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HIGHLIGHTS 

 Linear SWIR-based NDMI and AFRI models predicted fAPAR for irrigated and rainfed 
sugarcane most accurately. 

 Calibrated NDVI models performed marginally better than published models for estimating 
fAPAR. 

 Machine learning did not significantly improve estimation accuracy. 
 fAPAR models performed better in irrigated production areas than in rainfed areas. 

                  

ABSTRACT 

Sugarcane is a globally important crop used for producing sugar and for generating renewable energy. 

Timely and accurate forecasts of sugarcane yield and production are needed to optimize supply chain 

operations. Crop growth models (CGMs) are frequently used for sugarcane yield forecasting and have 

been shown to benefit from using remotely sensed data to force (calibrate) biophysical state variables, 

such as the fraction of absorbed photosynthetically active radiation (fAPAR). Little is known about the 

robustness of multispectral vegetation indices for modelling fAPAR in sugarcane growing regions were 

environmental conditions and farming practices are diverse. This study investigated how the 

relationships between multispectral Landsat-8 satellite imagery and in situ sugarcane fAPAR 

measurements vary over large heterogeneous areas. Specifically, it examined which spectral bands 

and indices are most appropriate for modelling fAPAR under particular production environments and 

assessed the robustness of the models for application in areas where sugarcane is grown under varying 

agro-climatic conditions. It was found that cropping and environmental conditions were the main drivers 

of sugarcane fAPAR modelling success. Significantly (40%) lower mean root mean squared errors 

(RMSEs) values were recorded in Pongola, which is attributed to the relatively homogenous conditions 

under which sugarcane is being grown in this area. Generally, the Sezela models were much weaker 

and the normalized difference vegetation index (NDVI) and soil-adjusted vegetation index (SAVI) 

models performed relatively poorly, with the best performing models being dominated by the SWIR 

bands and/or indices generated from it. The non-linear models dominated and are thus recommended 

for operational implementation owing to their relative simplicity and robustness. From these results we 

conclude that the use of remotely sensed data for estimating fAPAR throughout the growing season is 

highly beneficial, but that the selection of suitable variable (index) is critical, especially when the 

sugarcane area being considered is diverse in terms of farming practices, terrain and climate.  
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1. INTRODUCTION 

Sugarcane is grown in more than a hundred countries around the world. In 2016, global sugarcane 

production amounted to 1 890 million tons valued at US$ 92 billion, harvested from 27 million ha at an 

average yield of 70 t/ha (FAO, 2018). The main products from sugarcane are sugar and renewable 

energy in the form of bio-ethanol and bio-electricity and is a major contributor to the economy in 

countries such as Brazil, China, India, Pakistan, Thailand and South Africa (FAO, 2018). Timely and 

accurate forecasts of sugarcane yield and production are needed to optimize operational and resource 

use efficiencies along the supply chain. This includes planning and managing field production, 

harvesting, transport, milling, storage, delivery and marketing operations. Crop growth models (CGMs) 

are frequently used for sugar cane yield forecasting. Specifically, CGMs predict the impact of recent 

weather and water supply on current crop status and calculate the impacts of likely future weather and 

irrigation water supply on yields (Bezuidenhout and Singels, 2007; De Wit et al., 2010; Everingham et 

al., 2002, 2009; Morell et al., 2016). CGMs generally deliver good yield estimations, especially when 

the variation in species and physiological parameters and different cropping styles are taken into 

account. However, CGMs often assume ideal agronomic conditions and do not consider growth 

limitations due to pests, diseases, weeds, poor irrigation scheduling or nutritional deficits (e.g. salinity) 

(Jarmain et al., 2014; Morel et al., 2014). Ideally, CGMs should be calibrated with in situ biophysical 

measurements to represent the actual state of development of the crop. Collecting such data on a 

regular basis is not always cost-effective, especially when large areas are being considered. The 

alternative is to incorporate remotely sensed biophysical derivatives into CGMs to more accurately 

represent the actual state of the crop. This is done by either directly replacing (known as forcing) or 

calibrating so called “state variables” in the CGM with satellite derived biophysical variables (Jin et al., 

2018, 2017; Morel et al., 2014; Moulin et al., 1998).  

A state variable widely used in CGMs is the leaf area index (LAI), which is the one sided leaf area per 

unit projected ground area (Jones and Vaughan, 2010). Examples of CGMs coupled with remotely 

derived LAI for specific crop types include the ROTASK (Clevers et al., 2002) and WOFOST (Huang et 

al., 2015) models for wheat and the CERES model for maize and wheat (Fang et al., 2011; Jin et al., 

2016; Li et al., 2015). A sugarcane specific CGM, called MOSICAS, was implemented by Bappel et al. 

(2005). They showed that forcing the model with LAI (derived from SPOT 4 & 5) reduced the root mean 

squared errors (RMSEs) of sugarcane yield prediction from 19 t/ha to 13 t/ha. Morel et al. (2014) 

similarly implemented MOSICAS by using the fraction of intercepted photosynthetically active radiation 

(fIPAR) derived from SPOT imagery to force the state variable. They found that this forcing improved 

the sugarcane yield prediction RMSE from 14.8 t/ha to 12.2 t/ha. By further optimizing the radiation use 

efficiency parameter, Morel et al. (2014) reduced the RMSE to 10.5 t/ha. Jarmain et al. (2014) 
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experimented with forcing the CANESIM model (Singels and Paraskevopoulos, 2017) with remote 

sensing estimates of fractional canopy cover, evapotranspiration (ET), ET deficit (defined as the 

difference between potential and actual ET) and  aboveground biomass. They found that forcing with 

NDVI  derived canopy cover performed the best and improved the sugarcane yield prediction by as 

much as 13% and consistently outperformed forcing with  other biophysical variables.   

From the examples above it is clear that forcing or calibrating CGMs with remotely sensed state 

variables can significantly improve yield predictions, but that the choice of variable is critical. Biophysical 

variables such as LAI and fraction of absorbed photosynthetically active radiation (fAPAR) seem to be 

most popular. The relationship between these two variables can be described using an equation based 

on Beer’s law: 

𝑓𝐴𝑃𝐴𝑅 ൌ 𝑓𝐴𝑃𝐴𝑅௠௔௫ሺ1 െ 𝑒 ି௞.௅஺ூሻ Equation 1 

Where fAPARmax ranges from 0.93 to 0.97 (Baret et al., 1989) and the radiation extinction coefficient k 

for sugarcane can range between 0.31 and 0.85 (De Silva and De Costa, 2012). There seems to be a 

general agreement that there is a stronger empirical relationship between fAPAR and remotely sensed 

derivatives (e.g. vegetation indices (VIs)) than between LAI and VIs (Fensholt and Sandholt, 2003). 

This is attributed to the strong linear correlation between VIs and fAPAR, whereas the relationship 

between VIs and LAI is often non-linear (Nguy-Robertson et al., 2012). LAI is also known to saturate at 

high canopy-cover densities (Jones and Vaughan, 2010).  

fAPAR is derived from photosynthetically active radiation (PAR) – wavelengths from 400 to 700 nm – 

and is absorbed during photosynthesis. The absorbed PAR (APAR) consists of four components 

namely: 1) the incidence PAR (INPAR); 2) INPAR that is transmitted through the canopy (TPAR); 3) 

TPAR that is reflected by the soil back to the canopy (RPARs); and 4) TPAR and INPAR that is reflected 

away by the soil and on top of the canopy (RPARcs) (Bastiaanssen and Ali, 2003). These components 

interact in the following manner: 

𝐴𝑃𝐴𝑅 ൌ ሺ𝐼𝑁𝑃𝐴𝑅 ൅ 𝑅𝑃𝐴𝑅௦ሻ െ ሺ𝑇𝑃𝐴𝑅 ൅ 𝑅𝑃𝐴𝑅௖௦ሻ Equation 2 

The fraction of absorbed PAR (fAPAR) provides information about a canopy’s’ functioning and is an 

indicator of a plant’s productivity (Jones and Vaughan, 2010). There is a slight difference between the 

fraction of absorbed (fAPAR) and fraction of intercepted (fIPAR) PAR of canopies. fIPAR only accounts 

for the INPAR and TPAR components and assumes that RPARs and RPARcs have relatively small 

influences on the APAR–TPAR relationship (Gallo and Daughtry, 1986). However, the difference 

between the fIPAR and fAPAR is small at high proportions of canopy cover as about 94% of the fIPAR 

is absorbed by the canopy under such conditions (Gallo and Daughtry, 1986; Jones and Vaughan, 

