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a b s t r a c t 

A Perfectly Accurate, Synthetic dataset for Multi-View Stere- 

opsis (PASMVS) is presented, consisting of 400 scenes and 

18,0 0 0 model renderings together with ground truth depth 

maps, camera intrinsic and extrinsic parameters, and binary 

segmentation masks. Every scene is rendered from 45 differ- 

ent camera views in a circular pattern, using Blender’s path- 

tracing rendering engine. Every scene is composed from a 

unique combination of two camera focal lengths, four 3D 

models of varying geometrical complexity, five high defini- 

tion, high dynamic range (HDR) environmental textures to 

replicate photorealistic lighting conditions and ten materials. 

The material properties are primarily specular, with a selec- 

tion of more diffuse materials for reference. The combination 

of highly specular and diffuse material properties increases 

the reconstruction ambiguity and complexity for MVS recon- 

struction algorithms and pipelines, and more recently, state- 

of-the-art architectures based on neural network implemen- 

tations. PASMVS serves as an addition to the wide spectrum 

of available image datasets employed in computer vision re- 

search, improving the precision required for novel research 

applications. 
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pecifications Table 

Subject Computer Vision and Pattern Recognition 

Specific subject area Multi-view stereopsis and 3D reconstruction from images 

Type of data Image 

Depth maps 

CSV 

3D model geometry 

How data were 

acquired 

A photorealistic virtual environment was created using Blender and 

rendered with the path-tracing rendering engine (Cycles). Different 

combinations of popular geometry models, surface materials, 

environmental textures and camera parameters were used to render 

the large variety of data samples. The binary segmentation maps were 

rendered alongside the colour images through assigning different 

material identification numbers for the geometry models and 

environmental textures. The ground truth depth map was also 

obtained during the same rendering pass by exporting the camera’s 

Z-buffer (distance between the camera and intersecting geometry for 

every pixel of the imaging sensor). The intrinsic and extrinsic camera 

files were exported as a single (comma-separated value) CSV file for 

every scene. 

Data format Raw 

Parameters for data 

collection 

Using a constant, circular path for the camera around the centre point 

of the model, all possible combinations of model geometries, 

environmental lighting textures, model material properties and the 

camera focal lengths were rendered. 

Description of data 

collection 

Using Blender, path-traced images, ground truth depth map and binary 

segmentation maps were rendered using different models. 400 scenes 

in total were rendered using a combination of ten, primarily specular 

materials, five environmental textures, four models and two focal 

lengths. 45 views per scene yield a total of 18,0 0 0 synthetic samples. 

Intrinsic and extrinsic camera parameters were exported for each 

scene for generating camera matrices. Post-processing corrects 

Blender’s rendered distance maps to depth maps. 

Data source location Institution: Department of Civil Engineering, University of Pretoria 

City: Pretoria 

Country: South Africa 

Data accessibility Repository name: Mendeley Data 

Data identification number: 10.17632/fhzfnwsnzf.2 

alue of the Data 

• The data enables the development of accurate, sub-millimetre accurate reconstruction

pipelines and architectures required for sensitive optical metrology applications, such as the

geometry measurements of railway profiles. 

• PASMVS can be used for benchmarking photogrammetric pipelines and training MVS neural

network architectures [1] that are dependant on large, accurate ground truth datasets. 

• The data structure and file formats are agnostic to most state-of-the-art, MVS neural network

implementation requirements [1] such as BlendedMVS [2] . 

• Ablation-specific experiments can be performed by varying the illumination, geometry, ma-

terial properties and camera focal length parameters in isolation. 

http://creativecommons.org/licenses/by/4.0/
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1. Data Description 

MVS reconstruction pipelines, particularly state-of-the-art developments that are based on

neural network implementations, require both a large sample distribution of photorealistic im-

age sequences alongside accurate ground truth depth maps, to learn and generalise effectively.

Taking inspiration from recent synthetic data generation approaches [3–6] and its application

in MVS [7–10] , PASMVS [11] was developed to address some of the limitations presented by

existing datasets. Existing methods typically integrate optical sensors to generate a digitized

ground truth. For example, BlendedMVS [2] employs an inexpensive, unmanned aerial vehicle

(UAV) to photograph relatively large urban areas and monuments that are reconstructed using

traditional photogrammetry. For smaller dimensions, a laser scanner can be used to generate

the ground truth [12] with a finite resolution (0.25 mm) and accuracy (0.05 mm). By contrast,

PASMVS utilises a digital ground truth and processing pipeline that provides perfect accuracy

