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.is paper introduces an enriched α − μ distribution which may act as fading model with its origins via the scale mixture
construction. .e distribution’s characteristics are visited and its feasibility as a fading candidate in wireless communications
systems is investigated..e analysis of the system reliability and some performance measures of wireless communications systems
over this enriched α − μ fading candidate are illustrated. Computable representations of the Laplace transform for this scale
mixture construction are also provided. .e derived expressions are explored via numerical investigations. Tractable results are
computed in terms of the Meijer G-function. .is unified scale mixture approach allows access to previously unconsidered
underlying models that may yield improved fits to experimental data in practice.

1. Introduction

In the field of communication systems, fading channels are
characterized with statistical distributions to describe the
signal degradation from the transmitter to receiver of wireless
signals. Commonly used fading models such as the Rayleigh
distribution assume received signals can be found by the
addition of vector sums representing scattering, diffraction,
and reflection from different objects. .ese models have a
drawback in that they can only model the fading accurately
when the scattering is homogeneous and require a large
number of interfering signals to apply the central limit the-
orem (CLT) and so are built upon an underlying assumption
of normality [1]. .e α − μ distribution was introduced by
Yacoub [2] such that the parameters have physical meaning.
Fading is modelled in nonlinear environments where there
exists a spatial correlation between the surfaces which causes
the diffusion and scattering and introduces the α − μ model
with the normal assumption for the underlying process be-
haviour. .e α − μ model is statistically complex in its ex-
planation of fading while also being diverse and contains
certain well-known statistical distributions which are of in-
terest within the statistics and wireless communications
paradigm. .is fading candidate has been found valuable in

the modelling of on-body communications networks as well
as vehicle communication (see [3]).

.e underlying assumption of normality has received
some criticism. Increasing evidence in real applications has
illustrated that the normal distribution is not always an
appropriate choice, as many experimental measurements
show a lepto- or platykurtic shape. Ollila et al. [4] noted that
a more general assumption than that of the normal may not
be far from reality, with an underlying t assumption being
deployed within communication systems to account for
severe fading by Choi et al. [5]. .e t distribution is useful
and well known in statistics, but there is a lack of results in
communication systems pertaining to real life modelling
when compared to its normal counterpart. .is raises the
challenge of modelling data which emanate from inhomo-
geneous environments. Indeed, He et al. [6] and Qiu [7]
explicitly asked what the consequences of analyses are when
underlying normality does not seem plausible. .e contri-
bution of the work in this paper aims to assist answering this
question. A more pliable approach is to model these data by
taking into account a stochastic element which is embedded
in the variance component of the underlying model; this
leads to the consideration of scale mixtures of normal (SMN)
distribution alternatives. For the interested reader, the SMN
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approach and the value thereof can be consulted in, for
example, Andrews andMallows [8]; Choy and Chan [9]; and
Lachos Dávila et al. [10].

.e continuous demand for reliable communications
systems has caused to the resurgence of research in various
channel modelling approaches in system design and eval-
uation to improve model performance. .erefore, in this
paper, we propose a SMN alternative of the well-known α − μ
distribution. .is paper generalizes Yacoub’s α − μ model to
one that emanates from an underlying SMN assumption for
the process behaviour. In this way, an enriched α − μ dis-
tribution, a powerful umbrella model, is derived which al-
lows the practitioner to amend the underlying distribution
in the case that observed experimental data exhibit greater
heterogeneity than the usual α − μ distribution would ac-
commodate. To the authors’ knowledge, this representation
of the α − μ model within communications systems has not
yet been considered. Some performancemeasures of a fading
channel subject to this enriched α − μ model are compara-
tively investigated against that of the well-studied normal
(for recent contributions in this domain, see [11–13]).

.e SMN class uses the Laplace transform technique to
illustrate that a variable X with location μ and scale σ has a
SMN representation if it can be expressed as

fX(x | μ, σ) � 􏽚
∞

0
N x | μ, t

− 1σ2􏼐 􏼑W(t; θ)dt, (1)

whereN(x|·, ·) is the normal density function andW(t; θ) is a
density function of arbitrary variable T defined on R+ in
which θ is a scalar or vector parameter indexing the dis-
tribution of T (see [9]). In this case, W(t; θ) is called the
mixing density of this SMN representation, and the distri-
bution of X is denoted by SMN(μ, σ2, W(·)). In general,
W(t; θ) may be posed as an arbitrary random variable. .e
advantage of the representation in (1) is gaining access to
class of previously unexplored distributions to accom-
modate experimental data better in practice.