2010; Ridao et al., 1998). fIPAR and fAPAR are consequently often used interchangeably in agronomy 

and specifically in CGMs, but fAPAR is generally preferred as it accounts for the effects of dead leaves, 

stems and soil reflectance (Gallo et al., 1993; Ridao et al., 1998). To prevent ambiguity, the fraction of 
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absorbed/intercepted PAR will from hereon be referred to as fAPAR as it was assumed that the RPARs 

and the RPARcs components had minimal effect. 

fAPAR can be derived from remotely sensed data by using either a physical radiative transfer model or 

an empirically derived relationship (Moulin et al., 1998). The MODIS based MOD15 (Myneni, 1997) and 

the SPOT VEGETATION based CYCLOPES fAPAR (Baret et al., 2007) are examples of fAPAR 

products derived from remotely sensed radiative transfer models. These products use VIs and land 

cover information to represent canopy cover characteristics, which is used to physically model fAPAR 

values. An alternative remote sensing approach for estimating fAPAR is based on empirical models that 

relate in situ measurements to multispectral data (often VIs). Most of these examples are crop-specific 

and include models for maize (Gitelson et al., 2014); wheat (Hatfield et al., 1984); beans (Gitelson et 

al., 2014); cereals (Myneni, 1997); sunflower (Joel et al., 1997); and lucern (Epiphanio and Huete, 

1995). Comparatively few studies have attempted to model the fAPAR of sugarcane. Notable 

exceptions include Morel et al. (2014a) who employed NDVI derived from SPOT 4&5 images to produce 

a linear regression model for estimating the fAPAR of sugarcane fields in Reunion. They obtained a 

model with an R² of 0.9 and RMSE of 9 %. In a similar study, Zhang et al. (2015) used NDVI derived 

from Landsat 7 images to derive a linear regression model of fAPAR of sugar cane fields in Maui, which 

resulted in a model with an R² of 0.97 and RMSE of 4 %.  

The near-linear relationship between fAPAR and VIs is influenced by a number of external factors. 

Empirical and radiative transfer models have shown that effects such as atmospheric conditions, view 

angle geometry, leaf angle distribution (LAD), canopy heterogeneity, reflectance interactions between 

soil-and-canopy and varying solar illumination geometry all play a significant role in the relationship 

between fAPAR and remotely sensed variables. This has led to suggestions that a single VI-fAPAR 

relationship cannot reliably be applied anywhere or at any time and that the relationship must be 

calibrated per site. Furthermore, VI-fAPAR relationships have shown non-linear traits at high canopy 

cover levels due to saturation (Rahman and Lamb, 2017) and at very low canopy cover levels due to 

soil reflectance interference (Jiang et al., 2006).  

Canopy development of sugarcane varies and is a function of genotype (Singels and Donaldson, 2000; 

Zhou et al., 2003), environmental conditions (i.e. temperature) (Campbell et al., 1998; Inman-Bamber, 

1994) and farming practices (e.g. row spacing) (Singels et al., 2005; Singels and Smit, 2002). Given 

these complications it is not clear to what extent remotely sensed data can effectively be used for 

operational monitoring of sugarcane fAPAR over large areas with different climatic conditions and where 

sugarcane is grown under diverse farming practices (e.g. irrigated vs. rainfed and varying row spacing). 

In addition, VIs such as NDVI are known to be affected by background reflection of soil and often 

saturates at high canopy cover levels. These effects are particularly problematic for monitoring 

sugarcane because canopies range from being open (during planting and after harvesting which 

introduces background reflection) to being fully closed (before harvest which could introduce saturation 

effects). Although attempts have been made to reduce the effects of background noise in vegetation 

indices (e.g. by using the soil-adjusted vegetation index (A.R. Huete, 1988)) and to counter the effect 
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of saturation (e.g. MTVI2 (Haboudane et al., 2004)), it is not known whether such approaches will 

improve the accuracy and robustness of sugarcane fAPAR models in complex growing conditions. To 

date, no research has assessed various multispectral indices (that may be less affected by soil 

background and spectral saturation and may include the short wave infrared region (SWIR) for 

sugarcane fAPAR modelling. There is also a need to investigate the non-linear (e.g. exponential) or 

non-parametric (e.g. machine learning algorithms) traits in fAPAR modelling given the variations in 

sugarcane canopies. 

The aim of this study is to investigate how the relationships between multispectral imagery and in situ 

sugarcane fAPAR measurements vary over a large and complex area. The multispectral bands of 

Landsat-8, along with a range of vegetation indices, are statistically compared to field measurements 

taken over two very diverse (in terms of climatic and geographic conditions and farming practices) 

sugarcane-growing areas in South Africa. The results are presented separately per study area and in 

combination to 1) investigate whether specific bands and indices perform better under certain 

production conditions and to 2) assess the robustness of models when applied to such large and 

complex areas. The article concludes with recommendations of how multispectral imagery can be used 

for operational sugarcane growth modelling and yield predictions, particularly within the context of the 

increased availability of high temporal (5-day revisit) and spatial (10m) resolution imagery that has 

recently become available through the European Space Agency’s Copernicus Programme. Remaining 

challenges of the use of remotely sensed data for sugarcane yield forecasting are also highlighted.   

2. METHODS 

2.1 Study areas 

Two sugarcane growing regions within South Africa were chosen as study areas. The first area consists 

of about 4500 fully irrigated sugarcane fields supplying the Pongola sugarcane mill in northern KwaZulu-

Natal province, while the second area encompasses about 5500 rainfed fields supplying cane to the 

Sezela mill in the South Coast region of KwaZulu-Natal. 

In Pongola (27°24'0" S, 31°35'0" E, 308 MASL) (Figure 1), the growing period of sugarcane is typically 

12 months, with harvesting occurring from April to December. The climate is characterized by warm 

summer days (mean daytime temperature of 25 °C during January) and cool winter nights (mean 

minimum temperature for July of 8 °C), averaging to a mean annual temperature (MAT) of 20.7 °C. The 

area receives relatively low rainfall (mean annual precipitation, MAP, of 707mm), which is concentrated 

during summer. The low rainfall combined by a high evaporative demand (mean annual evaporation, 

MAE, of 1336 mm) (Figure 2) necessitates irrigation. The most dominant form of irrigation is overhead 

sprinkler systems, followed by centre pivot and drip irrigation systems. 

The Sezela mill supply area consists of a warm (MAT of 20.6 °C) coastal region and a cooler (MAT of 

19.4 °C) high-lying, inland section. The coastal climate is characterized by relatively high rainfall (MAP 

of 1080 mm), concentrated from October to December, which provides water sufficient for sustaining 
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rainfed sugarcane production. Sugarcane is also grown under rainfed conditions in the cooler, high lying 

inland region, referred to as the Paddock area.  The limited supply of water, along with the cooler 

temperatures, results in relatively long growing periods (18 – 24 months), compared to the shorter 

growing periods of the coastal area (12 to 14 months).  

The terrain of the Pongola and Sezela regions is another important distinguishing factor. The 

topography in Pongola is relatively flat (mean slope gradient, MSG, of 2.5°, standard deviation of 1.5°), 

while the landscape in Sezela is undulating (MSG of 8.9°, standard deviation of 5°). The relatively 

complex terrain of Sezela introduces variation in both the satellite imagery (i.e. illumination differences) 

and the growing conditions (i.e. terroir). These differences in terrain translates to the shapes and sizes 

of the fields within the two areas, with the irrigated fields in Pongola being larger and generally 

geometrically shaped (Figure 1), while the rainfed fields of Sezela (both in the coastal and Paddock 

sections) tend to be smaller with irregular, contour-following boundaries (Figure 2). The shapes and 

sizes of fields are relevant because small, narrow fields are problematic for the retrieval of remotely 

sensed information as it leads to increases in mixed pixels (Lebourgeois et al., 2017), especially when 

the instantaneous field of view (spatial resolution) of the imagery is not substantially smaller than the 

field size.   

