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Models are developed and verified with industrial data. These models are then controlled using

nonlinear model predictive control (NMPC). It was found that there are very few available dynamic

models for coal processes, other than the separation unit models developed by the author and study

leader. Additional dynamic models for a coal comminution circuit were also developed.

The mathematical details of the models developed for a coal plant are presented in this thesis. Model

system identification was used to solve for unknown model parameters, to fit the dynamic models to

actual industrial production data.

The specific coal unit process dynamic models developed and used in this thesis are:

• Vibratory feeders;

• Single- and double-deck screens;

 
 
 



• Bin with three compartments;

• A dense medium drum; and

• A dense medium cyclone.

Applying NMPC to the dynamic models allowed for simulated improvements to be made to the

comminution and separation circuits used in this research. It was shown that the throughput on a

comminution circuit could be increased by 3.6% resulting in a downstream separator yield improvement

of 3.2%. By applying NMPC to the separation circuit, it was shown that separation yield can be

improved by 6.9% with a decrease in product ash (improvement in grade) for a drum separator by

1.5% and cyclone separator by 0.4%.

The unscented Kalman filter (UKF) was simulated on the dynamic models developed to illustrate how

an actual controller could be implemented such that the dynamic model states could be updated over

time. The UKF acts as an observer such that unmeasured states can be fed back to the controller.

In summary, the thesis gives a realistic account for the application of NMPC for coal processing

and with the potential yield improvements of 10% (based on the 3.2% yield improvement due to

the comminution circuit control and the 6.9% improvement due to the separator circuit control),

could increase a South African coal company’s annual revenue by approximately R175.5 million per

annum.

A proposal regarding the application of NMPC for coal mine-wide optimisation is also given.

 
 
 



OPSOMMING

MODELLERING EN BEHEER VAN STEENKOOLAANLEGTE

deur

Ewald Jonathan Meyer

Promotor(s): Prof Ian Craig

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Universiteit: Universiteit van Pretoria

Graad: Philosophiae Doctor (Elektroniese Ingenieurswese)

Sleutelwoorde: Beheerstelsels, opgaarhouer-vlakbeheer, dinamiese modellering, digte

medium drom, digte medium sikloon, komminusie, materiaalhanter-

ing, model voorspellende kontrole, steenkool, waarnemers, stelselidenti-

fikasie, unscented Kalman filter

Modelle is ontwikkel en geverifieer aan die hand van industriële data. Hierdie modelle is dan beheer

met behulp van nie-lineêre model voorspellende kontrole (NMVK). Daar is gevind dat daar baie min

dinamiese modelle vir steenkoolprosesse beskikbaar is buiten die skeiding-eenheid-modelle ontwikkel

deur die outeur en studieleier. Addisionele dinamiese modelle vir ’n steenkool-komminusie-aanleg is

ook ontwikkel.

Die wiskundige besonderhede van die modelle wat ontwikkel is vir ’n steenkool-aanleg word aangebied

in hierdie tesis. Modelstelsel-identifikasie is gebruik om oplossings te gee vir onbekende model-

parameters en om die dinamiese modelle te pas by die werklike industriële produksiedata.

Die spesifieke eenheidsproses steenkool dinamiese modelle wat geontwikkel en gebruik word in hierdie

tesis is:

• Vibrerende voerders;

 
 
 



• Enkel- en dubbel-dek skerms;

• Bin met drie kompartemente;

• ’N digte medium drom; and

• ’N digte medium sikloon.

Die toepassing van NMVK op die dinamiese modelle het toegelaat dat gesimuleerde verbeterings

aangebring kon word. Daar is getoon dat die deurset op ’n komminusie-aanleg 3.6% verhoog kan

word wat kan lei tot ’n stroomaf skeiding-opbrengs verbetering van 3.2%. Deur die toepassing van

NMVK op die skeiding-aanleg, is daar getoon dat skeiding-opbrengs met 6.9% verbeter kan word

met ’n afname in die produk-as (verbetering in graad) vir ’n drom skeier met 1.5% en sikloon-skeier

met 0.4%.

Die unscented Kalman filter (UKF) is nageboots op die dinamiese modelle wat ontwikkel is om te

illustreer hoe ’n werklike kontroleerder sodanig geïmplementeer kan word dat die toestand van die

dinamiese modelle met verloop van tyd opgedateer kan word. Die UKF dien as ’n waarnemer sodat

ongemete toestande teruggevoer kan word na die kontrolleerder.

Om op te som: die tesis gee ’n realistiese scenario vir die toepassing van NMVK op steenkoolver-

werking. Met die potensiële groter opbrengs van 10% (gebaseer op die 3.2% groter opbrengs as

gevolg van die kontrole van die komminusie-aanleg en die 6.9% groter opbrengs weens die kon-

trole van die skeiding-eenheid) kan ’n Suid-Afrikaanse steenkoolmaatskappy se jaarlikse inkomste

met 175.5 miljoen per jaar styg.

Daar word ook ’n voorstel aan die hand gedoen oor die toepassing van NMVK vir die optimalisering

van die steenkoolmyn in sy geheel.

 
 
 



LIST OF ABBREVIATIONS

CFD Computational fluid dynamics

DC Direct current

DMC Dense medium cyclone

DMD Dense medium drum

DMS Dense medium separation

EKF Extended Kalman filter

EPM Écart probable moyen

GRV Gaussian random variables

IEA International Energy Agency

MPC Model predictive control

NMPC Nonlinear model predictive control

NRMSE Normalised root mean square error

ODE Ordinary differential equations

PGNAA Prompt gamma neutron activation analysis

RD Relative density

ROM Run-of-mine

SG Specific gravity

UKF Unscented Kalman filter

USD United States dollars

UT Unscented transform

 
 
 



NOMENCLATURE

α Unscented Kalman filter spread of the sigma points around the random variable mean (x̄)

αc DMC separator (subscript c) volume and volumetric split ratio

αd Drum separator (subscript d) volume and volumetric split ratio

αds,c Double-deck screen (subscript ds) percentage of mass split for mass component i for the bottom

deck (subscript c)

αds,o Double-deck screen (subscript ds) percentage of mass split for mass component i for the top

deck (subscript o)

αss Single-deck screen (subscript ss) percentage of mass split for mass component i

ȳM System identification dynamic model (subscript M ) measured output statistical mean

β Unscented Kalman filter parameter used to incorporate prior knowledge of the distribution of

the random variable (x)

βb Bin (subscript b) stockpile maximum height ratio

χi Unscented Kalman filter ith sigma vector

∆ρc,med DMC separator (subscript c) difference between the overflow and underflow medium density

(subscript med) and the feed medium density

∆ρd,med Drum separator (subscript d) proportionality constant relating difference in feed component

density (subscript ρd,med) with either density of floats or sinks

 
 
 



ε System identification model prediction error

γi Unscented Kalman filter ith sigma vector nonlinear function

κ Unscented Kalman filter secondary scaling parameter

λ Unscented Kalman filter scaling parameter

x̄ Unscented Kalman filter random variable mean

χ Unscented Kalman filter nonlinear function (y) statistics

ŷ(t) Model predictive control output prediction

Px Unscented Kalman filter random variable covariance

P Model predictive control coefficient that considers sequences in future behaviour of rapid input

changes [∆u(t + j) = u(t + j)−u(t + j−1)]

P0 Unscented Kalman filter initial original state

Pa
0 Unscented Kalman filter initial covariances

Pn Unscented Kalman filter initial measurement noise

Pv Unscented Kalman filter initial process noise

Q Model predictive control coefficient that considers sequences in future behaviour of input error

[u(t + j)−us]

R Model predictive control coefficient that considers sequences in future behaviour of the error

[ŷ(t + j)−ys]

 
 
 



s Model predictive control soft constraints in output variables

T Model predictive control coefficient that considers sequences in future soft constraints (s)

u(t) Model predictive control field action

us(t) Model predictive control desired steady-state inputs

x Unscented Kalman filter random variable

y Unscented Kalman filter nonlinear function g(x)

ys(t) Model predictive control output reference trajectory

fit System identification goodness of the fit

FPE System identification Akaike’s final prediction error

yM System identification dynamic model (subscript M ) measured output

ytd,M System identification dynamic model (subscript M ) measured output after time delay (subscript

td)

M∗ Mathematical representation of a dynamic model (subscript ∗)

ρ25 Specific gravity (SG) at 25%

ρ50 Separation cutpoint with a partition factor of 50% (subscript 50)

ρ75 Specific gravity (SG) at 75%

 
 
 



ρb Bulk density of material in bin (subscript b)

ρc,i,∗ Density of mass component (subscript ∗) in the DMC separator (subscript c) feed (subscript i)

mix

ρc,i Density of the DMC separator (subscript c) feed (subscript i) mix

ρc,o,∗ Density of mass component (subscript ∗) in the DMC separator (subscript c) overflow (subscript

o)

ρc,o Density of the DMC separator (subscript c) overflow (subscript o)

ρc,u,∗ Density of mass component (subscript ∗) in the DMC separator (subscript c) underflow (sub-

script u)

ρc,u Density of the DMC separator (subscript c) underflow (subscript u)

ρd, f ,∗ Density of mass component (subscript ∗) in the drum separator (subscript d) floats (subscript

f )

ρd, f Density of the drum separator (subscript d) floats (subscript f )

ρd,i,∗ Density of mass component (subscript ∗) in the drum separator (subscript d) feed (subscript i)

mix

ρd,i,ore Drum separator (subscript d) ore (subscript i,ore) density

ρd,i Density of the drum separator (subscript d) feed (subscript i) mix

ρd,s,∗ Density of mass component (subscript ∗) in the drum separator (subscript d) sinks (subscript s)

ρd,s Density of the drum separator (subscript d) sinks (subscript s)

 
 
 



ρi,med Dense medium separation feed medium (subscript i,med) density

τ f Feeder (subscript f ) time constant

τb f ,1 Bin feeder no. 1 (subscript b f ,1) characteristic time constant

τb f ,2 Bin feeder no. 2 (subscript b f ,2) characteristic time constant

τcr Crusher (subscript cr) time constant

τds,c Time taken for ore to be transported over a bottom deck (subscript c) of a double-deck screen

(subscript ds) component i

τds,o Time taken for ore to be transported over a top deck (subscript o) of a double-deck screen

(subscript ds) component i

τss,o Time taken for ore to be transported over (subscript o) a single-deck screen (subscript ss)

component i

τss,u Time taken for ore to be transported through (subscript u) a single-deck screen (subscript ss)

component i

τu,ds,c Time taken for ore to be transported through (subscript u) a bottom deck (subscript c) of a

double-deck screen (subscript ds) component i

τu,ds,o Time taken for ore to be transported through (subscript u) a top deck (subscript o) of a double-

deck screen (subscript ds) component i

θi System identification ith model parameter consisting of dM parameters in total

ŷM System identification dynamic model (subscript M ) simulated output

 
 
 



Ac DMC separator (subscript c) inlet cross-sectional area

Ab Bin (subscript b) stockpile maximum geometric base area

Adrm Drum separator partition curve parameter

Aore Effective cross-sectional area of an ore particle

apc Relative density fraction in clean coal in the development of a partition curve (subscript pc)

Bdrm Drum separator partition curve parameter

bi M-curve ith process model parameter containing 5 parameters in total (i.e. i = 1 . . .5)

bpc Relative density fraction of total clean coal in the development of a partition curve (subscript

pc)

Core Drag coefficient of an ore particle

cpc Relative density fraction in discard in the development of a partition curve (subscript pc)

d Model predictive control slew rate

Dc DMC separator (subscript c) diameter

dore Average particle size of ore (subscript ore)

dpc Relative density fraction of total discard in the development of a partition curve (subscript pc)

Ep Écart probable moyen or separation efficiency

 
 
 



epc Relative density fraction reconstructed feed in the development of a partition curve (subscript

pc)

f f Feeder (subscript f ) motor speed

Fg Downward gravitational force on an ore particle

fb f ,1 Bin feeder no. 1 (subscript b f ,1) variable speed drive frequency

fb f ,2 Bin feeder no. 2 (subscript b f ,2) variable speed drive frequency

g Acceleration due to gravity

hc DMC separator (subscript c) head height

Hb Bin (subscript b) stockpile maximum geometric height

hb Bin (subscript b) stockpile maximum height

Icr,min Motor current when crusher (subscript cr) has no load (subscript min)

Icr Crusher (subscript cr) motor current

J Model predictive control objective function

K f Feeder (subscript f ) proportionality constant relating motor speed to mass flow rate

Kb,1 Bin (subscript b) stockpile maximum height ratio proportionality constant for sigmoid relation-

ship

Kb,2 Bin (subscript b) stockpile maximum height ratio proportionality constant for sigmoid relation-

ship

 
 
 



Kb f ,1,1 Bin feeder no. 1 (subscript b f ,1) proportionality constant for inverse exponential relationship

Kb f ,1,2 Bin feeder no. 1 (subscript b f ,1) proportionality constant for inverse exponential relationship

Kb f ,1,3 Bin feeder no. 1 (subscript b f ,1) proportionality constant for sigmoid relationship

Kb f ,1,4 Bin feeder no. 1 (subscript b f ,1) proportionality constant for sigmoid relationship

Kb f ,1(hb) Bin feeder no. 1 (subscript b f ,1) proportionality function of bin level hb

Kb f ,2,1 Bin feeder no. 2 (subscript b f ,1) proportionality constant for inverse exponential relationship

Kb f ,2,2 Bin feeder no. 2 (subscript b f ,1) proportionality constant for inverse exponential relationship

Kb f ,2,3 Bin feeder no. 2 (subscript b f ,1) proportionality constant for sigmoid relationship

Kb f ,2,4 Bin feeder no. 2 (subscript b f ,1) proportionality constant for sigmoid relationship

Kb f ,2(hb) Bin feeder no. 2 (subscript b f ,2) proportionality function of bin level hb

Kc,o,∗ DMC separator (subscript c) proportionality constant relating densities for mass component

(subscript ∗) in overflow (subscript o)

Kc,o DMC separator (subscript c) proportionality constant relating densities in overflow (subscript

o)

Kc,u,∗ DMC separator (subscript c) proportionality constant relating densities for mass component

(subscript ∗) in underflow (subscript u)

Kc,u DMC separator (subscript c) proportionality constant relating densities in underflow (subscript

u)

 
 
 



Kcr,k,1 Crusher (subscript cr) mass hold-up proportionality constant for solids retained above size

interval k

Kcr,k,2 Crusher (subscript cr) motor current proportionality constant for solids retained above size

interval k

Kcr,k,3 Crusher (subscript cr) motor current proportionality constant for torque load at solids retained

above size interval k

Kd, f ,∗ Drum separator (subscript d) proportionality constant relating densities for mass component

(subscript ∗) in floats (subscript f )

Kd, f Drum separator (subscript d) proportionality constant relating densities in floats (subscript f )

Kd,s,∗ Drum separator (subscript d) proportionality constant relating densities for mass component

(subscript ∗) in sinks (subscript s)

Kd,s Drum separator (subscript d) proportionality constant relating densities in sinks (subscript s)

L Unscented Kalman filter dimension of random variable (x)

Lb,1 Bin stockpile maximum geometric base depth (subscript b,1)

lb,1 Bin stockpile base depth (subscript b,1)

Lb,2 Bin stockpile maximum geometric base length (subscript b,2)

lb,2 Bin stockpile base depth (subscript b,2)

lb Bin (subscript b) stockpile relative level

m f Mass on a feeder (subscript f )

 
 
 



mb f ,1 Bin feeder no. 1 (subscript b f ,1) mass state

mb f ,2 Bin feeder no. 2 (subscript b f ,2) mass state

mb Bin (subscript b) mass state

mcr Mass in crusher(subscript cr)

Mds,c,i Double-deck screen (subscript ds) mass of ore for mass component i on the bottom deck

(subscript c)

Mds,o,i Double-deck screen (subscript ds) mass of ore for mass component i on the top deck (subscript

o)

Mss,i Single-deck screen (subscript ss) mass of ore for mass component i

Pc,i DMC separator (subscript c) inlet pressure

pi Drum separator partition factor ith parameter containing 3 parameters in total (i.e. i = 1 . . .3)

Qc,i,∗ Volumetric flow rate of mass component (subscript ∗) in the DMC separator (subscript c) feed

(subscript i) mix

Qc,o,∗ Volumetric flow rate of mass component (subscript ∗) in the DMC separator (subscript c)

overflow (subscript o)

Qc,o Volumetric flow rate of the material overflow (subscript o) within the DMC separator (sub-

script c)

Qc,s,∗ Volumetric flow rate of mass component (subscript ∗) in the DMC separator (subscript c)

underflow (subscript u)

 
 
 



Qc,u Volumetric flow rate of the material underflow (subscript u) within the DMC separator (sub-

script c)

Qd, f ,∗ Volumetric flow rate of mass component (subscript ∗) in the drum separator (subscript d) floats

(subscript f )

Qd, f Volumetric flow rate of the material of floats (subscript f ) within the drum separator (sub-

script d)

Qd,i,∗ Volumetric flow rate of mass component (subscript ∗) in the drum separator (subscript d) feed

(subscript i) mix

Qd,s,∗ Volumetric flow rate of mass component (subscript ∗) in the drum separator (subscript d) sinks

(subscript s)

Qd,s Volumetric flow rate of the material of sinks (subscript s) within the drum separator (subscript d)

Rc DMC separator (subscript c) effective radius near the spigot

Rcr,i,k Crusher (subscript cr) feed (subscript i) fraction of solids retained above size interval k

Rcr,o,k Crusher (subscript cr) product (subscript o) fraction of solids retained above size interval k

t Time

ttd Time delay

VN System identification loss function with N values in the estimation data set (ZN)

Vt System identification loss function terminating (subscript t) threshold

vt Drum separator particle terminal velocity

 
 
 



v100 Drum separator terminal velocity allowing for sinks to be recovered 100%

Vb Volume of material within the bin (subscript b)

vc,i DMC separator (subscript c) inlet (subscript i) tangential velocity

Vc,o Volume split of the overflow (subscript o) within the DMC separator (subscript c)

Vc,u Volume split of the underflow (subscript u) within the DMC separator (subscript c)

Vc Volume of the material within the DMC separator (subscript c)

Vd, f Volume of the material of floats (subscript f ) within the drum separator (subscript d)

Vd,s Volume of the material of sinks (subscript s) within the drum separator (subscript d)

Vd Volume of the material within the drum separator (subscript d)

Wi Unscented Kalman filter ith sigma vector corresponding weight

Wb,i Bin (subscript b) mass flow rate input (subscript i)

Wb,o,1 Bin (subscript b) mass flow rate output no. 1 (subscript o,1)

Wb,o,2 Bin (subscript b) mass flow rate output no. 2 (subscript o,2)

Wb,o,3 Bin (subscript b) mass flow rate output no. 3 (subscript o,3)

Wb f ,o,1 Bin feeder (subscript b f ) mass flow rate output no. 1 (subscript o,1)

Wb f ,o,2 Bin feeder (subscript b f ) mass flow rate output no. 2 (subscript o,2)

 
 
 



Wc,i Mass feed rate of the DMC separator (subscript c) feed (subscript i) mix

Wc,o Mass feed rate of the DMC separator (subscript c) overflow (subscript o)

Wc,u Mass feed rate of the DMC separator (subscript c) underflow (subscript u)

Wcr,i Mass flow rate into (subscript i) a crusher (subscript cr)

Wcr,o Mass flow rate from (subscript o) a crusher (subscript cr)

Wd, f Mass feed rate of the drum separator (subscript d) floats (subscript f )

Wd,i Mass feed rate of the drum separator (subscript d) feed (subscript i) mix

Wd,s Mass feed rate of the drum separator (subscript d) sinks (subscript s)

Wds,c,i Double-deck screen (subscript ds) mass feed rate of the ore overflow exiting mass component i

on the bottom deck (subscript c)

Wds,o,i Double-deck screen (subscript ds) mass feed rate of the ore overflow exiting mass component i

on the top deck (subscript o)

Wf ,o Mass flow rate from a feeder (subscript f )

Wss,i Single-deck screen (subscript ss) mass feed rate of the ore overflow exiting mass component i

Wu,ds,c,i Double-deck screen (subscript ds) mass feed rate of the undersized (subscript u) ore exiting

mass component i from the bottom deck (subscript c)

Wu,ds,o,i Double-deck screen (subscript ds) mass feed rate of the undersized (subscript u) ore exiting

mass component i from the top deck (subscript o)

 
 
 



Wu,ss,i Single-deck screen (subscript ss) mass feed rate of the ore underflow (subscript u) exiting mass

component i

xc,i,∗ Percentage of mass component (subscript ∗) in the DMC separator (subscript c) feed (subscript

i) mix

xc,o,∗ Percentage of mass component (subscript ∗) in the DMC separator (subscript c) overflow

(subscript o)

xc,u,∗ Percentage of mass component (subscript ∗) in the DMC separator (subscript c) underflow

(subscript u)

xd, f ,∗ Percentage of mass component (subscript ∗) in the drum separator (subscript d) floats (subscript

f )

xd,i,∗ Percentage of mass component (subscript ∗) in the drum separator (subscript d) feed (subscript

i) mix

xd,s,∗ Percentage of mass component (subscript ∗) in the drum separator (subscript d) sinks (subscript

s)

x f ,ash M-curve process model product or float ash (subscript f ,ash) percentage

xi,ash M-curve process model feed ash (subscript i,ash) content

y M-curve process model yield

Y (ρi,med) Partition factor as a function of feed medium density (ρi,med)

Yc Cyclone separator (subscript c) partition factor

Yd Drum separator (subscript d) partition factor

 
 
 



Yd(ρi,med) Drum separator (subscript d) partition factor as a function of feed medium density (ρi,med)

ypc Yield for clean coal in the development of a partition curve (subscript pc)
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

The International Energy Agency (IEA) has indicated that the global coal demand growth has slowed

down in recent years and is estimated to grow at a rate of 2.1% per year through 2019 (International

Energy Agency, 2014b). Coal prices are declining and many coal producers have been operating at a

loss in the last two years driven by take-or-pay agreements or financial liabilities. The operational costs

have been lowered by some companies, not only through economies of scale, effective management

and budget disciplines, but also through external factors such as depreciation of local currencies.

Coal accounts for 41% of the world’s electricity generation (Pooe and Mathu, 2011). In the South

African context, about 75% of its coal is used locally, primarily for electricity generation and synthetic

fuels. South Africa’s coal reserves largely consists of bituminous coal (96%), while anthracite (2%), and

metallurgical coal (2%) account for the remaining portion (Eberhard, 2011). Figure 1.1 illustrates the

coal prices over the past three years for thermal coal and coking coal (Metals Consulting International,

2015). In the South African context, Figure 1.2 shows the historical record of export coal (Barrientos

and Soria, 2015). All prices are given in United States dollars (USD) per metric ton.

Given the steady decreasing trend in coal prices over the past three to four years, as illustrated in

Figures 1.1 and 1.2, there is a need to optimise coal operations with the objectives of increasing

throughput and grade while minimising cost. The South African National Energy Development

Institute have developed a roadmap for the South African coal value chain (South African National

Energy Development Institute, 2015). Trends and opportunities in the coal preparation value chain
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Figure 1.1: Commodity coal price history [data taken from Metals Consulting International (2015)].
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Figure 1.2: South African export coal price history [data taken from Barrientos and Soria (2015)].
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primarily include metallurgical solutions such as dry coal processing, simultaneous washing of coarse

and small coal, agglomeration of ultra-fine coal and thermal drying techniques.

Other contributing technologies in fine coal processing include water-based separation, chemical separ-

ation, magnetic and electrical separation, computers and process control, and materials science (Klima

et al., 2012; Arnold et al., 2007). Although these coal beneficiation technologies can improve the

coal value chain, current coal plants can be managed more effectively through the use of metallurgical

accounting, control and simulation (Wills and Napier-Munn, 2006). With recent developments in the

field of control systems, opportunities exist to improve current and future coal plants through better

control of yield, throughput and grade (Meyer and Craig, 2010).

1.1.2 Research gap

The current gap in the field of research applied to coal processing is the development of model-based

control systems to improve coal plant performance. Research gaps that this thesis address are as

follows:

• The development of dynamic models for coal plants.

• The development of a partition curve from a dynamic model in coal beneficiation.

• Development, design and simulation of a model predictive controller (MPC) for a coal benefici-

ation process.

• Discussion on the implementation and benefits of MPC in coal processing.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The objectives of this research are as follows:

• Improve current knowledge and understanding of mathematical modelling and process control

in coal beneficiation.
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• Contribute to the research field of applied process control in minerals processing.

• To synthesise knowledge between the fields of control systems and coal metallurgy.

• Contribute to the coal processing industry by proposing a solution to improve coal plant opera-

tions.

The following research questions arise when considering the above research objectives:

• What is the current knowledge of model-based control, such as MPC, in coal beneficiation?

• Does a dynamic model exist for coal beneficiation using dense medium separation (DMS) and

has model-based control been applied to the process?

• What are the benefits if model-based control is implemented for a coal DMS process?

1.3 HYPOTHESIS AND APPROACH

With the development and identification of a dynamic model describing a coal beneficiation process,

it will be possible to design a model-based controller. If MPC is used, it should be shown through

simulation that MPC performs better than existing control techniques employed at an actual coal plant.

The MPC simulated for an existing coal process should show a theoretical improvement in yield in the

order of ten percent over a limited time frame.

The approach to be followed for this research involves a standard control system design procedure

where a dynamic model of a coal process will be identified and used to design a MPC. An approach to

implement this controller design will be discussed.

1.4 RESEARCH GOALS

The proposed research goals are as follows:
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1. Study an actual coal beneficiation process and determine the control objectives of the process.

2. Identify dynamic models of the process and validate the models by generating their steady-state

partition curve for the DMS areas.

3. Determine the control variables and design a MPC system for the models.

4. Simulate the controller and determine the theoretical improvement made to the process by

comparing the simulation results to the actual plant data.

5. Discuss the possible implementation of the controller and possible improvements that can be

made in terms of measurement and control.

1.5 RESEARCH CONTRIBUTION

The contribution this research will make to the coal processing field is the development of plant verified

dynamic models for process control. These dynamic models are used to design model-based controllers

that can illustrate potential benefits in throughput, yield and product quality through simulation. The

process control research field will benefit by having a simulated application of MPC in coal processing.

The following publications have resulted from this work:

• Meyer, E. J., Craig, I. K., Alvarado, V., 2015. Unscented kalman filter for a coal run-of-mine

bin, Proceedings of the 4th Workshop on Mining, Mineral and Metal Processing, Oulu, Finland,

IFAC, IFAC.

• Meyer, E., Craig, I., 2015. Dynamic model for a dense medium drum separator in coal benefici-

ation, Minerals Engineering 77: 78–85.

• Meyer, E. J., Craig, I. K., 2014. Coal dense medium separation dynamic and steady-state

modelling for process control, Minerals Engineering 65(15), 98–108.
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• Meyer, E. J., Craig, I. K., 2011. Development of a steady-state partition curve from a dense

medium cyclone dynamic model in coal beneficiation, Proceedings of the 18th IFAC World

Congress, Milan, Italy, Vol. 18, IFAC, IFAC, pp. 10523–10528.

• Meyer, E. J., Craig, I. K., 2010. The development of dynamic models for a dense medium

separation circuit in coal beneficiation, Minerals Engineering 23(10): 791–805.

1.6 OVERVIEW OF STUDY

Various aspects regarding the available literature on model-based control applied to coal processing is

detailed in Chapter 2. The literature study covers primarily the available literature in the development

of dynamic modelling for minerals processing unit operations in DMS plants. Chapter 3 details the

method used in this thesis to detail the model-based control approach for coal beneficiation plants using

DMS. Mathematical models representing the process dynamics of an actual coal process are shown.

The MPC algorithm is also explained. In order to implement the model-based controller, an observer

is necessary. The unscented Kalman filter (UKF) algorithm is used to illustrate how an observer can

be applied to the dynamic models. The UKF algorithm is explained in Chapter 3 as well. Chapter 4

shows the simulation results of the dynamic models, MPC and UKF based on an actual coal plant.

Chapter 5 discusses the meaning of the results in Chapter 4. A conclusion of the thesis is given in

Chapter 6.
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OBJECTIVES

The objectives of this chapter are to determine and show what the current status in literature is regarding

the application of control systems to coal plants. In order to define the scope of the literature regarding

coal plants, a generic minerals processing flowsheet given in Figure 2.1 shows what unit operations are

applicable to this research.

Run-of-mine (ROM) coal ore is either communited or stockpiled for comminution at a later stage.

Comminution typically involves the crushing and screening of ore to generate a specific particle size

classification for downstream separation (Hayes, 2003). Material that has been sized is usually stored

in a silo or bin to act as a buffer between comminution and separation. Coal is primarily separated

through gravity or density. Final product is stockpiled and handled for sales.

The scope of the literature study and thesis will include dynamic modelling applied to coal ROM

stockpiling right through to coal separation using DMS. Additional literature relating to model-based

control in minerals processing and coal are also studied.

2.2 DYNAMIC MODELLING FOR ROM STOCKPILING, COMMINUTION AND BIN

STORAGE

A minerals processing plant usually receives ROM ore and processes the ore to increase its value. The

material is then reduced in size through comminution and separated by sizing before beneficiation. Firth

(2009) has identified management approaches that can make a difference to a DMS plant performance.
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Comminution

ROM ore
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Separation

Bin

Product
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Product handling

Figure 2.1: Generic minerals processing flowsheet [adapted from Wills and Napier-Munn (2006)].

One of the critical factors that can impact a DMS operation is the solids feed rate. The importance of

managing the ROM feed to the DMS process cannot be underestimated. In order to ensure continuous

flow of material to the minerals processing plant, a storage buffer such as a bin or silo is typically

used. If the storage buffer is incorrectly managed, the feed of material to the plant is suboptimal and

inefficient.

The available literature regarding the mathematical modelling of these unit processes are detailed

below. Typical equipment used within the ROM stockpiling, comminution and bin unit operations

include feeders, conveyors, crushers and screens.

