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ABSTRACT
Malaria is mainly a tropical disease and its transmission cycle is
heavily influenced by environment: The life-cycles of the Anopheles
mosquito vector and Plasmodium parasite are both strongly affected
by ambient temperature, while suitable aquatic habitat is necessary
for immature mosquito development. Therefore, how global warm-
ing may affect malaria burden is an active question, and we develop
a new ordinary differential equations-based malaria transmission
model that explicitly considers the temperature-dependent Anophe-
les gonotrophic and Plasmodium sporogonic cycles. Mosquito
dynamics are coupled to infection among a human population with
symptomatic and asymptomatic disease carriers, as well as tempo-
rary immunity. We also explore the effect of incorporating diurnal
temperature variations upon transmission. Rigorous analysis of the
model show that the non-trivial disease-free equilibrium is locally-
asymptotically stable when the associated reproduction number is
less than unity (this equilibrium is globally-asymptotically for a spe-
cial case with no density-dependent larval and disease-induced host
mortality). Numerical simulations of the model, for the case where
the ambient temperature is held constant, suggest a nonlinear,
hyperbolic relationship between the reproduction number and clini-
cal malaria burden. Moreover, malaria burden peaks at 29.5 oC when
daily ambient temperature is held constant, but this peak decreases
with increasing daily temperature variation, to about 23–25 oC.
Malaria burden also varies nonlinearly with temperature, such that
small temperature changes influent disease mainly at marginal tem-
peratures, suggesting that in areas where malaria is highly endemic,
any response to global warming may be highly nonlinear and most
typically minimal, while in areas of more marginal malaria potential
(such as the East African highlands), increasing temperatures may
translate nearly linearly into increased disease potential. Finally, we
observe that while explicitly modelling the stages of the Plasmod-
ium sporogonic cycle is essential, explicitly including the stages of
the Anopheles gonotrophic cycle is of minimal importance.
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1. Introduction

Malaria, one of the world’s oldest vector-borne diseases (VBD) and caused by evolution-
arily ancient Plasmodium parasites, has burdened humanity for many tens of thousands
of years, but it was probably not until about 10,000 years ago that the most virulent form
of the disease, P. falciparum, arose in proto-agricultural Africa [17,52] to plague humanity
to this day. Nearly half a million deaths are still attributable to malaria annually [99], with
over 90% of mortality due to P. falciparum in Africa, and, moveover, most fatal cases occur
in children under the age of five. Despite the existence of effective preventative measures
and treatment, malaria remains endemic in 91 countries, with the morbidity andmortality
heavily concentrated in resource-poor areas of sub-Saharan Africa [99].

Malaria is one of the earliest diseases subject to mathematical inquiry, beginning with
the work of Sir Ronald Ross (who discovered the malaria lifecycle) in the early 1900s
[84], and its extensions in the early 1950s by the highly influential British malariolo-
gist George Macdonald [54]. Since these seminal works, numerous mathematical models
have been introduced to study malaria transmission (a very partial reference list includes
[1,21,26,33,49,68], see also [79] for a review of malaria models). More recently, numerous
authors (e.g., [4,22,31,32,69,73,75,102]) have turned to modelling to quantify the impact
of weather and climate on malaria transmission, mainly focussing on temperature and
rainfall, and how anthropogenic climate changemight be expected to affect (potential) dis-
ease burden, especially in tropical Africa. Climate is expected to influence malaria because
both vector and parasite have highly temperature- and rainfall-dependent lifecycles, as now
briefly reviewed.

The life-cycle of the Anopheles mosquito consists of adult and aquatic juvenile stages.
At the aquatic stage, immature mosquitoes develop from eggs, through four larval instar
stages, and finally into pupae that hatch into adults. Both survival and development at the
aquatic stage are temperature-dependent, with survival peaking around 20◦C [11], and
developmental rates increasing with temperature up to at least 30◦C [10]. Furthermore, the
existence of aquatic habitats depends upon appropriate land cover and (away from perma-
nent standing or running water), sufficient rainfall to support the small, ephemeral pools
often preferred by malaria mosquitoes, such as An. gambiae [60].

At the adult stage, the female mosquito lifecycle is defined by the gonotrophic cycle
(Greek “offspring feeding”), whereby the female mosquito takes mammalian bloodmeals
to nourish egg development and then deposits them on the surface of appropriate waters,
and classically divided into three stages [25]:

Stage I: Search for suitable host and the taking of a bloodmeal.
Stage II: Digestion of blood meal and egg maturation (this process is highly temperature

dependent).
Stage III: Search for, and oviposition into, a suitable body of water.

Much like immature development, the rate at which Stage II (egg development) progresses
depends upon ambient temperature, increasing up to around 30◦C, levelling off, and possi-
bly sharply declining at very high temperature [44]. Survival, likewise, peaks in themid-20s
(◦C), and is impaired at both low andhigh temperatures. TheAnopheles lifecycle is depicted
schematically in Figure 1.
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Figure 1. Anopheles mosquito lifecycle. Immature mosquitoes pass through aquatic egg, larvae, and
pupae stages, with the actively feeding larvae divided into four instar stages. Adult female mosquitoes
pass through the gonotrophic cycle, by which blood meals nourish the development of new eggs.

Malaria transmission occurs when, during Stage I of the gonotrophic cycle, a susceptible
mosquito takes a bloodmeal from an infectious host with Plasmodium gametocytes in their
red blood cells. This initiates the sporogonic (or extrinsic) cycle, by which the gametocytes
undergo several transformations to penetrate the wall of the mosquito midgut, eventu-
ally yielding sporozoites that infest the mosquito’s salivary glands, where they can infect
the victim of the anopheline’s next bloodmeal. As with other developmental processes, the
sporogonic cycle also generally progresses more rapidly at higher temperatures [25].

As the extrinsic incubation period can be similar to the average life expectancy of
the female Anopheles mosquito [14,25,67,74], we see how suboptimal temperatures can
severely impair malaria transmission potential via a decrease in adult survival, but also via
impaired immature survival, a decrease in the number of larval that successfully become
adults, a decrease in the biting rate (via an increase in the gonotrophic cycle duration) and
by lengthening the sporogonic cycle such that it rarely completes within the lifetime of
the host mosquito. Indeed, the consideration of the delay from initial mosquito infection
to infectiousness was a key factor in Macdonald’s malaria model, with the model suggest-
ing that interruption of the sporogonic cycle is the main benefit of insecticidal control
measures that reduce adult survival [54].

It follows that anthropogenic climate change may alter the (potential) distribution of
malarial disease, and this has been the focus of many mechanistic (or process-based)
malaria transmission models. Overall, such models have reached divergent conclusions,
with some predicting a large expansion in the continental land area suitable for transmis-
sion [19,57,93] and in the number of people at risk of malaria [57,76,77], while others
predict only modest poleward (and altitudinal) shifts in the burden of disease, with lit-
tle net effect [36,39,83]. In other words, the current related debate within the ecology
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community is on poleward-expansion of malaria from tropical latitudes vs. poleward-
shift-with-no-net-expansion in malaria cases. Similarly, malaria burden may expand into
equatorial highland areas, such as those of Eastern Africa, with uncertain changes at
lower altitude [15,36,45,46,76,83]; several recent works suggest possible increases in dis-
ease potential inCentral andEasternAfrica, but little change inWesternAfrica [32,85,101].
Additionally, models differ regarding the expected optimum temperature for transmission
[61,69]. In particular,Mordecai et al. [61] showed that earliermodels which usemonotonic
functions for the vector and parasite temperature-dependent vital rates, may have over-
estimated the optimal temperature range for malaria transmission. Furthermore, most of
the aforementioned modelling studies used constant or mean monthly temperature in
their formulation. Recent studies have shown that the incorporation of daily (diurnal)
temperature fluctuations in the model may also affect predictions [12,13,74].

The sporogonic and gonotrophic cycles are clearly central to malaria transmission
dynamics and should, we argue, be explicitly addressed in any mathematical model for the
process. To explicitly account for the effect of the gonotrophic cycle on malaria transmis-
sion, Ngonghala et al. [65] considered a mathematical model for the dynamics of malaria
transmission that integrates the gonotrophic cycle of the adult female mosquitoes and its
interaction with the human population (their model was an extension of the mosquito
population ecology model developed by Ngwa [64, to incorporate disease dynamics in
both the human and adult vector populations). The model in Ngonghala et al. [65], which
considered infection of the female Anophelesmosquitoes to result in infectiousness imme-
diately after interaction with an infected human, was later extended to include the exposed
class of mosquitoes, thereby explicitly accounting for the effect of the duration of Plas-
modium development in the vector [66]. As shown in the classical Macdonald’s malaria
model [54], the sporogonic cycle plays a profound role in the epidemiological effectiveness
of malaria vectors and, consequently, on malaria incidence in human host populations.
Hence, it is likely necessary to explicitly incorporate the duration of both the temperature-
dependent gonotrophic and sporogony cycles in the transmitting vector in models for
malaria transmission dynamics in populations.

We extend the previous autonomous (temperature-independent) models by Ngong-
hala et al. [65,66] to a non-autonomous (temperature-dependent) model with sporogony
represented via the division of the adult female mosquito population into three classes
(susceptible, exposed and infectious), while gonotrophy is modelled by additionally split-
ting the adult mosquito population into three classes corresponding to the gonotrophic
stages discussed above (yielding a nine-compartment model for the dynamics of the adult
femalemosquitoes). Further, wemodel the immaturemosquito lifecycle by including com-
partments for all major developmental stages (eggs, four larval instars, and pupae), and
incorporate dependence on temperature at this stage aswell. Finally, we incorporate disease
transmission to vectors by asymptomatically-infectious humans, reduced malaria suscep-
tibility in humans due to recovery from prior infection, the possibility of progression from
a symptomatically-infected to asymptomatically-infected state, and the complete loss of
partial immunity in humans.

The paper is organized as follows. The mathematical model for malaria transmission
dynamics, incorporating gontrophic and sporogonic cycles in adult female mosquitoes
and the variability in local weather (temperature) patterns, is presented in Section 2. The
autonomous equivalent of the model, where the temperature-dependent parameters of the
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model are assumed to be constant, is analyzed in Section 3. Sensitivity analysis is also car-
ried out in this section to determine the parameters that have the most influence on the
disease dynamics. The full non-autonomous model is analyzed and simulated in Section 4.