 
Figure 1   Pongola study area with an example of its larger, geometrical field structures  
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Figure 2   Sezela study area with an example of its typical ‘contour like’ field structure, resulting in narrow, elongated fields 

 

2.2 Data acquisition and preparation 

2.2.1 In situ fAPAR measurements 

Twenty fields were selected, ten in each of the two study areas.  Fields were selected to get as good a 

representation as possible of the different topography, soil, climate and management conditions 

prevailing in each area.   Management aspects included cultivar, row spacing and configuration, growing 

period and time of harvest, harvesting method (green or burnt cane), and irrigation system. Selected 

fields also included different levels of management quality. 
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fAPAR was estimated by measuring incident (above the crop canopy) and transmitted (below the lowest 

green leaf) photosynthetically active radiation (INPAR and TPAR respectively) with a portable line 

quantum sensor (Model AccuPar LP80, Decagon Devices, Pullman, USA) at approximately monthly 

intervals at five positions in each of the validation fields (Supplementary Material 1) (Figure 1 and Figure 

2 for Pongola and Sezela respectively). Coordinates of measurement positions were recorded using a 

handheld Trimble® Juno® 3B global navigation satellite system (Trimble Navigation Limited, 

Westminster, USA) with a post processing accuracy of 1 to 3 m. Each measurement was taken between 

11h00 and 13h00 on cloud free days and consisted of ten readings, evenly distributed within a marked 

5m section along two adjacent cane rows, taken below the bottom most green leaf, and one reading 

above the canopy. Dates of the field measurements are summarized in Supplementary Material 2. The 

fAPAR by the green canopy was calculated as: 

𝑓𝐴𝑃𝐴𝑅 ൌ 1 െ

1
𝑛 ∑ 𝑇𝑃𝐴𝑅

𝐼𝑁𝑃𝐴𝑅
 Equation 1 

Where fAPAR 
is the estimated fraction of incoming PAR intercepted 

by the green canopy; 

 TPAR represents the measured transmitted PAR; 

 INPAR represents the measured incident PAR; and 

 n is the number of TPAR readings. 

Equation 1 assumes that reflection of PAR from soil and leaves are negligible. According to the manual 

of the quantum sensor it can be assumed that F ≈ 1 – T and that the error because of this assumption 

would be smaller than 0.05. In this study fAPAR values were converted to a percentage by multiplying 

the 0 to 1 fraction by 100. Landsat-8 data collection and preparation 

A total of 38 Landsat-8 Operational Land Imager (OLI) images were acquired from the United States 

Geological Survey (USGS) for the same time period as the in situ data collection (Supplementary 

Material 3). Landsat-8 is a sun-synchronous, moderate resolution satellite with a revisit time of 16 days. 

The OLI sensor has eight spectral bands with a spatial resolution of 30m, and a panchromatic band 

with a spatial resolution of 15m (Supplementary Material 4). Each acquired image was atmospherically 

corrected and converted from digital numbers to percentage surface reflectance using the ATCOR-2 

algorithm (version 8.3) (Richter, 2004). Given the demonstrated benefits of pan-sharpening Landsat-8 

imagery for crop monitoring (Gilbertson et al., 2017), the resolution of all multispectral bands were 

increased to 15 m using the statistical Pansharp algorithm as implemented in PCI Geomatica, 2016 

(Nikolakopoulos, 2008; Zhang, 2002).  

The pre-processed images were manually inspected for cloud cover. Images on which sampling sites 

were influenced by clouds or cloud shadow (seven cases in total) were omitted from further analysis 

(Supplementary Material 3).  
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The surface reflection values (all bands) of the retained images were extracted for each sampling site. 

In situ observations were matched to the image dates as closely as possible. The average offset 

between in situ observations and image acquisition dates was 5 days, with a maximum offset of 14 

days.  

Several transformations were implemented to increase the dimensionality of the variable dataset and 

to model the vigour and moisture properties of sugarcane. Vegetation indices (VIs) are common image 

transformations and are based on the band rationing principle that exploits the contrast between healthy 

vegetation’s absorption of electromagnetic (EM) radiation in the visible spectrum and its high reflectance 

of EM radiation in the NIR region. VIs considered for the modelling of fAPAR are summarized in Table 

1. 

Table 1   VIs considered for modelling fAPAR. 

Index Equation Reference 

1. Simple ratio (SR) 𝑆𝑅 ൌ 𝐵𝑎𝑛𝑑5/𝐵𝑎𝑛𝑑4 (Jordan, 1969) 

2. Normalized difference 
vegetation index 
(NDVI) 

𝑁𝐷𝑉𝐼 ൌ ሺ𝐵𝑎𝑛𝑑5 െ 𝐵𝑎𝑛𝑑4ሻ/ሺ𝐵𝑎𝑛𝑑5 ൅ 𝐵𝑎𝑛𝑑4ሻ (Rouse, 1973) 

3. Green normalized 
difference 
vegetation index 
(GNDVI) 

𝐺𝑁𝐷𝑉𝐼 ൌ ሺ𝐵𝑎𝑛𝑑5 െ 𝐵𝑎𝑛𝑑3ሻ/ሺ𝐵𝑎𝑛𝑑5 ൅ 𝐵𝑎𝑛𝑑3ሻ (Gitelson et al., 1996) 

4. Soil adjusted vegetation 
index (SAVI) 

𝑆𝐴𝑉𝐼 ൌ   ሺ1 ൅ 0.5ሻሺ𝐵𝑎𝑛𝑑5 െ 𝐵𝑎𝑛𝑑4ሻ/ሺ𝐵𝑎𝑛𝑑5 ൅ 𝐵𝑎𝑛𝑑4 ൅ 0.5ሻ (A.R. Huete, 1988) 

5. Enhanced vegetation 
index (EVI)  𝐸𝑉𝐼 ൌ 2.5ሺ

𝐵𝑎𝑛𝑑5 െ 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑5 ൅ 6𝐵𝑎𝑛𝑑4 ൅ 7.5𝐵𝑎𝑛𝑑2 ൅ 1

ሻ (Huete et al., 1996) 

6. Modified triangular 
vegetation index 
(MTVI2) 

𝑀𝑇𝑉𝐼ଶ ൌ  
1.5ሺ1.2ሺ𝐵𝑎𝑛𝑑5 െ 𝐵𝑎𝑛𝑑3ሻ െ 2.5ሺ𝐵𝑎𝑛𝑑4 െ 𝐵𝑎𝑛𝑑3ሻሻ

ටሺ2𝐵𝑎𝑛𝑑5 ൅ 1ሻ² െ ൫6𝐵𝑎𝑛𝑑5 െ 5√𝐵𝑎𝑛𝑑4൯ െ 0.5
 

(Haboudane et al., 2004)

7. Normalized difference 
moisture? index 
(NDMI-SWIR1) 

𝑁𝐷𝑀𝐼 𝑆𝑊𝐼𝑅ଵ ൌ ሺ𝐵𝑎𝑛𝑑5 െ 𝐵𝑎𝑛𝑑7ሻ/ሺ𝐵𝑎𝑛𝑑5 ൅ 𝐵𝑎𝑛𝑑7ሻ (Gao, 1996) 

8. NDMI-SWIR2 𝑁𝐷𝑀𝐼 𝑆𝑊𝐼𝑅ଶ ൌ ሺ𝐵𝑎𝑛𝑑5 െ 𝐵𝑎𝑛𝑑8ሻ/ሺ𝐵𝑎𝑛𝑑5 ൅ 𝐵𝑎𝑛𝑑8ሻ (Gao, 1996) 

9. Aerosol free vegetation 
index, SWIR1 
(AFRI-SWIR1) 

𝐴𝐹𝑅𝐼 𝑆𝑊𝐼𝑅ଵ ൌ ሺ𝐵𝑎𝑛𝑑5 െ 0.66𝐵𝑎𝑛𝑑7ሻ/ሺ𝐵𝑎𝑛𝑑5 ൅ 0.66𝐵𝑎𝑛𝑑7ሻ (Karnieli et al., 2001) 

10. AFRI-SWIR2 𝐴𝐹𝑅𝐼 𝑆𝑊𝐼𝑅ଶ ൌ ሺ𝐵𝑎𝑛𝑑5 െ 0.5𝐵𝑎𝑛𝑑8ሻ/ሺ𝐵𝑎𝑛𝑑5 ൅ 0.5𝐵𝑎𝑛𝑑8ሻ (Karnieli et al., 2001) 

The SR (Table 1a) was first used by Jordan (1969) to measure LAI of a forest canopy. The SR is based 

on the principal that leaves absorb light at 675 nm and reflects light at 800 nm, which means that an 

increase in leaves would result in an increase of the SR. Rouse (1973) elaborated on this ratio by 

computing the normalized difference thereof, resulting in the NDVI (Table 1b), which is one of the most 

commonly employed VIs in remote sensing. The NDVI has been shown to have a number of limitations, 

which led to various adaptations. Gitelson et al. (1996) introduced the GNDVI (Table 1c) and found that  

it was at least five times more sensitive to chlorophyll concentrations in plant leaves than NDVI, which 
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would saturate at high chlorophyll levels. Huete (1988) proposed the SAVI (Table 1d) to reduce NDVI’s 

sensitivity to soil background brightness (Bausch, 1993). The SAVI introduces a soil adjustment factor 

to counter the effect of soil brightness. This factor can vary from 0 to 1 depending on the amount of 

visible soil. Higher values ought to be used in areas with greater proportions of visible bare soil. The 

EVI (Table 1e) was developed as part of the Moderate Resolution Imaging Spectroradiometer (MODIS) 

mission to be more sensitive to high vegetation densities while reducing atmospheric influences (Jiang 

et al., 2008). The MTVI2 (Table 1f) was specifically developed for estimating the LAI and incorporates a 

higher sensitivity to chlorophyll levels and a reduction in soil background noise. 

