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Introduction

The impact of  the rapidly growing human population on 
natural resources and in particular on food security has been 
well documented. As an example of  the growth expected in 
Africa, the current South African human population of  ap-
proximately 57.7 million people (Statistics South Africa, 
2018) are expected to increase to 72.8 million people by 2050 
(United Nations, 2017). Nutritional demand, specifically the 
demand for animal protein, would follow a similar pattern, 
and the responsibility of  meeting this demand will place add-
itional burdens on livestock producers. Climate change will 
add to this already demanding task, with extreme environ-
mental changes expected for developing countries south of 
the equator.

Modern genetic improvement in livestock relies on the avail-
ability of genomic data (e.g., Single-Nucleotide Polymorphism 
genotyping and sequencing), as well as accurate recording of 
relevant phenotypes. The combination of the available pheno-
types and genomic data have contributed to identification of 

specific genes and quantitative trait loci of economic import-
ance and generation of genome-enhanced estimated breeding 
values for application in genomic selection. Although the field 
of molecular genetics has advanced rapidly over the past two 
decades, accurate phenotyping still remains a serious con-
straint, and has become the overriding bottleneck in improving 
livestock production and efficiency.

In South Africa, there are almost 14 million cattle which 
constitute 1.6 million dairy (604,781 cows in milk) and 12.5 
million beef cattle. Of the latter, approximately 53% are kept 
in commercial systems and the remaining 47% in informal sys-
tems (DAFF, 2019). Phenotypic and pedigree recording of live-
stock in Africa faces constraints in terms of the extensive nature 
of the farming systems and the large informal livestock sector 
consisting of communal and small-holder farmers, which is 
characterized by a general lack of resources such as financial, 
infrastructural and extension support. Within the commercial 
sector, participation in collection of data from animal produc-
tion systems ranges from compulsory participation (100% par-
ticipation for stud breeders) to extremely poor (mainly within 
the informal and small-stock industry). Identifying breeding 
objectives across this wide spectrum of production levels is cru-
cial, followed by the collection of relevant data to address the 
various issues.

Livestock phenomics is defined as obtaining high-
dimensional phenotypic data on an animal-wide scale, which 
can capture missing heritability, break down composite traits 
into their components and transform hard-to-measure traits 
into easily measurable traits (Greenwood et al., 2016). Several 
state-of-the-art technologies (mostly making use of remote 
sensing techniques) to enhance phenotyping have been devel-
oped and are in various stages of incorporation within the 
crop production field (Mir et al., 2019). Plant phenomics have 
the distinct advantage of plants being stationary, and basic 
crops can be produced rapidly and artificially, with short gen-
eration intervals (Greenwood et al., 2016). Object tracking is 
more complicated in livestock than in either crops or humans, 
as similar colors and shapes between animals, as well as back-
ground clutter often lead to failures (Kim et al., 2017). The use 
of radio-frequency identification also has limitations, as the 
range of these sensors is quite restricted. There is a growing 
interest in low-cost sensor solutions and the use of mobile plat-
forms to address these challenges.

Implications

•	 Phenotypic and pedigree recording of livestock re-
mains a challenge in developing countries with infor-
mal agricultural sectors.

•	 Automated technologies would assist commercial 
farmers to become more efficient and productive, and 
to make full use of genomics.

•	 Farmers will benefit from the use of automated tech-
nologies in terms of improved animal welfare and 
economic sustainability in resource-poor areas.
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This review aims to discuss the use of precision phenotyping 
in the beef and dairy cattle industries of South Africa, 
highlighting the challenges, limitations and possible contribu-
tion of these technologies towards the livestock sector.

Advanced Technologies for Animal Sensing

A key enabling technology for precision phenotyping is 
sensor networks. A sensor is a device that converts an observed 
property into an electrical signal. In wireless sensor networks, 
multiple sensors consolidate their observations wirelessly to 
provide fine-grained monitoring and automation in challen-
ging environments. An important aspect in designing wireless 

sensor networks is in selecting suitable sensors, which is typ-
ically application driven. Sensors are classified as attached or 
nonattached. Attached sensors are composed of sensors in-
serted inside an animal, and wearable sensors that are fitted to 
the outside of an animal. Nonattached sensors are off-animal 
sensors which observe an animal, animal by-products, or the 
environment. Figure 1 provides an illustration of the general 
framework of a sensor network which could be applied in the 
South African dairy and beef industries for precision livestock 
farming.

