THE STRUCTURE OF DOUBLY NON-COMMUTING
ISOMETRIES
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ABSTRACT. Suppose that n > 1 and that, for all ¢ and j with 1 < 4,5 < n
and i # j, z;j € T are given such that z;; = Zz;; for all i # j. If V1,...,V,
are isometries on a Hilbert space such that VZ*VJ = EijV} V. for all i # j,
then (Vi,...,V,) is called an n-tuple of doubly non-commuting isometries.
The generators of non-commutative tori are well-known examples. In this
paper, we establish a simultaneous Wold decomposition for (Vi,...,V,). This
decomposition enables us to classify such n-tuples up to unitary equivalence.
We show that the joint listing of a unitary equivalence class of a representation
of each of the 2™ non-commutative tori that are naturally associated with
the structure constants is a classifying invariant. A dilation theorem is also
established, showing that an n-tuple of doubly non-commuting isometries can
be extended to an n-tuple of doubly non-commuting unitary operators on an
enveloping Hilbert space.

1. INTRODUCTION AND OVERVIEW

Suppose that n > 1 and that, for all 4 and j with 1 < 4,5 < n and i # 7,
z;; € T are given such that z;; = z;; for all ¢ # j. If V4,...,V,, are isometries on
a Hilbert space such that V;*V, = z;;V; V" for all i # j, then we shall refer to
(Va,...,V,) as an n-tuple of doubly non-commuting isometries. In this paper, we
shall show that, up to unitary equivalence, such n-tuples are uniquely determined by
unitary equivalence classes of representations of the 2" non-commutative tori that
are naturally associated with the z;;. Equivalently, this gives a parameterization
of the unitary equivalence classes of the representations of the universal C*algebra
that is generated by n isometries satisfying the above relations.

The existing literature also suggests other names for our n-tuples. In [15], where
n = 2, the corresponding universal C*algebra is called the tensor twist of the two
isometries. In [8] and [11], concerned with general n, no particular terminology is
employed. In the case where z;; = 1 for all ¢ and j, [10] and [13] speak of doubly
commuting isometries, and [1] of star-commuting (power partial) isometries. Since
the non-commuting relation V;*V, = Z;;V, V;* implies a second non-commuting
relation V;V; = z;;V;V; (this goes back to [7]; see Lemma 3.1 below), we believe that
our terminology is justifiable. It also suggests a relation with the non-commutative
tori that, in fact, exists and is an essential part of the picture.

We shall now give a combined overview and discussion of the paper.

Section 2 is concerned with the space decomposition that underlies the classical
Wold decomposition of one isometry. This is briefly reviewed, and supplemented
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with some results that, although easy, are convenient tools in the sequel. In the case
of one isometry, the identity operator is the sum of two projections, corresponding to
the purely isometric and the unitary part of the operator in the Wold decomposition.
Furthermore, it is possible to write each of these projections as a strong operator
limit in terms of the isometry and its adjoint; see equations (2.2) and (2.3). These
two facts will be the key to a relatively smooth proof of the space decomposition
(and then of the subsequent Wold decomposition) for arbitrary n-tuples.

In Section 3 the case of a general n-tuple (V1,...,V,,) is taken up. Taking the
product of the decompositions of the identity operator for the various V;, one obtains
a decomposition of the space into 2™ simultaneously reducing subspaces, with the
property that in each of these every V; acts as a pure isometry or as a unitary
operator; see Theorem 3.4. Each of the 2™ corresponding projections is a product
of n projections taken from the decompositions of the identity operator for the
various V;. Such a product of projections is then further analysed by invoking the
appropriate strong operator limits from equations (2.2) and (2.3) for its factors.
After identifying the various range projections of partial isometries in the result, a
structure theorem for each of the 2™ space components is then obtained in terms of
a wandering subspace; see Theorem 3.6. In the case where all z;; are equal to 1 this
can already be found as [13, Theorem 3.1]; we also refer to [13] for an overview of
the preceding literature on the Wold decomposition for n-tuples of (then) doubly
commuting isometries. Our analysis for general structure constants continues from
here, however, and the starting point for this continuation is to observe that the V;
that act as unitary operators on the space component at hand leave its wandering
subspace invariant; see Theorem 3.6 again. The ensuing actions of 2™ different
non-commutative tori on their corresponding wandering subspaces will turn out to
be the core of the simultaneous action of our n-tuple.

We would like to mention explicitly that the method of taking a product of
various decompositions of the identity operator differs from inductive approaches
as in [1,8,11,13]. Employing such a product may be a more transparent way of
working, although this remains a matter of taste. At any rate, it has the advantage
that it could conceivably also be of use in other contexts, e.g. when all operators in
an n-tuple are of a different type and induction may not be so easy to apply.

In Section 4 we use the results from Section 3 to show that, up to unitary
equivalence, all n-tuples (Vi,...,V,) of doubly non-commuting isometries are a
direct sum of 2" so-called standard n-tuples. This Wold decomposition for all
operators in the n-tuple simultaneously is the statement of Theorem 4.6; if all z;; are
equal to 1, this is a particular case of [1, Theorem 2.25]. The 2™ standard n-tuples
correspond to the 2" components in the decomposition of the space from Section 3
as mentioned above. The structure of such a standard n-tuple is completely explicit
once the action of the pertinent non-commutative torus on the pertinent wandering
subspace is given; see the material preceding Theorem 4.5. The actions of the
non-commutative tori on the wandering spaces (described by the wandering data as
defined in Definition 3.7) should be thought of as the parameters for the n-tuple.

It is only in this Section 4 that a natural class of examples of n-tuples of doubly
non-commuting isometries first appears. The structure results from Section 3, that
could conceivably be applicable only to operators on the zero space, inform us what
such examples should look like. It is then easy to check that the ensuing Ansatz
actually works, and this results in the standard n-tuples. In the irreducible case,
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the structure of these examples is already visible in [11, Theorem 2]. The proof
of [11, Theorem 2] is only indicated; the absence of the framework of the general
Wold decomposition as an aid in formulating such a proof can perhaps explain
this. We shall include a strengthened version of [11, Theorem 2] in Section 5; see
Theorem 5.4. It gives a parameterization of the unitary equivalence classes of the
irreducible representations of the universal C*algebra generated by n isometries
satisfying equation (1.1), and it follows rather easily from the results in the present
paper on general representations.

Section 5 is concerned with the unitary equivalence classes of n-tuples of doubly
non-commuting isometries or, equivalently, with the unitary equivalence classes of
representations of the universal C*algebra generated by isometries satisfying our
relations. The result, formulated in Theorem 5.3, has a certain aesthetic appeal:
these classes are parameterized by the lists of 2™ unitary equivalence classes of
representations of the 2" non-commutative tori that are naturally associated with
the given structure constants z;;, containing one such class for each non-commutative
torus. In a worked example for the case n = 1 it is then seen that the unitary
equivalence class of an isometry is determined by the combination of an equivalence
class of a representation of the non-commutative 0-torus and an equivalence class
of a representation of the non-commutative 1-torus. The classifying invariants for
an isometry (the multiplicity of the unilateral shift and the equivalence class of its
unitary component) are thus retrieved from a more general framework.

We include a dilation theorem in Section 6; see Theorem 6.2. As for n = 1, now
that a Wold decomposition is available, this is merely a matter of extending the
range of indices from the non-negative to all integers where needed.

Remark. There are certain standard n-tuples that are particularly elementary. As
it turns out, these give faithful representations of the universal C*algebras that are
generated by n doubly non-commuting isometries where specified generators are
required to be even unitary. The known faithfulness of the Fock representation of
one of these algebras (see [11, Proposition 8] and [8, Corollary 1]) is then a special
case. We refer to Remark 4.7 for some more comments. We shall report on these
universal C*algebras, their interrelations, and their representations in a separate
paper, for which the current paper also serves as a preparation.

We conclude by listing our conventions. First of all, we shall always work in the
following context.

Fixed context. H is a Hilbert space, n > 1, and (Vi,...,V,) is an n-tuple of
isometries on H. For all i and j with 1 <4,j <n and i # j, z;; € T are given such
that zj; = Zs; for all such i and j, and the isometries Vi,...,V,, satisfy

(1.1) ViV =2 ViV
for all such i and j.

We shall then say that (Vi,...,V;,) is an n-tuple of doubly non-commuting
isometries, without any further reference to the structure constants in terminology
or notation. If n = 1, then the n-tuple reduces to a given single isometry without
further requirements. If the need arises, we shall sometimes write z; ; instead of z;;.
With the sole exception of Lemma 5.1, we shall not vary the structure constants z;;.

All Hilbert spaces are complex, and subspaces are always closed subspaces. The
bounded operators on H are denoted by B(H), and we write 0 and 1 for the zero
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and the identity operator on H, respectively. Projections are always orthogonal
projections. An empty product of operators on H is to be read as 1. If T' € B(H)
and L is a subspace of H that is invariant under T, then T'|;, is the restriction of T
to L.

If H and H' are Hilbert spaces, and (T1,...,T;,) and (T7,...,T)) are n-tuples of
operators on H and H’, respectively, then we say that (T4,...,T,) and (77,...,T})
are unitarily equivalent if there exists an isometry between H and H' that is a
unitary equivalence for all pairs T; and 7] with 1 <4 < n simultaneously.

If AC{1,...,n}is a (possibly empty) set of indices, then we shall write |A| for
its number of elements, and let A® denote the complement of A in {1,...,n}.

Finally, we let N = {1,2,...} and Ny = {0,1,2,...}.

2. SPACE DECOMPOSITION FOR ONE ISOMETRY

The Wold decomposition (see e.g. [9, Theorem 3.5.17]) for an isometry on a
Hilbert space asserts that it is the direct sum of a number of copies of the unilateral
shift and of a unitary operator, where each summand can be zero. The first step
in proving this is to decompose the space as a Hilbert direct sum of a subspace on
which the operator acts as a pure isometry on the one hand, and a subspace on
which it acts as a unitary operator on the other hand. In the second step, which is
almost just an afterthought, the aforementioned structure of the operator is then
clear from the available explicit decomposition of the summand where the operator
acts as a pure isometry.

