Kabwe et al. BMC Microbiology (2020) 20:257
https://doi.org/10.1186/s12866-020-01907-3

BMC Microbiology

RESEARCH ARTICLE Open Access

The gut mycobiota of rural and urban
individuals is shaped by geography

Check for
updates

Mubanga Hellen Kabwe', Surendra Vikram', Khodani Mulaudzi', Janet K. Jansson? and

Thulani P. Makhalanyane'”

Abstract

Background: Understanding the structure and drivers of gut microbiota remains a major ecological endeavour.
Recent studies have shown that several factors including diet, lifestyle and geography may substantially shape the
human gut microbiota. However, most of these studies have focused on the more abundant bacterial component and
comparatively less is known regarding fungi in the human gut. This knowledge deficit is especially true for rural and
urban African populations. Therefore, we assessed the structure and drivers of rural and urban gut mycobiota.

Results: Our participants (n = 100) were balanced by geography and sex. The mycobiota of these geographically
separated cohorts was characterized using amplicon analysis of the Internal Transcribed Spacer (ITS) gene. We further
assessed biomarker species specific to rural and urban cohorts. In addition to phyla which have been shown to be
ubiquitous constituents of gut microbiota, Pichia were key constituents of the mycobiota. We found that geographic
location was a major driver of gut mycobiota. Other factors such as smoking where also determined gut mycobiota
albeit to a lower extent, as explained by the small proportion of total variation. Linear discriminant and the linear
discriminant analysis effect size analysis revealed several distinct urban and rural biomarkers.

Conclusions: Together, our analysis reveals distinct community structure in urban and rural South African individuals.
Geography was shown to be a key driver of rural and urban gut mycobiota.
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Background

By comparison to prokaryotes (bacteria and archaea), eu-
karyotes are considered part of the rare “biosphere” of the
gut [1, 2]. Despite their low abundances, fungi play signifi-
cant roles in host physiology [2—5]. Recent studies have
shown that the gut fungal community composition is less
stable over time, compared to bacterial communities
[4, 6, 7]. These studies suggest that the gut mycobiota
is more variable than bacterial communities, and may
be influenced substantially by environmental factors
[3, 7]. Despite evidence confirming the gut microbiota
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is diverse and interacts with the host immune system
[3, 8, 9], knowledge regarding the community struc-
ture of healthy human gut mycobiota remains scant.
Most studies have focused on the potential roles played
by the mycobiota in the aetiology of gut diseases [10-12].
These studies have provided crucial insights on the role of
the mycobiota as a potential driver of immunological dis-
orders and as opportunistic pathogens in immunocom-
promised hosts [13]. Further, dysbiosis of gut mycobiota
has been linked to obesity, colorectal cancer and Inflam-
matory Bowel Diseases (IBDs) [12, 14, 15]. Decreased
abundances of Saccharomyces cerevisiae and higher pro-
portions of Candida albicans were found in IBD patients
compared to healthy controls. A recent study showed that
Crohn’s disease-specific gut environments may select for
fungi to the detriment of bacteria suggesting disease-
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specific inter-kingdom network alterations in IBD [12]. Yet,
despite these effects, there remains a clear deficit in know-
ledge regarding the precise role played by the gut myco-
biota in disease prevention. Relatedly, the factors which
drive the diversity and community structure of gut myco-
biome remain underexplored. Assessing the influence of
environmental factors on the gut mycobiome across a
wider group of participants is crucial for determining the
effects on host-microbiota dynamics and health.

Several studies have evaluated the effects of age [16-18],
gender [17], diet [19], diabetes and obesity [15, 20, 21], an-
orexia nervosa [22], differences across body sites [23, 24]
and geographical locations [6, 25, 26] on mycobiome com-
position and diversity. Yet, these studies are mostly disease
centric or focussed on Asian [26] and/or Western popula-
tions [6, 7, 19]. To our knowledge, only one study has in-
vestigated the gut eukaryotic diversity of African
individuals [27]. Although these studies improved our un-
derstanding of the mycobiome, there may be several con-
founding factors such as genetic differences. These
differences make it difficult to assess, for instance, the ef-
fects of living in urban or rural areas on the microbiome.
The effects of diet, geographic locality and lifestyle, on the
gut microbiome are often assumed but rarely examined.
Where these relationships are assessed, the majority of
studies have primarily focused on the ecologically abun-
dant bacteria [28, 29] with assertions that their patterns
will likely hold for other taxa, including mycobiomes.