Although a clear abundance of various sensors exists in 
the literature (corresponding to the physical/communication 
blocks in Figure  1), there is a lack of intelligence in sensor 

Figure 1. Illustration of the general framework of a sensor network-based precision livestock farming application.
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systems (which is provided through the cloud processing/local 
processing blocks in Figure  1), as sensor measurements are 
presented to farm personnel directly, or with minor processing, 
who are then required to draw their own conclusions (Rutten 
et  al., 2013). However, this becomes problematic when there 
are a large number of animals producing excessive amounts 
of sensor data that must be interpreted by farm personnel; or 
when farm personnel do not have the required level of educa-
tion to interpret sensor readings. This has led to poor adop-
tion rates of intelligent systems by farmers. Poor adoption 
rates have also been attributed to exorbitant costs of solutions 
which are difficult to operate, and a lack of solutions that pro-
vide meaningful alerts. This is consistent with multiple farmer 
surveys on drivers of decision making which highlighted eco-
nomic feasibility, and usability and technical support among 
others (Eckelkamp, 2019). In the context of Southern Africa, it 
was also found that technology adoption is linked to farmer’s 
participation with an innovation platform, which is described 
as a multisectoral and multi-institutional coalition of actors in 
specific value chain systems (Hanyani-Mlambo et  al., 2017). 
These platforms provide greater access to agricultural advisory 
services and other support services.

Precision Farming in the South African Dairy 
Industry

Genetic progress in dairy cattle over the past three decades 
has been substantial compared to beef cattle or sheep. The 
extensive use of reproductive technologies in dairy cattle has 
given this industry an advantage in making genetic progress 
in production traits and more recently in traits with low herit-
ability with the application of genomics (Miglior et al., 2017). 
Decades of selection pressure on milk yield has resulted in a 
number of unfavorable outcomes in fitness traits. DNA marker 
technology has solved many challenges regarding the identifi-
cation of recessive genes using diagnostic tests, while genomic 
selection is contributing to genetic progress in fertility and feed 
efficiency (Miglior et al., 2017).

The trend worldwide is towards larger dairy farms with eco-
nomics as the main driver (Rutten et al., 2013). A similar ten-
dency is observed in South Africa where the number of milk 
producers decreased from 3,551 in 2009 to 1,253 in 2019 (Lacto 
Data, 2019), while herd sizes have increased. Pasture-based 
production accounts for up to 70% of dairy production in 
South Africa, and the remaining 30% are on total mixed ration 
systems (Meissner, personal communication). The larger dairy 
units have adopted automated milking systems, which require 
less labor and have the advantage of automated recording of 
a large number of phenotypes. The automated milking sys-
tems include AfiFarm, DeLaval-Alpro and DeLaval-Delpro 
management systems as shown in Figure  2. Traditional milk 
recording schemes are used by less than 10% of South African 
dairy farmers (SA Stud book, http://www.sastudbook.co.za/
p116/services/logix-milk.html).

Production, fitness, health, and workability traits have 
been included in genetic evaluations providing producers 

with estimated breeding values, genomic enhanced breeding 
values, and selection indices (Van Marle-Köster & Visser, 
2018). Welfare traits in dairy cattle, which include claw health, 
lameness, mastitis, and other health traits are more difficult to 
improve due to limitations in effective routine recording, com-
pared to production traits, as well as the low heritability of 
these traits. Precision or smart farming has presented advanced 
technologies for automated recording of a large range of wel-
fare phenomes using automated monitoring systems (Hansen 
et al., 2018; Alsaaod et al., 2019), with the primary focus on 
early detection of a potential problem for timely interven-
tions. Table 1 describes an array of sensors currently used in 
dairy farms.