(0 mm), independent of the scale, dimensions and instrumentation characteristics such as in-

herent noise and limited resolution. This digital approach is required for the development of

datasets that are used for sub-millimetre accuracy reconstruction applications, such as the re-

construction of railway environments for the purpose of geometry measurements [13] . Addi-

tionally, the ground truth of highly specular material surfaces, for example steel, are difficult to

reconstruct accurately using existing methods. The implementation of neural networks for MVS

reconstruction pipelines [1] , whilst accommodating these more challenging material character-

istics, are limited in their reconstruction accuracy by the current selection of datasets available

that these networks are currently trained on. PASMVS serves both as validation of a neural net-

work’s ability to encode the reconstruction process for specular materials in addition to a pro-

viding a ground truth with perfect accuracy for improved reconstruction accuracy. 

For the proposed dataset, the selected model is positioned above a square ground plane in

the centre of the scene and sized to occupy most of the camera frame. A camera is rotated

around the model in a circular path, generating a total of 45 frames per scene. Four models

were selected; these models are the ubiquitous bunny, dragon and armadillo models developed

by the Stanford Computer Graphics Laboratory [14] , in addition to the Utah teapot [15] . These

models are commonly used in numerical and computer vision applications. For every model,

a unique combination of ten materials, five HDR environmental background textures and two

camera focal lengths (35 mm and 50 mm) were used for the scenes. These unique combinations

yield a total of 400 scenes and 45 camera views per scene, for a total of 18,0 0 0 samples for the

PASMVS dataset. The “PASMVS.blend” Blender source file is available from the data repository

[11] . Fig. 1 illustrates a sample of 8 scenes illustrating the variation of model selection, envi-

ronmental illumination, material properties and camera focal length. Every scene is assigned a

unique folder number, i.e. “armadillo10bricks35mm”, that corresponds to the concatenation of

the selected model, environment texture identification number, descriptive texture name and

the focal length of the camera. For ease of implementation with MVSNet [1] or similar neu-

ral network architectures, the scene folders were randomly selected and divided according to

a 85% −15% train-validation split; a list of all scenes, training scenes and validation scenes are

stored in the requisite “all_list.txt”, “training_list.txt” and “validation_list.txt” text files respec- 

tively. The “index.csv” CSV file provides a convenient reference to all 18,0 0 0 sample files, linking

the corresponding files and relative data path. 

The camera information file for every scene is exported as a CSV and stored in the scene

folder as “scene.csv”. All signed float values are stored to a length of 5 decimal places. The

following parameters are stored in the scene file: 

• frame: frame number identification increasing from 0 through 44 for every camera view. 

• posX, posY, posZ: position vector (measured in meters) of the camera’s origin point in

Blender’s world coordinate system; signed float. 

• rotX, rotY, rotZ: rotation vector (measured in degrees, XYZ) of the camera coordinate system;

signed float. 

• resX, rexY: resolution (in pixels) of the sensor image; unsigned integer. 
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Fig. 1. PASMVS samples illustrating the selection of models, variation in illumination, material properties and camera 

focal lengths. (a) bunny, bricks, 35 mm, (b) bunny, brushedmetal, 50 mm, (c) teapot, concrete, 35 mm, (d) teapot, ceramic, 

50 mm, (e) armadillo, copper, 25 mm, (f) armadillo, grungemetal, 50 mm, (g) dragon, piano, 25 mm, (h) dragon, marble, 

50 mm. 

 

d

 

 

• focalLength: focal length of the camera (measure in millimetres); unsigned integer. 

• sensorWidth: width of the camera’s imaging sensor (in millimetres); unsigned integer. 

The ground plane consists of a randomised checkerboard pattern to add reference features

uring reconstruction. The following ten materials are implemented for the synthetic dataset: 

• bricks: mottled brick texture with grouting pattern; low specularity. 

• brushedmetal: uniformly brushed metal; very high specularity. 

• ceramic: uniform, white ceramic, reminiscent of porcelain; high specularity. 

• checkerboard: swirly checkerboard primary with contrasting primary colours. Low specular-

ity. 

• concrete: uniform, finely textured concrete; low specularity. 

• copper: uniform, red-tinted copper; high specularity. 

• grungemetal: bronze-coloured metal with non-uniform patches of rough metal texture;

medium specularity. 
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Fig. 2. Illustration of the high definition environmental lighting textures used for photorealistic scene illumina- 

tion. (10) greenwich_park_8, (11) industrial_sunset_8k, (12) kiara_3_morning_8k, (13) kiara_4_mid-morning_8k, (25) 

sunny_vondelpark_8k. 