For general n-tuples of doubly non-commuting isometries the global approach is
the same. The first step is to decompose the space (see Theorems 3.4 and 3.6), and
the second one is to use this decomposition as a starting point for a description of
the structure of the n-tuple (see Theorem 4.6).

This section is a preparation for the first step for the general case. We give a
short proof for the space decomposition for the case n = 1 (see Proposition 2.1),
and add a few small results that, in later sections, will be very convenient to have
been mentioned explicitly.

Throughout this section, V is an isometry on a Hilbert space H.

We start with the decomposition of the space. Since V*V = 1, the subspaces
V¥(ker V*) and V¥ (ker V*) are easily seen to be pairwise orthogonal if k, k" > 0
and k # k’. Using an anticipating notation, we can, therefore, define

oo

H* = P V*(ker V*)
k=0

as a Hilbert direct sum. Furthermore, we let

o0

H"™ = () VE(H).
k=0

We denote by P™° the projection onto H*° and by P"™ the projection onto

Huni.
The following fact is classical; see [14, Theorem 1.1.1] for a proof, for example.

Proposition 2.1. H*° and H™ are both V -reducing subspaces of H, and we have
H = H°@ H"™ as a Hilbert direct sum.
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Remark 2.2. As V is unitary on H"™ (see [14, Theorem L.1.1]; it is also a
consequence of Proposition 2.4, below), the Wold decomposition of V' is immediate
from Proposition 2.1: the copies of the unilateral shift correspond to the elements
of an orthonormal basis of ker V*.

As a first preparation for Section 3, we note that, trivially,
(2.1) 1= P4 p™

As a second preparation, we shall now express each of the summands in terms of
range projections of partial isometries. For this, we recall that the projection onto
the range of a partial isometry T is given by TT*; see [4, p. 23].

Since ker V* = (ranV)*, the projection onto ker V* is 1 — VV*. Therefore,
for k > 0, the range of V*(1 — VV*) is V¥(ker V*). Since V* is an isometry
and (1 — VV*) is a projection, V¥(1 — VV*) is a partial isometry, and its range
projection is then VF(1 — VV*)(1 — VV*)*V*k = VE(1 — VV*)V*F. All in all, we
see that V¥(1 — VV*)V*¥ is the projection onto V*(ker V*). We know from their
interpretations (this can also easily be verified algebraically) that the projections
for different k£ are orthogonal. Consequently,

o0
(2.2) P =N V1 - VvV,

k=0
where the series converges to P**° in the strong operator topology as a consequence
of [4, Lemma 1.6.4].

The projection onto (\y—, V*(H) is the infimum of the decreasing sequence of

projections onto the spaces V¥(H), i.e. the infimum of the projections VFV**. Again
by [4, Lemma 1.6.4], we see that

(2.3) P = SOT— lim VFV**,
k—oo

The equations (2.1), (2.2), and (2.3) are at the heart of the space decomposition
for the general case in Section 3.

As announced in the introduction of this section, we shall now collect a few results
on invariant and reducing subspaces such that the restricted operator is unitary or
purely isometric. Propositions 2.4 and 2.8 will be unified and generalised as a part
of Theorem 3.4, and Proposition 2.10 will be generalised as Proposition 3.5.

We start with the unitary case.

Lemma 2.3.

(1) Let L be a V-invariant subspace of H. If V|, is unitary, then L reduces V,
and L C H™,
(2) Let L be a V-reducing subspace of H. If L C H"™, then V|, is unitary.

Proof. (1) It is easy to check that L reduces V. The hypothesis implies that
VF(L) =L for all k > 0. Hence L = ;o V*(L) C Npeo V¥(H) = H".
(2) We need to show that ran(V|) = L, or equivalently, that (ran(V|;))™* = {0},
where the orthogonal complement is taken in L. But
(ran(V|p)) ™" = ker(V|)* = ker(V*|1).

Since L C H" C V(H), and V* is injective on V(H) because V*V = 1, we see
that ker(V*|1) = {0}, as required. O
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The following is now obvious.

Proposition 2.4. Let L be a V-reducing subspace of H. Then the following are
equivalent:

(1) V is unitary on L;

(2) L C Huni;

(3) PpP"™ = Pr, where P;, denotes the projection onto L.

The following notion of a pure isometry (the absence of all non-trivial unitarity) is
somewhat more intuitive than what is usually found in the literature, which is that
H" should be the zero subspace; see e.g. [5, p. 154] or [2, p. 113]. Proposition 2.6
shows that the two definitions are, in fact, equivalent.

Definition 2.5. Let L be a V-invariant subspace of H. Then V is a pure isometry
on L, or V|, is a pure isometry, if {0} is the only V-invariant subspace of L on
which V is unitary.

The following is a consequence of Proposition 2.1, the first part of Lemma 2.3,
and Proposition 2.4.

Proposition 2.6. The following are equivalent:
(1) V is a pure isometry on H;
(2) Hiso — H’.
(3) H™ = {0};
(4) {0} is the only V-reducing subspace of H on which V is unitary.

Lemma 2.7.
(1) Let L be a V-invariant subspace of H. If L C H™°, then V is a pure
1sometry on L.

(2) Let L be a V-reducing subspace of H. If V is a pure isometry on L, then

L g Hiso‘
Proof. (1) In view of Proposition 2.6, we need to show that L' = (2, (V|.)*(L) =
{0}. For this it is sufficient to show that (3, V¥(H™°) = {0}. This follows from

the observation that V*(H*°) = @7, V" (ker V*) for every k.
(2) We know from Proposition 2.1 and Proposition 2.6 that

oo 0o 0
L= PV (eex(V]e)) @ (V1) = PVI)* (eer(V]n)).
k=0 k=0 k=0
Since L is a V-reducing subspace of H, we have (V|1)* = V*|. Hence ker(V|)* C
ker V*, and then L C @, (V‘L)]‘”‘ (ker V*) C H'°, O

Since H'*° is invariant under V by Proposition 2.1, V is a pure isometry on H'°.
The following is now clear.

Proposition 2.8. Let L be a V-reducing subspace of H. Then the following are
equivalent:

(1) V is a pure isometry on L;

(2) L g Hiso’.

(3) PLP* = Pr.

The unitary counterpart of Proposition 2.6, proved using Propositions 2.1 and 2.4,
and Lemma 2.7, is as follows.
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Proposition 2.9. The following are equivalent:
(1) V is unitary on H;
(2> Huni — H,'
(3) H** = {0};
(4) {0} is the only V-reducing subspace of H on which V is a pure isometry.

The next result follows from Propositions 2.1, 2.4, and 2.8.

Proposition 2.10.
(1) If L'*° and L™ are V -reducing subspaces such that V|pio and V|pwi are a
pure isometry and unitary, respectively, then L% 1 L',
(2) If H = L™° @ L"™ (algebraically), where L'*° and L"™ are V -reducing
subspaces such that V|piso and V]puwi are a pure isometry and unitary,
respectively, then L'*° = H'° and L™ = [,

3. SPACE DECOMPOSITION IN THE GENERAL CASE

We shall now establish a space decomposition for an n-tuple (V1,...,V,,) of doubly
non-commuting isometries. This is done in two parts. In the first part, the space is
written as a Hilbert sum of (possibly zero) subspaces on which each of the V; acts
as a pure isometry or a unitary operator; see Theorem 3.4. This is an elementary
consequence of the results in Section 2. In the second part, which is more involved,
each of the summands from the first step is written as a Hilbert direct sum of copies
of a wandering subspace; see Theorem 3.6. The method to obtain this is not an
inductive procedure as in [1,8,11,13], but consists of multiplying n decompositions
of the identity operator and interpreting the result.

As a side remark let us note that, at this stage, it is not clear within the framework
of the current paper that, for general n > 2, there are any non-zero examples of
n-tuples of doubly non-commuting isometries at all. We shall see in Section 4,
however, that non-zero examples of a very simple nature exist. The results in the
present section will guide us towards these examples.

We start by collecting a few algebraic results.

The first part of the next result and its proof can already be found in [7, p. 2671].
It shows that the use of complex conjugation in equation (1.1) is not so unnatural
after all.

Lemma 3.1. For alli # j,

(1) ViVj = 2i;V; Vi

(2) V'V, = 2;V,V);

(3) V'V =z, ViV,
Proof. An easy computation shows that (V;V; —z;;V;V;)*(V;V; — 2;;V;V;) = 0, which
gives (1). The other parts follows by taking adjoints. O

As remarked in [7, p. 2671], the relation V1 Vo = 2V4V; for isometries Vi, Vo and
z € T does not imply that Vi*V, = zV, V{*. Although this implications holds true for
unitary operators, it is not valid in general. There is an elementary counterexample
in [15, Lemma 1.2].
Corollary 3.2. Let k > 0. Then, for all i # j,
(1) V, and ijVj*k commute;
(2) V* and VJ’“VJ*’“ commute;
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* - k * *k
(3) V; and V" commute with V;*(1 — V;V)VE.

?

Proof. For part (1) we may suppose that k,I > 1. Repeated use of Lemma 3.1 and
equation (1.1), combined with z;; = Z;;, shows that

V; ‘/;k‘/;kk _ Z»ZV/CVV*IC . Zlkajklvkv*kv Vkv*k V
as claimed. Part (2) follows from part (1) by taking adjoints. Part (3) is immediate
from the parts (1) and (2). O

Lemma 3.3. Let A = {zl,..
different indices, and let k;,, ..