A model of a vibratory bowl feeder has been developed using equations of motion (Maul and Thomas,

1997). Stockpile bunker feeders are typically linear vibratory feeders and therefore the bowl feeder
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model is not applicable in most cases. Another model developed by Lim (1997) shows another dynamic

model of a linear vibratory feeder also based on equations of motion. These dynamic models are

more specific to the mechanical behaviour of the feeders and cannot be used for modelling of mass

flow.

A similar approach to the mass flow model of a powder feeder system developed by Thayalan and

Landers (2006) will be used in this thesis. This principle of dynamic behaviour is based on conservation

of mass (Stephanopoulos, 1984). Many of the other equipment models for coal processing are developed

using conservation of mass or mass of components.

More detailed mathematical models of crushing equipment are also available in literature such as to

improve plant design based on required yield and product shape (Bengtsson et al., 2009), determining

the gap setting of an industrial double-roll crusher (Cotabarren et al., 2008) and optimising the design

of a differential and grading toothed roll crusher (Zhao et al., 2008). Although these models are useful

for the design of crushing plants, they are not necessarily applicable for process control. Similarily,

discrete element method simulations (Cleary and Sinnott, 2014) can clearly simulate the breakage

of particles. However, these simulations are computationally expensive and usually unsuitable for

continuous control and optimisation.

Leite (1990) has developed kinetic models for crushers and screens and also shown how to simulate

these systems in closed circuit. The closed circuit used by Leite (1990) similarily represents parts

of the coal process in this thesis. As a result, the models derived by Leite (1990) will be used as

reference for development of dynamic crushing models. A more recent publication showing models

for dynamic crushing plant behaviour is also available in Asbjörnsson et al. (2013). Other work on

closed crushing circuits include metallurgical models relating process variables using nomographs

(Tsakalakis, 2000).

Literature that was found on bin and silo mathematical modelling concentrates on the modelling of flow

patterns of material within the vessel. Sielamowicz et al. (2014) used linear and nonlinear regression

to model the eccentric flow of material within a silo. Dynamic load modelling of cyclic flow of bulk

solids during gravity discharge in bins has also been developed in detail (Roberts and Wensrich, 2002;

Chen et al., 2005; Tüzün and Nedderman, 1985).
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Other mathematical models of bins and silos make use of finite element analysis to describe the

three-dimensional flow of material within the vessels. Constitutive models have been developed

from material tests and used in finite element calculations for static wall pressures for the prevention

of silo damage from coal (Ooi et al., 1996). Similar approaches making use of discrete element

methods to describe the mechanical behaviour of material filling and emptying in silos is also available

(González-Montellano et al., 2011, 2012).

The use of multiple vibratory bars to control silo stress situations, if silo wall friction and contents can

be controlled, has been demonstrated (Hatamura and Takeuchi, 1991). In this case it was shown that

only the lateral pressure near the base of a silo was controlled.

Although the modelling methods described above are useful for analysis of material within a bin or

silo, they are not suitable for process control (Seborg et al., 1995). The literature describing the control

applied to feed processes and silos is limited when compared to the bin and control objectives required

for this thesis.

A computer simulation for screens has been developed by Firth et al. (1983) and it is indicated that

Gottfried (1973) has developed a model for wet screening. This model is a steady-state model and

can be used to evaluate the partition coefficients per particle size fraction. The dynamic model of a

screen developed by Meyer and Craig (2010) is used in this thesis as it describes the time evolution

of material flowing over and through the screen. King (2001) has detailed a considerable number of

minerals processing mathematical models. However, these models do not typically include the time

evolution of process variables and cannot be used directly for control purposes.

Given the limited availability of dynamic models for bins from the available literature, the process

dynamics of a bin are modelled using the principle of mass conservation (Stephanopoulos, 1984). Many

of the dynamic models used in this thesis are greybox models and typically include nonlinear process

dynamics with associated unknown model parameters. These unknown parameters are determined

through system identification techniques described by Ljung (1987). By identifying the unknown

parameters with actual plant data the model fit can be determined. Details of this technique has been

applied to the dense medium cyclone (DMC) by Meyer (2010).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

10

 
 
 



CHAPTER 2 Literature study

2.3 DYNAMIC MODELLING FOR COAL SEPARATION

Raw coal that is mined contains a number of impurities and is typically processed to improve its overall

quality. The mineral processing of this ROM coal involves a complicated and sophisticated operation

including comminution, classification and separation. These separation processes normally make use

of particle classification on the basis of density (England et al., 2002). Coal, typically being lighter, is

separated from the heavier gangue by utilising the difference in specific gravity. These processes can

make use of mediums that are made to have specific relative densities to ensure the separation of coal

from gangue.

A coal DMS plant makes use of the principle of density separation to upgrade mined coal and produce

metallurgical coal or power station coal. The objective of the DMS plant operation is to produce coal

product within a minimum quality specification and maximum possible yield (England et al., 2002).

Meyer and Craig (2010) have indicated that coal DMS plants do not typically operate at steady state

and that setpoint changes should be tracked appropriately in terms of ash content and yield. Almost

all DMS plants are only automatically controlled at the regulatory control level in terms of medium

density and ore feed rate and there are significant financial implications if the average yield and ash

content of product coal can be controlled and optimised.

Coal beneficiation primarily makes use of gravity separation in coal washing (Majumder et al., 2004).

It is explained that DMS, specifically the DMC, is the main processing unit used for cleaning coal,

beneficiating nearly 55% of coal that is washed worldwide (Honaker and Patwardhan, 2006; De Korte,

2003a). The United States makes use of the DMS process for 65% of its washed coal. It can be

determined from the data collected by De Korte (2003b) that 98% of the 53 coal-preparation plants in

South Africa are making use of the DMC as their beneficiating unit.

Many static models have been developed for dense medium separation circuits. However, these

models are typically not suitable for dynamic controller design for which models that describe the time

evolution of variables are required. Napier-Munn (1991) developed a static model for a DMC, which

incorporates the partition factor as a function of relative density (RD) and ore feed particle size. This

model was derived by substituting equations from Lynch (1977); King and Juckes (1984) and King

and Juckes (1988).
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Scott and Napier-Munn (1992) developed a similar type of model in which the separation efficiency

has been used. Another technique that has been used to model the size-density partition surface of a

DMC without the use of the pivot phenomena is stochastic modelling (Rao et al., 2003). A model,

which incorporates both size and density partitions, was developed by Rao (2004) who used a Weibull

function. This efficiency model makes use of pivot coordinates and density that is size-dependent, as

developed by Plitt (1971). A more complicated model developed by Clarkson (1983) makes use of

a force balance with turbulence to include more operating variables to simulate the performance of

separation. Erasmus (1973) developed an equation which can be fitted to the partition curve by making

use of an ideal washer in which no misplacement occurs. This can be evaluated cyclically over time

(Napier-Munn, 1991) to obtain an imperfect performance regression model (Erasmus, 1973) that must

be fitted to sink and float data.

A computer simulation by Firth et al. (1983) was developed to simulate the efficiency of a DMS

processes. This technique requires a large number of partition coefficient data sets and feed composition

data divided into several relative density fractions with respect to each size fraction. Sufficient

information on the separation process and ore feed size distribution with washability data is required

in order for the simulation to be accurate. The minerals processing model detailed by King (2001)

require similar information regarding population balances of material properties such as particle size

or RD fraction.

A number of hydrocyclone models have been developed and are described by Chen et al. (2000). These

models, however, are primarily developed for particle size classification and not particle separation

due to density.

Other DMC models have been developed that make use of more sophisticated techniques such as

computational simulations using Eulerian models for the medium and Lagrangian models for the coal

particles (Suasnabar and Fletcher, 1999). Brennan (2003) reports on an algebraic slip mixture model

which makes use of computational fluid dynamics (CFD) to solve the Reynolds averaged Navier-Stokes

equations. Cortés and Gil (2007) indicate that CFD modelling can become very costly owing to the

unsteady nature of the flow that requires large eddy simulations or direct numerical simulations.

CFD models that incorporate Navier-Stokes equations (Cortés and Gil, 2007) have also been developed

for the DMC; however, these models are computationally very costly and are difficult to incorporate
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into an online controller.

A model developed for dense medium baths or drums is referred to by Napier-Munn (1991). This

model, developed by Scott and Lyman (1987), uses sedimentation theory to express the separation

cutpoint within the drum. Napier-Munn (1991) determined a partition factor equation for the drum

separator.

Dynamic process models for the coal DMS process are limited in the available published literature

(Meyer and Craig, 2010). Steady-state models developed by Napier-Munn (1991) cannot be used for

process control purposes due to the need for time-varying process variables. DMS process models

developed by Lyman et al. (1982) and Lyman et al. (1983) show dynamic process simulations which

only focus on the regulatory control aspects such as medium density. A linear relationship between

medium density and product coal ash content is assumed. This linear relationship can be viewed as a

limitation as the model is only valid within a narrow medium density band.

The dynamic models developed by Meyer and Craig (2010) are detailed in such a way that they can be

used to simulate time-varying coal product quality and throughput. These models are based on first

principles using conservation of mass and mass of components (Stephanopoulos, 1984) and can be

used for simulating and validating process control strategies for DMS circuits. The models developed

in Meyer and Craig (2010) were validated by comparing their responses to experimental data obtained

from a fine coal DMC circuit. These data were generated from step changes in medium density, and

the resulting changes in product ash content were carefully observed (Figure 2.2).

The dynamic process models develop by Meyer and Craig (2010) were for a fine coal DMC. Additional

dynamic modelling and verification were conducted for a coarse cyclone in Meyer and Craig (2014).

Equipment and operating conditions were different, with the yield being much higher than that of the

fine cyclone. Two experiments were performed to verify the models developed in Meyer and Craig

(2014). The first experiment used a step change in throughput while medium density was kept constant.

The second experiment used a step change in medium density while throughput was kept constant.

These steps were found by searching historical production data for large input changes such that the

derived models could be validated over a wide range of operating conditions.

Additional validation for the dynamic models of Meyer and Craig (2010) are presented in Meyer and
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Figure 2.2: DMC dynamic model simulated ash content (with error-bar having 95% confidence

interval) compared to measured ash content in overflow [taken from Meyer and Craig (2010)].

Craig (2011), where the DMC model was reduced to a steady-state model which represents a DMC

partition curve. Meyer and Craig (2014) further validates the DMC model by reducing the dynamic

model developed from each experiment into a steady-state partition curve.

Meyer and Craig (2011) shows how a dynamic DMC model can be reduced to a steady-state model.

This steady-state model is similar to that of a partition curve used to determine the efficiency of a

DMC. The principle used to generate such a curve is float and sink analysis where coal samples are

collected and separated using different relative density fractions.

England et al. (2002) details the float and sink analysis used in this thesis. Figure 2.3 illustrates how a

sample is separated using containers with liquids of decreasing specific gravity (SG). The float of each

container is recovered and used as feed for the next container. The analysis is performed at steady-state

as each container must allow the sample to settle and separate.

By analysing the sinks at each density fraction, it is possible to generate a partition curve (England et

al., 2002). Figure 2.4 shows the actual partition curve of a coarse DMC as determined from plant data

(Meyer and Craig, 2014).
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Figure 2.3: Sink and float analysis used to determine a partition curve (numerical values represent

liquid SG).
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Figure 2.4: Actual coarse cyclone (-25+6mm coal) partition curve [taken from Meyer and Craig

(2014)].

The separation cutpoint (ρ50) can be determined as 1701 kg/m3 - this is the specific density where a

particle will have an equal chance of reporting to a float or sink. The écart probable moyen (EPM) is

determined as 0.0020 SG based on the partition curve in Figure 2.4. This low EPM is possibly due to

the organic efficiency (ratio between actual yield achieved and theoretical yield from washability data)

being very high (100%).

The simulated steady-state partition curve was shown to be similar to that in Figure 2.4. The predicted
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Figure 2.5: Simulated efficiency curve for the DMC using the steady-state model reduced from a

dynamic DMC model [taken from Meyer and Craig (2014)].

mass distributions to float and sink products at different particle densities in the feed (ρi,ore) are obtained

by simulating the partition factor at different medium densities. By starting with a finite amount of

mass in the feed and simulating the separation at steady-state at a high density, the resulting mass in

the float can be used as the feed for the next steady-state simulation. With decreasing medium density

iterations, the resulting partition factors can be obtained. The simulation should start slightly higher

than the expected ρ50 to generate the efficiency portion of the curve. Figure 2.5 was generated by

simulating the dynamic simulations at steady-state and plotting the results.

Table 2.1 shows a summary of the efficiency parameters that Meyer and Craig (2014) obtained for

the simulated partition curve and the actual plant operation cyclone efficiency curve. This simulation

indicates that a dynamic DMC model can be reduced to a realistic steady-state model from which a

partition curve can be generated. The actual partition curve in Figure 2.4 was determined at a different

time period to when the simulated partition curve was generated. This could be a possible reason as to

why the EPM differs slightly between the actual and simulated partition curve.

An additional aspect incorporated into the DMC model includes the pressure measurement (Figure

2.6) of the feed to the cyclone to relate to the density of the feed mix (Meyer and Craig, 2014).

Another dynamic model developed by Meyer and Craig (2015) is of the dense medium drum (DMD)
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Table 2.1: Partition curve efficiency results summary.

Efficiency

parameter

Simulated steady-state

model results (SG)

Actual plant results (SG)

ρ50 1.692 1.701

Ep 0.0035 0.0020
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Figure 2.6: DMC dynamic model simulated feed pressure (PT1109) versus actual feed pressure [taken

from Meyer and Craig (2010)].

separator. This model is based on a Wemco drum. DMDs are unit processes that are typically used to

beneficiate coal, iron ore and other minerals by making use of density separation. Some coal dense

medium separation plants typically include a DMD separator to process larger sized coal particles. The

operational management of this unit process is often limited to localised control of medium density

and feed mass flow rate. The DMD model parameters were determined using system identification

(Ljung, 1987) and the performance of the model was evaluated using actual plant data from a Wemco

drum. Coal washability and drum partitioning behaviour were also used to estimate the grade of the

product for model grade simulation and validation.

The dynamic models developed by Meyer and Craig (2010) (author’s Master of Engineering degree)

for the fine coal DMC, coarse (Meyer and Craig, 2014) DMC and DMD (Meyer and Craig, 2015) are
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detailed and used in this thesis.

2.4 MODEL-BASED CONTROL IN MINERALS PROCESSING AND COAL PREPARA-

TION

Implementing a control system requires a high level of process understanding (Lipták, 1995) that

can lead to improved plant performance in terms of stability and economics (Bauer and Craig, 2008).

Process control enables the reduction of plant upsets due to disturbances and ensures a plant keeps to

its desired setpoints, i.e. it reduces the difference between the desired specifications and measured

controlled variables. Control systems typically make use of a mathematical model that incorporates

the plant dynamics, and a well controlled plant will reach its steady state in the fastest time possible

after startup, process setpoint changes and process disturbances.

By applying the concepts of process control to coal DMS, there is an opportunity to improve product

yield and quality, e.g. reducing ash in the coal products. Process control could allow for an improvement

in current coal beneficiation operations and it is for this reason that the dynamic DMS circuit model

described here was developed.

Mathematical models are generally used in process controller design to improve process performance

and stability and ultimately ensure economic benefits (Bauer and Craig, 2008). It is often necessary to

develop a model that is simple enough to be used for control, but sophisticated enough to capture the

plant dynamics. Craig and Henning (2000) describe a general control framework, illustrated in Figure

2.7, where a mathematical model of the real plant needs to be developed before a control system can

be designed. Once the control system performs satisfactorily in simulation it is then implemented and

monitored to ensure its value has been realised.

Bauer and Craig (2008) show that the process control method of choice is MPC (Camacho and Bordons,

2004). The MPC makes use of a dynamic model to predict future outputs based on current and past

inputs and outputs. Using a reference setpoint, calculated future errors are used by an optimiser with a

cost function and process constraints to determine future process inputs. This thesis will also discuss

the possible cost functions and process constraints applicable to coal processing plants.
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Figure 2.7: General control framework [taken from Craig and Henning (2000)].

Control Process

Observer

Input OutputSet-point

Estimated dynamic 
variables 

Observation 
model

Figure 2.8: General control loop [adapted from Hodouin (2011)].

Hodouin (2011) describes methods for automatic control, observation and optimisation in mineral

processing plants. Figure 2.8 indicates how a typical control system operates with a given observer.

The observer uses measured outputs with an observation model to estimate dynamic variables for

control. In this case the dynamic coal models can be used as an observer model. An observer such as

the UKF can improve the estimation of the state variables for a control system. The improved state

variable estimation is ideal for a practical implementation of a control system of for example a DMS

plant as it can improve the accuracy of the state estimates fed to the controller.

In order to the increase the accuracy of the model fit, an observer is typically used. The specific

observer used in this thesis is the UKF. Various other nonlinear filters are available (Daum, 2005)

such as particle filters, batch filters and exact recursive filters. Daum (2005) indicates that nonlinear

filters usually provide vastly superior performance compared to the traditional Kalman filter. Particle

filters make use of Monte Carlo integration using importance sampling for the prediction of statistical
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Figure 2.9: General throughput versus quality relationship with improvement through better control

[taken from Bauer and Craig (2008)].

outputs. The Monte Carlo integration of particle filtering will not be used. However, an example of

particle filtering applied to a ROM ore mill has been shown by Olivier et al. (2012b). Batch filters

use numerical integration to solve for prediction of outputs over a single batch of data. This approach

is similar to the system identification approach used in this thesis. However, instead of solving for

unknown states, unknown parameters are solved for. Exact recursive filters use numerical integration

of ordinary differential equations (ODEs) to solve for sufficient statistics in the exponential family of

probability densities. The term “exact” implies that partial differential equations are transformed into

ODEs where the Kalman filter is an example of this.

Daum (2005) describes the extended Kalman filter (EKF) and the UKF as different to the Kalman

filter in that they do not apply only to linear-Gaussian problems. The EKF (Julier and Uhlmann,

1997) predicts outputs based on linear approximations of the process dynamics by simply using the

first-order Taylor series expansion of the system state equations. The UKF does not use simple linear

approximations like the EKF. The UKF (Wan and Van der Merwe, 2000) instead uses a more accurate

approximation to evaluate the multidimensional integrals required. Since many of the coal models

developed already have the form of nonlinear state equations, the UKF is applied to perform the state

observations.

The relationship between yield and ash through the washability characteristics of the coal (England

et al., 2002) can be used to evaluate the quality of the coal product. Figure 2.9 illustrates the typical

inverse relationship between throughput and quality (Bauer and Craig, 2008). Using coal washability,

a similar inverse relationship would occur between coal throughput and yield.
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Although many of the sources available in literature show the application of observers for estimation

and control in minerals processing, no literature was found relating to coal DMS plants. Meyer and

Craig (2015) show how the UKF was applied to coal bins for storage or buffer capacity. Herbst et

al. (1992) have used a Kalman filter to estimate the ball and rock holdup for the model-based control

of a semi-autonomous grinding mill. Olivier et al. (2012b) have shown how to apply both state and

parameter estimation using dual particle filters and applied them to a run-of-mine ore mill. Further

work on observers applied to milling include a fractional order disturbance observer and a Bode ideal

cut-off observer (Olivier et al., 2012a). Wilson et al. (1998) describe experiences in implementing

the EKF on an industrial batch reactor which is related to a specific chemical process. In the coal

environment, Clarke et al. (1989) use a Kalman filter to estimate the load and pressure of coal-fired

boilers. Pindyck (1999) show an interesting application where a Kalman filter was used to estimate the

forecasting of oil, coal and natural gas prices.

MPC has been applied to a coal feeding process over six belt conveyors for a coal-fired power plant (Luo

et al., 2014). Nonlinear coal mill modelling and its application to MPC has also been shown (Cortinovis

et al., 2013). The objective of the MPC was to improve energy efficiency through coordinating belt

speed and feed rate or coordinating operating status and time. Open loop optimal control has also

been applied to belt conveyors (Zhang and Xia, 2010, 2011). Optimal energy management for a jaw

crushing process in deep mines has shown that by using a switching control technique, it is possible to

reduce energy cost and consumption of a jaw crushing station (Numbi et al., 2014).

Zhang and Xia (2014) have shown how MPC can be applied to the models developed by Meyer and

Craig (2010) to simulate the control of carbon content by manipulating the density of medium in

real-time according to feedback of DMC outputs. This thesis will apply a similar approach to Zhang

and Xia (2014) for the control of a coal plant. Another article by Zhang et al. (2015) illustrates how

optimal control can be used to control the DMC based on minimizing medium density to reduce energy

costs while keeping the percentage of carbon content in the DMC product stable.

An interesting simulation result obtained by Zhang and Xia (2014) is the performance of a MPC in

tracking a set value of carbon content with delayed measurements. This is very applicable for the

control of product grade in coal plants as the measured product grade is usually measured at very slow

intervals due to the time taken for sampling and laboratory analysis. Figure 2.10 illustrates the mean

deviation from a set carbon content value as delays in sampling are introduced. The more the delay,
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Figure 2.10: MPC performance conparison of DMC carbon content with varying time delay [taken

from Zhang and Xia (2014)]. |e| is the mean deviation from the set value.

the more the error in achieving better control for an applicable set value in carbon content.
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CHAPTER 3 METHODS

3.1 CHAPTER OVERVIEW

This chapter describes the methods used to address the research objectives and questions given in

Chapter 1. A specific coal plant process will be used for the evaluation of model-based control. An

overview of this process is given, followed by a detailed description of available dynamic models for

coal unit processes or equipment. The system identification process is briefly described to explain how

dynamic models are fitted to process data by solving for unknown parameters. Steady-state models

that are applicable to coal processing are also explained. Finally, a detailed description of MPC is

given with a proposed implementation architecture for coal plants.

3.2 COAL PROCESS OVERVIEW

This section provides an overview of an actual coal process that was used for this thesis. The commin-

ution and separation unit processes shown in Figure 2.1 are shown in some more detail in Figures 3.1

and 3.2.

The comminution process (Figure 3.1) is typically fed by a ROM stockpile with a number of feeders

onto a single conveyor belt. The ROM feed from the stockpile is then screened with the oversize being

crushed in closed circuit. The undersize is typically fed into a bin to act as a buffer to ensure consistent

feed to the separation unit process further downstream.

The separation unit process (Figure 3.2) is fed by the ROM material from the comminution unit

process. The ROM material is further classified to be processed by either a DMD for larger sized
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Figure 3.1: Simplified comminution unit process flow diagram.

particles (+28mm) or a DMC for smaller sized particles (-28mm). Finer coal material (-1mm) is fed to

a thickener where process water is recovered while the fines are made into a cake through a belt filter

or filter press.

Details of the DMD and DMC separation processes are shown in Figures 3.3 and 3.4. The DMD

separation process (Figure 3.3) mixes the ROM material with magnetite medium in a mixing box and

is separated by a DMD. The coal (less dense than the medium) floats while the discard (more dense

than the medium) sinks. The sinks are collected by a rotating drum and collected into a launder at the

centre of the DMD. Both floats (product) and sinks (discard) are rinsed in separate streams using a
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Figure 3.2: Simplified separation unit process flow diagram.

drain and rinse screen. Magnetite medium is recovered and recycled back into the circuit.

The DMC separation process (Figure 3.4) also uses magnetite medium to separate product from discard.

However, the process is much faster with the DMC. Both product and discard are also rinsed in separate

streams through a drain and rinse screen, similar to that of the DMD separation process. Magnetite

medium is also recovered and recycled back into the circuit.

3.3 DYNAMIC MODELS

Detailed descriptions of the process dynamics for each equipment typically used in the primary coal

value chain of coal processing are given below. These equipment have also been labelled in Figures

4.1, 4.33, 3.3 and 3.4. The mathematical models used in this thesis are described below.

3.3.1 Feeder model

The stockpile bunker and feed bin draw points in Figure 4.1 are modelled using a vibratory feeder

dynamic model. A model of a vibratory bowl feeder has been developed using equations of motion

(Maul and Thomas, 1997). The stockpile bunker feeders are linear vibratory feeders and therefore
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Figure 3.3: Simplified DMD separation unit process flow diagram.
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Figure 3.4: Simplified DMC separation unit process flow diagram.

the bowl feeder model is not applicable in this case. Another model developed by Lim (1997) shows

another dynamic model of a linear vibratory feeder also based on equations of motion. These dynamic

models are more specific to the mechanical behaviour of the feeders and cannot be used for modelling

of mass flow.

A similar approach to the mass flow model of a powder feeder system developed by Thayalan and

Landers (2006) and Meyer et al. (2015) will be used in this thesis. Figure 3.5 illustrates an example of
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f f

W f ,i

W f , o

mf

Figure 3.5: Feeder model schematic.

Table 3.1: Feeder model variables and descriptions

Variable Description

m f Mass on feeder (kg)

τ f Feeder time constant (s)

K f Feeder proportionality constant (kg)

f f Feeder motor speed (Hz)

Wf ,o Mass flow rate from a feeder (kg/s)

a feeder system. From a conservation of mass perspective (Stephanopoulos, 1984), using a first order

system, the rate of change in mass on a feeder (m f ) can be described as,

dm f

dt
= K f f f −

m f

τ f
, (3.1)

where τ f is the time constant for the system to reach approximately 63.2% of its final value, K f is the

proportionality constant relating motor speed to a mass flow rate and f f is the motor speed.

The mass flow rate of material fed to the stockpile is not known and as a result, it is assumed that the

stockpile volume is always full. The output of the feeder is described as follows,

Wf ,o =
m f

τ f
, (3.2)

where Wf ,o is the mass flow rate from the feeder. Table 3.1 describes the variables used for the feeder

model.
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Figure 3.6: Simplified representation of the mass distribution for a single-deck screen [adapted from

Meyer and Craig (2010)].

In the case of the bin model described below, its feeders’ behaviour is more complex. As a result the

proportionality constant K f becomes a function of the bin level. Details of this behaviour are explained

in the bin model subsection below.

3.3.2 Screen model

In the development of a dynamic model for a single-deck screen by Meyer and Craig (2010), the

conservation of overall mass was used. This was applied to each section of the screen to form an

approximation of a distributed parameter system. Figure 3.6 illustrates a simplification of this mass

distribution. The following is a list of assumptions were made for the modelling of the single deck

screen:

• The screen is a distributed parameter system, but can be approximated with n first order lumped

parameter systems or components.

• The overflow and underflow mass feed rates (Wss,i and Wu,ss,i) of each component i are propor-

tional to their mass (Mss,i) on top of each component i.

• The proportion of mass split (αss) for each component i is dependent on the particle size

distribution of the feed ( n
√

Wss,n
Wss,0

).
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Table 3.2: Single-deck screen model variables and descriptions

Variable Description

Wss,i−1 Mass feed rate of the ore fed into component i (kg/s)

Wss,i Mass feed rate of the ore overflow exiting mass component i (kg/s)

Wu,ss,i Mass feed rate of the ore underflow exiting mass component i (kg/s)

Mss,i Mass of ore for mass component i (kg)

αss Percentage of mass split for mass component i

τss,o Time taken for ore to be transported over screen component i (s)

τss,u Time taken for ore to be transported through screen component i (s)

Using these assumptions, the rate of change of mass of component i is given as,

dMss,i

dt
=Wss,i−1−αss

Mss,i

τss,o
− (1−αss)

Mss,i

τss,u
. (3.3)

Modelling each mass component i of the single-deck screen for a maximum of n components, result

in Wss,0 being the initial feed into the screen and Wss,n being the final mass feed rate of the oversize

material. The undersize material is collected and can be taken as the sum of all underflow mass

components (i.e. ∑
n
i=1Wu,ss,i). The associated variables for this model are described in table 3.2.

Similar to the development of the single-deck screen dynamic model, the conservation of overall mass

is also used here, and is applied to each section of each deck of a double-deck screen to form an

approximation of a distributed parameter system (Meyer and Craig, 2010). Figure 3.7 illustrates a

simplification of the mass distribution for the double deck screen with associated variables for this

model described in Table 3.3. The following is a list of assumptions made:

• Each deck of the screen is a distributed parameter system, but can be approximated with n first

order lumped parameter systems or components.

• The overflow and underflow mass feed rates (Wds,o,i, Wu,ds,o,i, Wds,c,i, and Wu,ds,c,i) of each

component i are proportional to their mass (Mds,o,i and Mds,c,i) on top of each component i for

both the top and bottom deck.
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Figure 3.7: Simplified representation of the mass distribution for a double-deck screen [adapted from

Meyer and Craig (2010)].

• The proportion of mass split (αds,o and αds,c) for each component i on the top and bottom deck

is dependent on the particle size distribution of the feed ( n
√

Wds,o,n
Wds,o,0

and n
√

Wds,c,n
Wds,o,0

).

Using these assumptions, the top and bottom rate of change of mass of component i is given as:

dMds,o,i

dt
= Wds,o,i−1−αds,o

Mds,o,i

τds,o
− (1−αds,o)

Mds,o,i

τu,ds,o
, (3.4)

dMds,c,i

dt
= Wds,c,i−1 +Wu,ds,o,i−αds,c

Mds,c,i

τds,c
− (1−αds,c)

Mds,c,i

τu,ds,c
. (3.5)

Modelling each mass component i of each deck for a maximum of n components, result in Wds,o,0

being the initial feed into the double-deck screen, Wds,o,n being the final mass feed rate of the oversize

material for the top deck and Wds,c,n being the final mass feed rate of the oversize material for the

bottom deck or coarse material. The undersize material of the bottom deck is collected and can be

taken as the sum of all underflow mass components (i.e. ∑
n
i=1Wu,ds,c,i).