Here, we applied amplicon sequencing of the fungal in-
ternal transcribed spacer (ITS) of the rRNA genes on sam-
ples collected from individuals living in urban and rural
areas in Africa. We provide the first insights regarding the
drivers of mycobiome community structure and potential
biomarkers specific to individuals from urban and rural lo-
cations. Previous studies of the gut mycobiome have primar-
ily investigated small groups with fewer than 20 individuals
[25, 30, 31] with very few studies investigating larger groups
[6, 7]. This study represents the first analysis of the faecal
mycobiota in a large group of healthy sub-Saharan individ-
uals (100 volunteers). Furthermore, this is the first study
which compares the composition and diversity of the gut
mycobiome of geographically separated non-western indi-
viduals with the same ethnicity. We further explored poten-
tial biomarker taxa in urban and rural individuals and
explore how these taxa vary between the two areas. Using
extensive predictor variables collected from participants, we
show that geography and lifestyle structure the gut myco-
biome of rural and urban South African individuals.

Results

Similarities and differences between urban and rural
individuals

We assessed the faecal mycobiota of South African
adults living in rural (n=50) and urban (n=>50)
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locations by assessing stool samples (see details regard-
ing sample recruitment in Methods). We recruited an
equal number of male and female volunteers. The volun-
teers from the rural areas were from two villages in the
Limpopo province of South Africa. These villages are lo-
cated roughly 500 km from the urban site in Pretoria
(Fig. 1a). To gain insights regarding predictive variables,
which may shape the gut microbiome, detailed question-
naires were distributed to all volunteers (Additional file 1
Questionnaire). The volunteers from Ha-Ravele and
Tshikombani villages (population size of roughly 200,
000, representing the rural participants) were on average
24 years (mean + 6.3). Volunteers from Pretoria (total
population of approximately 2.1 million) were on aver-
age 31years (mean *9.1). The mean age of the partici-
pants was 27 years (mean + 7.9) across all samples. The
average height and weight of the participants was 1.64 m
(mean * 0.1) and 69.8 kg (mean + 17.6), respectively. The
average body mass index (BMI) of all participants was
26.02 kg/m? (mean + 6.4), resulting in a group of partici-
pants classified as overweight and obese, less than 15.9%
of participants were smokers.

Amplicon sequence data from 95 volunteers (samples
from 5 rural volunteers were excluded due to low quality
reads) generated 5,936,454 raw reads. Of these, 1,636,
180 reads were clustered into OTUs at 3% divergence
(97% similarity) and 1911 OTUs were taxonomically
classified. The resulting accumulation curves showed
reasonable sequence saturation at a regional level
(Additional file 3 Fig. S1).

A higher proportion of fungal OTUs were unique to
location with urban and rural samples accounting for
47.9 and 45.3% of reads, respectively (Additional file 4
Fig. S2). Fungal species richness was higher in the stool
samples of urban volunteers compared to rural volun-
teers (Fig. 1b). However, there were no significant dif-
ferences in species richness based on location (W =915,
p-value =0.118) and sample type (Kruskal-Wallis chi-
squared =5.103, df=3, p-value=0.164). A significant
difference was detected in species richness between the
three age groups (Kruskal-Wallis chi-squared = 12.215,
df = 2, p-value = 0.002).

Two ubiquitous fungal phyla in urban and rural locations
Overall, four distinct fungal phyla were detected in
urban and rural gut mycobiomes, based on sequences
with relative abundances above 0.1% (Fig. 1c). The ma-
jority of sequences were assigned to members of the
phyla Ascomycota and Basidiomycota, that constituted
80.7 and 6.1% of the total relative abundance, respect-
ively. Unknown sequences constituted 12.9% of the total
relative abundance of the mycobiome. The relative abun-
dance of Ascomycota was almost equal between the
urban (40.1%) and rural (39.8%) location. Whereas, the
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Fig. 1 Geographic locations and diversity estimates (a) The three sampling locations in Gauteng (Pretoria) and Limpopo (Ha-ravele and
Tshikombani) provinces of South Africa (b) The differences in mycobiota species richness between the two locations, gender and age group and,
(c) The relative abundances of taxa at phylum and class levels within each location. The abundance of each taxon was calculated as the
percentage of sequences per gender (RF = Rural female, RM = Rural male, UF = urban female and UM = Urban male) from each location for a
given microbial group. The group designated as ‘Unknown’ encompasses unclassified sequences together with classes representing > 0.1% of the
total sequences. The bar size represents the relative abundance of specific taxa in the particular group, with colours referring to taxa according to
the legend. The map was sourced from d-maps.com (https://d-maps.com/carte.php?num_car=23735&lang=en) and manually edited to indicate

