Fd(Ũ) is the discretized diffusion term, Fa(Ũ) is the

discretized advection term and Nx is the total number of grid points. Further, discretized

diffusion derivative can be linearised as follows:

Fd(Ũ) ≈ Fd(Ũ
n) + Cn

�
Ũ− Ũn

�
, (4.21)

where Ũn = Ũ(tn) and Cn = C(Ũn) is the Jacobian of Fd(Ũ) evaluated at Ũn. Applying

the linearised discrete diffusion function (4.21) in the semi-discrete transport equation

(4.20) yields:

∂Ũ

∂t
= Fd(Ũ

n) + CnŨ− CnŨn + Fa(Ũ) + S(Ũ), t ∈ [0, T ). (4.22)

A complete discretization will be obtained in the following subsections using different

time integrators. The resulting complete discretizations are all IMEX schemes for fully

nonlinear reactive transport models.

4.4.2 Implicit integration factor scheme

The terms in the semi-discrete transport equation (4.22) can be grouped into stiff and

non-stiff terms. The stiff group (that consists of reaction and diffusion terms) pose

severe time step restrictions on some time integrators. Implicit integration factor class

of schemes use exact integration procedures to remove time step restrictions posed by
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the linear part of the discretized diffusion derivative [18, 34, 105, 79, 73]. Denote the

combined discrete diffusion and advection flux functions by:

F(Ũ(tn + τ)) = Fd(Ũ(tn + τ))− CnŨ(tn + τ) + Fa(Ũ(tn + τ)), (4.23)

where τ is the time step. Further, let r > 0 be an integer and denote the time inter-

polation points by tn+i = tn + τi, i = 1, 0,−1, . . . , 1 − r, where τ1 = Δtn, τ0 = 0, τi =

−�−1
k=i Δtn+k, for i = −1,−2,−3, . . . , 1 − r. Then by multiplying (4.22) by an appro-

priate integration factor and manipulating algebraically, yields the generalized rth order

implicit integration factor scheme:

Ũn+1 = e−CnΔtnŨn

+Δtn

� 1�

i=2−r

αn+ie
Cn(Δtn−τi)S(Ũn+i) +

0�

i=1−r

βn+ie
Cn(Δtn−τi)F(Ũn+i)

�
, (4.24)

where the coefficients are defined as follows:

αn+i =
1

Δtn

� Δtn

0

1�

j=2−r, j �=i

τ − τj
τi − τj

dτ, i = 1, 0,−1, . . . , 2− r.

βn+i =
1

Δtn

� Δtn

0

0�

j=1−r, j �=i

τ − τj
τi − τj

dτ, i = 0,−1, . . . , 1− r.

Only the second order implicit integration factor scheme with r = 2 (here named

IMEX-IIF2) scheme will be included in further discussions. For r = 2, the IMEX-IIF2

scheme is expression (4.24) with coefficients given by:

αn+1 =
1

2
, αn =

1

2
, βn =

�
Δtn
2

+Δtn−1

�

Δtn−1

, and βn−1 = − Δtn
2Δtn−1

. (4.25)

Furthermore, linear analyses of numerical schemes reveal convergence properties of

the numerical schemes and has been used to analyse several schemes (see for example

[132, 151, 185, 117]). Thus, issues relating to convergence (i.e. consistency and stabil-

ity) of the IMEX-IIF2 will be studied next, using linear analysis. Since second order

central differencing and third order WENO reconstruction have been used to discretize
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the diffusion and advection terms, respectively, the overall spatial discretization is second

order consistent. Thus, the focus is now on consistency of the temporal discretization.

To proceed further, a linear transport equation is spatially discretized to obtain:

∂Ũ

∂t
= DŨ+ AŨ+ RŨ, t ∈ [0, T ). (4.26)

where D,A and R are constant coefficient matrices corresponding to diffusion, advection

and reaction terms, respectively.

Proposition 4.1. Given the semi-discrete problem (4.26), the integration factor scheme

(4.24) with coefficients given by (4.25), is second order consistent.

Proof. Applying Scheme (4.24) with coefficients (4.25) to discretize (4.26) yields:

Ũn+1 =
�
I− R

2
Δt

�−1

eDΔt
�
I+

R
2
Δt+

3A
2
Δt

�
Ũn − Δt

2

�
I− R

2
Δt

�−1

e2DΔtŨn−1.

(4.27)

However,

�
I− R

2
Δt

�−1

eDΔt
�
I+

R
2
Δt+

3A
2
Δt

�
= I+

�
R+ D+

3A
2

�
Δt

+
�R2

2
+

D2

2
+

RD
2

+
3RA
2

+
DR
2

+
3DA
2

�
Δt2 + · · · ,

(4.28)

and

Δt

2

�
I− R

2
Δt

�−1

e2DΔtŨn−1 =

�
A
2
Δt+

�RA
4

+ DA− A2

2
− AD

2
− AR

2

�
Δt2 + · · · .

�
Ũn.

(4.29)

Expressions (4.28) and (4.29) imply that:

Ũn+1 =

�
I+ (A+ D+ R)Δt+

(A+ D+ R)2

2
Δt2 +O(Δt3)

�
Ũn. (4.30)

Thus, since the exact solution of ODE (4.26) is Ũ(tn + Δt) = e(A+D+R)ΔtŨ(tn), it

follows from (4.30) that the IMEX-IIF2 scheme (i.e Scheme (4.24) with coefficients (4.25))

is second order consistent.
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Moreover, the stability of the IMEX-IIF2 can easily be established following the linear

stability procedures in [117, 185, 73]. To proceed with the analysis, the following scalar

linear problem is considered:

∂tU = −dU + aU + rU, ∈ [0, T ). (4.31)

where ∂t denotes derivative with respect to t, d is a positive real coefficient corresponding

to diffusion, a is a real coefficient corresponding to advection and r is complex coefficient

corresponding to chemical reactions.

Applying Scheme (4.24) with coefficients (4.25) to discretize (4.31) yields:

�
1− r

2
Δt

�
Un+1 = e−dΔt

�
1 +

1

2
rΔt+

3a

2
Δt

�
Un − aΔt

2
e−2dΔtUn−1. (4.32)

Let λr = rΔt, then substituting Un = einθ in (4.32) and rearranging yields:

λr =

e−dΔt

�
− eiθ

�
2 + 3aΔt

�
+ aΔte−dΔt

�

eiθ
�
eiθ + e−dΔt

� . (4.33)

Figure 4.1 shows stability regions for different values of aΔt and dΔt. Clearly, it can

be observed in Figures 4.1a - 4.1d that, for fixed values of aΔt the region of instability

shrinks with increasing values of dΔt. Moreover, for a fixed value of dΔt, the region

of instability grows larger for increasing values of |a|Δt. This observation is due to the

explicit discretization of the advection term, thus, the time step is constrained by the

explicit part of the scheme. However, the IMEX-IIF2 scheme is stable and has larger

time step size when compared to fully explicit schemes (of the same order) for reactive

transport equations.

4.4.3 Other schemes

For comparison, other standard implicit-explicit schemes that are of the Runge-Kutta

and multistep types are presented here. Diffusion and reaction terms are considered stiff,

thus, from the semi-discrete equation (4.22), the discretized stiff parts together form a

slope function that is given by:

FI(Ũ) = Fd(Ũ
n) + CnŨ− CnŨn + S(Ũ).
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Thus, a generalized linear multistep (k-step) implicit-explicit numerical scheme for

(4.22) states that [71]:

k�

j=0

αjŨ
n+j = Δt

k�

j=0

βjFI(Ũ
n+j) +Δt

k−1�

j=0

β∗
jFa(Ũ

n+j), (4.34)

where αj, βj, and β∗
j are coefficients that determine a particular method in this class.

One particular multistep scheme of interest is derived from implicit and explicit two-step

backward differentiation formulas (BDF) (henceforth, this scheme will be referred to as

IMEX-BDF). It is second order convergent, the implicit part is A-stable and it is stated

as follows [71]:

3

2
Ũn+1 − 2Ũn +

1

2
Ũn−1 = ΔtFI(Ũ

n+1) + 2ΔtFa(Ũ
n)−ΔtFa(Ũ

n−1). (4.35)

Another particular multistep scheme involves two steps, is second order consistent

and is A-stable in the implicit part. The scheme uses Adams-Bashforth’s discretization

for the nonstiff part and Crank-Nicholson’s discretization for the stiff part. The scheme

states that [71]:

Ũn+1 = Ũn +
3

2
ΔtFa(Ũ

n)− 1

2
ΔtFa(Ũ

n−1) +
1

2
ΔtFI(Ũ

n+1) +
1

2
ΔtFI(Ũ

n). (4.36)

Furthermore, for second order consistent schemes of the Runge-Kutta type, we con-

sider a scheme that involves a combination of both implicit and explicit discretizations.

It has two stages where the first stage is explicit Euler and the second stage is IMEX.

The scheme (henceforth referred to as IMEX-RK1) can be written as follows:

Ũ∗ = Ũn +ΔtF(Ũn)

Ũn+1 = Ũn +
1

4
ΔtF(Ũn) +

1

4
ΔtFa(Ũ

∗) +
1

2
ΔtFI(Ũ

n+1). (4.37)

The last second order consistent scheme of the Runge-Kutta type to be considered in

this discussion, also have two-stages where the first stage is explicit and the second stage

is IMEX, we refer to this scheme as IMEX-RK2 and state it as follows:

Ũ∗ = Ũn + 0.5ΔtFa(Ũ
n)

Ũn+1 = Ũn +
1

2
ΔtFI(Ũ

n) +
1

2
ΔtFa(Ũ

∗) +
1

2
ΔtFI(Ũ

n+1). (4.38)

In the following section, all the schemes presented in this section will be verified with

a stiff chemical transport model.
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4.5 Numerical experiments

In this section, numerical results on suitability of the numerical schemes, efficiency (i.e.

accuracy, compatibility and cost of simulation) of the stoichiometric decoupling method

are presented. The numerical schemes will be applied to solve a stiff transport model, L∞

errors and orders will be measured in order to check convergence. Three best-performing

schemes will be selected and applied to discretize the Gauss-Jacobi and stoichiometric

models for the acid drainage problem. Accuracy of the stoichiometric procedure will be

determined by computing differences between numerical solutions of the stoichiometric

and Gauss-Jacobi models. Results on simulation cost of the stoichiometric method will

be presented finally.

4.5.1 Convergence test: numerical schemes

Here, grid independent tests to check convergence of the numerical schemes are performed.

A system of advection-diffusion transport with stiffness (presented in [73]) is discretized

by all the schemes. The one dimensional form of the stiff model in [73] is given by:

∂U

∂t
+

∂uU

∂x
= Γ

∂2U

∂x2
−KuU + V, 0 < x < 2π, (4.39)

∂V

∂t
+

∂uV

∂x
= Γ

∂2V

∂x2
−KvV, 0 < x < 2π. (4.40)

Using periodic boundary conditions, the exact solution for the system (4.39)-(4.40)

is:

U(x, t) =
�
e−(Ku+Γ)t + e−(Kv+Γ)t

�
cos(x− ut), (4.41)

V (x, t) = (Ku −Kv)e
−(Kv+Γ)t cos(x− ut). (4.42)

The input data are as follows:

Γ = 0.001, u = 0.001, Kv = 1, Ku = 100, (4.43)
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and the initial data are as follows:

U(x, 0) = 2 cos(x), (4.44)

V (x, 0) = (Ku −Kv) cos(x). (4.45)

Furthermore, we define Peclet number as follows:

Pe =
uΔx

Γ
.

When Peclet number is high (Pe > 0) advection dominates the transport process and

when Peclet number is low (Pe < 0) diffusion dominates. In critical Peclet number

(Pe = 0) transport both advection and diffusion processes occur simultaneously, we refer

to the critical Peclet number case as a normal transport process. Convergence of the

numerical schemes will be investigated in the three transport cases (i.e. advection domi-

nated, diffusion dominated and normal transport cases) while maintaining stiffness in the

reaction.

Figures 4.2 and 4.3 compare the numerical solutions (i.e. IMEX-IIF2, IMEX-CNAB,

IMEX-RK1 and IMEX-RK2 solutions) with the analytical solution for the PDE system

(4.39)-(4.40). One can observe that the numerical solutions mimic the analytical solution

very well without oscillations for all the transport cases, across space and time. Figures

4.4 and 4.5 compare IMEX-BDF solution with the analytical solution. One can observe

that the IMEX-BDF solutions are very inaccurate for all the transport cases and across

space and time. Further investigations reveal that the IMEX-RK2 scheme performed

better than IMEX-RK1 scheme, thus, we only consider IMEX-RK2, IMEX-IIF2 and

IMEX-CNAB schemes in further investigations to follow. Moreover, errors and orders

(measured with the L∞ norm) for the IMEX-RK2, IMEX-IIF2 and IMEX-CNAB schemes

are provided in Table 4.1. One can observe that the IMEX-RK2, IMEX-IIF2 and IMEX-

CNAB solutions converged to the analytical solution with second order in all the flow

cases (i.e. low, high and critical Peclet number cases).

4.5.2 Accuracy test: stoichiometric method

In this section, we present results on accuracy of the stoichiometric decoupling proce-

dure, that were obtained using IMEX-RK2, IMEX-IIF2 and IMEX-CNAB to discretize

82



the Gauss-Jacobi model (4.8)-(4.10) and stoichiometric model (4.13) for hydrogen ions.

Accuracy is measured by the error (called model reduction error) between the numerical

solution of a PDE in the stoichiometric model and the numerical solution of a PDE in the

the Gauss-Jacobi model. The PDEs in both models are evolution equations for hydrogen

ions (the chemical species of interest). We define the model reduction error as follows:

Model reduction error = �SOLG − SOLS�∞ (4.46)

and where SOLS is a numerical solution of the stoichiometric model and SOLG is numer-

ical solution of the Gauss-Jacobi model. Some input data used in the experiments are

given by:

Lx = 2π, T = 1,
d

dx
p = −0.004, Kf = 0.13, Kb = 0.0025, Kh = 1,

U20 = 0.01 cos(x), U30 = 0.0001 cos(x), U40 = 0.0001 cos(x).

Figures 4.6 and 4.7 show profiles of hydrogen concentrations in the stoichiometric and

Gauss-Jacobi models, across numerical schemes, space and time. One can observe that the

concentration of hydrogen ions reduces in space (relative to the initial concentration) and

time. This observation is expected in an AMD remediation reactor. One can also observe

that the solution from the stoichiometric model mimic the solution from the Gauss-Jacobi

model very well without oscillations (across numerical schemes, space and time) for all

the transport cases. Clearly, it can be observed that the transport cases (advection,

diffusion and advection-diffusion) have no effect on the accuracy of the solution of the

stoichiometric model.

Figures 4.8 and 4.9 show model reduction error profiles and Tables 4.2, 4.3 and 4.4

contain model reduction errors across numerical schemes and transport cases. For all the

transport cases the model reduction errors measured with IMEX-IIF2 and IMEX-CNAB

solutions, oscillated in a very small neighbourhood of 9 × 10−7. Thus the stoichiometric

method is accurate since the model reduction error is negligible. However, the model re-

duction errors computed with IMEX-RK2 solutions behaved slightly different in the fully

nonlinear and advection transport cases. The reduction errors decreased monotonically

into the neighbourhood of 9 × 10−7 and then oscillated in a small neighbourhood. This
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observation can be seen clearly in Figures 4.9b, 4.9c and 4.9d, where Buckley-Leverett

and linear fluxes are used in the advection and fully nonlinear transport cases.