Z} {1,...,n} be a (possibly empty) set of

s ki,
h”u—vv* fl- {”1—vvw’}

a

0 be exponents Then

11 11 1

(3.1) _ [ .. } thzt (1 —V )} [V ki V;kq:|
and
I L e L o B R il | SR

Proof. We prove equation (3.1) by induction on I, the number of factors in the left
hand side. For [ = 0 and [ = 1 all is clear. Assuming the statement for [, the
induction hypothesis for the product of the first [ factors shows that the product
with (I + 1) factors equals

k; ] * i i * *k;
Vil VA=V, V) - (=Y, Vv “Vflvﬁfﬂ Vi Vi ) Vi,
xk;

‘We move Vi]:’l to the left of V: VT gt the cost of a unimodular constant

i1
that can be determined from equation (1.1). Since the indices are all different,
Corollary 3.2 shows that it can then freely be moved further to the left of (1 —
V. V). (1 =V, V.*). We thus see that the product equals

1 1 (A7)

ki ki _ki ki k *ki
P S kiy ki, 14+1 * _ ‘1
i1i1+1 Zﬂl+1 V V VlH,l ( ‘/11‘/11) (1 ‘/Zl‘/zl )V ‘/’il
* LI SERY
( V11+1V11+1 ) il41

Again since the indices are all different, Corollary 3.2 implies that the factor
(1 -V,  V{ ) cansubsequently freely be moved to the left of V;kil . V;k” . After

41 141
1+1

that, all that remains to be done is move V to the left of the now preceding

sub-product Vil Vzlk . This mtroduces a second unimodular constant, but
part (3) of Lemma 3.1 and the fact that z;; = Z;; show that this second constant
is the complex conjugate of the earlier constant. This completes the proof of
equation (3.1).

The proof of equation (3.2) is also by induction. In this case, one need merely
note that, since the indices are all different, Corollary 3.2 shows that an extra factor

1

. . xk; *Kq .
j:l‘/;?f’l“ commutes with the preceding factor V; ™ - Vilk ! that arises from the
induction hypothesis. O

After these algebraic preparations, we can now proceed towards the first part
of the space decomposition for (V1,...,V;,). For each i = 1,...,n, equations (2.1),
(2.2), and (2.3) yield the decomposition

(3.3) 1=Ppp*+p™
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of the identity operator, where
P_isop_uni =0
3 1

and

(34) Piiso _ Z V'iqu(l o ‘/z ‘/z*)v;*kl 7 Piuni =SOT— lim Vvimi‘/i*n”'

m; —>00
k;=0

Corollary 3.2 shows that the projections V;* (1 — V, V;*)V;** and V™ V;*™ in
equation (3.4) for a fixed index ¢ commute with V; and V" for all j # i. Taking the
SOT-limits, we see that the projections Pi*° and PP commute with V, and V7
for all j # 4; we know from Proposition 2.1 that they also commute with V; and
V;*. Taking limits once more, it is now clear that we have 2n pairwise commuting
projections Pjs° ... Pise puni puni‘and that all of these commute with all V,
and V;*.

The following first part of the decomposition of the space is now a consequence
of elementary manipulations with commuting projections, combined with Proposi-
tions 2.4 and 2.8. For n = 1, it reproduces Propositions 2.1, 2.4, and 2.8.

Theorem 3.4 (Space decomposition according to types of actions). Let (V1,...,V;)
be an n-tuple of doubly non-commuting isometries. For every (possibly empty) set
A C{1,...,n} of indices, set

Pio = H Pjso,
(35) e
puni .— H Pium,
i€ Ac
(3.6) Py = Piopuni
and
HA = PA(H).
Then
HA _ ﬂ H;so ﬂ H;?lnl,
icA icAc
and
(3.7) H= B Ha
AC{1,...n}
1s a Hilbert space direct sum such that all summands Ha reduce all V;. For all
ACH{l,....n} andi=1,...,n, Vi|g, is a pure isometry if i € A, and V;|g, is
unitary if i € A°.
Furthermore, if L is a subspace of H that reduces all operators Vi,...,V, and if

A C{1,...,n}, then the following are equivalent:

(1) Vil is a pure isometry for all i € A, and unitary for all i € A°;
(2) L C Hy;
(3) PLPs = Pr.
The remarks preceding the theorem show that the order of the factors in equa-

tions (3.5) and (3.6) is immaterial, and that all these products commute with each
other and with all V; and V;*.
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Proof. 1t is clear from commutativity that Ha = (;c 4 HE ;e 4e HM™.
Taking the product of equation (3.3) over all indices 1, ..., n, we see that we have
a decomposition
1=[[Ee+p™) = > PirRi= Y Py
1 AC{1,...,n} AC{1,...,n}

n
1=
of the identity operator into 2" projections. Each summand corresponds to a
combination of choices for either P!*° or P for each i = 1,...,n when expanding
the product, where Pi*° has been chosen for i € A, and P for i € A°. If A and A’
are different sets of indices, then P4 P4/ involves a factor P/° P! for some i. Since
this is zero, H4 and H 4 are then orthogonal.

Since all P4 commute with all V;, all subspaces H4 reduce all V;.

If i € A, then P4 contains a factor P*°, so that P4P!° = P4. Similarly,
PAPZ»Llni = P, if ¢ € A°. Hence Propositions 2.4 and 2.8 show that V; is a pure
isometry on H 4 if i € A and unitary if i € A°.

It remains to establish the equivalence of the statements concerning a reducing
subspace L.

The equivalence of (2) and (3) is clear.

We prove that (1) implies (3). We know from Propositions 2.4 and 2.8 that
PLPZ.iSO = P, for all i € A, and that PLPZ.‘”li = Py, for all i € A° . Then clearly
PpPy = Py.

We prove that (3) implies (1). If i € A, then P{°PS° = Pi° since Pi°
contains a factor P;SO. Therefore, we infer from P, P4 = P;, and commutativity that
PLP,ESO — PLPAPiiSO — PLPASOPXTP;SO — PLPiAsoPiisopulcﬁ — PLPIiL‘soPX?i — PLPA —
Pyr. Likewise, PP = Py, for i € A°. Hence (1) follows from Propositions 2.4
and 2.8. (Il

The following generalisation of Proposition 2.10 is clear from Theorem 3.4.

Proposition 3.5.
(1) Let A,B C{1,...,n} with A # B. Suppose that L4 and Lp are subspaces
reducing all Vi,...,V,, and such that Vi|, is a pure isometry for i € A,
VilL . is unitary for i € A®, V|1, is a pure isometry for i € B, and V;|L,
is unitary for i € B¢. Then Ly | Lp.
(2) Suppose that, for each A C {1,...,n}, La is a subspace that reduces all

Vi,...,Vn and such that Vi, is a pure isometry for i € A and V;|, is
unitary fori € A°. If H = @Ag{l,...,n} L4 (algebraically), then Lo = Hxy
for all A.

The second part of the space decomposition is a decomposition of each H4. This
is obtained by inserting the right hand sides in equation (3.4) into the product that
is P4. This will involve manipulations with limits in the strong operator topology,
and we make a few preparatory remarks for this.

Firstly, if { Q; : ¢ € I} is a countable collection of pairwise orthogonal projections,
then it is easy to see that the series ) . Q; converges in the strong operator topology
independent of the order of summation. In fact, one can partition the index set as
one sees fit, sum over these (finite or infinite) subsets in any order, and then sum
these partial sums in any order. The outcome is always the supremum of the @Q;.
This implies that, in particular, multiple (countable) summations of such projections
can be summed in the strong operator topology in any order.
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Secondly, if (@)%, and (Q.,,)29_, are two decreasing sequences of projections
with infimum @ and @', respectively, and such that all @,, commute with all @/,
then one readily checks that the net (Q,Q;,)(nn)enz (With the product ordering
on N x N) is decreasing, and that its infimum is Q@Q’. The analogous statement
holds for an arbitrary finite termwise product of such sequences.

With this in mind, we can now establish our next result. It defines and uses a
subspace W4 of H 4 that we shall call a wandering subspace; see Definition 3.7. If
zi; = 1 for all 7 and j the first part of the theorem can be found as [13, Theorem 3.1].
We emphasise, however, that W4 is not the analogue of the wandering subspace
in [13, p. 292], which is ;. 4 ker V;*; the reader can also compare Theorem 3.6
and [13, equation (3.2)]. Our subspace Wy acts as a core for H4 on which the
operators corresponding to indices in A® (if any) act unitarily, and that is moved
around isometrically in H4 by the operators corresponding to the indices in A (if
any). H 4 is then the Hilbert direct sum of all these copies. If W4 is not moved
because A = (), then this means that W, and H,4 coincide. We believe that
the sequel, in which our wandering subspaces play a crucial role, shows that the
definition in the present paper is the appropriate one. We shall give a conceptual
characterisation of W, in Proposition 3.9.

Theorem 3.6 (Space decomposition for given types of actions). Let (V1,...,V,,)be
an n-tuple of doubly non-commuting isometries. Suppose that A = {iy,...,i;} C
{1,...,n} is a (possibly empty) set of l different indices, with A° = {j1,...,Jn—1}
Set

e Qe )
mj,, l:O i€A
Then W4 C Hy, and

o0
ki ki
Hy = @ VoV (W)
Kiyyeeskii, =0
as a Hilbert direct sum.
Here, if A =10, then these equations should be read as

oo

Wom () Vv
My yeeny My, =0
and
Hy =Wy,
and, if A={1,...,n}, then these equations should be read as
Wi, ny = ﬂ ker V;*
ie{l,...,n}
and
H{l""’n} = @ ‘/il P ‘/inln (W{1a7n})
Ky yereskin, =0
Furthermore:

(1) For alli e A°, W4 reduces V;, and Vilw, is unitary;
(2) We have (Vilw,)"(Vilwa) = Zi;(Vilwa)(Vilwa)" for alli,j € A® such that
i F s
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(3) Forallie A, V¥|w, =0;
(4) Forallr € {1,...,1} and kiy,..., k; >0,

ks ki, ki _ ke ki, +1 ki

Vir(vill"'vz; "‘Vill(WA))*Vill‘”Vu VT (Wa).