The screen models used in this thesis are simplified to only have one mass state on each deck. This

implies that the screen model has been lumped (i.e. n = 1).
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Table 3.3: Double-deck screen model variables and descriptions

Variable Description

Wds,o,i−1 Mass feed rate of the ore fed into component i on the top deck (kg/s)

Wds,o,i

Mass feed rate of the ore overflow exiting mass component i on the top deck

(kg/s)

Wu,ds,o,i

Mass feed rate of the undersized ore exiting mass component i from the top

deck (kg/s)

Mds,o,i Mass of ore on the top deck for mass component i (kg)

αds,o Percentage of mass split on the top deck for mass component i

τds,o Time taken for ore to be transported over the top deck screen component i (s)

τu,ds,o

Time taken for ore to be transported through the top deck screen component i

(s)

Wds,c,i−1 Mass feed rate of the ore fed into component i on the bottom deck (kg/s)

Wds,c,i

Mass feed rate of the ore overflow exiting mass component i on the bottom deck

(kg/s)

Wu,ds,c,i

Mass feed rate of the undersized ore exiting mass component i from the bottom

deck (kg/s)

Mds,c,i Mass of ore on the bottom deck for mass component i (kg)

αds,c Percentage of mass split on the bottom deck for mass component i

τds,c

Time taken for ore to be transported over the bottom deck screen component i

(s)

τu,ds,c

Time taken for ore to be transported through the bottom deck screen component

i (s)

3.3.3 Crusher model

Although various crusher mathematical models are available in literature as discussed in Chapter 2, no

specific dynamic model for a double roll crusher could be found in the available literature. However,

a dynamic model of a ball mill by Rajamani and Herbst (1991) was found. Although the physical

operation and mechanism of particle size reduction is different between a double roll crusher and ball

mill, the process description of material entering the ball mill and exiting with a different particle size
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Figure 3.8: Crusher model schematic.

distribution is similar to that of a double roll crusher. On the basis that the double roll crusher and ball

mill reduce material in particle size, the ball mill dynamic model from Rajamani and Herbst (1991)

was modified and simplified to represent a double roll crusher model. Other mill models have also

been used in various MPC and model predictive static programming applications (Coetzee et al., 2010;

Le Roux et al., 2014). However, these mill models were not considered for the double roll crusher

model development.

The dynamic mill model from Rajamani and Herbst (1991) describes a simplified ball mill operating

in open circuit with a feed rate of MMF and size reduction occurring in the mill as,

dHRMP,k

dt
= MMFRMF,k−FkHRMP,k−MMFRMP,k, (3.6)

where MMF is the fresh solids feed rate, H is the mill hold-up mass, RMP,k and RMF,k are the fraction of

solids retained above size interval k in product (subscript MP) and feed (subscript MF). Fk is a product

of a selection function [Sk = SE
k (P/H)] and breakage function (SE

k ) which is approximately invariant.

The power drawn from the mill (P =V I) is the product of the voltage (V ) and current (I) required to

drive the mill motor system.

In the case of Rajamani and Herbst (1991) the mill hold-up (H) is assumed constant allowing for

Equation 3.6 to model the dynamics of change in product fraction of solids (RMP,k). For the dynamic

model of the double roll crusher, the opposite is assumed where the hold-up (mcr) in the crusher is

dynamic while the product fraction of solids is constant (Rcr,o,k). A representation of a simplified

crusher that is used for this thesis can be found in Figure 3.8.

It is assumed that the crusher has one mass state (mcr) representing the material hold-up within it.

Using conservation of mass (Stephanopoulos, 1984) and the ball mill dynamic model (Equation 3.6),
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the rate of change in mass state within the crusher can be represented as,

dmcr

dt
=

Rcr,i,k

Rcr,o,k
Wcr,i−

mcr

τcr
−Kcr,k,1Icr, (3.7)

where Wcr,i is the mass flow rate of the feed into the crusher, Rcr,i,k and Rcr,o,k are the feed (subscript i)

and product (o) fraction of solids retained above size interval k. τcr is the time constant of the crushed

material discharged from the crusher, Icr is the motor current drawn for the rotation of the crusher

rollers and Kcr,k,1 is the proportionality constant incorporating the constants from the selection function

such as voltage (Ua) and breakage rate (SE
k ).

Assuming that the motor driving the double roll crusher is direct current (DC), it is possible to describe

the dynamics of the motor electric armature current (ia) and mechanical system motor speed (ωm).

Yildiz (2012) and Mahfouz et al. (2013) represent the system dynamics of a DC motor as follows,

Ec +Raia +La
dia
dt

=Ua, (3.8)

B1ωm + J
dωm

dt
= Te−TL, (3.9)

where Ec = Kbωm is the back electromotive force, Te = Kbia is the produced torque, Ua is the terminal

voltage of the DC motor, Ra is the armeture resistance, TL is the load torque (assumed to be related to

the crusher mass state mcr with proportionality constant KL), J is the torque of inertia and B1 is the

viscous friction coefficient. Kb is a proportionality constant for both torque and back electromotive

force.

By assuming the mechanical system motor speed acceleration ( dωm
dt ) is zero, it is possible to rearrange

Equations 3.8 and 3.9 with simplified proportionality constants as follows,

dIcr

dt
= Kcr,k,2−

Kcr,k,2

Icr,min
Icr +Kcr,k,3mcr, (3.10)

where Icrmin is the crusher motor current at no load, Kcr,k,2 =
Ua
La

and Kcr,k,3 =
KbKL
B1La

are a proportionality

constants relating the rate of change in crusher motor current to motor current and load torque.

It is assumed that the load torque is proportional to the crusher hold-up mass (mcr). Equation 3.10

is simplified to only two parameters (Kcr,k,2 and Kcr,k,3) by deriving the relationship for ωm =
KbIcr,min

B1

from Equation 3.9 by assuming mcr = 0 at no load and a minimum motor current (Icr,min). Substitut-

ing the resultant ωm into Equation 3.8 yields the relationship Ua
Icr,min

=
K2

b
B1

+Ra which allows for the

proportionality constant Kcr,k,2 to be used twice in Equation 3.10.
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Table 3.4: Crusher model variables and descriptions

Variable Description

mcr Mass in crusher (kg)

Rcr,i,k Feed fraction of solids retained above size interval k

Rcr,o,k Product fraction of solids retained above size interval k

τcr Crusher time constant (s)

Kcr,k,1
Crusher mass hold-up proportionality constant for size interval k incorporating

the crusher selection function [kg/(sA)]

Icr,min Motor current when crusher has no load (A)

Icr Crusher motor current (A)

Kcr,k,2 Crusher motor current proportionality constant for size interval k (A/s)

Kcr,k,3
Crusher motor current proportionality constant for torque load at size interval k

[A/(kg.s)]

Wcr,o Mass flow rate from a crusher (kg/s)

Wcr,i Mass flow rate into a crusher (kg/s)

The output equations of the crusher are described as follows,

ycr =

 ycr,1

ycr,2

=

 Wcr,o

Icr

=

 mcr
τcr

Icr

 . (3.11)

Table 3.4 describes the variables used for the crusher model.

3.3.4 Bin model

The bin model developed by Meyer et al. (2015) is very relevant to this thesis and the model details

are used as input below. The bin model has been modified for this thesis from Meyer et al. (2015)

to obtain a more accurate representation of the bin dynamics over a larger operating range. The bin

process is in general relatively simple, in that ROM coal ore is fed into the bin while three product

flow lines remove material from the bin. An illustration of the bin and process flow is shown in Figure

3.9.
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Figure 3.9: Bin process flow schematic [taken from Meyer et al. (2015)].

It was found that the geometry of the material within the bin can be simplified to a pyramid polyhedron

shape. However, when the material reaches the apex of the pyramid, its shape is modified. This means

that when the bin level is low, there is always a flat surface area representing the top of the stockpile

(i.e. it approximates a constant volume). As the bin level reaches full capacity, the stockpile within the

bin behaves more like a pyramid stockpile.

The conical bottom sections are catered for by assuming the mass within them forms part of the two

feeder systems ( fb f ,1 and fb f ,2) and the manually actuated bin mass flow rate (Wb,o,3).

Table 3.5 gives a description of the variables that have been used for the bin model. The third product

mass flow rate (Wb,o,3) is manually actuated through a chute flap gate. This flap gate is rarely opened

and only used if material flow to a different plant area becomes too low. The remaining two product
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Table 3.5: Variables describing the bin process

Name Description

Wb,i Bin mass flow rate input (kg/s)

mb Bin mass state (kg)

Wb,o,1 Bin mass flow rate output no. 1 (kg/s)

Wb,o,2 Bin mass flow rate output no. 2 (kg/s)

Wb,o,3 Bin mass flow rate output no. 3 (kg/s)

mb f ,1 Bin feeder no. 1 mass state (kg)

mb f ,2 Bin feeder no. 2 mass state (kg)

fb f ,1 Bin feeder no. 1 variable speed drive frequency (Hz)

fb f ,2 Bin feeder no. 2 variable speed drive frequency (Hz)

Wb f ,o,1 Bin feeder no. 1 mass flow rate output (kg/s)

Wb f ,o,2 Bin feeder no. 2 mass flow rate output (kg/s)

Hb Bin stockpile maximum geometric height (m)

Lb,1 Bin stockpile maximum geometric base depth (m)

Lb,2 Bin stockpile maximum geometric base length (m)

hb Bin stockpile maximum height (m)

lb Bin stockpile relative level (%)

lb,1 Bin stockpile base depth (m)

lb,2 Bin stockpile base length (m)

Ab = Lb,1Lb,2 Bin stockpile maximum geometric base area (m2)

βb Bin stockpile height ratio

mass flow rates (Wb f ,o,1 and Wb f ,o,2) are actuated through vibratory feeders where the feeder motor

speeds ( fb f ,1 and fb f ,2) are varied by using variable speed drives.

The current problems and challenges relating to this piece of equipment are the accurate measurement

and control of the bin level. It is possible for the bin to easily overflow and run empty during operation.

The material flow further downstream is therefore affected and as a result the manually actuated chute

flap (Wb,o,3) is opened to try and correct the material imbalance.
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The dynamic model for the bin can be derived by using the principle of mass conservation as de-

tailed in Stephanopoulos (1984). In order to derive these equations, the following assumptions were

made:

• The bin feeders’ feed mass flows (Wb,o,1 and Wb,o,2) are proportional to their variable speed drive

frequencies fb f ,1 and fb f ,2 through proportionality functions Kb f ,1 and Kb f ,2 respectively.

• The bin feeders’ proportionality functions (Kb f ,1 and Kb f ,2) vary with the bin level lb in a

particular fashion.

• The bin feeders’ mass (mb f ,1 and mb f ,2) have a characteristic time constant τb f ,1 and τb f ,2

respectively for their mass transport of material.

• The bulk density (ρb) of the material within the bin is constant.

• The volume (Vb) of material within the bin approximates a pyramid polyhedron stockpile shape

which varies over time as material is fed and removed from the bin.

• The volume (Vb) of material can be expressed as a function of relative level lb [Vb =
1
3 Lb,1Lb,2Hb−

1
3 lb,1lb,2Hb(1−βblb)].

• The bin base length (lb,1) and depth (lb,2) can be expressed as functions of relative level lb

[lb,1(l) = Lb,1(1−βblb) and lb,2 = Lb,2(1−βblb)].

• The bin stockpile height ratio (βb) varies with the bin stockpile relative level (lb) through a

sigmoid relationship.

State equations for the mass of material flow are represented as follows,

dmb

dt
= Wb,i−Wb,o,1−Wb,o,2−Wb,o,3, (3.12)

dmb f ,1

dt
= Wb,o,1−

mb f ,1

τb f ,1
, (3.13)

dmb f ,2

dt
= Wb,o,2−

mb f ,2

τb f ,2
, (3.14)
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Figure 3.10: Bin throughput versus level using actual production data from a coal plant.

where Wb,o,1 = Kb f ,1 fb f ,1 and Wb,o,2 = Kb f ,2 fb f ,2 describe the mass flow of material leaving the bin

feeders no. 1 and 2. These state equations are nonlinear due to the intermediate mass flow rates Wb,o,1

and Wb,o,2 being functions of the product of both their respective feeder frequency inputs ( fb f ,1 or fb f ,2)

and bin level (lb).

In order to determine how the proportionality functions (Kb f ,1 and Kb f ,2) vary with bin level lb, the

total mass flow (i.e. Wb f ,o,1 +Wb f ,o,2) from the bin feeders is plotted as a scatter plot with reference to

the bin level lb. Figure 3.10 shows the total feed versus bin level scatter plot using actual production

data from a coal plant.

Based on Figure 3.10 it can be assumed that the proportionality functions comprise of an inverse

exponential function at lower bin levels and a sigmoid function at higher bin levels. The reason for the

inverse exponential function at a lower bin level could be due to the feeders not receiving sufficient

material. This results in the feeders taking less material at very low levels (indicated as phase I in

Figure 3.10). When the bin level reaches an optimum region, the feeders operate in a linear fashion

(phase II in Figure 3.10). At very high bin levels the feeders operate at slightly higher rates (phase

III in Figure 3.10). This could be due to a significant amount of mass being forced into the feeders

resulting in them operating at very high rates. Additionally, material can fall from the top of the

stockpile to lower levels resulting in a sudden increase in mass flow rate. Phase III is represented
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using a sigmoid function. Based on the above analysis of the bin feeder behaviour, the bin model

proportionality function (Kb f ,1 and Kb f ,2) can be described as,

Kb f ,1 = Kb f ,1,1
(
1− e−Kb f ,1,2lb

)
+

Kb f ,1,3

1+ eKb f ,1,4(Kb f ,1,5−lb)
, (3.15)

Kb f ,2 = Kb f ,2,1
(
1− e−Kb f ,2,2lb

)
+

Kb f ,2,3

1+ eKb f ,2,4(Kb f ,2,5−lb)
, (3.16)

where Kb f ,1,1, Kb f ,1,2, Kb f ,1,3, Kb f ,1,4, Kb f ,1,5, Kb f ,2,1, Kb f ,2,2, Kb f ,2,3, Kb f ,2,4 and Kb f ,2,5 are the associ-

ated parameters for the feeders.

By assuming a constant bulk density ρb Equation 3.12 can be expressed as a rate of change in volume

( dmb
dt = ρb

dVb
dt ). Given the equation describing the volume as a function of relative level in the above

assumptions, the first time derivative of volume is dVb
dt = Lb,1Lb,2Hbβb(1−βblb)2 dlb

dt . By assigning

Mb = ρbLb,1Lb,2Hb the fourth state equation describing the rate of change in stockpile relative height

is simplified to,

dlb
dt

=
Wb,i−Wb,o,1−Wb,o,2−Wb,o,3

Mbβb(1−βblb)2 . (3.17)

State Equation 3.17 is nonlinear due to the pyramid polyhedron geometry of the stockpile volume

within the bin. As described above, the geometry of the bin volume varies with bin level lb. At low bin

levels, the material within the bin represents a constant volume. As the bin level increases, the volume

starts to resemble a pyramid stockpile. To model the bin volume behaviour the bin stockpile height

ratio βb can be made to represent a sigmoid function,

βb =
1

1+ eKb,1(Kb,2−lb)
, (3.18)

where Kb,1 and Kb,2 are the required parameters.

The output equations defining the bin system include the bin feeder no. 1 and 2 mass flow (Wb f ,o,1 and

Wb f ,o,2) and bin stockpile relative level (lb),

yb =


yb,1

yb,2

yb,3

=


Wb f ,o,1

Wb f ,o,2

lb

=


mb f ,1
τb f ,1

mb f ,2
τb f ,2

lb

 . (3.19)
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Figure 3.11: The Wemco drum [adapted from Wilkes (2006)]. Black particles represent coal while

white particles represent discard.

3.3.5 Dense medium drum model

Drum separators operate on the principle of float and sink separation where particles of different

densities to the medium can either float or sink in the medium due to gravity. Coal feed is mixed

with the medium and processed through a relatively static container. England et al. (2002) describe

two main horizontal drum separators used in industry being the Wemco or Teska drum. Although the

principle of operation is similar for each type of drum separator, this thesis will apply the dynamic

model to a Wemco drum as this is the industrial unit that was available for the research.

The Wemco drum (Figure 3.11) consists of a steel shell with a tyre and collar construction (Wilkes,

2006) where the drum operates in a longitudinal position. The drum shell rotates using a drive chain.

During rotation, medium is added to the feed chute and sinks launder. Sinks are collected by sink

lifters and discharged into the sinks launder. Floats exit through the lower exit of the drum.

The dynamic model of the drum separator focusses on throughput equations by making use of the

conservation of overall mass. The DMD model developed by Meyer and Craig (2015) is used in this

thesis. Conservation of mass of components can be used to model the grade (i.e. ash percentage) of the

drum coal product. A model representation of the drum separator can be found in Figure 3.12 while

associated variables describing the model are given in Tables 3.6 and 3.7.
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Table 3.6: Drum input variables

Variable Description

Wd,i Mass feed rate of the feed mix (kg/s)

ρd,i Density of the feed mix (kg/m3)

Vd =Vd, f +Vd,s Volume of the material within the drum (m3)

xd,i,ash, xd,i,C Percentage ash and fixed carbon in the feed mix

Qd,i,ash Volumetric flow rate of the ash content in the feed mix (m3/s)

xd,i,med Percentage magnetite medium in the feed mix

ρd,i,med Density of the magnetite medium in the feed mix (kg/m3)

Qd,i,med Volumetric flow rate of the magnetite medium in the feed mix (m3/s)

Table 3.7: Drum output variables

Variable Description

Wd, f Mass flow rate of the floats (kg/s)

ρd, f Density of the floats (kg/m3)

Qd, f Volumetric flow rate of the floats (m3/s)

Vd, f Volume split of the floats within the drum (m3)

xd, f ,ash Percentage ash content in the floats

xd, f ,med Percentage magnetite medium in the floats

ρd, f ,med Density of the magnetite medium in the floats (kg/m3)

Qd, f ,med Volumetric flow rate of the magnetite medium in the floats (m3/s)

Wd,s Mass flow rate of the sinks (kg/s)

ρd,s Density of the sinks (kg/m3)

Qd,s Volumetric flow rate of the sinks (m3/s)

Vd,s Volume split of the sinks within the drum (m3)

xd,s,ash Percentage ash content in the sinks

xd,s,med Percentage magnetite medium in the sinks

ρd,s,med Density of the magnetite medium in the sinks (kg/m3)

Qd,s,med Volumetric flow rate of the magnetite medium in the sinks (m3/s)
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Figure 3.12: Model representation of a DMD [taken from Meyer and Craig (2015)].

The following is a list of assumptions that were made:

• The volume of the mix in the drum (Vd) is constant.

• The volume of the floats (Vd, f ) and sinks (Vd,s) mix in the drum is split at a constant ratio αd .

• The volumetric flow rates of the feed (Qd,i), floats (Qd, f ) and sinks (Qd,s) are constant before

and after a step is introduced in the medium density (ρd,i,med) or feed rate of the ore (Wd,i).

• The volumetric flow rates of the floats (Qd, f ) and sinks (Qd,s) are split at a constant ratio αd .

• Only ash (xd,i,ash), medium (xd,i,med) and fixed carbon (xd,i,C) components will be considered for

the conservation of mass of components in the feed (i.e. xd,i,ash + xd,i,med + xd,i,C = 1).

• Medium and ash components are considered for the conservation of mass of components in the

floats (xd, f ,med , xd, f ,ash) and sinks (xd,s,med , xd,s,ash).

• The rates of change in mass for the floats ( dWd, f
dt ) and sinks ( dWd,s

dt ) are proportional to the

difference in their densities (ρd, f and ρd,s) to the magnetite medium density (ρd,i,med), the

acceleration due to gravity (g = 9.81 kg/s2) and the percentage of either ash or carbon in the

feed (xd,i,ash or xd,i,C).
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In order to simplify the model, it is assumed that the volumetric flow is at steady state (i.e. Qd,i =

Qd, f +Qd,s) and that the floats and sinks are volumetrically split by a proportion αd . This means that

Qd, f = αdQd,s (i.e. Qd, f =
αdQd,i
1+αd

and Qd,s =
Qd,i

1+αd
). Similarly, it is assumed that the drum material

volume Vd is separated according to the same split proportion αd as in the volumetric feed flow (i.e.

Vd, f =
αdVd
1+αd

and Vd,s =
Vd

1+αd
). By using the overall conservation of mass the following relationship

describing the drum can be developed:

Vd, f
dρd, f

dt
+Vd,s

dρd,s

dt
=Wd,i−Qd, f ρd, f −Qd,sρd,s. (3.20)

Gravity separation within the drum can be used to model the effects of the dynamics of the density

response for the drum. The gravitational force (g) indicates that the rates of change in mass for

the floats and sinks are proportional to their differences in densities to the medium density. An

additional factor was incorporated into the dynamic relationship allowing for the difference in ore

density [ρd,i,ore =Wd,i(1− xd,i,med)/(Qd,i−Qd,i,med)] to medium density (ρd,i,med) to facilitate further

separation. The percentage of ash or carbon in the feed will also influence the dynamics of the drum.

Proportionality constants for floats (Kd, f ) and sinks (Kd,s) are used to relate the rates of change of

density in floats ( dρd, f
dt ) and sinks ( dρd,s

dt ) to these factors and yields the following relationships:

Vd, f
dρd, f

dt
= Kd, f (ρd,i,ore−ρd,i,med)(ρd,i,med−ρd, f )xd,i,C, (3.21)

Vd,s
dρd,s

dt
= Kd,s(ρd,i,med−ρd,i,ore)(ρd,i,med−ρd,s)xd,i,ash. (3.22)

By combining Equation 3.20 with Equations 3.21 and 3.22, the floats and sinks density state-space

equations for the drum separator can be developed.

Similarly, the conservation of mass of the medium component of the feed material can be determined.

This results in the following dynamic mass balance for the medium component,

Vd, f ρd, f
dxd, f ,med

dt +Vd, f xd, f ,med
dρd, f

dt +Vd,sρd,s
dxd,s,med

dt +Vd,sxd,s,med
dρd,s

dt

=Wd,ixd,i,med−Qd, f ρd, f xd, f ,med−Qd,sρd,sxd,s,med . (3.23)

To develop solutions for the rates of change in the medium component percentages, some assumptions

have to be made. The rates of change in the medium component percentages for the floats and sinks

are assumed to be proportional to the difference (∆ρd,med ) in their feed component density (ρd,i,med)

with either the float (ρd, f ,med) or sink (ρd,s,med) medium density. It is also assumed that the rates of
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change in component percentages are proportional to their acceleration due to gravity (g) and inversely

proportional to the average particle size of the ore (dore). These factors are taken into consideration

by the proportionality constants in the medium floats (Kd, f ,med) and sinks (Kd,s,med). The following

relationships for rates of change in medium components can therefore be determined as:

dxd, f ,med

dt
= Kd, f ,med(−∆ρd,med )(xd,i,med− xd, f ,med), (3.24)

dxd,s,med

dt
= Kd,s,med(∆ρd,med )(xd,i,med− xd,s,med). (3.25)

The dynamic mass balance for the ash component can be determined similarly to the medium compon-

ent by replacing subscript med with ash. The proportionality constant (∆ρd,med ) must be replaced by the

difference in ash density (ρd,i,ash) to medium density (ρd,i,med). By using the equations in this section,

a non-linear model of the drum separator can be derived. The output equations can be determined by

applying conservation of mass of components to remove the medium component from the floats (Wd, f )

and sinks (Wd,s) mass flow rates. The mass feed rate of the feed mix (Wd,i) is determine by making use

of the mixing box model developed in Meyer and Craig (2010).

3.3.6 Dense medium cyclone model

The DMC model developed by Meyer and Craig (2010) is used in this thesis. In order to model the

throughput of the DMC dynamically, it is necessary to make use of the conservation of overall mass,

while the conservation of mass of components is used to model the quality (i.e. ash percentage) of the

coal product. A representation of the DMC can be found in Figure 3.13, associated variables describing

the model being given in Table 3.8, 3.9 and 3.10.

The following is a list of assumptions that were made:

• The volume of the mix in the cyclone (Vc) is constant.

• The volumes of the overflow (Vc,o) and underflow (Vc,u) mix in the cyclone and are split at a

constant ratio αc.

• The volumetric flow rates of the feed (Qc,i), overflow (Qc,o) and underflow (Qc,u) are constant

before and after a step is introduced in the medium density (ρc,i) or feed rate of the ore (Wc,i).
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Figure 3.13: Simplified representation of a DMC [taken from Meyer and Craig (2010)].

Table 3.8: DMC input variables and descriptions

Variable Description

Wc,i Mass feed rate of the feed mix (kg/s)

ρc,i Density of the feed mix (kg/m3)

Qc,i Volumetric flow rate of the feed mix (m3/s)

xc,i,ash, xc,i,S, xc,i,H2O,

xc,i,vol , xc,i,C

Percentage ash, sulphur, water, volatiles and fixed carbon in the

feed mix

xc,i,med Percentage magnetite in the feed mix

ρc,i,med Density of the magnetite medium in the feed mix (kg/m3)

Qc,i,med

Volumetric flow rate of the magnetite medium in the feed mix

(m3/s)
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Table 3.9: DMC output variables and descriptions

Variable Description

Wc,o Mass feed rate of the overflow (kg/s)

ρc,o Density of the overflow (kg/m3)

Qc,o Volumetric flow rate of the overflow (m3/s)

xc,o,ash, xc,o,S, xc,o,H2O,

xc,o,vol , xc,o,C

Percentage ash, sulphur, water, volatiles and fixed carbon in the

overflow

xc,o,med Percentage magnetite medium in the overflow

ρc,o,med Density of the magnetite medium in the overflow (kg/m3)

Wc,u Mass feed rate of the underflow (kg/s)

ρc,u Density of the underflow (kg/m3)

Qc,u Volumetric flow rate of the underflow (m3/s)

xc,u,ash, xc,u,S, xc,u,H2O,

xc,u,vol , xc,u,C

Percentage ash, sulphur, water, volatiles and fixed carbon in the

underflow

xc,u,med Percentage magnetite medium in the underflow

ρc,u,med Density of the magnetite medium in the underflow (kg/m3)

• The volumetric flow rates of the overflow (Qc,o) and underflow (Qc,u) are split at a constant ratio

αc.

• Only ash, sulphur, moisture, volatile, medium and fixed carbon components will be considered

for the conservation of mass of components in the feed (i.e. xc,i,ash + xc,i,S + xc,i,H2O + xc,i,vol +

xc,i,med + xc,i,C = 1), overflow (i.e. xc,o,ash + xc,o,S + xc,o,H2O + xc,o,vol + xc,o,med + xc,o,C = 1) and

underflow (i.e. xc,u,ash + xc,u,S + xc,u,H2O + xc,u,vol + xc,u,med + xc,u,C = 1).

• The rates of change in mass for the overflow ( dWc,o
dt ) and underflow ( dWc,u

dt ) are proportional to

the difference in their densities (ρc,o and ρc,u) to the magnetite medium density (ρc,i,med), the

acceleration due to a centrifugal force (
v2

c,i
Rc

) and the percentage of either ash or carbon in the feed

(xc,i,ash or xc,i,C).

• The rates of change in percentages of components to the overflow ( dxc,o,ash
dt , dxc,o,S

dt ,
dxc,o,H2O

dt , dxc,o,vol
dt
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Table 3.10: DMC parameters and descriptions

Variable Description

vc,i Linear velocity of the feed mix (m/s)

Vc = Vc,o +

Vc,u
Volume of the material within the cyclone (m3)

αc Overflow and underflow proportionality constant

Ac Area of the inlet (m3)

Rc Effective radius at which separation takes place near the spigot (m)

dore Average particle size of the ore (m)

ρc,i,ash, ρc,i,S,

ρc,i,H2O,

ρc,i,vol , ρc,i,C

Ash, sulphur, water, volatiles and fixed carbon densities (kg/m3)

Vc,o Volume split of the overflow within the DMC (m3)

Vc,u Volume split of the underflow within the DMC (m3)

Kc,o Proportionality constant for the overflow (m3/s)

Kc,u Proportionality constant for the underflow (m3/s)

Kc,o,ash Proportionality constant for the ash overflow [m3/(kg.s)]

Kc,u,ash Proportionality constant for the ash underflow [m3/(kg.s)]

Kc,o,S Proportionality constant for the sulphur overflow [m3/(kg.s)]

Kc,u,S Proportionality constant for the sulphur underflow [m3/(kg.s)]

Kc,o,H2O Proportionality constant for the moisture overflow [m3/(kg.s)]

Kc,u,H2O Proportionality constant for the moisture underflow [m3/(kg.s)]

Kc,o,vol Proportionality constant for the volatile overflow [m3/(kg.s)]

Kc,u,vol Proportionality constant for the volatile underflow [m3/(kg.s)]

Kc,o,med Proportionality constant for the magnetite medium overflow [m3/(kg.s)]

Kc,u,med Proportionality constant for the magnetite medium underflow [m3/(kg.s)]

Kc,o,C Proportionality constant for the fixed carbon overflow [m3/(kg.s)]

Kc,u,C Proportionality constant for the fixed carbon underflow [m3/(kg.s)]
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and dxc,o,C
dt ) and underflow (dxc,u,ash

dt , dxc,u,S
dt ,

dxc,u,H2O

dt , dxc,u,vol
dt and dxc,u,C

dt ) are proportional to the

difference in their component densities (ρc,i,ash, ρc,i,S, ρc,i,H2O, ρc,i,vol and ρc,i,C) to the magnetite

medium density (ρc,i,med), the difference in their component percentages (xc,o,ash, xc,o,S, xc,o,H2O,

xc,o,vol , xc,o,C, xc,u,ash, xc,u,S, xc,u,H2O, xc,u,vol and xc,u,C) to their corresponding feed percentages

(xc,i,ash, xc,i,S, xc,i,H2O, xc,i,vol and xc,i,C), the acceleration due to a centrifugal force (
v2

c,i
Rc

) and

inversely proportional to the average particle size of the ore (dore).

In order to simplify the model, it is assumed that the volumetric flow is at steady state (i.e. Qc,i =

Qc,o +Qc,u) and that the overflow and underflow are volumetrically split by a proportion αc. This

means that Qc,o = αcQc,u (i.e. Qc,o =
αcQc,i
1+αc

and Qc,u =
Qc,i

1+αc
). Similarly, it is assumed that the cyclone

volume Vc is separated according to the same split proportion αc as in the volumetric feed flow (i.e.