In this paper, two mixing densities are of particular
interest. .e usual α − μmodel is obtained when the random
variable T is degenerate at 0; that is, W(t; θ) is given by

W(t; θ) � δ(t − 1), (2)

where δ(·) denotes the Dirac delta function. In the case
where an enriched α − μmodel emanates from an underlying
t distribution, the mixing density is given by (see [14])

W(t; θ) �
](]t/2)(]/2)− 1

2Γ(]/2)exp(]t/2)
, (3)

where θ� ]> 0 degrees of freedom and Γ(·) denotes the
gamma function ([15], equation 8.310.1). Note that
W(t; θ) ≡ Gam((]/2), (]/2)), where Gam((]/2), (]/2)) de-
notes the density of a gamma random variable with both
parameters equal to ]/2. In the literature, these two mixing
densities, respectively, lead to what is called the “normal”
and the “t” case.

.is paper’s contribution can be summarised as follows:

(1) A SMN (α − μ) model is systematically developed
with genesis from the communication system

platform and particular statistical characteristics of
this model are derived

(2) Expressions for system reliability are derived and
investigated

(3) Computable representations of the Laplace trans-
form of special cases of this SMN (α − μ) are given

(4) Speculative comparison between the different con-
sidered mixing densities in terms of outage proba-
bility is included

.e departure point of this paper is the systematic
construction of an enriched α − μ distribution with genesis as
a fading model in communication systems; this is given in
Section 2. Subsequently, in Section 3, the system reliability is
analyzed via the signal to noise ratio (SNR), amount of
fading (AoF), and the Laplace transform which is of value in
practice for evaluation the average bit-error-rate (ABER).
.e direct applications which may arise from the proposed
model are comparatively investigated via the outage prob-
ability in Section 4 with final thoughts given in Section 5.

2. System Model and Statistical Characteristics

In this section, some theoretical properties such as the
density of the SMN (α − μ) distribution will be proposed and
derived.

2.1. System Model. .e following theorem introduces the
SMN(α − μ) model and derives the corresponding density
function.

Theorem 1. Let Xi and Yi be mutually independent SMN
processes with E(Xi) � E(Yi) � 0 and var(Xi) � var(Yi) �

(􏽢rα/2μ); hence, Xi, Yi ∼ SMN(0, (􏽢rα/2μ), W(t; θ)). 7e
α− power envelope (amplitude of the process stemming from Xi
and Yi) emanating from the SMN construction is defined by
(see [2])

R
α

� 􏽘

μ

i�1
X

2
i + Y

2
i􏼐 􏼑, (4)

where α and μ are positive integers.7e density of the envelope
R is given by

fR(r) �
αrαμ− 1μμ

Γ(μ)􏽢rαμ
􏽚
∞

0
t
μ exp − μt

r

􏽢r
􏼒 􏼓

α
􏼔 􏼕W(t; θ)dt, r> 0,

(5)

where 􏽢r �
������
E(Rα)α

􏽰
. 7e distribution with density (5) is called

a SMN (α − μ) distribution.

Proof. Note that (v(t))2 � (􏽢rα/2μ) (χ2(]) denotes a chi-
square distributed random variable with ]> 0 degrees of
freedom); then (Xi/v(t))|t ∼ N(0, 1) and (Yi/v(t))|t ∼ N

(0, 1); therefore, 􏽐
μ
i�1 X2

i + Y2
i /(v(t))2|t � (Rα/(v(t))2) |t ∼

χ2(2μ) since 􏽐
μ
i�1 X2

i /(v(t))2|t ∼ χ2(μ) and 􏽐
μ
i�1 Y2

i /
(v(t))2|t ∼ χ2(μ). Let K(t) � Rα/(v(t))2|t; thus, K(t) ∼ χ2
(2μ) with the conditional density of the α− power envelope
as
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fRα|t r
α

( 􏼁 �
1

2μΓ(μ)(v(t))2
rα

(v(t))2
􏼠 􏼡

μ− 1

exp −
rα

2(v(t))2
􏼠 􏼡.