Definition 3.7. The (possibly zero) subspace W4 in Theorem 3.6 will be called the
A-wandering subspace of (V1,...,V,). We may list the indices in A° in increasing
order as j; < -+ < j,—;. In that case, we shall refer to the (|]A°| + 1)-tuple
Aw,, Viilwa -5 Vi, lwa) as the A-wandering data of (V1,...,V,), and we shall
denote it by D4; the obvious convention is that Dy . ny = (1w,)-

Remark 3.8. If one so wishes, one can renumber the V; in any order and place
them in a new n-tuple of doubly non-commuting isometries with permuted structure
constants. The space H 4, however, does not depend on the numbering of the
Vi, but only on the set of operators {V;:i € A}. This follows from the fact
that all factors in equations (3.5) and (3.6) commute. Likewise, the A-wandering
subspace W4 and the set of summands in the decomposition of H4 in Theorem 3.6
depend on the set {V; :i € A} but not on the numbering; this is a consequence
of the fact that the V; commute up to non-zero scalars. In view of all this, it
seems perhaps more natural to define the A-wandering data not as a tuple but
as the set {1w,, Vi, |wa ..., Vj, ,Iwa}, which would then also be independent of
the numbering. In that case, however, if i € A°, then the link between V; and
its restriction V;|w, would be lost. All one would know is that this restriction is
‘somewhere’ in the set of A-wandering data. This is undesirable when considering
unitary equivalence of n-tuples in the sequel. It is for this reason that we insist
on keeping our numbering of the V; fixed and listing the restricted operators in
the wandering data in order of increasing index. This ensures that it is always
still possible to couple the original operator and its restriction to the wandering
subspace.

Proof of Theorem 3.6. We shall give the proof if [ is such that 1 <1 <n —1. The
proofs for the remaining cases where [ = 0 or [ = n are similar and somewhat easier;
they are left to the reader.

We start by proving that each H,4 is the Hilbert direct sum as stated.

We have

PA — PISOPUHI
— (H Piiso> . Purcli
i€EA
= Z Vi =V vnvlt | Z Vo= v vinviet | ey

Within each series, the summands are pairwise orthogonal projections. Since these
summands commute with all summands of the other series by Corollary 3.2, and
also with P42, we see that we can write

(3.8) R
Pa= 3, ([%’f"l(lwlvm%’:’“"]'-' Vi -vvovt] -Pzz?i)

Kiyoe.orkii, =0

IPRARED)
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as an SOT-convergent series of pairwise orthogonal projections, the ranges of
which are then contained in the range of Py, i.e. in H4. Hence the proof of the
decomposition of H4 as a Hilbert direct sum will be complete when we show that
the summands in the decomposition correspond to the images of the projection
summands in equation (3.8).
For this, fix a projection summand
Vi viyvt ] v a - vt - e

We apply equation (3.1) and the fact that Py? commutes with all V; to see that
this projection summand equals

(3.9) v (P“i“(l V) (1 =V ))V I A

K2 11 11 1] 1 11

Note that (1 -V, V;¥)--- (1 =V, V) is a product of commuting projections. Hence
it is the projection onto the intersection of their images ;. 4 ker V;*. We denote

this projection by Q)4 for short.
We shall now first identify the factor P42'Q 4 in the middle of equation (3.9), and
for this we proceed as follows. Note that Pill is the infimum of the decreasing net
(VmJl V*mn L. ijn,l \78

*mJn—l>
J1 Jn—1 Jn—1 (mj17-~~7mjn,l)€N”7l.

Since @ 4 commutes with all elements of this net by Corollary 3.2 (there is no overlap
in indices between A and A°), the net

Mgy § %My . ms,
(Vv v ea)
1o Mg g

*mjn—l

is again decreasing, and its infimum is Py2'Q4. Equation (3.2) and again Corol-
lary 3.2 show that the latter net can be rewritten as

(V.mh LV TQAV

J1

*Mj, . V_*mh) .
- I (Mjyseeymy, _ JENTT!
In this form we can recognise the elements of this net: they are the range projections

of the partial isometries ijn“ e V;:j?" Q4. That is, they are the projections onto

V;lnh e V;:i’;’l (ﬂieA ker Vl*) But then Py Q@ 4, being the infimum of the net, is
the projection onto
o0
m;j m7n l
ﬂ Vil Vi (ﬂkerV)
mjy .. ,my, =0 €A

which is Wy4.
Now that we have identified the range of the projection that is the middle factor
(1 =V, V) -+ (1 =V, Vi) in the projection summand in equation (3.9), we
can use a similar argument to see that the projection summand as a whole is the

projection onto

VAV (Wa).
The required correspondence between the images of the projection summands in
equation (3.8) and the summands of Hy4 in the statement of the theorem has now
been established. Since we know that these summands are all subspaces of H 4, this
is, in particular, true for W4.

We turn to the remaining statements.
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As we have seen above, the projection onto W4 is P4Q 4, for which we have the
factorisation PAQa = P4 (1 =V, V*)--- (1 =V, V;?). Since P4* commutes with all
Vi, and @4 commutes with Vj,,...,Vj, according to Corollary 3.2, P4(Q 4 commutes
with Vj,,...,V;,. Hence W4 reduces these operators. Since W4 C Hy4, and H4 is
contained in each of HJ‘-llni, ceey H;-Jnf‘il, Proposition 2.4 shows that Vj,,...,V; , are
all unitary on Wy4. We have thus established part (1).

Part (2) is evident since the relations as operators on H are inherited by their
restrictions to reducing subspaces.

Part (3) is clear once one realises that all isometries and their adjoints commute
up to scalars, so that, in particular, this the case for the V;* for i € A on the one
hand, and V},,...,V;, _, on the other hand.

Part (4) follows likewise from the fact that the V;,, ..., V;, commute up to non-zero
constants.

O

The following result gives a conceptual characterisation of the subspace W4 in
Theorem 3.6. If n =1 and A = {1} it coincides with the familiar result that there
is only one wandering subspace for an isometry V', namely, ker V*.

Proposition 3.9. Let A = {i1,...,4} C{1,...,n} be a non-empty set of l different
indices, with A = {j1,...,4n—1}. Suppose that L is a subspace of Ha that is

invariant under Vj,,...,V; _, and such that
= k ki
(3.10) Hi= @ V,*--V, (L)

Kiyye.oki, =0
as a Hilbert direct sum. Then L = W4 as in Theorem 3.6.

The case where A = () has been left out, because then the interpretation of the
Hilbert direct sum in the statement becomes unclear. Conceptually, this case is
still included: if L. C Hp is such that Hy is the Hilbert direct sums of L and all its
images under the operators corresponding to the indices in A (of which there are
none), then trivially L = Hy. Together with the definition of Wp in Theorem 3.6
this shows that L = Wj.

Proof. Let r € {1,...,1}. Since the isometries commute up to non-zero constants,
we see from an application of V;_ to equation (3.10) that V; (H4) is a Hilbert direct
sum of summands that already occur in the right hand side of equation (3.10). The
summand L, however, is no longer present, and this shows that L and V; (Hy) are
orthogonal. Since L, being a subspace of H 4, is orthogonal to the spaces H 4/ for all
A’ # A, and since these spaces are invariant under V; _, we see that L is orthogonal
to Vi, (H). That is, L C ker V;*. This shows that L C ;. , ker V;*.

If A={1,...,n}, then this means that L C Wy, where W, is as in Theorem 3.6.
A comparison of equation (3.10) and Theorem 3.6 now shows that we cannot have a
proper inclusion L. C W 4. Hence L = W4, as required.

If AC{1,...,n}, we need to continue.

Let r € {1,...,n—1}. Again since the isometries commute up to non-zero
constants, we see from an application of Vj, to equation (3.10) that

Vi (H) = @ v v ).
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Since we know from Theorem 3.4 that V; (Ha) = Ha, and V}, (L) C L by hypothesis,
a comparison with equation (3.10) shows that there cannot be a proper inclusion
Vj,(L) € L. Hence L = V; (L). Combining this with L C (,. 4 ker V;*, we see that
L C W4, where W4 is as in Theorem 3.6. Now that we know this, a comparison

of equation (3.10) and Theorem 3.6 shows that we cannot have a proper inclusion
L C Wy. Hence L = Wy, as desired. O

We include the following inheritance result.

Proposition 3.10. Suppose that T € B(H) commutes with the projections VFV:**
foralli=1,...,n and all k > 1; equivalently, suppose that V(H) reduces T for
alli=1,...,n and all k > 1. Then, for all (possibly empty) A C {1,...,n}, all
summands in the decomposition of H 4 as a Hilbert direct sum in Theorem 3.6 reduce
T'; in particular this is the case for the A-wandering subspace W 4. Consequently,
H 4 reduces T.

Proof. In view of the definition of Py in equation (3.5), and of the P in
equation (2.3), he hypothesis evidently implies that the projection summands in the
proof of Theorem 3.6 commute with T'. O

If all z;; are equal to 1, if T" is an isometry that commutes with all V; and V;*,
and if A ={1,...,n}, then Proposition 3.10 yields [13, Proposition 2.2].
We conclude this section with an application.

Lemma 3.11. Suppose that (V1,...,V,) is an n-tuple of doubly non-commuting
isometries where Vi, ..., V, are all pure isometries, and that ﬂ?zl ker V* has finite
dimension. Let T' € B(H) and suppose that, fori=1,...,n, TV; = 7,V;T for some
7i €T, and T'ker V;* C ker V*.

If T has trivial kernel on (_, ker V;*, then T maps H onto H.

Proof. Since T leaves (;_, ker V;* invariant and has trivial kernel on this finite
dimensional space, we see that T : (), ker V;* — (_, ker V;* is a bijection. We let
T~ denote its inverse on this subspace, which is automatically bounded.

By Theorems 3.4 and 3.6 we have

- é Vlklu-V,f"(ﬁkerVi*).
k1, kn=0 i=1

Let x € H. Then we can write
oo

(3.11) xr = Z Vlkl - Vf"Ikh...,kn
k1yeeoskn=0

: 2
as an orthogonal series, where z, .. &, € (Vimy ker Vi and °0° o |2k, k,|I” =
= soonskin= eeskin

.....

|||?. Tt is clear from the relations between T and the V; that

o0

k kn
Tx = E Chyyokon Vi V" Ty,
kiyeeoskn=0

is then again an orthogonal series, where the cg,, . %, are unimodular constants.

We combine the above: if x € H is as in equation (3.11), then, since T~ is
bounded,

-1 k1 k -1
E: Ckl,...knvl VT Ty ke,
k1, ,kn=0
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is a convergent orthogonal series. If y denotes its sum, then Ty = z. O

The following is an immediate consequence. It it conceivable that a proof can be
given that avoids the use of our results so far, but without these it might be hard to
spot the result at all.