4.5.3 Simulation cost: stoichiometric method

In this Section, we present and discuss results on cost of simulating the stoichiometric

and Gauss-Jacobi models. We measure cost by the CPU time, CPU time differences and

relative CPU time that the numerical schemes require to solve the Gauss-Jacobi model

and the stoichiometric model. We consider a fully nonlinear flow case where Buckley-

Leverett flux and nonlinear diffusivity (Γkk = 1E − 4 cos(Uk)) are used. The CPU time

differences and relative CPU time are defined as follows:

CPU time difference = CPUL − CPUS (4.47)

and

Relative CPU time =
CPUL − CPUS

CPUL

(4.48)

where CPUS is CPU time for the stoichiometric model and CPUL is CPU time for the

Gauss-Jacobi model. In the experiments, we fixed the final time at ten (T = 1) and used

a fine spatial resolution (600-900 spatial steps with Δt = 0.5Δx) to ensure that results

are not affected much by numerical discretization errors.

The final time was set at T = 1, IMEX-IIF2, IMEX-CNAB and IMEX-RK2 dis-

cretizations were applied to the fully nonlinear flow cases in both models presented in

Section 4.3 and the CPU times for both models were measured. Figures 4.10a, 4.10c

and 4.10e show plots of CPU time against time steps. For all the schemes and for both

models, the CPU time generally increased with increasing number of time steps, how-

ever, the CPU time for the stoichiometric model recorded the least CPU time. Another

observation is that, the CPU time difference between the stoichiometric model and the

Gauss-Jacobi model increased with increasing time steps. This observation can be seen

clearly in Figures 4.10b, 4.10d and 4.10f.

Furthermore, to determine the CPU time saved by solving the stoichiometric model

instead of the Gauss-Jacobi model, the CPU time differences for both models (measured
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across all discretizations) were normalized by the CPU time for the Gauss-Jacobi model,

(i.e using Equation (4.48)). Figure 4.11 shows the results of the investigation. About 67

percent of CPU time will be saved if IMEX-IIF2 discretization is used, 71 percent will be

saved if IMEX-CNAB or IMEX-RK2 is used to solve the stoichiometric model instead of

the Gauss-Jacobi model.

4.6 Chapter summary

Numerical simulation of chemical transport phenomena is expensive and challenging due

to nonlinearity, high degrees of freedom, heterogeneity and stiffness. Model reduction

methods can be employed to make simulation possible or reduce the high degrees of

freedom and simulation cost.

In Section 4.1, the importance of spatio-temporal reactions and some interesting

research on such reactions have been highlighted. Most of the studies linearised the

processes to enable analytical studies on them, however, most spatio-temporal reaction

systems that occur in nature are nonlinear.

In Section 4.2, we presented a nonlinear reactive transport model (that is composed

of Ns partial differential equations) and applied the stoichiometric method to reduce the

degrees of freedom to any degree less or equal to Ns.

Further, a spatio-temporal nonlinear model for acid neutralization has been discussed

as an application problem in Section 4.3. The original full nonlinear model that has

three degrees of freedom was reduced to one degree of freedom, using the stoichiometric

method.

In Section 4.4, numerical schemes for discretizing the nonlinear reactive transport

models have been presented. Second order central differencing was used to discretize the

diffusion operator and conservative differencing with third order WENO reconstruction

was used to discretize the advection operator. Five second order time integrators (namely,

IMEX-IIF2, IMEX-CNAB, IMEX-RK1 and IMEX-RK2 schemes) that have stiffness-

resolving properties have been presented.

In Section 4.5, numerical experiments were conducted to verify the suitability of the

numerical schemes and to validate the efficiency/efficacy of the stoichiometric method for
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reactive transport systems. Results indicated that IMEX-IIF2, IMEX-CNAB and IMEX-

RK2 were most suitable for stiff problems. Results also show that the model reduction

errors induced by the stoichiometric method were negligible across space, time, schemes

and flow cases. Further, CPU time, differences and relative CPU time showed that

the stoichiometric method coupled with the numerical schemes can significantly reduce

simulation cost.

Therefore, by coupling the stoichiometric method with the numerical schemes pro-

vided, simulation cost of reactive transport models (both linear and nonlinear models)

can significantly be reduced without compromising accuracy.
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(a) aΔt = 1.5 (b) aΔt = −1.5

(c) aΔt = 12 (d) aΔt = 12

(e) dΔt = 1.5 (f) dΔt = 15

Figure 4.1: Stability regions for IMEX-IIF2, computed with different values of dΔt and aΔt
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Numerical schemes

Transport Nx

IMEX-IIF2 IMEX-CNAB IMEX-RK2

Error Order Error Order Error Order

10 0.3315 - 0.3325 - 0.3325 -

Diffusion (Pe = 0) 20 0.0817 2.0206 0.0819 2.0214 0.0819 2.0214

with 40 0.0195 2.0595 0.0196 2.0630 0.0196 2.0630

reaction 80 0.0048 2.0297 0.0048 2.0297 0.0048 2.0297

160 0.0012 2.0000 0.0012 2.0000 0.0012 2.0000

10 0.3389 - 0.3390 - 0.3399 -

Advection (Pe = ∞) 20 0.0829 2.0314 0.0829 2.0318 0.0825 2.0426

with 40 0.0198 2.0659 0.0198 2.0659 0.0199 2.0516

reaction 80 0.0050 1.9855 0.0050 1.9855 0.0050 1.9928

160 0.0012 2.0589 0.0012 2.0589 0.0012 2.0589

10 0.3374 - 0.3384 - 0.3393 -

Normal flow (Pe = Δx) 20 0.0825 2.0320 0.0828 2.0310 0.0823 2.0436

(advection-diffusion) 40 0.0197 2.0662 0.0197 2.0714 0.0196 2.070

with reaction 80 0.0048 2.0371 0.0048 2.0371 0.0048 2.0297

160 0.0012 2.0000 0.0012 2.0000 0.0012 2.0000

Table 4.1: Errors and orders (L∞) of the numerical schemes applied to solve system (4.39)-

(4.40), errors were computed using analytical solution (4.42). The solutions and errors were

computed for diffusion dominated, advection dominated and fully nonlinear transport cases

using Δt = 0.5Δx.
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(a) Diffusion-reaction/Nx = 20 (b) Diffusion-reaction/ Nx = 160

(c) Advection-reaction/Nx = 20 (d) Advection-reaction/Nx = 160

(e) Advection-diffusion-reaction/Nx = 20 (f) Advection-diffusion-reaction/Nx = 160

Figure 4.2: Numerical and analytical solutions for system (4.39)-(4.40). The solutions were

computed in diffusion dominated, advection dominated and normal transport cases
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(a) Diffusion-reaction/Nx = 20 (b) Diffusion-reaction/ Nx = 160

(c) Advection-reaction/Nx = 20 (d) Advection-reaction/Nx = 160

(e) Advection-diffusion-reaction/Nx = 20 (f) Advection-diffusion-reaction/Nx = 160

Figure 4.3: Numerical and analytical solutions for system (4.39)-(4.40). The solutions were

computed for diffusion, advection dominated and normal transport cases
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(a) Diffusion-reaction/Nx = 160 (b) Diffusion-reaction/ Nx = 160

(c) Advection-reaction/Nx = 20 (d) Advection-reaction/Nx = 160

(e) Advection-diffusion-reaction/Nx = 20. (f) Advection-diffusion-reaction/Nx = 160

Figure 4.4: IMEX-BDF solution and analytical solutions for system (4.39)-(4.40). The solutions

were computed for diffusion, advection, and normal transport cases.
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(a) Diffusion-reaction/Nx = 20 (b) Diffusion-reaction/ Nx = 160

(c) Advection-reaction/Nx = 20 (d) Advection-reaction/Nx = 160

(e) Advection-diffusion-reaction/Nx = 20 (f) Advection-diffusion-reaction/Nx = 160

Figure 4.5: IMEX-BDF solution and analytical solutions for system (4.39)-(4.40). The solutions

are obtained for diffusion dominated, advection dominated and normal transport cases.
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(a) Diffusion-reaction/IMEX-IIF2. (b) Diffusion-reaction/ IMEX-CNAB.

(c) Advection-reaction/IMEX-IIF2. (d) Advection-reaction/IMEX-CNAB.

(e) Advection-diffusion-reaction/IMEX-IIF2 (f) Advection-diffusion-reaction/IMEX-CNAB

Figure 4.6: Hydrogen concentration (across both time and space) in the Gauss-Jacobi model

(4.8)-(4.10) and stoichiometric model (4.13). Solutions were computed for diffusion dominated,

advection dominated and fully nonlinear transport cases with reaction.
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(a) Diffusion-reaction/Space. (b) Diffusion-reaction/ Time.

(c) Advection-reaction/Space. (d) Advection-reaction/Time.

(e) Advection-diffusion-reaction/Space (f) Advection-diffusion-reaction/Time

Figure 4.7: Hydrogen concentration (across time or space) in the Gauss-Jacobi model (4.8)-

(4.10) and stoichiometric model (4.13). Solutions were computed for diffusion dominated, ad-

vection dominated and fully nonlinear transport cases with reaction.
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Diffusion dominated transport

Diffusivity (Γkk) Nx

Numerical schemes

IMEX-IIF2 IMEX-CNAB IMEX-RK2

20 9.045526 9.045521 9.045521

30 8.972541 8.972537 8.972537

Γkk = 0.001Uk 40 8.926316 8.926316 8.926316

80 9.167396 9.167396 9.167396

90 9.121991 9.121991 9.121991

100 9.085575 9.085575 9.085575

20 9.044596 9.044597 9.044598

30 8.971614 8.971615 8.971615

Γkk = 0.0001 cos(Uk) 40 8.925498 8.925498 8.925498

80 9.166528 9.166528 9.166528

90 9.121132 9.121132 9.121132

100 9.084723 9.084723 9.084723

20 9.045416 9.045416 9.045416

30 8.972428 8.972428 8.972428

Γkk = 0.00001U2
k 40 8.926305 8.926305 8.926305

80 9.167384 9.167384 9.167384

90 9.121979 9.121979 9.121979

100 9.085563 9.085563 9.085563

Table 4.2: Model reduction errors (L∞) computed using the Gauss-Jacobi model (4.8)-(4.10) and

stoichiometric model (4.13), using IMEX-IIF2, IMEX-CNAB and IMEX-RK2 discretizations.

Solutions and errors were computed for a diffusion dominated nonlinear transport case. The

actual values in this table are 7 orders of magnitude smaller.
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Advection dominated transport

Flux Nx

Numerical schemes

IMEX-IIF2 IMEX-CNAB IMEX-RK2

20 9.046959 9.046959 10.119124

30 8.973472 8.973472 9.456461

Buckley-Leverett 40 8.927083 8.927083 9.068835

80 9.167792 9.167792 9.233987

90 9.122338 9.122338 9.174521

100 9.085883 9.085883 9.128068

20 9.051138 9.051138 32.822316

30 8.976056 8.976056 22.545088

Linear 40 8.928938 8.928938 17.822199

80 9.168702 9.168702 11.804073

90 9.123127 9.123127 11.245699

100 9.086579 9.086579 10.829188

20 9.045613 9.045613 9.180696

30 8.972561 8.972561 9.033514

Burgers 40 8.926404 8.926404 8.960603

80 9.167436 9.167436 9.175810

90 9.122025 9.122025 9.128628

100 9.085604 9.085604 9.090944

Table 4.3: Model reduction errors (L∞) computed using the Gauss-Jacobi model (4.8)-(4.10) and

stoichiometric model (4.13), using IMEX-IIF2, IMEX-CNAB and IMEX-RK2 discretizations.

Solutions and errors were computed for advection dominated nonlinear transport cases. The

actual values in this table are 7 orders of magnitude smaller.
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Fully nonlinear transport

Parameters Nx

Numerical schemes

IMEX-IIF2 IMEX-CNAB IMEX-RK2

20 9.046969 9.046969 10.119138

Buckley-Leverett flux 30 8.973483 8.973482 9.456473�
fk(Uk) =

0.016U2
k

(4U2
k+(1−Uk)2)

�
40 8.927094 8.927095 9.197874

with 80 9.167804 9.167804 9.233999

Γkk = 0.0001 cos(Uk) 90 9.122349 9.122349 9.174533

100 9.085894 9.085894 9.128079

20 9.045624 9.045623 9.180769

Burgers flux 30 8.972572 8.972572 9.033525�
fk(Uk) = 0.002U2

k

�
40 8.926416 8.926415 8.960614

with 80 9.167448 9.167448 9.175822

Γkk = 0.0001Uk 90 9.122026 9.122026 9.128629

100 9.085605 9.085605 9.090945

20 9.044792 9.044794 9.179845

Burgers flux 30 8.971747 8.971748 9.032685�
fk(Uk) = 0.002U2

k

�
40 8.925597 8.925597 8.959787

with 80 9.166580 9.166580 9.174952

Γkk = 0.0001 cos(Uk) 90 9.121178 9.121178 9.127779

100 9.084764 9.084764 9.090102

Table 4.4: Model reduction errors (L∞) computed using the Gauss-Jacobi model (4.8)-(4.10) and

stoichiometric model (4.13), using IMEX-IIF2, IMEX-CNAB and IMEX-RK2 discretizations.

Solutions and errors were computed for fully nonlinear transport cases. The actual values in

the table are 7 orders of magnitude smaller.

97



(a) Diffusion-reaction/IMEX-IIF2 errors. (b) Diffusion-reaction/IMEX-CNAB errors.

(c) Advection-reaction/IMEX-IIF2 errors. (d) Advection-reaction/IMEX-CNAB errors.

(e) Fully nonlinear model/IMEX-IIF2 errors (f) Fully nonlinear model/IMEX-CNAB errors

Figure 4.8: Model reduction errors (L∞) computed using the Gauss-Jacobi model (4.8)-(4.10)

and stoichiometric model (4.13), using IMEX-IIF2 and IMEX-CNAB discretizations. Solutions

and errors were computed for a diffusion, advection and fully nonlinear transport cases. The

actual values in this figure are 7 orders of magnitude smaller.
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(a) Diffusion-reaction/IMEX-RK2 errors. (b) Fully nonlinear model/ IMEX-RK2.

(c) Advection-reaction/IMEX-RK2 errors. (d) Advection-reaction/IMEX-RK2 errors.

Figure 4.9: Model reduction errors (L∞) computed using the Gauss-Jacobi model (4.8)-(4.10)

and stoichiometric model (4.13), using IMEX-RK2 discretization. Solutions and errors were

computed for diffusion, advection and fully nonlinear transport cases. The actual values in this

figure are 7 orders of magnitude smaller.
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(a) CPU time/IMEX-IIF2 scheme. (b) CPU difference/IMEX-IIF2 scheme.

(c) CPU time/IMEX-CNAB scheme. (d) CPU difference/IMEX-CNAB scheme.

(e) CPU time /IMEX-RK2 scheme (f) CPU difference/IMEX-RK2 scheme

Figure 4.10: CPU time and differences for the Gauss-Jacobi model (4.8)-(4.10) and stoichiomet-

ric model (4.13), using IMEX-IIF2, IMEX-CNAB and IMEX-RK2 discretizations. The solutions

were computed for a fully nonlinear flow case, using Burgers flux, Γkk = 0.0001 cos(Uk), Nx =

600, and Δt = 0.5Δx.
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(a) Relative CPU/IMEX-IIF2/Nx = 600. (b) Relative CPU /IMEX-IIF2/Nx = 900..

(c) Relative CPU /IMEX-CNAB/Nx = 600. (d) Relative CPU /IMEX-CNAB/Nx = 900.

(e) Relative CPU /IMEX-RK2/Nx = 600. (f) Relative CPU time/IMEX-RK2/Nx = 900.

Figure 4.11: Relative CPU time for the Gauss-Jacobi model (4.8)-(4.10) and stoichiometric

model (4.13), using IMEX-IIF2, IMEX-CNAB and IMEX-RK2 discretizations. The solutions

were computed for a fully nonlinear flow case, using Burgers flux, Γkk = 0.0001 cos(Uk), Nx =

600, or 900, and Δt = 0.5Δx.
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Chapter 5

Dispersion preserving schemes for

reactive transport processes

In this chapter, global spectral analysis of reactive transport is discussed. Dispersion re-

lations are used to analyse the dispersion-preserving abilities of some temporal numerical

schemes, in order to establish their suitability for simulating reactive transport processes.