The average herd size (in terms of cows in milk) in South 
Africa varies from 918 in the pasture-based provinces to as low 
as 119 in the drier regions (Lacto data, 2019). The larger oper-
ations making use of automated milking systems are primarily 
found in the coastal regions. Gresse (2018) demonstrated the 
use of data from automated milking systems for improved 
cow production, emphasizing the potential of the data for 
improving a range of dairy production traits. Implementation 
of precision dairy monitoring technologies in South Africa will 
be dictated by herd size and feasibility of automated milking 
systems.

Improvement of fertility relies largely on sound repro-
ductive management and accurate record keeping. Estrus de-
tection is often a primary constraint and various studies have 
shown that pedometers can improve detection compared to 
using only observations by herdsmen. The reliability of pedom-
eters, however, has been shown to vary and can therefore not 
yet be implemented as a fool-proof method (Mottram, 2016). 
Rutten et al. (2017) explored the automatic behavior detection 
of calving, where each cow was fitted with an ear tag device 
consisting of sensors which monitored cumulative activity, 
rumination activity, feeding activity, and temperature on an 
hourly basis. Based on the sensor data, a predictive model pre-
dicted 43.5% of the calving events with 1% false positive alerts. 
A range of precision dairy monitoring technologies were tested 

Figure 2. Percentage dairy farmers using the three automated milking systems 
in South Africa (Gresse, 2018).
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against the reference gold standard (progesterone patterns) and 
the accuracy of estrus detection was improved by between 15% 
and 35% compared to human observations (Mayo et al., 2019). 
The sensors in this study ranged from attachments to the front 
or rear legs, the ear or neck or a bolus in the reticulorumen, 
which all monitored activity, eating, rumination and lying 
times. A  primary advantage of precision dairy monitoring 
technologies is the continuous measurement of these activities 
which have been linked to health and metabolic disturbances 
(King et al., 2018). These measurements hold the potential for 
early detection of estrus and enhanced management as dairy 
units become larger and the farmer has less time available to 
inspect the herd.

Development of tri-axial accelerometers and sensors at-
tached to ear tags also holds potential for more effective rec-
ognition of other cow activities which include behavioral 
changes, eating patterns, and locomotion (Mottram, 2016). 
Rahman et al. (2018) placed accelerometers on a neck collar 
at the back of the head, on a halter position at the side of the 
head behind the mouth, and on the ear using a tag. The data 
were used to train a machine learning-based model to classify 
three animal behaviors (grazing, standing, or ruminating), and 
attained accuracies of approximately 90%. In South Africa, 
collars and pedometers are used for detection of rumination 
and eating patterns, activity, and estrus, while milk meters and 
analyzers are popular for milk traits such as milk flow, con-
ductivity and composition. Substantial data are generated in 
automated milking systems in South Africa, but the data are 
primarily used for short-term management and economic de-
cisions (Gresse, 2018). Somatic cell counts are used as an in-
dicator trait for incidence of mastitis. An animal with a cell 
count of less than 50,000 cells/mL is regarded as a noninfected 
animal (Seegers et  al., 2003). Mastitis being a complex trait 
and influenced by several factors, individual herd data are not 
available. The Milk Producers’ Organization (MPO) of South 
Africa estimated a loss of 1 billion ZAR for 2019 due to sub-
optimal udder health (Chris van Dijk, MPO, personal commu-
nication, https://www.mpo.co.za).

The consequences of lameness in dairy cows have been well 
documented, including adversely affecting genetic improve-
ment, welfare, and farm profitability. Visual inspections and 
scorings are both time consuming and subjective. Automated 
methods for lameness detection include kinematic sensors (on 
the legs and feet) for monitoring body movement with three-
dimensional video analyses or accelerometers and pressure-
sensitive walkways. There are also kinetic methods using 
walkways with pressure plates based on ground force reaction 
(Alsaaod et al., 2019). Walkways with pressure sensors can dis-
tinguish between lame and non-lame cows and provide an indi-
cation of potential claw lesions (Volkman et al., 2019).

