
Estimation of High Energy Steam Piping Degradation Using Hybrid Recurrent Neural
Networks

JL van Niekerka, PS Heynsa, MP Hindleyb, C Erasmusc

aCenter for Asset Integrity Management, University of Pretoria, Pretoria, South Africa
bPlant Engineering, Ultra Safe Nuclear, Lynnwood, Pretoria, South Africa
cResearch Testing and Development, Eskom, Johannesburg, South Africa

Abstract

The degradation of high energy piping systems is very complex to simulate due to the many variables that influence the useful
lives of such systems. Estimation of the extent of degradation is however important in the maintenance planning process. In this
research the use of data driven machine learning techniques to deal with this complex problem is investigated. A hybrid recurrent
neural network is created that consists of a combined recurrent neural network and a feed forward neural network. The hybrid
model is trained on historical data that has been captured over a six-year time period. The following variables related to piping
system components are used as inputs to the machine learning model: operating temperature and pressure time history, distance
to the closest anchor point, distances to neighbouring supports, elevation survey readings, as well as the last known creep damage
measurements on the component. The model is created in Python using the Tensorflow library. A recurrent neural networks (RNN)
is employed, namely the gated recurrent unit (GRU). The adaptive movement estimation optimization algorithm, called Adam, is
used to optimize the machine learning model. The trained model is able to predict the degradation classification of a component
with an accuracy of up to 92% on the training dataset and up to 55% on the validation data set. When using this model to predict
components with high creep damage, more than 400 voids per mm2 a hit rate of 25% is achieved. The current system employed
at operating power stations shows a historic hit rate of 14%. This is a significant increase in performance and could be used to
compile more efficient inspection plans. The model is successful in recognising patterns within the data and offers an automated
way to parse large data sets that consist of a temporal and static data mixture simultaneously. Conventional data driven models are
only able to look at either temporal data or static data. This suggests a generic approach to make objective decisions on similar
complex data driven problems and its application is not limited to this particular problem. The methods applied in this research are
expected to perform even better on problems where the frequency of data collection is higher than what is used in this research.

Keywords: Machine Learning, High Pressure Pipework, Recurrent Neural Network, LSTM, GRU, Condition Based Maintenance,
Creep Degradation Estimation, Power Plant, Pipe Elevation Survey.

1. Introduction

The high pressure-steam pipework in a coal-fired power plant
experiences fluctuating temperatures and pressure conditions
during operation. Replacement of the system components is
done on a preventative maintenance basis. The condition of
the components are monitored during outages throughout their
lives and replaced once significant creep damage or cracks are
observed.

The steam piping systems in Figure 1 are supported from
spring hangers, guides and rigid supports that are installed at
strategically placed locations. The piping support system is de-
signed to minimise the pipe stresses during operating condi-
tions, due to the fact that the creep life and pipe stress have a
direct negative correlation. Elevation surveys are used to see
if the pipework is moving as per its original design, when the
piping conditions are changed from atmospheric conditions to
operating conditions.

Pipe supports that are not working within their intended de-
sign envelope usually cause increased stress on the piping sys-

tem and directly influences the useful life of the pipework sys-
tems that are operating in the finite life temperature range.

The aim with this work is to see if any patterns can be rec-
ognized from historical data and to see if premature failures
could be linked to the operating conditions (pressures and tem-
peratures) as well as supports that are operating outside of its
design intent. It has been shown that artificial neural networks
(ANNs) can be used to make remaining useful life predictions
for various applications where sufficient historical data is avail-
able. ANNs have been developed and proven to be successful
in many diagnostic and prognostic applications as shown by
Venkatesh and Rack (1999) and Tian (2012).

In the previous research conducted the data inputs are either
temporal or static. In this research a hybrid network is imple-
mented that can take both temporal and static data simultane-
ously as inputs. Due to the number of input features involved
and the sensitivity of the remaining useful life to the input vari-
ables, the problem is regarded to be in a high-dimensional fea-
ture space. Using traditional remaining useful life methods to
make very accurate predictions seems to be impossible. Using

Preprint submitted to International Journal of Pressure Vessels and Piping May 2, 2019

Figure 1: Main Steam And Cold Reheat Piping Systems

a hybrid recurrent neural network offers a possible way of gen-
erating predictive models for complex problems such as these.

1.1. Problem Statement

Replacing components at the end of its useful life is a very
tedious process requiring a lot of time and resources. Predict-
ing when components will need to be replaced is notoriously
difficult in these systems. Currently there exists no reliable
automated method that can be employed to predict the end of
life of a component operating in such systems. Predictions are
traditionally made by experienced system engineers who base
their inspection and replacement plans on previous inspection
results, basic creep life model estimations and past experience
with these systems.