Vc,o =
αcVc
1+αc

and Vc,u =
Vc

1+αc
). By using the overall conservation of mass the following relationship

describing the DMC can be developed:

Vc,o
dρc,o

dt
+Vc,u

dρc,u

dt
=Wc,i−Qc,oρc,o−Qc,uρc,u. (3.26)

The concept of the acceleration due to the centrifugal force within the cyclone can be used to model

the effects of the dynamics of the density response for the cyclone. The centrifugal force indicates

that the rates of change in mass for the overflow and underflow are proportional to their differences in

densities to the medium density. The percentage of ash or carbon will also influence the dynamics of

the cyclone and can yield the following relationship:

Vc,o
dρc,o

dt
= Kc,o(ρc,i,med−ρc,o)xc,i,C, (3.27)

Vc,u
dρc,u

dt
= Kc,u(ρc,i,med−ρc,u)xc,i,ash, (3.28)

where
v2

c,i
Rc

=
Q2

c,i
A2

cRc
is the centrifugal acceleration (where Ac is the cross-sectional area of the inlet and

Rc is the effective radius of the cyclone near the spigot where most of the separation takes place). By

combining Equation 3.26 with Equations 3.27 and 3.28, the overflow and underflow density transfer

functions for the DMC can be developed.

Similarly, the conservation of mass of each component within the ore that is being beneficiated can be

determined. The components that were used in this model include ash and medium. This results in the
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following dynamic mass balances,

Vc,oρc,o
dxc,o,ash

dt +Vc,oxc,o,ash
dρc,o

dt +Vc,uρc,u
dxc,u,ash

dt +Vc,uxc,u,ash
dρc,u

dt

=Wc,ixc,i,ash−Qc,oρc,oxc,o,ash−Qc,uρc,uxc,u,ash, (3.29)

Vc,oρc,o
dxc,o,med

dt +Vc,oxc,o,med
dρc,o

dt +Vc,uρc,u
dxc,u,med

dt +Vc,uxc,u,med
dρc,u

dt

=Wc,ixc,i,med−Qc,oρc,oxc,o,med−Qc,uρc,uxc,u,med , (3.30)

To develop solutions for the rates of change in component percentages, some assumptions have to be

made. The rates of change in component percentages for the overflow and underflow are assumed to

be proportional to the difference in their component densities to the medium density. It is also assumed

that the rates of change in component percentages are proportional to the difference in their component

percentages to their corresponding feed percentages and their acceleration due to gravity. The rates of

change in component percentages are also assumed to be inversely proportional to the average particle

size of the ore. This will yield the following relationships:

dxc,o,ash

dt
= Kc,o,ash(ρc,i,med−ρash)(xc,i,ash− xc,o,ash), (3.31)

dxc,u,ash

dt
= Kc,u,ash(ρash−ρc,i,med)(xc,i,ash− xc,u,ash), (3.32)

dxc,o,med

dt
= Kc,o,med(ρc,i,med−ρc,o,med)(xc,i,med− xc,o,med),

(3.33)

dxc,u,med

dt
= Kc,u,med(ρc,u,med−ρc,i,med)(xc,i,med− xc,u,med),

(3.34)

In the case of the percentage of magnetite in Equations 3.33 and 3.34, the difference between the

overflow and underflow medium density and the feed medium density is used (∆ρc,med =ρc,i,med −

ρc,o,med=ρc,u,med−ρc,i,med).

By using the equations in this section, a non-linear model of the DMC can be derived. The output

equations can be determined by applying conservation of mass of components to remove the medium

component from the overflow (Wc,o) and underflow (Wc,u) mass flow rates. The mass feed rate of the

feed mix (Wc,i) is determine by making use of the mixing box model developed in Meyer and Craig

(2010).
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Mukherjee et al. (2003) have indicated that a gravity fed DMC can typically have a head height of

between 9 and 11 times the cyclone diameter Dc. The relationship between RD, pressure and head

height is,

Pc,i = ρc,ighc, (3.35)

where Pc,i is the cyclone inlet pressure (Pa), ρc,i is the inlet RD (kg/m3), g is the gravitational constant

(9.81m/s2) and hc is the head height of the feed (m) which can be used to determine the DMC inlet

density. Meyer and Craig (2014) showed how to make use of Equation 3.35 as a new calculation

introduced to the DMC dynamic model developed in Meyer and Craig (2010) to provide an additional

calculated measurement point for the process. Unfortunately the coal plant used for this research did

not have a pressure transmitter at the cyclone inlet.

3.3.7 Time delay model

Many of the models described above are typically combined to form a more complex system for a

particular production area. Some of the model outputs need to be delayed to allow for material to be

transported from the particular piece of equipment to their final actual physical process measurement

point. In many of the models identified with an actual coal plant, it is necessary to include these time

delays. The time delays are usually as a result of material being conveyed from one point to another

with the output being delayed over a time ttd as follows (Seborg et al., 1995),

ytd,M (t) = yM (t− ttd), (3.36)

where ytd,M is the delayed model output and yM is the original model output prior to the delay.

Seborg et al. (1995) show that the simplest way to represent a time delay is to use a Taylor series

expansion in the Laplace domain. When applying the system output yM to a Laplace transfer function

e−ttds and approximating to the first order Taylor series expansion,

ytd,M (t) = yM (t)− ttd
dyM

dt
. (3.37)

3.4 SYSTEM IDENTIFICATION

Ljung (1987) describes the system identification process where a dynamic model of a system can be

fitted to a given set of data describing that system. Figure 3.14 illustrates this process of parameter
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Figure 3.14: Parameter estimation process [adapted from Rathaba (2004)]. M∗ refers to the different

equipment models.

estimation used by Meyer (2010).

Meyer (2010) shows how the system identification process was used to determine the parameters for

coal processing dynamic models (M∗). In this process the prediction error (ε) represents the difference

between the measured and the model output for a given set of model parameters. The process of

selecting the model parameters that minimise the prediction error is called parameter estimation (Ljung,

1987). The scalar-valued norm approach is used in this paper where the norm of the normalised sum of

the square of the prediction errors (loss function) is minimised. The loss function is given as,

VN = det

(
1
N

N

∑
1

ε(t,θi)(ε(t,θi))
T

)
, (3.38)

where θi represents the ith estimated parameter and N is the number of values of each plant measurement

in the estimation data set (ZN). When the loss function is below a threshold (Vt), the algorithm stops and

returns the parameter set (θi) which best fit the model to the data set within the required threshold.

The prediction-error identification algorithm that was used is the Trust-Region Reflective Newton

numerical optimisation algorithm (Ljung, 2005) for estimating non-linear grey-box models. The
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quality of each model (M∗) estimate is measured using Akaike’s final prediction error (FPE) (Ljung,

2010),

FPE =VN(1+2dM /N), (3.39)

where VN is the loss function and dM is the number of estimated parameters.

Model parameters are fitted by minimising the loss function over 66% of the data set, while the model

goodness of the fit is determined for the full data set for each experiment. Model goodness of the fit

(Ljung, 2005) is determined using the normalised root mean square error (NRMSE),

fit = 100
(

1− |yM − ŷM |
|yM − ȳM |

)
, (3.40)

where yM is the measured output, ŷM is the simulated output and ȳM is the mean of yM (∑N
i=1 yM ,i/N).

The NRMSE (|yM − ŷM |) is determined as
√

∑
N
i=1 (yM ,i− ŷM ,i)2/N. Similarly, |yM − ¯yM | is eval-

uated as
√

∑
N
i=1 (yM ,i− ȳM )2/N. The NRMSE cost can vary between minus infinity (−∞) and one

(1). If the NRMSE cost function is equal to zero, then ŷM is no better than a straight line at matching

yM .

3.5 STEADY-STATE MODELS

In coal preparation, there are process models that are normally used to describe the separation char-

acteristics of coal (England et al., 2002). Other process models are typically used to describe the

efficiency of the unit (DMC or DMD) separator. These are defined as washability curves and partition

curves which are detailed below. The coal washability can be used to provide an estimate of ash

content over time based on yield. The dynamic model of the DMC and DMD described earlier can

be reduced to a partition curve which validates the developed dynamic models from a metallurgical

perspective.

3.5.1 Washability curves

Another name for a coal preparation plant is called a wash plant. The washability curve gives an

indication of how coal is separated from product and gangue which is the ultimate objective of a coal

wash plant. A process model (Wills and Napier-Munn, 2006) used to determine the required density for
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Figure 3.15: Coal plant actual washability curve [taken from Meyer and Craig (2015)]. Washability

curve data is based on bench 11 from the Grootegeluk formation (Faure et al., 1996).

coal separation and the expected yield of coal of the required grade is a washability curve (Reinhardt,

1911).

The quality of coal is usually measured as ash content which is the amount of incombustible material

in the coal. Using float-sink analysis, it is possible to generate a washability curve describing the

characteristics of the coal at different RD fractions (England et al., 2002). An example of the coal

washability curve describing the coal beneficiated by the industrial coal preparation process used for

this thesis is given in Figure 3.15.

Bowen and Jowett (1986) describe various mathematical models for a coal cleaning system to be used

for computational calculations for coal washability. The M-curve is a simple curve that can generally

fit a conic section equation which typically represents a washability curve. Bowen and Jowett (1986)

show a general conic equation that will fit almost any M-curve plot as,

b0 +b1x f ,ash +b2y+b3x2
f ,ash +b4y2 +b5x f ,ashy = 0, (3.41)

where x f ,ash represents the ash product or float percentage, y represents the yield and the model

parameters are given as b0, b1, b2, b3, b4 and b5.
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Figure 3.16: M-curve of the coal washability [taken from Meyer and Craig (2015)].

Table 3.11: M-curve model parameters.

M-curve parameter Curve fit parameter results

b0 -0.19

b1 6.91

b2 -0.65

b3 21.83

b4 1.54

b5 -14.78

Figure 3.16 was generated by fitting Equation 3.41 to the measured washability data from Figure 3.15.

Table 3.11 shows a summary of the parameters for M-curve fit. This result shows that the coal plant

product ash content (x f ,ash) can be expressed as a function of yield (y).

The M-curve [developed by Mayer (1950)] parametric equation will be used in this paper to estimate

the product ash contents in order to verify the grade as estimated by the dynamic model. The feed ash
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Figure 3.17: Example of a partition curve [adapted from England et al. (2002)].

content (xi,ash) is calculated by reconstituting the feed as follows,

xi,ash =
Wf x f ,ash

WiY (ρi,med)
, (3.42)

where Wf is the product mass rate, Wi is the feed mass rate, x f ,ash is the float or product ash contents

and Y (ρi,med) is the partition factor described by Equation 3.45 and 3.46 below. In order to reconstitute

the feed ash content (xi,ash) it is assumed that the partition factor is normalised and shifted to the initial

medium density ρi,med of the separator. It is also assumed that the partition factor represents the average

density of material in the overflow or float. The population distribution at each RD fraction is typically

not known and therefore cannot be used in this reconstitution.

3.5.2 Partition curves

Partition curves describe the efficiency of separation for a DMS unit process. In general, the DMD has

a slightly lower efficiency than a DMC. As a result, different process models are used to describe the

partition curves for the different separation units. The DMD partition curve is initially explained and is

then followed by the DMC partition curve process model.

Figure 3.17 shows an example of a typical partition curve or efficiency curve taken from England et al.

(2002). The ideal partition curve is a step function allowing for perfect separation. However, since unit

processes such as the DMC or DMD do not separate perfectly, the real efficiency curve is typically an

S-shaped curve of a cumulative probability distribution. In this example the probability of particles

reporting as floats is shown.
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The location of the curve is described by the separation cutpoint (the specific RD where a particle can

have an equal chance of reporting to a float or sink) and is represented as ρ50. The EPM or Ep is an

empirical measure of inefficiency. This separation efficiency is typically calculated as follows:

Ep =
ρ25−ρ75

2
, (3.43)

where ρ25 is the specific gravity (SG) at 25% and ρ75 is the SG at 75% (Terra, 1938).

Float and sink analysis is a technique used to determine properties of coal and assist with the generation

of a partition curve. This curve is used to determine the efficiency of a DMS process. Coal samples

are separated into two or more RD fractions by using gravity separation. The liquids are made up of

different relative densities between that of the discarded material and pure coal.

England et al. (2002) describe the process of float and sink analysis (Figure 2.3) which is used in this

paper primarily for the steady-state simulation. A sample is separated in a container using a liquid

with a high RD. The float is recovered and immersed in a series of containers with consecutively

lower liquid densities (Figure 2.3). Typical specific gravities range from 1.30 to 1.70, with typical step

intervals of 0.05. It is important to note that this analysis is performed when each container mix is at

steady state due to there being a considerable amount of time required for settling to take place.

After each fraction has settled, the sinks are dried and weighed. From these data, a partition curve can

be generated.

A partition curve allows the degree of separation and efficiency for a cyclone to be illustrated. Using

the yield of clean coal from a plant and the float and sink analysis of the product and discard, the

partition factor (ratio of the total clean coal to the feed) per RD fraction can be computed. Table 3.12

shows an example [taken from England et al. (2002)] of the data and necessary calculations required

to obtain a partition curve.

A yield of 41.6% for clean coal is used as given in the example by England et al. (2002).

Figure 3.18 illustrates an example of a partition curve where the partition factor of a plant is shown

with respect to RD of the liquid. This figure also shows the RD that will allow for the plant to have a

partition factor of 50%.
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Table 3.12: Example of details and calculations required for a partition curve [data taken from England

et al. (2002)].

RD

Fraction

Clean Coal

(ypc = 0.416)

Discard

(1− ypc = 0.584)
Reconst.

Feed

bpc +dpc =

epc

Partition

Factor

bpc/epc×

100

Fract.

Yield %

(apc)

Fract. of

Total

apc× ypc =

bpc

Fract.

Yield %

(cpc)

Fract. of

Total Coal

cpc(1−

ypc) = dpc

F1.3 43.69 18.18 0.79 0.46 18.64 97.5

1.3 - 1.32 25.82 10.74 0.71 0.41 11.15 96.3

1.32 - 1.34 14.23 5.92 1.29 0.75 6.67 88.8

1.34 - 1.36 11.59 4.82 3.93 2.30 7.12 67.7

1.35 - 1.38 3.97 1.65 8.93 5.22 6.87 24.0

1.38 - 1.40 0.40 0.17 10.36 6.05 6.22 2.7

1.40 - 1.42 0.10 0.04 9.29 5.43 5.47 0.7

1.42 - 1.44 0.07 0.03 8.58 5.01 5.04 0.6

1.44 - 1.46 0.03 0.01 8.58 5.01 5.02 0.2

1.46 - 1.48 0.03 0.01 7.86 4.59 4.60 0.2

1.48 - 1.50 0.03 0.01 6.43 3.76 3.77 0.3

S1.50 0.03 0.01 33.24 19.41 19.42 0.05

Whole Coal 99.99 41.59 99.99 58.40 99.99 −

A DMC or DMD having a low EPM value means that it will achieve a very good separation through

density separation.

Variables that can influence the shape of the partition curve are feed rate, maintenance of equipment

and operating variables such as pressure, particle size, amount of magnetite used and contaminants in

the medium (De Korte, 2008).

Napier-Munn (1991) referenced a process model for a DMD separator. Sedimentation theory (Scott

and Lyman, 1987) was used to detail the separation cutpoint (RD where a particle has an equal chance

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

57

 
 
 



CHAPTER 3 Methods

1.3 1.35 1.4 1.45 1.5
0

10

20

30

40

50

60

70

80

90

100

X: 1.354
Y: 50

X: 1.36
Y: 24.83

X: 1.345
Y: 74.94

Relative density

P
ar

tit
io

n 
fa

ct
or

Partition factor
   Curve fit

 Partition curve

 Perfect separation

Figure 3.18: Partition curve example plotted from Table 3.12.

of reporting to the float or sink). The partition factor (Baguley and Napier-Munn, 1996) for the drum

separator is described as,

Yd =
[
1− (v100− vt)

2]( Adrm
d2ore+Bdrm

)
, (3.44)

where v100 is the terminal velocity, which allows for 100% recovery of the sinks, vt is the terminal

velocity of the particle and Adrm and Bdrm are constants that need to be estimated. The particle size is

represented by dore.

Using the terminal speed vt =
√

2Fg
Coreρi,medAore

from Halliday et al. (2001) the steady-state partition factor

(Equation 3.44) can be made a function of medium density (ρi,med). Fg is the downward gravitational

force on the ore particle, Core is the drag coefficient for the ore particle, ρi,med is the medium density

displacing the ore particle mass per volume and Aore is the effective cross-sectional area of the ore
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particle. By assigning parameters p1 = v100, p2 =
2Fg

CoreAore
and p3 =

Adrm
d2

ore+Bdrm
, a parametric equation for

the partition factor can be derived as follows,

Yd(ρi,med) =

[
1−
(

p1−
√

p2

ρi,med

)2
]p3

. (3.45)

Similar results could possibly be obtained by using the terminal velocity correlation published by

Concha and Almendra (1979), with an adjustment for shape factor.

The DMD dynamic model can be reduced to a steady-state model and made to represent the partition

curve described by 3.45. A partition curve reduced from a dynamic DMD model is given in the next

chapter.

A mathematical model for the partition factor (Yc) of a DMC has been developed by Napier-Munn

(1991) and looks as follows,

Yc =
1

1+ e
1.099(ρ50−ρi,med )

Ep

, (3.46)

where ρi.med is the RD of the feed medium fraction and Ep is the EPM. This equation expresses the

partition curve and is derived by substituting equations from Lynch (1977), King and Juckes (1984)

and King and Juckes (1988). This model is a regression model based on steady-state conditions of the

ore separated by a DMC. This steady-state model is well known in literature. A dynamic model will

be discussed in more detail in this paper. This dynamic model will be reduced to a steady-state model

in the next chapter with similar properties to that of Equation 3.46.

3.6 MODEL PREDICTIVE CONTROL

This subsection highlights the principle of MPC and indicates the typical requirements for an objective

function and constraints applicable for the dynamic models shown in this thesis. Since some of

the dynamic models shown in this thesis are nonlinear, nonlinear MPC (NMPC) is described. The

NMPC algorithm provided by Grüne and Pannek (2011) was used to perform the simulations in

MATLAB®1.
1MATLAB® is a mathematical computing software developed by MathWorks®.
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Figure 3.19: Proposed MPC implementation architecture [adapted from Hodouin (2011)].

An implementation architecture of MPC is proposed below which gives an indication of the typical

components of an MPC and how it should be implemented. A description of NMPC with the various

applicable components are given. The UKF algorithm is explained in more detail as the UKF is

simulated with some of the dynamic models in the next chapter.

3.6.1 Implementation architecture

When implementing MPC, model-plant mismatch can occur due to changes in plant dynamics and

nonlinearities in the process (Badwe et al., 2009). Hodouin (2011) proposes a generalised control loop

for automatic control, observation and optimisation in mineral processing plants. Figure 3.19 shows a

similar control loop adapted for the implementation of MPC on the coal plant dynamic models given

earlier in this chapter.

The MPC consists of a state estimator, dynamic model and optimiser. Past inputs and outputs are

obtained from the physical plant process measurements. These inputs and outputs are used by a
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state estimator to estimate the model states over time to reduce model-plant mismatch. Ideally, the

dynamic model parameters should be identified with changes to process conditions. However, in order

to implement a practical solution, a state estimator can update the model states based on process and

measurement noise disturbances. The dynamic model is used by the optimiser to predict future outputs

based on proposed future control moves. The objective of the optimiser is to minimise future errors

where the predicted model future outputs are compared to a reference trajectory. Once the optimiser

has solved the minimisation problem, the first set of proposed future control moves is sent to the

physical plant process actuators for implementation.

3.6.2 Nonlinear model predictive control

MPC consists of a model that uses past and current plant values to predict future outputs. Grüne and

Pannek (2011) indicate that the difference between NMPC and MPC is that NMPC makes use of a

nonlinear model when applying past and current plant values to predict future outputs. The nonlinear

plant is usually described by the general state space model,

x(t +1) = f (x(t),u(t)), (3.47)

y(t) = g(x(t)). (3.48)

An algorithm is used to propose future control actions based on a required reference trajectory. Using

future output errors, an objective function (J) and process constraints, an optimiser algorithm is used

to determine future inputs for the process and model (Camacho and Bordons, 2004). Various MPC

algorithms propose different objective functions for obtaining the control law. However, the objective

function to be minimized may take the general form,

J =
N

∑
j=1
‖ŷ(t + j)−ys‖2

R +
M−1

∑
j=0
‖∆u(t + j)‖2

P +
M−1

∑
j=0
‖u(t + j)−us‖2

Q +‖s2
T‖, (3.49)

where P, Q, R and T are weighting matrices that consider rapid input changes [∆u(t + j) = u(t +

j)−u(t + j−1)], future behaviour of the input error [u(t + j)−us], future behaviour of the output

error [ŷ(t + j)−ys] and soft constraints (s). The control law [minimizing J to solve for future inputs

u(t + j)] is determined over a prediction horizon (N) where ŷ is the output prediction and ys is the

reference trajectory. The control law is also solved for over a control horizon (M). Future input

[u(t + j)] deviations from the desired steady-state inputs us are also controlled.
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The fourth term in Equation 3.49 considers soft constraints in the output variables. The constraints for

the process variables are usually used to restrict actuator movement [u(t)] and slew rate (d). Typical

constraints include bounds on the amplitude and slew rate of the control signals and limits on the

output [y(t)] such as:

umin ≤ u(t + j)≤ umax ∀ j = 0,M−1 (3.50)

dumin ≤ u(t + j)−u(t + j−1)≤ dumax ∀ j = 0,M−1, (3.51)

ymin− s≤ y(t + j)≤ ymax + s ∀ j = 1,N. (3.52)

The soft constraints are indicated by s in constraint Equation 3.52. The application of the objective

function J for the coal processes used in this thesis only considers the first two terms in Equation 3.49.

This means that future behaviour in output error and and rapid input changes are controlled while

future input errors and soft constraints are not applied. Only the prediction horizon N, control horizon

M, weighting matrices P and R, and output reference trajectory ys will be configured for the NMPC

simulations in Chapter 4.

The weighting matrices P and R are usually represented as diagonal matrices. Lower case letters

and subscripts [i.e. P∗ = diag([ p∗,1 · · · p∗,m ]) and R∗ = diag([ r∗,1 · · · r∗,n ])] will be used to

refer to the different diagonal components for objective function ∗ to simplify the representation of the

matrices. The number of inputs is m and outputs is n. Similarly, the output reference trajectory (ys) will

have a subscript to represent the relevant vector components [i.e. ys = [ ys,∗,1 · · · ys,∗,n ]T ].

The NMPC problem can be solved using the general nonlinear programming problem with wT =

[uT xT yT ], that is,

min
w

J(w), (3.53)

subject to : c(w) = 0,h(w)≤ 0, (3.54)

where the equality constraint vector c corresponds to the model constraints and the inequality constraint

vector h corresponds to Equation 3.52.
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Given a set of initial conditions [x(0)], an optimal control sequence [u(t)∗, . . . ,u(t +M)∗] requires a

solution via numerical optimisation on the above mentioned nonlinear programming problem with

finite horizon M. The numerical optimisation problem must remain feasible for all t. Closed loop

stability is also required for the state-space model (Equation 3.47) when applying the optimal control

sequence [u(t +M)∗].

The NMPC general state space model in Equation 3.47 is a discrete-time model. Since the models

developed and used in this thesis are continuous-time models, they are firstly discretized before applied

to the general nonlinear programming optimisation problem.

3.6.3 Unscented Kalman filter

The UKF algorithm is similar to the EKF algorithm as the state distribution is represented by Gaussian

random variables (GRV), but specified under a minimal set of carefully chosen sample points (Wan

and Van der Merwe, 2000). The sample points capture the true mean and covariance of the GRV when

propagated through the true nonlinear system and capture the posterior mean and covariance accurately

up to the third order Taylor series expansion term for any nonlinearity. This is primarily achieved by

using an unscented transform (UT) detailed by Wan and Van der Merwe (2000).

The UT calculates the statistics of a random variable undergoing nonlinear transformation. Consider

a random variable x propagating through a nonlinear function y = g(x) where x has mean x̄ and

covariance Px. The statistics of y are calculated by forming the matrix χ of 2L+1 sigma vectors χi

(with corresponding weights Wi) where L is the dimension of x. The following equations describe the

calculation of the statistics of y,

χ0 = x̄, (3.55)

χi = x̄+
(√

(L+λ )Px
)

i, i = 1, ..,L, (3.56)

χi = x̄−
(√

(L+λ )Px
)

i−L, i = L+1, ..,2L, (3.57)

W (m)
0 = λ/(L+λ ), (3.58)

W (c)
0 = λ/(L+λ )+(1−α

2 +β ), (3.59)

W (m)
i = W (c)

i = 1/{2(L+λ )}, i = 1, ..,2L, (3.60)
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where λ = α2(L+κ)−L is a scaling parameter. α determines the spread of the sigma points around

x̄. κ is a secondary scaling parameter and β is used to incorporate prior knowledge of the distribution

of x. The values for the UT parameters used in this thesis correspond to the values recommended

from Wan and Van der Merwe (2000) where α =1E-3, κ = 0 and β = 2. The sigma vectors χi are

propagated through the nonlinear function,

γi = g(χi), i = 0, ..,2L, (3.61)

and the mean and covariance for y are approximated with weighted sample mean and covariance of the

posterior sigma points,

ȳ =
2L

∑
i=0

W (m)
i γi, (3.62)

Py =
2L

∑
i=0

W (c)
i {γi− ȳ}{γi− ȳ}T . (3.63)

The UKF is an extension of the UT to the recursive estimation of x̂k given by,

x̂k = (predictionofxk)+κk[yk− (predictionofyk)], (3.64)

with noisy observation yk. The optimal gain term κk is expressed as a function of posterior covariance

matrices. A detailed derivation and description of the UKF algorithm can be found in the paper from

Wan and Van der Merwe (2000). The initialisation of the algorithm requires initial covariances (Pa
0) of

the original state (P0), process noise (Pv) and measurement noise (Pn),

Pa
0 =


P0 0 0

0 Pv 0

0 0 Pn

 . (3.65)

The UKF makes use of a discrete-time state space model (Equation 3.64). Similar to the NMPC

described above in Subsection 3.6.2, the UKF also requires the conversion of the continuous-time

models used in this thesis to discrete time models.
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CHAPTER 4 RESULTS

4.1 CHAPTER OVERVIEW

In this chapter the dynamic models developed in Chapter 3 are identified and fitted to specific production

data in order to represent a real industrial coal plant. The comminution and separation areas in the

general minerals processing flowsheet in Figure 2.1 are used to break down the unit operations. The

bin buffer for storage forms part of the comminution area in this study.

Details of each unit operation and process are described with a process flow diagram. The dynamic

models are identified and fitted to specific production data taken from an industrial coal plant pro-

duction historian. Once the dynamic models have been identified, model predictive control design

and simulations are performed to show how the controller reacts to certain process disturbances.

Simulations of the dynamic models are also performed with a UKF to illustrate how the state estimator

would be able to accommodate for model-plant mismatch if the MPC were to be implemented on a

real plant. Discussions of the results obtained for each production area are also given.

4.2 COAL COMMINUTION AREA

The actual coal comminution area that is used in this thesis is detailed in Figure 4.1. This plant consists

of three areas. The first area is a material handling stockpile bunker with associated vibratory feeders.

The second area is a closed comminution and sizing circuit. The final area is a material handling bin

with three bin sections. Two of the bin sections have a vibratory feeder while the third bin section is

manually actuated through a flap gate.
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Figure 4.1: Coal comminution process flow schematic.
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The stockpile bunker is fed by a primary crushing plant which sizes coal run-of-mine to +40mm.

Material is drawn from the bunker from seven different points through vibratory feeders (SC001,

SC002, SC003, SC004, SC005, SC006 and SC007). The first six points consist of two feeders each,

while the last point only consists of one feeder. The draw points that have a pair of feeders only have

one variable to actuate both feeders. The total mass flow rate of material drawn from the stockpile

bunker is measured with a belt scale (WIT001).

The closed comminution and sizing circuit measures the combined stockpile bunker mass flow and

recycle mass flow (C01) that feeds a 40/80mm double deck screen (WIT002). The oversize stream is

crushed with an 80mm sized double roll crusher (measured motor current IIT002) while the undersize

is crushed with a 40mm double roll crusher (measured motor current IIT001). The -40mm undersize

mass flow (C02) is fed to a bin.

The bin area consists of three sections and is fed near the centre of module 1 and 2 bin compartments.

Material is emptied from the bypass section manually through the use of a flap gate (ZY001). Module

1 and 2 bin sections are emptied using vibratory feeders (SC008 and SC009). All material mass flow

from the bin is measured using belt scales (WIT003, WIT004 and WIT005). The level of the bin

(LIT001) is also measured.

The details of all actuator and measurement tags are given in Tables 4.1, 4.2 and 4.3. These tags

relate to the tags given in Figure 4.1. The associated variables and equations detailed in Chapter 3 are

also given as reference to highlight how the dynamic models associate to the physical process and

measurements. The type of measurement or actuation available for each tag are also given.

4.2.1 Dynamic model system identification

Based on the coal comminution area in Figure 4.1 and analysing the inputs and outputs, it is possible to

break the system down into three dynamic model areas. The first dynamic model area is the stockpiling

area while the second dynamic model area is the screening, crushing and bin area. The third dynamic

model area consists of the screens responsible for sizing the material from the bin for the relevant

DMS plants. The nonlinear dynamic models from Chapter 3 are used to describe the three areas and

will consist of parameters relating to the models.
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Table 4.1: Measurements used in Figure 4.1 for the stockpiling area in the comminution process.