 

 

 

 

 

 

 

 

 

 

 

• marble: uniform white marble contrasted with fine, black vein details. 

• piano: blue-tinted piano ivory; high specularity. 

• steel: stainless steel; very high specularity. 

For the environmental lighting textures, five high-definition textures (8 K resolution) sourced

from HDRIHaven [16] were implemented, replicating the illumination from a variety of natural

environments. Fig. 2 illustrates the equirectangular projections of the maps along with their re-

spective identification numbers used as part of the folder naming scheme, in addition to the

original filename. 

For every unique scene folder, the output files are subdivided and stored in four sub-folders,

each described below. 

2. blended_images 

For the PASMVS dataset, all renderings are set to a fixed resolution of 768 × 576 pixels and

exported as JPG image file format ( Fig. 3 a). The camera’s sensor width is fixed at 36 mm with the

focal length configured as either 35 mm or 50 mm. All images are rendered in perspective mode.

The filename of every image is padded to a fixed length of eight characters, e.g. “0 0 0 0 0 0 0 0.jpg”.

3. cams 

For every camera view stored in the “blended_images” folder, a corresponding camera infor-

mation text file is provided. The filename of every camera file is padded to a fixed length of
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Fig. 3. Illustration of the (a) image rendering, (b) ground truth depth map, (c) subject segmentation masque, (d) ground 

plane segmentation masque. 
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ight characters, e.g. “0 0 0 0 0 0 0 0_cam.txt”. The homogenous extrinsic (Euclidean rotation matrix

longside the translation vector) and intrinsic matrices are calculated from the “scene.csv” file,

educing the amount of post-processing required. For the last line of the camera file, the first

nd last terms refer to the minimum and maximum depth values of the geometry. The second

nd third terms refer to the step distance and number of depth hypotheses for a neural network

mplementation [1] respectively. The procedure for transforming the camera data from Blender’s

oordinate system to the intrinsic and extrinsic matrices provided in the text files, is detailed in

he PASMVS data repository [11] . An example of the camera file content is provided: 

extrinsic 
−0.7069161 −0.7072961 0.0013672 −0.0105681 
−0.3561577 0.3542949 −0.8646542 0.3330364 
0.6110821 −0.6117249 −0.5023657 2.6840054 
0.0000000 0.0000000 0.0000000 1.0000000 
intrinsic 
1066.6666667 0.0000000 384.0000000 
0.0000000 1066.6666667 288.0000000 
0.6634703 0.0175639 128.0 2.9116493 

. Masks 

For every camera view stored in the “blended_images” folder, two binary masque images

re generated. The masks match the resolution, filetype and naming scheme of the corre-

ponding colour rendering. Camera rays intersecting the target geometry are set equal to one

white pixels), with the remaining pixels of the masque set equal to zero (black pixels). The
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Fig. 4. Positioning and orientation of the 45 cameras used for all the scenes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

masque for the model ( Fig. 3 c) and ground plane ( Fig. 3 d) are stored as “0 0 0 0 0 0 0 0obj.jpg” and

“0 0 0 0 0 0 0 0gr.jpg” respectively, where the number again refers to the identification number of

the camera view. 

5. rendered_depth_maps 

For every camera view stored in the “blended_images” folder, a corresponding ground truth

depth map is provided ( Fig. 3 b). The depth maps match the resolution and naming scheme of

the corresponding colour rendering, i.e. “0 0 0 0 0 0 0 0.pfm”. The rendered depth maps represent

the distance measured from the camera’s principal point to the intersecting scene geometry,

for every pixel of the camera’s imaging sensor. For empty space where there is no geometry,

a distance value of zero is assigned. The depth map matrices, represented by float32 NumPy

arrays, are serialised and stored in a PFM file format [1] . An example software implementation

is provided [11] to read and write the PFM files. 

The models, each including the ground plane, are exported to scale as a single stereolithog-

raphy (STL) file. The compressed dataset archive is available from the online repository [11] . 

6. Experimental design, materials and methods 

Blender, the open source animation, graphics, and modelling software suite, was primarily

used to create the dataset. Blender’s implementation of the Cycles rendering engine provides the

required fidelity and realism required for specular and diffuse material properties. Most of the

materials can be classified as highly specular, with a smaller selection providing diffuse proper-

ties as a reference. The ground plane is unique for every scene, where the random seed for the

checkboard colour and noise pattern is updated. The ground plane serves as additional feature

points during the reconstruction process. If required, the ground plane can be removed using

the appropriate binary segmentation masque. The 45 camera views per scene follow a circular

path around the model ( Fig. 4 ), with small perturbations added through noise modifiers to repli-

cate more realistic deviations that would normally occur during image acquisition. The camera

is rotated about the centre of the model, around the Z-axis. A constraint is added to the camera,

automatically locking the camera view in the direction of the model. The camera position and

orientation remain constant for all 400 scenes of the dataset. 