Due to the high number of variables present in piping sys-
tems, it is very difficult to make an accurate prediction as to
when components will need to be inspected. These variables in-
clude: material strength scatter, welding techniques, post weld
heat treatment, the geometry of the piping systems, fatigue,
creep, corrosion, erosion, vibration, support effort, stress and
temperature during operation, thermal expansion stress, etc.

A method is needed to parse both the temporal data (temper-
ature and pressure sequences) and static data (collected during
outages) and give an objective prediction of the expected dam-
age of a piping component before the unit is shut down for com-
ponent inspection. The prediction needs to be data driven and
based on historical experience.

Improved remnant life estimates of high-energy piping sys-
tems will enhance life-cycle management of piping systems and
pipe-replacement interventions can be planned accordingly.

1.2. Creep life of a component
Damage models are based on metallographic micro-void

damage. During outages the metal surfaces of the high energy
piping systems are replicated using a metallographic replica.
This is inspected under a microscope with a magnification of
400 times. Voids are counted and quantified as voids per square
millimetre. Creep damage models are usually specific to the
type of weldment, base material and geometry.

Where the creep strain rate is less than 10−6/h the assumption
is made that the strain rate is directly proportional to the void
formation rate (Van Zyl et al., 2005).

dε
dt

= k
dN
dt

(1)

The fraction of life used can be written as:

t
tr

=

1 − (
1 −

N
N f

)λ (2)

where N is the current number of voids per square millimetre
and N f the number of voids per square millimetre at end of
the component useful life. In practice this could evolve to a
few thousand voids per square millimetre before micro crack
formation and crack development occur. The material specific
ductility parameter is λ and the life fraction consumed of a com-
ponent is t

t f
.

It is important to note that there is a direct relation between
the number of voids measured (N) and the consumed life frac-
tion of a component (t

t f
). It is therefore possible and more con-

venient to train a machine learning model on the number of
voids measured (N), and use the model to predict the future
number of voids in a component. If the number of voids are
known then the remaining life of the component can be calcu-
lated.

Equation 2 is a useful way to monitor the life fraction used of
a component throughout its life, by taking metallographic repli-
cas during outages. The life fraction used (t

tr
) can be employed

as the regression or classification label (~y) to train a machine
learning model. In this the number of creep voids is used as the
label (~y). This makes the model less complex and besides nor-
malizing the data, no post processing is required to determine
the expected number of voids measured during an outages.

Figure 2: Creep void damage in X20CrMoV121 Main steam bend in 2003

2

Figure 2 shows an image of the material surface under a mi-
croscope using 400 times magnification. During outages the
metallographic replicas, that could be likened to a fingerprint of
the material structure, are sent to a laboratory where the num-
ber of voids per square millimetre are counted for each replica
slide. This is recorded and used to label the condition of the
components in this work.

2. Methodology

A feed forward neural network is combined with a recurrent
neural network to form a hybrid neural network. The hybrid
neural network has the advantage that both temporal as well as
static data can be used as input to a single hybrid neural network
model and optimization of both constituent networks can take
place at the same time. This means that the model parameters
should theoretically be optimized to account for interdependen-
cies between the temporal and static data inputs. The hybrid
network parameters are updated using the Adam-optimization
algorithm that makes use of gradient descent back propagation
and the loss, which is an error measure that measures the per-
formance of the hybrid network.

The dataset used is also explained briefly in this section as
well as the formatting of the dataset that is needed to feed the
data into the network.

2.1. Feed Forward Neural Network

A feed forward neural network (FFNN) consists of an input
layer, hidden layers and an output layer, where all connections
are forward feeding and no recurrence or backward feeding is
applied. The number of input, hidden and output layers can
be customized to fit a specific problem. A simple FFNN that
consists of the following is depicted in Figure 3:

• One input layer, with two input nodes and one biased pa-
rameter.

• One hidden layer, with three hidden nodes and one biased
parameter.

• One output layer, with two output nodes.

The feed forward neural network is a powerful pattern recog-
nition tool as explained by (Duda et al., 2001). There exist
many permutations of the feed forward neural network. The
hidden layers as well as the output layers have a non-zero bias
nodes as an input that is connected to all nodes in the layer.

The activation functions can be any one of many functions.
In this research softmax and tanh functions are used based on a
trial and error.

Figure 3: Feed forward neural network

Assuming the activation function that is used for forward
propagation is tanh, then for a system with I input layers, N
hidden layers and M output layers.

~z1 = ~x ~W1 + ~b1 (3)
~a1 = tanh(~z1) (4)

~z2 = ~a1 ~W2 + ~b2 (5)
~y ′ = softmaxc(~z2) (6)

where ~W1 ∈ RI×N , ~b1 ∈ RN , ~W2 ∈ RN×M and ~b2 ∈ RM . The
values of ~bn are changed during training while b1 and b2 are
constant values typically chosen as 1.