Karnieli et al. (2001) showed that SWIR reflectance in the 1.6 and 2.1 μm region are highly correlated 

with visible blue, green and red spectral reflectance under clear sky conditions. Cloud therefore 

indirectly represent a fAPAR component. Furthermore, the SWIR region of the EM spectrum is known 

for its sensitivity for soil and vegetation moisture content (Chuvieco and Huete, 2010). The normalized 

difference wetness index (NDWI) was introduced by Gao (1996) and combines the NIR band 

(centralized at around 0.86 μm) and the SWIR band (centralized around 1.24 μm) in a normalized 

difference ratio. According to Ceccato et al (2001), the equivalent water thickness (ETW) concept can 

be used to successfully estimate vegetation water content. They proposed the global vegetation 

moisture index (GVMI), which is a normalized difference ratio between the NIR and SWIR bands with 

coefficients to reduce geophysical and atmospheric effects. This approach is often called the normalized 

difference moisture index (NDMI) (Jin and Sader, 2005) or the shortwave infrared water stress index 

(SIWSI) (Fensholt and Sandholt, 2003). The nomenclature of these indices vary, but in this study we 

implemented two moisture indices, namely NDMI-SWIR1 (Table 1g) and NDMI-SWIR2 (Table 1h). The 

aerosol free vegetation index (AFRI) (Karnieli et al., 2001) is known for its ability to perform well under 

atmospheric conditions such as smoke plumes caused by fires and when certain sulphates are present 

(Ben-Zeev et al., 2006). Although AFRI is less popular compared to the VIs discussed above, it was 

included in this study because pre-harvest burning is a common occurrence in South African sugarcane 

fields. Two versions of AFRI, namely AFRI-SWIR1 (Table 1i) and AFRI-SWIR2 (Table 1j), were 

implemented to exploit both shortwave infrared (SWIR) bands of the OLI sensor. All the indices 

described in Table 1 were used in combination with the individual reflectance bands 4, 5, 7 and 8 

(Supplementary Material 4) to assess their suitability for modelling sugarcane fAPAR in the study areas.  

2.3 Experimental design 

2.3.1 Unit of analysis 

The experiments were carried out within the geographical object-based image analysis (GEOBIA) 

paradigm, with each object representing an individual sugarcane field. The motivation for not using a 

pixel-based approach was that most crop growth models (e.g. CANESIM) operate at field level. Also, 

an object-based approach was considered less susceptible to within-field variations in fAPAR, 

uncertainties in the positional accuracy of the in situ measurements (~ 5m), and possible geometrical 

offsets (~ 15m) in the imagery. A GIS database of fields, digitized from high-resolution aerial 

photographs, was consequently used as the unit of analysis.  
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The fAPAR in situ measurements were aggregated per field to produce a single value (Figure 3), 

resulting in 69 and 57 mean fAPAR values for Pongola and Sezela respectively. Reflectance values 

were similarly averaged for each field using the zonal statistic algorithm as implemented in ArcMap 

(version 10.4). To minimize the effect of mixed pixels caused by adjacent features located at the edges 

of fields (e.g. roads or bare fields), only pixels that were 15 m or further away of field edges were 

considered (Figure 3). Mean reflectance and index values were extracted within the retained areas. 

The experiments were carried out on three different groups of data to evaluate the differences in 

modelling fAPAR for the two diverse study areas. The first two groups of experiments targeted the two 

individual areas (69 fields in Pongola and 57 fields in Sezela), while a third group of experiments were 

carried out on two study area combined (126 fields in Combined).  

 
Figure 3   Conceptual overview of in situ measurement aggregation and reflectance extractions 

2.3.2 Statistical analyses 

The mean reflectance and index values of all 126 sampled fields (from both study areas) were used as 

input to a bivariate correlation analysis to investigate the collinearity among variables. This was followed 

by a series of univariate regression analyses. Table 2 lists the regression models that were considered 

in the model building process. In all cases, the aggregated fAPAR measurements were set as the 

dependent variable, while the individual image variables were used as independent variables. 
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Table 2   Regression models considered for analysis 

Variable 
Type 

Regression model Definition 

S
in

g
le

  Linear 𝑦 ൌ 𝑚𝑥 ൅ 𝑐 

Quadratic 𝑦 ൌ 𝑚ଵ𝑥 ൅ 𝑚ଶ𝑥ଶ ൅ 𝑐 

Cubic 𝑦 ൌ 𝑚ଵ𝑥 ൅ 𝑚ଶ𝑥ଶ ൅ 𝑚ଷ𝑥ଷ ൅  𝑐 

M
ul

ti 
 Decision tree (DT) regressor As described in Breiman et al. (1984) 

Random Forest (RF) regressor As described in Breiman, (2001) 

y = dependant variable; x = independent variable; mn = slope/coefficient; c = constant/intercept 

Each regression model was cross-validated using bootstrapping with 1500 iterations (Wilcox, 2001) to 

reduce the effect of outliers and to normalize the results. During each iteration the fAPAR 

measurements were randomly subdivided into an independent training (70%) and test (30%) sample. 

The test samples were used to calculate a root mean squared error (RMSE) for the predicted fAPAR 

values. The reported results of each regression model is therefore an average of the model’s “goodness 

of fit” (R²) and the model’s performance (RMSE) throughout the 1500 iterations.  

The by-products of the bootstrapping exercise were populations of R², RMSE and regression model 

coefficient values (slope and intercept values (Table 2)) which enabled a statistical analysis on whether 

there were significant differences between relevant population means. The one-way ANOVA test was 

used to determine whether the difference between normally distributed populations (populations where 

tested for normality using D’Agostino and Pearson, (1973)’s algorithm) was statistically significant. The 

non-parametric Wilcoxon singed-rank test was used for skewed populations.  

Two machine learning algorithms were considered for modelling fAPAR. Given that the ultimate 

application of fAPAR will be for forcing a CGM, a continuous (as opposed to categorical) quantification 

was required. Decision tree (DT) and random forest (RF) regressors were consequently implemented. 

The DT regressor was trained with an unlimited tree depth (no pruning) and all variables were 

considered to find the best split (active variables). The RF regressor was trained with a default number 

of ten trees per forest, the number of active variables was set equal to all image variables, and the tree 

depth was set to unlimited (no pruning). The mean squared error (MSE) was used as quality measuring 

criterion for each split in the DT and RF models.  

To further compare the impact of sugarcane variety, different geographical and environmental 

conditions and farming practice, the sugarcane fAPAR models proposed by Morel et al. (2014) (fAPAR 

= 1.3829NDVI – 0.3333) and Zhang et al. (2015) (fAPAR = 1.312NDVI – 0.1921), as well as a generic 

fAPAR model derived by Bastiaanssen and Ali (2003) (fAPAR = 1.257NDVI -0.161) were implemented 

in the bootstrapping exercise. The latter model was developed based on empirical corn, soybean 

(Daughtry et al., 1992) and sunflower (Joel et al., 1997) data, combined with a radiative transfer model 

(Myneni, 1997).   