Lameness cannot be considered without recognizing the 
role of claw quality and health, which are both influenced by 
housing and environmental factors. Literature indicates that 
claw traits should be considered for improvement of lameness 
and moderate genetic correlations were reported between claw 
health and lameness. However, accurate scoring of claw traits 
and lameness remains the main challenge. In South Africa, claw 
data are limited to producers who make use of private hoof 
trimmers, who record the claw lesions on paper and the data 
is not necessarily captured in an electronic recording system 
(Mhlongo, 2019). Claw quality and health are not included in 
goal driven selection and available data have not been explored 
in research for lameness in South African dairy cattle.

Precision Farming in the South African Beef 
Industry

Widespread regions of South Africa are experiencing a state 
of drought, which is the result of the strong El Niño event 
that occurred in 2015 to 2016 (South African Weather Service, 
2016). The shortage of water in the country has raised concerns, 
among other things, about the amount of water it takes to finish 
cattle in feedlots (Meissner et al., 2013). Approximately 68.6% 
of South African land is available for grazing, which is an ideal 
situation for extensive livestock production systems that rely on 
natural veld as a feed source. Global warming, however, will be 

Table 1. Nonexhaustive list of sensors used for dairy cattle health management (Adapted from Rutten et al., 2013 
and Mottram, 2016)
Animal-health 
management Attached sensors Nonattached sensors

Mastitis •  Reticular bolus temperature sensors •  Electrical conductivity  
•  Milk color sensors  
•  Biosensors able to detect enzymes of interest  
•  Somatic cell count sensors

Estrus •  Pedometer and 3 dimensional accelerometers (activity sensing)  
•  Pressure pads on cows’ back (mounting behavior sensing)  
•  Temperature transducers

•  Video camera (mounting behavior sensing)  
•  Microphone (cow vocalization sensing)  
•  Biosensors able to measure progesterone

Locomotion •  Pedometer and 3 dimensional accelerometers (activity sensing) •  Video camera (walking behavior sensing)  
•  Balance-weighing floors (weight distribution sensing)

Metabolism • � Radiotelemetric rumen bolus (pH and temperature of rumen fluid 
sensing)  

•  Pedometer and three-dimensional accelerometers (activity sensing)

•  Spectrophotometer (percentage of milk fat sensing)  
•  Spectroscopy (milk ketone bodies level sensing)  
•  Thermal camera (cow body temperature sensing)
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responsible for fluctuations in the nutritional value of the nat-
ural veld (Scholtz et al., 2014).

There is pressure from consumers to produce beef with less 
greenhouse-gas emissions and limited exploitation of natural re-
sources, while considering the health and well-being of the live-
stock. Most of the traits relevant to these objectives are difficult 
and expensive to measure, expressed late in life, and for some new 
equipment are still being developed. Phenomics aims to make use 
of advanced technologies and management systems to develop 
labor saving automated data collection. This would result in the 
collection of large amounts of phenotypic data, which could be 
used for genomic prediction and faster genetic improvement.

The level at which phenotypes could be measured varies be-
tween traits (i.e., behavioral vs. physiological), and systems (i.e., 
in-field walk-over vs. animal-attached collars). Traits that are 
routinely recorded by South African beef breeders commonly 
reflect easily measured traits that can be measured on farm with 
no additional financial burden, such as live weights (birth weight 
to mature weight), growth (average daily gain and Kleiber Ratio) 
and a smattering of reproduction traits (scrotal circumference, 
age at first calving and inter calf period), as suggested by Van 
Marle-Köster & Visser (2018). Traits such as feed conversion 
ratio, residual feed efficiency and disease resistance are extremely 
difficult to measure in extensive production systems. Pasture in-
take is the limiting phenotype for many efficiency parameters, 
and the measurement of selectivity of pasture would also be 
important as a variable influencing performance. Chemical 
markers and n-alkanes have been used for this purpose, but have 
limitations in terms of applying them over long periods of time. 
In-field walk-over weighing units, as well as on-body sensors to 
estimate grazing behavior have been developed to overcome this 
problem, but vary in terms of accuracy. Greenwood et al. (2018) 
acknowledges that the number of variables that can be measured 
is limited, and this poses a challenge with regard to developing a 
single phenotyping approach across systems.