2. Description and formulation of model

We extend the model of Ngonghala et al. [65], to a non-autonomous (temperature-
dependent) model which includes all immature stages of mosquitoes (eggs, four larval
instars and pupae), as well as an exposed class (to account for the delay to infectiousness
in the Plasmodium sporogonic cycle) for each stage of the gonotrophic cycle of the adult
female mosquitoes. In addition, we consider epidemiological features of malaria transmis-
sion such as disease transmission to mosquitoes by asymptomatically-infectious humans,
reducedmalaria susceptibility in humans due to recovery from prior malaria infection, the
possibility of progression from a symptomatically infected to asymptomatically infected
state, and the complete loss of partial immunity in humans.

2.1. State variables

The total human population at time t, NH(t), is divided into the sub-populations of
wholly-susceptible humans (SH(t)), susceptible humans with prior immunity due to past
exposure and recovery from malaria infection (WH(t)), exposed (infected but not yet
infectious) humans without prior malaria immunity (i.e., exposed and malaria naive
humans) (EHN(t)), exposed humans with partial malaria immunity due to recovery from
prior infection (EHR(t)), symptomatic and infectious humans (IH(t)), asymptomatic and
infectious humans (AH(t)) and recovered (RH(t)) humans, so that

NH(t) = SH(t)+ WH(t)+ EHN(t)+ EHR(t)+ IH(t)+ AH(t)+ RH(t).

The immature mosquito population at time t is divided into compartments for eggs (E(t)),
four larval instar stages (L1(t), L2(t), L3(t), L4(t)), and pupae (P(t)). The adult female
mosquito gonotrophic cycle is divided into three stages (as discussed in the Introduction):
(I) temperature-independent host-seeking, (II) temperature-dependent bloodmeal diges-
tion, and (III) temperature-independent oviposition. Vectors in Stages I, II and III at time
t are denoted by X(t), Y(t) and Z(t), respectively. With respect to Plasmodium infection
and the sporogonic cycle, vectors in each gonotrophic stage is further subdivided into sus-
ceptible (SX(t), SY(t), SZ(t)), exposed (EX(t),EY(t),EZ(t)) and infected (IX(t), IY(t), IZ(t))
compartments. Thus, the total number of adult mosquitoes at time t, NM(t), is given as

NM(t) = SX(t)+ EX(t)+ IX(t)+ SY(t)+ EY(t)+ IY(t)+ SZ(t)+ EZ(t)+ IZ(t).

The equations for the dynamics of each of the major sub-components of the model are
derived below.

2.2. Equations for dynamics of immaturemosquitoes

Eggs are produced according to the logistic term,

ψEϕZ

(
1 − E

KE

)
+
(SZ + EZ + IZ),



JOURNAL OF BIOLOGICAL DYNAMICS 293

where ψE is the number of eggs laid per oviposition, ϕZ is the rate at which female
mosquitoes transition from Stage III to Stage I of the gonotrophic cycle (i.e., the rate of
oviposition for mosquitoes in Stage III) and KE is the environmental carrying capacity of
eggs (the notation r+ = max{0, r} is used to ensure the non-negativity of the logistic term).
The equations for the dynamics of immature mosquitoes are given as (where TW is water
temperature):

dE
dt

= ψEϕZ

(
1 − E

KE

)
+
(SZ + EZ + IZ)− [

σE(TW)+ ηE + μE
]
E,

dL1
dt

= σE(TW)E − [
σL1(TW)+ ηL + kLL + μL(TW)

]
L1,

dLj
dt

= σL(j−1) (TW)Lj−1 − [
σLj(TW)+ ηL + kLL + μL(TW)

]
Lj, j = 2, 3, 4,

dP
dt

= σL4(TW)L4 − [
σP(TW)+ ηP + μP

]
P. (1)

The parameters μi(TW) and ηi (i=E, L, P) represent the temperature-dependent and
temperature-independent death rates, respectively, for immature mosquitoes of type i,
where the latter may be due to processes such as predation, anthropogenic vector con-
trol measures, etc. Density-dependent larval mortality occurs at a rate kLL (where L =
L1 + L2 + L3 + L4), although we generally set kL = 0 and consider the population to be
limited only at the oviposition stage. Finally, σE(TW) is the temperature-dependent hatch-
ing rate of eggs into larvae, σLj(TW)(j = 1, 2, 3) is the temperature-dependent progression
rate of larvae from instar stage j to stage j+1, and σP(TW) is the temperature-dependent
rate at which pupae mature into adult mosquitoes.

2.3. Equations for dynamics of adult mosquitoes

It should be noted, first of all, that only mosquitoes in Stage I of the gonotrophic cycle (i.e.,
mosquitoes of type X in our formulation, regardless of infection status) will bite humans.
That is, only mosquitoes in classes SX ,EX and IX bite humans. The fraction of these bites
that potentially result in an infection is given as:

GH = IH + AH

NH
.

That is, GH is the proportion of infectious humans (both symptomatic and asymptomatic)
in the community (for mathematical tractability, we do not distinguish the transmissibility
of the two infectious classes). The equations for the dynamics of adult female mosquitoes
are given by (where TA is air/ambient temperature):

dSX
dt

= fσP(TW)P + ϕZSZ − [
bH + ηM + μM(TA)

]
SX ,

dEX
dt

= ϕZEZ − [
bH + κM(TA)+ ηM + μM(TA)

]
EX ,

dIX
dt

= ϕZIZ + κM(TA)EX − [
bH + ηM + μM(TA)

]
IX ,
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dSY
dt

= bH(1 − βV)GHSX + bH(1 − GH)SX − [
θY(TA)+ ηM + μM(TA)

]
SY ,

dEY
dt

= bHβVGHSX + bHEX − [
θY(TA)+ κM(TA)+ ηM + μM(TA)

]
EY ,

dIY
dt

= κM(TA)EY + bHIX − [
θY(TA)+ ηM + μM(TA)

]
IY ,

dSZ
dt

= θY(TA)SY − [
ϕZ + ηM + μM(TA)

]
SZ ,

dEZ
dt

= θY(TA)EY − [
ϕZ + κM(TA)+ ηM + μM(TA)

]
EZ ,

dIZ
dt

= θY(TA)IY + κM(TA)EZ − [
ϕZ + ηM + μM(TA)

]
IZ , (2)

where f is the fraction of new adult mosquitoes that are females, σP(TW) is the hatching
rate of pupae, ϕZ is the rate at which Stage III mosquitoes oviposit (as above), and bH is the
per capita biting rate of adult female mosquitoes in Stage I of the gonotrophic cycle. Stage
II of the gonotrophic cycle progresses at rate θY(TA), and is thus the transition rate from
the Y to Z mosquito class.

The parameters μM(TA) and ηM represent, respectively, the temperature-dependent
and temperature-independent adult mosquito death rates, with the latter possibly related
to predation, accidents, or human control efforts. Parasites mature in exposed mosquitoes
at a temperature-dependent rate κM(TA), implying that this is the transition rate from the
exposed (E) to infectious class (I). Finally, the probability that a susceptible mosquito is
infected by an infectious human is given as βV .

2.4. Equations for human dynamics

As briefly stated in Section 2.1, the human population is divided into: malaria-naive, sus-
ceptible hosts (SH(t)), latently infected, previously malaria-naive hosts (EHN(t)), clinically
ill (i.e., suffering severe illness) and infectious humans (IH(t)), asymptomatic or mini-
mally ill, but still infectious, humans (AH(t)), a lumped recovered class (RH(t)), malaria-
experienced but susceptible hosts (WH(t)) and latently infected, previously malaria-
experienced hosts (EHR(t)). Following recovery from either the IH or AH class, malaria-
experience humans are assumed to have some degree of both anti-disease and anti-parasite
immunity. Thus, humans in the WH class may still be infected but at lower rates, and
those in the EHR class are more likely to proceed to asymptomatic (or mild) infection.
This immunity is assumed to be slowly lost, and after some time without reinfection,
malaria-experienced hosts revert to a functionally malaria-naive state. The equations for
the dynamics of the human populations are given as:

dSH
dt

= 	H − λHSH + ρHWH − μHSH ,

dWH

dt
= ξHRH − (1 − ε)λHWH − (ρH + μH)WH ,
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dEHN
dt

= λHSH − (γHN + μH)EHN ,

dEHR
dt

= (1 − ε)λHWH − (γHR + μH)EHR,

dIH
dt

= rγHNEHN + qγHREHR − (αH + νH + μH + δH)IH ,

dAH

dt
= (1 − r)γHNEHN + (1 − q)γHREHR + νHIH − (αHA + μH + δHA)AH ,

dRH
dt

= αHIH + αHAAH − (ξH + μH)RH , (3)

where 	H is the susceptible human recruitment rate (by birth or immigration), μH is
the natural death rate for all humans, and λH is the rate at which susceptible human are
infected, given as:

λH = bHβH
IX
NH

,

where bH is the biting rate for host-seeking (Stage I) mosquitoes, and βH is the probabil-
ity a human is infected by an infectious bite. Upon an infectious bite, susceptible humans
transition to the EHN class, while those with partial immunity, WH , transition to the EHR
class, with the probability of infection also modified by the (1 − ε) factor. The parameter
γHR (γHN) gives the rate at which humans transition from the exposed EHR (EHN) class,
a proportion r (q) of which develops clinical symptoms of malaria (and moves to the IH
class), while the remaining proportion, 1−r (1−q), becomes asymptomatically-infectious
(andmoves to theAH class). Infectious humans in the IH (AH) recover at rateαH (αHA) and
die due to malaria at rate δH (δHA). Symptomatic humans also shift to the asymptomatic
class AH at a rate νH . Upon recovery, both symptomatic and asymptomatic humans enter
the recovered class, RH , where they are refractory to further infection, and then quickly
enter into a state of partial protective immunity against further infection [29], moving to
the WH class at rate ξH . These partially immune individuals eventually lose immunity at
rate ρH (to become wholly-susceptible again).

The flow diagram of the model is depicted in Figure 2. The state variables, description
of model parameters and baseline values are described in Tables 1, 2 and 3.