Remark: The results presented here are under review for possible publication.

5.1 Introduction

Numerical schemes are alternative approaches to analytical approaches in simulating

complicated phenomena. However, numerical schemes are approximations to exact so-

lutions, thus, the level of accuracy of numerical schemes depend on the ability of the

scheme to closely mimic properties of governing equations [39, 32, 157]. Inaccurate nu-

merical schemes introduce non-physical behaviours in the solution, thus, it is necessary

to develop accurate numerical schemes as alternatives to the exact solutions [157]. This

requires rigorous error analysis of numerical schemes for a particular model.

However, the non-availability of exact solutions for most complex phenomena (espe-

cially non-linear problems) makes error analysis of numerical schemes a difficult task and

sometimes impossible without simplifying assumptions. Models are often linearised and

then followed by analyses to obtain analytical relations (e.g. exact solutions, dissipation

and dispersion expressions), which are relevant for analysing numerical schemes [157].
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There are many techniques for analysing numerical schemes, the popular techniques in-

clude Taylor expansions, Von Neumann stability analysis [157, 163, 154], GKS stability

theory [157, 60] and time-stability analysis [26, 186].

Further, each technique has merits and limitations depending on the problem under

consideration. Spectral analysis has been shown in [157, 137] to be efficient for analysing

parabolic and hyperbolic problems. Spectral analysis of parabolic or hyperbolic problems

result in dispersion/dissipation relations which can be used to analyse the numerical

schemes for corresponding problems. Numerical schemes that satisfy dispersion relations

for a particular propagation problem are said to be dispersion preserving (DP) schemes

for that problem.

Global spectral analysis has recently gained popularity in research involving propaga-

tion problems [137, 143, 145, 144]. The authors in [141] have analysed numerical schemes

for linear advection equation, by adapting the spectral analysis presented in [170]. By

performing spectral analysis on the linear advection equation, the authors in [140] have

shown that numerical methods have different error and signal dynamics. Finite difference

schemes for linear diffusion equation have been analysed in [138]. One notable observation

in the linear advection and diffusion cases is that, numerical phase speed and numerical

diffusion are not constant. Positivity preserving Galerkin method for advection-diffusion-

reaction have also been analysed in [77] using the spectral approach. In [139] spectral

analysis of Galerkin finite element method for the advection equation have been discussed.

One observation with the finite element methods is good error dispersion behaviour.

Furthermore, compact finite difference and finite volume methods for Euler equations

have been discussed in [142]. The compact finite difference methods proved superior in the

case of Riemann problems (for the Euler equations). Finite difference methods for Navier-

Stokes equations have been analysed by traditional techniques in [150, 89, 31, 175]. In

[157], the authors extended the spectral approach to compact finite difference methods

for linear advection-diffusion equation in order to ascertain accurate schemes for the

Navier-Stokes equations.

In this discussion, time integrators for the linear advection-diffusion-reaction equation

are analysed in order to ascertain accurate integrators for chemical transport models.

As stated in previous chapters (and discussed in [19, 169, 132, 21, 39, 107, 184]), not
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all numerical schemes are suitable for chemical models, due to high degrees of freedom,

stiffness and positivity constraints. Theta integrators and second order diagonally implicit

Runge-Kutta (DIRK2) integrators have been shown to be robust in well-mixed chemical

problems (discussed in Chapter 3), and IMEX schemes have been shown to be robust

in chemical transport problems (discussed in Chapter 4). In this chapter, dispersion

properties of the Theta, DIRK2 and some IMEX schemes will be discussed.

In Section 5.2, the unknown concentration variable and linear transport equation are

transformed to spectral variable and equation respectively, and exact dispersion relations

and solutions are derived. In Section 5.3, general numerical dispersion relations for the

linear transport equation are derived. In Section 5.4, dispersion analysis of the Theta,

DIRK2, and some IMEX integrators are discussed. In Section 5.5, numerical experiments

are conducted to confirm the analyses. Finally, the chapter is concluded in Section 5.6.

5.2 Spectral analysis of reactive transport equation

Chemical transport phenomena involves physical processes (such as advection and dif-

fusion) and chemical reactions. A simple model for such phenomena is the linear 1D

advection-diffusion-reaction equation given by:

∂U

∂t
+ u

∂U

∂x
= Γ

∂2U

∂2x
+KrU, (5.1)

where U denotes concentration of a chemical species, x is a space variable, t is a time

variable, u denotes constant transport velocity, Kr is chemical reactivity and Γ denotes

constant diffusivity. Three special cases of the linear equation (5.1) occur when the

reactivity Kr assumes zero, positive or negative values. Equation (5.1) models pure

diffusive, diffusive-destructive and diffusive-productive physico-chemical problems when

the reactivity Kr assumes zero, negative or positive values respectively.

The exact dispersion relations for the linear transport equation are firstly, determined

by applying global spectral analysis. Thus, by transforming the concentration function

U(x, t), from the x− t plane to the hybrid spectral plane [157, 137, 141], we obtain:

U(x, t) =

�
U(κ, t)eiκxdκ, (5.2)
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where U(κ, t) is the Fourier amplitude and κ is the wave number. Using the spectral

transform (5.2), the linear chemical transport model (5.1) can be represented in the

spectral plane as follows:

∂U
∂t

+ iuκU = −Γκ2U +KrU , (5.3)

Given a general initial condition U(x, 0) =
�
U0(κ)e

iκxdκ, the exact solution of (5.3)

can be obtained as follows:

U(κ, t) = U0(κ)e
−(iκu+κ2Γ−Kr)t. (5.4)

Moreover, the concentration of the chemical species can also be represented in the

bi-dimensional Fourier-Laplace transform [157]:

U(x, t) =

��
U(κ,ω)ei(κx−ωt)dκdω, (5.5)

where ω denotes circular frequencies. Applying the Fourier-Laplace transform (5.5)

directly in the linear convection-diffusion-reaction equation (5.1), yields the physico-

chemical dispersion relation:

ω = uκ− i(κ2Γ−Kr). (5.6)

Wave propagation problems are characterised by dispersion relations, that yield in-

formation about the phase and group velocities of propagating signals [157]. Dispersion

relation (5.6) is different from the one obtained in [157] for advection-diffusion equation,

as it indicates that chemical reactions also affect signal propagation. Any numerical

algorithm for solving a wave propagation problem can only be suitable/accurate if it sat-

isfies the dispersion relation for the problem [157, 137, 140]. In [144], multiple time level

schemes have been analysed based on correct dispersion relations for convection prob-

lems and in [157], the idea has been adapted for convection-diffusion problems. In this

discussion, the same idea will be used to analyse the linear chemical transport problem.

From the dispersion relation (5.6), one can obtain the complex physico-chemical phase

speed for the linear chemical transport equation as follows:

uex =
ω

κ
= u− i(κΓ− Kr

κ
). (5.7)
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And from the same relation (i.e. Equation (5.6)) the physical group velocity is given

by [157]:

Vex =
dω

dκ
= u− i2κΓ. (5.8)

Denoting the real and complex parts of the physical group velocities by Re(Vex) and

Im(Vex) respectively, and using the relation (5.8) the diffusivity can be expressed as

follows:

Γ =
i

2κ

�
Re(Vex)− u

�
− Im(Vex)

2κ
(5.9)

Since diffusivity is a real quantity for physical systems, the imaginary part of (5.9) must

vanish, thus:

Re(Vex) = u. (5.10)

Furthermore, the diffusivity in the linear transport equation (5.1) is positive, the real

part of the complex quantity (5.9) must be positive, implying:

Im(Vex) < 0. (5.11)

Denote the time step size by Δt, spatial step size by Δx, Peclet number by Pe =
ΓΔt
Δx2 ,

Courant-Friedrich-Lewis (CFL) number by Cf = uΔt
Δx

, λr = KrΔt, and the physico-

chemical amplification factor by Gex. The amplification factor of a numerical method or

the exact solution is defined as follows [157]:

Gex =
U(k, t+Δt)

U(κ, t) (5.12)

Using the analytical solution (5.4) in definition (5.12) yields the following physico-

chemical amplification factor:

Gex = e−(iκu+κ2Γ−Kr)Δt, (5.13)

Using Peclet and CFL number relations, the amplification factor (5.13) can be re-

expressed as follows:

Gex = e−iωΔt

= e−Pe(κΔx)2+λre−iCf (κΔx). (5.14)
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The magnitude of the physico-chemical amplification factor Gex given by (5.12) will

always be less than one (i.e. the usual stability criterion for numerical methods) if:

−Pe(κΔx)2 + λr < 0. (5.15)

One can observe that condition (5.15) is always satisfied by pure diffusive problems

(where λr = 0) and diffusive-destructive problems (where λr < 0) for the entire range of

κΔx. However, diffusive-productive problems (where λr > 0) will satisfy condition (5.15)

only if:

κΔx >

�
λr

Pe

. (5.16)

Thus (κΔx)c =
�

λr

Pe
is a critical dimensionless number that determines the constraint

|Gex| < 1 for diffusive-productive problems.

The absolute part of Gex in (5.14) is the amplification factor of the exact solution.

Contours (in κΔx−Cf plane) of the absolute part of Gex are shown in figure 5.1 for the

pure diffusive case using Peclet numbers; Pe = 0.01, 0.05, 0.25 and 0.5. The amplification

factor decreases across increasing wave numbers but does not depend on CFL numbers.

Figures 5.2b-5.2f show contours of |Gex| in the diffusive-destructive case. Figures 5.2a-5.2e

show contours of |Gex| in the diffusive-productive case. The observations in the productive

and destructive cases are not very different from the pure diffusive case. Numerical

integrator for the linear problem are therefore, required to closely mimic this behaviour.

5.3 Numerical dispersion relations

In the spectral analysis of the 1D equation, exact derivatives of (5.2) were used, however,

numerical approximations can be applied instead. If the spectral representation (5.2) is

substituted into the advection-diffusion reaction equation and the advection and diffusion

derivatives are numerically approximated, a semi-discrete equation is obtained as follows:

∂U
∂t

+ iuapxκU = −Γapxκ
2U +KrU , (5.17)

where uapx and Γapx result from the numerical approximations of the advection and

diffusion terms, respectively. The quantities uapx and Γapx represent numerical phase

speed and numerical diffusion, respectively.
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(a) Pe = 0.01,λr = 0.0 (b) Pe = 0.05,λr = 0.0

(c) Pe = 0.25,λr = 0.0 (d) Pe = 0.5,λr = 0.0

Figure 5.1: Contour for the physico-chemical amplification factor |Gex| of the analytical solution
for 1D linear convection-diffusion-reaction equation. The contours display the behaviour of |Gex|
for varying Peclet numbers in a pure diffusive problem.

The analytical solution of the semi-discrete equation (5.17) with initial data U(x, 0) =
�
U0(κ)e

iκxdκ is given by:

U(κ, t) = U0(κ)e
−(iuapxκ+Γapxκ2−Kr)t. (5.18)

Further, applying the Fourier-Laplace transform (5.5) to the linear convection-diffusion-

reaction equation (5.1) and numerically approximating the space-time derivatives yields

the following numerical physical-chemical dispersion relation:

ωapx = uapxκ− i(κ2Γapx −Kr). (5.19)

Analogously, numerical approximations of the linear problem (5.1) possess amplifica-
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tion factors that control the behaviour of numerical solutions as time evolves. To achieve

acceptable accuracy it is necessary for the numerical schemes to preserve some vital prop-

erties of the linear problem [157]. Thus, the amplification factor of the numerical schemes

should closely mimic the behaviour of the analytical amplification factor. Applying the

numerical solution (5.18) in definition (5.12) yields the following numerical amplification

factor:

Gapx = e−(κ2Γapx−Kr)Δte−iκuapxΔt. (5.20)

In general, the numerical phase speed uapx and numerical diffusion Γapx vary across

numerical schemes. According to the numerical amplification factor (5.20), the shift in

phase for each time step is given by:

φ = κuapxΔt, (5.21)

and is related to the amplification factor by the expression:

tan(φ) = −
�Im(Gapx)

Re(Gapx)

�
. (5.22)

Thus, a normalized numerical phase velocity uapx, relating the amplification factor

can be obtained from (5.21) and (5.22) as follows:

uapx

u
= − 1

Cf (kΔx)
arctan

�Im(Gapx)

Re(Gapx)

�
. (5.23)

The numerical group velocity Vapx, is the derivative of the numerical dispersion re-

lation (5.19) with respect to wave number, i.e. Vapx = dωapx

dκ
[157]. Normalizing and

simplifying the resulting expression yields:

Vapx

V
= − 1

Cf

d

d(kΔx)

�
arctan

�Im(Gapx)

Re(Gapx)

��
. (5.24)

An expression relating numerical diffusion Γapx, with the magnitude of the amplifica-

tion factor can be obtained from (5.20) as follows:

Γapx

Γ
=

λr − ln |Gapx|
Pe(κΔx)2

. (5.25)

The normalized numerical diffusion relation (5.25) of a particular scheme is unity if

the scheme has the same diffusion as the exact solution. If the relation is greater than one,
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then the scheme is highly diffusive and if the relation is less than one, then the method

has low diffusion. If the diffusion relation is negative then the numerical scheme is anti-

diffusive for a diffusive problem, thus the scheme is unstable. Similar interpretations

are given to the normalized relations for the phase speed, group velocity and amplifica-

tion factors. Thus, to achieve high accurate numerical simulation of the time-dependent

advection-diffusion-reaction problem, it is important that numerical integrators preserve

most of the physical and chemical dispersion properties including amplification factor,

numerical diffusion, phase speed and group velocity. The Theta and DIRK2 schemes that

have been discussed earlier, will be analysed using the normalized relations (to determine

their dispersion-preserving abilities), in order to establish their suitability for reactive

transport problems.

Proposition 5.1 (Theta scheme). The amplification factor of the theta scheme (with θ

in the range 0 ≤ θ ≤ 1) for the 1D advection-diffusion reaction equation (5.1) is given

by:

Gθ(θ) =
(1− θP )(1 + (1− θ)P ) + θ(1− θ)(CfκΔx)2

�
1− θP

�2
+ (θCfκΔ)2

− i
CfκΔx

�
1− θP

�2
+ (θCfκΔ)2

,

where P = −Pe(κΔx)2 + λr.

Proof. Applying Fourier-spectral method to the space derivatives of the 1D problem (5.1)

yields the ODE (5.3), implying:

F (U) = −iωU . (5.26)

Therefore, the theta-Fourier spectral scheme states that:

�
1 + θiωΔx

�
Un+1 =

�
1− θiωΔx

�
Un. (5.27)

Thus using (5.27), the theta amplification factor Gθ =
Un+1

Un , can be derived as follows:

Gθ =
1− θiωΔx

1 + θiωΔx
. (5.28)

Substituting,

−iωΔx = −iCf (κΔx)− Pe(κΔx)2 + λr, (5.29)
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and manipulating algebraically yields:

Gθ =
(1− θP )(1 + (1− θ)P ) + θ(1− θ)(CfκΔx)2

�
1− θP

�2
+ (θCfκΔ)2

− i
CfκΔx

�
1− θP

�2
+ (θCfκΔ)2

, (5.30)

where P = −Pe(κΔx)2 + λr.