Corollary 3.12. Let (Vi,...,V,) be an n-tuple of doubly non-commuting isome-
tries. Let | be such that 1 <1 < n. If Vi,...,V; are pure isometries such that
dim(ﬂé:1 ker V;*) < oo, then Vii1,...,V, are unitary operators on H.

Proof. This follows from Lemma 3.11 for (V4, ..., V}), combined with Lemma 3.1. O

As a particular case, if S is the unilateral shift on ¢?(Ng), and V is an isometry
such that S*V = 2V S* with |z| = 1, then V is unitary.

Here certainly a direct proof is possible, as follows. Since S*ey = 0 and ker S* =
Cep, we see from the given relation that Vey = Aeg for some A € C. Then |\| = 1 since
V' is an isometry. Next, S*Ve; = 2V 5%e; = 2Veg = Azeg. Hence Ve, = Azey + ueg
for some p € C. Then Ve; = Azep since V is an isometry. Induction shows that
Ve, = Az*ey, for k > 0. Hence V is unitary.

4. WOLD DECOMPOSITION AND EXAMPLES

In view of Theorem 3.4, if A C {1,...,n}, then we would like to know more
about the structure of an n-tuple of doubly non-commuting isometries such that the
operators corresponding to the indices in A are pure isometries, and the operators
corresponding to the remaining indices are unitary. At the same time, we are
interested to find an example of such an n-tuple on a non-zero Hilbert space. We may
restrict ourselves to the case where the indices in A come first; this makes the notation
a little less demanding. Choosing a more suggestive notation than the generic letter
V', we shall, therefore, be working with an n-tuple (S1,...,S;, Ui, ..., U,) such
that Sp,...,.5; are pure isometries and Ujy1,...,U, are unitary. Here 0 <1 < n,
so that one of the two lists in the n-tuple could be absent. Using the results in
Section 3, we shall now analyse such n-tuples; this leads to a Wold decomposition.
As we shall see, this decomposition informs us how to find non-zero examples. As
explained in Section 1, the description of irreducible tuples in [11, Theorem 2] could
serve as an alternate source of inspiration.

We start with the case where [ = 0, i.e. where the list of S; is empty. In view of
Proposition 2.9, an application of Theorems 3.4 and 3.6 yields that H = Hy = Wj
and that the U; are unitary operators on Wy satisfying equation (1.1). That is merely
reiterating our starting point. There does not seem much that we can add here: we
are simply looking at a representation of the non-commutative n-torus and with
this we hit rock bottom. In the terminology of Definition 3.7, the @-wandering data
Dy of (Uy,...,Uy) are (1g,Us,...,Uy). For reasons of uniformity that will become
clear below, we prefer to denote the space that the pertinent unitary operators
act on by W, and we shall tautologically refer to such an n-tuple (Uy,...,U,) of
doubly non-commuting isometries in which all isometries are unitary operators as
the standard n-tuple of doubly non-commutative isometries with (-wandering data
(1w, U1,...,Uy,). As a consequence of Proposition 2.9 and Theorem 3.4, all other
wandering data are zero tuples.

It seems as if the results in Section 3 do not help to find a non-zero example for
[ =0, and that we need to refer to the literature (e.g. to [12]) for these. That is not
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entirely true, though: we shall see how the analysis of the case where [ > 1 still tells
us how to construct such an example if [ = 0. As we shall see, such ‘fully unitary’
examples are, in fact, also needed when [ > 1. Since they are easier than those
for the latter case and virtually immediate from that case, we defer the non-zero
example where [ = 0 until the case where [ > 1 has been handled.

We turn to the case where [ > 1. Contrary to the case where [ = 0, Theorems 3.4
and 3.6 now give some new information. We start by proving a Wold decomposition
for (Sl, ey Sl, Ul+1, ey Un)

Let us first suppose that also [ < n—1, so that there are at least one pure isometry
and one unitary operator in our n-tuple; this avoids working with conventions for
empty sets of operators in the argumentation below. Theorems 3.4 and 3.6 show
that there exists a subspace W of H such that

o0
(4.1) H=  Sf---s7(w).
K1, k=0
Furthermore, W is invariant under Uj4,...,U,, and these operators all act on W

as unitary operators. Writing U; = U;|w, we have

forall7,j =1+4+1,...,n with i # j.

Equation (4.1) enables us to define an isomorphism ¢ : H — 2(N}) ® W, as
follows. Using the natural notation for the canonical orthonormal basis of £2(N}),
set

(oo} oo
42) el >0 St SPaukm | = D hk @k ks
ki,...,k;=0 ki,...,k;=0
where the zk,, ., are in W. We note that ||ex,, .k @ Thy,.. k|l = |Tky,. 0]l =

|| Sk -~-Slklxk17___7kl I, so that the convergence of the orthogonal series in the left
hand side of equation (4.2) is equivalent with that of the orthogonal series in the
right hand side. Hence ¢ is indeed an isomorphism. Aside, we also note that,
although the decomposition in equation (4.1) as a Hilbert direct sum is (up to a
permutation of the summands) independent of the choice for the numbering of the
S;, this is no longer the case for the definition of ¢ in equation (4.2). This certainly
depends on this choice. However, since it is only the existence of such ¢ that we
need, this will not bother us. We simply work with ¢ as it is determined by the
chosen and fixed enumeration of our n isometries.

We can now transfer the action of our given Sy,...,S; and U,_;,...,U, to
2(N)) ® W via . Tt is easy to determine what these transferred actions look like.
Doing so for the S;, one encounters expressions of the form .S; - Sfl e Slklxkl,m,k“
where S; needs to be moved to its ‘proper’ place in the operator part of .S; - Sfl e Slkl
of such an expression. Since S; needs to pass the powers of S1,...,S5;_1 for this,
a constant appears that involves the (¢ — 1) constants z; 1, ..., 2; ;—1. Doing so for
the U;, one encounters expressions of the form U - Sfl e Slklxkl,...,kl. In this case,
U; always needs to be moved to become the final operator in the operator part
U; - Sfl ~-~Slk1. Thus there are always [ constants involved, namely, z;1,..., 2.

as Uj;.

After having become the rightmost operator, U; acts on zg, .k,
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Thus one sees that, for i =1,...,1,
(43)  (poSiop Nk, .k ®T) = Zz-kfl e 25)2111 Chky,oki kit ki, k QT
for all k1,...,ki > 0and x € W, and that, fori =1+ 1,...,n,
(4.4) (poUio@ ™ )ek,m @m) =254 2 er, p, ® Us
for all ky,...,k; > 0 and x € W, where the ﬁi are unitary operators on W satisfying
(4.5) U;U, =z,;U;U,

foralli,j7 =1+1,...,n with ¢ # j. As elsewhere in this section, the empty products
in equation (4.3) that occur for ¢ = 1 should be read as 1. Moving S is never
necessary.

There does not seem to be anything that can be said further. This would have to
be related to the structure of (ilerl, R (7”), but, as earlier, W is simply a module
over the pertinent non-commutative (n — ) torus and that is where it stops. We
have thus obtained a Wold decomposition.

It is now also clear how examples can be obtained: turning the tables, we simply
use equations (4.3) to (4.5) as an Ansatz.

Suppose, therefore, that [ is such that 1 <1 <n —1 and that a Hilbert space W
is given with unitary operators Uj41, ..., U, € B(W) satisfying equation (4.5) for all
i,j =1+1,...,n with i # j. Then we introduce operators S, ..., S, Uit1,...,Upy
on /2(NL) @ W, as follows.

Fori=1,...,1, set
(46) Si(ekl,...,k, ® {L‘) = Zlkj T Zflzill €kiyeskiot kit kg1, kg @ T
forall k1,...,k;>0and z € W, and, fori=1+1,...,n, set
(4.7) Ui(ery,..ky @) =25+ 21 ex, gy @ Ui

for all k1,...,k; >0and x € W.

The S; and U; are all tensor products of operators on ¢2(N}) and W. An operator
S; is the tensor product of an operator on ¢2(N}) that is the direct sum of weighted
unilateral shifts (with a weight that is constant in every copy, but where the constant
that is this weight depends on the copy) and the identity operator on W. An operator
U; is the tensor product of a diagonal unitary operator on £2(N)) and the unitary
operator (7]- on W.

It is clear from Proposition 2.6 that the .S; are pure isometries, since the corre-
sponding subspaces H ™! are all the zero subspace. The U; are obviously unitary.
Hence it remains to verify the relations, which we shall now do.

Using that S7S; = 1 and that ker S} = (S;(£2(N}) ® W))L, it is easy to see that

—k1 ki1 . .
2517 Rii—1 €k, kisnki— Lk, ke @a ifk > 1;

4.8 S =
(4.8)  Si(ers,.. b ® ) {0 it k; = 0.

It is evident from equation (4.7) that, for i =14 1,...,n,

* —k —k 7%
(4.9) Uik, @T =71 Zy €yl QU T

forall k1,...,k;>0and z € W.
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Lemma 4.1. For the pure isometries Si,...,S; on (2(NL) @ W as defined in
equation (4.6), we have

S5;8j = Zij5;5;
foralli,j=1,...,1 such that i # j.

Proof. If we can prove the statement when ¢ < j, then the case where i > j follows
from taking adjoints and using that z;; = Z;; whenever ¢ # j. Hence we suppose
that ¢ < 7.