(6)

Subsequently, the conditional density of the envelope, R,
is

fR∣t(r) �
α

2μΓ(μ)(v(t))2μ
􏼠 􏼡r

αμ− 1 exp −
rα

2(v(t))2
􏼠 􏼡, (7)

with the unconditional distribution given by (5).
Consider W(t; θ) as given by (2), and then (5) simplifies

to the well-known α − μ model [16]:

fnormal(r) �
αrαμ− 1μμ

Γ(μ)􏽢rαμ
exp − μ

r

􏽢r
􏼒 􏼓

α
􏼔 􏼕, r> 0, (8)

and if W(t; θ) as given by (3), then

ft(r) �
αrαμ− 1μμ

Γ(μ)􏽢rαμ
􏽚
∞

0
t
μ exp − μt

r

􏽢r
􏼒 􏼓

α
􏼔 􏼕

](]t/2)(]/2)− 1

2Γ(]/2)exp(]t/2)
dt

�
αrαμ− 1μμ]]/2

Γ(μ)􏽢rαμΓ(]/2)2]/2
Γ(μ + ]/2)

μ(r/􏽢r)α +(]/2)( 􏼁
(μ+(]/2))

,

(9)

with μ + (]/2)> 0 and μ(r/􏽢r)α + (]/2)> 0. □

2.2. Statistical Characteristics. In this section, some statis-
tical characteristics necessary for the remainder of the paper
of the SMN (α − μ) distribution are derived. .e results are
presented without proof.

Theorem 2. From (5), the jth moment of the SMN (α − μ)
type model is

E R
j

􏼐 􏼑 �
αμμ

Γ(μ)􏽢rαμ
􏽚
∞

0
r
αμ+j− 1

􏽚
∞

0
t
μexp − μt

r

􏽢r
􏼒 􏼓

α
􏼔 􏼕W(t;θ)dtdr.

(10)

For W(t; θ) given by (2), it follows from (10) and
Gradshteyn and Ryzhik ([15]; equation 3.326-2) that

Enormal R
j

􏼐 􏼑 �
􏽢rjΓ(μ +(j/α))

μj/αΓ(μ)
. (11)

This will hold for α> 0, 􏽢rα > 0, and αμ+ j> 1.
For W(t; θ) given by (3), it follows from (10) and

Gradshteyn and Ryzhik ([15]; equation 3.241-4) that

Et R
j

􏼐 􏼑 �
Γ(μ +(j/α))Γ((]/2) − (j/α))

Γ(μ)Γ((]/2))

]􏽢rα

2μ
􏼠 􏼡

j/α

, ]>
2j

α
.

(12)

Figure 1 illustrates the value which the SMN structure
provides the practitioner with. .is graph illustrates the
CDF, F(r) � 􏽒

r

0 f(t)dt, using (5) for the two considered
mixing densities for certain arbitrary values of the pa-
rameters and highlights this potential heavier tail char-
acteristic. .e proposed SMN platform in this paper
allows theoretical and resultant practical access to

previously unconsidered models, providing flexibility for
modelling that may yield improved fits to experimental
data in practice when these data exhibit potential heavier
tail behaviour [2, 13]

3. Reliability Analysis over an
Enriched Candidate

In this section, the objective is to derive expressions for
different performance metrics under SMN (α − μ) model as
proposed in Section 2. Tractable expressions for the SNR,
AoF, and the Laplace transform are derived and analyzed for
the SMN (α − μ).

3.1. SNR. Tomeasure and investigate the performance of the
SMN (α − μ) type model, the instantaneous SNR is needed.
.e instantaneous SNR expressed in terms of the channel
envelope is c � 􏽢c(R/􏽢r)2 � 􏽢cR2(1/E(R2)), where 􏽢c � E(􏽢r2)

(Eb/No), and Eb is the energy per bit and N0 is the noise
spectral density [17]. .e SNR is the building block to
calculate the outage probability, AoF and ABER [18]. In this
section, the density, CDF, AoF, and Laplace transform of the
SNR are derived.

From (5), the density of the SNR for the SMN (α − μ)
model is

f(c) �
αμμ

2Γ(μ)

�
c

􏽢c

􏽲

􏼠 􏼡

αμ

c
− 1

􏽚
∞

0
t
μ exp − μt

�
c

􏽢c

􏽲

􏼠 􏼡

α

􏼢 􏼣W(t; θ)dt.