All statistical analyses were automated in Python (version 2.7.12) using the open source SciPy 

(Oliphant, 2007) and Scikit-learn (Pedregosa et al., 2012) statistical libraries.  
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3 RESULTS 

The progression of fAPAR estimates over time are shown for four example fields (Error! Reference 

source not found.). The remotely sensed fAPAR estimates generally agreed well with in situ 

measurements. Field P5 shows a rapid increase in fAPAR from June to November 2015, a slight decline 

thereafter with subsequent recovery from January 2016 onwards. Field P9 shows an initial increase up 

to September 2015, then a steady decline up to February 2016, coinciding with a period of water stress, 

and then a recovery in March and April of 2016. These contrasting patterns of development are 

explained by the irrigation water supply that became severely restricted from October 2015. Farmers 

implemented different coping strategies. For instance, Field P5 was prioritized over other fields on the 

farm with lower yield potentials, while field P9 bared the brunt of the restricted water supply.  

 
Figure 4. Time series of fractional interception of PAR by sugarcane canopies as measured in situ, and estimated from 
remotely sensed NDVI (linear combined model) and AFRI SWIR1 (linear combined model) for four fields in the Sezela and 
Pongola mill supply areas. An index of regional water stress (1 - no stress, 0 - severe stress) is also shown as simulated by the 
Canesim Crop Forecasting System (Bezuidenhout & Singels, 2007). 

 

At Sezela, Field S4 shows declining in situ measured fAPAR in 2015 during a time of severe water 

stress, and partial recovery in 2016. Remote sensing estimates are higher than in situ measurements 

of fAPAR in 2016. Field S7 shows a steady increase in fAPAR as the crop canopy developed, with good 

agreement between remote sensing estimates and in situ measurements.   



15 

 

15 

3.1 Bivariate correlation 

The bivariate correlation yielded the Pearson’s correlation statistics (R) and the p significance values 

as shown in Table 3. From these results it is clear that many of the independent variables are highly 

correlated. For instance, most of the VIs (excluding the SR) have R statistics of more than 0.92. Due to 

the high redundancy among variables, it was assumed that the regression modelling outputs would be 

similarly correlated. A high level of statistical significance of the ANOVA and Wilcoxon tests would 

consequently be required to reject the null hypothesis that the variables provide similar information. 

Therefore, an alpha level of p < 0.001 was used for establishing the statistical significance. 

Table 3   Bivariate correlation (Pearson R statistic) between variables considered for model building.  

 

Band 4 Band 5 Band 7 Band 8 SR NDVI GNDVI SAVI EVI MTVI2 
NDMI 
SWIR1 

NDMI 
SWIR2 

AFRI 
SWIR1 

AFRI 
SWIR2 

Band 4 1* -0.42* 0.88* 0.86* -0.74* -0.76* -0.72* -0.76* -0.74* -0.74* -0.73* -0.68* -0.71* -0.65* 

Band 5 -0.42* 1* -0.21 -0.58* 0.77* 0.88* 0.87* 0.88* 0.8* 0.84* 0.88* 0.89* 0.87* 0.88* 

Band 7 0.88* -0.21 1* 0.89* -0.58* -0.56* -0.51* -0.55* -0.59* -0.54* -0.62* -0.57* -0.61* -0.55* 

Band 8 0.86* -0.58* 0.89* 1* -0.76* -0.82* -0.78* -0.82* -0.83* -0.82* -0.88* -0.87* -0.88* -0.86* 

SR -0.74* 0.77* -0.58* -0.76* 1* 0.88* 0.9* 0.88* 0.81* 0.82* 0.88* 0.85* 0.86* 0.82* 

NDVI -0.76* 0.88* -0.56* -0.82* 0.88* 1* 0.97* 1* 0.94* 0.98* 0.97* 0.97* 0.97* 0.96* 

GNDVI -0.72* 0.87* -0.51* -0.78* 0.9* 0.97* 1* 0.98* 0.89* 0.94* 0.94* 0.94* 0.94* 0.93* 

SAVI -0.76* 0.88* -0.55* -0.82* 0.88* 1* 0.98* 1* 0.94* 0.98* 0.97* 0.97* 0.97* 0.96* 

EVI -0.74* 0.8* -0.59* -0.83* 0.81* 0.94* 0.89* 0.94* 1* 0.94* 0.93* 0.93* 0.93* 0.92* 

MTVI2 -0.74* 0.84* -0.54* -0.82* 0.82* 0.98* 0.94* 0.98* 0.94* 1* 0.94* 0.95* 0.95* 0.95* 

NDMI-SWIR1 -0.73* 0.88* -0.62* -0.88* 0.88* 0.97* 0.94* 0.97* 0.93* 0.94* 1* 0.99* 1* 0.98* 

NDMI-SWIR2 -0.68* 0.89* -0.57* -0.87* 0.85* 0.97* 0.94* 0.97* 0.93* 0.95* 0.99* 1* 0.99* 1* 

AFRI-SWIR1 -0.71* 0.87* -0.61* -0.88* 0.86* 0.97* 0.94* 0.97* 0.93* 0.95* 1* 0.99* 1* 0.99* 

AFRI-SWIR2 -0.65* 0.88* -0.55* -0.86* 0.82* 0.96* 0.93* 0.96* 0.92* 0.95* 0.98* 1* 0.99* 1* 

* p < 0.001 
 

3.2 Univariate regression 

Table 4 summarizes the performance of the fAPAR models that relied on individual image variables. In 

the interest of brevity, only the five best modelling results for each set of experiments (per region and 

both regions combined) and per regression model (linear, quadratic and cubic) are included (NDVI is 

listed in all areas for comparison purposes). It is evident that the cubic regression models generally 

outperformed the linear and quadratic models. For instance, the strongest models (R²=0.957, 

RMSE=7.72) were achieved in Pongola when SAVI was used as input to a cubic model. In the Pongola 

region, SAVI achieved slightly higher accuracies than NDVI, suggesting that SAVI reduced some of the 

effects of soil background reflectance. The differences in the RMSE populations between SAVI and 

NDVI were, however, not statistically significant in this region (F<1.4; p>0.24).     

The difference in RMSE populations (produced from the iterations) between the best performing SWIR-

based indices and SAVI in the Pongola region was statistically significant for the linear (NDMI-SWIR1) 

and quadratic (AFRI-SWIR1) models (F=39, p<0.001; and F=17, p<0.001 respectively), but was not 

significant for the cubic model (T=1.3; p=0.25). 
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Table 4   fAPAR regression modelling results based on individual image variables, where x̄ refers to the mean and σ refers to the standard deviation value of the specified (R² or RMSE) population. 

 Linear Quadratic Cubic 

R
eg

io
n 

Image variable 
R² RMSE 

Image variable 
R² RMSE 

Image variable 
R² RMSE 

x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ 

P
on

go
la

 

1) SAVI 0.945 0.01 8.35 1.02 1) SAVI 0.947 0.01 8.41 1.09 1) SAVI 0.957 0.01 7.72 1.04

2) NDVI 0.944 0.01 8.39 1.03 2) NDVI 0.946 0.01 8.45 1.10 2) NDVI 0.956 0.01 7.76 1.04

3) NDMI-SWIR1 0.942 0.01 8.59 1.10 3) MTVI2 0.946 0.01 8.51 1.23 3) AFRI-SWIR1 0.956 0.01 7.77 1.22

4) AFRI-SWIR1 0.935 0.01 9.12 1.16 4) AFRI-SWIR1     0.946 0.01 8.58 1.21 4) NDMI-SWIR1 0.954 0.01 8.02 1.24

5) NDMI-SWIR2 0.924 0.01 9.87 1.30 5) NDMI-SWIR1 0.944 0.01 8.70 1.19 5) SR 0.953 0.01 8.29 1.40

S
e

ze
la

 