The non-autonomous model {(1), (2), (3)} is an extension of the autonomous model by
Ngonghala et al. [66] by, inter alia,

(1) Adding the dynamics of immature mosquitoes (i.e., including compartments for eggs,
four larval instars and pupae).

(2) Adding effect of temperature variability.
(3) Adding a compartment (W) for humans with partial immunity due to recovery from

prior malaria infection.
(4) Allowing for disease transmission by asymptomatically-infectious humans.
(5) Stratifying the population of exposed humans in terms of whether they have had prior

malaria infection (i.e., splitting the population of malaria-exposed humans into the
compartments EHN and EHR).
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Figure 2. Flowchart of model {(1), (2), (3)}.

Table 1. Summary of state variables of the model {(1), (2), (3)}.
Variables Description

E Number of eggs
Lj Number of larvae at instar stage j (with j= 1,2,3,4)
P Number of pupae
SX , EX , IX Number of susceptible, exposed, and infectious

female mosquitoes in gonotrophic Stage I, respectively
SY , EY , IY Number of susceptible, exposed, and infectious

female mosquitoes in gonotrophic Stage II, respectively
SZ , EZ , IZ Number of susceptible, exposed, and infectious,

female mosquitoes in gonotrophic Stage III, respectively
SH Number of wholly susceptible humans
WH Number of susceptible humans with reduced malaria

susceptibility due to recovery from prior malaria infection
EHN Number of exposed (newly-infected but not infectious) humans

without malaria immunity due to prior infection
(i.e., exposed and malaria-naive humans)

EHR Number of exposed humans with prior partial immunity to malaria
due to recovery from prior malaria infection

IH Number of symptomatic infectious humans
AH Number of asymptomatic infectious humans
RH Number of recovered humans

2.5. Estimation of temperature-independent parameters

In this section, the justification for the estimate of the numerical value of each of the
temperature-independent parameters of the model {(1), (2), (3)} is briefly discussed.

2.5.1. Human parameters
We may reasonably estimate ρH , the rate at which malaria-experienced humans revert
to a naive state, from the previous work of Filipe et al. [34], who proposed that clinical
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Table 2. Description of parameters of the model {(1), (2), (3)}.
Parameters Description

	H Recruitment rate of humans
μH Natural death rate of humans
ρH Rate of complete loss of partial immunity (fromWH to SH class)
bH Per capitamosquito biting rate in Stage I of the gonotrophic cycle
βH Transmission probability from infectious mosquitoes to susceptible humans
ξH Rate of loss of infection-acquired immunity (from the RH to theWH class)
ε Modification parameter for the reduction of human susceptibility to malaria infection

after recovery from prior malaria infection
γHN Progression rate of exposed humans without prior malaria immunity to the infectious

class (A_H or I_H)
γHR Progression rate of exposed humans with prior malaria immunity to infectious class
r Probability of exposed humans without prior malaria immunity showing clinical

symptoms of the disease
q Probability of exposedhumanswith priormalaria immunity showing clinical symptoms

of the disease
νH Transition rate of symptomatic humans to the asymptomatically-infectious class (AH)
δH , δHA Malaria-induced death rates of humans in the infectious class IH and AH , respectively
αH Recovery rate of symptomatically infectious humans
αHA Recovery rate of asymptomatically infectious humans
ψE Number of eggs laid per oviposition
σE , σP Maturation rate of eggs and pupae, respectively
σLj Maturation rate of larvae from larval Stage j to Stage j+1 (or to pupa) (for j= 1,2,3,4)
f Proportion of adult mosquitoes that are females
μE ,μL ,μP ,μM Temperature-dependent death rates of eggs, larvae, pupae and adult mosquitoes,

respectively
ηE , ηL , ηP , ηM Temperature-independent death rates for eggs, larvae, pupae and adult female

mosquitoes, respectively
kL Density-dependent mortality rate of larvae
βV Transmission probability from infectious humans to susceptible mosquitoes
θY Rate of progression from Stage II to Stage III of the gonotrophic cycle
ϕZ Rate of oviposition for adult mosquitoes in Stage III of the gonotrophic cycle
κM Progression rate of exposed adult female mosquitoes to infectious stage
KE Carrying capacity of eggs

immunity decays with a half-life of approximately 5 years. If we take 5 years as the expected
duration of immunity, then ρH = 1/(5 × 365) day−1. The probability of developing a
blood-stage infection after an infectious mosquito bite, βH in our model, may range from
0.01 to 0.5. In 1956, Macdonald [53] concluded that only 1 in 20 or 100 (depending upon
region) bites containing sporozoites resulted in an actual infection. Similarly, Pull andGrab
[78] estimated βH at 1.5 − 2.6% in Eastern Africa, in 1974, but some more recent works
suggest 0.5 as a reasonable value for malaria-naive hosts [81,89]. Also complicating mat-
ters, βH may be highly variable between individuals [89], and likely decreases somewhat
with exposure history, although the effect of prior exposures is likely small [90]. There-
fore, a reasonable range for ε, the parameter that accounts for the reduced probability of
acquiring infection from an infectious bite for individuals with prior malaria exposure in
comparison to malaria-naive individuals, may be 0.1−1.

The delay from initial infection to clinical disease is on the order of about two weeks, as
Plasmodium sporozoites first infect hepatocytes, undergoing pre-erythrocyte schizogony,
and then there is a “pre-patent” period prior to the first appearance of malaria tropho-
zoites in the blood. For P. falciparum, these stages respectively last 5–7 days and 9–10 days
[6], giving γHN = γHR = 1/17–1/14 day−1. Untreated P. falciparum infections are quite
long-lasting, with a variety of classical works concluding that infection could persist for
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Table 3. Ranges and baseline values for the temperature-independent parameters of
the model (detailed derivation of the values of these parameters is given in Section 2.5).

Parameters Range Baseline Reference

μH 1/(50 × 365)− 1/(70 × 365) day−1 1/(60 × 365) day−1 See text
	H 4−5.5 humans day−1 4.5 humans day−1 See text
ξH 0.02−−0.0714 day−1 1/14 day−1 [82]
αH 1/1500 − 1 day−1 1/30 day−1 [7,89]
αHA 1/1500 − 1/100 day−1 1/180 day−1 [7,89]
r, q 0.67−1.0, 0.01−0.33 0.9, 0.33 [23], See text
γHN , γHR 1/17–1/14 day−1 1/14 day−1 [6]
δH See text 0.0021 [5,28,80], See text
δHA See text 5.61 × 10−6 [5,28,80], See text
bH 0.5−4 day−1 2 day−1 [25]
βH 0.01−0.50 0.50 [81,89]
νH 0.001−0.05 1/30 Assumed
ε 0.1−1.0 0.5 [90]
βV 0.02−0.25 0.15 [20,50]
ρH 1/(3 × 365)− 1/(7 × 365) day−1 1/(3 × 365) day−1 [34]
f 0.5−0.8 0.5 [41,63]
σE 0.33−1 day−1 0.5 [103]
σP 0.33−1 day−1 0.5 [10]
ηE 0−0.075 day−1 0 [87], See text
ηL 0−0.6 day−1 0 [87]
ηP 0−0.3 day−1 0 [87]
ηM 0−0.2 day−1 0 [59,71]
ϕZ 0.5−4 day−1 2 day−1 [25]
ψE 10−150 eggs oviposition−1 65 eggs oviposition−1 [92]
KE 1.0 × 104 − 1.0 × 106 1.0 × 105 Derived, see text
kL 0−0.0001 larvae−1 day−1 0 [2]

over two years, with parasitemia lasting perhaps 6–10 months on average [7]. For exam-
ple, Jeffery and Eyles [42] reported a mean infection time of 279.5 ± 19.9 days, with a
range of 114 to 503 days, across 23 inadequately treated malaria patients. As reported by
Sama et al. [86], intentional malaria infection was previously used therapeutically against
syphilis, with such infections tending to last 200−300 days.

More recently, Sama et al. [86] used a simple mathematical model to re-analyze several
datasets and determined average infection times between 602 and 1,329 days, the latter
number their estimate for infections in the Garki Project, while another modelling work
by Smith et al. [89] concluded that infection might reasonably last 5.5 to 11 months, on
average. Case studies of accidental P. falciparum infection leading to asymptomatic infec-
tion demonstrate that such parasitemias can last as long as 13 years [7], with a median
duration of roughly two years. In sum then, the natural recovery rate for asymptomatic and
untreated symptomatic infections may plausibly range from about 1/1500 to 1/100 day−1.
Effective treatment rapidly clears blood-stage infections. Thus, the recovery rate for symp-
tomatic humans could be as high as about 1 day−1, if all such patients receive prompt and
effective therapy.

The transition rate, ξH , out of the recovered class in which humans are refractory to
further infection, is likely rather rapid. This is owing to the fact that Rodriguez-Barraquer
et al. [82] observed a median time to re-infection, following treatment, of just 44 days in
children in a holoendemic area of Uganda. Drug treatment can confer transient protection
against new infections for perhaps a few weeks. Based on these observations, and the
fact that new malaria infections have been clinically defined as new febrile episodes with
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parasitemia occurring at least 14 days after prior infection [82], we assume that mean
waiting time in the recovered class is at least 14 days, and no more than 50 days, yield-
ing ξH = 0.02 − 0.0714 day−1. We note that in a modelling work, O’Meara et al. [72]
assumed either a 28 or 370 day-long period during which non-immune and semi-immune
individuals, respectively, are refractory to reinfection following recovery from malaria,
although, due to differences in model formulation, this was not directly comparable to
our ξH parameter.