Proposition 5.2 (DIRK2 scheme). The second order diagonally implicit Runge-Kutta

scheme (DIRK2) with α = 1±
√
2
2
, that states:

U∗ = Un +ΔtF (U∗),

Un+1 =
2α− 1

α
Un +

1− α

α
U∗ + αΔtF (Un+1), (5.31)

has amplification function given by:

GDIRK2(α) =

2α−1
α

�
(1− αP )3 + (CfκΔx)2(1− αP )

�
+ 1−α

α
(1− αP )2 − (αCfκΔx)2

�
(1− αP )2 + (CfκΔx)2

�2

− i
(2α− 1)CfκΔx

�
(1− αP )2 + (CfκΔx)2

�
+ 2(1− α)CfκΔx(1− αP )

�
(1− αP )2 + (CfκΔx)2

�2 .

Proof. Apply the slope function given by Expression (5.26) in the ODE (5.31) and ma-

nipulate the result algebraically to yield :

GDIRK2(α) =

2α−1
α

�
(1− αP )3 + (CfκΔx)2(1− αP )

�
+ 1−α

α
(1− αP )2 − (αCfκΔx)2

�
(1− αP )2 + (CfκΔx)2

�2

(5.32)

− i
(2α− 1)CfκΔx

�
(1− αP )2 + (CfκΔx)2

�
+ 2(1− α)CfκΔx(1− αP )

�
(1− αP )2 + (CfκΔx)2

�2 .

Furthermore, as shown earlier in Chapter 4, IMEX schemes admit larger time step

sizes and are less expensive for simulating advection-diffusion reaction problems, thus,

IMEX schemes that are composed of Backward Euler and Forward Euler schemes will be
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analysed to establish their dispersion preserving abilities. Let H(U) denote a non-stiff

function and G(U) denote a stiff function such that the following ODE holds:

∂U
∂t

= G(U) +H(U). (5.33)

The non-stiff function is the discretized diffusion and reaction terms while the dis-

cretized advection term is the nonstiff function in the 1D reactive transport problem

(5.1).

Proposition 5.3. Given the 1D reactive transport problem (5.1), one IMEX combination

of Euler schemes (named IMEX-FBE1) given by:

Un+1 = Un +Δt
�
G(Un+1) +H(Un)

�
(5.34)

has amplification function given by:

GFBE1 =
1

1− P
− i

CfκΔx

1− P
.

Proof. Using Fourier-spectral method for the space derivatives yields the following func-

tions:

H(U) = −iuκU , G(U) = (−κ2Γ+Kr)U . (5.35)

Using expression (5.35) in expression (5.34), the IMEX-FBE1-Fourier spectral scheme

for the 1D linear problem states that:

(1− P )Un+1 = (1− iCfκΔx)Un. (5.36)

Thus, the amplification factor for IMEX-FBE1 is given by:

GFBE1 =
1

1− P
− i

CfκΔx

1− P
. (5.37)

Proposition 5.4. Given the 1D reactive transport problem (5.1), another IMEX combi-

nation of Euler schemes (named IMEX-FBE2) that states:

U∗ = Un +Δt
�
G(U∗) +H(Un)

�

Un+1 = Un +Δt
�
G(U∗) +H(U∗)

�
(5.38)
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has amplification function given by:

GFBE2 =
1− (CfκΔx)2

1− P
− i

CfκΔx(1 + P )

1− P
.

Proof. The slope function for the 1D reactive transport problem is given by expression

(5.35), thus, substituting into IMEX-FBE2 scheme (5.38) yields the IMEX-FBE2-Fourier

spectral scheme:

(1− P )U∗ = (1− iCfκΔx)Un

Un+1 = Un + (P − iCfκΔx)U∗ (5.39)

It follows from (5.39) that, the amplification function for IMEX-FBE2 is given by:

GFBE2 =
1− (CfκΔx)2

1− P
− i

CfκΔx(1 + P )

1− P
. (5.40)

5.4 Analysis of the time integrators

Given the amplification functions for the Theta, DIRK2 and IMEX schemes, it is a trivial

task to compute the normalized dispersion relations (5.23) - (5.25), for each of the schemes

and for each of the transport conditions (pure diffusive, diffusive-destructive and diffusive

productive transport cases). Among the theta schemes, only results for Crank-Nicholson

are presented here. However, results for the first order theta schemes indicate that,

backward Euler (also known as implicit Euler) scheme has better dispersion-preserving

abilities than the forward Euler (also known as explicit Euler) scheme.

Contours of all the normalized dispersion relations for all the schemes (and for all

the three transport cases of the 1D linear advection-diffusion reaction problem) have

been displayed in Figures 5.3-5.8. The results will be analysed according to schemes and

transport cases.

However, before the analysis, a preamble is introduced to simplify the presentation of

results. When a normalized relation assumes a value of one, the corresponding integrator

is consistent with regards to that relation, while negative values indicate instability. To
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proceed with the analysis, a closed interval containing the range of values (for a particular

normalized relation) is defined. If the interval contain one then the scheme is consistent,

and if the interval contains negative values then the scheme is conditionally stable. The

region of instability is the area between the minimum value and zero.

5.4.1 Pure diffusive transport

Pure diffusive transport problems are those that do not involve reactions or any form of

sources or sinks. Thus, dispersion properties of the numerical schemes are analysed here,

for such transport problems. Contours of all the normalized relations for the schemes

(applied to the pure diffusive problem) have been displayed in Figures 5.3 and 5.4.

The normalized amplification factor for Crank-Nicholson integrator decreased in the

closed interval [0.31, 1], across CFL and wave numbers (see Figure 5.3a), while the nor-

malized amplification factor for DIRK2 increased in the closed interval [0.21, 4.62] across

CFL and wave numbers (see Figure 5.3b). Further, the normalized amplification factor for

IMEX-FBE1 integrator decreased in the closed interval [1, 9.98], across CFL and wave

numbers (see Figure 5.4a), while the normalized amplification factor for IMEX-FBE2

increased in the closed interval [0.87, 97.87] across CFL and wave numbers (see Figure

5.4b). Since all the intervals contain one, then all the schemes are consistent with regards

to amplification factor. However, Crank-Nicholson has the most accurate amplification

factor, followed by DIRK2 scheme (since DIRK2 and Crank-Nicholson are second order

schemes, the observation here is not surprising). Among the first order IMEX schemes,

the amplification factor for IMEX-FBE1 is more accurate than the amplification factor

of IMEX-FBE2 scheme. Since all the intervals do not contain negative numbers, then all

the schemes are stable with regards to amplification factor.

The normalized phase speed for Crank-Nicholson integrator decreased in the closed

interval [0.04, 1], across CFL and wave numbers (see Figure 5.3c), while the normalized

phase speed for DIRK2 decreased in the closed interval [−1.91, 2] across CFL and wave

numbers (see Figure 5.3d). Further, the normalized phase speed for IMEX-FBE1 inte-

grator decreased in the closed interval [0.15, 1], across CFL and wave numbers (see Figure

5.4c), while the normalized phase speed for IMEX-FBE2 decreased in the closed interval
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[−1.57, 1.57] across CFL and wave numbers (see Figure 5.4d). Since all the intervals

contain one, then all the schemes are consistent with regards to phase speed. However,

IMEX-FBE1 has the most accurate phase speed, followed by Crank-Nicholson scheme.

IMEX-FBE1 and Crank-Nicholson schemes are unconditionally stable with regards to

phase speed (since their intervals do not contain negative values), while IMEX-FBE2 and

DIRK2 are conditionally stable.

The normalized group velocity for Crank-Nicholson integrator decreased in the closed

interval [0.1, 1], across CFL and wave numbers (see Figure 5.3e), while the normalized

group velocity for DIRK2 decreased in the closed interval [−2.53, 4] across CFL and

wave numbers (see Figure 5.3f). Further, the normalized group velocity for IMEX-FBE1

integrator decreased in the closed interval [0.01, 1], across CFL and wave numbers (see

Figure 5.4e), while the normalized group velocity for IMEX-FBE2 increased in the closed

interval [0, 1.33] across CFL and wave numbers (see Figure 5.4f). Since all the intervals

contain one, then all the schemes are consistent with regards to group velocity. However,

Crank-Nicholson has the most accurate group velocity, followed by IMEX-FBE1 scheme.

All except DIRK2 scheme, are unconditionally stable with regards to group velocity, since

their intervals do not contain negative values.

5.4.2 Diffusive-productive transport

Diffusive-productive transport problems are those that chemical reactions produce con-

centration sources. Thus, dispersion properties of the numerical schemes are analysed

here, for such transport problems. Contours of all the normalized relations for the schemes

(applied to the pure diffusive-productive problem) have been displayed in Figures 5.5 and

5.6.

The normalized amplification factor for Crank-Nicholson integrator decreased in the

closed interval [0.25, 1], across CFL and wave numbers (see Figure 5.5a), while the nor-

malized amplification factor for DIRK2 increased in the closed interval [0.11, 5.89] across

CFL and wave numbers (see Figure 5.5b). Further, the normalized amplification factor

for IMEX-FBE1 integrator decreased in the closed interval [1, 9.96], across CFL and wave

numbers (see Figure 5.6a), while the normalized amplification factor for
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IMEX-FBE2 increased in the closed interval [0.75, 97.18] across CFL and wave numbers

(see Figure 5.6b). Since all the intervals contain one, all the schemes are consistent

with regards to amplification factor. However, Crank-Nicholson has the most accurate

amplification factor, followed by DIRK2 scheme. Among the first order IMEX schemes,

the amplification factor for IMEX-FBE1 is more accurate than that for IMEX-FBE2

scheme. Since all the intervals do not contain negative numbers, all the schemes are

stable with regards to amplification factor, in diffusive-productive transport problems.

The normalized phase speed for Crank-Nicholson integrator decreased in the closed

interval [0.04, 1] across CFL and wave numbers (see Figure 5.5c), while the normalized

phase speed for DIRK2 decreased in the closed interval [−1.91, 2] across CFL and wave

numbers (see Figure 5.5d). Further, the normalized phase speed for IMEX-FBE1 inte-

grator decreased in the closed interval [0.15, 1], across CFL and wave numbers (see Figure

5.6c), while the normalized phase speed for IMEX-FBE2 decreased in the closed interval

[−1.57, 1.57] across CFL and wave numbers (see Figure 5.6d). Since all the intervals

contain one, then all the schemes are consistent with regards to phase speed. However,

IMEX-FBE1 has the most accurate phase speed, followed by Crank-Nicholson scheme.

IMEX-FBE1 and Crank-Nicholson schemes are unconditionally stable with regards to

phase speed (since their intervals do not contain negative values), while IMEX-FBE2 and

DIRK2 are conditionally stable, if diffusive-productive problems are considered.

The normalized group velocity for Crank-Nicholson integrator decreased in the closed

interval [0.1, 1.01], across CFL and wave numbers (see Figure 5.5e), while the normalized

group velocity for DIRK2 decreased in the closed interval [−10.49, 12.34] across CFL

and wave numbers (see Figure 5.5f). Further, the normalized group velocity for IMEX-

FBE1 integrator decreased in the closed interval [0.01, 1], across CFL and wave numbers

(see Figure 5.6e), while the normalized group velocity for IMEX-FBE2 increased in the

closed interval [−0.03, 2.49] across CFL and wave numbers (see Figure 5.6f). Since all the

intervals contain one, then all the schemes are consistent with regards to group velocity.

However, Crank-Nicholson has the most accurate group velocity, followed by IMEX-FBE1

scheme. DIRK2 and IMEX-FBE2 are conditionally stable with regards to group velocity

since their intervals contain negative values, while Crank-Nicholson and IMEX-FBE1 are

unconditionally stable.
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5.4.3 Diffusive-destructive case

Diffusive-destructive transport problems are those that chemical reactions produce con-

centration sinks. Thus, dispersion properties of the numerical schemes are analysed here,

for such transport problems. Contours of all the normalized relations for the schemes

(applied to the pure diffusive-destructive problem) have been displayed in Figures 5.7

and 5.8.

The normalized amplification factor for Crank-Nicholson integrator decreased in the

closed interval [0.38, 1] across CFL and wave numbers (see Figure 5.7a), while the nor-

malized amplification factor for DIRK2 increased in the closed interval [0.31, 4.23] across

CFL and wave numbers (see Figure 5.7b). Further, the normalized amplification factor

for IMEX-FBE1 integrator decreased in the closed interval [1.02, 10.35], across CFL and

wave numbers (see Figure 5.8a), while the normalized amplification factor for IMEX-

FBE2 increased in the closed interval [0.98, 101.46] across CFL and wave numbers (see

Figure 5.8b). Since all the intervals contain one, then all the schemes are consistent

with regards to amplification factor. However, Crank-Nicholson has the most accurate

amplification factor followed by DIRK2 scheme. Among the first order IMEX schemes,

the amplification factor for IMEX-FBE1 is more accurate than the amplification factor

of IMEX-FBE2 scheme. Since all the intervals do not contain negative numbers, then

all the schemes are stable with regards to amplification factor, if diffusive-destructive

transport problems are considered.

The normalized phase speed for Crank-Nicholson integrator decreased in the closed

interval [0.04, 1.03] across CFL and wave numbers (see Figure 5.7c), while the normalized

phase speed for DIRK2 decreased in the closed interval [−0.95, 1.26] across CFL and wave

numbers (see Figure 5.7d). Further, the normalized phase speed for IMEX-FBE1 inte-

grator decreased in the closed interval [0.15, 1], across CFL and wave numbers (see Figure

5.8c), while the normalized phase speed for IMEX-FBE2 decreased in the closed interval

[−1.57, 1.57] across CFL and wave numbers (see Figure 5.8d). Since all the intervals

contain one, then all the schemes are consistent with regards to phase speed. However,

IMEX-FBE1 has the most accurate phase speed, followed by Crank-Nicholson scheme.

IMEX-FBE1 and Crank-Nicholson schemes are unconditionally stable with regards to
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phase speed (since their intervals do not contain negative values), while IMEX-FBE2 and

DIRK2 are conditionally stable, if diffusive-destructive problems are considered.

The normalized group velocity for Crank-Nicholson integrator decreased in the closed

interval [0.1, 1.01], across CFL and wave numbers (see Figure 5.7e), while the normalized

group velocity for DIRK2 decreased in the closed interval [−1, 2.51] across CFL and

wave numbers (see Figure 5.7f). Further, the normalized group velocity for IMEX-FBE1

integrator decreased in the closed interval [0.01, 1], across CFL and wave numbers (see

Figure 5.8e), while the normalized group velocity for IMEX-FBE2 increased in the closed

interval [−0.01, 0.61] across CFL and wave numbers (see Figure 5.8f). Since all the

intervals contain one, then all the schemes are consistent with regards to group velocity.

However, Crank-Nicholson has the most accurate group velocity, followed by IMEX-

FBE1 scheme. All except DIRK2 scheme, are unconditionally stable with regards to

group velocity, if diffusive-destructive problems are considered.

5.5 Numerical experiments

The exact solution for the ODE (5.3) can be expressed in terms of Peclet and wave

numbers as follows:

U(κ, tn) = U0(κ)e
−n(iCfκΔx+Pe(κΔx)2−λr), (5.41)

where the nth time point is given by tn = nΔt. The solutions of the recurrence relations

(5.34) and (5.38) can be written as:

Un = U0(κ)G
n
apx, (5.42)

where Gapx is given by GFBE1 in (5.37) for IMEX-FBE1 or GFBE2 in (5.40) for IMEX-

FBE2.

Figures 5.9 and 5.10 compare (in a spectral plane) the analytical solution and numer-

ical solutions for the 1D linear advection-diffusion reaction problem. It can be observed

from 5.9 that the Crank-Nicholson solution is more accurate than DIRK2 solution, for all

the three transport cases. Similarly, it can be observed in Figure 5.10 that IMEX-FBE1
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is more accurate than IMEX-FBE2, in all the three transport cases. Although numerical

schemes do not have exact dispersion-dissipation properties, the observation here shows

that Crank-Nicholson and IMEX-FBE1 schemes are more suitable for the reactive trans-

port model. These observations validate the dispersion analyses presented above.