1) NDMI-SWIR1 0.834 0.03 13.9 2.06 1) SWIR2 0.867 0.02 13.0 1.84 1) SWIR2 0.885 0.02 12.6 2.26

2) AFRI-SWIR1 0.833 0.03 14.0 1.97 2) AFRI-SWIR2 0.85 0.03 13.6 2.18 2) NDMI-SWIR2 0.877 0.02 12.7 2.27

3) NDMI-SWIR2 0.833 0.03 14.0 1.94 3) NDMI-SWIR2 0.843 0.03 14.0 2.14 3) AFRI-SWIR1 0.866 0.03 13.1 2.38

4) AFRI-SWIR2 0.815 0.03 14.9 1.97 4) AFRI-SWIR1 0.837 0.03 14.2 2.13 4) NDMI-SWIR1 0.864 0.03 13.1 2.40

5) SWIR2 0.809 0.02 15.3 1.82 5) NDMI-SWIR1 0.837 0.03 14.3 2.10 5) AFRI-SWIR2 0.872 0.02 13.3 2.45

7) NDVI 0.753 0.04 16.9 2.28 7) NDVI 0.755 0.04 17.28 2.39 7) NDVI 0.769 0.04 16.85 2.64

P
on

go
la

 &
 S

ez
el

a 
co

m
bi

ne
d 1) NDMI-SWIR1 0.892 0.01 11.3 1.27 1) AFRI-SWIR2 0.898 0.01 11.1 1.35 1) NDMI-SWIR2 0.911 0.01 10.4 1.43

2) AFRI-SWIR1 0.889 0.01 11.5 1.20 2) AFRI-SWIR1 0.894 0.01 11.3 1.32 2) AFRI-SWIR1 0.912 0.01 10.4 1.42

3) NDMI-SWIR2 0.882 0.01 11.8 1.26 3) NDMI-SWIR1 0.893 0.01 11.4 1.29 3) AFRI-SWIR2 0.91 0.01 10.5 1.39

4) AFRI-SWIR2 0.863 0.01 12.8 1.33 4) NDMI-SWIR2 0.892 0.01 11.4 1.33 4) NDMI-SWIR1 0.909 0.01 10.6 1.44

5) NDVI 0.861 0.02 12.8 1.52 5) MTVI2 0.878 0.01 12.1 1.37 5) MTVI2 0.885 0.01 11.8 1.45

- - - - - 6) NDVI 0.862 0.02 13.0 1.55 6) NDVI 0.874 0.02 12.4 1.74
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Generally, the Sezela models were much weaker compared to those of Pongola. Specifically, the NDVI-

SAVI models performed relatively poorly in Sezela, with the best performing models being dominated 

by the SWIR bands and/or indices. For example, the cubic model achieved an R²=0.885 and 

RMSE=12.7 when the untransformed SWIR2 band was used. All the SWIR based VIs performed 

significantly better (linear F=955; quadratic F=1408; and cubic F=988 with p<0.001) than the best 

performing non-SWIR VIs (MTVI2 in all cases). It is clear from the difference in magnitude of the 

ANOVA-F values that the variation between the SWIR-based and non-SWIR-based indices are much 

more pronounced in Sezela (compared to Pongola).  

The results of the third set of experiments (performed on the combined fields of the Pongola and Sezela 

regions) similarly showed that the SWIR-based indices outperformed the non-SWIR-based indices. 

Even though the number of fields sampled in the Pongola were more than in Sezela (69:57 ratio), the 

magnitude of the differences between the SWIR-based and non-SWIR-based indices in Sezela 

(maximum F value 1408, compared to 39 in Pongola) resulted in the SWIR-based indices dominating 

when the fields of two regions were combined. The cubic NDMI-SWIR2 model (R²=0.911, RMSE=10.4) 

was significantly different (Wilcoxon T=34K; p<0.001) than the best-performing non-SWIR based VI, 

namely MTVI2 (R²=0.885, RMSE=11.8). The same trend was observed for the quadratic AFRI-SWIR2 

model against MTVI2 (F=421; p<0.001); and the linear NDMI-SWIR1 model against NDVI (F=962; 

p<0.001). 

Figure 4 illustrates the relationship between in situ fAPAR measurements and two VIs, NDVI and NDMI-

SWIR1, for the three sets of experiments. The relationships between the in situ fAPAR measurements 

and the VIs are near-linear, although the cubic model produced lower RMSEs. The difference between 

the linear and cubic RMSE populations where significant for all three sets of experiments. The cubic 

models should, however, be interpreted with caution, since it is susceptible to overfitting. For example, 

the fAPAR values of the cubic NDMI-SWIR1 model in Sezela (Figure 4) start to decrease at values of 

greater than 0.4, which is unlikely in reality. Regression coefficient values (e.g. slope and intercept 

values) between comparable regression models within each of the three sets of experiments (e.g. linear 

NDVI model for Pongola, Sezela and combined fields) showed significant differences for all variables 

in all cases.  
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Figure 4   Empirical fAPAR models based on NDVI and NDMI-SWIR1 for Pongola, Sezela and combined regions.  

 

3.3 Multi-variate regression 

The results of the DT and RF multivariate regression analyses are summarized in Table 5 and Table 6. 

RF regression consistently outperformed DT in all experiments (p< 0.001) with the lowest mean RMSE 

(8.439) recorded in the Pongola region. Despite this relatively low error, the multivariate machine 

learning models were unable to outperform the NDVI/SAVI univariate regression models in Pongola 

(compare Table 4), while in Sezela the RF univariate model produced significantly lower (p <0.001) 

error levels (RMSE=11.9%) compared to the best univariate model (RMSE=12.7%). The NDMI-SWIR2 

univariate model (RMSE=10.4%) also produced significantly better results than DT (RMSE=13.7%) and 

RF (RMSE=10.8%) when the study areas were combined.  

Table 5   Results of the multivariable decision tree (DT) and random forest (RF) regression models for Pongola, Sezela and the 
two areas combined where x̄ refers to the mean and σ  refers to the standard deviation value of the RMSE 
population. 

 DT RF 

 RMSE RMSE 

 x̄ σ x̄ σ 

Pongola 10.46 1.92 8.54 1.49 

Sezela 14.32 3.89 11.86 2.68 

Pongola & Sezela combined 13.67 2.19 10.72 1.71 

The main purpose of implementing DT and RF was to gain additional insight into the importance of 

individual independent variables (Table 6). NDVI and SAVI dominated in Pongola, while the SWIR2 

band and SWIR-based NDMI and AFRI indices were the most important variables in Sezela. The SWIR-

based NDMI and AFRI indices were also the most important variables when the areas were combined.  
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Table 6   The mean percentage variable importance (%VI) of the multi variable regression analyses, where IMV refers to the image variable and σ  refers to the standard deviation (%)  

Pongola Sezela Pongola & Sezela combined 

DT RF DT RF DT RF 

IMV % VI σ IMV % VI σ IMV % VI σ IMV % VI σ IMV % VI Σ IMV % VI σ 

SAVI 19 35 NDVI 14 10 SWIR2 65 39 SWIR2 40 21 AFRI SWIR2 16 31 SWIR2 18 16 

NDVI 19 35 SR 13 9.7 AFRI SWIR2 6.3 22 NDMI SWIR2 10 9.3 NDMI SWIR1 16 32 AFRI SWIR1 15 12 

SR 18 35 SAVI 13 9.6 NDMI SWIR2 6.1 21 AFRI SWIR2 9.9 9.2 AFRI SWIR1 16 31 NDMI SWIR1 15 12 

MTVI2 17 34 MTVI2 13 10 AFRI SWIR1 5.5 21 AFRI SWIR1 8.2 8.9 SWIR2 15 29 AFRI SWIR2 13 11 

AFRI SWIR1 6.3 21 NIR 8.9 11 NDMI SWIR1 5.1 20 NDMI SWIR1 8.0 8.5 NDMI SWIR2 15 31 NDMI SWIR2 12 11 

NDMI SWIR1 5.3 19 AFRI SWIR1 8.2 8.3 EVI 3.1 3.5 Red 4.6 7.1 SR 6.8 21 SR 7.4 9.0 

NIR 5.0 18 NDMI SWIR1 8.2 8.1 Red 2.0 11 SWIR1 4.6 6.6 MTVI2 5.6 19 MTVI2 6.0 7.5 

AFRI SWIR2 3.1 11 GNDVI 5.5 6.4 SR 1.4 5.7 EVI 3.1 3.0 SAVI 2.8 13 NDVI 3.9 6.0 

GNDVI 2.0 11 AFRI SWIR2 4.9 5.9 MTVI2 1.1 6.4 MTVI2 3.1 5.0 NDVI 2.6 13 SAVI 3.6 5.6 

EVI 2.0 10 NDMI SWIR2 4.6 5.9 GNDVI 1.0 2.8 SR 2.6 4.2 GNDVI 1.3 3.5 GNDVI 1.9 2.8 
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This finding corresponds very well with the univariate regression modelling results (Table 4), where 

NDVI and SAVI performed well in Pongola, but poorly in Sezela. These variable importance lists should, 

however, be interpreted with caution as many of the “best” variables are highly correlated and thus 

redundant. For instance, NDVI and SAVI are highly correlated (R = 1, Table 3) and the exclusion of 

either will most likely not have had a significant effect on performance of the models. 