2.2. Recurrent Neural Network
An RNN is a network based on the principle of the feed for-

ward network adapted for application on sequential data. The
difference is that the output of step t is used as the input to step
t + 1.

The cell takes an input xt and outputs a value ht and allows
information obtained at time t to persist to time t + 1.

RNNs have proven to be ideal for sequential data tasks such
as speech and handwriting recognition and generation (Chung
et al., 2015).

One of the appealing features of RNNs is the idea that they
might be able to connect previous information to the present,
such as using previous data to give context to the data that is
read at the current time step. This is useful in analysing tempo-
ral data such as temperature and pressure data.

2.3. Gated Recurrent Unit
Bengio, Simard and Frasconi (1994) investigated the prob-

lems with the RNN, and discovered that the importance of the
current input on the RNN output quickly diminishes within a
few steps.

The Gated Recurrent Unit or GRU was introduced by Cho
et al. (2014). This is a simplified version of the LSTM (Hochre-
iter and Schmidhuber, 1997) that combines the input gate and
the forget gate. The gated algorithm has gained preference from
researchers, partly because the GRU trains in less time and gen-
erally can be trained using less data.

3

The calculation sequence used in the GRU cell to get the cell
output is:

~zt = sigmoid(~Wz · [~ht−1, ~xt]) (7)

~rt = sigmoid(~Wr · [~ht−1, ~xt]) (8)

h̃t = tanh(~W · [~rt � ~ht−1, ~xt]) (9)

~ht = (1 − ~zt) � ~ht−1 + ~zt � h̃t (10)

2.3.1. GRU Back propagation

Due to the increased complexity of the GRU cell over the
normal FFNN cell, the calculation of the gradient descent algo-
rithm becomes much more involved. The complete derivation
of back propagation algorithms is explained in (Hochreiter and
Schmidhuber, 1997). An open source application program in-
terface that can do automatic differentiation, Tensorflow, is used
here to perform the computations.

2.4. Hybrid RNN

Figure 4: Tensorflow Graph

For the training and validation datasets four tensors are cre-
ated [~x, y, seqlen, ~components].

~x The temperature and pressure input
sequence. A two dimensional float
tensor of shape [sequence length, 2
].

y The label, in this case the maxi-
mum number of voids experienced
by a component, the tensor con-
tains a single float value.

seqlen The length of the sequence is saved
in a tensor that contains a single
value.

~components The discrete information related to
each of the components includ-
ing elevation survey readings, last
known maximum number of voids.
A one dimensional float tensor of
shape [number of features].

Tensorflow batches are created where the batch size = K. A
batch is a collection of multiple inputs. A batch of size K con-
tains the data for K components.

2.4.1. Training Sequence
In Figure 4 the training data batch is sent to the hybrid RNN

prediction model. The model makes a prediction on each of
the entries in the training batch. The loss is calculated by
comparing the predicted labels to the actual labels. The loss,
which is an error measure, is sent to the Adam-optimiser algo-
rithm that calculates the gradients as per subsection 2.6. The
Adam-optimizer algorithm determines the updates that need to
be made to the model parameters and the model is updated ac-
cordingly. The model parameters are saved in order for it to be
recalled during the testing and validation sequences.

It is important to note that the model is only trained using the
training data. The validation data batch is only fed into the hy-
brid RNN prediction model and the accuracy of the predictions
are calculated.

2.4.2. The Model Layout
The model layout is shown in Figure 5. The sequential data

is sent through a GRU model to compress the information con-
tained in the temperature and pressure sequence to a single
value.

2.4.3. The Hybrid Recurrent Neural Network Forward Pass
The model hyper-parameters need to be decided to before

the network weights are optimized. The hyper-parameters
of the network was chosen based on more than 15 trail runs
and changing the hyper-parameters manually to improve
performance. Although the parameters of the hybrid RNN is
optimised in this work, the hyper-parameters are not fully op-
timised and does leave room for improvement. The following
hyper parameters were chosen for this research:

4

Figure 5: Hybrid RNN Model Layout

n hidden RNN = 2 (RNN cell output size/ number of out-
put hidden nodes)

n classes RNN = 1 (Number of outputs of the RNN Net-
work)

n comp = 37 (Number of static component features)
n hidden fc2 = 256 (Number of hidden nodes in fully con-

nected layer 2)
n hidden fc3 = 64 (Number of hidden nodes in fully con-

nected layer 3)
n classes = 1 (Number of output classes, this is 1 in

case of regression)

An overall feed-forward pass function is created. This func-
tion takes the batch x, batch component, and batch sequence
length values as an input. The built-in dynamic RNN function
is used, which enables the use of varying length tensors in the
same batch. The dynamic RNN uses the batch x values and
the sequence length as an input, while the component vector is
used together with the output of the RNN to form the input of
the FFNN. The specified cell is an GRU cell and the outputs of
the RNN are calculated as described in section 2.3.