5.5.1 Accuracy tests with 1D system

Numerical simulation of a 1D transport problem that consists of two PDEs with stiff

source terms is discussed here. Since, numerical results for the theta and DIRK2 schemes

were discussed extensively in Chapter 2, only results for the IMEX schemes are presented

here. The test example states that find U(x, t) and V (x, t) such that:

∂U

∂t
+

∂uU

∂x
= Γ

∂2U

∂x2
−KuU + V, 0 < x < 2π, (5.43)

∂V

∂t
+

∂uV

∂x
= Γ

∂2V

∂x2
−KvV, 0 < x < 2π. (5.44)

Using periodic boundary conditions, the exact solution for the system (5.43)-(5.44)

is:

U(x, t) =
�
e−(Ku+Γ)t + e−(Kv+Γ)t

�
cos(x− ut), (5.45)

V (x, t) = (Ku −Kv)e
−(Kv+Γ)t cos(x− ut). (5.46)

The input data are as follows:

Γ = 0.01, u = 0.01, Kv = 1, Ku = 100, (5.47)

and the initial data are as follows:

U(x, 0) = 2 cos(x), (5.48)

V (x, 0) = (Ku −Kv) cos(x). (5.49)

Figure 5.11 shows the solution and error profiles for IMEX-FBE1 and IMEX-FBE2

applied to the stiff system. It is clear that both numerical schemes are accurate and
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convergent for the stiff system. Table 5.1 shows that both schemes have the same order

of convergence. Two finite difference schemes (that are order one and have been dis-

cussed in [157]) have also been applied to solve this system. The first finite difference

scheme is derived by applying forward-differencing to the time derivatives and central

differencing to all spatial derivatives (the resulting scheme is named Euler-CD2-CD2)

and the second finite difference scheme is obtained by applying forward differencing to

the time derivatives, forward differencing to advection terms and central differencing to

diffusion terms (the resulting scheme is named Euler-UP1-CD2). Figure 5.12, shows that

the IMEX schemes are superior in accuracy to both finite difference schemes. Although,

the dispersion analysis have been performed using a single transport equation, the re-

sults in this test problem shows that the results of the analysis are not limited to single

transport equations.

5.5.2 Accuracy tests with 1D nonlinear problem

Numerical simulation of a 1D nonlinear reactive transport equation (where all the pro-

cesses including diffusion and reaction are nonlinear) is discussed here. Again, only results

for the IMEX schemes are presented here. The nonlinear transport problem states that,

find U(x, t) such that [73]:

∂U

∂t
+

∂U

∂x
=

∂

∂x
U
∂U

∂x
− 1− 0.25 cos(2(x− t)) + U, 0 < x < 2π. (5.50)

With initial condition U(x, 0) = 1 + 0.5 sin(x) and periodic boundary conditions, the

analytical solution is:

U(x, t) = 1 + 0.5 sin(x− t). (5.51)

Some computed solutions for this 1D fully nonlinear problem are displayed in Figure

5.13. The results show that the IMEX schemes (especially IMEX-FBE1) are accurate and

have better stiffness resolution capabilities than the finite difference schemes. Results for

this test problem indicate that the observations in the dispersion analysis are not limited

to only linear transport problems.
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5.5.3 Accuracy tests with 2D problems

Numerical simulation of a 2D reactive transport problem is discussed here. The goal

is to show that the observations of the dispersion analysis also apply in 2D transport

problems. The first 2D test example is a 2D version of system (5.43)-(5.44) given by [73]:

∂U

∂t
+

u

2

�∂U
∂x

+
∂U

∂y

�
=

Γ

2

�∂2U

∂x2
+

∂2U

∂y2

�
−KuU + V, 0 < x, y < 2π, (5.52)

∂V

∂t
+

u

2

�∂V
∂x

+
∂V

∂y

�
=

Γ

2

�∂2V

∂x2
+

∂2V

∂y2

�
−KvV, 0 < x, y < 2π. (5.53)

With periodic boundary conditions, the exact solution is:

U(x, y, t) =
�
e−(Ku+Γ)t + e−(Kv+Γ)t

�
cos(x+ y − ut), (5.54)

V (x, y, t) = (Ku −Kv)e
−(Kv+Γ)t cos(x+ y − ut). (5.55)

The second 2D problem is fully nonlinear and it is given by [73]:

∂U

∂t
+ 0.5

∂U2

∂x
+ 0.5

∂U2

∂y
=

∂

∂x
U
∂U

∂x
+

∂

∂y
U
∂U

∂y
− U2

+ 1.125− 0.625 cos(2(x+ y − t)) + 0.25 sin(2(x+ y − t))

+ 0.5 cos(x+ y − t) + 2 sin(x+ y − t), 0 < x, y < 2π. (5.56)

With periodic boundaries, the analytical solution is:

U(x, y, t) = 1 + 0.5 sin(x+ y − t). (5.57)

The results are displayed in Figure 5.14. Both IMEX schemes are efficient in resolving

stiffness in the problem involving a system, while IMEX-FBE1 is better in the fully

nonlinear case. The results here indicate that the findings in the dispersion analysis are

not limited to 1D problems.

5.5.4 Application: environmental chemical engineering system

Numerical simulation of acidic mine effluents are discussed here. One method for attenu-

ating the acidity in effluents is limestone neutralization. As discussed in earlier chapters,
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the stoichiometry of the acid-calcite reaction (following the discussions in [155, 11, 126,

130]) is given by:

CaCO3 +H+ � Ca2+ +HCO−
3 . (5.58)

CaCO3 +H2CO3 � Ca2+ + 2HCO−
3 , (5.59)

CaCO3 +H2O � Ca2+ +HCO+
3 +OH− (5.60)

Experimental data shows that reactions (5.59) and (5.60) contribute insignificantly

compared with reaction (5.58), thus, the system reduces to reaction (5.58) which contains

the chemical species [2]:

C =
�
CaCO3, H

+, Ca2+, HCO−
3

�
,

whose corresponding concentrations (i.e. current and initial) and source/sink vectors are

denoted respectively by [2]:

U =
�
U1, U2, U3, U4

�
, U0 =

�
U10, U20, U30, U40

�

and

S =
�
0, −KfU2 +KbU3U4, KfU2 −KbU3U4, KfU2 −KbU3U4

�
,

where Kf and Kb denote reaction constants.

Hydrogen ions (k = 2) are responsible for acidity of the effluent water, therefore,

neutralization of the hydrogen ions implies attenuation of the pollutant. The relevant

system of semi-linear transport equations to solve for hydrogen ions is given by:

∂U

∂t
+

∂uU

∂x
= Γ

∂2U

∂x2
+ S. (5.61)

System (5.61) has four (i.e. high) degrees of freedom thus, is computationally expen-

sive to solve since only hydrogen concentration (i.e. one degree of freedom) is required.

A reduced semi-linear equation for hydrogen ions transport (using the stoichiometric

method discussed in [3] and in Chapter 3) is given by:

∂U2

∂t
+

∂uU2

∂x
= Γ

∂2U2

∂x2
+ αH1U

2
2 + αH2U2 + αH3, (5.62)
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where αH1 = Kb, αH2 = −Kf +Kb

�
2U20+U40+U30

�
and αH3 = Kb

�
U10+U40

��
U20+

U30

�
.

Input data used in the numerical experiments are:

Lx = 2π, T = 1, u = 0.01,Γ = 0.01, Kf = 0.13, Kb = 0.0025, Kh = 1,

U20 = 0.01 cos(x), U30 = 0.0001 cos(x), U40 = 0.0001 cos(x).

Figure 5.15 shows the solutions of IMEX-FBE1 and IMEX-FBE2 (applied to solve

both large and reduced models) in all the transport cases (i.e. advection, diffusion and

advection-diffusion cases). It can be observed that the solution of both schemes are

decreasing with time thus, reproducing the chemistry of neutralization. Moreover, Fig-

ure 5.16, shows decreasing error profile for IMEX-FBE1 and increasing error profile for

IMEX-FBE2, thus IMEX-FBE1 is more compatible with the model reduction procedure.

Furthermore, CPU time given by Figure 5.17 shows that IMEX-FBE1 is less expensive

to implement.

5.6 Chapter summary

Numerical schemes are approximations to exact solutions and can exhibit non-physical

behaviours. Analysis of numerical schemes is therefore, necessary to eliminate inaccu-

rate schemes. Global spectral analysis on theta, DIRK2 and IMEX schemes has been

performed to ascertain accurate schemes for reactive transport problems.

Global spectral analysis of linear reactive transport equation has been discussed in

Section 5.2. The spectral analysis yielded a physico-chemical dispersion relation (5.6),

from which other dispersion relations (i.e. phase speed (5.7) and group velocity (5.8))

and a well-posedness constraint (5.11) have been derived.

In Section 5.3, numerical dispersion relations (including normalized amplification fac-

tor, phase speed and group velocity) have been derived. Amplification functions for theta,

DIRK2 and IMEX schemes have been presented.

In Section 5.4, the normalized dispersion relations were used to analyse the numerical

schemes for all the three transport problems (i.e. pure diffusive, diffusive-productive and
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diffusive-destructive problems). The analyses showed that all the schemes are dispersion-

preserving, however, Crank-Nicholson and IMEX-FBE1 schemes have the best properties.

In Section 5.5, numerical experiments were conducted to validate the dispersion anal-

ysis. The results showed that the implicit and IMEX schemes are more accurate for

simulating stiff problems than some finite differencing schemes of the same order. The

numerical experiments also showed that, observations from the dispersion analysis are

not limited to single linear reactive transport problems.

Therefore, the theta, DIRK2 and IMEX schemes are dispersion preserving schemes,

but Crank-Nicholson and IMEX-FBE1 schemes have better properties and are more suit-

able for reactive transport problems.
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(a) Pe = 0.01,λr = 0.2 (b) Pe = 0.01,λr = −0.2

(c) Pe = 0.25,λr = 0.2 (d) Pe = 0.25,λr = −0.2

(e) Pe = 0.5,λr = 0.2 (f) Pe = 0.5,λr = −0.2

Figure 5.2: Contour for the physico-chemical amplification factor |Gex| of the analytical solution
for 1D linear convection-diffusion-reaction equation. The contours display the behaviour of |Gex|
for varying Peclet numbers in diffusive-destructive (right column) and diffusive-productive (left

column) problems.
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(a) Crank-Nicholson amplification (b) DIRK2 amplification

(c) Crank-Nicholson phase speed (d) DIRK2 phase speed

(e) Crank-Nicholson group velocity (f) DIRK2 group velocity

Figure 5.3: Contours for Crank-Nicholson and DIRK2 schemes applied in a pure diffusive 1D

linear convection-diffusion-reaction problem.
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(a) IMEX-FBE1 amplification (b) IMEX-FBE2 amplification

(c) IMEX-FBE1 phase speed (d) IMEX-FBE2 phase speed

(e) IMEX-FBE1 group velocity (f) IMEX-FBE2 group velocity

Figure 5.4: Contours for implicit-explicit Euler schemes applied in a pure diffusive 1D linear

convection-diffusion-reaction problem.

127



(a) Crank-Nicholson amplification
(b) DIRK2 amplification

(c) Crank-Nicholson phase speed
(d) DIRK2 phase speed

(e) Crank-Nicholson group velocity
(f) DIRK2 group velocity

Figure 5.5: Contours for Crank-Nicholson and DIRK2 schemes applied in a diffusive-productive

1D linear convection-diffusion-reaction problem.
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(a) IMEX-FBE1 amplification (b) IMEX-FBE2 amplification

(c) IMEX-FBE1 phase speed (d) IMEX-FBE2 phase speed

(e) IMEX-FBE1 group velocity (f) IMEX-FBE2 group velocity

Figure 5.6: Contours for implicit-explicit Euler schemes applied in a diffusive-productive 1D

linear convection-diffusion-reaction problem.
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(a) Crank-Nicholson amplification (b) DIRK2 amplification

(c) Crank-Nicholson phase speed (d) DIRK2 phase speed

(e) Crank-Nicholson group velocity (f) DIRK2 group velocity

Figure 5.7: Contours for Crank-Nicholson and DIRK2 schemes applied in a diffusive-destructive

1D linear convection-diffusion-reaction problem.
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(a) IMEX-FBE1 amplification (b) IMEX-FBE2 amplification

(c) IMEX-FBE1 phase speed (d) IMEX-FBE2 phase speed

(e) IMEX-FBE1 group velocity (f) IMEX-FBE2 group velovcity

Figure 5.8: Contours of the implicit-explicit Euler schemes applied in a diffusive-destructive 1D

linear convection-diffusion-reaction problem.

131



(a) Pure diffusive/Crank-Nicholson (b) Pure diffusive/DIRK2

(c) Diffusive-productive/Crank-Nicholson (d) Diffusive-productive/DIRK2

(e) Diffusive-destructive/Crank-Nicholson (f) Diffusive-destructive/DIRK2

Figure 5.9: Crank-Nicholson and DIRK2 solutions of the 1D linear convection-diffusion-reaction

problem, computered with Pe = 0.25.
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(a) Pure diffusive /IMEX-FBE1 (b) Pure diffusive /IMEX-FBE2

(c) Diffusive-productive/IMEX-FBE1 (d) Diffusive-productive/IMEX-FBE2

(e) Diffusive-destructive/IMEX-FBE1 (f) Diffusive-destructive/IMEX-FBE1

Figure 5.10: IMEX-FBE1 and IMEX-FBE2 solutions of the 1D linear convection-diffusion-

reaction problem computed with Pe = 0.25.
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Convergence test

Transport Spatial steps (Nx)
IMEX-FBE1 IMEX-FBE2

Error Order Error Order

10 4.9012 - 4.9012 -

20 2.8100 0.8026 2.8100 0.8026

Diffusion 40 1.4371 0.9674 1.4371 0.9674

80 0.7190 0.9991 0.7190 0.9991

160 0.3660 0.9742 0.3660 0.9742

10 4.8363 - 4.8757 -

20 2.7788 0.7994 2.7886 0.8060

Advection 40 1.4103 0.9785 1.4129 0.9807

80 0.7119 0.9862 0.7119 0.9889

160 0.3568 0.9965 0.3568 0.9965

10 4.9040 - 4.9436 -

20 2.8065 0.8052 2.8166 0.8116

Advection-diffusion 40 1.4375 0.9652 1.4355 0.9724

80 0.7192 0.9991 0.7192 0.9971

160 0.3681 0.9663 0.3669 0.9710

Table 5.1: Errors and orders (L∞) of the numerical schemes applied to solve system (5.43)-

(5.44), errors were computed using analytical solution (5.46). The solutions and errors were

computed for diffusion dominated, advection dominated and semi-linear transport cases using

Δt = 0.5Δx.
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(a) Solutions/Diffusion transport
(b) L∞ error/diffusion transport

(c) Solutions/advective transport
(d) L∞ error/advective transport

(e) Solution/advection-diffusion transport (f) L∞ error/advection-diffusion transport

Figure 5.11: Errors (L∞) and numerical solutions of the 1D stiff system (5.43)-(5.44), errors

were computed using analytical solution (5.46), computed with Δt = 0.5Δx.
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(a) Time/finite difference schemes (b) Time/IMEX schemes

(c) Space/finite difference schemes (d) Space/IMEX schemes

(e) Time/all schemes (f) Space/all schemes

Figure 5.12: Numerical and analytical solutions for the stiff system of semi-linear transport

problem (5.43)-(5.44), computed with time step size Δt = 0.5Δx. The IMEX schemes are

compared (in space and time) with finite difference schemes of the same order.
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(a) Time/finite difference schemes (b) Time/IMEX schemes

(c) Space/finite difference schemes (d) Space/IMEX schemes

(e) Time/all schemes (f) Space/all schemes

Figure 5.13: Numerical and analytical solutions for the 1D stiff nonlinear transport problem