The excess mortality rate from malaria infection, for malaria-naive patients, can be
inferred from case-mortality rates. Considering symptomatic patients, for a given case-
fatality fraction denoted τH , recovery rate αH , background mortality rate μH , and excess
mortality rate δH , we have that the portion of infected humans who die from malaria is

τH = δH

αH + μH + δH
, (4)

and solving for δH gives

δH = τH(αH + μH)

1 − τH
. (5)

Similar relations hold for asymptomatic patients and τHA, αHA, and δHA.
For previously unexposed patients, case-mortality is on the order of at least 1 − 2%,

even when there is access to treatment, and is more generally in the 5 − 20% range [5].
Despite treatment, case-fatality rates are quite high in children suffering from severe dis-
ease, who have limited (if any) immunity, andwas 8.5% in one trial of sub-Saharan children
receiving highly effective artesunate [28]. In a large study conducted in Northeastern Tan-
zania [80], 0.9% of 5,076 parasite-positive patients presenting to hospital and deemed to
have non-severe disease died, while 7% of 1,984 patients with severe disease succumbed.
We can conclude that average excess mortality from a single episode of symptomatic mor-
tality is probably in the 1–20% range (with 3 − 5% a reasonable default estimate), while
asymptomatic malaria kills (directly or indirectly) <1% of sufferers.

Since the majority of symptomatic patients do not suffer severe malaria, and by adoles-
cence most malaria presents as uncomplicated febrile disease, if at all [23], we assume, in
ourmodel framework, that themajority ofmalaria-experience patients who are re-infected
are unlikely to develop severe disease. In particular, we set q ≤ 0.33. On the other hand,
given how deadly malaria is in those with no prior experience of it, it is likely that very few
of these patients are initially asymptomatic. Hence, we set r ≥ 0.67.

Human birth and natural death rates are assumed to occur according to first-order
kinetics at rates 	H and μH , respectively. This implies an exponential age distribution
for the population, which is generally unrealistic (as the probability of death increases
with age). Nevertheless, if we suppose an average lifespan of � days and a steady-state
population of � (in the absence of malaria-induced mortality), then μH follows easily
as 1/�, and 	H = μH�. We might reasonably assume � in the 50−70 year range, and
while � is location-specific, supposing � = 105 individuals (which is the typical size of
towns/communities in endemic areas in sub-Saharan Africa), then 	H ≈ 4–5.5 persons
day−1. It should also be noted that in the well-mixed setting, � are 	H are essentially
arbitrary.
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2.5.2. Mosquito parameters
Roughly half (42−63%) of An. stephensimosquitoes fed gametocyte-rich cultures in a lab-
oratory setting went on to develop detectable sporozoites [81], implying βV of about 0.5.
However, field studies suggest lower values: One study [50] of five villages in a holoendemic
area of Northern Tanzania finding βV to be 21% for An. gambiae, while Charlwood et al.
[20] estimated the same parameter to be either 1.9% forAn. gambiae or 3.4% forAn. funes-
tus in southern Tanzania, and as reviewed in [38,50], most previous estimates in Africa
have been on the order of 5−15%. It should further be noted that a genuine increase in
infectivity of humans to mosquitoes (in Africa) may have occurred between earlier work
in the 1960s and the 1990s, likely due to widespread chloroquine use in the earlier era that
suppressed transmission, and possibly exerted selective pressure for increased virulence
[50]. Overall, 0.02−0.25 seems a reasonable range for βV in the field.

The number of eggs per oviposition event,ψE, may vary from 10 to 150 forAn. gambiae
[3,92], but is typically about 40 to 85 under field conditions [3]. In a laboratory setting,
the female fraction of emerging imago, f, was about 0.5 under nutrient replete conditions
but almost 0.8 with larval competition for food [41], and a field study [63] showed a slight
female preference (f =0.57) among emerging An. gambiae s.l.. Eggs hatch into larvae in
1−3 days, and while this is a temperature-dependent process, most eggs hatch by the third
day regardless [103], and therefore as a first approximation thematuration rate for eggs, σE,
is assumed constant and in the range 0.33−1 day−1. Similarly, pupae hatch within a few
days [10], and we therefore take σP = 0.33 − 1 day−1, with all temperature-dependence
manifested at the larval stage of development.

The Anopheles egg carrying capacity, KE, and density-dependent larval competition
coefficient, kL, are lumped measures of the habitat and resources available for mosquito
breeding, and are therefore expected to be highly variable. If kL = 0, and if we suppose that
the mosquitoes per human ratio, M, is anywhere from 0.01 to 100 mosquitoes person−1,
then we can get a very crude idea of the magnitude of KE by assuming an average larval
development time, d, of 15 days, and average daily survival probability, p=0.8, and an
expected adult survival time, s, of perhaps 10 days, and therefore giving

KE = M�
spd

≈ 3M� ≈ 0.03�− 300�. (6)

We estimate temperature-independent death rates for larvae and pupae, ηL, and ηP,
respectively, from life table analysis of An. gambiae larvae and pupae sampled from either
a marsh or burrow-pits in Kenya [87]. This study suggested a net larval death rate ηL +
μL ranging 0.07115–0.33273 day−1 (mean 0.2064) and 0.06373–0.588251 day−1(mean
0.3154) for the marsh and burrow-pits, respectively, while respective pupal death rates,
ηP + μP, were 0.18350 and 0.32577 day−1. Since μL,μP ≥ 0, we suppose these are upper
limits to ηL. Moreover, we assume that eggs have a total death rate similar to first larval
instars, which was 0.06373 or 0.07115 in [87], suggesting ηE is small. Field studies [59,71]
suggest adult mosquito daily survival probabilities typically in the 0.80 to 0.95 range, for
An. gambiae and An. funestus, and thus we may reasonably assume ηM + μM on the order
of 0.05–0.25 day−1, or perhaps 0–0.2 day−1 for ηM .

Temperature-independent parameter values and ranges are summarized in Table 3.
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2.6. Functional forms of thermal-response functions

The functional forms of the thermal response (temperature-dependent) functions in the
model are formulated based on available laboratory data and prior work as follows. The
mean death rates, μM(TA), for adult Anopheles, are determined using data from [9], who
reportedAn. gambiae survival in a laboratory setting under constant ambient temperatures
ranging from 5 to 40◦C (in 5◦C intervals), and for a range of relative humidities. We use
the survival curve for 60% relative humidity, and fit a quadratic polynomial as follows:

1
μM(TA)

= max
(−11.8239 + 3.3292TA − 0.0771T2

A, 0.1
)
.

Using larval survival times reported by Bayoh and Lindsay [11], we fit the per-capita death
rate (inverse of survival time) of the immature mosquitoes (μE,μL, and μP) fairly well
using the following fourth-order polynomial (for i=E,L,P):

μi(TW) = 8.929 × 10−6T4
W − 9.271 × 10−4T3

W + 3.536× 10−2T2
W− 0.5814TW+ 3.509.

Eggs hatch into larvae in 1−3 days, and while this is a temperature-dependent process,
most eggs hatch by the third day regardless [103], and therefore as a first approximation the
maturation rate for eggs, σE, is assumed constant and in the range 0.33−1 day−1. Similarly,
pupae hatch within a few days [10], and thus we assume σP = 0.33−1 day−1. Moreover,
larval development is described using the unimodal relation derived by Bayoh and Lindsay
[10], where the overall time from egg to adult, denoted byDEA(TW), is described as

DEA(TW) = (
a + bTW + ceTW + de−TW

)−1, (7)

with a=−0.05, b=0.005, c = −2.139 × 10−16, and d = −2.81357 × 105.We assume that
all four larval stages are equal in duration, from which it follows that

σLj(TW) = 4
(
DEA(TW)− 1

σE
− 1
σP

)−1
for j = 1, 2, 3, 4.

Note, finally, that we restrict σLj(TW) to be strictly positive.
The transition rate from exposed mosquito class to infectious mosquito (κM(TA)) is

the inverse of the mean sporogonic cycle duration (in days). We describe the duration of
sporogony using the formula of Moshkovsky [25,67], but with the further restrictions that
sporogony cannot progress either below 16 ◦C or above 40 ◦C, giving

κM(TA) =
⎧⎨
⎩
TA − Tmin

D
, if 16◦C < TA < 40◦C,

0, if TA ≤ 16◦C, TA ≥ 40◦C.

where D=111 and Tmin = 16◦C [25].
Similarly, the rate at which mosquitoes complete Stage II of the gonotrophic cycle (i.e.,

the transition rate from theY to Z compartments) is described usingMoshkovky’s formula
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Figure 3. Profile of temperature-dependent parameters of the model {(1)–(3)}: (a) Survival time of lar-
vae, (μL(TW))−1 (b) Survival time of adult mosquitoes, (μM(TW))−1 (c) Sporogonic cycle duration in
adult female mosquitoes, (κM(TA))−1 (d) Duration of Stage II of the gonotrophic cycle, (θY(TA))−1, and
(e) total time for immature mosquito development.

[25,67]:

θY(TA) =
⎧⎨
⎩
TA − 9.9
36.5

, if 9.9◦C < TA < 40◦C,

0, if TA ≤ 9.9◦C, TA ≥ 40◦C.

Furthermore, as a first approximation, we assume air and water temperature to be equal
for all t (i.e., TA(t) = TW(t)), although some studies have used a linear offset between air
and water temperature [4], and air and water temperatures are expected to be dissimilar
in general, with the relationship changing over the course of the day [74]. In some of our
theoretical analysis (particularly in Section 3), we assume that ambient temperature is con-
stant. However, in some other settings (particularly in some of our numerical simulations,
such as in Section 4.1.1), we assume daily fluctuations in ambient temperature. When such
daily fluctuations are considered, we employ the following sinusoidal function to capture
hourly changes in the ambient temperature:

TA(t) = TA0 − DTR
2

sin
[2π
24

(
th + 14

)]
, (8)

where TA0 is the mean daily air temperature, the daily temperature range (DTR) is the
magnitude of variation about the mean (twice the amplitude of the sinusoid), and th ∈
[0, 24) is the time in hours for any given day. The profiles of some of the temperature-
dependent parameters of the model are depicted in Figure 3.

2.7. Basic qualitative properties

In this section, the basic qualitative properties of the developed model,given by the
equations {(1)–(3)}, will be explored.
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Lemma 2.1: Each component of the solution of the model {(1)–(3)}, subject to non-negative
initial conditions, remains nonnegative and bounded for all t>0.