~output = dynamic rnn(~x, GRU cell, Seqlen) (11)

The RNN gives an ~output in the shape: [batch size, max se-
quence len, n hidden RNN]

The RNN output saves the output vector for each step of the
RNN. However only the last output is of interest. The index

of the last output of each of sequence in the batch needs to be
saved and is calculated using:

~index = range(0, batch size) ×max(seqlen) (12)

+ (~seqlen -1)

The index is a vector that contains the location of the final
output for each of batch entry, in a flattened output vector. Only
the output vectors at the index locations are saved in the output
matrix, the rest are discarded. Each line in the output matrix
contains the last RNN outputs of shape [n hidden RNN], of a
batch entry. This means the output is in the shape, [batch size,
n hidden RNN].

The final RNN output is calculated for each batch using:

~z f c1 = tanh(~output[index]) ~W f c1 + ~b f c1 (13)

where tanh is the activation function used. The RNN Output
is concatenated with the static inputs (batch comp) to form a
dense input to the next fully connected layer of shape [n classes
RNN + n comp].

~z f c2 = tanh(~dense input) ~W f c2 + ~b f c2 (14)

This is sent through more feed forward layers in the same fash-
ion.

~z f c3 = tanh(~z f c2) ~W f c3 + ~b f c3 (15)

5

The final layer is sent through a sigmoid to ensure the result lies
between 0 and 1.

~y = ~z f c4 = sigmoid(tanh(~z f c3) ~W f c4 + ~b f c4) (16)

2.5. Loss Function
The loss is an error measure used during optimization and is

calculated per batch, hence the loss is:

E =

√∑
i(~yi − ~y ′i)

2

K
(17)

where yi is the actual number of 103 voids
mm2 of the ith component

in the data batch. y′i is the predicted number of 103 voids
mm2 for the

ith components in the data batch and K is the size of the data
batch.

2.6. Back-Propagation Gradient Calculation
Back-propagation based algorithms are the most widely used

algorithms for supervised learning with multi-layered feed for-
ward networks. The basic idea of the back propagation learning
algorithm is the repeated application of the chain rule to com-
pute the influence of changes in the parameter values of the net-
work on the value of the loss-function E (Mishra and Savarkar,
2012).

δE

δ ~Wi j

=
δE
δ~ai

δ~ai

δ~zi

δ~zi

δ ~Wi j

(18)

2.7. Optimization Algorithm
The optimisation algorithm uses the gradient calculated in

subsection 2.6 to update the model parameters which should
in theory reduce the loss calculated in subsection 2.5. The
well known steepest descent algorithm is explained by Jacobs
(1988). During preliminary research work it was found that
this optimization algorithm does have some deficiencies when
there exist multiple local minima. In this research the Adam-
optimization algorithm , (Kingma and Ba, 2015) is used since
a hybrid model is used, where the recurrent network receives
data much more frequently than the feed forward neural net-
work. This allows different learning rates for the various param-
eters of the hybrid network. This should theoretically address
the problem where one of the networks in the system over-fits
to the data before the other network has been trained properly.
This has been applied successfully on speech modelling using
recurrent neural networks (Chung et al., 2015).

Adam-optimization is different to the classical stochastic gra-
dient descent in that a learning rate is maintained for each
network parameter (weight). Each learning rate is separately
adapted as learning unfolds.

Tensorflow’s built in Adam-optimization feature was used to
optimize the model.

The following hyper-parameters for the Adam-optimization
algorithm that used in this research: η =0.001; β1 = 0.9; β2 =

0.999 and ε = 1e-08. the hyperparameters are the same as used
in (Kingma and Ba, 2015).

2.8. Classification Accuracy

The model is set up to solve the regression problem and the
accuracy of the model is an arbitrary value that is used to gauge
how good the model predictions are. Four arbitrary classes are
created based on the maximum void count of a component. Tra-
ditionally the components are placed in a class based on the
hours of remaining life, however this is dependent on the com-
ponent type and component material as well as the location of
the void count. To simplify one would just want to categorize
the components based on the number of voids as this is related
to the remaining life of a component.

The components are considered to be completely creep ex-
hausted once the void-count reaches 1000 voids per square mil-
limetre.

Hence, four classes are created:

Table 1: Classification labels for accuracy calculation

Class Description ~y Encoding
Class1 Void Count 750+ [1,0,0,0]
Class2 Void Count 500 to 750 [0,1,0,0]
Class3 Void Count 250 to 500 [0,0,1,0]
Class4 Void Count 0 to 250 [0,0,0,1]

Accuracy =

∑K
i=1 δ(Class(~y ′i),Class(~yi))

K
(19)

The δ function is 1 if the constituents of the function vari-
ables are equal to one another. Class(~y ′) is the predicted class,
Class(~y) is the actual class and K is the batch size.