(5.50)-(5.51), computed with time step size Δt = 0.3Δx. The IMEX schemes are compared (in

space and time) with finite difference schemes of the same order.
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(a) Exact solution/nonlinear 2D

problem

(b) Exact solution/stiff 2D linear

system

(c) IMEX-FBE1 /nonlinear 2D prob-

lem (d) IMEX-FBE1 /stiff 2D linear

system

(e) IMEX-FBE2/nonlinear 2D prob-

lem (f) IMEX-FBE2/stiff 2D linear

system

Figure 5.14: Numerical and analytical solutions for the 2D system (5.52)-(5.53) and nonlinear

transport problem (5.56), computed with Δt = 0.2Δx.
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(a) IMEX-FBE1/diffusion transport (b) IMEX-FBE2/diffusion transport

(c) IMEX-FBE1/advective transport (d) IMEX-FBE2/advective transport

(e) IMEX-FBE1/advection-diffusion (f) IMEX-FBE2/advection-diffusion

Figure 5.15: IMEX-FBE1 and IMEX-FBE2 solutions of the acid drainage system
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(a) L∞ errors/diffusion transport (b) L2 errors/diffusion transport

(c) L∞ errors/advective transport (d) L2 error/advective transport

(e) L∞ errors/advection-diffusion transport
(f) L2 errors/advection-diffusion transport

Figure 5.16: IMEX-FBE1 and IMEX-FBE2 solutions of the acid drainage system using 80

spatial steps.
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(a) CPU/large model/diffusion (b) CPU/reduced model/diffusion

(c) CPU/large model/advection (d) CPU/reduced model/advection

(e) CPU/large model/advection-diffusion (f) CPU/reduced model/advection-diffusion

Figure 5.17: CPU time for IMEX-FBE1 and IMEX-FBE2 computed with 80 spatial steps in

the acid drainage system
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Chapter 6

Numerical simulation of reactive

flows

6.1 Introduction

Generally, numerical simulation of reacting flows is challenging due to the presence of

stiff nonlinear reaction terms present in the models [173, 166, 158, 90, 97, 183]. Research

in the area of reacting flow simulation is not extensive, however, some progress has

been made. It has been shown in [90, 97], that numerical schemes that are unsuitable

for reacting flows show spurious oscillations due to their inability to resolve the stiff

nonlinear terms. Some numerical simulation studies of reactive flows involving scalar

advection have been discussed in [10, 30, 12], those involving advection and diffusion can

be found in [16, 24, 113] and those involving advection-diffusion-reaction can be found

in [148, 102]. In this chapter, the focus is on numerical simulation of shallow water flows

with reactive transport.

Shallow-water equations have been employed to model water flows in lakes, reser-

voirs, oceans and many other flow processes where vertical length scales are insignificant,

compared with horizontal length scales [85, 103]. Consequently, shallow water equations

have contributed significantly to understanding dangerous phenomena such as hurricanes,

dam breaks and tsunamis in the fields of oceanography, hydraulic engineering and climate

studies [85, 103].
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The homogeneous set of shallow water equations (i.e. shallow water equations with

a flat bottom topography) form a nonlinear hyperbolic system of PDEs that admit non-

smooth solutions (rarefactions, contact discontinuities and shocks) even when initial data

is smooth [85, 162] (also see discussion in Chapter 2). In general, exact solutions do not

exist for this non-linear hyperbolic problem and numerical simulation is non-trivial due

to the non-smoothness of the solution. However, several numerical schemes have been

developed and successfully used to simulate shallow water equations. Some finite volume

schemes include Godunov schemes, Lax-Wendroff, Lax-Friedrichs, and Richtmyer schemes

discussed in [100, 161, 162]. The authors in [86, 88] developed central-upwind schemes for

conservation laws with application to shallow water equations. The central-upwind and

higher orders schemes however, show oscillations near discontinuities. In general, it has

been established theoretically in [54], that linear second order schemes show oscillations

near discontinuities. However, very accurate schemes have been designed and successfully

applied to simulate the homogeneous shallow water model.

Further, the homogeneous shallow water equations are not accurate for modelling flow

processes that occur in a domain that has a non-flat bottom topography [101]. Thus, a

source term is introduced to account for the non-flat bottom topography. The resulting

non-homogeneous model is a non-linear system of PDEs called balanced laws [85, 8,

101]. A special property (called C-property) associated with balanced laws is a balance

between convective momentum fluxes and geometric source terms when the flow becomes

steady [17]. The C-property poses a constraint for some numerical schemes, however,

other numerical schemes called well-balanced schemes [8, 85, 101], satisfy the C-property.

Numerical schemes for balanced laws that are not well-balanced are highly inaccurate,

thus, efforts have been made to construct well-balanced schemes [8, 87, 99, 167, 75].

Notably, pioneering research on well balanced schemes include the works of [57, 56].

Among several techniques used to construct well balanced schemes include the quasi-

steady wave propagation technique in [99], surface gradient reconstruction in [187], source

term decomposition with Weighted Essential Non-oscillatory (WENO) reconstruction in

[177, 178, 179, 180], hydrostatic reconstruction in [8, 9] and quadrature with WENO

reconstruction in [118]. Well balanced Hermite WENO schemes have been constructed by

[25, 128] and well balanced cell-centered schemes have been constructed in [65]. Schemes

143



that are not well balanced but are convergent can in some cases be used to simulate

(using very fine grids) however, such an approach has cost implications [85]. Further,

well-balanced schemes have been shown to resolve small perturbations at steady state

better than the non-well-balanced schemes [127, 181].

Furthermore, the water depth in shallow water model is a non-negative quantity and

must remain non-negative in time and space. However, not all schemes can guarantee the

non-negativity of the water depth, especially in problems that involve dry/wet areas in the

flow domain [8, 85, 103]. Numerical schemes for shallow water models that satisfy the non-

negativity constraint are known as positivity preserving schemes [85]. Some well balanced

positivity preserving schemes can be found in [13, 20, 23, 49]. If the non-negativity

constraint is not satisfied by a particular numerical scheme, spurious oscillations appear

in the solution.

In this chapter, shallow water equations are coupled with reactive transport equations

for modelling flow processes that involve chemical/sediment transport with reactions, in

rivers, lakes, channels and other physico-chemical systems (that satisfy the shallow water

assumption) with complex topographies in the flow domain. The resulting model is a

nonlinear set of parabolic Partial Differential Equations (PDEs) that is stiff (i.e. the

PDEs govern advective, diffusive and reactive processes where there is a wide time scale

difference in information propagation) [173, 166, 106] and have high degrees of freedom

due to many chemical species participating in several reactions. Since IMEX constructions

are efficient for resolving stiffness (as discussed in Chapters 4 and 5), conservative well-

balanced constructions can resolve complex topographies and non-smoothness issues (see

discussions in [8, 85, 101]), the stoichiometric decoupling method can reduce the degrees of

freedom (discussed in Chapters 3 and 4), second (or higher) order consistent schemes can

reduce simulation cost (as discussed in [73, 85, 63]) and finally, strong stability-preserving

schemes can significantly reduce spurious oscillations (as discussed in [63, 82]), the goal

here is to present a scheme that possesses almost all the properties listed.
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6.2 Modelling reactive flow processes

Following the discussion in Chapter 2, if a flow with reactive transport through a hor-

izontal rectangular domain Ωh (with non-flat bottom topography) satisfies the shallow

water assumption, then the governing equations for momentum and mass transport in

1D are given by the balance law:

∂

∂t
Q+

∂

∂x
f(Q) = S(Q), ∈ [0, T )× Ωh (6.1)

Q(0, x) = Q0(x)

where T is final time, Q = (h, hu, hU)Tr, Q0 = (h0, h0u0,U0)
Tr, f(Q) = (hu, hu2 +

1
2
gh2, huU)Tr and S(Q) =

�
0, − gh∂η

∂x
− gC2|u|u

h1/3 , ∂
∂x
Γ∂U

∂x
+ Sh

�Tr

.

For closure of the governing equations (6.1), the term Sh(Q) (that quantifies sources

or sinks of the species being transported) must be defined. In sediment transport studies,

Sh is a sink known as isotherm. For reactive flow problems that satisfy the law of mass

action, Sh is a polynomial that measures either a sink or source. If the fluid is transporting

N chemical species that are engaged in M reactions, the term Sh is defined by the mass

action rate law (3.4) [173], thus:

Sh(Q) = σR(Q), (6.2)

where σ is a stoichiometric matrix, R(Q) =
�
R1(Q), R2(Q), . . . , RM(Q)

�Tr

and Rr(Q),

is given by (3.2) for all r = 1, 2, . . . ,M. However, the standard procedure of closure (i.e.

closure with Expressions (3.2) and (3.4)) is expensive. Thus, the stoichiometric method

(i.e. Equation (3.21)) is proposed here for closure of (6.1). Hence, Sh is defined by (6.2)

with Rr(Q) given by (3.21), for any index r.

A classical solution of PDE system (6.1), is any set of C1 functions Q, that satisfies

the system. Following discussions in Chapter 2 and [161, 53, 100], it is clear that the non-

linear PDE system (6.1) admits non-smooth solutions ( also known as weak solutions)

even if the initial data is smooth, thus, classical solutions do not exist for all time.

A challenge faced in simulation studies is that, weak solutions are not unique for

general nonlinear conservation laws [53, 98]. Due to the non-uniqueness, additional con-

straints known as entropy conditions must be imposed on the weak solutions to yield
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physically correct solutions [53, 98]. The entropy conditions can be imposed explicitly or

implicitly, the explicit procedures are known as shock tracking methods while the implicit

ones are known as shock capturing methods [98].

Another interesting challenge is encountered when simulating steady flows (equilib-

rium flows with asymptotic solutions have been discussed in [66]). When the flow achieves

equilibrium, the momentum and continuity equations assume the form:

∂

∂x
uh = 0, (6.3)

∂

∂x

�1
2
u2 + gh+ gη

�
= 0. (6.4)

Thus, from ODEs (6.3) and (6.4), it is clear that the mass flux and mechanical energy

of the fluid are constant. One particular flow equilibrium of interest is the lake at rest,

where the fluid velocity vanishes. For such an equilibrium, it can be deduced from the

momentum equation (6.4) that the total depth of the fluid is constant (i.e. h + η =

constant). The challenge, therefore, is to find asymptotic solutions or shock-capturing

numerical schemes that can preserve the invariants in the steady flows.

6.3 Numerical schemes

In Section 6.3, some of the simulation challenges of the reactive flow model were high-

lighted. In this section, numerical schemes that are shock capturing, stable, at least

second order consistent in smooth regions, monotone and computationally less expensive

are presented here. Numerical schemes for conservation laws that possess the above listed

properties are known as high resolution schemes [100, 98]. Since the model under con-

sideration is a balance law, the schemes presented here must also satisfy the C-property,

thus, the challenge here is to construct well-balanced high resolution schemes that are

compatible with the stoichiometric decoupling method. Construction of the well-balanced

suitable schemes are elaborated in the following subsections.

6.3.1 Spatial discretization

Firstly, a uniform discretization of the domain into control volumes is considered, where

the ith control volume has left and right interfaces denoted by xi− 1
2
, xi+ 1

2
respectively,
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a center located at xi =
x
i− 1

2
+x

i+1
2

2
and a size denoted by Δx = xi+ 1

2
− xi− 1

2
. The time

interval is also discretized uniformly with step size Δt (i.e. tn+1 = tn + Δt where tn

denotes the nth time step). Further, the averages of the unknowns Q(t, x) and source

terms S(Q), over the control volume are respectively denoted by:

Qi(t) =

� x
i+1

2

x
i− 1

2

Q(t, x)dx, and Si =

� x
i+1

2

x
i− 1

2

S(Q)dx. (6.5)

Thus, integrating (6.1) over the control volume and applying (6.5) yields:

Δx
d

dt
Qi(t) = −

�
fi+ 1

2
− fi− 1

2

�
+ Si, (6.6)

where fi+ 1
2
is the value of the flux at the i + 1

2
interface of the control volume. The

value of the flux is not known at the interfaces in advance, thus, must be approximated

using consistent numerical fluxes and cell center values (e.g. fi+ 1
2
= fnum(Qi+1,Qi) where

fnum denotes a numerical flux function). Instead of the cell center values, reconstructed

interface values can also be used (and will be used here) to approximate the flux (i.e.

fi+ 1
2
= fnum(QR

i+ 1
2

,QL
i+ 1

2

), where QR
i+ 1

2

,QL
i+ 1

2

are reconstructed cell interface values). It

is an established fact that linear and piecewise constant reconstructions yield second

order and first order schemes, respectively, [161, 100, 187]. Thus, linear reconstruction is

employed to obtain slope limited values at the right and left side of the i + 1
2
interface,

i.e.:

QR
i+ 1

2
= Qi+1 − 0.5ΔxδQi+1 and QL

i+ 1
2
= Qi + 0.5ΔxδQi, (6.7)

where δQi is a gradient of the unknown that is computed from a slope limiter function.

Among many limiter functions, the minmod limiter function of [187] is considered here,

i.e.:

δQi = max(0,min(ai, bi)), (6.8)

where

ai =
Qi+1 −Qi

Δx
and bi =

Qi −Qi−1

Δx
.

It is clear from (6.7) that if the gradients δQi and δQi+1 assume zero values, the recon-

struction becomes piecewise constant and the values of QR
i+ 1

2

and QL
i+ 1

2

are simply the cell
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center values. Henceforth, schemes that result from linear reconstruction will be referred

to as minmod schemes and those that result from piecewise constant reconstruction will

be referred to as upwind schemes.

Furthermore, motivated by the work in [8], hydrostatic reconstruction is applied and

non-negativity constraints are imposed on the water depth after the limiter reconstruction

(6.7). Consequently, the interface values for the fluid velocity and species concentration

are given by (6.7), however, the water depth is given by:

h+
i+ 1

2

= max
�
0, hR

i+ 1
2
+ ηR

i+ 1
2
− ηi+ 1

2

�
and h−

i+ 1
2

= max
�
0, hL

i+ 1
2
+ ηL

i+ 1
2
− ηi+ 1

2

�
, (6.9)

where ηi+ 1
2
= max(ηR

i+ 1
2

, ηL
i+ 1

2

). Thus, the interface values of the conserved variables (for

evaluating the numerical flux) are given by:

Q+
i+ 1

2

= (h+
i+ 1

2

, h+
i+ 1

2

uR
i+ 1

2
, h+

i+ 1
2

UR
i+ 1

2
)Tr and Q−

i+ 1
2

= (h−
i+ 1

2

, h−
i+ 1

2

uL
i+ 1

2
, h−

i+ 1
2

UL
i+ 1

2
)Tr.

(6.10)

6.3.2 Numerical fluxes and wave speed estimates

Given the reconstructed interface values Q+
i+ 1

2

and Q−
i+ 1

2

in (6.7), another task in the

spatial discretization is to find consistent numerical fluxes. In this section, Godunov’s

procedure (that involves solving a local Riemann problem and applying the solution to

compute the fluxes) is used to derive the fluxes for the reactive shallow water flow problem

under consideration.

Firstly, consider a Riemann problem of the homogeneous part of the reactive flow

model (6.1) given by:

∂Q

∂t
+

∂

∂x
f(Q) = 0, in [xl, xr]× [0, T ),

(6.11)

Q(x, 0) = Q0(x) =




QL for x < 0,

QR for x > 0.

It was shown in Chapter 2, that the similarity solution to the Riemann problem

consists of three states (denoted by QL,Q∗L,Q∗R and QR) that are separated by three
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waves (with speeds denoted by SL, S∗ and SR ), i.e.:

Q
�x
t

�
=





QL if x
t
≤ SL,

Q∗L if SL ≤ x
t
≤ S∗,

Q∗R if S∗ ≤ x
t
≤ SR,

QR if x
t
≥ SR.