First of all, if k; = 0 then S}S;(ex,,.. r ® ) and S;57 (ex,,... .x, @ x) are both
zero. This is still immediately clear for all ¢ and j: the reason is that S; does not
increase k;. We shall use that ¢ < j for the remaining case where k; > 1, to which
we now turn. As we shall see, the factor z;; in the relation originates from the fact
that the i-th index precedes the j-th index in the labelling of the ey, .. 1. Indeed,

S;Sj(eky,.. @)
k1 kj_1

. *
= (Zj,l T Zj,j—l) ’ Si (6k17~~-7kj—1akj+1akj+17---7kl Y 1‘)
ok kj—1 —kq ki1
- (Zj,l e zj,j—l) ’ (zi,l T Zi,i—l) “Chy,ki—ki— ki1, kjo1,ki+ Lk, ke ®x
and
>k
SjSi (ekl,m,kz ® .Z')
_ (=k1 —ki—1
= (zi,l U Zi,ifl) : Sj (ekl7-<~7k5i717ki_11ki+11-“7kl ® .’L’)
— (zk1 ki1 k1 ki1 _ki—1 _kit1 kj_1
= (zi,l T Zi,i—l) : (Zj,l U Z5i-1%i 0 Rl Zj,j—l)'
Cky,o ki1, ki—Lkiga,kj—1,kj+1k 41,0,k ®x
_ =k _ki_1 -1 k1 ki—1 ki kit1 kj—1
= (Zi,l T 21,1'71) "z ( 31 %5i—1%5,i%5i+1 " 'Zj,j71)'
Cky,.ki—1,ki—Lkig1,..kj—1,k;+1kj41,....k ®x
=1 =k _ki—1 k1 kj_1
=% (Zi,l T Zi,i—l) : (Zj71 T Zj,j—l)'
Cky,. ki1 ki—Lkig1, . kj—1,k;+1kj 41,0k X x.
* = * .
Hence S;Sjex, .5, ® ¢ = Z;;5;5] ex,,...k,, ® x, as required. O

We turn to the relations among the Us;.

Lemma 4.2. For the unitary operators Ujiq,..., ULL on (2(N)) @ W as defined

in equation (4.7) in terms of the unitary operators Uiyq, ..., U, on W satisfying
equation (4.5), we have

U:Uj = fijU;Ui
foralli,j=14+1,...,n such that i # j.
Proof. This is immediate from equations (4.5), (4.7), and (4.9). O

It remains to consider the relations between the pure isometries and the unitaries.

Lemma 4.3. For the pure isometries Sy, ...,S; and the unitaries Uj41,...,U, on
P2(NY) @ W as defined in equation (4.6) and equation (4.7), respectively, we have

SiU; = zi3U;S7
foralli=1,....,landj=1+1,...,n.
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Proof. We start by establishing that S;U; = z;;U; S
If k; = 0, then S;Uj(ek,,. .k ®x) and U; S} (ek,,... .k, @ x) are both zero. Hence
we may suppose that k; > 1. In that case,

* k1 k * rT
SiUj(€ry,.ly @) = (25 -+ 254) - 57 (€hy iy @ Ujw)

= () @RI ek Lk © U,
and
U;Si (k... ® T)
= (?fll . '?ﬁii__ll) “Uj(€hy,oco ki1 ki = Likigg ek @ T)

= @m0

€ky,ekiz1 ki—1, ki, kg @ ﬁjm
= @ m) g (B e A

€ky,eokiz1 ki—1,kig,. kg @ ﬁjm

-1 =k ki k k r7

=% (Zz',11 e Zi,i—ll) : (Zj,11 T ijl) CChy ki1 ki — Lk, ok © U

Therefore, S;U; = z;;U; S}, as required. Taking the adjoint of this relation and
using that Zij = Zji shows that U;SZ‘ e EjiSiU;. [l

We have now completed the verification that (Si,...,S;,Uit1,...,Uy,) is an n-
tuple of doubly non-commuting isometries on ¢2(N}) @ W. It is an easy consequence
of equation (4.8) and the unitarity of the U; that the {1,...,l}-wandering subspace of
(S1,---,8L, U1, ..., Uy) 18 eg,... 0 ® W, thus explaining the choice of the letter. We
shall identify this space with W. With this identification, the {1,...,[}-wandering
data Dy, 3 of (S1,...,5,Uiy1,...,Uy,) are (1, ﬁl+17 e ﬁn) As a consequence
of Propositions 2.6 and 2.9 and Theorem 3.4, all other wandering data are zero
tuples.

Forl=1,...,n— 1, we shall refer to the n-tuple (Si,...,S5;,Uit1,...,Uy), where
the pure isometries Sy, ..., S; and the unitary operators U1, ..., U, on £2(N5) @ W
are as defined in equation (4.6) and equation (4.7), respectively, and where the
unitary operators ﬁl+1, ceey Tj'n on W satisfy equation (4.5), as the standard n-tuple
with {1,...,1}-wandering data (Ly,Upiq,...,Uy).

It remains to consider the case where [ = n. In that case, Theorems 3.4 and 3.6
show again that there exists a subspace W of H such that

oo
H= St Skn (7).
K1y kn=0

One then again defines ¢ as in equation (4.2). In this case, there are no unitary
operators to transfer to £2(N") @ W, and one is left with only equation (4.3), where
then ! = n. This is then the Wold decomposition for the n-tuple (Si,...,5,). In
obvious analogy with the classical result for one pure isometry, the action of the
tuple is a Hilbert sum of copies of the case where W = C.

Turning the tables, one defines, for i = 1,...,n, the operators Sy,...,S, on
2(N") @ W by

— k}l k'—l
(4.10) Si(ekl,.“,kn R ) = Zi1 Zi,li—l €kyyokit kit ki, ik @ T
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for all k1,...,k, > 0 and x € W. Then the proof of Lemma 4.1, which applies
equally well if [ = n, shows that (Si,...,5,) is an n-tuple of doubly non-commuting
isometries on (2(N?) ® W. It is evident from equation (4.8) that the {1,...,n}-
wandering subspace of (S1,...,5,) as in Definition 3.7 is ep.. o ® W. We shall
identify this space with W again. With this identification, the {1,...,n}-wandering
data Dy, ny of (S1,...,85,) reduce to the 1-tuple (1w ). As a consequence of
Proposition 2.6 and Theorem 3.4, all other wandering data are zero tuples.

We shall call (Sy,...,S,) the standard n-tuple with {1,...,n}-wandering data

(1w).
It is now time to tie up the obvious loose end in the above: for [ =0,...,n —1,
we still need to find unitary operators U;11,...,U, on a non-zero Hilbert space W

that satisfy equation (4.5). Only this will give us non-zero examples of standard
n-tuples for such [. With the results above available, this is now easily done. We
simply mimic equation (4.6), where we now allow also negative integer indices. To
be precise: take W = ¢2(Z"~!), and denote the canonical orthonormal basis elements
by ek, 1.k, for kip1,...,kp € Z. Fori=1+1,...,n, we define

rr ki ki—1
(4.11) Uiekz+1,-~7kn = Zi,lifl Chkigp1,ekizt kit ki, kn
for kj41,...,k, € Z. Evidently,

7k _ kit ki1
(4'12) Ui Chiy1,kn = %4141 """ Fii—1 Chiga, kit kit kg, ok
for ki41,...,kn € Z.

Lemma 4.4. For the unitary operators (7;“, ..., U, on 2(2"7Y as defined in
equation (4.11), we have

ﬁi*ﬁj = Eijﬁ;ﬁi
foralli,j=1+1,...,n such that i # j.

Proof. This has essentially already been done in the proof of Lemma 4.1. Comparing
that context with the present one, there are presently no cases that need to be
considered separately when indices labelling the orthonormal basis are zero. We are
only left with the analogue of the computational part of the proof of Lemma 4.1.
For this, we need merely note that this part of the proof of Lemma 4.1 does not
use that the indices k1, ..., k; labelling the elements of the orthonormal basis are
non-negative. It is sufficient to have equation (4.6) and the first line of equation (4.8)
for all indices under consideration. Since equation (4.11) and equation (4.12) have a
structure that is completely analogous to that of equation (4.6) and the first line
of equation (4.8), respectively, a completely analogous computation establishes the
relations in the present lemma. As earlier, it originates from the fact that for a pair
of different indices labelling the elements of the orthonormal basis there is always
one that precedes the other. O

We have now described all n-tuples (V4,...,V;,) of doubly non-commuting isome-
tries that are of ‘pure type’ up to unitary equivalence, and we summarise this
description in the next result. We emphasise that Lemma 4.4 (which is not visible
in the statement) is necessary to show that it has substance. The convention in
its formulation is that lists where the lower bound of the index exceeds the upper
bound are absent.

Theorem 4.5. Let [ be such that 0 <[ < n.
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(1) Suppose that (71+1, R ﬁn are unitary operators on a Hilbert space W satis-
fying equation (4.5). Then the standard n-tuple (S1,...,S,Us1,-..,Uyn)
with {i : 1 < i < {}-wandering data (1W,(~]l+1,...,[~fn) is an n-tuple of
doubly non-commuting isometries on 62(0\16) ®W. The associated wandering
subspace Wiiq<i<iy of (S1,...,5,Uis1,...,Uy) is canonically isomorphic
to W, and the {i : 1 < i <l}-wandering data are then (1yy, 1714_1, cee ﬁn)
All other wandering data are zero tuples. The operators Si,...,S] are pure
isometries, and the operators Uj41,...,U, are unitary.

(2) Suppose that (V1,...,V,) is an n-tuple of doubly non-commuting isometries,
that the first  of these are pure isometries, and that the final (n—1) ones are
unitary. Let W be the wandering subspace of (V1,...,V,) as in Theorem 3.6,
and let ﬁl+1, ceey ﬁn denote the unitary restrictions of the respective operators
U1, ...,Uy to W. Then the n-tuple (V1,...,V,,) is unitarily equivalent to
the standard n-tuple (S1,..., S, U1, ..., Up) with {i : 1 <14 < 1}-wandering

data (1w, ﬁl+1, ey Un)

Naturally, one can carry out the construction of standard n-tuples for an arbitrary
subset A C {1,...,n} that is not necessarily an initial segment, and find an n-tuple
(V1,..., V) of doubly non-commuting isometries such that the V; for i € A are
pure isometries and the V; for ¢ € A® are unitary with pre-given restrictions to the
pre-given wandering subspace of (V1,...,V,). One needs to be careful, though, when
defining the coupling between the list of restrictions in the A-wandering data and
the corresponding unitaries in the newly constructed n-tuple (V1,...,V,), because
the structure constants of these restrictions are inherited by the corresponding
unitaries in (V4,...,V,); see Lemma 4.2. We need to make sure that these inherited
constants are the corresponding z;; in equation (1.1). Therefore, if |A| = ! and
A ={j1,...,Jn—1} with j; < ---j,_;, we insist that the pre-given A-wandering data
in Dy are listed as (1w, l_'ijl, e ('_ijnfl), and are such that Tj']*ﬁj = fjrjsﬁjS [7]*
for all ;s = 1,...,n — [ such that r # s. This requirement is the counterpart of
the ordering of the indices as required in the definition of the A-wandering data of
an already existing n-tuple (V1,...,V;,) of doubly non-commuting isometries; see
Definition 3.7.