3.4 mparison to existing models 

The resulting RMSE values of the sugarcane fAPAR models of Morel et al. (2014), Zhang et al. (2015) 

and Bastiaanssen and Ali (2003) are reported in Table 7, along with a summary of the NDVI and best-

performing models developed in this study (taken from Table 4). In all cases, the NDVI-based and best-

performing linear, quadratic and cubic models generated in this study were significantly (p < 0.001) 

stronger than those of previous studies.   

Table 7   RMSE values and model coefficients for fAPAR models of Morel et al. (2014), Zhang et al. (2015) and Bastiaanssen 
and Ali (2003) compared to the models derived in this study. Where Y represents the model’s intercept and X 
represents the model’s slope/s, IMV represents the image variable, and BP represents the best performing image 
variable. 

  Pongola Sezela 
Combined Sezela & 

Pongola 

Model IMV RMSE Y* X* RMSE Y* X* RMSE Y* X* 

Linear 
(Morel) 

NDVI 9.88 - 0.3333 1.3829 17.15 - 0.3333 1.3829 13.70 - 0.3333 1.3829 

Linear 
(Zhang) 

NDVI 10.16 - 0.1921 1.312 17.90 - 0.1921 1.312 14.30 - 0.1921 1.312 

Linear 
(Bastiaanss

en) 
NDVI 10.85 - 0.161 1.257 18.28 - 0.161 1.257 14.70 - 0.161 1.257 

Linear 
(this study) 

BP 8.351 -0.30754 0.9755 13.954 0.2779 1.3945       11.267 0.2629      1.3710      

NDVI 8.39 -0.31156 1.4507 16.93 -0.3501 1.5005 12.85 -0.3255     1.4672      

Quadratic 
(this study) 

BP 8.412 -0.23194 
x: 0.7062 
x²: 0.186 

12.995 1.4597      
x: -0.1043 
x²: 0.00019 

11.088 -0.0179 
x: -0.1844 
x²: 1.4945 

NDVI 8.45 -0.23249 
x: 1.0353 
x²: 0.4247 

17.27 -0.347 
x: 1.4805 
x²: 0.0239      

12.95 -0.2769 
x: 1.2240 
x²:0.2467 

Cubic 
(this study) 

BP 7.723 0.333 
x: -2.209 
x²: 4.452 
x²: -1.877 

12.566 1.023       
x: -0.00001 
x²: -0.0053 
x²: 0.00014 

10.399 0.0469      
x: 0.5778      
x²: 2.5103     
x²: -2.4335 

NDVI 7.76 0.347 
x: -3.373 
x²: 9.961 
x³: -6.209 

16.84 0.221       
x: -2.6433 
x²: 8.7493 
x³: -5.5895 

12.40 0.2868      
x: -2.9992 
x²:9.3231      
x³:-5.8777 

DT 
(this study) 

All 10.46 - - 14.32 - - 13.67 - - 

RF 
(this study) 

All 8.54 - - 11.86 - - 10.72 - - 

Overall mean 8.996 - - 15.46 - - 12.55 - - 

1,2,3 SAVI,  4 NDMI-SWIR1,  5,6 SWIR2, 7 NDMI-SWIR1, 8 AFRI-SWIR2, 9 NDMI-SWIR2 

*  model output fAPAR fractions can be multiplied by 100 to provide % fAPAR values.   
 

4 DISCUSSION 

The potential of remotely sensed imagery for modelling sugarcane fAPAR has been demonstrated in 

several previous studies. However, previous studies evaluated the developed models in areas where 

the cropping and environmental conditions were relatively homogenous. In this study, three existing 

and a number of new sugarcane fAPAR models were implemented in two contrasting areas to better 
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understand model robustness. It was found that cropping and environmental conditions were the main 

drivers of sugarcane fAPAR modelling success. Significantly (40%) lower mean RMSE values were 

recorded in Pongola, which is attributed to the relatively homogenous conditions under which sugarcane 

is grown in this area. Specifically, the sugarcane in this area is irrigated, which means that the likelihood 

of water stress is lower compared to the rainfed cropping practiced in Sezela. The effect of this is that 

the canopy cover in Pongola is more uniform (homogenous, less variation in LAD), resulting in the in 

situ fAPAR samples being less variable and more representative of the within-field conditions. The 

climate and landscape of Sezela is also much more diverse, with the coastal regions being warm and 

wet and the inland areas experiencing cooler and dryer conditions. It is also conceivable that 

atmospheric influences were more pronounced in Sezela, which is located along the coast with larger 

sources of aerosols (e.g. larger urban populations and industries), which could have contributed to the 

relatively poor results in this region. It is likely that topography also contributed to the relatively poor 

performance of the models in Sezela, given that the landscape in Pongola is relatively flat and 

homogenous (mean slope gradient of 2.5°, standard deviation of 1.5°) compared to Sezela’s undulating 

terrain (mean slope gradient of 8.9°, standard deviation of 5°). These topographical variations are 

known to affect local climate, with north-facing slopes generally being warmer compared to southern-

facing slopes which results is a highly variable solar illumination geometry and angle of incidence PAR.  

Since both the Pongola and Sezela sampled fields had variation in sugarcane cultivars (Supplementary 

Material 1) and the Pongola fAPAR models performed significantly (this term is consistently used in this 

article to signify statistical significance) better than that of Sezela, we can assume that the 

environmental, geographical and farming practice variations had a bigger impact than the variation in 

cultivars on the modelling of fAPAR.  

The relatively poor performance (mean RMSE of more than 13.7% for the combined study areas) of the 

sugarcane fAPAR models developed in other regions or based on different crops (Morel et al. (2014), 

Zhang et al. (2015) and Bastiaanssen and Ali (2003)) suggests that such models are not always 

transferable. As with the models generated in the present study, the existing models performed 

substantially better in Pongola compared to Sezela. For instance, the model by Morel et al. (2014) 

performed reasonably well in Pongola (RMSE of 9.81%), but in Sezela it returned the second-highest 

error rates (17.16%) of all the models tested. This further emphasises the challenges of implementing 

fAPAR modelling in diverse areas such as Sezela. Given these results and, because all of the related 

regression model coefficient values (slopes, intercept) were significantly different, re-parameterization 

is suggested to achieve the best possible results for a unique area, when deriving fAPAR values 

empirically. 

The SWIR-based variables played an important role in the models generated from the in situ data. 

According to Curran (1989), the SWIR region of the electromagnetic spectrum is sensitive to a number 

of foliage chemicals, including sugars and starches. In addition, the SWIR2 band is known to respond 

to the presence of proteins, nitrogen and cellulose. This wider chemical sensitivity of the SWIR2 band 

is likely why it featured frequently in the best models. Furthermore, compared to shorter wavelengths, 
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the SWIR region of the EM spectrum is less affected by atmospheric influences such as aerosols (e.g. 

smoke and sulphates) (Karnieli et al., 2001; Kaufman and Tanre, 1992) and may explain why the SWIR 

bands dominated the models produced in Sezela (which has more pronounced atmospheric 

influences). Although none of the generated models were unaffected by the large variations in 

cultivation practices and environmental conditions of the two study areas, it would seem that the SWIR-

based variables were more robust in modelling fAPAR. Unlike the red and NIR regions of the EM 

spectrum, little is known of the SWIR capabilities in modelling fAPAR values and should be considered 

in further research. 

The results show that the cubic regression models performed significantly better than the linear and 

quadratic models. Since the bootstrapping principle was applied in model training and evaluation, 

overfitting should be minimized in the aggregated result. However, based on the scatter plots it seems 

that the modelled fAPAR values deviate from what would be expected at certain levels. In particular, 

the decreasing relationships between the measured fAPAR and NDMI-SWIR1 (> 0.4 and < -0.2) is of 

concern. Although the cubic function achieves a better fit at lower (<40) fAPAR levels, it severely 

underestimates fAPAR at higher (>85) levels. One could thus argue that there is a higher risk with using 

the cubic model for operational purposes as it would require a good understanding of the feature-

specific threshold values, especially in the low and high fAPAR ranges.  