The proof of Lemma 2.1 is given in Appendix 1. Furthermore, consider the following
feasible region for the model {(1)–(3)}:

� =
{
B(t) ∈ R

22
+ : NH(t) ≤ 	H

μH
, 0 ≤ E(t) < KE, 0 ≤ Lj(t) ≤ Lj (j = 1, 2, 3, 4),

0 ≤ P(t) ≤ P, 0 ≤ NV(t) ≤ NV

}
,

where,

B = (
SH ,WH ,EHN ,EHR, IH ,AH ,RH ,E, L1, L2, L3, L4,P, SX ,EX , IX , SY ,EY , IY , SZ ,EZ , IZ

)
,

and, Lj (j = 1, 2, 3, 4),P, NV are defined in Appendix 1. It follows from Lemma 2.1 that�
is positively-invariant for the model {(1), (2), (3)}. Therefore, it is sufficient to consider the
dynamics of the model in� [40].

3. Analysis of autonomous version of themodel

It is instructive, first of all, to gain insight into the dynamics of the autonomous version
of the model {(1), (2), (3)}. That is, we are studying the dynamics of the model for the
case where all temperature-dependent parameters of the model are considered to be con-
stants (i.e., we consider the model {(1), (2), (3)} with μM(TA) = μM ,μi(TW) = μi(i =
E, L,P), σLj(TW) = σLj(j = 1, 2, 3, 4), κM(TA) = κM and θY(TA) = θY ). The model {(1),
(2), (3)} with the temperature-dependent parameters treated as constant is denoted as the
autonomous model. It is convenient to define the threshold quantity

RMP =
ψEϕZσE

4∏
k=1

σLkfσPθYbH

(
σE + ηE + μE

)(
σP + ηP + μP

)(
CXCYCZ − θYbHϕZ

) 4∏
k=1

(
σLk + ηL + μL

) ,

where CX = bH + ηM + μM , CY = θY + ηM + μM , CZ = ϕZ + ηM + μM and CXCYCZ
− θYbHϕZ = (ηM + μM)[CZ(CX + θY)+ bHθY ] > 0 (so thatRMP > 0).

The threshold quantity (RMP) is similar to the vectorial reproduction number described
in [70], for which mosquito population exists whenever RMP > 1 (and no mosquito
exists forRMP ≤ 1). Ecologically,RMP measures the average number of new adult female
mosquitoes produced by one reproductive mosquito during its entire reproductive period.

3.1. Existence and asymptotic stability of disease-free equilibria

The autonomous model has:

(i) a trivial disease-free equilibrium (where no mosquitoes exist), given by:

T0 =
(
	H

μH
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.
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(ii) at least one non-trivial disease-free equilibrium (NDFE) if and only ifRMP > 1. The
NDFE is unique when the density-dependent larval mortality rate (kL) is set to zero.
The unique NDFE is given by

E0 =
(
	H

μH
, 0, 0, 0, 0, 0, 0,E�, L�

1 , L
�
2 , L

�
3 , L

�
4 ,P

�, S�
X , 0, 0, S

�
Y , 0, 0, S

�
Z , 0, 0

)
,

where,

E�
V = KE

(
1 − 1

RMP

)
, L�

1 = σE

CL1
E�, L�

j = σLj−1

CLj
L�
j−1, j = 2, 3, 4,

P�
V = σL4

CP
L�
4 ,

S�
X = 1

CX
(fσPP� + ϕZS�

Z), S�
Y = 1

CY
bHS�

X , S�
Z = θYbHfσPP�

CXCYCZ − θYbHϕZ
, (9)

with CLj = σLj + ηL + μL (j = 1, 2, 3, 4), CP = σP + ηP + μP.

It should be noted that since mosquitoes always exist in malaria-endemic regions, the
asymptotic stability property of the trivial disease-free equilibrium (T0) is not analyzed
in this study (since T0 is unrealistic ecologically).

NDFE: special case

Consider the special case of the autonomousmodel with no density-dependent larval mor-
tality (i.e., kL = 0). Furthermore, let RMP > 1 (so that the unique NDFE, E0, exists). It
can be shown, using the next generation operator method [27,96], that the associated
reproduction number of the autonomous model (denoted byR0) is given by:

R0 =
√
RHV × RVH , (10)

where,

RHV = bHβV
S�
X

N∗
H

[
rγHN
g1

1
g3

+ rγHN
g1

νH

g3
1
g4

+ (1 − r)γHN
g1

1
g4

]
, (11)

and,

RVH = bHβH
S�
H

N∗
H

κMϕZθY(CYCZ + CYgX + gXgZ)
(CXCYCZ − bHϕZθY)(gXgYgZ − bHϕZθY)

, (12)

with N∗
H = 	H/μH , g1 = γHN + μH , g2 = γHR + μH , g3 = αH + νH + δH + μH , g4 =

αHA + δHA + μH , gX = CX + κM , gY = CY + κM , gZ = CZ + κM . The result below fol-
lows from Theorem 2 of [96].

Theorem3.1: TheNDFE, E0, of the autonomousmodel with kL = 0 andREP > 1 is locally-
asymptotically stable in� \ {T0} ifR0 < 1, and unstable ifR0 > 1.
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Interpretation ofR0

The threshold quantityR0, given by Equation (10), measures the average number of new
infections in humans (vectors) generated by an infectious vector (human). Its components
are epidemiologically interpreted as follows.

(1) Interpretation of RHV: The quantity RHV , given by (11), is associated with the
infection of susceptible mosquitoes by infectious (asymptomatic and symptomatic)
humans. It can further be expressed as

RHV = RIHV + RAHV , (13)

where,

RIHV = bHβV
S�
X

N∗
H

rγHN
g1

1
g3

and

RAHV = bHβV
S�
X

N∗
H

[
rγHN
g1

νH

g3
+ (1 − r)γHN

g1

]
1
g4
,

with RIHV accounting for the average number of new infectious adult female
mosquitoes generated by symptomatically infectious humans (IH) and RAHV mea-
sures the average number of new infectious adult female mosquitoes generated by
asymptomatically infectious humans (AH).

(2) Interpretation of RVH: The threshold quantity RVH , given by (12), is associated
with the infection of susceptible humans by infected mosquitoes at Stage I of the
gonotrophic cycle (IX). It can further be expressed as

RVH = bHβH
S�
H

N∗
H

1
CX

(
RV1H + RV2H + RV3H

)
, (14)

where, RV1H ,RV2H and RV3H account for all possible routes at which an exposed
mosquito in Stage II of the gonotrophic cycle (EY ) mosquito survives to become
(and remain) an infected mosquito at Stage I of the gonotrophic cycle (IX) (i.e.,
the sum RV1H + RV2H + RV3H is the probability that an exposed mosquito in EY
class survives to become an infected mosquito in IX class). Consider the following
definitions:

Definition 3.1: (a) X → Y means the fraction of adult mosquitoes that survives the X
class and moves to the Y class;

(b) X → Y → Z is the product of the proportions of adult mosquitoes that survivedX →
Y and Y → Z transmissions;

(c) (→ X → Y → Z)j =→ X → Y → Z → X → Y → Z → · · · → X → Y → Z (j
times, j ∈ N). That is, for j=2, (→ X → Y → Z)2 =→ X → Y → Z → X → Y →
Z.

(d) (→ X → Y → Z)0 = 1.
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Thus, the quantities RV1H ,RV2H and RV3H defined in Equation 14 can be described
as follows:

(i) The quantityRV1H , which accounts for the infection route (for j, k ∈ Z)

EY → EZ → EX
(→ EY → EZ → EX

)j → IX
(→ IY → IZ → IX

)k,
is given by

RV1H = θY

gY
ϕZ

gZ
×

n∑
j=0

(
bH
gX
θY

gY
ϕZ

gZ

)j
× κM

gX
×

m∑
k=0

(
bH
CX

θY

CY

ϕZ

CZ

)k
.

That is, there are two routes for an exposed mosquito in the second stage of the
gonotrophic cycle (EY ) to reach IX class (so that it can transmit infection to a
susceptible human), namely
(a) Direct route: EY → EZ → EX → IX (when n=0);
(b) Indirect route (i.e., EY fails to show symptoms the first time it become an EX

mosquito): EY → EZ → EX(→ EY → EZ → EX)j → IX (when n>0).
This mosquito will remain in IX where it can undergo the gonotrophic cycle (with
m>0) or not (withm=0).

(ii) The quantityRV2H which accounts for the infection route (for j, k ∈ Z)

EY → EZ
(→ EX → EY → EZ

)j → IZ → IX
(→ IY → IZ → IX

)k,
is given by

RV2H = θY

gY
×

n∑
j=0

(
ϕZ

gZ
bH
gX
θY

gY

)j
× κM

gZ
ϕZ

CZ
×

m∑
k=0

(
bH
CX

θY

CY

ϕZ

CZ

)k
.

(iii) The quantityRV3H which accounts for the infection route (for j, k ∈ Z)

EY
(→ EZ → EX → EY

)j → IY → IZ → IX
(→ IY → IZ → IX

)k,
is given by

RV3H =
n∑
j=0

(
θY

gY
ϕZ

gZ
bH
gX

)j
× κM

gY
θY

CY

ϕZ

CZ
×

m∑
k=0

(
bH
CX

θY

CY

ϕZ

CZ

)k
.

It is worth nothing that 0 ≤ n,m ≤ 6, since an adult mosquito undergoes the
gonotrophic cycle at most six times in its lifetime [55].

Global asymptotic stability of the NDFE: special case

The epidemiological implication of Theorem 3.1 is that the disease can be effectively con-
trolled in a population if the initial sizes of the subpopulations of the model are close
enough to the non-trivial disease-free equilibrium (E0). For such control to be indepen-
dent of the initial size of the subpopulation, a global asymptotic stability result need to be
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established for the NDFE (E0). This is done below for a special case of the autonomous
model with no disease-induced mortality (i.e., δH = δHA = 0) and no density-dependent
larval mortality (i.e., kL = 0).

Theorem 3.2: The unique NDFE of the special case of the autonomous version of the
model with kL = δH = δHA = 0 andRMP > 1, is globally-asymptotically stable in� \ {T0}
wheneverR1 = R0|δH=δHA=0 ≤ 1.

The proof of Theorem 3.2, based on the approach in [30,69], is given in Appendix 2. The
epidemiological implication of Theorem 3.2 is that, for the special case of the autonomous
model considered in Theorem 3.2, bringing (and maintaining) the threshold quantityR1
to a value less than unity is necessary and sufficient for the effective control (or elimination)
of malaria in the population. It is worth mentioning that, as in prior models for spread of
malaria and other vector-borne diseases (such as those in [18,33,35]), the autonomous
model undergoes the phenomenon of backward bifurcation if the assumption on disease-
induced mortality rate is relaxed (i.e., δH 
= 0, δHA 
= 0).