(13)

For the W(t; θ) (2) and (3), (13) simplifies to

fnormal(c) �
αμμ

2Γ(μ)
c

(αμ/2)− 1
􏽢c

− (αμ/2) exp − μ
�
c

􏽢c

􏽲

􏼠 􏼡

α

􏼢 􏼣, c> 0,

(14)

and

1.0

0.8

0.6

0.4

0.2

CD
F

W(t;θ) = δ(t – 1)
W(t;θ) = Gam (30/2, 30/2)
W(t;θ) = Gam (15/2, 15/2)
W(t;θ) = Gam (3/2, 3/2)

2 3 41
r

Figure 1: Illustration of CDFs of the SMN (α − μ) for different
mixing densities from (5).
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ft(c) �
αμμ]]/2Γ(μ + (]/2))

Γ(μ)Γ(]/2)2(]/2)+1 c
(αμ/2)− 1

􏽢c
− (αμ/2) 1

μ(
���
c/􏽢c

􏽰
)α + (]/2)( 􏼁

(μ+(]/2))
, c> 0, (15)

respectively. .e CDF of the SNR (13):

Fc cOP( 􏼁 � 􏽚
cOP

0
fc(c)dc

�
αμμ

2Γ(μ)􏽢cαμ/2 􏽚
cOP

0
c

(αμ/2)− 1
􏽚
∞

0
t
μ exp − μt

�
c

􏽢c

􏽲

􏼠 􏼡

α

􏼢 􏼣W(t; θ)dt dc,

(16)

with threshold cOP> 0. .e CDF of the SNR’s for the normal
and t case will be obtained next.

(i) From (2), (14), and (16) and using Gradshteyn and
Ryzhik ([15]; equation (3.381)-(8)), it follows

Fnormal cOP( 􏼁 �
c μ, μ cOP/􏽢c( 􏼁

α/2
􏼐 􏼑

Γ(μ)
, (17)

where c(·) denotes the incomplete gamma function
([15]; equation 8.350-1).

(ii) Similarly from (3), (15), (16), and Gradshteyn and
Ryzhik ([15]; equation 3.194-1), it follows:

Ft cOP( 􏼁 � 􏽚
cOP

0

αμμΓ(μ + (]/2))]]/2

Γ(μ)Γ(]/2)2(]/2)+1 μ(
���
c/􏽢c

􏽰
)α + (]/2)( 􏼁

(μ+(]/2))
c

− 1
�
c

􏽢c

􏽲

􏼠 􏼡

αμ

dc. (18)

Let z � cα/2; then, the latter equals

Ft cOP( 􏼁�2F1 μ +
]
2
, μ; 1 + μ, −

2
]
μ􏽢c

− (α/2)
c
α/2
OP􏼒 􏼓
Γ(μ +(]/2))2μμμ− 1c

αμ/2
OP

Γ(μ)Γ(]/2)]μ􏽢cαμ/2 , (19)

where 2F1(·) denotes the Gauss hypergeometric function
([15]; equation 9.14-1).

3.2. AoF. .e AoF is a quantitative measure giving an in-
dication of the severity or level of fading that is present in the
model [18, 19]. .e AoF is calculated as

AoF �
var(c)

E(c)2
�

E c2( 􏼁 − E(c)2

E(c)2
, (20)

and when AoF >1, the fading is considered to be severe. .e
AoF for the normal case is given as

AoFnormal �
Γ(μ +(4/α)) − [Γ(μ +(2/α))]2[Γ(μ)]− 1

[Γ(μ +(2/α))]2μ− (1/α)[Γ(μ)]− 1 ,

(21)

since Enormal(c) � 􏽢cΓ(μ + (2/α))/μ2/αΓ(μ) and Enormal(c2) �

􏽢c2 Γ(μ + (4/α))/μ4/αΓ(μ). .e t case follows similarly as

AoFt �
Γ(μ +(4/α))Γ((]/2) − 4) − [Γ(μ +(2/α))Γ((]/2) − (α/2))]2/(Γ(μ)Γ(]/2))􏼐 􏼑

[Γ(μ +(2/α))Γ(]/2 − (α/2))]2/(Γ(μ)Γ(]/2))
, (22)

since
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Et(c) �
Γ(μ +(2/α))Γ((]/2) − (2/α))

Γ(μ)Γ(]/2)

]2/α􏽢c

(2μ)2/α
,

Et c
2

􏼐 􏼑 �
Γ(μ +(4/α))Γ((]/2) − (4/α))

Γ(μ)Γ(]/2)

]4/α􏽢c

(2μ)4/α
.

(23)

From Table 1 and Figure 2, we observe that the AoF is> 1
for small values of ], corresponding to the observations of
Choi et al. [5] that the underlying t assumption is suitable for
cases of severe fading. .e AoF for the underlying normal
case is equal to 0.5, 0.447214, and 0.408248 (see (22)) for the
corresponding three different μ values with α� 2; it is further
noted that as ] increases, the AoF decreases for the un-
derlying t model.