2.9. The Data Set

The dataset comprises of information collected from a coal-
fired power station from 2011 to 2017, for the main steam pip-
ing systems of five of the operating units. The data consists
of the temperatures and pressures that the piping system expe-
rience during operation, elevation survey data, metallographic
inspection results, pipe stress analysis results as well as con-
stant component properties. In cases where the temporal data
was not available the assumption is made that the unit was on
outage during this time and the components were not incurring
any creep damage during this time.

2.9.1. Defining the Components
In this study components are defined as circumferential butt

welds, fillet welds or bends. Past experience indicates that these
are the areas where excessive damage are most likely to occur.
Figure 6 illustrates the component numbers for leg RA11 of the
main steam piping system.

6

Figure 6: RA 11 Main Steam Components

A Python dictionary was created that contains all the infor-
mation of a component that is assumed constant throughout its
operating life.

Some information such as text, cannot be fed into a mathe-
matical machine learning model. For instance, the component
type is described by a string value ”Buttweld”. In order to dis-
criminate between component types a one hot encoding vector
was generated. In this case there exist three different compo-
nent types thus an encoding vector could be [1, 0, 0] which
indicates that the component is of the first type. Thus, only one
of the values in the vector is 1, the rest are 0.

The Python dictionary captures the following information for
each of the components in the piping system:

Component Name - The unique name of the component that
corresponds to similar components on
other operating units

Component Type - One hot encoding (buttweld, filletweld or
bend)

ID - Pipe internal diameter
WT - Pipe wall thickness
Stress - Code stress under design conditions
EP1 - Elevation Point 1 (the closest support)
EP1 dist - Horizontal distance along pipe to Eleva-

tion Point 1
EP2 - Elevation point 2 (the second closest sup-

port)
EP2 dist - Horizontal distance along pipe to Eleva-

tion Point 2
EP3 - Elevation point 3 (the third closest sup-

port)
EP3 dist - Horizontal distance along pipe to eleva-

tion point 3
Dist Anchor - Distance to an anchor point
Repl Months - The number of months in operation
OTN - This denotes if the weld was new mate-

rial to old material or new material to new
material at the time of installation

2.9.2. Automated Data Reading
An outage dictionary is manually created that contains the

start and end date of the unit operation. The outage dictionary
also lists the location of the associated files that contain the data
that was measured during each of the listed outages. A script
is used to iterate through each entry in the outage dictionary.

The corresponding operational temperature and pressure data
signals are read from the data frame that contains all the pres-
sure and temperature data related to each of the outages. This
is saved in an operational data pickle (Opp data.pickle).

Table 2: Opp Pickle extract

Date Time Index Pressure [MPa] Average Temp [◦ C]
12/02/06 00:00 16.667 543.66325
12/02/06 01:00 16.654 544.24925
12/02/06 02:00 16.667 544.83525
12/02/06 03:00 16.661 544.359
12/02/06 04:00 16.673 546.0075
12/02/06 05:00 16.685 547.5825
12/02/06 06:00 16.679 549.5605
12/02/06 07:00 16.673 544.79875
...

The replica data is read from the corresponding outage re-
port. A data frame is generated that contains a list of all compo-
nents inspected during this outage. The replica results of each
of the components are saved in the data frame as well as the last
known replica results of the components.

The properties of each of these components are read from the
component database. Elevation survey results for the closest
three supports of each component are read from the elevation
data-frames. The component data-frame is saved in a compo-
nent pickle (Component.pickle).

Table 3: Component pickle extract

Component Name RA11.Blr.exit RA11.101.1 RA11.106.1 RA11.107.1 RA11.108.1
Current Max Voids 50 2300 1100 2200 1700
Previous Max Voids 80 70 60 80 140
Buttweld 1 1 1 1 1
Bend 0 0 0 0 0
Fillet 0 0 0 0 0
ID 250 250 250 250 250
WT 31 31 31 31 31
SIF 69382 69382 65329 39910 51347
EP1 dist 2587 2000 -510 -4460 -6960
EP2 dist 8097 7337 4907 270 -1230
EP3 dist 10494 9734 7307 3357 1857
Dist Anchor 0 -760 -2510 -5472 -7972
Repl Hrs 368 44 44 368 368
OTN 0 1 1 0 0
Design Travel 1 -104 -104 -104 -104 -104
Hanger Load 1 14.5 14.5 14.5 14.5 14.5
Hot 1.1.1 -0.093 -0.093 -0.093 -0.093 -0.093
Hot 1.1.2 -0.092 -0.092 -0.092 -0.092 -0.092
Hot 1.2.1 -0.1 -0.1 -0.1 -0.1 -0.1
Hot 1.2.2 -0.101 -0.101 -0.101 -0.101 -0.101
Hot 1.3.1 -0.092 -0.092 -0.092 -0.092 -0.092
Hot 1.3.2 -0.095 -0.095 -0.095 -0.095 -0.095
Design Travel 2 -94 -94 -94 -94 -94
Hanger Load 2 13.4 13.4 13.4 13.4 13.4
Hot 2.1.1 -0.086 -0.086 -0.086 -0.086 -0.086
Hot 2.1.2 -0.078 -0.078 -0.078 -0.078 -0.078
Hot 2.2.1 -0.125 -0.125 -0.125 -0.125 -0.125
Hot 2.2.2 -0.104 -0.104 -0.104 -0.104 -0.104
Hot 2.3.1 -0.098 -0.098 -0.098 -0.098 -0.098
Hot 2.3.2 -0.081 -0.081 -0.081 -0.081 -0.081
Design Travel 3 -135 -135 -135 -135 -135
Hanger Load 3 60.4 60.4 60.4 60.4 60.4
Hot 3.1.1 -0.111 -0.111 -0.111 -0.111 -0.111
Hot 3.1.2 -0.109 -0.109 -0.109 -0.109 -0.109
Hot 3.2.1 -0.175 -0.175 -0.175 -0.175 -0.175
Hot 3.2.2 -0.143 -0.143 -0.143 -0.143 -0.143
Hot 3.3.1 -0.136 -0.136 -0.136 -0.136 -0.136
Hot 3.3.2 -0.127 -0.127 -0.127 -0.127 -0.127