The application of HDR environmental textures for lighting improves the realism consider-

ably. The textures replicate the high-dynamic range of the illumination conditions encountered,

avoiding the need to design the lighting environment manually. The orientation and rotation

of the environmental textures were kept constant for all the scenes. Due to the specularity of
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he materials, the rendering engine was configured to use a larger sample size of 196, with all

ost-processing steps such as noise reduction disabled. Blender’s internal Python API was used

o fully automate the creation of the dataset, automating the cycling required for the environ-

ent textures, model visibility and camera focal length. The output file paths from Blender’s

ompositor was also updated alongside automatic scene folder creation by the Python script. 

For generating the ground truth depth maps, the camera’s Z-buffer distance data is initially

tored using the OpenEXR [17] file format. Due to the custom pinhole camera model implement

y Blender, the Z-buffer of the camera provides the distance map, instead of the required depth

ap. This distortion is corrected [18] during post-processing in Python, using the known camera

ntrinsic properties, and with the corrected depth map exported in the serialized PFM file for-

at. A fixed output resolution of 768 × 576 pixels is used for all the output files, namely colour

endering, binary segmentation masks and depth maps. A high-resolution (2048 × 1536 pixels)

ersion of the dataset will be made available in the near future. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal rela-

ionships which have, or could be perceived to have, influenced the work reported in this article.

RediT authorship contribution statement 

André Broekman: Conceptualization, Data curation, Formal analysis, Investigation, Method-

logy, Software, Validation, Visualization, Writing - original draft, Writing - review & edit-

ng. Petrus Johannes Gräbe: Funding acquisition, Project administration, Resources, Supervision,

riting - review & editing. 

cknowledgments 

4Tel Pty is gratefully acknowledged for sponsoring the Chair in Railway Engineering in the

epartment of Civil Engineering at the University of Pretoria . 

upplementary materials 

Supplementary material associated with this article can be found, in the online version, at

oi:10.1016/j.dib.2020.106219 . 

eferences 

[1] Y. Yao, Z. Luo, S. Li, T. Shen, T. Fang, L. Quan, Recurrent MVSNet for high-resolution multi-view stereo depth in-

ference, in: In 2019 IEEE computer society conference on computer vision and pattern recognition (CVPR’19), Long
Beach, California, USA, 16-20 June, IEEE, 2019, pp. 5525–5534. https://doi.org/10.1109/CVPR.2019.00567 . 

[2] Y. Yao, Z. Luo, S. Li, J. Zhang, Y. Ren, L. Zhou, T. Fang, L. Quan, BlendedMVS: a large-scale dataset for generalised

multi-view stereo networks. https://fr.arxiv.org/abs/1911.10127v1 . 
[3] Y. Zhang, S. Song, E. Yumer, M. Savva, J. Lee, H. Jin, T. Funkhouser, Physically-based rendering for indoor scene

understanding using convolutional neural networks, in: In 2017 IEEE computer society conference on computer
vision and pattern recognition (CVPR’17), Honolulu, Hawaii, USA, 21-26 July, IEEE, 2017, pp. 5287–5295. https://doi.

org/10.1109/CVPR.2017.537 . 
[4] M. Johnson-Roberson, C. Barto, R. Mehta, S.N. Sridhar, K. Rosaen, R. Vasudevan, Driving in the matrix: can virtual

worlds replace human-generated annotations for real world tasks? in: In 2007 IEEE International Conference on

Robotics and Automation (ICRA’07), Roma, Italy, 10-14 April, IEEE, 2007, pp. 746–753. https://doi.org/10.1109/ICRA.
2017.7989092 . 

[5] A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, R. Cipolla, Understanding real world indoor scenes with syn-
thetic data, in: In 2016 IEEE computer society conference on computer vision and pattern recognition (CVPR’16),

Las Vegas, Nevada, USA, 26 June – 1 July, IEEE, 2016, pp. 4077–4085. https://doi.org/10.1109/CVPR.2016.442 . 

https://doi.org/10.13039/501100001343
https://doi.org/10.1016/j.dib.2020.106219
https://doi.org/10.1109/CVPR.2019.00567
https://fr.arxiv.org/abs/1911.10127v1
https://doi.org/10.1109/CVPR.2017.537
https://doi.org/10.1109/ICRA.2017.7989092
https://doi.org/10.1109/CVPR.2016.442