With this requirement on the ordering of the indices in place on two occa-
sions, the obvious analogue of Theorem 4.5 holds. Firstly, if |A| = [ and A° =
{1y Jn—1} with j3 < ---j,_;, then one can construct an n-tuple (V1,...,V;,)
of doubly non-commuting isometries that has pre-given A-wandering data D4 =
(Qw,Uj,,...,U;, ,) while all other wandering data are zero tuples, and where the
V; for i € A are pure isometries and the V; for ¢ € A° are unitary. This is called
the standard n-tuple of doubly non-commuting isometries with A-wandering data
(1W7(7j17~-~7(7jn4)7 and it is denoted by Vp,. Secondly, if (V4,...,V},) is an n-
tuple of doubly non-commuting isometries such that the V; for ¢ € A are pure
isometries and the V; for i € A® are unitary, and if its A-wandering data D, are as
in Definition 3.7, then (V1,...,V,,) is unitarily equivalent to Vp,.

Now that we have described all n-tuples of ‘pure type’ (essentially on basis of
Theorem 3.6), the following is clear from Theorem 3.4. If z;; = 1 for all 4 and j one
retrieves a particular case of [1, Theorem 3.1].
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Theorem 4.6 (Wold decomposition). Let (Vi,...,V,) be an n-tuple of doubly non-
commuting isometries. Then (Vi,...,V,) is unitarily equivalent to the Hilbert direct
sum @ cq1 .,y Vpa, where Da denotes the A-wandering data of (Vi,...,Vy).

There does not seem much more that we can add concerning the structure of
n-tuples of doubly non-commuting isometries. If n = 1, then the classical Wold
decomposition for an isometry provides no further information about the unitary
component, and here we have something similar for the (this role has now become
obvious) representations of non-commutative tori on the wandering subspaces.

We shall take up the parameterization of the unitary equivalence classes of
n-tuples in Section 5.

Remark 4.7. The equations (4.6), (4.7), and (4.11) provide a more or less ele-
mentary example of n doubly non-commuting isometries on ¢2(N)) ® ¢2(Z"~!) such
that the first [ are pure isometries and the final (n —[) are unitary. It can actually
be shown that the C*algebra that is generated by these operators is the universal
C*algebra that is generated by n doubly non-commuting isometries (still with
the same structure constants) such that the final (n — ) of these are unitary. In
particular, for [ = 0, one retrieves the known fact (see [12]) that the C*algebra
that is generated by unitary operators U,...,U, on {2 (Z™) as in equation (4.11) is
isomorphic to the non-commutative n-torus. At the other extreme, if [ = n, then
one sees that the Fock representation of the universal C*algebra that is generated
by n doubly non-commuting isometries is faithful. This is already known, but to
conclude this from the existing literature one has to distinguish two cases, and
combine [11, Proposition 8] and [8, Corollary 1]. Our proof is uniform.

We shall report on these universal C*algebras, their interrelations, and their
representations in a separate paper.

5. CLASSIFICATION

It is now easy to classify n-tuples of doubly non-commuting isometries up to
unitary equivalence. Theorem 4.6 provides an obvious candidate for a classifying
invariant, namely, the collections of unitary equivalence classes of representations of

the non-commutative tori that are naturally associated with the subsets of {1,....n},
borrowing their structure constant from those for (Vi,...,V,,). This is indeed the
case.

First, however, we include the following result. Though completely elementary,
the observation should still be made. We deviate for once from our convention that
the structure constants z;; are fixed.

Lemma 5.1. Let (Vi,...,V,) be an n-tuple of doubly non-commuting isometries
with structure constants z;; on a non-zero Hilbert space H, and let (V{,...,V,)) be
an n-tuple of doubly non-commuting isometries with structure constants z; on a
non-zero Hilbert space H'. If (V1,..., V) and (V{,..., V') are unitarily equivalent,
then zi; = z;; for all i # j.

Proof. Tt follows from V;V] = 2{,V/V/ and the existence of an equivalence that
ViVj = 2};V;V;. Hence z;,;V;V; = z;;V;V;. Since H is not the zero space and the

isometries are injective, we must have z;; = z;] [
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Hence we can safely return to our convention that the z;; are fixed and that they
are suppressed in the notation. For such fixed structure constants, a part of the
classification up to unitary equivalence is provided by the following.

Theorem 5.2. Let (Vi,...,V,) be an n-tuple of doubly non-commuting isometries
on a Hilbert space H, and let (V{,...,V.!) be an n-tuple of doubly non-commuting
isometries on a Hilbert space H', with identical structure constants in the relations.
Then the following are equivalent:
(1) The n-tuples (V1,..., V) and (V{,..., V) are unitarily equivalent;
(2) The A-wandering data Da of (V1,...,V,) and the A-wandering data D'y of
(V{, ..., V) are unitarily equivalent for all A C {1,...,n}.

Proof. We prove that (1) implies (2). If ¢ : H — H' is a unitary equivalence of
(V1,..., Vo) and (V{,..., V), then the definition of the wandering subspaces in
Theorem 3.6 shows that ¢(W,4) = W), for all sets A of indices. Alternatively, an
inspection of the proof of Theorem 3.6 shows that Py, and Py, are strong operator
limits of polynomials in the isometries and their adjoints in the respective spaces,
so that ¢ is also a unitary equivalence between these projections. At any rate, it
is thus clear that ¢ also implements a unitary equivalence between all respective
A-wandering data.

We prove that (2) implies (1). In view of Theorem 3.4, it is sufficient to show that,
for all A C {1,...,n}, the restriction of (V1,...,V,) to H4 is unitarily equivalent
to the restriction of (V{,...,V,)) to H). Fix A = {iy,...,4} with iy < -+ < i,
and let oy, : Wa — W/ be an isomorphism that is a unitary equivalence between
D4 and D’A. We suppose that 1 <[ < n — 1; the cases where [ =0 and [ = n are
handled similarly. Using Theorem 3.6 for both H4 and H/,, we can define a map
QA HA — H.il by

= k = k
k. ; 1k 1k
i i . i i
¢ Y Vit Vit e = D ViV (k)
k1,...,k1=0 k1,...,k1=0
where Thyy ok, € W 4. On noting that
ks ks 1k, 1k;
71 2 i i 11 A
”sz1 an Lhiy sk Il = ||mki17~~;kil = ||‘/11 V;L @(mkil,nwkil

it becomes clear that ¢4 is an isomorphism between H4 and H';. It is then easy
to see that ¢4 is a unitary equivalence between the restriction of (Vy,...,V,) to
Hy and of (V{,..., V) to H';. The reason is that, for ¢ € A, one picks up the same
constant when moving V; to its proper position in a product V;, -V, ™ --- V, "l asis
. . . k},, ]ﬁ .
picked up when doing the same sorting for V- VZ/1 Lo Vz,, ', and that, for ¢ € A,
one picks up the same constants when moving the factors V; and V; through the

entire product. [

For every A C {1,...,n}, let T4 be the non-commutative (n — |A|)-torus that is
determined by the indices in A¢ and the corresponding structure constants z;; for
i,j € A° with i # j. It is the universal C*algebra that is generated by unitaries
satisfying the pertinent relations; for A = {1,...,n} it equals C. If A is a set
of indices, then the possible A-wandering data D, that are the input for the
construction of the corresponding standard n-tuple Vp, are obviously in bijection
with the unital representations of T4, and two such representations of T4 are
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unitarily equivalent if and only if the corresponding A-wandering data are unitarily
equivalent.

Theorem 5.3 (Classification). The unitary equivalence classes of n-tuples of doubly
non-commuting isometries are in natural bijection with enumerations of 2™ unitary
equivalence classes of unital representations of the non-commutative tori T4, as
A ranges over the power set of {1,...,n}. The bijection is obtained by listing,
for a given unitary equivalence class with representing n-tuple (Vi,...,V,), the
unitary equivalences classes of the representations of T 4 that are associated with the
A-wandering data Dy of (V1,...,V,), as A ranges over the power set of {1,...,n}.

Proof. Theorem 5.2 shows that the map as described is well-defined and injective.
The existence of the standard n-tuples Vp, (as discussed following Theorem 4.5)
and then that of their Hilbert direct sums shows that it is surjective. O

As an application, we include a description and parameterization of the irreducible
n-tuples in this section. This improved version (there is now a classification part)
of [11, Theorem 2] is now easily seen to be a consequence of the results for arbitrary
n-tuples.

Theorem 5.4. Let (Vi,...,V,) be an n-tuple of doubly non-commuting isometries
on a Hilbert space H. Then the following are equivalent:

(1) H has only trivial subspaces that are invariant under the C*-algebra that is
generated by the operators in the n-tuple (Vi,...,Vy,);

(2) There exists a (possibly empty) set of indices A C {1,...,n} such that
V1, ..., V) is unitarily equivalent to a standard n-tuple V4 with the property
that the A-wandering subspace W 4 of the pertinent Hilbert space has only
trivial subspaces that are invariant under the C*-algebra of operators on W4
that is generated by the operators in the A-wandering data D of V4.

In that case, if H # {0}, two such n-tuples are unitarily equivalent if and only if the
corresponding sets of indices in part (2) are equal and the wandering data for these
equal sets of indices are unitarily equivalent.