A small number of individual breeders representing only 
seven beef cattle breeds perform real-time ultrasound scanning 

for carcass traits. This methodology is not readily available 
to all farmers (and comes at an additional cost), and farmers 
should have an economic incentive to pursue such additional 
phenotyping. South Africa has a meat classification system, 
which includes the age of the animal, fat content, conformation 
of the carcass and any damage to the carcass (Soji & Muchenje, 
2017). It includes a visual assessment of the subcutaneous car-
cass fat content and fat distribution and does not make provi-
sion for grading of carcasses based on marbling. However, the 
Wagyu breed has recently entered the South African beef in-
dustry, and in this breed marbling score is highly correlated with 
the price paid for the carcass. A reliable measure of marbling is 
the use of a carcass camera. The MIJ-30 Digital Carcase camera 
used by Wagyu SA (http://wagyu.org.za/) allows objective 
measurement of marbling score, marbling fineness, marbling 
percentage, and eye muscle area (as shown in Figure 3), and will 
also be used to score fat and meat color.

Very few automated interventions have been introduced to 
the South African beef industry. One of the easiest to imple-
ment would be in-field walk-over weighing systems, such as 
those used in the Australian BreedPlan system (Greenwood 
et al., 2016). Wireless sensor data could also be used for deeper 
phenotyping and estimation of feed intake on pasture, as well 
as normal and aberrant behavior data.

Measuring physiological parameters such as temperature, 
rumen function, heart rate and metabolites would be the ul-
timate application of phenomics. These presently require in-
vasive sampling such as tissue or blood collection, but could 
become more accessible if  the sample used for genotyping could 
be applied for phenotyping as well. This would assist extensive 
commercial farmers in becoming more competitive and profit-
able, as precision phenotyping would be done without any add-
itional costs to the farmer. A graphical illustration of some deep 
phenotyping interventions is given in Figure 4.

Figure 3. Scoring of carcass quality using the MIJ-30 (photo courtesy of the 
SA Wagyu breed society).

Figure 4. A summary of some traits that would benefit from precision 
phenotyping in both beef and dairy cattle in South Africa.
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Automated, precision phenotyping would also improve 
animal health and welfare in resource-poor areas by early 
diagnosing subclinically ill animals, and even preventing anti-
microbial resistance (Ramirez et  al., 2019). Additionally, it 
could have a downstream impact on rural economies by cre-
ating jobs and sustaining businesses. Unfortunately, even if  the 
technologies were commonly available, several challenges in 
terms of internet connectivity and signal quality would have to 
be overcome before this could become a reality.

Opportunities Within the South African 
Framework

The fourth industrial revolution (4IR) inaugurates a new 
chapter in human development, where technological advances 
of the past few decades are harnessed to change and improve 
the way we live and work (World Economic Forum, 2019). It 
involves the merging of the physical, digital and biological, 
and it is set to disrupt the largest global industries. The advent 
of high speed communication networks, Artificial Intelligence 
and Machine Learning, combined with a myriad of available 
sensors, will pave the way for improving the efficiency and 
productivity of the agricultural sector. These technologies 
will enable critical information to be available to the farmer in 
real-time and automation of key farming processes, which will 
lead to increased efficiency and productivity, while reducing 
the cost of production. The 4IR will be key in affecting social 
upliftment and empowerment of small and emerging farmers, 
enabling sustainable businesses and social change.

Development of real-time intelligent cattle monitoring 
and behavior modeling systems will enable identification and 
tracking of individual cattle in the kraal, as well as measuring 
vital parameters and predicting various future occurrences. 
For instance, one can measure the activity level, temperature, 
and weight of an individual animal over time, in order to de-
tect sickness before it exacerbates to the point of death. Weight 
measurement is especially useful in the developing sector where 
infrastructure is not available. It could provide insight into the 
nutritional needs of the livestock, timing of the mating period, 
the possibility of disease, or internal and external parasites. 
Temperature measurement would be helpful to detect the onset 
of estrus, which could help improve the success of artificial in-
semination and therefore higher production rates and the rate 
of genetic improvement. Such monitoring systems would typ-
ically make use of high definition cameras installed above the 
kraal to provide a real-time video stream of the cattle. Radio-
frequency identification scanners at the gate of the kraal could 
identify individual animals entering/exiting through the gate. 
The data extracted and information gathered from this system 
could be sent to a centralized system, using various wireless 
communication technologies, from where total farm surveil-
lance would be possible.