3.2. Basic relationship betweenR0 and endemic populations

For the autonomous model, we plot the steady-state solution of the model for the total and
infectious mosquito population, as well as the infected human populations (symptomatic
and asymptomatic), againstR0, revealing a quasi-linear relationship betweenR0 and the
mosquito populations but a hyperbolic relationship between the human populations. The
results obtained, depicted in Figure 4, suggest that, when R0 is relatively small, smaller
changes in R0, whether due to changing climate or other factors, may significantly affect
the burden of disease. However, when the baselineR0 is high, disease burden, but not the
infectious vector population, is insensitive to such small changes. Thus, marginal changes
in epidemiologic parameters and climate variables, such as temperature, are expected to
significantly affect disease burden only in areas with a relatively low baselineR0.

3.3. Temperature,R0, and endemic populations

For constant temperature, wemay simply solve forR0 as a function of ambient temperature
(using the thermal-response functions detailed in Section 2.6), yielding a unimodal curve,
as seen in Figure 5. We may also simultaneously plot the endemic mosquito and infected
human populations (under appropriate scaling), to see how this thermal-response function
inR0 translates into disease burden.

We see that this relationship depends upon the possible range for R0, as depicted in
Figure 5, which shows how steady-state populations vary with temperature when R0 is
relatively small versus large: When R0 is small over the temperature range where trans-
mission is possible, infectious human populations also vary significantly, while when R0
is large over this temperature range, these populations are almost invariant, and the model
tends to the same steady-state regardless. However, the infectious vector population still
varies markedly with temperature even when R0 is large enough such that IH(∞) and
AH(∞) do not. In all cases shown,R0 is modulated by KE.
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Figure 4. Steady-state vector (total and infectious) and infected human populations (symptomatic and
asymptomatic), as a function ofR0, when the egg carrying capacity, KE , is used tomodulateR0 (similar
results are obtained when other parameters are varied). Both vector populations increase super-linearly
withR0, while a hyperbolic relationship between both infected human populations is seen, with little
variation observed whenR0 > 4. All other parameters values are as given in Table 3.

Figure 5. Steady-state infectious vector (left panels) and infected human populations (right panels) as
a function of ambient temperature, using either KE = 2 × 104 (top panels) or KE = 2 × 105 (bottom
panels), withR0 normalized to the peak of either population also inscribed (the dotted line givesR0 ≡
1); peakR0 values are also indicated in the right panels. We see that infectious vectors trackR0 quite
well regardless, whereas infected human populations are nearly invariant whenR0 is large across most
of the temperature range where transmission is possible.
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Table 4. PRCC values for the parameters of the autonomous model using the basic reproduc-
tion numberR0 as the response function. The top (most-dominant) parameters that affect the
dynamics of the model are highlighted in bold font. Parameter values and ranges used are as
given in Table 3.

Parameters PRCC Parameters PRCC Parameters PRCC Parameters PRCC

	H −0.18 bH +0.57 βH +0.53 γHN +0.013
μH −0.0234 r −0.35 νH +0.081 δH +0.046
δHA −0.034 αHA −0.44 αH −0.26 ψE +0.061
σE +0.32 σL1 +0.15 σL2 +0.17 σL3 +0.15
σL4 +0.12 σP +0.23 f +0.13 βV −0.42
μE + ηE +0.15 μL + ηL −0.15 μP + ηP −0.034 μM + ηM −0.72
θY +0.22 ϕZ −0.29 κM +0.34 KE +0.28

3.4. Sensitivity analysis

The model developed in this study contains numerous parameters. Hence, it is instructive
to determine the model parameters that have the most influence on the disease transmis-
sion dynamics. To achieve this, a global sensitivity analysis, using latin hypercube sampling
(LHS) and partial rank correlation coefficients (PRCC), is carried out to quantify the
impact of the variations or sensitivity of each parameter of the model on the associated
numerical simulations [16,56,58,100]. While PRCCs provide a measure of monotonicity
after the removal of the linear effects of all but one variable [56], LHS, a stratified sam-
pling without replacement technique, enables for the assessment of parameter variations
across simultaneous uncertainty ranges in each parameter of the model. The sensitivity
analysis is carried out for the autonomous model using the basic reproduction number
(R0) as the response function. The parameter values and ranges in Table 3 are used in
this analysis, and it is assumed that each of the parameters of the model obey a uniform
distribution [16,56]). The sensitivity analysis results obtained, tabulated in Table 4, show
that the top PRCC-ranked parameters of the model are, in descending order, the aggregate
(natural and biological control-related) death rate of adult female mosquitoes (μM + ηM),
mosquito biting rate in stage I of the gonotrophic cycle (bH), transmission probability
from infected mosquitoes to susceptible humans (βH), and the recovery rate for asymp-
tomatically infected humans (αHA). Thus, control strategies that increase the death rate of
adult female mosquitoes (e.g., using indoor residual spraying), minimize biting rate (e.g.,
using long lasting insecticidal nets and other forms of personal protection againstmosquito
bite), and/or increase recovery of infected humans (e.g., via the use of artemisinin-based
combination therapy) will be effective in reducing the disease burden in the community.

4. Mathematical analysis of non-autonomousmodel

In this section, the full non-autonomous model {(1), (2), (3)} will be analysed to gain
insight into its dynamical features. It should be noted, first of all, that, as in the case of
the autonomous model, the special case of the non-autonomous model with no density-
dependent larval mortality (i.e., the model with kL = 0) has two disease-free equilibrium
solutions, namely, the trivial disease-free equilibrium (T0) and a non-trivial disease-free
periodic solution (NDFS). Moreover, only NDFS will be analyzed (since the former, asso-
ciated with the absence of mosquitoes in the population, is ecologically unrealistic). The
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non-trivial disease-free solution (denoted by EN(t)) exists whenever a vectorial repro-
duction ratio of the mosquito-only compartments, denoted by RMt , exceeds unity (the
detailed computation ofRMt , based on using the theory of linear operators [8,97], is given
in Section 4.1 of [70], and not repeated here to save space). The NDFS is given by:

EN(t) =
(	H

μH
, 0, 0, 0, 0, 0, 0,E∗(t), L∗

1(t), L
∗
2(t), L

∗
3(t), L

∗
4(t),P

∗(t),

S∗
X(t), 0, 0, S

∗
Y(t), 0, 0, S

∗
Z(t), 0, 0

)
, (15)

where, (E∗(t), L∗
1(t), L

∗
2(t), L

∗
3(t), L

∗
4(t),P

∗(t), S∗
X(t), 0, 0, S

∗
Y(t), 0, 0, S

∗
Z(t), 0, 0) is a periodic

solution of themosquito-only equivalent of themodel at disease-free solution (i.e., they are
periodic solutions of themodel {(1), (2)} only). The following stability results are obtained.

Theorem 4.1: (1) Let RMt > 1. The NDFS of the non-autonomous model {(1), (2), (3)},
is locally-asymptotically stable whenever the threshold quantityR0t < 1 and unstable if
R0t > 1.

(2) Consider a special case of the non-autonomous model {(1), (2), (3)}with δH = δHA = 0
(so that NH(t) → 	H/μH as t → ∞) and kL = 0. The NDFS of the resulting model is
globally-asymptotically stable in� \ {T0} ifR1t = R0t|δH=δR=kL=0 ≤ 1.

The proof of Item (1) of Theorem 4.1, based on using the theory of linear operators
[8,70,97], is given in Appendix 3. The proof of Item (2) of Theorem 4.1, based on using
the approach in [30,69], is given in Appendix 4. Thus, as in the case of the autonomous
equivalent of the model (Theorem 3.2, the epidemiological implication of Theorem 4.1(2)
is that, for the case of the non-autonomous model with no disease-induced mortality in
the host population and no density-dependent larval mortality, malaria can be effectively
controlled (or eliminated) from the community if the associated reproduction threshold
(R1t) can be brought to (and maintained at) a value less than unity. Thus, these analyses
show that both the non-autonomous (with temperature fluctuations) model {(1), (2), (3)}
and its autonomous equivalent (where ambient temperature is fixed) have the same quali-
tative dynamics with respect to the local and global asymptotic dynamics of the associated
non-trivial disease-free equilibrium (or solution).

4.1. Numerical simulations of non-autonomousmodel

The non-autonomous model {(1), (2), (3)} is numerically simulated to illustrate the effect
of temperature variability and diurnal temperature range (DTR) on malaria transmission
dynamics. The temperature-dependent parameters are determined using the expressions
given in Section 2.6 (for temperature values in the range [14 − 40]◦C, with daily variation
about the mean given by Equation 8). In addition, the effect of omitting explicit modelling
of the gonotrophic and sprogonic cycles in the malaria transmission model is assessed.

4.1.1. Effect of daily temperature fluctuation
We run themodel for variousmean ambient temperatures, with superimposed (sinusoidal)
diurnal temperature variation (as given by Equation 8), with the DTR varying from 0◦C to
15◦C. The model is run until a stable periodic solution is reached, and the average values
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Figure 6. Approximate, normalized steady-state vector and infected humanpopulations as functions of
mean daily temperature, for DTR values of 0◦C, 5◦C, 10◦C, and 15◦C. Vector populations are normalized
to the maximum total population under DTR of 0◦C, while human populations are normalized to the
maximum asymptomatic population under DTR of 0◦C. All temperature-independent parameters are as
in Table 3 except KE = 105. Peak temperature value for all curves are indicated in the figure.

of this periodic solution are plotted against daily mean temperature for different values of
DTR values, as shown in Figure 6. Results show that increasing DTR decreases both the
possible temperature range for malaria transmission, and reduces the peak temperature
value of maximum malaria transmission. Specifically, transmission is maximized at about
29.5◦C when DTR = 0◦C (i.e., constant temperature), while peak transmission occurs
at 25◦C with DTR = 15◦C, and indeed, at this point, transmission is already marginal
at 29.5◦C. Figure 6 shows that demonstrated that increasing DTR also asymmetrically
narrows the temperature range over which malaria transmission is possible, such that
transmission is curtailed somewhat more at higher, rather than lower, temperatures.