Proof. We prove that (1) implies (2). If H = {0}, then one can take a zero
standard n-tuple on a zero space. If H # {0}, then Theorem 3.4 shows that
precisely one of the spaces H,4 is non-zero. According to (the general analogue of)
Theorem 4.5, (Vi,...,V,) is then unitarily equivalent to a standard n-tuple V4. It
is then immediate from the structure of the standard n-tuples that the irreducibility
of the action of the n-tuple on H4 implies that the action of the operators in the
wandering data on W, must likewise be irreducible.

We prove that (2) implies (1). If W4 = {0}, then H = {0}, and we are done.
Hence we suppose that W, # {0}. Resorting to the earlier notation, we suppose
for simplicity that the first [ operators in the n-tuple are pure isometries, and that
the remaining ones are unitary. If [ = 0, then there is nothing to prove. Hence we
suppose that [ > 1. Suppose that L C éz(Nf)) ® Wy is a non-zero subspace that
reduces the operators in the associated standard n-tuple. Choose a non-zero x € L.
Then x = Ekl,...,kzzo €hyky @ Thoyy With Tpy g, € Wy for all ky,... .k > 0.

Let m; be the minimal non-negative integer such that there exist k1,...,k;—1 >0
with @, k_1.m, # 0. Then
1 1
T = Slml+ Sl*(ml )33 = Z €k ,oki—1,mi © Thy k1 my

ki, ki—1>0
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is a non-zero element of L. After applying S*™ to this element, subsuming the
resulting unimodular constants into the xy, .. x,_,m,, and relabelling the latter,
we see that L has a non-zero element @' = >3, o€k, k1,0 @ T g o
Repeating this procedure (I — 1) times, we see that L contains a non-zero element
€o,...0 ® T. We can now let the C*algebra that is generated by Uy, ..., U, act on
€o,....0 ® T, and the irreducibility of Wy then shows that L contains ep . o ® Wa.
The action of the C*algebra that is generated by Si,...,S; then yields that L =
CZ(NL) @ Wy.

The proof of the equivalence of the parts (1) and (2) is now complete.

For the remaining statement, we note that Theorem 3.4 implies that the corre-
sponding sets of indices are equal. Then the unitary equivalence of the wandering
data follows from Theorem 5.2.

O

The following is now clear.

Corollary 5.5. The unitary equivalence classes of the non-zero irreducible represen-
tations of the C*-algebra that is generated by n isometries satisfying equation (1.1)
are parameterized by the unitary equivalence classes of the non-zero irreducible
representations of the 2™ non-commutative tori that are naturally associated with
the structure constants z;; in equation (1.1).

Example 5.6. We shall now discuss how the results work out if n = 1, when there
is only one isometry V.

Theorem 4.6 yields that the 1-tuple (V) is unitarily equivalent to Vy @ V13,
where Vy is the standard 1-tuple with (-wandering data (1w,,V|w,), and where
V(1} is the standard 1-tuple with {1}-wandering data (1w,,,). According to (the
discussion preceding) Theorem 5.3, the (-wandering data (1w,,V|w,) arise from a
unital representation of the non-commutative 1-torus. This is equivalent to saying
that V], is a unitary operator on some (possibly zero) Hilbert space Wy. The
structure of the standard 1-tuple Vy is simply that of the unitary operator V|,
acting on Wj; this is the case where [ = 0 that is considered first in the beginning
of Section 4.

According to (the discussion preceding) Theorem 5.3, the {1}-wandering data
(lw,,) arise from a unital representation of the non-commutative 0-torus. This
is equivalent to saying that Wyy is an arbitrary (possibly zero) Hilbert space.
According to equation (4.10) (we are in the case where [ = n), the structure of the
standard 1-tuple V(1} is then that of S ® 1w,,, acting on 2(Ng) ® Wi1y; here S is
the unilateral shift.

Thus the classical Wold decomposition is retrieved: V is unitarily equivalent to
the Hilbert direct sum of a unitary operator and copies of the unilateral shift.

According to Theorem 5.2, the unitary equivalence classes of 1-tuples (V') of
isometries are in bijection with the enumerations of both a unitary equivalence class
of (1w,,Vlw,) and a unitary equivalence class of (1w,,). That is: an isometry
is determined, up to unitary equivalence, by the unitary equivalence class of its
unitary part and the multiplicity of the unilateral shift.

Although there is no mathematical gain for n = 1 by retrieving a decomposition
that was used as a key ingredient for the general result to begin with, and a
classification result that could have been cited from the literature, it still seems
satisfactory to see how the known classifying invariants for isometries fit into a more
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general picture, in which these 2! invariants are the unitary equivalence classes of
representations of the non-commutative 0- and 1-tori.

6. DILATION THEOREM

It is now easy to prove a dilation theorem. Just as in the case where n = 1, now
that a Wold decomposition is available from Section 4, this is merely a matter of
allowing negative indices where needed.

We start with the cases where there are only pure isometries and unitaries. As
earlier, the convention in its formulation is that lists where the lower bound of the
index exceeds the upper bound are absent.

Proposition 6.1. Let ! > 0, and suppose that (S1,...,S,Ui41,...,Uy) is an n-
tuple of doubly non-commuting isometries on a Hilbert space H, where Sy,...,Sy
are pure isometries and Upy1, ..., Uy, are unitary.

Then there exists a Hilbert space K containing H, with projection Py : K — H,
and unitary operators Uy, ..., U, Ui+1, ..., U, on K such that

(1) (Ur,...,Uy) is an n-tuple of doubly non-commuting isometries;
(2) Uy,... Uy, leave H invariant;
(3) The restriction of Uy, ..., U, to H is S1,...,S1, U1, ..., U, respectively;
(4) Uy, Uy leave H invariant;
(5)
(6) Sf = (PyolU)|y fori=1,...,1.

In view of the parts (4) and (5), one can add U} = (Pg o U;")|g to the list in
part (6) for the remaining indices ¢ =+ 1,...,n, which is convenient for the proof
of Theorem 6.2 below.

»yYno

The restriction of Uy, ..., Uy to H is U, ..., Uy, respectively;

Proof. If | = 0 we can take K = H. Hence we suppose that [ > 1. In view of
Theorem 4.5 we may suppose that (Si,...,S;, U1, U,) is the standard n-tuple of
doubly non-commuting isometries with {1, ..., !}-wandering data (1, ﬁl+1, e, ﬁn),
where the U; (if any) are the restrictions of the respective U; to the wandering
subspace W of (S1,...,S5;,Up4+1,U,). In that model, we need merely extend the
range of the indices labelling the elements of the orthonormal basis of ¢2(N}) in
equations (4.6) and (4.7) if I < n — 1, or the range of the indices labelling the
elements of the orthonormal basis of £2(N") in equation (4.10) if [ = n. We make
this explicit.
Ifl <n-—1,then, fori=1,...,l, we define

. k ki—1
ui(ekl,...,kl ® .%‘) = Zi,ll TR -1 Chaynki o1 kit ki, ke ®x

for all k1,...,kj € Z and x € W, and, fori =1+ 1,...,n, we define
Uik, ® T) =203 - zfll ety @ Uit
forall k1,..., k€ Zand z € W.
If [ = n, then, for i = 1,...,[, we define

ks ki_1
Ui(Cky, oy @ T) = 277 251 €hy ki1 kit Lkig 1ok @ T

for all ky,...,k, € Z and x € W.
For all [ < n, Ui, ...,U, are clearly unitary operators on £2(Z') @ W, which we
take as IC.
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If | < n —1, then the first line of equation (4.8), extended to all integer values
of the labelling indices, describes U for i = 1,...,1, whereas equation (4.9), also
extended to all integer values of the labelling indices, describes U} fori =1+1,...,n.
If | = n, then the first line of equation (4.8), extended to all integer values of the
labelling indices and where now [ = n, describes U for i =1,...,n.

If | < n— 1, the computational part of the proof of Lemma 4.1 shows that
U1, ..., U; satisfy the pertinent relations among themselves, and the computational
part of the proof of Lemma 4.3 shows that this is likewise true for Uy, ...,U; on
the one hand, and U1, ...,U, on the other hand. As with Lemma 4.2, it is clear
that Uy41, .. .,U, satisfy the pertinent relations among themselves. This establishes
part (1) if I <n—1.

If | = n — 1, the computational part of the proof of Lemma 4.1 shows that
U, ..., U, satisfy the pertinent relations. This establishes part (1) if = n.

The remaining statements follow by inspection. Economising on this a little, we
add that, if I <n — 1, it is a direct consequence of the unitarity of U, U 41, ..., Uy
(which implies that they reduce H) that the restriction of ;" ,, ..., Uy to H coincides
with U, ..., Uy, respectively.

O

An appeal to Theorem 3.4, combined with the obvious generalisation of Proposi-
tion 6.1 to arbitrary A C {1,...,n} and with a Hilbert direct sum argument, then
yields the following.

Theorem 6.2 (Dilation theorem). Let (Vi,...,V,,) be an n-tuple of doubly non-
commuting isometries on a Hilbert space H. Then there exists a Hilbert space K

containing H, with projection Py : K — H, and unitary operators Uy, ..., U, on K
such that
(1) (Uy,...,Uy) is an n-tuple of doubly non-commuting isometries;

(2) Uy, ..., U, leave H invariant;
(3) The restriction of Uy, ..., U, to H is Vi,...,V,, respectively;
(4) V¥ =(PgolUf)|g fori=1,...,n.

Remark 6.3. On taking all structure constants equal to one, Theorem 6.2 specialises
to a dilation theorem for finitely many doubly commuting isometries: these can
be extended to commuting unitary operators on an enveloping space. They can,
in fact, even be extended to doubly commuting unitary operators; the pertinent
extra relations, however, are already automatic by Fuglede’s theorem. It should
be noted here that, in the commutative domain, a much stronger version is known
to be true than this specialisation of Theorem 6.2. Any (not necessarily finite)
family of commuting (not necessarily doubly commuting) isometries on a Hilbert
spaces can be extended to a family of commuting unitary operators on an enveloping
Hilbert space. This result goes back to It [6, Theorem 3] and Brehmer [3]; see
also [14, Theorem 1.6.2]. As is well known, this fact implies the validity of a von
Neumann inequality for polynomials in several commuting isometries on a Hilbert
space.
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