The automated data reading programs creates two pickle files
for each recorded outage, that will be used to train the model.

1. Opp-data.pickle

2. Component.pickle

7

The Opp-data pickle creates the temporal data for the outage.
The Component pickle contains the static data of the compo-
nents that have been inspected during the current outage. Static
data is data that is assumed to stay constant throughout the du-
ration of the operation from the previous outage to the current
outage.

2.10. Normalizing

The data is normalized using min-max scaling. If a data point
T lies between Tmin and Tmax the normalized value x will be in
the range [0,1]. This makes the neural network computation-
ally more stable, meaning that features such as stress in the 105

[kPa] ranges can be used in the same model as the elevation
survey features in the 10−3 [m] ranges.

xi =
Ti − Tmin

Tmax − Tmin
(20)

The following Tmin and Tmax values are used to normalize the
training data (Feature ∈ [Tmin,Tmax]):

Temperature ∈ [0,600]
Pressure ∈ [0,17]

Buttweld ∈ [0,1]
Bend ∈ [0,1]

Filletweld ∈ [0,1]
Pipe ID ∈ [0,500]

Pipe Stress ∈ [20000,170000]
Maximum Voids ∈ [0,1000]

EP1 ∈ [-19554, 5802]
EP2 ∈ [-9832, 10917]
EP3 ∈ [-3824,14317]

Distance to Anchor ∈ [-31714, 27568]
Months in operation ∈ [0,369]

Old to new ∈ [0,1]
Support design travel ∈ [-154,168]

Support design load ∈ [0,156.8]
Support movement ∈ [-0.154,0.168]

2.11. Running the Model

The model runs the complete training dataset num epochs
times through the training sequence as explained in subsec-
tion 2.4. The model processes one batch at a time where a batch
contains the specified batch size number of components.

After each training batch sent to the optimization sequence,
the updated model is validated with a validation batch. Thus for
each training epoch the batch loss and batch accuracy for each
of the training, validation data sets are recorded and plotted.

3. RNN Hybrid Network Results

The Hybrid RNN network design as described in subsec-
tion 2.4 is used with the input data collected as described in
subsection 2.9. The results listed in this section were run on
a Windows based operating system using Python 3.5 with the
Tensorflow 1.2 library. The following hardware setup was used
to give the reported results:

Table 4: Hardware Setup

CPU GPU System
Memory

HardDrive

Intel Core i5
@3.30GHz

NVIDIA
GeForce
GTX 1060
6GB, 1280
CUDA Cores

20GB
@1600MHz

240GB SSD,
545 mb/s se-
quential read
speed

Some of the model parameters were kept constant for all the
runs in order to keep consistency between different runs as well
as keeping the degree of complexity of the problem lower. The
model was trained using the following fixed hyper-parameters,
where hyper-parameters refers to parameters that are set manu-
ally and are not changed during optimization of the model:

Table 5: Constant Model Hyper Parameters

Sub-
sample
method

Learning
rate

n classes
RNN

Loss Component
features

max 0.001 1 RMS 37

3.1. Best Run

Using the built in Adam-optimizer function in Tensorflow
alleviates the problem where the optimization algorithm gets
stuck in a local minimum point as the model is able to fit the
training data very well. It was found that using this approach
the model is able to obtain a very high training accuracy of 92%.
Meaning it is very good at classifying a set of input data that it
has seen before. However when it is provided a new set of
input data, it only achieves a classification accuracy of 55%.
This could mean that the training dataset is not large enough,
or there is insufficient information contained in the input data
or that there is a very low correlation between the measured
inputs and the damage of a component.