The Landsat-8 imagery used in this study proved very useful, but other sources of imagery should be 

considered in future research. For instance, the use of Sentinel-2 imagery (instead of, or in addition to 

Landsat-8) will reduce the average period between image acquisition and in situ measurement dates 

as it has (since mid-2017) a 5-day revisit time (compared to the 16-day revisit time of Landsat-8). 

Shorter periods between in situ measurements and image dates will likely strengthen the models.  

5 CONCLUSION 

In this study, a range of existing and new fAPAR models were generated from multispectral (Landsat-

8) data using regression and machine learning. The models were applied in two large and very diverse 

sugarcane growing regions of South Africa, namely the Pongola and Sezela mill supply areas situated 

in northern and southern Kwazulu-Natal respectively. Based on the findings we conclude that: 1) 

existing NDVI-based fAPAR models (developed in other regions) were not as robust as the models 

generated in this study; 2) SWIR-based models seem to be more robust (stable), with AFRI and NDMI 

based on SWIR1 performing consistently well; and 3) fAPAR models should preferably always be 

calibrated with local in situ data for best performance.  
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Supplementary Material 1   Cropping details for the validation fields 

Mill area *Field 
code 

Field 
Size (ha) 

Variety Row spacing (m) 
and configuration 

Crop class 
on Jun-15) 

Crop 
Start date 

Harvest date Cane yield 
(t/ha) 

Harvesting 
Method 

Irrigation 
System 

2014 2015 2016 2014 2015 2016 

Pongola P1 7.0 N41 1.4 SL R4 19-May-13 04-Jul 07-Jun 10-Jun 96 81 70 B SP 

Pongola P2 5.7 N41 1.4 SL R6 28-Apr-13 20-May 04-May 04-Jun 67 88 75 B DL 

Pongola P3 4.2 N23 1.2 SL R9 20-Jul-13 01-Aug 05-Jul-05 20-Jun 108 104 58 B DL 

Pongola P4 13.3 N36 1.8 x 0.6 TL R2 15-Mar-13 28-Jun 29-Jun 22-Aug 167 132 83 B CP 

Pongola P5 13.2 N53 1.8 x 0.6 TL R2 15-Jan-13 04-Apr 05-May 06-Jul 200 153 65 B CP 

Pongola P6 9.4 N53 1.8 x 0.4 TL P 28-Feb-15 - - 02-Jun - - 194 B D 

Pongola P7 9.0 N41 1.8 x 0.6 TL R1 11-Apr-14 -  10-Apr 22-Jun - 144 87 B D 

Pongola P8 4.0 N41 1.4 SL R2 13-May-13 14-Jun 15-May 21-May 67 - 55 B SP 

Pongola P9 7.0 N53 1.8 x 0.5 TL P 07-Mar-15  -  - 24-May - - 33 B SP 

Pongola P10 10.6 N53 1.8 x 0.5 TL R2 01-Mar-13 22-May 15-Jun 03-Aug 102 93 14 B CP 

Sezela S1 13.4 N39 1.2 SL R1 03-Dec-13  - 10-Apr 25-Jun - 60 79 B RF 

Sezela S2 7.1 N39 1.0 SL R3 01-Oct-13 01-Oct 15-Oct -  50 - - B RF 

Sezela S3 6.5 N12 1.0 SL R1 15-Oct-13  - 28-Jul -  - 101 - B RF 

Sezela S4 4.2 N12 1.5 SL R2 01-Nov-13 07-Sep  - 10-May 99 - 73 B RF 

Sezela S5 10.6 N12 1.5 SL R1 01-Oct-13 07-Sep  - 16-Jun 66 - 95 B RF 

Sezela S6 31.5 N47 1.2 SL R2 05-Jul-13 20-Jul 18-Sep   44 54 - G RF 

Sezela S7 12.5 N41 1.2 SL R1 12-Oct-13  - 30-Apr 23-Jun - 62 80 G RF 

Sezela S8 24.8 N12 1.0 SL R13 26-Jun-13 22-Sep 28-Aug  - 41 31 - B RF 

Sezela S9 28.9 N12 1.0 SL R8 15-Nov-13  - 08-Apr 08-Jul - 50 62 B RF 

Sezela S10 15.0 N12 1.0 SL R14 02-Dec-13 21-Nov -  21-May 47 - 76 G RF 

* Actual field numbers and grower information have been kept confidential 
B = Burnt harvest; CP = Centre Pivot; D = Drip; DL = Drag Line; G = Green harvest; P = Plant Crop; R = Ratoon No.; RF = Rainfed; SL = Single Lines; SP = Semi Permanent; TL = Tram Lines 
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Supplementary Material 2   Ground sampling dates for the different validation fields 

Mill area Field Code Jun-15 Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 Sep-16 Oct-16 

Pongola P1  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔    ✔ ✔ ✔ ✔ 

Pongola P2  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔    ✔ ✔ ✔ ✔ 

Pongola P3  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Pongola P4  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔     ✔ ✔ 

Pongola P5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Pongola P6 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Pongola P7 ✔ ✔ ✔ ✔ ✔ ✔         ✔ ✔ ✔ 

Pongola P8  ✔ ✔ ✔ ✔ ✔   ✔  ✔  ✔ ✔  ✔ ✔ 

Pongola P9 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Pongola P10  ✔ ✔ ✔ ✔ ✔   ✔      ✔ ✔  

Sezela S1  ✔ ✔ ✔ ✔ ✔  ✔ ✔ ✔ ✔   ✔ ✔ ✔ ✔ 

Sezela S2  ✔ ✔ ✔ ✔ ✔  ✔ ✔ ✔ ✔ ✔ ✔ ✔    

Sezela S3  ✔ ✔ ✔ ✔ ✔   ✔ ✔ ✔ ✔      

Sezela S4  ✔ ✔ ✔ ✔ ✔   ✔ ✔  ✔ ✔ ✔ ✔ ✔  

Sezela S5  ✔ ✔ ✔ ✔ ✔   ✔    ✔ ✔ ✔ ✔  

Sezela S6  ✔ ✔ ✔ ✔ ✔  ✔ ✔ ✔ ✔ ✔ ✔ ✔    

Sezela S7  ✔ ✔ ✔ ✔ ✔  ✔ ✔ ✔ ✔   ✔ ✔ ✔ ✔ 

Sezela S8  ✔ ✔ ✔ ✔ ✔  ✔ ✔ ✔  ✔ ✔ ✔ ✔ ✔  

Sezela S9  ✔ ✔ ✔ ✔ ✔  ✔ ✔ ✔  ✔ ✔ ✔ ✔ ✔  

Sezela S10  ✔ ✔ ✔ ✔ ✔  ✔ ✔ ✔  ✔ ✔ ✔ ✔   
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Supplementary Material 3   Summary of acquired Landsat-8 images with path row numbers and indication of 
cloud interference  

Pongola Sezela (Path/Row) 

Path/Row: 168/79 Path/Row: 168/81 

2015-05-13* 2015-05-13 

2015-05-29 2015-05-29 

2015-06-14 2015-06-14 

2015-07-16 2015-08-01 

2015-08-01 2015-08-17 

2015-08-17 2015-09-02 

2015-10-04* 2015-10-04 

2015-10-20 2015-10-20 

2015-11-05 2015-11-05 

2016-02-09 2016-01-24* 

2016-03-28 2016-03-12* 

2016-04-29 2016-03-28* 

2016-05-31 2016-04-29 

2016-07-18 2016-05-15 

2016-08-03 2016-05-31 

2016-08-19 2016-07-18 

2016-09-20 2016-08-03* 

2016-10-06 2016-09-20 

2016-10-22* 2016-10-06 

* Landast images affected by cloud and omitted from analysis 
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Supplementary Material 4   Landsat-8 OLI technical specifications 

Landsat-8 Band  Description Wavelength (μm) Spatial resolution 

1 Coastal aerosol 0.43 - 0.45 30 m 

2 Blue 0.45 - 0.51  30 m 

3 Green 0.53 - 0.59  30 m 

4 Red  0.64 - 0.67  30 m 

5 Near Infrared (NIR) 0.85 - 0.88  30 m 

6 Cirrus 1.36 - 1.38  30 m 

7 Short Wave Infrared 1 (SWIR1) 1.56 – 1.65 30 m 

8 Short Wave Infrared 2 (SWIR2) 2.10 - 2.29  30 m 

Pan Panchromatic 0.503 – 0.676 15 m 

 

 

 
 