Name Description Type Variable Equation

SC001 Stockpile tunnel feeder 1 and 2 motor speed

(%)

Variable

speed drive

f f 3.1

SC002 Stockpile tunnel feeder 3 and 4 motor speed

(%)

Variable

speed drive

f f 3.1

SC003 Stockpile tunnel feeder 5 and 6 motor speed

(%)

Variable

speed drive

f f 3.1

SC004 Stockpile tunnel feeder 7 and 8 motor speed

(%)

Variable

speed drive

f f 3.1

SC005 Stockpile tunnel feeder 9 and 10 motor speed

(%)

Variable

speed drive

f f 3.1

SC006 Stockpile tunnel feeder 11 and 12 motor speed

(%)

Variable

speed drive

f f 3.1

SC007 Stockpile tunnel feeder 13 motor speed (%) Variable

speed drive

f f 3.1

WIT001 Stockpile discharge mass flow rate (t/h) Belt scale Wf ,o 3.2

The system identification approach from Ljung (1987) is used for each model fit. Input-output data

taken from an actual coal beneficiation plant production historian were used to fit the models. All

data are sampled per second and filtered with a low-pass filter with time period of twenty seconds (i.e.

cutoff frequency of 50mHz) to remove measurement noise. The double roll crusher motor currents

were filtered using a one hundred second time period (i.e. cutoff frequency of 10mHz) to remove

additional frequency components to create a smoother signal for identification. Two thirds of the

production data were used to identify the models to allow for an additional one third of production data

to be used for model validation. All simulation outputs and model validation results include both the

two thirds model identification data and one third model validation data. This means that two thirds of

the data within the time-series data was used to identify the model parameters. The model simulation

was then allowed to run for another one third of the remaining time-series data. The reason for this is

to illustrate that the model is able to use data both with and without prior identification for validation

purposes.
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Table 4.2: Measurements used in Figure 4.1 for the screen, crush and bin area in the comminution

process (N/A stands for "not applicable").

Name Description Type Variable(s) Equation

WIT002 40mm screen mass flow rate (t/h) Belt scale Wds,o,i−1 3.4

IIT001 40mm crusher motor current (A) Current

transformer

Icr 3.11

IIT002 80mm crusher motor current (A) Current

transformer

Icr 3.11

C01 Crushing circuit recycle mass flow rate

(t/h)

Calculation Wcr,o 3.11

C02 Bin feed mass flow rate (t/h) Calculation WIT001+C01 N/A

LIT001 Bin level (%) Level meter lb 3.19

WIT003 Bin bypass mass flow rate (t/h) Belt scale Wb,o,3 3.12

ZY001 Flap gate position Manual N/A N/A

WIT004 Bin module 2 mass flow rate (t/h) Belt scale Wb f ,o,1 3.19

SC008 Bin module 2 feeder motor speed (%) Variable

speed drive

fb f ,1 3.13

WIT005 Bin module 1 mass flow rate (t/h) Belt scale Wb f ,o,2 3.19

SC009 Bin module 1 feeder motor speed (%) Variable

speed drive

fb f ,2 3.14

4.2.1.1 Stockpiling area

The stockpiling area consists of thirteen feeders with seven bunker draw points. The first six bunker

draw points consists of two feeders per draw point while the last draw point only consists of one feeder.

Each bunker draw point is actuated with a single motor frequency setpoint for each draw point area.

The feeder model from Chapter 3 is used to model each draw point. It is assumed that the stockpile

draw points with duel feeders can be represented as one system described by Equations 3.1 and 3.2.

The seven stockpile draw point feeder models can be added together to obtain the total mass flow from

the stockpile (WIT001). Each draw point is represented by a subscript number (1-7) in the process

variables and parameters.
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Table 4.3: Measurements used in Figure 4.1 for the DMS screen feed area in the comminution process

(N/A stands for "not applicable").

Name Description Type Variable(s) Equation

C03 Bin module total product oversize (t/h) Calculation C05+C07 N/A

C04 Bin module total product undersize (t/h) Calculation C06+C08 N/A

C05 Bin module 1 classification screen over-

size (t/h)

Calculation Wss,i 3.3

C06 Bin module 1 classification screen un-

dersize (t/h)

Calculation Wu,ss,i 3.3

C07 Bin module 2 classification screen over-

size (t/h)

Calculation Wss,i 3.3

C08 Bin module 2 classification screen un-

dersize (t/h)

Calculation Wu,ss,i 3.3

WIT006 Bin total oversize to DMS plant 1 (t/h) Belt scale C03+WIT003 N/A

Material from each draw point falls onto a conveyor and is combined with the next upstream draw

point’s mass flow. As a result, each draw point is modelled with a time delay as described by Equation

3.37 in Chapter 3. This results in each feeder’s mass flow output (Equation 3.2) being delayed with a

time delay t f ,td,n where n represents the seven draw points subscript numbers (1-7).

The stockpiling area was fitted to production data from an actual coal plant. In order to obtain inde-

pendent output responses for the total stockpile mass flow (WIT001) for changes made to each bunker

draw point (SC001 - SC007), four sets of experiments were used. These experiments have enough

uncorrelated perturbations such that the entire stockpiling area can be identified. The experimental

data was taken from a coal plant production historian.

Figures 4.2, 4.3, 4.4 and 4.5 show the system identification input/output results for each experiment for

the stockpiling area. The first experiment has production data with uncorrelated perturbations in the

first three bunker draw points (SC001 - SC003). The second experiment has uncorrelated perturbations

in the third and seventh bunker draw points (SC003 and SC007). Experiment three has uncorrelated

perturbations for the fifth, sixth and seventh bunker draw points (SC005 - SC007). Experiment four

uses uncorrelated perturbations in the fourth and fifth bunker draw points (SC004 and SC005).
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Figure 4.2: Stockpiling area, experiment one model validation (Stockpile output = WIT001; Feeders 1

& 2 = SC001; Feeders 3 & 4 = SC002; Feeders 5 & 6 = SC003).
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Figure 4.3: Stockpiling area, experiment two model validation (Stockpile output = WIT001; Feeders

5 & 6 = SC003; Feeders 11 & 12 = SC006; Feeders 13 = SC007).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

71

 
 
 



CHAPTER 4 Results

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

Time (s)

M
as

s 
flo

w
 r

at
e 

(t
/h

)

Experiment three: stockpile validation

 

 

Measured stockpile output
Simulated stockpile output

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

Time (s)

F
ee

de
r 

m
ot

or
 s

pe
ed

 (
H

z)

Experiment three: actual stockpile inputs

 

 

Feeders 7 & 8
Feeders 9 & 10
Feeders 11 & 12
Feeders 13

Figure 4.4: Stockpiling area, experiment three model validation (Stockpile output = WIT001; Feeders

7 & 8 = SC004; Feeders 9 & 10 = SC005; Feeders 11 & 12 = SC006; Feeders 13 = SC007).
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Figure 4.5: Stockpiling area, experiment four model validation (Stockpile output = WIT001; Feeders

7 & 8 = SC004; Feeders 9 & 10 = SC005; Feeders 13 = SC007).
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Table 4.4: Stockpile model parameters.

Parameter Value Description Equation(s)

K f ,1 0.87 Stockpile bunker draw point one proportionality constant

(kg)

3.1

K f ,2 0.80 Stockpile bunker draw point two proportionality constant

(kg)

3.1

K f ,3 1.59 Stockpile bunker draw point three proportionality constant

(kg)

3.1

K f ,4 0.87 Stockpile bunker draw point four proportionality constant

(kg)

3.1

K f ,5 0.77 Stockpile bunker draw point five proportionality constant

(kg)

3.1

K f ,6 0.92 Stockpile bunker draw point six proportionality constant

(kg)

3.1

K f ,7 1.36 Stockpile bunker draw point seven proportionality constant

(kg)

3.1

τ f ,1 48.34 Stockpile bunker draw point one time constants (s) 3.1 and 3.2

τ f ,2 11.60 Stockpile bunker draw point two time constants (s) 3.1 and 3.2

τ f ,3 13.81 Stockpile bunker draw point three time constants (s) 3.1 and 3.2

τ f ,4 16.40 Stockpile bunker draw point four time constants (s) 3.1 and 3.2

τ f ,5 27.14 Stockpile bunker draw point five time constants (s) 3.1 and 3.2

τ f ,6 32.46 Stockpile bunker draw point six time constants (s) 3.1 and 3.2

τ f ,7 23.21 Stockpile bunker draw point seven time constants (s) 3.1 and 3.2

The parameters that were identified for the stockpile area are given in Table 4.4 with associated time

delays given in Table 4.5. The parameters associated with the relevant equations from Chapter 3 are

also given.

The model fit and correlation results for the stockpile discharge (WIT001) for each experiment is

shown in Table 4.6.
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Table 4.5: Stockpile model time delays.

Parameter Value Description Equation

t f ,td,1 24.48 Stockpile bunker draw point one time delay (s) 3.37

t f ,td,2 6.62 Stockpile bunker draw point two time delay (s) 3.37

t f ,td,3 12.63 Stockpile bunker draw point three time delay (s) 3.37

t f ,td,4 9.03 Stockpile bunker draw point four time delay (s) 3.37

t f ,td,5 7.19 Stockpile bunker draw point five time delay (s) 3.37

t f ,td,6 5.63 Stockpile bunker draw point six time delay (s) 3.37

t f ,td,7 0.22 Stockpile bunker draw point seven time delay (s) 3.37

Table 4.6: Stockpile model output (WIT001) validation.

Experiment Fit (%) Correlation

One 82.1 0.98

Two 87.4 0.99

Three 72.2 0.97

Four 46.7 0.90

4.2.1.2 Screen, crush and bin area

The screen, crush and bin area in Figure 4.1 sizes the material from the ROM stockpile (WIT001) and

stores the -40mm material in a bin to act as a buffer to feed the downstream DMS plants. Screening

and crushing is performed in closed circuit for the oversize material (+40mm). Larger sized material

(+80mm) is crushed with an 80mm double roll crusher while the -80mm +40mm material is crushed

with a 40mm double roll crusher.

The 40/80mm double deck screen and double roll crushers are modelled using the dynamic systems

described in Chapter 3. Crusher motor current (IIT001 and IIT002) and stockpile feed (WIT001)

are used as inputs to the closed circuit comminution. Since the undersize feeding the bin (C02) is

not measured, the screen and crusher models are combined with the bin model detailed in Chapter 3

and identified using actual plant measurements. The crusher recycle mass flow rate (WIT002), bin

level (LIT001) and bin feeder mass flow rates (WIT004 and WIT005) are used as outputs for model
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identification.

The only actuators available in the screen, crush and bin area are the two bin feeder motor speeds (SC008

and SC009) while the third bin bypass mass flow rate (WIT003) is a measured disturbance.

A time delay tcr,td was included in the screening and crushing sections after the crushers using the

approximation given in Equation 3.37 from Chapter 3. Another time delay approximation tu,ds,c,td was

used to represent the transport delay of material from the double-deck screen undersize to the bin feed.

Two time delays (tb f ,1,td and tb f ,1,td) are used to represent the time taken by the material to travel from

the two bin feeders to the measured outputs (WIT005 and WIT004)

When identifying the screen, crush and bin area dynamic models the different operating conditions

(phases I, II and III in Figure 3.10 from Chapter 3) need to be included in the model identification. As

a result, three experimental sets of production data were used for the model identification. This allows

for sufficient perturbations in the inputs to fit the model over the various operating conditions and bin

level behaviour.

Figures 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 show the system identification input/output

results for each experiment for the screen, crush and bin area. The first experiment incorporates phase

I and II operating condition (from Figure 3.10). At low bin levels (LIT001), the bin feeder mass flow

rates (WIT004 and WIT005) have an inverse exponential rise in mass flow rate.

Experiments two and three contain sufficient changes in the bin level (LIT001) such that the feeder

mass flow rates (WIT004 and WIT005) are in phase II and III operating conditions (shown in Figure

3.10). At high bin level readings the feeder mass flow rates have a sigmoid characteristic giving a

sudden rise in feeder effectiveness. Experiment three also has a scenario where material from the bin

bypass (WIT003) has been opened manually.

Experiments one, two and three have sufficient perturbation in the measured stockpile feed (WIT001)

to ensure the 40mm and 80mm crusher measured motor currents (IIT001 and IIT002) and screen and

crush recycle measured mass flow (WIT002) contain sufficient process dynamics for the dynamic

models developed. All experiments also have conditions for phase II where the bin level is within

normal conditions such that the bin feeder mass flow rates behave in a linear fashion.
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Experiment one: screen and crush recycle validation
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Experiment one: screen and crush input
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Experiment one: crusher validation

 

 

Measured 40mm crusher
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Experiment one: crusher validation

 

 

Measured 80mm crusher
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Figure 4.6: Screen and crush model validation for experiment one (Recycle = C01; Stockpile feed =

WIT001; 40mm crusher = IIT001; 80mm crusher = IIT002).
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Experiment one: bin level validation
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Experiment one: actual bin inputs
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Figure 4.7: Bin level model validation for experiment one (Bin level = LIT001; Bin module 1 feeder

= SC009; Bin module 2 feeder = SC008; Bin bypass = WIT003).
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Experiment one: bin mass flow validation

 

 

Measured bin module 1
Simulated bin module 1
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Figure 4.8: Bin mass flow model validation for experiment one (Bin module 1 = WIT005; Bin module

2 = WIT004).
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Experiment two: screen and crush input
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Experiment two: crusher validation

 

 

Measured 40mm crusher
Simulated 40 mm crusher
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Experiment two: crusher validation

 

 

Measured 80mm crusher
Simulated 80 mm crusher

Figure 4.9: Screen and crush model validation for experiment two (Recycle = C01; Stockpile feed =

WIT001; 40mm crusher = IIT001; 80mm crusher = IIT002).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

77

 
 
 



CHAPTER 4 Results

0 1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

Time (s)

Le
ve

l (
%

)

Experiment two: bin level validation
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Experiment two: actual bin inputs
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Figure 4.10: Bin level model validation for experiment two (Bin level = LIT001; Bin module 1 feeder

= SC009; Bin module 2 feeder = SC008; Bin bypass = WIT003).
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Measured bin module 1
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Experiment two: bin mass flow validation
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Figure 4.11: Bin mass flow model validation for experiment two (Bin module 1 = WIT005; Bin

module 2 = WIT004).
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Experiment three: screen and crush recycle validation
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Experiment three: screen and crush input

 

 

Actual stockpile feed

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

Time (s)

C
ru

sh
er

 m
ot

or
 c

ur
re

nt
 (

A
)

Experiment three: crusher validation

 

 

Measured 40mm crusher
Simulated 40 mm crusher
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Experiment three: crusher validation
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Figure 4.12: Screen and crush model validation for experiment three (Recycle = C01; Stockpile feed

= WIT001; 40mm crusher = IIT001; 80mm crusher = IIT002).
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Figure 4.13: Bin level model validation for experiment three (Bin level = LIT001; Bin module 1 feeder

= SC009; Bin module 2 feeder = SC008; Bin bypass = WIT003).
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Measured bin module 1
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Experiment three: bin mass flow validation
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Figure 4.14: Bin mass flow model validation for experiment three (Bin module 1 = WIT005; Bin

module 2 = WIT004).

Table 4.7: Screen and crush model parameters for double-deck screen.

Parameter Value Description Equation

τds,o 4.26 Double-deck screen top deck oversize time constant (s) 3.4

τu,ds,o 3.82 Double-deck screen top deck undersize time constant (s) 3.4

τds,c 657.24 Double-deck screen bottom deck oversize time constant (s) 3.5

τu,ds,c 27.93 Double-deck screen bottom deck undersize time constant

(s)

3.5

αds,o 0.25 Double-deck screen top deck mass split 3.4

αds,c 0.27 Double-deck screen bottom deck mass split 3.5

Tables 4.7, 4.8 and 4.9 shows the parameter values that were estimated during the model fit using

system identification (Ljung, 1987). The parameters are based on the double-deck screen (Equations

3.4 and 3.5), crusher (Equations 3.7 and 3.10) and bin (Equations 3.15, 3.16, 3.17, 3.18 and 3.19)

models derived in Chapter 3. Table 4.10 shows the time delays estimated for the screen, crush and bin

system. The parameters associated with the relevant equations from Chapter 3 are also given.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

80

 
 
 



CHAPTER 4 Results

Table 4.8: Screen and crush model parameters for double roll crushers.

Parameter Value Description Equation

Rcr,i,80 0.17 80mm double roll crusher feed fraction of solids above

80mm

3.7

Kcr,80,1 9E-04 80mm double roll crusher hold-up proportionality constant

[kg/(sA)]

3.7

τcr,80 29.79 80mm double roll crusher time constant (s) 3.7

Rcr,o,80 0.65 80mm double roll crusher product fraction of solids above

80mm

3.7

Icr,min,80 42.00 80mm double roll crusher motor current at no load (A) 3.10

Kcr,80,2 0.65 80mm double roll crusher motor current proportionality

constant for size interval 80mm (A/s)

3.10

Kcr,80,3 3.03E-05 80mm double roll crusher motor current proportionality

constant for torque load at size interval 80mm [A/(kg.s)]

3.10

Rcr,i,40 0.01 40mm double roll crusher feed fraction of solids above

40mm

3.7

Kcr,40,1 2E-04 40mm double roll crusher hold-up proportionality constant

[kg/(sA)]

3.7

τcr,40 452.53 40mm double roll crusher time constant (s) 3.7

Rcr,o,40 0.44 40mm double roll crusher product fraction of solids above

40mm

3.7

Icr,min,40 29.75 40mm double roll crusher motor current at no load (A) 3.10

Kcr,40,2 0.91 40mm double roll crusher motor current proportionality

constant for size interval 40mm (A/s)

3.10

Kcr,40,3 4.64E-07 40mm double roll crusher motor current proportionality

constant for torque load at size interval 40mm [A/(kg.s)]

3.10
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Table 4.9: Bin model parameters.

Parameter Value Description Equation

Kb f ,1,1 1.52 Bin function proportionality constant for module one feeder

(kg)

3.15

Kb f ,1,2 34.77 Bin function proportionality constant for module one feeder 3.15

Kb f ,1,3 0.46 Bin function proportionality constant for module one feeder

(kg)

3.15

Kb f ,1,4 280.35 Bin function proportionality constant for module one feeder 3.15

Kb f ,1,5 0.61 Bin function proportionality constant for module one feeder 3.15

Kb f ,2,1 1.20 Bin function proportionality constant for module two feeder

(kg)

3.16

Kb f ,2,2 9.77 Bin function proportionality constant for module two feeder 3.16

Kb f ,2,3 0.28 Bin function proportionality constant for module two feeder

(kg)

3.16

Kb f ,2,4 122.99 Bin function proportionality constant for module two feeder 3.16

Kb f ,2,5 0.62 Bin function proportionality constant for module two feeder 3.16

τb f ,1 40.49 Bin module one feeder time constant (s) 3.19

τb f ,2 13.65 Bin module two feeder time constant (s) 3.19

Mb 9.72E+06 Proportionality constant for bin stockpile relative level (kg) 3.17

Kb,1 3.86 Bin stockpile height ratio parameter 3.18

Kb,2 1.22 Bin stockpile height ratio parameter 3.18

Table 4.10: Screen, crush and bin model time delays.

Parameter Value Description Equation

tcr,td 87.57 Time delay for crusher recycle (s) 3.37

tu,ds,c,td 2.12 Time delay for bin feed (s) 3.37

tb f ,1,td 0.55 Bin module one time delay (s) 3.37

tb f ,2,td 0.17 Bin module two time delay (s) 3.37
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Table 4.11: Screen, crush and bin model output validation (negative fit implies that a portion of the

dynamic model does not predict future values well).

Experiment Output Fit (%) Correlation

One

Screen and crush recycle (WIT002) 75.3 0.99

40mm crusher motor current (IIT001) -82.4 0.73

80mm crusher motor current (IIT002) -71.1 0.59

Bin module one feeder (WIT005) 79.7 0.99

Bin module two feeder (WIT004) 64.3 0.99

Bin level (LIT001) 71.8 1.00

Two

Screen and crush recycle (WIT002) 73.2 0.98

40mm crusher motor current (IIT001) 30.5 0.80

80mm crusher motor current (IIT002) 27.1 0.80

Bin module one feeder (WIT005) 45.4 0.85

Bin module two feeder (WIT004) 53.8 0.90

Bin level (LIT001) 49.0 0.98

Three

Screen and crush recycle (WIT002) 79.3 0.99

40mm crusher motor current (IIT001) -71.5 0.82

80mm crusher motor current (IIT002) -93.2 -0.03

Bin module one feeder (WIT005) 76.2 0.98

Bin module two feeder (WIT004) 66.9 0.95

Bin level (LIT001) 54.3 0.90

The model fit for the screen, crush and bin system is relatively good and is sufficient for control purposes.

Table 4.11 shows a summary of the model fit and correlation for the three experiments.

4.2.1.3 DMS screen feed area

The final production area for the coal comminution circuit is where the ROM material is sized and fed

to various DMS plants. In Figure 4.1 the DMS screen feed area consists of many calculation points.

In order to identify the two classifying screen modules, the calculation points are necessary for the

generation of production data. Given the two bin feed mass flow rates (WIT005 and WIT004), the
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measured mass flow rate to DMS plant one (WIT006) and measured bin bypass (WIT003), the total

classified overflow (C03) from the classification screens is as follows,

C03 = WIT006−WIT003. (4.1)

As a result, the total classified underflow (C04) is calculated using a mass balance where,

C04 = WIT005+WIT004−C03. (4.2)

Assuming that the material for the classification screens’ products (C05, C06, C07 and C08) are

proportional to the bin feed mass flow rates (WIT005 and WIT004), the overflow and underflow of

each classification screen can be calculated as follows,

C05 = WIT005
C03

WIT004+WIT005
, (4.3)

C06 = WIT005−C05, (4.4)

C07 = WIT004
C03

WIT004+WIT005
, (4.5)

C08 = WIT004−C07. (4.6)

(4.7)

Using the above assumptions, calculations and the single-deck screen model from Chapter 3, the DMS

screen feed system (Equation 3.3) can be fitted to production data.

Figures 4.15, 4.16 and 4.17 show the system identification input/output results for the module classific-

ation screen system.

Table 4.12 shows the parameter values that were estimated during the model fit using system identifica-

tion (Ljung, 1987). The parameters are based on the single-deck screen model derived in Chapter 3.

Table 4.13 shows the time delays estimated for the bypass stream (WIT003). The parameters associated

with the relevant equations from Chapter 3 are also given.

The model fit and correlation results for the DMS classification screens are shown in Table 4.14.
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Figure 4.15: Module one classification screen undersize validation (Module one classification screen

underflow = C06; Module one classification screen actual input = WIT005).
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Figure 4.16: Module two classification screen undersize validation (Module two classification screen

underflow = C08; Module two classification screen actual input = WIT004).
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Figure 4.17: Module one and two classification screen oversize validation (DMS plant one overflow =

WIT006; Bin bypass actual input = WIT003).

Table 4.12: Bin classification screen model parameters.

Parameter Value Description Equation

τm1,ss,o 33.00 Module 1 single-deck classification screen oversize time

constant (s)

3.3

τm1,ss,u 26.45 Module 1 single-deck classification screen undersize time

constant (s)

3.3

αm1,ss 0.64 Module 1 single-deck classification screen mass split 3.3

τm2,ss,o 43.55 Module 2 single-deck classification screen oversize time

constant (s)

3.3

τm2,ss,o 41.89 Module 2 single-deck classification screen undersize time

constant (s)

3.3

αm2,ss 0.62 Module 2 single-deck classification screen mass split 3.3

Table 4.13: Bin classification screen model time delay.

Parameter Value Description Equation

tbp,td 1.15 Time delay for bin bypass (s) 3.37
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Table 4.14: DMS screen feed validation.

Output Fit (%) Correlation

Module one undersize (C06) 78.9 0.98

Module two undersize (C08) 61.1 0.92

DMS plant one feed (WIT006) 57.7 0.93

4.2.2 Model predictive control design and simulation

This subsection details the application of model-based process control for the coal comminution circuit

detailed above. The objectives of the model-based control (Steyn, 2014a) are as follows:

• Primarily ensure that the bin never runs empty or overflows;

• Maximise plant throughput; and

• Ensure product bin mass flow rate is maintained in proportion with each other.

In order to control the comminution circuit given, it is necessary to test a number of control scenarios

for the various areas within the process. Three scenarios are used to test the control simulation of the

plant, namely:

• Scenario one: Stockpile area control

• Scenario two: Feed bin control

• Scenario three: Comminution circuit control

The control of the stockpile area tests how the stockpile dynamic model can be controlled through

NMPC by adjusting the seven feeder motor frequencies such that the mass flow rate from the stockpile

is maintained at a certain reference trajectory. The feed bin control tests how the bin level can be used

to change the NMPC objective function to focus on either throughput or maintaining the bin level. The
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Table 4.15: Stockpile area control conditions.

Condition Time period Description

One 0 - 10min Control WIT001 at 500t/h

Two 10min - 20min Control WIT001 at 50t/h

Three 20min - 30min Control WIT001 at 500t/h

Four 30min - 40min Deactivate three feeder bunkers

comminution circuit control shows how to automatically start up the plant using the stockpile control

while applying the level control of the bin. A disturbance is also introduced to the stockpile product

to determine how the controller reacts if additional material is fed into the plant either by front end

loaders or manual manipulation of the stockpile feeder system.

4.2.2.1 Stockpile area control

In order to control the stockpile area the seven feeders need to be automatically adjusted by the NMPC

to ensure the stockpile output (WIT001) is maintained at a certain reference trajectory (WIT001SP).

To test the control of the stockpile area, four conditions are used (Table 4.15). The first condition is to

start the feeders and operate the stockpile output at 500t/h. After ten minutes, the second condition is

to lower the stockpile output to 50t/h. The third condition is to bring the stockpile output to 500t/h

again after twenty minutes. The stockpile output reference trajectory is illustrated more clearly in

Figure 4.18. The fourth condition tests how the NMPC reacts to a situation if the first three feeder

bunkers are manually deactivated.

An additional criteria is used for the stockpile area objective so as to ensure that all of the feeders are

utilised over time. With the objectives of the stockpile control test conditions described above and

the definition of the MPC objective function (Equation 3.49) with typical constraints (Equations 3.50,

3.51 and 3.52), the stockpile output (WIT001) and feeder utilisation ( fUtil,T ) are controlled. The feeder

utilisation ( fUtil,T ) is calculated by averaging the total utilisation of each feeder motor speed over time

( fUtil,T = ∑
7
i=1 fUtil,i/7).
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Figure 4.18: Stockpile area control conditions (WIT001SP=WIT001 setpoint)

This means that the stockpile objective function for the MPC is,

Jstockpile =
N

∑
j=1

rstockpile,1|ystockpile,1(t + j)− ys,stockpile,1(t + j)|2+

rstockpile,2|ystockpile,2(t + j)− ys,stockpile,2(t + j)|2 +
M−1

∑
j=0
‖∆ustockpile(t + j)‖2

Pstockpile
, (4.8)

where M = 2 and N = 5. This implies that the prediction horizon is five seconds and control horizon

is two seconds. The objective is to ensure the stockpile output WIT001 tracks a reference trajectory

WIT001SP and that the feeders are all utilised over time.

Table 4.16 describes the variables and associated values that are used for the MPC objective function

Jstockpile.

The constraints of the stockpile area are,

0 ≤ ustockpile ≤ 50 ∀t, (4.9)

0 ≤ ystockpile,1(t)≤ 600 ∀t, (4.10)

such that the inputs for all feeders’ variable speed drive frequencies fall within operating ranges of

0Hz and 50Hz. The stockpile product (WIT001) must not exceed 600t/h to ensure that equipment and

the process downstream does not overload.
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Table 4.16: Stockpile area MPC objective function setup.

Variable Value or tagname

rstockpile,1 100

ystockpile,1 WIT001

ys,stockpile,1 WIT001SP

rstockpile,2 100

ystockpile,2 fUtil,T

ys,stockpile,2 0.95

Pstockpile 200I7

ustockpile SC001-SC007

With the objective function and constraints defined (Equations 4.8, 4.9 and 4.10), the process can be

simulated using MPC. The stockpile dynamic model (state Equation 3.1) is used for the MPC future

prediction and the control simulation. The NMPC problem can be solved by using the nonlinear pro-

gramming problem described in Subsection 3.6.2. The objective function (Equation 4.8) is minimised

over control moves subject to plant dynamics and input/output constraints detailed above.

Figure 4.19 illustrates the MPC control moves based on the above stockpile objectives and varying

conditions. Figure 4.20 illustrates the stockpile output (WIT001) response from the MPC control

moves.

During the simulation, the total utilisation for each feeder ( fUtil,T ) was calculated and is shown in Table

4.17. The reason for incorporating the feeder utilisation in the objective function is to ensure that the

MPC optimisation solver does not select a particular solution and maintain that solution for the feeder

motor frequencies throughout the entire operation. In this simulation, the objective for the total feeder

utilisation fUtil,T is to ensure that all feeders have a utilisation of 95%. This objective is activated every

minute. However, during normal operation, it is recommended that this objective is activated every

hour. In this simulation, the total utilisation was 78%.
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Figure 4.19: Stockpile MPC inputs (Feeders 1 & 2 = SC001; Feeders 3 & 4 = SC002; Feeders 5 & 6

= SC003; Feeders 7 & 8 = SC004; Feeders 9 & 10 = SC005; Feeders 11 & 12 = SC006; Feeders 13 =

SC007).
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Figure 4.20: Stockpile MPC output (Stockpile output = WIT001).
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Table 4.17: Stockpile feeder utilisation.

Feeder Utilisation (%)

SC001 ( fUtil,1) 53

SC002 ( fUtil,2) 61

SC003 ( fUtil,3) 50

SC004 ( fUtil,4) 79

SC005 ( fUtil,5) 100

SC006 ( fUtil,6) 100

SC007 ( fUtil,7) 100

Total ( fUtil,T ) 78

4.2.2.2 Feed bin control

For the feed bin area control simulation, it is assumed that the stockpile area is operated manually

while the feed bin and DMS screen feed are controlled automatically. This allows for the comparison

of the NMPC performance to the manually controlled situation. The production data of experiment

three (Sub-subsection 4.2.1.2) that was used for the identification of the screen, crush and bin area

models, are used to illustrate the feed bin controller. The simulated manually operated plant response

is compared to that of the simulated automatic control.