A. Broekman and P.J. Gräbe / Data in Brief 32 (2020) 106219 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[6] D. Marelli, S. Bianco, G. Ciocca, IVL-SYNTHSFM-v2: a synthetic dataset with exact ground truth for the evaluation

of 3D reconstruction pipelines, Data Brief 29 (2020) 105041 https://doi.org/10.1016/j.dib.2019.105041 . 
[7] R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, H. Aanæs, Large scale multi-view stereopsis evaluation, in: In 2014 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’14), Columbus, Ohio, USA, 23-28

June, IEEE, 2014, pp. 406–413. https://doi.org/10.1109/CVPR.2014.59 . 
[8] O. Wiles, A. Zisserman, SilNet: single- and multi-view reconstruction by learning from silhouettes, in: Proceeding

of the British Machine Vision Conference (BMVC’17), London, UK, 4-7 September, BMVA Press., 2017, pp. 99.1–99.13.
https://arxiv.org/abs/1711.07888 . 

[9] A.O. Ulusoy, M.J. Black, A. Geiger, Semantic multi-view stereo: jointly estimating objects and voxels, in: In 2017 IEEE
Computer Society Conference on Computer Vision And Pattern Recognition (CVPR’17), Honolulu, Hawaii, USA, 21-26

July, IEEE, 2017, pp. 4531–4540. https://doi.org/10.1109/CVPR.2017.482 . 

[10] S. Donné, A. Geiger, Learning non-volumetric depth fusion using successive reprojections, in: In 2019 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’19), Long Beach, California, USA, 16-20 June,

IEEE, 2019, pp. 7626–7635. https://doi.org/10.1109/CVPR.2019.00782 . 
[11] A. Broekman, P.J. Gräbe, PASMVS: a dataset for multi-view stereopsis training and reconstruction applications, 2020.

https://doi.org/10.17632/fhzfnwsnzf.2 . 
[12] S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, R. Szeliski, A comparison and evaluation of multi-view stereo recon-

struction algorithms, in: In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), New York, New York, USA, 17-22 June, IEEE, 2006, pp. 519–528. https://doi.org/10.1109/CVPR.2006.19 . 

[13] A. Broekman , P.J. Gräbe , in: Keeping Research On track: Applications of Machine Learning and Virtual Reality, South

African Institute of Civil Engineering (SAICE) Magazine, July, 2020, pp. 40–43 . 
[14] Stanford Computer Graphics Laboratory, The Stanford 3D scanning Repository, 2020 http://graphics.stanford.edu/

data/3Dscanrep (accessed 8 August 2020) . 
[15] A. Torrence, Martin Newell’s original teapot, in: In Special Interest Group on Computer Graphics and Interactive

Techniques Conference (SIGGRAPH’06), Boston, Massachusetts, USA, July, ACM, 2006, p. 29. https://doi.org/10.1145/
1180098.1180128 . 

[16] HDRIHAVEN, 100% Free HDRIs, For Everyone, 2020 https://hdrihaven.com (accessed 8 August 2020) . 

[17] OpenEXR, 2020, https://www.openexr.com/ , (accessed 8 August 2020). 
[18] Thousand Yard stare, Generating Depth Images in Blender 2.79, 2020 https://thousandyardstare.de/blog/

generating-depth-images-in-blender-279.html (accessed 8 August 2020) . 

https://doi.org/10.1016/j.dib.2019.105041
https://doi.org/10.1109/CVPR.2014.59
https://arxiv.org/abs/1711.07888
https://doi.org/10.1109/CVPR.2017.482
https://doi.org/10.1109/CVPR.2019.00782
https://doi.org/10.17632/fhzfnwsnzf.2
https://doi.org/10.1109/CVPR.2006.19
http://refhub.elsevier.com/S2352-3409(20)31113-6/sbref0013
http://refhub.elsevier.com/S2352-3409(20)31113-6/sbref0013
http://refhub.elsevier.com/S2352-3409(20)31113-6/sbref0013
http://graphics.stanford.edu/data/3Dscanrep
https://doi.org/10.1145/1180098.1180128
https://hdrihaven.com
https://www.openexr.com/
https://thousandyardstare.de/blog/generating-depth-images-in-blender-279.html

	PASMVS: A perfectly accurate, synthetic, path-traced dataset featuring specular material properties for multi-view stereopsis training and reconstruction applications
	Specifications Table
	Value of the Data
	1 Data Description
	2 blended_images
	3 cams
	4 Masks
	5 rendered_depth_maps
	6 Experimental design, materials and methods
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary materials
	References