4.1.2. Omission of sporogonic and gonotropic cycles
The quantitative effect of the gonotrophic and sporogonic cycles on the malaria trans-
mission model is assessed numerically by formulating two reduced version of the non-
autonomous model, namely:

(a) A reduced version of the non-autonomous model without an explicit representation
of the adult female gonotrophic cycle;

(b) A reduced version of the non-autonomous model without the exposed but non-
infectiousmosquito compartments (i.e., themodel does not account for the delay from
infection to infectivity imposed by the sporogonic cycle).
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Figure 7. Normalized steady-state of total adult vector, infectious vector, symptomatic human, and
asymptomatic human populations for the full model and versions omitting either gonotrophy or sporo-
gony cycles, as a function of daily mean temperature (with DTR values of 0◦C and 10◦C). Normal-
ization is performed relative to the maximum total vector and asymptomatic human populations. All
temperature-independent parameters are as given in Table 3, except KE = 104.

The resulting model equations are given in Appendix 5. Numerical simulations of the
three models (i.e., the full model and the two reduced models), depicted in Figure 7, show
that omitting the sporogonic cycle significantly affects the model output, but omitting the
gonotrophic cycle has only a very marginal effect, when compared with the full model
output.

5. Conclusions and discussion

We have developed and analyzed a deterministic non-autonomous (temperature-
dependent) model for assessing the impact of temperature variability on the transmission
dynamics of malaria in a community. In formulating the model, we considered several
epidemiological features of malaria transmission including disease transmission to vec-
tors by asymptomatically-infectious humans, reducedmalaria susceptibility in humans due
to recovery from prior malaria infection, the possibilities of conversion of symptomatic
humans to an asymptomatic state, and the complete loss of partial immunity in humans.
In addition to these features, themodel explicitly incorporate the adult female gonotrophic
cycle of the female Anopheles mosquitoes and the sporogonic cycle of the Plasmodium
parasite.

The dynamics of the autonomous version of the model (where the ambient tempera-
ture is fixed) are governed by the basic reproduction number (R0), which measures the
average number of secondary cases of malaria caused by an infectious human (and vector)
over the course of the infectious period, in an otherwise (wholly-susceptible) uninfected
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population. It is shown that, for the autonomous model, the disease-free equilibrium is
locally-asymptotically stable whenever R0 < 1. The implication of this result is that the
disease can be effectively controlled in the community, whenR0 < 1, if the initial size of
the infected population is small enough (in the basin of attraction of the disease-free equi-
librium). It is further shown that this equilibrium is globally-asymptotically stable (when
R0 < 1) for the special case with no disease-induced mortality in the host population.
The epidemiological implication of the latter scenario is that making (and keeping)R0 to
a value less than unity is necessary and sufficient for elimination of malaria in the com-
munity. Similar results were obtained for the full non-autonomous model (where daily
temperature fluctuations are accounted for).

A global sensitivity analysis of the autonomousmodel, using LatinHypercube Sampling
and Partial Rank Correlation Coefficients, suggests that the dynamics of the model (with
respect toR0 as the response function) are most sensitive to the net adult mosquito death
rate (ηM + μM), biting rate (bH) and human transmission probability (βH), and asymp-
tomatic human recovery rate (αHA). This suggests that the most effective malaria control
measures will be those that target adult mosquito survival (increase ηM), such as indoor
residual spraying (IRS) and widespread use of insecticide-treated bednets (ITNs) in the
community, and block biting and transmission; ITNs are expected to decrease bH , while
βH may be reduced by, for instance, intermittent preventive therapy. Thus, this analysis is
consistent with ITNs as a potentially highly effective measure. Effective medical treatment,
including or even especially of thosewho are asymptomatic, is also likely to be of significant
use. Targeting immature anophelines is likely to be of less efficacy than targeting adults, but
still of value.

Several interesting observations arise from our numerical simulations of the
autonomous model. First, there is a highly nonlinear, hyperbolic, relationship betweenR0
(which represents the average number of new infections generated by a single case in a
completely susceptible, non-immune population, and the actual asymptotic populations
of infected humans (both symptomatic and asymptomatic)), such that, once R0 is suf-
ficiently large, disease burden is essentially unaffected by (reasonably small) changes in
R0. This relates to the well-known fact about malaria epidemiology, namely that in highly
endemic areas, the population may be exposed to as many as hundreds of infectious bites
per year, yet disease burden is essentially stable, with most clinical disease concentrated in
very young children who have not yet developed a degree of immunity [17]. It is only in
more marginal areas of malaria transmission that disease burden tends to be more unsta-
ble, where severe disease affects persons across age groups and the population has a high
degree of vulnerability to epidemics [17,54]. This is reflected in our model, in that only
at relatively low R0 values do changes in this epidemiological quantity translate nearly
linearly into clinical disease.

Furthermore, this phenomenon ofR0 relating hyperbolically to clinical disease is also
manifested in our R0-temperature curves. When temperature-independent parameters
are such that R0 is relatively low across the temperature range for which transmission is
possible, both R0 and infected human populations (IH and AH) change appreciably with
temperature. If, on the other hand, the “basal” R0 is high, then while R0 changes with
temperature, IH and AH do not, except for a quasi-threshold phenomenon where, below
about 17 and above 34◦C, IH and AH are zero, but almost invariant within these tempera-
ture bounds. Thus, our results suggest that climate change may affect areas of high malaria



314 K. OKUNEYE ET AL.

endemicity (e.g. holo- and hyperendemic areas) and areas of low endemicity or unstable
transmission very differently. Within the former, which tend to be warm areas in west-
ern and central equatorial Africa, several degrees of warming will affect disease burden
only if a threshold mean daily temperature (likely on the order of about 34◦C) is crossed,
and then dramatically, with a sharp drop in disease burden. In the latter, which tend to
be cooler areas, such as the eastern African highlands, warming temperatures may affect
disease burden in amore continuousmanner, with increases inR0 with temperature trans-
lating more directly into clinical disease. Thus, modest warming would most likely result
in a net increase in overall disease potential.

Numerical simulations also indicate that temperature variability is important in deter-
mining the optimum temperature ranges for malaria transmission, with increasing daily
temperature range (DTR) shifting the optimum temperature for transmission down from
about 29.5◦C when temperature is constant, to 23.5◦C when DTR is 20◦C, and more-
over, asymmetrically contracting the temperature range where transmission is possible,
such that higher temperatures are more affected, in reasonable concordance with recent
modelling work by Beck-Johnson et al. [13].

Finally, given the complexity and large number of variables in the full transmission
model considered here, we have briefly analyzed two reducedmodels, one omitting explicit
representation of the gonotrophic cycle and the other omitting the sporogonic cycle. In
the former case, normalized asymptotic mosquito and infected humans populations are
hardly affected under constant weather conditions, although dynamicsmay still be affected
when weather conditions vary. The omission of sporogony, however, very strongly affects
model predictions, and is likely essential to include. It follows that it may be a reasonable
to simplify future models by omitting explicit disaggregation of the gonotrophic cycle into
compartments, but this is likely untrue for the sporogonic cycle.
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Appendices

Appendix 1. Proof of Lemma 2.1

Proof: Since the functions on the right-hand side of the model {(1), (2), (3)} (denoted by Q(t,φ),
where φ ∈ R22+ ) is continuous and Lipschitzian at t= 0, then for each non-negative initial condi-
tion, the model has a unique and non-negative solution in R22+ . In addition, it should be noted
that Qi(t,φ) ≥ 0 whenever φ ≥ 0 and φi = 0. Hence, it follows from Theorem A.4 in [95] that the
region R22+ is positively-invariant with respect to the model {(1), (2), (3)}. Furthermore, consider
the following definition, �

Definition A.1: For each of the time-dependent (i.e., temperature- and rainfall-dependent) param-
eters, the following quantities hold:

a∗ = sup
t≥0

a(t), a∗ = inf
t≥0

a(t)

http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/
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Using Definition A.1, the boundedness of the solutions of the model {(1), (2), (3)} is shown as
follows:

(i) Immature and adult mosquito compartments:
Since (1 − (E/KE))+ ≥ 0, then E(t) ≤ KE for all t. Thus, using Definition A.1, it can

be deduced from the second equation of immature mosquito compartments (i.e., using the
equation for the first larval instar stage (L1) described in Section 2.2) that,

dL1
dt

= σE(t)E − [σL1(t)+ ηL + kLL + μL(t)]L1 ≤ σ ∗
EKE − (σL1∗ + ηL + μL∗)L1,

so that lim supt→∞ L1(t) ≤ σ ∗
EKE/(σL1∗ + ηL + μL∗) = L1. Similarly, the following bounds are

obtained: lim supt→∞ Lj(t) ≤ Lj =
σ ∗
L(j−1)

Lj−1

σLj∗ + ηL + μL∗
(for j = 2, 3, 4) and lim supt→∞ P(t) ≤

P = σ ∗
L4L4

σP∗ + ηP + μP
.

Furthermore, the equation for the rate of change of the total adult mosquitoes population
(NV(t)) is given by:

dNV

dt
= fσP(t)P − [ηM + μM(t)]NV ≤ fσ ∗

P P − (ηM + μM∗)NV .

from which it follows that lim supt→∞ NV(t) ≤ fσ ∗
P P(ηM + μM∗) = NV .

(ii) Human compartments:
The equation for the rate of change of the total human population (NH(t)):

dNH

dt
= 	H − μHNH(t)− δHAAH(t)− δHIH(t) ≤ 	H − μHNH(t),

so that NH(t) = 	H/μH + [NH(0)− (	H/μH)] e−μHt . Thus, NH ≤ 	H/μH if NH(0) ≤
	H/μH . In addition, if NH(0) > 	H/μH , then NH(t) → 	H/μH as t → ∞. That is,
lim supt→∞ ≤ 	H/μH .