This implies that the mass flow from the stockpile area (WIT001) is a measured disturbance (since it is

the result of manually operating the seven stockpile feeder bunker areas). The screen and crushing

process therefore simulates the resulting crusher recycle mass flow (C01) and screen undersize mass

flow (C02) being fed to the bin.

The feed bin area has competing objectives. The first objective is to maximise throughput to the DMS

plants downstream while ensuring consistent control of the mass flows. The second objective is to

ensure that the bin level does not run empty or overflow. By trying to maximise throughput, the bin will

naturally run empty. If the feed to the bin becomes too high, the bin could overflow. This balancing act

is represented in Figure 4.21.
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Γbin
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Figure 4.21: Feed bin control objective (Γbin = Objective function factor used in Equation 4.11; lb =

LIT001).

Figure 4.21 illustrates the varying objective of the bin system. At low and high bin levels (lb < BL or

lb > BH) the objective of the controller should be to ensure the bin level reaches a point within safe

limits (i.e. between BL and BH). This is to ensure the bin doesn’t overflow or run empty. While the

bin level is within safe limits (BL≤ lb ≤ BH) the objective of the controller should be to maximise

throughput. Maximising throughput is achieved by controlling module one and two undersize mass

flow rates and DMS plant one feed mass flow rates at desired reference trajectories.

The bin level (LIT001) and DMS plant feed mass flow rates (C06, C08 and WIT006) are controlled

according to the objectives of the feed bin operation described above and the definition of the MPC

objective function (Equation 3.49) with typical constraints (Equations 3.50, 3.51 and 3.52).

This means that the bin objective function for the MPC is,

Jbin =
N

∑
j=1

rbin,1|Γbin(ybin,1(t + j)− ys,bin,1(t + j))|2+

rbin,2|(1−Γbin)(ybin,2(t + j)− ys,bin,2(t + j))|2 +

rbin,3|(1−Γbin)(ybin,3(t + j)− ys,bin,3(t + j))|2 +

rbin,4|ybin,4(t + j)− ys,bin,4(t + j)|2 +
M−1

∑
j=0
‖∆ubin(t + j)‖2

Pbin
, (4.11)

where the control horizon is two seconds (M = 2) and the prediction horizon is five seconds (N = 5).

The bin objective is to ensure the bin level tracks a reference trajectory of 50% during high and low bin
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Table 4.18: Bin MPC objective function setup.

Variable Value or tagname

BLL 15%

BL 25%

BH 75%

BHH 85%

rbin,1 1000

ybin,1 LIT001

ys,bin,1 50%

rbin,2 1000

ybin,2 C06+C08

ys,bin,2 200t/h

rbin,3 1000

ybin,3 WIT006

ys,bin,3 300t/h

rbin,4 1000

ybin,4 C06

ys,bin,4 C08

Pbin 1000I2

ubin SC008-SC009

level limits (while Γbin = 1). During safe level limits (while Γbin = 0) objective function Jbin focusses

on maintaining the throughput reference trajectories.

Table 4.18 describes the variables and associated values that are used for the MPC objective function

Jbin.
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The constraints of the bin are,

0 ≤ ubin ≤ 50 ∀t, (4.12)

0 ≤ ybin,1(t)≤ 1 ∀t, (4.13)

0 ≤ C06≤ 200 ∀t, (4.14)

0 ≤ C08≤ 200 ∀t, (4.15)

0 ≤ WIT006≤ 350 ∀t, (4.16)

such that the inputs for all feeders’ variable speed drive frequencies fall within operating ranges of

0Hz and 50Hz and the bin level remains within 0% and 100%. The DMS plant feed mass flow rates

(C06, C08 and WIT006) are also constrained within acceptable limits (Module one and two mass flow

rates fall within 0 and 200t/h while DMS plant one’s mass flow rate is within 0 and 350t/h).

With the objective function and constraints defined (Equations 4.11, 4.12, 4.13, 4.14, 4.15 and 4.16),

the process can be simulated using NMPC. The nonlinear dynamic bin model (state Equations 3.4, 3.5,

3.7, 3.10 and 3.17) is used for the NMPC future prediction and the control simulation of the bin and

DMS plant feeds. The NMPC problem can be solved by using the nonlinear programming problem

described in Subsection 3.6.2. The objective function (Equation 4.11) is minimised over control moves

subject to plant dynamics and input/output constraints detailed above.

Each NMPC simulation input and output are shown in comparison to the manually operated plant

simulation response. Figure 4.22 shows the measured disturbances used to simulate the stockpile feed

to the process. Figure 4.22 also shows the bin level response with associated objective limits (BLL,

BL, BH BHH) as described in Figure 4.21.

Figure 4.22 illustrates the NMPC control moves compared to the actual plant inputs. Figure 4.23

illustrates the plant response for the feeder mass flow rates from the NMPC control moves. These

outputs are compared to that of the actual plant output where manual control was applied. Figures 4.24

and 4.25 show the final control objectives where the feeds to the DMS plants (C06, C08 and WIT006)

are maximised by controlling them at desired reference trajectories.

In order to measure the performance of the NMPC when compared to that of the actual plant output,

a comparison between the manually operated bin throughput and NMPC throughput per DMS plant

feed and total throughput are determined. The percentages of gains or losses in throughput are also
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Figure 4.22: Bin NMPC measured disturbances and level comparison (Stockpile output = WIT001;

Bypass = WIT003; Bin level = LIT001).
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Figure 4.23: Bin NMPC motor feeder manipulated variable comparison (Bin module 1 feeder =

SC009; Bin module 2 feeder = SC008).
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Figure 4.24: Bin NMPC module one and two feed comparison (Module one feed = C06; Module two

feed = C08).
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Figure 4.25: Bin NMPC DMS plant one feed comparison (DMS plant one feed = WIT006).
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Table 4.19: Bin manual control versus NMPC performance evaluation (Gains are represented as

positive numbers while losses are represented as negative numbers).

Performance measure Manual control (t) NMPC (t) Gain/loss (%)

C06 105 150 43.5

C08 159 138 -13.5

WIT006 412 443 7.5

Total 676 700 3.6

determined. Gains are represented as positive numbers while losses are represented as negative

numbers. Table 4.19 shows a summary of the NMPC performance versus the actual feed bin operation

with manual control.

4.2.2.3 Comminution circuit control

The control of the entire comminution circuit simulates the complete startup to shutdown of the

plant. The simulation shows how the plant would behave during normal conditions and abnormal

conditions.

The same control objective used for the bin system is used in this simulation (Figure 4.21) where at

low and high bin levels (lb < BL or lb > BH) the objective of the controller should be to ensure the bin

level stays within safe limits. While the bin level is within safe limits (BL≤ lb ≤ BH) the objective of

the controller should be to maximise throughput.

The stockpile feeders are controlled to allow for the startup of the plant at 600t/h. The bin level will

increase from an initial condition of zero, and once the first low level limit is reached (i.e. lb = BLL),

the stockpile mass flow rate is decreased to 500t/h. After the second low level limit the stockpile mass

flow is controlled to that of the total bin throughput (i.e. WIT001=C06+C08+WIT006).

A simulated disturbance is entered into the system at t = 2500s and stops at t = 3000s by introducing

material into the stockpile feeder system at 100t/h such that the stockpile conveyor measures the

additional tonnages. This could occur in cases where coal is loaded from a front end loader into
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the stockpile conveyor without using the dedicated feeder bunker system. Another scenario where

additional coal could be added is if a feeder system were to malfunction and coal was manually moved

into the bunker.

After t = 3500s the plant it shutdown by setting the stockpile mass flow reference trajectory to

zero.

The bin level (LIT001) and DMS plant feed mass flow rates (C06, C08 and WIT006) will now be

controlled given the objectives of the feed bin operation described above and the definition of the

MPC objective function (Equation 3.49) with typical constraints (Equations 3.50, 3.51 and 3.52) and

stockpile mass flow rate (WIT001).

This means that the objective function for the MPC is,

Jcomminution =
N

∑
j=1

rcomminution,1|Γbin(ycomminution,1(t + j)− ys,comminution,1(t + j))|2+

rcomminution,2|(1−Γbin)(ycomminution,2(t + j)− ys,comminution,2(t + j))|2 +

rcomminution,3|(1−Γbin)(ycomminution,3(t + j)− ys,comminution,3(t + j))|2 +

rcomminution,4|(1−Γbin)(ycomminution,4(t + j)− ys,comminution,4(t + j))|2 +

rcomminution,5|ycomminution,5(t + j)− ys,comminution,5(t + j)|2 +
M−1

∑
j=0
‖∆ucomminution(t + j)‖2

Pcomminution
, (4.17)

where the control horizon is two seconds (M = 2) and the prediction horizon is five seconds (N =

5).

Table 4.20 describes the variables and associated values that are used for the MPC objective function

Jcomminution.
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Table 4.20: Coal comminution MPC objective function setup.

Variable Value or tagname

BLL 60%

BL 75%

BH 85%

BHH 90%

rcomminution,1 1000

ycomminution,1 LIT001

ys,comminution,1 80%

rcomminution,2 1000

ycomminution,2 C06

ys,comminution,2 100t/h

rcomminution,3 1000

ycomminution,3 C08

ys,comminution,3 100t/h

rcomminution,4 1000

ycomminution,4 WIT006

ys,comminution,4 300t/h

rcomminution,5 1000

ycomminution,5 WIT001

ys,comminution,5 C06+C08+WIT006

Pcomminution 10I9

ucomminution SC001-SC009

The constraints of the bin are,

0 ≤ ucomminution ≤ 50 ∀t, (4.18)

0 ≤ ycomminution,1(t)≤ 1 ∀t, (4.19)

0 ≤ C06≤ 200 ∀t, (4.20)

0 ≤ C08≤ 200 ∀t, (4.21)

0 ≤ WIT006≤ 350 ∀t, (4.22)

such that the inputs for all feeders’ variable speed drive frequencies fall within the operating ranges of
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0Hz and 50Hz and the bin level remains within 0% and 100%. The DMS plant feed mass flow rates

(C06, C08 and WIT006) are also constrained within acceptable limits (Module one and two mass flow

rates fall within 0 and 200t/h while DMS plant one’s mass flow rate is within 0 and 350t/h).

With the objective function and constraints defined (Equations 4.17, 4.18, 4.19, 4.20, 4.21 and 4.22),

the process can be simulated using NMPC. The stockpile, screen and crush, bin and DMS plant feed

models (state Equations 3.1, 3.4, 3.5, 3.7, 3.10 and 3.17) are used for the NMPC future prediction

and the control simulation. The NMPC problem can be solved by using the nonlinear programming

problem described in Subsection 3.6.2. The objective function (Equation 4.17) is minimised over

control moves subject to plant dynamics and input/output constraints detailed above.

Figure 4.26 shows the controller outputs for the stockpile feeders. Figure 4.27 shows the simulated

output of the stockpile mass flow based on the NMPC objective. The additional stockpile disturbance

is also shown in Figure 4.27 with associated crusher motor current outputs.

Figure 4.28 illustrates the bin level response based on the NMPC objectives. Figure 4.28 also shows

the NMPC output to the bin feeders to ensure the DMS plant feed objectives are met. Figure 4.29

shows the DMS plant feed response with associated reference trajectory requirements.

4.2.3 Unscented Kalman filter simulation

The UKF algorithm was applied to the nonlinear screen, crush and bin model from the comminution

circuit derived in this thesis. Given ten states (two double deck screen state Equations 3.4 and 3.5;

two crusher state Equations per crusher (80mm and 40mm) 3.7 and 3.10; and four bin model state

Equations 3.12, 3.13, 3.14 and 3.17) and six outputs (WIT002, IIT001, IIT002, WIT005, WIT004,

LIT001) of the screen, crush and bin system, the initial covariance of the original state (Ps,0) was

chosen as the identity matrix I10. The standard deviation Qs of the process was chosen to be fairly

large based on the measurement data,

Qs = diag([ 0.1 0.1 0.1 0.1 0.1 0.1 60 1 0.1 0.05 ]), (4.23)

where the initial covariance for the process noise is determined as Ps,v = Qs
2.
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Figure 4.26: Bin NMPC input comparison (Feeders 1 & 2 = SC001; Feeders 3 & 4 = SC002; Feeders

5 & 6 = SC003; Feeders 7 & 8 = SC004; Feeders 9 & 10 = SC005; Feeders 11 & 12 = SC006; Feeders

13 = SC007).
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Figure 4.27: Bin NMPC input comparison (Stockpile output = WIT001; Recycle = C01; Disturbance

= Addition to WIT001; 40mm crusher = IIT001; 80mm crusher = IIT002).
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Figure 4.28: Bin NMPC input comparison (Bin level = LIT001; Bin module 1 feeder = SC009; Bin

module 2 feeder = SC008; Bin bypass = WIT003).
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Figure 4.29: Bin NMPC input comparison (Module one feed = C06; Module two feed = C08; DMS

plant one feed = WIT006).
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Figure 4.30: Screen and crush UKF comparison for experiment one (Recycle = C01; Stockpile feed =

WIT001; 40mm crusher = IIT001; 80mm crusher = IIT002).

The standard deviation of all measurement noise was chosen to be a very small value of 1% (rs =

0.01). This implies that the initial covariance for the measurement noise can be determined as

Ps,n = r2
s I6.

Figures 4.30, 4.31 and 4.32 illustrate the UKF simulation versus the measured process outputs. The

production data of experiment one (Sub-subsection 4.2.1.2) that was used for the identification of the

screen, crush and bin area models, are used to illustrate the functioning of the UKF.

Table 4.21 shows a summary of the model fit and correlation for the UKF simulation.

4.2.4 Results overview

The coal comminution area was broken down into three unit processes, namely, the stockpiling area;

screen, crush and bin area; and the DMS screen feed area. Each unit process area was modelled

dynamically using the various equipment models from Chapter 3. These models were identified using

multiple experiment data sets to ensure sufficient perturbations are available in the inputs to stimulate
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Figure 4.31: Bin level UKF comparison for experiment one (Bin level = LIT001; Bin module 1 feeder

= SC009; Bin module 2 feeder = SC008; Bin bypass = WIT003).
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Figure 4.32: Bin mass flow UKF comparison for experiment one (Bin module 1 = WIT005; Bin

module 2 = WIT004).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

105

 
 
 



CHAPTER 4 Results

Table 4.21: Screen, crush and bin model output UKF comparison results.

Output Fit (%) Correlation

Screen and crush recycle (WIT002) 43.4 0.96

40mm crusher motor current (IIT001) 92.9 1.00

80mm crusher motor current (IIT002) 92.3 1.00

Bin module one feeder (WIT005) 98.9 1.00

Bin module two feeder (WIT004) 98.4 1.00

Bin level (LIT001) 99.8 1.00

a response in the outputs. The model fits and correlations are sufficient for control purposes as detailed

in the various NMPC simulations.

In order to show the control of the communition area, initially only the stockpile area is simulated

using NMPC. Thereafter, the control objectives of the feed bin are applied to the NMPC of the feed

bin area only. Finally, a total communition area NMPC simulation is given to show startup, shutdown

and disturbance rejection.

The UKF algorithm was applied to the feed bin area to illustrate that it is possible to estimate the model

states and that the dynamic equipment models can be used for pure simulations.

A detailed discussion of all the coal communition simulation results are given in Chapter 5.

4.3 COAL SEPARATION AREA

The actual coal separation area that is used in this thesis is detailed in Figure 4.33. This plant consists

of two areas. The first area is a DMD separator with associated medium recovery. The second area is a

DMC separator.

The feed to the coal separation area (WIT011) is based on material from the bin total oversize (WIT006)

in Figure 4.1. The feed material to the DMS plant (WIT011) is separated using a 28mm screen where

the oversize (+28mm) material (C11) is processed by a DMD while the undersize (-28mm+1mm, i.e.
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Figure 4.33: Coal separation process flow schematic.
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smaller than 28mm and larger than 1mm) material (C14) is processed by a DMC. The -1mm material

(C13) is removed using a secondary screen (1mm screen) and processed further by a thickener (details

of the thickener process are not included as part of the scope in this thesis).

The oversize material (C11) is mixed with medium which is measured at a specific RD (DIT011). The

DMD medium RD is controlled (DIC011) using a regulatory controller with the addition of water. The

undersize material (C14) is mixed with medium and measured at a specific RD (DIT012). The DMC

medium RD is controlled (DIC012) using a regulatory controller similar to that of the DMD.

DMD coal product (C12) and DMC coal product (WIT012) are combined to form the final DMS coal

plant product (WIT014) which is separated into saleable products at a wet screening house. A wet

screening house is used to produce a small nut product and a pulverised coal injection product which

is stacked for specific customers.

All discard from both the DMD and DMC is combined (WIT013) and stored for mine rehabilita-

tion.

The details of all actuator and measurement tags are given in Tables 4.22 and 4.23. These tags relate to

the tags given in Figure 4.33. The type of measurement or actuation available for each tag are also

given. The associated variables and equations detailed in Chapter 3 are also given as reference to

highlight how the dynamic models associate to the physical process and measurements.

4.3.1 Dynamic model system identification

Based on the coal separation area in Figure 4.33 and analysing the inputs and outputs, it is possible to

break the system into two dynamic model areas. The first dynamic model area is the DMD area while

the second dynamic model area is the DMC area. The nonlinear dynamic models from Chapter 3 are

used to describe the two areas and will consist of parameters relating to the models. The 28mm and

1mm screen is not modelled as there are no actuators to control the feed mass flow rate to the DMD

and DMC specifically. The MPC detailed in the previous section on the coal communition area will

ensure that the feeds to the various separation plants are controlled.
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Table 4.22: Measurements used in Figure 4.33 for the DMD area in the separation process (N/A stands

for "not applicable").

Name Description Type Variable Equation(s)

WIT011 DMS coal plant total feed material (t/h) Belt scale N/A N/A

C11 DMD separator feed material (t/h) Calculation Wd,i
a 3.20

C12 DMD separator coal product (t/h) Calculation Wd, f
b 3.21

DIT011 DMD separator medium RD (kg/m3) Density scale ρd,i,med 3.21, 3.22,

3.24 and

3.25

DIC011 DMD separator medium RD controller Density con-

troller

N/A N/A

C13 Thickener feed material (t/h) Calculation N/A N/A

aThe mass feed rate of the feed mix (Wd,i) is determine by making use of the mixing box model developed in Meyer and

Craig (2010).
bThe mass flow rate of the floats (Wd, f ) is calculated by using conservation of mass of components to remove the medium

component.

The system identification approach from Ljung (1987) is used for each model fit. Input-output data

taken from an actual coal beneficiation plant production historian were used to fit the models. All

data are sampled per second and filtered with a low-pass filter with time period of twenty seconds to

remove measurement noise. Two thirds of the production data were used to identify the models to

allow for an additional one third of production data to be used for model validation. All simulation

outputs and model validation results include both the two thirds model identification data and one third

model validation data. This means that two thirds of the data within the time-series data was used to

identify the model parameters. The model simulation was then allowed to run for another one third of

the remaining time-series data. The reason for this is to illustrate that the model is able to use data

both with and without prior identification for validation purposes.

Since each separation unit process is going to be modelled for control purposes, it is necessary to have

input-output data for the feed, product, discard and associated ash content. Given that some of the tags

in the separation process flow diagram in Figure 4.33 are not measured, these input-output data need

to be calculated.
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Table 4.23: Measurements used in Figure 4.33 for the DMC area in the separation process (N/A stands

for "not applicable").

Name Description Type Variable Equation(s)

C14 DMC separator feed material (t/h) Calculation Wc,i
a 3.26

WIT012 DMC separator coal product (t/h) Belt scale Wc,o
b 3.27

DIT012 DMC separator medium RD (kg/m3) Density scale ρc,i,med 3.27, 3.28,

3.31, 3.32,

3.33 and

3.34

DIC012 DMC separator medium RD controller Density con-

troller

N/A N/A

WIT013 DMS coal plant total discard (t/h) Belt scale Wd,s +

Wc,u
c

3.22 and

3.28

WIT014 DMS coal plant total coal product (t/h) Belt scale C12 +

WIT012

N/A

aThe mass feed rate of the feed mix (Wc,i) is determine by making use of the mixing box model developed in Meyer and

Craig (2010).
bThe mass flow rate of the overflow (Wc,o) is calculated by using conservation of mass of components to remove the

medium component.
cThe mass flow rate of the total plant discard (Wd,s +Wc,u) is calculated by using conservation of mass of components to

remove their medium components.

Assuming that the 28mm and 1mm screens classify the material received from the bin oversize is based

on ratio of both the DMD (WIT014 - WIT012) and DMC (WIT012) (1mm screen) product to total

throughput (WIT014), the material feed to each separation process can be calculated as follows,

C11 = (WIT011−C13)
C12

WIT014
, (4.24)

C14 = (WIT011−C13)
WIT012
WIT014

, (4.25)

where C12 = WIT014−WIT012 and C13 = WIT011−WIT014−WIT013.

In order to fit the DMD and DMC dynamic models for product grade, it is necessary to calculate the

ash content using the method from Meyer and Craig (2015). In order to calculate ash content, the coal

washability and equipment partitioning behaviour is required. The method used to determine the ash
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content in product and feed for both the DMD and DMC is as follows.

Initially the throughput of the coal separation process must be simulated and verified. Based on the

verified throughput model, the partition curve can be generated by reducing the dynamic model to a

steady-state model. The partition curve result is then used in association with the Equations 3.45 (for

DMD), 3.46 (for DMC) and 3.42 to estimate the input-output data for the grade simulation.

The following steps are used to calculate the ash content of the coal separation product grade for

system identification:

• Step 1: Fit the DMD or DMC dynamic model to the measured mass flow rate input-output data.

• Step 2: Fit the relevant partition factor function (Equation 3.45 or 3.46) to a steady-state model

derived from the dynamic model in step 1.

• Step 3: Calculate the product or float ash content using Equation 3.41.

• Step 4: Calculate the feed ash content using Equation 3.42 with the results from steps 2 and 3.

• Step 5: Calculate the discard or sink ash content using the conservation of mass of components.

4.3.1.1 DMD area

The DMD area consists of a Wemco drum separator as described in Chapter 3. ROM material (+28mm,

C11) is mixed with magnetite medium in a DMD mixing box. The feed mix is modelled using

the dynamic model of a mixing box developed by Meyer and Craig (2010). The DMD medium

RD (DIT011) in the mix is controlled through the addition of water with a regulatory controller

(DIC011). DMD floats (C12) and sinks (combined with the DMC sinks, WIT013, and calculated as

C11 - C12) are rinsed with a drain and rinse screen such that the medium is collected and recovered

for recirculation.
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Table 4.24: DMD model parameters estimated from input-output data.

Parameter Value Description Equation(s)

αd 0.868 Float and sink proportionality constant 3.21, 3.22

and 3.23a

Kd, f 3.558E-08 Proportionality constant for the floats [m6/(kg.s)] 3.21

Kd,s 3.076E-12 Proportionality constant for the sinks [m6/(kg.s)] 3.22

Kd, f ,med 6.533E-08 Proportionality constant for the magnetite medium

floats [m3/(kg.s)]

3.24

Kd,s,med 3.955E-14 Proportionality constant for the magnetite medium

sinks [m3/(kg.s)]

3.25

Kd, f ,ash -1.057E-07 Proportionality constant for the floats ash [m3/(kg.s)] 3.24b

Kd,s,ash 1.215E-08 Proportionality constant for the sinks ash [m3/(kg.s)] 3.25c

∆ρd,med 1.00 Difference between feed medium density with float

or sink medium density (kg/m3)

3.24 and

3.25

aαd is used to determine the volume and volumetric flow rate split for floats and sinks (i.e. Qd, f =
αd Qd,i
1+αd

, Qd,s =
Qd,i

1+αd
,

Vd, f =
αdVd
1+αd

and Vd,s =
Vd

1+αd
).

bAsh component parameter can be determined similarly to the medium component by replacing subscript med with ash.
cAsh component parameter can be determined similarly to the medium component by replacing subscript med with ash.

The Wemco drum model derived in Chapter 3 was identified using input-output data from an actual

coal plant. Tables 4.24 and 4.25 indicates the parameters that were estimated using actual DMD

input-output data. The parameters associated with the relevant equations from Chapter 3 are also

given.

Residence time is typically the time it takes for material to be processed through a unit operation while

operating at steady-state conditions. The residence time in this model is therefore associated with the

volume (Vd) and flow rate (Qd,i) which are model parameters that require estimation. The five steps

used to calculate the ash content of the DMD product for system identification described in Subsection

4.3.1 were used before the associated ash proportionality constants (Kd, f ,ash and Kd,s,ash) were solved

for.

The input data for the drum separator simulation are shown in Figure 4.34. The feed rate of the drum

feed material is not controlled as it is dependant on an upstream comminution plant (Figure 4.1). The
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Table 4.25: DMD volumetric model parameters estimated from input-output data.

Parameter Value Description Equation(s)

Qd,i 0.294 Volumetric flow rate of the feed mix (m3/s) 3.21, 3.22

and 3.23a

Vd 1.320 Drum material mix volume (m3) 3.21, 3.22

and 3.23b

Qd,i,med
Qd,i

0.788 Ratio of the volumetric flow rate of the magnetite

medium in the feed mix to overall volumetric flow

rate of the feed mix

3.21 and

3.22c

Qd,i,ash
(Qd,i−Qd,i,med)

0.111 Ratio of the volumetric flow rate in the feed ash to

the feed ore

3.24 and

3.25d

aQd,i is used to determine the volumetric flow rates (i.e. Qd, f =
αd Qd,i
1+αd

and Qd,s =
Qd,i

1+αd
).

bVd is used to determine the volume for floats and sinks (i.e. Vd, f =
αdVd
1+αd

and Vd,s =
Vd

1+αd
).

cThe ratio of volumetric flow rate to medium is used in the mixing box model developed by Meyer and Craig (2010) and

to calculate the product mass flow in floats and discard mass flow in sinks using conservation of mass of components by

removing the mass flow rate of medium.
dThe ratio of the volumetric flow rate in feed ash to feed ore is is used to calculate the float and sink ash contents. Ash

component parameter can be determined similarly to the medium component by replacing subscript med with ash.

density of the drum medium is controlled and is stepped from about 1600 kg/m3 to 1640 kg/m3 as

shown in Figure 4.34.

Figure 4.35 illustrates the comparison between the measured drum separator floats product mass rate

and the dynamic model predicted output.

Figure 4.36 illustrates the comparison between the measured drum separator sinks discard mass rate

and the dynamic model predicted output.

The model estimates for the floats product and sinks discard as shown in Figures 4.35 and 4.36 respect-

ively, are considered to be adequate for process control studies as they are qualitatively accurate.

A process steady-state model derived from the dynamic model is required for the coal ash content

system identification. The derivation is based on Meyer and Craig (2011) and Meyer and Craig
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Figure 4.34: Input data for DMD throughput simulation (DMD feed = C11; DMD medium density =

DIT011). Taken from Meyer and Craig (2015).
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Figure 4.35: Drum separator floats product (DMD product = C12). Taken from Meyer and Craig

(2015).
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Figure 4.36: Drum separator sinks discard (DMD discard = C11 - C12). Taken from Meyer and Craig

(2015).

(2014). A model fit was performed using the partition curve from Equation 3.45. The predicted

mass distributions to float and sink products at different particle densities in the feed are obtained by

simulating the partition factor at different medium densities. By starting with a finite amount of mass

in the feed and simulating the separation at steady-state at a high density, the resulting mass in the

float can be used as the feed for the next steady-state simulation. With decreasing medium density

iterations, the resulting partition factors can be obtained. By fitting Equation 3.45 to the simulated

observations the partition curve in Figure 4.37 was generated.

Table 4.26 shows a summary of the parameters for the efficiency curve fit. This simulation indicates

that a dynamic drum separator model can be reduced to a realistic steady-state model from which a

partition curve can be generated.

Using Equation 3.43 the EPM is determined as 0.021 SG based on the partition curve in Figure 4.37.

It was indicated by the process development engineer responsible for the production facility where the

Wemco drum separator model has been applied that the separation efficiency results align very well

with the actual Wemco drum separator efficiency (Steyn, 2014b). An actual efficiency curve of the

Wemco drum separator was not available.
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Figure 4.37: Simulated efficiency curve for the drum separator using the steady-state model derived

from the dynamic drum model [taken from Meyer and Craig (2015)].

Table 4.26: Partition curve efficiency model parameters (Equation 3.45).

Efficiency

parameter

Efficiency curve fit

parameter results

p1 0.594

p2 498.60

p3 5.968E+03

Since no online measurement was available to measure the product and discard grade, the method

of reconstituting the feed ash component percentage and estimation of the product ash component

percentage explained in Chapter 3 is used. The previous efficiency curve results combined with

Equations 3.45 and 3.42 are used to estimate the input-output data for the grade simulation. This

method assumes that the average float and sink ore density are used instead of density fractions. It is

also assumed that a normalised partition curve developed from Figure 4.37 can be applied at the initial

medium density of about 1600 kg/m3. When the medium density is increased to about 1640 kg/m3,

the partition curve will be applied to the increased medium density setpoint.

The input data for the drum separator grade simulation are shown in Figure 4.38. The feed ash
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Figure 4.38: Input data for grade simulation (DMD feed ash = xd,i,ash; DMD medium density =

DIT011). Taken from Meyer and Craig (2015).

percentage (xd,i,ash described in Table 3.6) of the drum feed material is not controlled as it is dependant

on an upstream mining and blending process. The density of the drum medium is also shown as an

input similar to that shown in Figure 4.34.

Figure 4.39 illustrates the comparison between the measured drum separator floats product ash per-

centage (xd, f ,ash described in Table 3.7) and the dynamic model predicted output. A detailed view of

the floats product ash percentage comparison is given in Figure 4.40 from time 6000 seconds to 8000

seconds.

Figure 4.41 illustrates the comparison between the measured drum separator sinks discard ash per-

centage (xd,s,ash described in Table 3.7) and the dynamic model predicted output. A detailed view of

the sinks discard ash percentage comparison is given in Figure 4.42 from time 2000 seconds to 4000

seconds.