The runs performed have the same hyper parameters as noted
in Table 6.

Table 6: Best Run Hyper Parameters

Run
Num-
ber

Sample
Rate

Number
Epochs

Batch
Size

RNN
Hid-
den
Nodes

Layer
2 Hid-
den
Nodes

Layer
3 Hid-
den
Nodes

RNN
Cell

Algorithm

1 1H 2145 256 2 256 64 GRU Adam

The results are listed in Table 7.

8

Table 7: Best Run Results

Run
number

Loss train Loss valid Accuracy
train

Accuracy
valid

Running
time [h]

1 0.1921 0.3948 92% 55% 26.25

Training epoch

A
cc

ur
ac

y

Figure 7: Training accuracy

Training epoch

A
cc

ur
ac

y

Figure 8: Validation accuracy

Figure 7 and Figure 8 illustrate the training curves for the
training and validation sets. It is clear that the training accuracy
trends upward while the validation accuracy does not follow
any trend. The loss curves Figure 9 and Figure 10 show a clear
downward trend in the training dataset but no real trend in the
validation set. The lowest validation loss is around epoch 260,
at this stage the model predicts almost all voids to be zero, this
may seem to be a good solution as most of the components in-
spected has got low void counts. This is however not a good
solution as a model that predicts zero output is not useful. Let-
ting the model overfit to the training data yields a better result in
finding high damaged components. Keep in mind that the accu-
racy in this case is an arbitrary measure and a decreasing accu-
racy does not necessarily mean that the model becomes worse

at making predictions.

Training epoch

R
M

S
lo

ss
Figure 9: Training loss

Training epoch

R
M

S
L

os
s

Figure 10: Validation loss

Figure 11 and Figure 12 show the predicted number of voids
compared to the actual measured number of voids. The black
dashed line indicates an ideal line where the predicted number
of voids would be exactly the same as the measured number of
voids. From this figure it is clear that given the complexity of
the problem the model fits the training data very well. However,
when the model is given a new validation dataset the fit is not
as good.

The model over fits to the training data as it is clear that the
validation loss does not monotonically decrease. However, in
the experience of the author the model becomes better at identi-
fying high damage components if it is allowed to over-fit to the
training data. If this is not done the model predictions seems to
be bias to zero. Using this approach will not help in predicting
components with high damage.

There is a significant scatter in the predicted vs. measured
number of voids. This could be partially due to a weakness of

9

the proposed model as it has only been trained on a finite num-
ber of examples. However, given the complexity of the problem
at hand a significant scatter is to be expected. Doing a sensitiv-
ity analysis using PD 6525 (BS, 1990) it can be seen with a
temperature variance of ±5◦C , pressure variance of ±10% and
a material property variance of 15%. It can bee seen that the
estimated theoretical ISO Mean Life can be anything between
667 thousand hours and 4.4 million hours. This is a significant
scatter which excludes the influence of varying stress due to
stress concentrations and support efforts in the components.

Actual 103voids
mm2

Pr
ed

ic
te

d
10

3 vo
id

s
m

m
2

Figure 11: Training data fit

Actual 103voids
mm2

Pr
ed

ic
te

d
10

3 vo
id

s
m

m
2

Figure 12: Validation data fit

For the given problem the components with higher damage
classes are of more interest than those with little to no creep
damage. One could hypothetically decide that only compo-
nents with very high void counts above 400 voids per square
millimetre are of interest. In this case, based inspections by
system engineers over a 6 year period, 14% of components will

fall within the criteria. Inspecting component based on the pre-
dictions of the hybrid RNN a hit-rate of 25% will be achieved,
which is a significant improvement of the current inspection
plan performance.

3.2. Discussion

3.2.1. Network Layout
It was found that a RNN with output size of 32 and a fully

connected feed forwards network with a (38-256-64-1) config-
uration is stable enough to run on a 6GB GPU without causing
out of memory errors. When increasing the network size, addi-
tional steps should be taken to ensure the GPU memory is not
overfilled. It was also found that when the model complexity is
increased there is no noticeable increase in prediction accuracy.

3.2.2. Optimization Algorithm
In general the both the gradient descent and adaptive gradient

descent algorithms struggle to fit the training data. The Adam-
optimizer is able to fit to the training data with a very low loss.
This is a good sign that the model is able to pick up patters
within the data. The validation error is higher than that of the
training error. This is mostly because the training dataset is not
large enough or the underlying patterns in the training data are
very weak.

4. Conclusion

Historically temporal/sequential data sequences such as
temperature-time data sequences have proven to be difficult to
analyse and recognize patterns. The GRU cell based recurrent
neural network (RNN) has however proved to be able to per-
form pattern recognition successfully on these sequences. The
flexibility that this hybrid RNN model offers makes it appealing
for application to real world data.