(6.12)

Thus, applying (6.12) to evaluate the natural flux f , (defined in (6.1)) yields the

Godunov’s flux:

fhllc
�
Q
�x
t
= 0

��
=





f(QL) if 0 ≤ SL,

f(Q∗L) if SL ≤ 0 ≤ S∗,

f(Q∗R) if S∗ ≤ 0 ≤ SR,

f(QR) if 0 ≥ SR.

(6.13)

However, application of the Godunov’s procedure using an exact Riemann solver is ex-

pensive. Thus, we present an approximate Godunov flux (known as HLLC flux [161]) for

the reactive shallow water flow model, that is less expensive.

The wave speeds can be estimated directly or indirectly by a depth average approach

[161, 100]. In [36], direct estimates for the fastest and slowest signal speeds are provided

for the purpose of simulating the Euler equations in gas dynamics. For the shallow water

flow problem under consideration, similar estimates are given by [161]:

SL = uL − cL, SR = uR + cR, (6.14)

and

SL = min(uL − cL, uR − cR), SR = max(uL + cL, uR + cR), (6.15)

where cL and cR are the left and right celerities defined in Chapter 2. We refer to estimates

(6.14) and (6.15) as Davis estimates. Further, in [36, 41] Roe averaged quantities are

proposed for the purpose of computing the fastest and slowest signals (in the Euler

Equations). A similar estimate for the model under consideration is given by:

SL = ũ− c̃ and SR = ũ+ c̃ (6.16)
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where

ũ =

√
hLuL +

√
hRuR√

hL +
√
hR

and c̃ =

�
g

2
(hL + hR). (6.17)

We refer to estimates (6.16) and (6.17) as Roe estimates. In [67], the depth estimate

approach has been used to estimate the wave speeds. If the intermediate fluid depth h∗,

is known, the fastest and slowest signal speeds are computed using:

SL = uL − cLqL, SR = uR + cRqR, (6.18)

where for index k = L,R :

qk =





�
1
2
h∗

(h∗+hk)

h2
k

if h∗ > hk,

1 if h∗ ≤ hk.

(6.19)

In addition to the estimates for the fastest and slowest wave speeds, the speed of the

middle contact wave must also be estimated. The intermediate depth and contact wave

speed are taken as follows [67]:

S∗ =
1

2
(uL + uR)− (hR − hL)

cL + cR
hL + hR

(6.20)

and

h∗ =
1

2
(hL + hR)−

1

4
(uR − uL)

hL + hR

cL + cR
. (6.21)

We refer to estimates (6.20) and (6.21) as depth estimates. Given the estimates for the

wave speeds, we can then reformulate the Riemann problem (6.11) into a form, suitable

for further discussions.

Proposition 6.1 (Consistency formulation). Assuming that the wave speed SL < S∗ <

SR are defined and that the intermediate state variables are defined by the integral aver-

ages:

Q∗L =
1

T (S∗ − SL)

� TS∗

TSL

Q(x, T )dx, Q∗R =
1

T (SR − S∗)

� TSR

TS∗

Q(x, T )dx (6.22)

then the integral formulation of the Riemann problem (6.11) yields:

S∗ − SL

SR − SL

Q∗L +
SR − S∗
SR − SL

Q∗R =
SRQR − SLQL + fL − fR

SR − SL

, (6.23)

where fL = f(QL) and fR = f(QR).
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Proof. Firstly the integral formulation of the Riemann problem (6.11) is given by:

� xr

xl

Q(x, T )dx =

� xr

xl

Q(x, 0)dx+

� T

0

f(Q(xl, t))dt−
� T

0

f(Q(xr, t))dt

= xrQR − xlQL + T (fL − fR), (6.24)

where fL = f(QL) and fR = f(QR). However, at any chosen final time T, the distances

covered by the waves satisfy the following inequalities:

xl ≤ TSL ≤ TS∗ ≤ TSR ≤ xR. (6.25)

Thus, by using (6.25), the integral of the function Q(x, t) evaluated at the final time

T, is given by:

� xr

xl

Q(x, T )dx =

� TSL

xl

Q(x, T )dx+

� TS∗

TSL

Q(x, T )dx+

� TSR

TS∗

Q(x, T )dx+

� xr

TSR

Q(x, T )dx,

=

� TS∗

TSL

Q(x, T )dx+

� TSR

TS∗

Q(x, T )dx

+ (TSL − xl)QL + (xr − TSR)QR. (6.26)

Applying integral expression (6.24) in (6.26) and simplifying the result yields:

� TS∗

TSL

Q(x, T )dx+

� TSR

TS∗

Q(x, T )dx = T (SRQR − SLQL + fL − fR). (6.27)

Dividing through by the distance T (SR − SL) between the fastest and slowest signals

yields [161]:

1

T (SR − SL)

� TS∗

TSL

Q(x, T )dx+
1

T (SR − SL)

� TSR

TS∗

Q(x, T )dx =
SRQR − SLQL + fL − fR

SR − SL

.

(6.28)

Applying the integral averages (6.22) in (6.28) yields the desired results.

Proposition 6.2 (Sufficient condition for consistency). Given the wave speeds SL <

S∗ < SR, Rankine-Hugoniot jump conditions are sufficient for consistency ( i.e. satisfy

Proposition 6.1) and the intermediate state variables are given by (for index k = L,R):

h∗k =
hk(uk − Sk)

S∗ − Sk

, h∗ku∗k =
hk(uk − Sk)S∗

S∗ − Sk

, h∗kU∗k =
hk(uk − Sk)UK

S∗ − Sk

. (6.29)
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Proof. By applying Rankine-Hugoniot jump conditions across the three waves moving

with speeds SL, S∗ and SR yields [100, 161]:

f∗L − fL = SL(Q∗L −QL), (6.30)

f∗R − f∗L = S∗(Q∗R −Q∗L), (6.31)

f∗R − fR = SR(Q∗R −QR), (6.32)

where f∗L and f∗R are fluxes corresponding to the intermediate state variables f∗L and f∗R

respectively.

Rearranging terms in (6.30) and (6.32) yield expressions for the left and right inter-

mediate fluxes:

f∗L = fL + SL(Q∗L −QL), (6.33)

f∗R = fR + SR(Q∗R −QR). (6.34)

Substituting the flux expressions (6.33) and (6.34) in the jump condition (6.31) and

manipulating algebraically yields :

(S∗ − SL)Q∗L + (SR − S∗)Q∗R = SRQR − SLQL + fL − fR, (6.35)

which is identical to the consistency condition (6.23). Furthermore, expressions for the

intermediate states Q∗L and Q∗R can be determined from the intermediate flux expres-

sions (6.33)-(6.34). For the index k = L,R, the intermediate fluxes can be expressed as

follows:

f∗k = fk + Sk(Q∗k −Qk), k = L,R. (6.36)

Thus, from the general flux expressions (6.36), the intermediate fluxes for the reactive

shallow water model under consideration become:

h∗ku∗k = hkuk + Sk(h∗k − hk), (6.37)

h∗ku
2
∗k +

1

2
gh2

∗k = hku
2
k +

1

2
gh2

k + Sk(h∗ku∗k − hkuk), (6.38)

h∗ku∗kU∗k = hkukUk + Sk(h∗kU∗k − hkUk). (6.39)

152



Since the middle wave is a contact wave, the fluid velocity must be equal to speed of the

contact wave. Consequently, substituting u∗k = S∗ into (6.37) - (6.39) and manipulating

algebraically yields (6.29).

Therefore, by employing Proposition 6.2, a consistent approximate HLLC flux is ob-

tained as follows:

fhllc =





fL if 0 ≤ SL,

f∗L if SL ≤ 0 ≤ S∗,

f∗R if S∗ ≤ 0 ≤ SR,

fR if 0 ≥ SR.

(6.40)

where fL = f
�
QL

�
, fR = f

�
QR

�
and f∗L, f∗R are defined as in (6.33) and (6.34).

Furthermore, if the middle contact wave S∗ is ignored and arguments similar to those

used to obtain the HLLC flux (6.40) are made, another approximate Godunov flux known

as HLL flux (denoted fhll) is obtained. Given the wave speeds SL < SR, then the HLL

flux states that:

fhll =





fL if 0 ≤ SL,

SRfL−SLfR+SLSR

�
QR−QL

�
SR−SL

if SL ≤ 0 ≤ SR,

fR if 0 ≥ SR.

(6.41)

However, the presence of positive wave speeds in a Riemann problem can further simplify

the fluxes. Let Sα be a positive wave in the Riemann problem, then by setting SL = −Sα

and SR = Sα, the HLL flux (6.41) simplifies to:

f rus =
1

2

�
fL + fR

�
− 1

2
Sα

�
QR −QL

�
(6.42)

known as Rusanov flux [161]. Among several estimates for the positive wave speed, we

consider:

Sα = max(|uL|+ cL, |uR|+ cR) (6.43)

(named RuDa estimate) in subsequent discussions. The relationship between wave speed

estimates and numerical fluxes will also be discussed in subsequent sections.
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6.3.3 Source term discretization and well-balancing

In a frictionless steady flow the advective flux balances the topography term in the mo-

mentum equation. Specifically, under frictionless quiescent flow conditions (i.e. u = 0

and h+ η = H = constant) the momentum equation states that:

d

dx

�1
2
gh2

�
= −gh

∂η

∂x
(6.44)

Thus, integrating (6.44) over the control volume (xi− 1
2
, xi+ 1

2
) yields the discretized

topography term, i.e.:
� x

i+1
2

x
i− 1

2

−gh
∂η

∂x
dx =

1

2
g
��

h−
i+ 1

2

�2 −
�
h+
i− 1

2

�2�
. (6.45)

Moreover, the integral of the friction term is approximated as follows [85]:
� x

i+1
2

x
i− 1

2

gC2|u|u
h1/3

dx ≈ gC2Δx
� 2hi

hi +max(h2
i , 0)

� 7
3 |ui|ui. (6.46)

The chemical diffusion derivatives at the control volume interfaces are discretized using

forward differencing, thus:
�
∂U

∂x

�

i+ 1
2

≈ Ui+1 −Ui

Δx
and

�
∂U

∂x

�

i− 1
2

≈ Ui −Ui−1

Δx
. (6.47)

Therefore, from (6.45), (6.46) and (6.47) the discretized source term in (6.6) is given by:

Si =




0

1
2
g
��

h−
i+ 1

2

�2 −
�
h+
i− 1

2

�2�− gC2Δx
�

2hi

hi+max(h2
i ,0)

� 7
3 |ui|ui

Γ
i− 1

2

Δx
Ui−1 −

�Γ
i− 1

2

Δx
+

Γ
i+1

2

Δx

�
Ui +

Γ
i+1

2

Δx
Ui+1 +ΔxSh(Ui)




(6.48)

Proposition 6.3 (C-property preservation). The semi-discrete scheme (6.6) (with nu-

merical flux defined as fi+ 1
2
= f rus(Q+

i+ 1
2

,Q−
i+ 1

2

) or fi+ 1
2
= fhllc(Q+

i+ 1
2

,Q−
i+ 1

2

) and with

interface values Q+
i+ 1

2

,Q−
i+ 1

2

defined in (6.10)) preserves the C-property.

Proof. A well-balanced or a C-property preserving scheme is one that preserves the flux-

topography balance under frictionless quiescent flow conditions. Let Li

�
Qi(t)

�
denote

the right hand side of the momentum component of the semi-discrete scheme (6.6), then:

Li

�
Qi(t)

�
=−

�
fi+ 1

2
− fi− 1

2

�
+

1

2
g
��

h−
i+ 1

2

�2 −
�
h+
i− 1

2

�2�

− gC2Δx
� 2hi

hi +max(h2
i , 0)

� 7
3 |ui|ui, (6.49)
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where fi+ 1
2

= f rus(Q+
i+ 1

2

,Q−
i+ 1

2

) or fi+ 1
2

= fhllc(Q+
i+ 1

2

,Q−
i+ 1

2

) and the natural flux of

momentum is given by:

f(Q) = hu2 +
1

2
gh2. (6.50)

The manning coefficient C in (6.49) vanishes in a frictionless flow, thus, the last term in

(6.49) vanishes, yielding:

Li

�
Qi(t)

�
=−

�
fi+ 1

2
− fi− 1

2

�
+

1

2
g
��

h−
i+ 1

2

�2 −
�
h+
i− 1

2

�2�
. (6.51)

Thus, to prove Proposition 6.3 we show that (6.51) vanishes under quiescent flow condi-

tions. However, under the quiescent conditions, uL
i+ 1

2

= uR
i+ 1

2

= uL
i− 1

2

= uR
i− 1

2

= ui = 0,

evaluating and exploiting the continuity/consistency properties of the numerical fluxes

yields:

fi+ 1
2
= f rus(Q+

i+ 1
2

,Q−
i+ 1

2

) =
1

2
g
�
h−
i+ 1

2

�2
and fi+ 1

2
= fhllc(Q+

i+ 1
2

,Q−
i+ 1

2

) =
1

2
g
�
h−
i+ 1

2

�2
.

(6.52)

Similarly,

fi− 1
2
= f rus(Q+

i− 1
2

,Q+
i− 1

2

) =
1

2
g
�
h+
i− 1

2

�2
and fi− 1

2
= fhllc(Q+

i− 1
2

,Q−
i− 1

2

) =
1

2
g
�
h+
i− 1

2

�2
.

(6.53)

Hence, substituting (6.52) and (6.53) into (6.51) completes the proof.

6.3.4 Temporal discretization

Strong stability preserving (SSP) time marching schemes (also known as Total Varia-

tion Diminishing or monotonicity preserving schemes have been shown to be robust in

simulating stiff problems in Astrophysics [83, 123, 63]. Since the current model has char-

acteristics similar to the Astrophysical models, we present strong stability preserving

schemes here, to march the semi-discrete scheme (6.6).

Further, due to the presence of stiff terms (e.g. chemical reactions and diffusion) in

the current model, the semi-discrete scheme (6.6) is first split into the flow part (non-stiff

part) and the chemical transport/reaction part (the stiff part). Let W = (h, uh)Tr, then
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the semi-discrete scheme (6.6) is split as follows:

d

dt
Wi(t) = LW (Wi(t)) (6.54)

d

dt
Ui(t) = LI(Ui(t)) + LE(Ui(t)), (6.55)

where Q = (W,U)Tr. The slope functions LI(Qi(t)),LE(Qi(t)) are respectively the stiff

and non-stiff parts of the chemical transport components and LW (Qi(t)) is the flow

components of the slope function:

L(Qi(t)) = − 1

Δx

�
fi+ 1

2
− fi− 1

2

�
+ Si. (6.56)

Furthermore, since the flow component of the reactive shallow water model is non-

stiff, we apply the third order, two-stage strong stability preserving scheme of [74] to the

semi-discrete scheme (6.54). Consequently, the scheme is stated as follows:

W1
i = Wn

i +ΔtLW (Wn
i )

W2
i =

3

4
Wn

i +
1

4
W1

i +
1

4
+ΔtLW (W1

i )

Wn+1
i =

1

3
Wn

i +
2

3
W2

i +
1

4
+ΔtLW (W2

i ) (6.57)

where Δt is the time step, Wn
i = Wi(t

n), Wn+1
i = Wi(t

n + Δt) and tn denotes the

nth time. Moreover, since the chemical transport components of the model contain stiff

and non-stiff terms, we apply the Implicit-Explicit (IMEX) Runge-Kutta scheme of [63,

83, 123] (that is second order consistent, A(π
2
)-stable and strong stability preserving)

on the semi-discrete scheme (6.55). Consequently, with the parameter γ = 1 − 1√
2
, the

SSP-IMEX scheme is expressed as follows:

U1
i = Un

i +ΔtLI(U
1
i )

U2
i = Un

i +ΔtLE(U
1
i ) + (1− 2γ)ΔtLI(U

1
i ) + γΔtLI(U

2
i )

Un+1
i = Un

i +
1

2
Δt

�
LE(U

1
i ) + LE(U

2
i ) + LI(U

1
i ) + LI(U

2
i )
�
. (6.58)

Since Scheme (6.58) is second order and Scheme (6.57) is third order, the final time-

marching scheme is second order. However, the complete scheme (including both spatial

and temporal parts) is second order if the Minmod limiter is used in the spatial discretiza-

tion, but reduces to first order if piecewise constants are used instead. The accuracy of

the numerical schemes will be verified in Section 6.4.
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6.4 Numerical experiments

Numerical experiments are conducted in this Section 6.4 to verify the numerical scheme

that has been presented in previous sections. The nonlinear equations that involve root-

finding are solved using Newton-Raphson’s method. Experiments are conducted under

the CFL condition:

max(sup |SR|, sup |SL|)
Δt

Δx
≤ 1. (6.59)

The accuracy of the scheme will be verified with two benchmark problems that involve

flat and non-flat bottom topographies (specifically, dam break and tidal flow problems).