The model estimates for the floats product ash percentage and sinks discard ash percentage as shown

in Figures 4.39 and 4.41 respectively, are considered to be adequate for process control studies as they

are qualitatively accurate.
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Figure 4.39: Drum separator floats product ash percentage simulation (DMD product ash = xd, f ,ash).

Taken from Meyer and Craig (2015).
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Figure 4.40: Drum separator floats product ash percentage simulation (detailed view, DMD product

ash = xd, f ,ash). Taken from Meyer and Craig (2015).
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Figure 4.41: Drum separator sinks discard ash percentage simulation (DMD discard ash = xd,s,ash).

Taken from Meyer and Craig (2015).

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
50

55

60

65

70

75

80

85

90

95

100

Time (s)

D
M

D
 d

is
ca

rd
 a

sh
 (

%
)

DMD discard ash (detailed view)

 

 

DMD discard reconstituted ash
DMD discard ash simulation

Figure 4.42: Drum separator sinks discard ash percentage simulation (detailed view, DMD discard

ash = xd,s,ash). Taken from Meyer and Craig (2015).
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Table 4.27: Partition curve efficiency results summary.

Efficiency

parameter

Simulated steady-state

model results (SG)

ρ50 1.470

EPM 0.021

Table 4.28: Dynamic DMD model performance results summary.

Output Fit (%) Correlation

Product throughput (C12) 69.0 0.95

Discard throughput (C11 - C12) 43.5 0.83

Product grade (ash) (xd, f ,ash) 66.4 0.96

Discard grade (ash) (xd,s,ash) 56.3 0.57

The validation of the dynamic model is further confirmed by the metallurgical steady-state efficiency

measures (Table 4.27).

The dynamic model goodness of fit (Ljung, 2005) and correlation between the measured outputs and

simulated outputs are given in Table 4.28.

4.3.1.2 DMC area

The DMC area consists of a DMC separator as described in Chapter 3. DMC ROM (C14) material

(-28mm+1mm, i.e. smaller than 28mm and larger than 1mm) is mixed with magnetite medium in a

DMC mixing box. The feed mix is modelled using the dynamic model of a mixing box developed by

Meyer and Craig (2010). The DMC medium RD (DIT012) in the mix is controlled through the addition

of water with a regulatory controller (DIC012). DMC overflow (WIT012) and undeflow (combined

with the DMC sinks, WIT013, and calculated as C14 - WIT012) are rinsed with a drain and rinse

screen such that the medium is collected and recovered for recirculation.

Similar to the DMD model, the DMC model is identified using the throughput and medium input-output
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Figure 4.43: Input data for DMC throughput simulation (DMC feed = C14; DMC medium density =

DIT012).

data. Thereafter, the grade in terms of ash mass of components input-output data were used to fit

the remaining dynamic model parameters associated to ash. A cyclone volume (Vc) of 0.15m3 and

medium density overflow and underflow to feed difference (∆ρc,med ) of 50kg/m3 were used. The cyclone

volumetric throughput assumption is based on the physical cyclone geometry while the medium

density differences are typical values taken from literature (Gupta and Yan, 2006; He and Laskowski,

1994).

Tables 4.29 and 4.30 indicates the values that were estimated using production data obtained from a

plant production historian. The parameters associated with the relevant equations from Chapter 3 are

also given. The five steps used to calculate the ash content of the DMC product for system identification

described in Subsection 4.3.1 were used before the associated ash proportionality constants (Kc,o,ash

and Kc,u,ash) were solved for.

The input data for the cyclone separator simulation are shown in Figure 4.43. The feed rate of the

cyclone feed material is not controlled as it is dependant on an upstream separation plant (Figure 4.33).

The density of the cyclone medium is controlled and is increased from about 1350 kg/m3 to 1500

kg/m3 as shown in Figure 4.43.
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Table 4.29: DMC model parameters estimated from input-output data.

Parameter Value Description Equation(s)

αc 1.184 Overflow and underflow proportionality constant 3.27, 3.28,

3.29 and

3.30a

Kc,o -3.441E-08 Proportionality constant for the overflow [m2/s] 3.27

Kc,u 1.807E-07 Proportionality constant for the underflow [m2/s] 3.28

Kc,o,med 4.821E-09 Proportionality constant for the magnetite medium

overflow [m3/(kg.s)]

3.33

Kc,u,med -6.641E-09 Proportionality constant for the magnetite medium

underflow [m3/(kg.s)]

3.34

Kc,o,ash 2.248E-09 Proportionality constant for the overflow

ash [m3/(kg.s)]

3.31

Kc,u,ash -2.742E-10 Proportionality constant for the underflow

ash [m3/(kg.s)]

3.32

∆ρc,med 50.00 Difference between feed medium density with the

overflow or underflow medium density (kg/m3)

3.33 and

3.34b

aαc is used to determine the volume and volumetric flow rate split for overflow and underflow (i.e. Qc,o =
αcQc,i
1+αc

,

Qc,u =
Qc,i

1+αc
, Vc,o =

αcVc
1+αc

and Vc,u =
Vc

1+αc
).

b∆ρc,med =ρc,i,med −ρc,o,med=ρc,u,med −ρc,i,med .

Figure 4.44 illustrates the comparison between the measured cyclone separator overflow product mass

rate and the output predicted by the dynamic model.

Figure 4.45 illustrates the comparison between the measured cyclone separator discard mass rate and

the output predicted by the dynamic model.

The model estimates for the DMC product and discard as shown in Figures 4.44 and 4.45 respectively,

are considered to be adequate for process control studies as they are qualitatively accurate.

A process steady-state model derived from the dynamic model is required for the coal ash content

system identification. The derivation is based on Meyer and Craig (2011) and Meyer and Craig
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Figure 4.44: DMC product (DMC product = WIT012).
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Figure 4.45: DMC discard (DMC discard = C14 - WIT012).
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Table 4.30: DMC volumetric model parameters estimated from input-output data.

Parameter Value Description Equation(s)

Qc,i 0.161 Volumetric flow rate of the feed mix (m3/s) 3.27, 3.28,

3.29 and

3.30a

Vc 0.151 Cyclone material mix volume (m3) 3.27, 3.28,

3.29 and

3.30b

Qc,i,med
Qc,i

0.887 Ratio of the volumetric flow rate of the magnetite

medium in the feed mix to overall volumetric flow

rate of the feed mix

3.27 and

3.28c

Qc,i,ash
(Qc,i−Qc,i,med)

0.352 Ratio of the volumetric flow rate in the feed ash to

the feed ore

3.31 and

3.32d

aQc,i is used to determine the volumetric flow rates (i.e. Qc,o =
αcQc,i
1+αc

and Qc,u =
Qc,i

1+αc
).

bVc is used to determine the volumes (i.e. Vc,o =
αcVc
1+αc

and Vc,u =
Vc

1+αc
).

cThe ratio of volumetric flow rate to medium is used in the mixing box model developed by Meyer and Craig (2010) and

to calculate the product mass flow in overflow and discard mass flow in underflow using conservation of mass of components

by removing the mass flow rate of medium.
dThe ratio of the volumetric flow rate in feed ash to feed ore is is used to calculate the overflow and underflow ash

contents.

(2014). A model fit was performed using the partition curve from Equation 3.46. The predicted

mass distributions to overflow and underflow at different particle densities in the feed are obtained by

simulating the partition factor at different medium densities. By starting with a finite amount of mass

in the feed and simulating the separation at steady-state at a high density, the resulting mass in the

overflow can be used as the feed for the next steady-state simulation. With decreasing medium density

iterations, the resulting partition factors can be obtained. By fitting Equation 3.46 to the simulated

observations the partition curve in Figure 4.46 was generated.

Table 4.31 shows a summary of the parameters for the efficiency curve fit. This simulation indicates

that a dynamic drum separator model can be reduced to a realistic steady-state model from which a

partition curve can be generated.
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Figure 4.46: Simulated efficiency curve for the DMC using the steady-state model derived from the

dynamic DMC model.

Table 4.31: Partition curve efficiency model parameters (Equation 3.46).

Efficiency

parameter

Simulated steady-state

model results (SG)

ρ50 1.692

EPM 0.003

Using Equation 3.43 the EPM is determined as 0.003 SG based on the partition curve in Figure 4.46.

It was indicated by the process development engineer responsible for the production facility where

the DMC model has been applied that the separation efficiency results align very well with the actual

DMC efficiency (Steyn, 2014b). An actual efficiency curve of the DMC was not available.

Since no online measurement was available to measure the product and discard grade, the method

of reconstituting the feed ash component percentage and estimation of the product ash component

percentage explained in Chapter 3 is used. The previous efficiency curve results combined with

Equations 3.46 and 3.42 are used to estimate the input-output data for the grade simulation. This

method assumes that the average overflow and underflow ore density are used instead of density

fractions. It is also assumed that a normalised partition curve developed from Figure 4.46 can be
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Figure 4.47: Input data for grade simulation (DMC feed ash = xc,i,ash; DMC medium density =

DIT012). The large spike near 1700 seconds is due to the yield becoming 100% as the discard mass

flow rate near 1700 seconds becomes zero as shown in Figure 4.45.

applied at the initial medium density of about 1350 kg/m3. When the medium density is increased to

about 1500 kg/m3, the partition curve will be applied to the increased medium density setpoint.

The input data for the DMC grade simulation are shown in Figure 4.47. The large spike in ash content

near 1700 seconds is due to the plant yield increasing to 100% (the yield increase is clearly shown in

Figure 4.45 by the discard mass flow rate becoming zero near 1700 seconds). The feed ash percentage

(xc,i,ash as described in Table 3.8) of the DMC feed material is not controlled as it is dependant on an

upstream mining and blending process. The density of the DMC medium is also shown as an input

similar to that shown in Figure 4.43.

Figure 4.48 illustrates the comparison between the measured DMC product ash percentage (xc,o,ash as

described in Table 3.9) and the dynamic model predicted output. A detailed view of the product ash

percentage comparison is given in Figure 4.49 from time 1000 seconds to 2000 seconds.

Figure 4.50 illustrates the comparison between the measured DMC discard ash percentage (xc,u,ash as

described in Table 3.9) and the dynamic model predicted output. A detailed view of the discard ash

percentage comparison is given in Figure 4.51 from time 1000 seconds to 2000 seconds.
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Figure 4.48: DMC product ash percentage simulation (DMC product ash = xc,o,ash).

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

10

20

30

40

50

60

70

Time (s)

D
M

C
 p

ro
du

ct
 a

sh
 (

%
)

DMC product ash (detailed view)

 

 

DMC product reconstituted ash
DMC product ash simulation

Figure 4.49: DMC product ash percentage simulation (detailed view, DMC product ash = xc,o,ash).
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Figure 4.50: DMC discard ash percentage simulation (DMC discard ash = xc,u,ash).
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Figure 4.51: DMC discard ash percentage simulation (detailed view, DMC discard ash = xc,u,ash).
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Table 4.32: Dynamic DMC model performance results summary.

Output Fit (%) Correlation

Product throughput (WIT012) 61.2 0.92

Discard throughput (C14 - WIT012) 56.2 0.90

Product grade (ash) (xc,o,ash) 29.3 0.98

Discard grade (ash) (xc,u,ash) 46.6 0.90

The model estimates for the product ash percentage and discard ash percentage as shown in Figures 4.48

and 4.50 respectively, are considered to be adequate for process control studies as they are qualitatively

accurate.

The dynamic model goodness of fit (Ljung, 2005) and correlation between the measured outputs and

simulated outputs are given in Table 4.32.

4.3.2 Model predictive control design and simulation

This subsection details the application of model-based process control for the DMD and DMC circuits

detailed above. The objectives of the model-based control (Steyn, 2014a) are as follows:

• Primarily ensure that the product ash content never exceeds contract requirements;

• Maximise plant yield; and

• Ensure product ash content tracks a defined setpoint based on the coal washability and desired

product specification.

The DMS process has competing objectives where the first objective is to maximise yield, while

the second objective is to ensure that the product ash content does not exceed the desired product

specification. By trying to maximise yield, the grade will decrease (i.e. ash increases) as illustrated in

Figure 2.9. A proposed objective for the DMS plant is represented in Figure 4.52.
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Figure 4.52: DMS control objective (ΓDMS = Objective function factor used in Equation 4.26; xd, f ,ash =

DMD product ash; xc,o,ash = DMC product ash).

Figure 4.52 depicts how the controller objective (vertical axis) should change at different product ash

contents (horizontal axis) for either the DMD (xd, f ,ash) or DMC (xc,o,ash). While product ash content

is within specification (i.e. below AHH), the controller objective should focus on maximising plant

yield. If product ash content exceeds the required specification (i.e. larger than AHH), the controller

objective should change and focus on bringing the ash content back to the saleable specification.

With the objectives of the DMS process described above and the definition of the MPC objective

function (Equation 3.49) with typical constraints (Equations 3.50, 3.51 and 3.52), the DMS plant yield

and ash contents can be controlled.

This means that the objective function for the MPC is,

JDMS =
N

∑
j=1

rDMS,1|(1−ΓDMS)(yDMS,1(t + j)− ys,DMS,1(t + j))|2+

rDMS,2|(ΓDMS)(yDMS,2(t + j)− ys,DMS,2(t + j))|2 +
M−1

∑
j=0

PDMS|∆uDMS(t + j)|2, (4.26)

where ΓDMS is the variable which changes the objective as indicated in Figure 4.52. yDMS,1(t +

j) and ys,DMS,1 are the yield output and desired reference trajectory and yDMS,2(t + j) and ys,DMS,2

are the product ash and desired reference trajectory. uDMS(t + j) is the manipulated medium density

setpoint.
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Table 4.33: DMD MPC objective function setup.

Variable Value or tagname

AH 14.5%

AHH 15%

rDMS,1 100

yDMS,1
C12
C11

ys,DMS,1 100%

rDMS,2 100

yDMS,2 xd, f ,ash

ys,DMS,2 0%

PDMS 1

uDMS DIT011

4.3.2.1 DMD area

The DMD area dynamic model is controlled by manipulating the medium density (DIT011). The input

mass flow rate (C11) and ash content (xd, f ,ash) are assumed to be measured disturbances.

Figure 4.52 illustrates the varying objectives of a DMS which can be applied to the DMD. At high

product ash content (xd, f ,ash > AH) the objective of the controller should be to reduce the product ash.

While the product ash content is below required specifications (xd, f ,ash ≤ AH), the objective of the

controller should be to maximise yield.

Table 4.33 describes the variables and associated values that are used for the MPC objective function

JDMS (Equation 4.26). The control horizon is two seconds while the prediction horizon is one minute

(M = 2 and N = 60).

The constraints of the DMD are,

1200 ≤ uDMS ≤ 2000 ∀t, (4.27)

−50 ≤ ∆uDMS ≤ 50 ∀t, (4.28)

0≤ yDMS,2(t)≤ 1 ∀t, (4.29)
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Figure 4.53: DMD measured disturbances (DMD feed = C11; DMD feed ash = xd,i,ash).

such that the medium density falls within operating ranges of 1200 kg/m3 and 2000 kg/m3 and a slew

rate of -50 kg/m3 and 50 kg/m3. The DMD product ash content (xd, f ,ash) must not exceed 100% and

must always remain positive.

With the objective function and constraints defined (Equations 4.26, 4.27, 4.28 and 4.29, the process

can be simulated using NMPC. The nonlinear dynamic model described in the previous section is used

for the NMPC future prediction and the control simulation of the coal separation process. The NMPC

problem can be solved by using the nonlinear programming problem described in Subsection 3.6.2.

The objective function (Equation 4.26) is minimised over control moves subject to plant dynamics and

input/output constraints detailed above.

Each NMPC simulation input and output are shown in comparison to the DMD plant simulation

response where manual control was applied. Figure 4.53 illustrates the DMD feed mass flow rate

(C11) and ash content (xd,i,ash) measured disturbances used for the NMPC simulation. Figure 4.54

shows a comparison between the manually set medium density (DIT011) versus the NMPC medium

density (DIT011) actuation for the DMD. Figures 4.55 and 4.56 illustrates the manual versus NMPC

output responses for the float (C12) and sink mass flow rates and associated ash content (xd, f ,ash and

xd,s,ash).
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Figure 4.54: DMD NMPC manipulated variable comparison (DMD medium density = DIT011).
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Figure 4.55: DMD NMPC floats comparison (DMD floats = C12; DMD floats ash = xd, f ,ash).
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Figure 4.56: DMD NMPC sinks comparison (DMD sinks = C11 - C12; DMD sinks ash = xd,s,ash).

Table 4.34: DMD manual control versus NMPC performance evaluation (Gains are represented as

positive numbers while losses are represented as negative numbers).

Measure Manual control NMPC Gain/loss

Yield (%) 89.3 96.8 7.5

Ash content (%) 14.9 13.4 1.5

Table 4.34 shows the DMD yield and floats weighted ash content while the plant was in manual control

versus NMPC. The gains or losses in process yield and ash content from the NMPC are also given.

Gains are represented as positive numbers while losses are represented as negative numbers.

4.3.2.2 DMC area

The DMC area dynamic model is controlled by manipulating the medium density (DIT012). The input

mass flow rate (C14) and ash content (xc,o,ash) are assumed to be measured disturbances.

Similar to the DMD, Figure 4.52 illustrates the varying objectives of a DMS which can be applied

to the DMC. At high product ash content (xd, f ,ash > AH) the objective of the controller should be to

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

134

 
 
 



CHAPTER 4 Results

Table 4.35: DMC MPC objective function setup.

Variable Value or tagname

AH 14.5%

AHH 15%

rDMS,1 10

yDMS,1
WIT 012

C14

ys,DMS,1 88%

rDMS,2 10

yDMS,2 xc,o,ash

ys,DMS,2 14.5%

PDMS 1

uDMS DIT012

reduce the product ash. While the product ash content is below required specifications (xd, f ,ash ≤ AH),

the objective of the controller should be to maximise yield.

Table 4.35 describes the variables and associated values that are used for the MPC objective function

JDMS (Equation 4.26). The control horizon is two seconds while the prediction horizon is sixty seconds

(M = 2 and N = 60).

The constraints of the DMD are,

1200 ≤ uDMS ≤ 2000 ∀t, (4.30)

−50 ≤ ∆uDMS ≤ 50 ∀t, (4.31)

0≤ yDMS,2(t)≤ 1 ∀t, (4.32)

such that the medium density falls within operating ranges of 1200 kg/m3 and 2000 kg/m3 and a slew

rate of -50 kg/m3 and 50 kg/m3. The DMC product ash content (xc,o,ash) must not exceed 100% and

must always remain positive.

With the objective function and constraints defined (Equations 4.26, 4.30, 4.31 and 4.32, the process

can be simulated using NMPC. The nonlinear dynamic model described in the previous section is used

for the NMPC future prediction and the control simulation of the coal separation process. The NMPC
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Figure 4.57: DMC measured disturbances (Cyclone feed = C14; Cyclone feed ash = xc,i,ash). The

large spike in cyclone feed ash content near 1700 seconds is due to the yield becoming 100% as the

discard mass flow rate near 1700 seconds becomes zero as shown in Figure 4.45.

problem can be solved by using the nonlinear programming problem described in Subsection 3.6.2.

The objective function (Equation 4.26) is minimised over control moves subject to plant dynamics and

input/output constraints detailed above.

Each NMPC simulation input and output are shown in comparison to the DMC plant simulation

response where manual control was applied. Figure 4.57 illustrates the DMC feed mass flow rate (C14)

and ash content (xc,i,ash) measured disturbances used for the NMPC simulation. The large spike in ash

content near 1700 seconds is due to the plant yield increasing to 100% (the yield increase is clearly

shown in Figure 4.45 by the discard mass flow rate becoming zero near 1700 seconds). Figure 4.58

shows a comparison between the manually set medium density (DIT012) versus the NMPC medium

density (DIT012) actuation for the DMC. Figures 4.59 and 4.60 illustrates the manual versus NMPC

output responses for the overflow (WIT012) and underflow mass flow rates and associated ash contents

(xc,o,ash and xc,u,ash).

Table 4.36 shows the DMC yield and overflow weighted ash content while the plant was in manual

control versus NMPC. The gains or losses in process yield and ash content from the NMPC are

also given. Gains are represented as positive numbers while losses are represented as negative
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Figure 4.58: DMC NMPC manipulated variable comparison (Cyclone medium density = DIT012).
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Figure 4.59: DMC NMPC overflow comparison (Cyclone product = WIT012; Cyclone product ash =

xc,o,ash).
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Figure 4.60: DMC NMPC underflow comparison (Cyclone discard = C14 - WIT012; Cyclone discard

ash = xc,u,ash).

Table 4.36: DMC manual control versus NMPC performance evaluation (Gains are represented as

positive numbers while losses are represented as negative numbers).

Measure Manual control NMPC Gain/loss

Yield (%) 83.3 88.4 5.1

Ash content (%) 14.8 14.4 0.4

numbers.

4.3.3 Unscented Kalman filter simulation

This subsection describes how the UKF algorithm is applied to the separation circuit. Each separator

(i.e. the drum and cyclone) are simulated separately with the UKF. The UKF algorithm was applied to

the nonlinear DMD and DMC model from the separation circuit derived in this thesis. Each separation

area consists of dynamic models containing seven states [one mixing box state derived from Meyer

and Craig (2010); six DMD states that can be obtained from Equations 3.21, 3.22 and 3.23; or six

DMC states obtained from Equations 3.27, 3.28, 3.29 and 3.30] and four outputs.
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Figure 4.61: Drum separator floats product UKF (DMD product = C12).

For the DMD, the outputs are the product float (C12) and sink (C11 - C12) mass flow rate and product

float and sink ash content (xd, f ,ash and xd,s,ash). For the DMC, the outputs are the product overflow

(WIT012) and underflow (C14 - WIT012) mass flow rate and product float and sink ash content (xc,o,ash

and xc,u,ash).

4.3.3.1 DMD area

The initial covariance of the original state (Pd,0) was chosen as the identity matrix I7. The standard

deviation Qd of the process was chosen to be fairly large based on the measurement data,

Qd = diag([ 5 5 5 0.01 0.01 0.02 0.02 ]), (4.33)

where the initial covariance for the process noise is determined as Pd,v = Qd
2.

The standard deviation of all measurement noise was chosen to be a very small value of 1% (rd =

0.01). This implies that the initial covariance for the measurement noise can be determined as

Pd,n = r2
dI4.

Figures 4.61, 4.62, 4.63 and 4.65 illustrate the UKF simulation versus the measured process outputs.

Figures 4.64 and 4.66 illustrate a detailed view of the float and sink ash content.
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Figure 4.62: Drum separator sinks discard UKF (DMD discard = C11 - C12).
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Figure 4.63: Drum separator floats product ash percentage UKF simulation (DMD product ash =

xd, f ,ash).
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Figure 4.64: Drum separator floats product ash percentage UKF simulation (detailed view, DMD

product ash = xd, f ,ash).
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Figure 4.65: Drum separator sinks discard ash percentage UKF simulation (DMD discard ash =

xd,s,ash).
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Figure 4.66: Drum separator sinks discard ash percentage simulation (detailed view, DMD discard

ash = xd,s,ash).

Table 4.37: DMD UKF performance results summary.

Output Fit (%) Correlation

Product throughput 97.7 1.00

Discard throughput 96.1 1.00

Product grade (ash) 86.0 0.99

Discard grade (ash) 40.3 0.85

Table 4.37 shows a summary of the model fit and correlation for the UKF simulation.

4.3.3.2 DMC area

The initial covariance of the original state (Pc,0) was chosen as the identity matrix I7. The standard

deviation Qc of the process was chosen to be fairly large based on the measurement data,

Qc = diag([ 0.5 0.5 0.5 0.001 0.001 0.02 0.002 ]), (4.34)

where the initial covariance for the process noise is determined as Pc,v = Qc
2.
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Figure 4.67: Cyclone separator product UKF (DMC product = WIT012).

Table 4.38: DMC UKF performance results summary.

Output Fit (%) Correlation

Product throughput 98.4 1.00

Discard throughput 91.4 1.00

Product grade (ash) 81.5 0.99

Discard grade (ash) 62.2 0.93

The standard deviation of all measurement noise was chosen to be a very small value of 1% (rc =

0.01). This implies that the initial covariance for the measurement noise can be determined as

Pc,n = r2
c I4.

Figures 4.67, 4.68, 4.69 and 4.71 illustrate the UKF simulation versus the measured process outputs.

Figures 4.70 and 4.72 illustrate a detailed view of the overflow and underflow ash content.

Table 4.38 shows a summary of the model fit and correlation for the UKF simulation.
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Figure 4.68: Cyclone separator discard UKF (DMC discard = C14 - WIT012).
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Figure 4.69: Cyclone separator product ash percentage UKF simulation (DMC product ash = xc,o,ash).
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Figure 4.70: Cyclone separator product ash percentage UKF simulation (detailed view, DMC product

ash = xc,o,ash).
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Figure 4.71: Cyclone separator discard ash percentage UKF simulation (DMC discard ash = xc,u,ash).
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Figure 4.72: Cyclone separator discard ash percentage simulation (detailed view, DMC discard ash =

xc,u,ash).

4.3.4 Results overview

The coal separation area was broken down into two unit processes, namely, the DMD area and the

DMC area. Each unit process area was modelled dynamically using the various equipment models

from Chapter 3. These models were identified using actual plant data as detailed in Meyer and Craig

(2010, 2014, 2015). The model fits and correlations are sufficient for control purposes as detailed in

the various MPC simulations.

In order to show the control of the separation area, the control objectives of the DMD and DMC are

applied using NMPC. The control simulations illustrate what possible yield and grade improvements

can be expected from NMPC.

The UKF algorithm was applied to the DMD and DMC areas to illustrate that it is possible to estimate

the model states and that the dynamic equipment models can be used for pure simulations.

A detailed discussion of all the coal separation simulation results are given in Chapter 5.
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CHAPTER 5 DISCUSSION

5.1 CHAPTER OVERVIEW

In this chapter, the results from Chapter 4 are discussed in more detail. Both the coal comminution and

separation areas’ results are explored. The system identification model fits and associated method are

analysed. MPC objectives and results are described in terms of applicability for an actual controller

implementation. Finally, the UKF results are investigated further for possible future work.

5.2 COAL COMMINUTION AREA

The coal comminution area detailed in Figure 4.1 in the previous chapter is an important unit process,

also for other mineral processing circuits. Coal ROM is stockpiled and classified based on size through

a screen and crush system in closed circuit. Sized coal is stored in a bin which is used as a buffer

between the screen and crush plant and also provides feed to the downstream separation plants.

The dynamic models developed for the comminution area are applicable to three production

areas:

• Stockpiling area

• Screen, crush and bin area

• DMS feed screen area
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The three production areas are modelled using the dynamic equipment models detailed in Chapter 3.

These models are identified with real industrial production data. The system identification results are

discussed in more detail below. Thereafter, MPC was applied to the stockpiling area as well as the

remaining downstream process. A complete simulation of the entire comminution circuit controlled

from startup to shutdown with a process disturbance is discussed. The UKF results applied to the

screen, crush and bin area serves to illustrate how state estimation could be implemented if model-based

control were to be rolled out for the comminution area.

5.2.1 System identification results

The stockpiling area of the comminution circuit was identified using four sets of industrial experimental

data. It was necessary to find production data which had enough perturbations in the seven bunker

draw points. The parameters solved for the seven feeder models are sufficient to validate the stockpile

mass flow rate output as given in the four experiments (Figures 4.2, 4.3, 4.4 and 4.5). The model

experiment fits and correlations are very good as the first three experiments have model fits above 70%

while the fourth experiment has a model fit almost 50%.

It is interesting to note experiment four has a lower fit than the other three experiments as experiment

four has the same feeders used in experiment three. The reason for the lower model fit could be that

the feeder model parameters change slightly over time. The physical coal stockpile within the bunker

is very dynamic. The coal stockpile in the bunker supplies coal to the seven bunker draw points where

the feeders remove coal. The coal stockpile feed mass flow rate and volume is not measured. The

process to ensure that the stockpile is full of coal is manual and requires visual inspection. If one or

more bunker draw points run empty, the feeder model does not have sufficient information to show

that it cannot remove any more material (i.e. there is no stockpile mass state incorporated into the

model).

A possible way to overcome this limitation on the stockpile model would be to include appropriate

volume measurement of the stockpile bunker draw points and incorporate this volume into the dynamic

model. Lichti et al. (2002) describes various ground-based laser scanners that can be used for real-time

stockpile measurement. The feed rate into the bunker draw point or stockpile also needs to be measured

which should be possible through the use of a belt scale. An alternative to measuring stockpile volume
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could be to make use of a smart sensor or soft sensor (Pan, 2015, 2012). Another popular approach is to

make use of gain scheduling for uncertain linear parameter-varying systems (Rugh and Shamma, 2000;

Apkarian and Adams, 1998). Gain scheduling can be applicable to the dynamic bin model (Equations

3.12, 3.13 and 3.14) if the proportionality constants were assumed constant (i.e. if the relationship

between total feed versus bin level as indicated in Figure 3.10 was not known). An observer such as

the UKF to perform online parameter identification instead of state estimation could also be used (Van

Der Merwe et al., 2001).

The screen, crush and bin area dynamic model was identified with three sets of industrial experimental

data. The three sets of experimental data were chosen to ensure that sufficient information in the bin

level is available for the three phases or conditions shown in Figure 3.10. The thirty-nine parameters

solved for the model fit describe the entire system sufficiently. The model fit for the screen and crush

recycle mass flow rate, two bin module mass flow rates and bin level are very good for all three

experiments. Unfortunately, the model was not able to describe the motor currents in experiment one

and three very well as the fit results were all negative with very low correlations (correlations ranging

from -0.03 to 0.82). The negative fit means that a portion of the dynamic model does not predict future

values well. The weak correlation in motor current means that the model describing motor current

does not have sufficient information to fit actual measured data.

The bin level validation for the three experiments in Figures 4.7, 4.10 and 4.13 show sufficient

representation of bin level dynamics. The bias in the second experiment of the bin level validation

(second half of Figure 4.10) is due to the deviation between the simulated and measured bin mass flow

rates (second half of Figure 4.11). The lower simulated bin mass flow rate, specifically in module 1,

results in less mass being removed from the bin and this leads to the bin level being higher than what it

actually should be.