3.3.LaplaceTransform. .eLaplace transform is useful as an
integral transform in different performance metrics. Relying
on the Laplace-based approach, the ABER can be evaluated
as Paver � (am/π) 􏽒

π/2
0 L(b2m/2 sin

2(θ))dθ, where am � 1 and
b2m � 2(Eb/N0) (see [20]). Analytical evaluation of ABER for
fading channel distributions has been of interest lately [21].
.erefore, alternative expressions for the Laplace transform
are presented here, in order to enable the researcher to

obtain numerical results for the ABER for this proposed
model (see (5)). From (13), the Laplace transform is

L(c) � E[exp(− cc)] �
αμμ

2Γ(μ)􏽢cαu/2 􏽘

∞

k�0
􏽘

∞

u�0

(− c)k

k!

(− μ)u

u!􏽢cαu/2

􏽚
∞

0
c

(α(μ+u)/2)+k− 1
􏽚
∞

0
t
μ+u

W(t; θ)dt dc.

(24)

An alternative expression, using an approach similar to
that of Magableh and Matalgah [17], follows as

L(c) �
αμμ

2Γ(μ)􏽢cαμ/2 􏽚
∞

0
􏽚
∞

0
G
1,0
0,1 cc |

−
0( 􏼁c

(αμ/2)− 1

× G
1,0
0,1 μtc

α/μ
􏽢c

− (α/2)
􏼌􏼌􏼌􏼌􏼌

−

μ
􏼒 􏼓W(t; θ)t

μdt dc,

(25)

where G(·) denotes Meijer’s G-function [22].
.e expressions for the underlying normal and t case are

of special interest.

(1) Using (2), (14), and Gradshteyn and Ryzhik ([15];
equation 3.326-2), the Laplace transform for the
normal case is&ecmath;

Table 1: AoF (22) for different values of ] and μ, when α� 2.

] μ� 4 μ� 5 μ� 6
5 2.75 2.6 2.5
6 1.5 1.4 1.3333
7 1.083333 1 0.94444
8 0.875 0.8 0.75
9 0.75 0.68 0.633333
10 0.666667 0.6 0.555556
11 0.607143 0.542857 0.5
12 0.5625 0.5 0.458333
13 0.527778 0.466667 0.425926

2.5

2.0

1.5

1.0

0.5

Ao
F

t case, μ = 4
t, μ = 5
t, μ = 6

Normal, μ = 4
Normal, μ = 5
Normal, μ = 6

8 10 126
v

Figure 2: AoF (21) and AoF (22) for different values of ] and μ, when α� 2.
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Lnormal(c) � 􏽚
∞

0

αμμc(αμ/2)− 1

2Γ(μ)􏽢cαμ/2 exp − μ
c

􏽢c
􏼠 􏼡

α/2
⎡⎣ ⎤⎦exp(− cc)dc

�
1
Γ(μ)

􏽘

∞

k�0

(− c)k

k!

Γ(μ + (2k/α))

μ2k/α 􏽢c
k
.

(26)

An alternative form is

Lnormal(c) �
αμμ

2Γ(μ)􏽢cαμ/2 􏽚
∞

0
c

(αμ/2)− 1
G
1,0
0,1

μ
􏽢cα/2c

l/k
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1

0
􏼠 􏼡G

1,0
0,1 cc|

1
0􏼐 􏼑dc

�
αμμ

2Γ(μ)􏽢cαμ/2
21/2ααμ− 1/2

(2π)α/2cαμ/2
G
2,α
α,2

μ
􏽢cα/2􏼠 􏼡

2 αα

cα22

2 − αμ
2α

,
3 − αμ
2α

, . . . ,
α − 1 − αμ

2α

0,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(27)

Meijer’s G-function for the integral considered can
be found in ([17, 23], p. 346).

(2) For the t case, applying Gradshteyn and Ryzhik ([15],
equation 3.241-4) results in

Lt(c) �
αμμΓ(μ + (]/2))]]/2

Γ(μ)Γ(]/2)2(]/2)+1􏽢cαμ/2 􏽚
∞

0
μc

α/2
􏽢c

− (α/2)
+ (]/2)􏼐 􏼑

− (μ+(]/2))
exp(− cc)dc

�
αμμ2μ− 1

Γ(μ)Γ(]/2)􏽢cαμ/2]μ
􏽘

∞

k�0

(− 1)k

cα(μ+k)/2
Γ(μ + (]/2) + k)Γ(α(μ + k)/2)

k!