Compatibility with the stoichiometric decoupling method will be assessed using the acid

drainage and neutralization problem.

6.4.1 Shallow water flow experiments

Firstly, the accuracy of the scheme is assessed using a flat bottom topography dam break

problem. The bench mark is composed of two water columns of different depths that are

separated by a dam. Denoting the water depths of the two water columns by hL and hR

(with hL > hR), if the dam is positioned at the origin, the initial dam break problem

states that [38]:

hu(x, 0) = 0 and h(x, 0) =




hL for x < 0,

hR for x > 0.

, (6.60)

where hL > hR ≥ 0. If the right column depth hR is vanishes, the benchmark is referred to

as Dry bed dam break problem, otherwise, it is referred to as Wet bed dam break problem

[38, 112]. Initially (i.e. at time t = 0), the dam is broken and the water upstream flows

downstream. The analytical profile of the dry dam problem is given by [112]:

h(x, t) =





hL for x
t
≤ 0,

4
9g

�√
ghL − x

2t

�2
for −√

ghL < x
t
< 2

√
ghL,

0 for x
t
≥ 2

√
ghL.

(6.61)
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u(x, t) =





0 for x
t
≤ 0,

2
3

�√
ghL + x

t

�
for −√

ghL < x
t
< 2

√
ghL,

0 for x
t
≥ 2

√
ghL.

(6.62)

The numerical challenge associated with the dry bed dam break problem is how to capture

(without oscillations) the singularity that occurs at the transition point between the wet

and dry zone [38]. The current Scheme (6.57) was applied to the dry bed dam break

problem, using hL = 2, T = 0.1, C = 0, g = 9.8 and cells Nx = 750 cells in the domain

[−5, 5]. Figures 6.1a and 6.1b show results for the upwind and Minmod schemes. It is

clear from the results that the current schemes are non-oscillatory even at the points of

transition.

Secondly, the solution to the wet bed dam break problem consists of a shock wave

propagating downstream and a rarefaction propagating upstream [38, 112]. The challenge

for numerical schemes therefore, is to capture the shocks and transition points without

oscillations. Scheme (6.57) was applied to the dry bed dam break problem, using hL =

2, hR = 0.7, T = 0.51, C = 0 and Nx = 750 in the same domain. The reference solution

(representing the analytical solution) was computed with a fine grid (7000 cells using the

upwind scheme). Figures 6.1c and 6.1d show results for the upwind and Minmod schemes

in the wet bed dam break problem. It can be observed that the rarefaction and shock

have been accurately captured without oscillations at the points of transition.

Thirdly, the schemes are tested on a tidal wave flow problem that involves a non-flat

bottom topography. The initial condition is given by [101]:

uh(x, t) = 0 and h(x, t) = 60.5− η(x), (6.63)

where η(x) = 10+ 40x
Lx

+10 sin
�
π
�

40x
Lx

− 1
2

��
and Lx = 14000. With boundary conditions

given by:

h(0, t) = 64.5− 4 sin
�
π
� 4t

86, 400
+

1

2

��
and hu(Lx, t) = 0, (6.64)
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the asymptotic solution is given by [101]:

h(x, t) = 64.5− η(x)− 4 sin
�
π
� 4t

86, 400
+

1

2

��
(6.65)

uh(x, t) =
(x− Lx)π

5400
cos

�
π
� 4t

86, 400
+

1

2

��
(6.66)

Simulation studies were conducted on the tidal wave problem using Scheme (6.57) in the

domain [0, 14000] using Nx = 150 grid cells for a period T = 7552.13. Figures 6.1e and

6.1f show results for the upwind and Minmod discretizations. The depth profiles are free

from oscillations and mimic the analytical solution well.

Furthermore, the accuracy of the schemes did not vary significantly across numerical

fluxes, if chosen wave speed estimates are appropriate for the chosen numerical flux.

Figure 6.2 shows that Davies’ estimates (i.e. (6.14) and (6.15)), Roe’s estimates (i.e.

(6.16) and (6.17)) and RuDa estimates (i.e. (6.43)) are compatible with the Rusanov

flux while depth estimates (i.e. (6.20) and (6.21)) are compatible with the HLLC flux.

Further, the error profiles of the schemes have been computed using the dry bed dam

break problem, Figures 6.3e and 6.3f depict the results. The error profiles are decreasing

monotonically with increasing grid cells. Further, Table 6.1 shows that the schemes

converge in the expected orders.

6.4.2 Chemical reaction experiments

In this section, experiments are conducted to verify the suitability of the schemes for

simulating reactions that occur within shallow water flow problems. The efficiency of

the schemes are verified based on stiffness-resolving ability and compatibility with the

stoichiometric decoupling method.

In Section 5.5 of Chapter 5, stiff problems (involving Darcy flow and reactive trans-

port) have been used to assess the accuracy of the schemes presented in that chapter.

Here, the strong stability preserving IMEX Scheme (6.58) is tested using the stiff Sys-

tem (5.43) and the 1D nonlinear transport bench mark (5.50) of that section. Figure

6.3 shows the concentration profiles in both Darcy and shallow water flow environments.

It clear that the results are accurate and non-oscillatory. Particularly, Figures 6.3a and

6.3c show that the SSP-IMEX Scheme (6.58) can resolve stiffness very well. Figures 6.3b
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Convergence test

Benchmark Spatial steps (Nx)
Upwind Minmod

Error Order Error Order

80 0.3472 - 0.3057 -

Dam 160 0.1640 1.0823 0.0719 2.0885

break 320 0.0860 0.9315 0.0185 1.9589

640 0.0354 1.2809 0.0046 2.0082

1280 0.0176 1.0083 0.0011 2.0646

50 0.2299 - 0.1472 -

Tidal 100 0.0994 1.2100 0.0306 2.2667

wave 200 0.0464 1.0993 0.0075 2.0290

flow 400 0.0231 1.0065 0.0019 1.9813

800 0.0114 1.0191 0.0005 1.9264

Table 6.1: Errors (L∞) and orders of the Upwind and Minmod schemes, computed using the

tidal wave flow and dry bed dam break problem.

and 6.3d display shocks that developed as a consequence of the nonlinear hyperbolicity

of the reactive shallow water model. Although, the initial concentration profiles were

smooth, the final concentration profiles involved shocks and transition points that have

been captured by the proposed scheme.

In Sections 4.5 and 5.5, the acid drainage and neutralization (in a Darcy flow environ-

ment) bench mark has been used to test numerical schemes on their compatibility with

the stoichiometric decoupling method. Here, we couple the shallow water flow model with

the original large chemical transport model (5.61) (resulting model has seven degrees of

freedom) and with the stoichiometrically reduced model 5.62 (resulting model has three

degrees of freedom) and use to assess the schemes proposed. The large model that uses

Gauss-Jacobi decoupling is the reference model for measuring the accuracy of the stoi-

chiometrically reduced model. Figure 6.4 shows some results when Schemes (6.57) and

(6.58) were applied to the resulting models (i.e. reduced model with three degrees of

freedom and large model with seven degrees of freedom). The velocity profiles 6.4a and
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6.4b show that the proposed scheme is accurate. The concentration profiles in Figures

6.4c-6.4f show that the stoichiometrically reduced model is accurate in time and space.

Further, the model reduction (decoupling) error profiles are given in Table 6.2 and in

Figures 6.5a-6.5b. The error (values are 10−8 smaller than shown) oscillates in the L∞

norm but has an upper bound of 9.7E − 8. However, the model reduction error diverges

in the L2 norm (the error values are 10−7 smaller).

Decoupling errors

Grid cells (Nx)
Minmod scheme Upwind scheme

� · �∞ � · �2 � · �∞ � · �2
100 9.5109 5.0283 9.5473 5.0475

200 9.2742 6.9393 9.2926 6.9538

300 9.5180 8.7279 9.5270 8.7386

400 9.3815 9.9360 9.3847 9.9430

500 9.5026 11.2557 9.5026 11.2607

600 9.5826 12.4368 9.5807 12.4404

700 9.4939 13.3100 9.4908 13.3122

800 9.5545 14.3221 9.5505 14.3234

900 9.6015 15.2676 9.5969 15.2682

1000 9.5372 15.9862 9.5371 16.1558

Table 6.2: Model decoupling errors of Scheme (6.57), computed across norms and spatial steps.

The error values in this table are 10−8 smaller than shown.

Further, experiments on simulation cost have also been conducted using the large

and reduced shallow water model. The CPU time and CPU time differences have been

measured for both models and the results are displayed in Figures 6.5c-6.5f. It is clear

from the results that it is less expensive to simulate the stoichiometrically reduced model

with three degrees of freedom than to simulate the original large model with seven degrees

of freedom. Since the errors in Table 6.2 and in Figures 6.5a-6.5b are negligible, it can

be concluded that, the combined stoichiometric decoupling method and the proposed

schemes are efficient for simulating reactive shallow water flows.
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6.5 Chapter summary

The presence of shocks, high degrees of freedom, stiffness and non-flat bottom topogra-

phies in reactive shallow water flow problems make numerical simulation of such problems

challenging. The goal of this chapter includes the construction of a high resolution well-

balanced scheme that is compatible with the stoichiometric decoupling method presented

in Chapter 3.

In Section 6.1, a review of research conducted in the broad area of reactive flows has

been presented. The review reveals that shallow water equations have a broad area of

application and therefore, a lot of studies have been conducted on shallow water equation.

The review also outlined some simulation studies conducted on conservation laws, and

some techniques for developing well-balanced numerical schemes for balanced laws.

In Section 6.2, a model for flows with reactive transport processes that satisfy the

shallow water principle has been presented, and some of the simulation challenges have

been outlined.

In Section 6.3, numerical schemes for the reactive shallow water flow model has been

constructed. Numerical fluxes and wave speed estimates have been provided and the

schemes have been shown to preserve C-property. Strong stability preserving time-

marching schemes have been used to discretize the semi-discrete scheme.

In Section 6.4, numerical experiments have been conducted to verify the schemes. The

results show that the proposed numerical schemes are shock-capturing, stiffness-resolving,

well-balanced and are compatible with the stoichiometric method.

Therefore, the combination of the present schemes and the stoichiometric decoupling

method provides an efficient tool for simulating reactive shallow water flow problems.
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(a) Water depth/Dry/Upwind. (b) Water depth/Dry/Minmod.

(c) Water depth/Wet/Upwind. (d) Water depth/Wet/Minmod.

(e) Water depth/Tidal/Upwind (f) Water depth/Wet/Minmod.

Figure 6.1: Numerical and analytical solutions for the dry and wet dam break problems, where

T = 0.1, and Nx = 750. The left and right columns display results for dry and wet dam break

problems, respectively.
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(a) Rusanov flux/Roe estimate. (b) HLLC flux/Roe estimate.

(c) Rusanov flux/Davis estimate. (d) HLLC flux/Davis estimate.

(e) Rusanov flux/Depth estimate. (f) HLLC flux/Depth estimate.

Figure 6.2: Numerical and analytical solutions for the dry dam break problem, computed with

different wave estimates and fluxes. The left and right columns display results for Rusanov and

HLLC fluxes, respectively.
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(a) Darcy flow/single reaction. (b) Shallow water flow/single reaction.

(c) Darcy flow/stiff system. (d) Shallow water flow/stiff system.

(e) Rusanov flux/L∞ errors. (f) HLLC flux/L2 errors.

Figure 6.3: Concentration profiles in single and stiff systems of reactions that occur in shallow

water flow and Darcy flow environments. The errors (max and L2) of the numerical scheme

were computed using the analytical solution of the dry dam problem.
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(a) Upwind/flow rate. (b) Minmod/flow rate.

(c) Upwind/concentration/distance. (d) Minmod/concentration/distance.

(e) Upwind/concentration/time. (f) Minmod/concentration/time.

Figure 6.4: Flow rates and concentration profiles in a reactive wet dam break problem involving

acid neutralization. The profiles were obtained by using both upwind and minmod reconstruc-

tions.
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(a) Model reduction error/Upwind. (b) Model reduction error/Minmod.

(c) CPU time/Upwind. (d) CPU time/Minmod.

(e) CPU time difference/Upwind. (f) CPU time difference/Minmod.

Figure 6.5: Model reduction errors, CPU time and CPU time differences of the Stoichiometri-

cally decoupled model (reduced model) and Gauss Jacobi decoupled model (large model).
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Chapter 7

Conclusion and future studies

Numerical simulation of chemical phenomena has been discussed in this thesis. Due to

the presence of many species in chemical systems, that participate in a complex net-

work of chemical reactions, mathematical modelling often result in models that have

high degrees of freedom and possess certain properties (i.e. stiffness, positivity, conserva-

tivity, dissipation/dispersion properties, C-property, shocks etc) that must be preserved

or captured in simulations. While the high degrees of freedom makes numerical simula-

tion expensive, the properties of resulting models pose as constraints for some numerical

schemes. The challenge therefore, is to develop efficient procedures (i.e. accurate and less

expensive procedures) for simulating chemical phenomena. The goal of this thesis was to

develop efficient solution procedures by combining model decoupling/reduction methods

with compatible accurate numerical schemes, for the purpose of simulating the kinetics

of chemical reactions.

Moreover, the simulation challenge has been tackled in three parts which include

simulation of: ODEs (that model well-mixed chemical systems that depend on time

only) parabolic PDEs (that models reactive transport systems or poorly-mixed chemical

systems that depend on space and time) and hyperbolic PDEs (that models flow and

reactive transport processes). In Chapter 2, the reactive shallow water model has been

derived and analysed to establish nonlinear effects such as shocks, rarefactions and dis-

continuities. In Chapter 3, modelling and simulation of chemical kinetics (i.e. the ODE

part) has been discussed. Model decoupling methods and compatible accurate numerical

schemes (that satisfy stiffness, positivity and conservativity constraints) have been dis-
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cussed. Numerical simulation of the parabolic part has been discussed in Chapters 4-5.

Numerical schemes for the parabolic part have been shown to resolve stiffness, preserve

dissipation/dispersion properties and are compatible with the model decoupling method.

Shock-capturing, well-balanced schemes have been discussed in Chapter 6, for simulating

reactive shallow water problems.

While the presented numerical schemes can resolve stiffness and other constraints

(thus, are accurate), the stoichiometric decoupling method can significantly reduce the

degrees of freedom. A combination of the schemes and the stoichiometric method, there-

fore, provides an efficient tool for simulating chemical phenomena.

In further studies, we will explore the stoichiometric method to establish its limita-

tions. Throughout the study, the solution procedures have not converged to the expected

orders in the L2 norm, we will investigate this unsual behaviour in future studies. Other

model decoupling/reduction algorithms will be developed based on graph theory for sim-

ulating chemical phenomena. Further studies will also go into the construction of more

accurate well-balanced high resolution schemes for reactive shallow water flow problems.

However, the main contribution of this thesis include the discussion on the stoichio-

metric decoupling method, discussion involving dissipation-dispersion properties of nu-

merical schemes and the construction of well-balanced high resolution schemes for reactive

flow problems.
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