The good bin level validation results imply that the nonlinear bin level state (Equation 3.17 from

Chapter 3) describes the bin level well given its stockpile geometric shape. The two module bin mass

flow rates in Figures 4.8, 4.11 and 4.14 also describe the dynamics of the feeders very well. This result

confirms the nonlinear description of the proportionality constants in Equations 3.15 and 3.16 for the

feeders given the three phases in bin level.

The screen and crush recycle mass flow rate validation for the three experiments in Figures 4.6, 4.9 and
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4.12 fits relatively well. There are time-periods when the model deviates from the measured output.

The reason for this is probably due to the crusher motor current response not fitting the measured data

well.

In the development of the dynamic crusher model, it was assumed that the mechanical system motor

speed acceleration was zero. The reason for making this zero was because there was no available

measurement data of the angular acceleration. If the angular acceleration state was incorporated into

the system, it might improve the motor current fit results which in turn would improve the crusher

recycle fit. When trying to fit the model with the angular acceleration state included (with no angular

acceleration measurement) in the dynamic model, additional parameters are required to be solved.

These additional parameters are difficult to solve if only the motor current measurement is available.

The parameter identifiability technique applied in Meyer and Craig (2010) could be used to further

analyse such a system.

The results of the DMS screen feed area model fit are very good for the purposes of the simulated

feed to the downstream separation processes. The module one and two screen validation responses in

Figures 4.15 and 4.16 illustrate the material size separation well. There is nothing complex about the

size separation and the simplified screen model with one state representing the mass of material on the

deck of the screen is sufficient. The oversize to the DMS plant one is also validated in Figure 4.17.

Screen model fit and correlation results are also relatively high.

Further residual analysis on the models could be done such as the whiteness and independence tests

described by Ljung (1987). The independence analysis tries to determine whether the model contains

all the information available in the data. The whiteness analysis is used to ensure that the residuals

are uncorrelated. Meyer (2010) illustrates how these residual tests have been applied to the dynamic

models of the separation stage in coal processing. For the purposes of this thesis, these tests have been

omitted as the primary objective is to obtain dynamic models of the entire coal beneficiation process

for model-based control studies.
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5.2.2 Model predictive control simulation results

The MPC simulation results from Chapter 4 for the coal comminution area illustrate how model-based

control can be applied to coal minerals processing. Initially MPC is applied to the stockpile area with

various conditions applied at specific time intervals to see how the system responds. Another MPC

simulation is performed on the feed bin specifically, assuming that the stockpile area is under manual

control. This allows for the comparison of the MPC performance to the manually operated process. A

final MPC simulation is performed over the entire comminution circuit to illustrate how the plant can

be automatically controlled from startup to shutdown.

The stockpile area was simulated with MPC to illustrate how the stockpile mass flow rate can be set

from 500t/h to 50t/h and then back to 500t/h again. The MPC is able to actuate the seven feeder motor

speeds (Figure 4.19) sufficiently to ensure the relevant reference trajectory is achieved over time. An

additional simulated response is given to test what would happen if three feeders were deactivated. The

MPC is able to manipulate the remaining four feeders to ensure the desired mass flow rate reference

trajectory is maintained. The purpose of deactivating the three feeders is to test a scenario where the

stockpile in the bunker begins to run empty and no coal is available for the feeder. As mentioned in the

previous subsection, the dynamic model of the stockpile area does not have enough information to be

able to determine if the stockpile itself is empty for any given draw point. The disabling of the feeder

would have to be signalled from another system such as a stockpile laser measurement or smart sensor

as discussed in the previous subsection.

An additional criteria incorporated into the MPC objective of the stockpile area control was to ensure

that all feeders were utilised. This is to prevent the possibility of the optimiser choosing only specific

feeders to perform the mass flow rate control and therefore not using other available feeders at all. The

feeder utilisations are averaged every minute and also updated in the MPC objective function every

minute. This is why there is a small deviation every minute in the stockpile MPC simulated response

in Figure 4.20. The average utilisation of all the feeders during the simulation was 78%. Figure 4.20

also illustrates how the stockpile mass flow rate reaches the desired reference trajectories.

The MPC simulation of the stockpile area illustrates that the stockpile area can be controlled very

well if it is separated or decoupled from the downstream screen, crush and bin processes. In practice,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

151

 
 
 



CHAPTER 5 Discussion

the utilisation objective should be activated at much longer durations such as every hour, but for the

purposes of the simulation, one minute is sufficient to illustrate the concept.

Another MPC simulation was performed specifically on the feed bin. The screen, crush, bin and DMS

plant feed models were used for the simulation. This downstream process was decoupled from the

stockpile area and it was assumed that the stockpile area was manually controlled. As a result, the

input to the model was the measured disturbance stockpile mass flow rate.

The bin level control objective (Figure 4.21) is to ensure the bin level does not run empty or overflow.

However, when the bin level is within safe limits, the objective is to maximise throughput by controlling

the DMS plant feed mass flow rates to desired reference trajectories. In addition, the mass flow rates to

the two DMC modules have to remain in balance.

Figure 4.22 illustrates the measured disturbance from the stockpile area and the associated bin level

response based on the NMPC control moves. The benefit of having the input as a measured disturbance

in this simulation is that it is possible to compare the NMPC performance to that of the current

manually operated plant. The controller keeps the bin level within the specified level limits for

maximum throughput.

Figure 4.24 illustrates how the NMPC was able to ensure the feed to the two DMC modules was kept

in balance while maintaining a reference trajectory of 100t/h. Similarly, Figure 4.25 shows how the

feed to the DMS plant one tries to maintain a rate of 300t/h. The simulation also incorporates another

measured disturbance which is the bin bypass mass flow rate. This bypass is manually actuated by a

flap gate. It can be seen that during the time intervals the bypass was opened (Figure 4.22), around

2000 seconds and 4000 seconds, the feed to DMS plant one increased significantly. This is because the

bypass essentially goes toward the DMS plant one in the case when the bin modules one and two mass

flow rates are starved. The upper constraint of 350t/h in the DMS plant feed mass flow rate causes the

NMPC to react by switching off the bin feeder module two as shown in Figure 4.23.

When comparing the NMPC performance to the manual operation, there was an overall improvement

in throughput of 3.6%. Another important benefit is that the bin level was controlled within safe limits

whereas the manually operated plant was dangerously close to having the bin overflow. If the NMPC
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were to be implemented, the need for the bypass stream from the bin should become unnecessary as

the NMPC should ensure that the mass flow rates to the DMS plants are maintained.

The last MPC simulation demonstrates that it is possible to automatically control the entire comminution

circuit from startup to shutdown. Similar stockpile and feed bin objectives were used as in the previous

two MPC simulations. The feed bin level limits were adjusted to allow the bin to operate at higher bin

levels. This is probably the more ideal scenario given the knowledge of how the bin feeders operate at

higher bin levels. The higher the bin level, the more effective the bin feeders are able to perform (refer

to Figure 3.10 describing the relationship between bin throughput and bin level).

Figure 4.26 illustrates the NMPC control moves for the stockpile feeder motor frequencies. A disturb-

ance was introduced at 2500 seconds and removed at 3000 seconds where material was fed into the

stockpile conveyor at 100t/h (shown in Figure 4.27). This is to simulate the possibility of a feeder

failing and material being pushed into the bunker manually by a front end loader or material being

thrown onto the stockpile conveyor belt. Is it assumed that the additional material is measured on

the belt scale for the stockpile area such that the NMPC is able to react further downstream. After

3500 seconds, the plant is simulated to shutdown by reducing the stockpile mass flow rate to zero and

emptying the bin.

Figure 4.28 shows the NMPC response for the bin level. The bin level limits were increased to

higher levels. It can be seen that initially the bin level rises to the first lower limit from the zero

initial condition. Once the bin level reached the second low level limit, it is pushed back down as

the objective has changed to maximise throughput. The bin level objective will operate somewhere

between the two lower bin level limits but not run lower than the lowest limit of 60% if the NMPC

were to be implemented. After the shutdown signal at 3500 seconds, the bin level shows that the bin is

emptied.

Figure 4.29 illustrates the mass flow rates for the DMS plant feed. During the plant startup (below

1000 seconds) it can be seen that module one DMC feed is available. However, module two DMC

feed is not available until after about 1000 seconds. The reason for this is because the bin level is still

within the lower level limits and the objective function is primary focussed on increasing the bin level.

This means that the NMPC will reduce the mass flow from the bin itself to increase the bin level. Since

the objective is to also ensure that the DMC mass flow rates of module one and two are in balance,
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it conflicts with the objective of operating the mass flow rate of the DMS plant one at 300t/h. The

result is that during the startup period the mass flow rates to the DMS plant feed are not at full capacity.

Once the bin level is within safe limits, the throughput to the DMS plants is achieved.

Figure 4.26 also shows that the disturbance to the stockpile mass flow rate is handled by the NMPC to

quickly ensure that the stockpile mass flow rate of 500t/h is maintained. This disturbance does not

influence the bin level and DMS plant feed significantly.

5.2.3 Unscented Kalman filter results

The UKF was applied to the crush, screen and bin system to illustrate the concept of applying a state

estimator for the possibility of actually implementing the NMPC on these systems. The results of

the UKF show that the system states can quickly be adjusted given immediate past output data. This

one-step-ahead prediction would be beneficial for an actual controller implementation to ensure that

the model is always aligned to the immediate operational conditions. In practice, however, the UKF

could only be applied every hour since the dynamic models fit the process well and are sufficient for

the model prediction calculations.

Given the excellent model fit results of the UKF applied to the bin model as shown in Figures 4.30,

4.31 and 4.32, it is recommended that a UKF is used for a control system implementation. If the noise

in the process and measurements increase significantly, but not such that the dynamics of the process

are obscured, the UKF should still be able to return a good estimate of the correct model states. The

good model fit for the UKF means that the UKF works well for pure simulations.

It is noted that the screen and crush recycle UKF simulation in Figure 4.30 deviates slightly while

the all other outputs are tracked extremely well. As mentioned in the system identification discussion

earlier, the dynamic model for the crushers could be improved. The UKF is able to ensure that the

crusher model motor current fits well. This must have an impact on the throughput relationship for the

crusher, given the insufficient information between motor current and throughput due the the angular

acceleration not being measured and the assumption that the angular acceleration is zero.
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5.3 COAL SEPARATION AREA

The coal separation area detailed in Figure 4.33 in the previous chapter is a critical part of the coal

beneficiation process as it selectively upgrades ROM coal to required customer grade specifications.

The separation stage can also significantly determine the yield of a coal operation as well. ROM is

received from the comminution circuit described previously and classified based on size for the relevant

separation unit process. Larger sized coal particles are separated from gangue using a drum separator,

while smaller sized coal particles are separated from gangue through DMCs.

Plant model identification of unit processes for a coal separation area has been shown in various

other publications (Meyer and Craig, 2010, 2014, 2015). For the purposes of this thesis, the actual

downstream DMS plant from the comminution circuit was used. The DMD model from Meyer and

Craig (2014) is the same, but the DMC model is new and differs from the previous DMC publications

(Meyer and Craig, 2010, 2014). The model identification therefore includes the following DMS

areas:

• DMD area

• DMC area

The two separation areas are modelled using the dynamic equipment models detailed in Chapter 3.

These models are identified with real industrial production data. The system identification results are

discussed in more detail below. Thereafter, the application of MPC to the DMD and DMC is discussed

in more detail. The UKF results applied to the DMD and DMC models are then analysed, and this

serves as an example of how state estimation could be implemented if model-based control were to be

rolled out for the separation area.

5.3.1 System identification results

In the identification of both the DMD and DMC, the model parameters associated with the throughput

outputs are firstly solved for. Thereafter the model parameters associated with grade are solved for

through the use of a partition curve.
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Production data from an industrial coal separation process was used to perform the system identification

for both the DMD and DMC models. Figures 4.34 and 4.43 illustrate the inputs associated for the

DMD and DMC. The mass flow rates into the unit processes are not controlled as they are determined

by the comminution circuit upstream. Industrial production data were chosen in such a way that plant

operations made a step change to the medium densities. The change in medium density allows for

sufficient perturbations to model the DMD and DMC system responses.

The throughput and discard model fits for the DMD are sufficient for control purposes. Figures 4.35

and 4.36 illustrate how the DMD model is able to follow the measured outputs in terms of throughput.

This is also true for the DMC as seen in Figures 4.44 and 4.45. No pressure measurement was available

for the DMC and therefore could not be used as an additional input to the model. The mathematics

describing the DMD and DMC models are very similar and explain the similarity in the quality of the

model fit. However, the parameter values solved for the DMD are very different to the DMC given the

larger residence time within the separator vessel.

In order to fit the DMS models to grade (ash content), and since no real-time measurements in ash

were available, the ash content was reconstituted based on the actual coal washability and simulated

equipment partition curves. The method of calculating the ash contents in this way is described in

Chapter 4. It was assumed that the average float and sink ore densities are used and not the individual

density fractions for the partitioning of the material. Another assumption was that the partition curve

was normalised and applied at the initial value at which the medium density was set to. Ideally,

an actual partition curve for the relative density fraction should be made available. However, this

information was not available for the particular coal plant used in this thesis. The above-mentioned

method might require further validation by using real-time online ash measurements.

Various technologies are available for measuring online ash content of coal. Galetakis et al. (2009)

discuss the usage of a dual energy transmission analyser for quality control in coal mining. Borsaru

and Jecny (2001) and Belbot et al. (1999) describe the use of the prompt gamma neutron activation

analysis (PGNAA) technique for measurement of bulk coal samples. The PGNAA technique seems to

be the most recent and accurate technology developed for online coal analysis (Nezamzadeh et al.,

1999). Cierpisz and Heyduk (2001) has shown how a radiometric online ash monitor can be used with

fuzzy logic to control the time of measurement according to variations of an input signal for better

measurement results.
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Table 5.1: DMD and DMC partition curve efficiency parameters.

Separation

unit

Efficiency

parameter

Value (SG)

DMD
ρ50 1.470

EPM 0.021

DMC
ρ50 1.692

EPM 0.003

The partition curves for the DMD and DMC are simulated through steady-state simulations as detailed

in Chapter 3. Table 5.1 shows a summary of the typical partition curve efficiency parameters.

The product and discard ash model responses for the DMD and DMC fit the reconstituted data well.

Figure 4.39 illustrates that the DMD dynamic model follows the product ash responses very well.

Figure 4.41 for the DMD discard ash could require improvement in model fit. The discard ash response

was not used in the control simulations of the DMD, which is in accordance with current operational

practices. However, the low model fit of the DMD discard ash output could imply that the model

should either be improved, or the measured ash data needs to be verified with actual online analysis

data. Figures 4.48 and 4.50 show good model fits for the DMC ash responses.

For this particular separation plant, the DMC receives approximately 25% of the total feed material.

This small amount of material feed means that there are possible cases where yield can easily reach

100% depending on the grade of coal and medium density used. Since this particular plant is processing

metallurgical coal, the grade is usually very high, hence the high separation efficiency (small EPM). In

Figure 4.45 it can be seen that near 1700s the discard mass flow rate is zero (i.e. the yield is 100%).

This high yield impacts the reconstituted ash contents as shown by the spike near 1700s in Figure

4.39. The DMC model does not fit this specific scenario well. In order to model the dynamics of these

specific conditions, the dynamic model might need to be enhanced to include population balances at

the different relative densities. However, data for such a model would be very difficult to obtain from

an industrial coal plant facility and considerable pilot plant studies would be required before the model

could be further investigated.
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The DMD and DMC model performances are considered adequate for process control purposes as

responses are in general qualitatively accurate.

5.3.2 Model predictive control simulation results

NMPC was applied to both the DMD and DMC with an objective function described by Figure 4.52.

The control objective is based on the product ash content. If the ash is below a certain threshold, the

objective of the NMPC is to maximise yield. If the ash content becomes too high, the objective changes

to minimise ash. This competing objective between yield and ash is shown in Figure 2.9 where there is

an inverse relationship between grade and throughput. The intention with NMPC is to increase both

yield and grade by applying control to the DMD and DMC system.

For both the DMD and DMC NMPC simulations, the results are compared to that of the manually

operated plants. Figure 4.54 illustrates the comparison between the DMD medium density actuated

manually versus the NMPC control moves. It is clear that the NMPC makes use of a much wider range

in RD versus the manually controlled process. The feasibility of allowing the medium to be actuated

over such wide RD ranges over time needs to be investigated. The medium density control objective

from Zhang et al. (2015) could be incorporated into the NMPC as well to try and minimise energy

and inventory costs by reducing the amount of medium used in the circulating medium circuit. The

medium recycle circuit is a secondary process and involved process water recovery. This secondary

process could in future be further analysed, modelled and incorporated into the DMS dynamic models

developed. Figure 4.54 shows that the NMPC operated the DMD at a much higher RD than the

manually controlled plant. A higher RD is generally better as this will reduce the amount of process

water addition in the density control, thereby reducing the amount of medium to be added to the

medium make-up stage.

The NMPC simulated response for the floats versus the manual operation (Figure 4.55) shows very

clearly how the NMPC has increased the yield. The result showing the ash response in Figure 4.55 is

also very good in that it is clear that the NMPC was able to ensure that the ash content is primarily

maintained below the desired threshold of 15% ash. This in-time control of product ash is ultimately

the objective of a coal washing plant. In this simulation, the NMPC was able to optimise on the product
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yield and grade by manipulating the medium density to its advantage. A yield improvement of 7.5%

was achieved with an ash improvement (i.e. lower ash content) of 1.5%.

In the NMPC simulation of the DMC, Figure 4.58 illustrates how the medium density was manipulated

automatically versus the manually operated plant. When comparing the amount of medium density

movement in the DMD NMPC to the DMC, the DMD is much more volatile. This could be due to the

fact that the DMD has a larger residence time and therefore more opportunity to gain from the medium

density changes to control ash. The DMC NMPC ash response in Figure 4.59 visually shows very little

improvement. However, a small improvement in ash of 0.4% (i.e. reduction in ash contents) was still

possible. The NMPC was also able to improve yield by 5.1% for the DMC. The improvement in yield

can be seen in Figure 4.59 in the first 2000 seconds where there was an opportunity for the NMPC to

maximise throughput with little change in product ash contents.

5.3.3 Unscented Kalman filter results

The UKF was applied to the DMD and DMC dynamic models to illustrate the concept of applying a

state estimator for the possibility of actually implementing the NMPC for the DMS circuit. The results

of the UKF show that the system states can quickly be adjusted given immediate past output data.

This one-step-ahead prediction would be beneficial for an actual controller implementation to ensure

that the model is always aligned to the immediate operational conditions. In practice, for the DMD

and DMC, the UKF should be applied every five minutes given the fast dynamics of the separation

process.

Given the excellent model fit results of the UKF applied to the DMD model as shown in Figures 4.61,

4.62, 4.63 and 4.65, the UKF can be used for a control system implementation. Similarily, the UKF

applied to the DMC shows similar results in Figures 4.67, 4.68, 4.69 and 4.71.

If the noise in the process and measurements increase significantly, but not such that the dynamics of

the process are obscured, the UKF should still be able to return a good estimate of the correct model

states. Further work can be done where the dynamic model parameters could be estimated online using

the UKF algorithm.
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Table 5.2: Comminution area model and UKF fit results summary (blank results in UKF fit indicate

that no simulation was performed on the specific output).

Comminution area Output Average

model fit (%)

UKF fit (%)

Stockpile Stockpile mass flow rate (WIT001) 72.1

Screen, crush and bin

Screen and crush recycle (WIT002) 75.9 43.4

40mm crusher motor current (IIT001) -41.1 92.9

80mm crusher motor current (IIT002) -45.7 92.3

Bin module one feeder (WIT005) 67.1 98.9

Bin module two feeder (WIT004) 61.7 98.4

Bin level (LIT001) 58.4 99.8

DMS screen feed

Module one undersize (C06) 78.9

Module two undersize (C08) 61.1

DMS plant one feed (WIT006) 57.7

The improvement in UKF fit for the DMD float ash and DMC overflow ash to the model output is an

additional benefit for control purposes. As discussed earlier, the measurement of ash content is usually

difficult to obtain using online ash monitors. These online measurements are sometimes not be reliable

and the use of a UKF and dynamic model will significantly improve the overall control of coal product

ash content. Further research could also be done to investigate the possibility of not only updating the

dynamic model ash content states with the reconstituted ash calculation, but also to include an online

ash monitor reading. Laboratory samples taken at much longer sampling times could also be used to

adjust any bias in the online ash measurement readings.

5.4 CHAPTER SUMMARY

In order to summarise the discussion of the results of this thesis, the dynamic model and UKF fits are

averaged and tabulated in Table 5.2 for the comminution area. The separation area model and UKF fit

results are tabulated in Table 5.3.
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Table 5.3: Separation area model and UKF fit results summary.

Separation area Output Model fit

(%)

UKF fit (%)

DMD

Product throughput (C12) 69.0 97.7

Discard throughput (C11-C12) 43.5 96.1

Product grade (ash) (xd, f ,ash) 66.4 86.0

Discard grade (ash) (xd,s,ash) 56.3 40.3

DMC

Product throughput (WIT012) 61.2 98.4

Discard throughput (C14-WIT012) 56.2 91.4

Product grade (ash) (xc,o,ash) 29.3 81.5

Discard grade (ash) (xc,u,ash) 46.6 62.2

Table 5.4: Area model MPC improvement results summary.

Area Performance measure Improvement (%)

Screen, crush and bin Total throughput 3.6

DMD
Yield 7.5

Ash content 1.5

DMC
Yield 5.1

Ash content 0.4

The quantitative MPC improvements made to the screen, crush, bin and separation processes are

tabulated in Table 5.4.

Some qualitative improvements that have also been made to the comminution circuit from the NMPC

are summarised as follows:

• The stockpile mass flow rate is able to track a throughput reference trajectory automatically.

• The automatic control of the stockpile area is capable of overcoming disturbances provided the

stockpile level is known.
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• The stockpile feeders can be utilised equally over time to ensure that no bias is introduced.

• The feed bin level can be controlled automatically to ensure no material overflows or that the

bin does not run empty.

• The bin bypass disturbance is rejected by the automatic control and will probably not be required

once an automatic controller is installed.

• It was shown that the overall comminution process can automatically be started up and shut

down.

• An automatic controller is capable of addressing disturbances such as additional feed material in

the stockpile area that is currently unaccounted for.
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This chapter provides a brief summary of the simulation results given in Chapter 5. Possible im-

provement that can be made is motivated using the simulation results and recent coal financial market

indicators. Additional research topics that can be investigated are also suggested. Finally the con-

clusion investigates the overall control hierarchy and proposes a possible future topic for coal mine

optimisation using MPC.

6.1 CONCLUDING REMARKS

Thwaites (2007) indicates that the overall objective of process control in metallurgical plants is to

stabilise the process and then optimise it. The work developed in this thesis provides a means to

stabilise and control a coal plant through the use of model-based control. Given that the available

literature on dynamic models for coal plants is relatively limited, additional models were developed

for the specific comminution circuit studied.

The results in Chapter 4 illustrate how the dynamic models for an actual industrial coal processing

facility were developed in Chapter 3 and identified using industrial experimental data sets. Two

fundamental areas of coal processing were investigated, namely the comminution circuit and separation

circuit.

Once the comminution circuit and separation circuit had dynamic models which were fitted to the

available industrial plant data, they were used in various MPC simulation studies. The discussion of

the results of the MPC simulation studies from Chapter 5 highlights production improvement that is

possible by applying certain process objectives and constraints to the comminution and separation areas.
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It was also shown through simulation that the MPC is capable of removing certain process disturbances.

Complete automatic control of the process from startup to shutdown is also possible.

Given the simulated process improvements in throughput, yield and grade for the specific coal plant

used for this thesis (Table 5.4), it is possible to calculate the overall improvement that could be made to

the entire coal processing value chain. Given that the ROM fed to the separation process is increased

by 3.6% and that the average yield of the entire separation circuit is approximately 88%, the separation

circuit yield could be increased through advanced control by up to 3.2%.

The improvement on the DMD and DMC with MPC can be combined to determine the overall

separation improvement possible. If the DMC uses approximately 25% of the feed ROM, the overall

yield improvement made to the entire separation from the MPC simulations is 6.9%.

This means that with the 3.2% increase in yield from the optimally controlled comminution circuit

and the 6.9% increase in yield by controlling the separation circuit, a total increase in yield of 10.1%

could potentially be possible. Although these simulations were performed over very short production

periods, the potential increase in yield through the MPC simulations illustrate a great opportunity for

improving a coal beneficiation plant in general.

Given metallurgical coal prices at approximately 90 USD/t for mid 2014 (International Energy Agency,

2014a), a 10% increase in yield for a metallurgical coal plant means a possible increase in revenue of 9

USD/t. A plant producing 1.5Mtpa of metallurgical coal could potentially increase its revenue by 13.5

million USD per annum. At a South African exchange rate of R13/USD, such an improvement for a

South African-based coal plant could increase its revenue by R175.5 million per annum.

This potential increase in revenue is detailed in Table 6.1.

In addition to an increase in yield, the implementation of MPC would also ensure that the final

product meets its required customer grade specification. This would also prevent paying penalties for

coal product delivered to customers that is out of specification. Using automatic control to replace

a manually operated coal plant will not replace the role of production operations personnel. The

involvement from operational personnel will require more input that is specific to decision-making in

the coal business such as deciding at what levels to set the controller objectives to enhance performance.
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Table 6.1: Potential increase in revenue based on MPC simulation improvements made.

Assumptions Value

MPC ROM feed increase (%) 3.6

Average separation circuit yield (%) 88

Separation yield improvement due to ROM increase (%) 3.2

MPC DMC yield increase (%) 7.5

MPC DMD yield increase (%) 5.1

DMD:DMC mass split 3:1

Separation yield improvement due to DMD and DMC MPC (%) 6.9

Total increase in yield (%) 10.1

Metallurgical coal price (USD/t) 90

Total annual production (Mtpa) 1.5

South African exchange rate (R/USD) 13

Annual increase in revenue (R million per annum) 175.5

This type of input required from operations adds more value instead of utilising plant operators to

manually change medium densities and to start and stop feeders.

6.2 FURTHER RESEARCH POSSIBILITIES

Based on the discussion in Chapter 5, a number of possible future research topics could stem from this

thesis. From the discussion regarding the simulations of the comminution circuit, the following points

can be made:

• A study could be conducted on a stockpile with volumetric measurements that are incorporated

into the stockpile feeder model developed.

• The double-roll crusher model could be improved by incorporating measurements of motor

angular acceleration.
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• Crusher motor currents could be used in the MPC objective function to optimise power con-

sumption.

The simulations of the separation circuit could benefit from the following future research topics:

• The method of reconstituting the ash content from the coal washability and separator partition

curves should be verified using online ash measurements and more comprehensive metallurgical

data.

• The separator dynamic models can be tested in operating regions where a plant produces very

high yields.

• Secondary processes for a coal facility such as medium recovery could also be modelled and

incorporated into the controller objective to reduce medium consumption and prevent wastage

of process water.

• The use of the UKF for the separator ash state estimation can be enhanced by including online

ash monitor readings with the reconstituted ash based on the coal washability. The less frequent

laboratory analyses can also be used to remove bias in online ash readings.

In general, the MPC simulation for the coal plant could be simulated over longer time periods to

further validate the potential improvement in yield and ash content. A plant-wide MPC simulation

could also be performed where the comminution and separation areas are combined. Further work can

be done where the dynamic model parameters could be estimated online using the UKF algorithm.

Other observer algorithms could also be evaluated with the bin model for further research. Theoretical

observability and controllability analysis on the models could also be performed.

6.3 FUTURE POTENTIAL IN COAL OPTIMISATION

Qin and Badgwell (2003) show an interesting schematic relating MPC to the various hierarchies of

control system functions. Figure 6.1 shows a modified version of the control system hierarchy for N

unit processes. Each unit process is controlled using basic dynamic control. MPC is used to perform
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Regulatory control

Field instruments

MPC

Local optimiser

Regulatory control

Field instruments

MPC

Local optimiser

Plant-wide optimisation

Basic dynamic 
control (every 
second)

Dynamic 
constraint control 
(every minute)

Local economic 
optimisation (every 
hour)

Global economic 
optimisation (every 
day)

Unit 1 Unit N

Figure 6.1: Hierarchy of control system functions in a typical processing plant [adapted from Qin and

Badgwell (2003)].

dynamic constraint control every minute. A local optimiser is used to determine local economic

optimisation every hour to determine required reference trajectories for the MPC. A global plant-wide

optimiser is used to update each unit process local optimiser daily. The scope of this thesis focusses on

simulating MPC for two coal unit processes (comminution and separation). The possibility of applying

local or global economic optimisation for a coal business could provide even further benefits.

Munoz and Cipriano (1999) describe how a grinding-flotation plant was optimised by applying

economic objectives. If MPC becomes standard practice for unit-level control in coal plants (i.e.

comminution and separation areas), economic objectives could also be incorporated in the controllers.

Enterprise- or mine-wide optimisation could be implemented to provide the necessary reference

trajectories and objectives for each unit process MPC. Current coal business information such as mine

planned tonnages, mined actual tonnages, coal geology, coal market prices, sales order requirements

and energy costs can be incorporated into a mine-wide optimiser. Figure 6.2 illustrates an example of

a proposed mine-wide control system architecture where the mine-wide optimisation results are fed
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Mine-wide optimisation

Local MPC optimiser  Local MPC optimiser 1

Mine plan
Mineral resource plan
Actual mined material

Sales plan
Logistics

Electricity costs Consumable costs Market price

● e.g. comminution 
plant

● e.g. DMS for power 
station coal

● e.g. comminution 
plant

● e.g. DMS for 
coking coal

N

Figure 6.2: Mine-wide control architecture.

into the unit process MPCs. This concept is adapted from Qin and Badgwell (2003) as illustrated in

Figure 6.1, but applied to a coal business operation.
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