In this work it is shown that the hybrid RNN is able to rec-
ognize patterns within high energy steam piping data, by using
the temperature and pressure time histories as well as previ-
ous damage and elevation survey data, as input. The model is
able to fit training data that represents creep damage in terms of
number of voids in a component with relatively high accuracy.
Despite the good accuracies achieved on the training dataset the
model however still struggles with the unseen data in the vali-
dation data set.

The lower level of success with the unseen data must how-
ever be seen in perspective. A comparison to results obtained
by experienced system engineers over a period of six years, in-
dicate that the hybrid RNN system is still capable of identifying
creep damaged components better than the engineers. The hy-
brid RNN based system can automatically parse large and very
complex data sets that consist of temporal and static data. Con-
ventional data driven models are only able to look at either tem-
poral data or static data. Compiling inspection scopes manually
is a very tedious task for engineers. Using such a system may
therefore be expected to very significantly reduce the manpower
and time required by creating a detailed inspection list before

10

an outage. It may also be expected that the model should get
better at predictions as the size of the training dataset grows.

A caveat based on the application of the model is that due
to the nature of the number of iterations and amount of linear
algebra equations that are being performed it is very difficult to
trace and ensure that there is no errors in the computations or
input data. Another caveat is that the model will not be able to
predict all of the components which are high risk, hence a full
inspection shall still be required to ensure all high risk compo-
nents are found.

This tool should also be used validate that all inspection plans
include all the possible high risk class 1 and class 2 compo-
nents.

The approach proposed in this research is expected to do
well with similar problems where sufficient historical data is
available and where creating a physics based model is too com-
plex. The hybrid RNN is scalable and configurable to work with
most types of data driven problems. The model is fully scalable
meaning that if the training dataset size increases there will be
no difference in the model except that more training iterations
might be needed to optimise the model. If the model is to be
adapted to track more input features, the number of input nodes
can simply be adjusted.
Bengio, Y., Simard, P. and Frasconi, P. (1994), ‘Learning long-term dependen-

cies with gradient descent is difficult’, IEEE Transactions on Neural Net-
works 5(2), 157–166.

BS (1990), PD 6525 : Elevated temperature properties for steels for pressure
purposes; Part 1 - stress rupture properties, Technical report, British Stan-
dards Institution.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H. and Bengio, Y. (2014), ‘Learning phrase representations us-
ing RNN encoder-decoder for statistical machine translation’, Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP) pp. 1724–1734.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. and Bengio, Y. (2015),
‘A recurrent latent variable model for sequential data’, Advances in Neural
Information Processing Systems 28 (NIPS 2015) p. 8.

Duda, R. O., Hart, P. E. and Stork, D. G. (2001), Pattern classification, 2 edn,
John Willey and Sons, New York.

Hochreiter, S. and Schmidhuber, J. (1997), ‘Long short-term memory’, Neural
computation 9(8), 1735–1780.

Jacobs, R. A. (1988), ‘Increased rates of convergence through learning rate
adaptation’, Neural Networks 1(4), 295–307.

Kingma, D. P. and Ba, J. L. (2015), ‘Adam: a method for stocastic optimiza-
tion’, ICLR Conference pp. 1–15.

Mishra, S. and Savarkar, S. (2012), ‘Image compression using neural network’,
Proceedings of International Conference and Workshop on Emerging Trends
in Technology (ICWET) 3(2), 18–21.

Tian, Z. (2012), ‘An artificial neural network method for remaining useful life
prediction of equipment subject to condition monitoring’, Journal of Intelli-
gent Manufacturing 23(2), 227–237.

Van Zyl, F. H., Von dem Bongart, G., Bezuidenhout, M. E. J., Doubell, P.,
Havinga, F. C., Pegler, D. A. H., Newby, M. and Smit, W. (2005), ‘Life as-
sessment and creep damage monitoring of high temperature pressure com-
ponents in South Africa’s power plant’, ECCC Creep Conference (Septem-
ber), 934–945.

Venkatesh, V. and Rack, H. (1999), ‘A neural network approach to elevated
temperature creepfatigue life prediction’, International Journal of Fatigue
21(3), 225–234.

11

	Introduction
	Problem Statement
	Creep life of a component

	Methodology
	Feed Forward Neural Network
	Recurrent Neural Network
	Gated Recurrent Unit
	GRU Back propagation

	Hybrid RNN
	Training Sequence
	The Model Layout
	The Hybrid Recurrent Neural Network Forward Pass

	Loss Function
	Back-Propagation Gradient Calculation
	Optimization Algorithm
	Classification Accuracy
	The Data Set
	Defining the Components
	Automated Data Reading

	Normalizing
	Running the Model

	RNN Hybrid Network Results
	Best Run
	Discussion
	Network Layout
	Optimization Algorithm

	Conclusion