Appendix 2. Proof of Theorem 3.2

Proof: Consider the special case of the autonomous model with δH = δHA = 0 so that NH(t) →
N∗
H = 	H/μH , as t → ∞. Furthermore, let kL = 0 and RMP > 1 (so that the unique NDFE, E0,

exists) andR1 = R0|δH=δHA=0 < 1. Following [30,69], it is convenient to re-write the autonomous
model

dxS
dt

= A1(x)(xS − xNDFE,S)+ A12(x)xI ,

dxI
dt

= A2(x)xI , (A1)

where,

xS(t) = (
SH(t),WH(t),RH(t),E(t), L1(t), L2(t), L3(t), L4(t),P(t), SX(t), SY(t), SZ(t)

)T ,
xI(t) = (

EHN(t),EHR(t), IH(t),AH(t),EX(t), IX(t),EY(t), IY(t),EZ(t), IZ(t), 0, 0
)T ,

xNDFE,S = (
S�
H , 0, 0,E

�, L�
1 , L

�
2 , L

�
3 , L

�
4 ,P

�
V , S

�
X , S

�
Y , S

�
Z
)T ,
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A1(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μH +ρH 0 0 0 0
0 −(ρH + μH) ξH 0 0 0
0 0 −(ξH + μH) 0 0 0

0 0 0 −gE − ψEϕZ
SZ
KE

0 0

0 0 0 σE −gL1 0
0 0 0 0 σL1 −gL2
0 0 0 0 0 σL2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 ψEϕZ

(
1 − E�

KE

)
0 0 0 0 0 0
0 0 0 0 0 0

−gL3 0 0 0 0 0
σL3 −gL2 0 0 0 0
0 σL4 −gP 0 0 0
0 fσP −CX 0 0 0
0 0 0 bH(1 − βVGH) −CY 0
0 0 0 0 θY −CZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A12(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 bHβH
SH
NH

0 0 0 0 0 0

0 0 0 0 0 (1 − ε)bHβH
WH

NH
0 0 0 0 0 0

0 0 αH αHA 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ψEϕZ

(
1 − E

KE

)
ψEϕZ

(
1 − E

KE

)
0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and,

A2(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−g1 0 0 0 0
0 −g2 0 0 0

rγHN qγHR −g3 0 0
(1 − r)γHN (1 − q)γHR νH −g4 0

0 0 0 0 −gX
0 0 0 0 κM

0 0 bHβV
SX
NH

bHβV
SX
NH

bH
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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bHβH
SH
NH

0 0 0 0 0 0

(1 − ε)bHβH
WH

NH
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−CX 0 0 0 0 0 0
0 −gY 0 0 0 0 0
bH κM −CY 0 0 0 0
0 θY 0 −gZ 0 0 0
0 0 θY κM −CZ 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with g1 = γHN + μH , g2 = γHR + μH , g3 = αH + νH + δH + μH , g4 = αHA + δHA + μH , CX =
bH + ηM + μM , CY = θY + ηM + μM , CZ = ϕZ + ηM + μM , gX = CX + κM , gY = CY + κM and
gZ = CZ + κM . It can be verified that the eigenvalues of A1(x) are real and non-positive. Hence, the
system dxS/dt = A1(x)(xS − xNDFE,S) is globally-asymptotically stable at xNDFE,S [30]. It should be
noted that thematrixA2(x) is aMetzler irreducible. Consider, next, the following bounded invariant
set:

B2 =
{(
SH ,WH ,RH ,E, L1, L2, L3, L4, P, SX , SY , SZ ,EHN ,EHR, IH ,AH ,EX , IX ,EY , IY ,EZ , IZ ,

0, 0
) ∈ R

24
+ : NH ≤ 	H

μH
, NV ≤ NV

}
,

It is convenient to define

(RG)
2 = NV

S�
X
(R1)

2 > (R1)
2.

Further, define a matrix A2(x̄) = Ā2, where Ā2 is an upper bound of the set [16]

M = {
A2(x) ∈ R

12×12 : x(t) ∈ B2
}
,

with x̄ ∈ R12+ × {0}. It can be verified that ρ(Ā2) ≤ 0 if and only if RG ≤ 1. Thus, it follows from
Theorem 2.7 in [30] that, forRMP > 1 andR1 < 1,(

SH ,WH ,RH ,E, L1, L2, L3, L4, P, SX , SY , SZ ,EHN ,EHR, IH ,AH ,EX , IX ,EY , IY ,EZ , IZ
)
(t)

→
(	H

μH
, 0, 0,E�, L�

1 , L
�
2 , L

�
3 , L

�
4 ,P

�, S�
X , S

�
Y , S

�
Z , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
, as t → ∞, (A2)

where E�, L�
1 , L

�
2 , L

�
3 , L

�
4 ,P

�, S�
X , S

�
Y , S

�
Z are as defined in Equation (9) in Section 3.1. Thus, the unique

NDFE (E0) of the autonomous model, with δH = δHA = 0, is globally-asymptotically stable in � \
{T0} wheneverR1 < 1. �

Appendix 3. Proof of Theorem 4.1(1)

Proof: Computation ofR0t :The vectorial reproduction ratio, associated with the non-autonomous
model {(1), (2), (3)}, will be computed using the approach in [8,70,97]. The linearized version of the
model {(1), (2), (3)}, at the disease-free solution, EN(t), can be expressed as

dH(t)
dt

= [
F(t)− V(t)

]
H(t) (A3)

where H = (EHN ,EHR, IH ,AH ,EX , IX ,EY , IY ,EZ , IZ), F(t) and V(t), are the next generation
matrices (of the new infections and remaining transfer terms, respectively) associated with the
model{(1), (2), (3)} when linearized at the trivial equilibrium EN(t).
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Furthermore, the cumulative distribution of new infections at time t, produced by all infected
individuals introduced at a prior time s= t, is given by

�(t) =
∫ t

−∞
Y(t, s)F(s)φ(s) ds =

∫ ∞

0
Y(t, t − a)F(t − a)φ(t − a) da.

where, Y(t, s) is the matrix of evolution operator of the linear ω-periodic system which satisfies [97]

dY(t, s)
dt

= −V(t)YM(t, s) ∀ t ≥ s, Y(s, s) = I,

and φ(s) (ω-periodic in s) is the initial distribution of infectious individuals, so that F(s)φ(s) is
the rate at which new infections are produced by infected individuals who were introduced into the
population at time s; and Y(t, s)F(s)φ(s) represents the distribution of those infected individuals
who were newly-infected at time s, and remain infected at time t.

The threshold quantity (R0t), is the spectral radius of the linear operator L defined by L : Cω →
Cω [97], with

(Lφ)(t) =
∫ ∞

0
Y(t, t − a)F(t − a)φ(t − a) da ∀ t ∈ R,φ ∈ Cω.

whereCω is the ordered Banach space of all ω-periodic functions fromR toR22, which is equipped
with maximum norm and positive cone C+

ω {φ ∈ Cω : φ(t) ≥ 0,∀t ∈ R} [97]. In addition, tt can
be verified that system {(1), (2), (3)} satisfy the assumptions A1−A7 in [97]. Hence, the result of
Theorem 4.1 follows from Theorem 2.2 in [97]. �

Appendix 4. Proof of Theorem 4.1(2)

Proof: In the case where RMt > 1 and R0t < 1, Theorem 4.1(1) implies that the disease-free
periodic state EN(t) is locally asymptotically stable. We now show that it attracts all non-negative
solutions of model {(1), (2), (3)}.

Using a standard comparison argument [48], it can be verified that an upper bound of the lin-
earizing system (i.e., the non-autonomous model linearized at the disease-free periodic state), is
given by Equation (A3) in Appendix C. Thus, it suffices to show that every solution of Equation (A3),
converges to zero as t → ∞.

It follows from Lemma 2.1 in [104] that there exists a positive τ -periodic function, Ĥ(t),
such thatH(t) = eptĤ(t) is a solution of Equation (A3), where p = 1/τ ln ρ(�F(t)−V(t)(τ )). Fur-
thermore, by Theorem 2.2 in [104], it follows that for RMt > 1 and R0t < 1, ρ(�F(t)−V(t)(τ ))
and p< 0 (so that H(t) → 0 as t → ∞). Therefore, the zero solution of Equation (A3) is
globally asymptotically stable. Furthermore, substituting the zero solution of Equation (A3)
(i.e., (EHN ,EHR, IH ,AH ,EX , IX ,EY , IY ,EZ , IZ)(t) → (0, 0, . . . , 0)) into the non-autonomous model
{(1), (2), (3)} shows that the non-trivial disease-free periodic solution EN(t) (given by (15) in
Section 4) is the unique periodic solution (forRMt > 1). By the comparison principle [91] and the
theory of asymptotic autonomous systems [94],R0t < 1, then EN(t) is globally attractive. Therefore,
EN(t) is globally-asymptotically stable. �

Appendix 5. Equations of ReducedModels: Omission of Gonotrophic or
Sporogonic Cycle

A.1 Gonotrophic cycle omitted

Adult female model equations without explicit modeling of the gonotrophic cycle.

dSX
dt

= fσPP − [
�bHβVGH + ηM + μM(t)

]
SX ,

dEX
dt

= �bHβVGHSX − [
κM(t)+ ηM + μM(t)

]
EX ,
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dIX
dt

= κM(t)EX − [
ηM + μM(t)

]
IX , (A4)

where � is the overall biting rate (the inverse of the gonotrophic cycle length [61]), in days−1, given
by � = ((1/bH)+ (1/ϕZ)+ (1/θY))−1, and the infection rate of susceptible humans (by IX) in the
resulting model, is given by λH = �βH(IX/NH).

A.2 Sporogonic cycle omitted

Adult female compartments in the absence of the Plasmodium’s sporogonic cycle

dSX
dt

= fσPP + ϕZSZ − [
bH + ηM + μM(t)

]
SX ,

dIX
dt

= ϕZIZ − [
bH + ηM + μM(t)

]
IX ,

dSY
dt

= bH(1 − βV)GHSX + bH(1 − GH)SX − [
θY(t)+ ηM + μM(t)

]
SY ,

dIY
dt

= bHβVGHSX + bHIX − [
θY(t)+ ηM + μM(t)

]
IY ,

dSZ
dt

= θY(t)SY − [
ϕZ + ηM + μM(t)

]
SZ ,

dIZ
dt

= θY(t)IY − [
ϕZ + ηM + μM(t)

]
IZ . (A5)

GH = (IH + AH)/NH for both cases.
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