2μ
􏽢cα/2]

􏼠 􏼡

k

,

(28)

where 0< μ + (2k/α)< μ + (]/2), (]/2)≠ 0 and μ􏽢c− (α/2) ≠ 0.
An alternative expression for (29) is obtained from ([22, 24],
p. 81) and (15) as

Lt(c) �
α1/2(αμ+1)μμ22μ+(]/2)− (1/2)(3+α)

Γ(μ)Γ(]/2)(c􏽢c)(αμ/2)]μ
c

− (αμ/2)
(π)

− (1/2)(1+α)

× G
2,2+α
2+α,2

4μ2αα

]2cα􏽢cα

1 − μ − (]/2)

2
,
2 − μ − (]/2)

2
,
1 − (αμ/2)

α
,
2 − (αμ/2)

α
, . . . ,

1 − (αμ/2) + α − 1
α

0,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(29)

Particular values are evaluated for the Laplace transform
for the normal and t cases with these different expressions
(see Table 2). .is table illustrates the accuracy of the dif-
ferent expressions for the Laplace transform which the
practitioner may consider.

4. Analytical Illustration and Discussion

An often considered performance measure for systems
operating in fading environments is the outage probability,
Pout, defined as the probability that the output SNR falls
below a given threshold cOP; thus, Pout(c) = F(cOP) (see (16)).
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By comparing the outage probability of the SMN (α − μ) with
the mixing densities, i.e. for the underlying normal and t
distributions, as depicted in Figure 3, it can be observed that
the assumption of an underlying t distribution results in a
lower outage probability than the α − μ distribution even for
large degrees of freedom (the bottom graph in Figure 3 is a
magnification of the top graph; for a smaller interval on the
x-axis to provide the reader with ease of interpretation). As
expected, the SMN (α − μ) approaches the α − μ distribution
as the degrees of freedom of the t distribution increase, since
a larger degree of freedom results in the tails being lighter
and closer to what is expected with the underlying normal
distribution. .ese results and arguments highlight the
contribution the SMN (α − μ) model which enables the

practitioner with engineering expertise in the communi-
cations systems arena. .is unified scale mixture platform
allows theoretical and practical access to previously un-
considered models that may yield improved fits to experi-
mental data.

5. Conclusion

In this paper, we proposed a SMN generalization to Yacoub’s
α − μ distribution, to model process behaviour..is provides
a flexible tool for the practitioner to model observed ex-
perimental data when the underlying normality assumption
does not seem feasible. Based on the performance evaluation
for the two considered mixing densities, it is clear that there

Table 2: Values of Laplace transform computations for some arbitrary parameter values.

Normal
Equation (26) (27)
L(0.1) 0.797194370359114 0.797194370359114
L(0.25) 0.619690325863945 0.619690325863945
L(0.5) 0.455537937967763 0.455537937967763
L(0.75) 0.36041670118177 0.36041670118177
L(1) 0.297676390851642 0.297676390851642

t (]� 3)
Equation (28) (29)
L(0.1) 0.624743148313397 0.624743148313397
L(0.25) 0.4840824983658209 0.4840824983658212
L(0.5) 0.373557082353699 0.373557082353697
L(0.75) 0.3113678073601211 0.3113678073601208
L(1) 0.269619410990287 0.269619410990287

t (]�15)
Equation (28) (29)
L(0.1) 0.753959031928999 0.753959031928984
L(0.25) 0.5805936227825265 0.5805936227824519
L(0.5) 0.431300920344367 0.431300920343910
L(0.75) 0.3463761840086145 0.3463761840072217
L(1) 0.290221789375107 0.290221789374477
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Figure 3: Outage probabilities of SNR of the SMN (α − μ) for different mixing densities from 5, for α � 2, μ � 1, 􏽢c � 3.
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are instances in which the ABER and outage probability of
the α − μ distribution can be improved through the use of the
proposed SMN (α − μ) model. .is reiterates the arguments
presented in Choi et al. [5] and Ollila et al. [4] that fading
models which do not exhibit normality from its genesis may
be of distinct practical value. .is paper provides a
framework within a computational reach utilising a SMN
construction within the fading environment, which could
now be implemented by the practitioner when field data
justify it. Further, as a potential future point of departure,
these scale mixture density representations situated within
the fading environment may provide particular advances
within Bayesian computing, especially in the case of the
Gibbs sampler, where this hierarchical representation may
lessen the computational strain within implementation of
Bayesian statistical inference (see, for example, [25, 26]).
Furthermore, the SMN (α − μ) model can be extended and
implemented, for example, within the cascaded α − μ fading
environment [3].
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