Active livestock monitoring and behavior modeling offers a 
number of opportunities for commercial and especially emerging 
farmers to monitor the health of their animals, giving them real-
time information which can be used to make critical decisions to 

About the Authors
Dr Carina Visser obtained her BScAgric 
(Animal Science) and Masters and PhD de-
grees in Animal Breeding in the Department 
of Animal and Wildlife Sciences, University 
of Pretoria, South Africa. After working 
for the Department of Agriculture she re-
turned to the University and is currently a 
senior lecturer. Her research focus is pri-
marily on the molecular-based investigation 
of small stock, including population genetic 
studies on local and indigenous breeds and 
populations. As food security is a burning 

issue globally, she also focuses on the genetic improvement of indigenous 
livestock species, which can contribute to the mitigation of this problem. 
Corresponding author: carina.visser@up.ac.za

Prof Herman C. Myburgh obtained his 
Bachelor’s in Computer Engineering, 
Master’s in Electronic Engineering and 
PhD (wireless communication special-
ization) from the University of Pretoria, 
South Africa. He has been working at this 
institution in the Department of Electrical, 
Electronic, and Computer Engineering 
since 2009, where he is the head of the 
Advanced Sensor Networks research 
group. His current research interests are 
in wireless communication systems, sensor 
fusion, machine learning, and mobile health. He is the co-inventor of the 
hearScreen, hearZA, and hearScope smartphone-based hearing assessment 
solutions and is a co-founder of the hearX Group (Pty) Ltd company.

Prof Este van Marle-Köster joined 
the Department of Animal & 
Wildlife Sciences, University of 
Pretoria in 1995 as a lecturer after 
working in the agricultural in-
dustry for 7  years. For her PhD 
research, she applied microsatellite 
markers for the first South African 
study on genetic characterization 
of native fowl. Locally developed 

and indigenous breeds used in Southern Africa have been included in her 
genetic diversity studies and in other projects. Her current research interest 
is on the application of genomic technology for genetic improvement of live-
stock with a preference for beef and dairy cattle in South Africa. She has 
interest in genomics to improve our understanding of the underlying genetic 
mechanisms governing traits of economic importance and gives priority to 
traits associated with animal welfare and sustainable production in a South 
African context.

Allan De Freitas obtained the B.Eng., 
B.Eng. (Hons), and M.Eng. degrees 
in Electronic Engineering from the 
University of Pretoria, South Africa. 
He received a PhD from the Automatic 
Control and Systems Engineering 
Department at the University of 
Sheffield, UK. He is a senior lec-
turer in the Department of Electrical, 
Electronic, and Computer Engineering 
at the University of Pretoria. His prin-
cipal scientific interests are in the areas of signal processing and machine 
learning in object tracking, sensor networks, and complex systems.

D
ow

nloaded from
 https://academ

ic.oup.com
/af/article/10/2/12/5814665 by guest on 13 O

ctober 2020

mailto:carina.visser@up.ac.za?subject=


18 Animal Frontiers

help ensure sustainability and improve productivity. This would 
empower emerging farmers to optimize productivity by pro-
viding critical information to the farmer at any given time. Such 
systems could be extended to any number of farms for large 
scale surveillance and farming operation optimization.

Evidently, there are a number of problems in need of solving 
in the cattle farming industry with the potential to greatly increase 
productivity and empower emerging farmers. The social impact that 
such a system could have is enormous, especially if it is provided at 
scale. New and emerging farmers will be able to participate in the 
agriculture economy, which will have a lasting effect of upliftment 
and empowerment on their generation and also contribute to the 
country’s agriculture output and its gross domestic product.

Conclusion

The use of automated, objective measurement technologies 
would assist South African commercial producers to become 
more efficient and meet market specifications, thus increasing 
profitability. Choosing objective, relevant phenotypes will en-
able the construction of comprehensive databases, which will 
assist in making full use of genomic tools. On the other side of 
the spectrum, it could assist in improving animal welfare and 
productivity of small holder farmers, as well as contributing to 
economic sustainability in rural areas.
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