the study locations

relative abundance of Basidiomycota was higher in the
urban (4.4%) compared to the rural (1.7%) location.
Nonetheless, no significant differences were detected in
taxa relative abundance between location (W = 8720, p-
value = 0.3826), sample type (Kruskal-Wallis chi-
squared = 0.9454, df = 3, p-value = 0.8145) and age group
(Kruskal-Wallis chi-squared = 0.29477, df =2, p-value =
0.863) at phylum level. In total, 8 distinct fungal classes
were identified with Saccharomycetes constituting the
majority of sequences (52.6%) followed by Dothideomy-
cetes (20.9%), Eurotiomycetes (4.3%), Sordariomycetes
(4%) and Tremellomycetes (3.98%). The relative abun-
dance of Saccharomycetes was higher in the rural
(26.8%) compared to the urban (25.8%) location.
Whereas, Dothideomycetes relative abundance was
higher in the urban (14.8%) compared to the rural (6.1%)
location. However, no significant differences were de-
tected in taxa relative abundance between location (W =
3480, p-value=1), sample type (Kruskal-Wallis chi-
squared = 2.7506, df = 3, p-value = 0.4317) and age group
(Kruskal-Wallis chi-squared = 0.55361, df =2, p-value =
0.7582). Pichia dominated our participants (18.9% of
total relative abundance), followed by Candida (18.2%)
and Cladosporium (6.1%). Whereas, unknown fungal

genera accounted for 18.1% of the relative abundance. The
relative abundance of Pichia was higher in the rural (12.7%)
compared to the urban (6.2%) location. Whereas, the rela-
tive abundance of Candida and Cladosporium was higher
in the urban (10.9 and 4.2%, respectively) compared to the
rural (7.3 and 2%, respectively) location. However, no sig-
nificant difference was found between taxa abundance at
the genus level for the gut mycobiota of rural and urban
participants based on location (W = 4417, p-value = 0.9936),
sample type (Kruskal-Wallis chi-squared = 1.1117, df = 3, p-
value =0.7742) and age group (Kruskal-Wallis chi-
squared = 0.51268, df = 2, p-value = 0.7739).

To assess the distribution and contribution of taxa in a
given sample to the overall community composition, we
assessed the local contribution to beta diversity
(LCTBD). In line with findings from alpha diversity (ob-
served species richness) analyses, we found that samples
from urban volunteers (greater species richness) had a
more significant contribution to the overall community
diversity (p-Value <0.05). Samples with high LCTBD
had a high abundance of Basidiomycota and other un-
known taxa. In contrast, only two samples from the rural
location contributed more significantly to overall com-
munity diversity (Additional file 5 Fig. S3).
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Distinct mycobiota among urban and rural volunteers
unrelated to gender

Differences in the fungal community structure between the
rural and urban localities were visualized in an non-metric
multi-dimensional scaling (NMDS) plot (Fig. 2a). Urban
and rural samples formed distict clusters [permutational
multivariate analysis of variance (PERMANOVA) (R?=
0.070; p-Value = 0.0001), ANOSIM (R =043, p-Value =
0.001) and ADONIS (R®=0.07034 p-Value =0.0001)].
However, male and female samples did not cluster separ-
ately. Pairwise analysis using PERMANOVA showed that
there was no significant difference between gender within
each location (R®=0.018; R*=0.023; respectively and
p-Value > 0.4 for both). Nevertheless, there was a sig-
nificant difference between the gut mycobiota of fe-
male and male participants between the two locations
(R? < 0.074 for all; p-Value = 0.001 for all).

Ecological drivers of gut mycobiota

Redundancy analysis (RDA) was performed to determine
which predictor variables significantly explained the vari-
ation in fungal community composition (Fig. 2b). Four
predictive variables were significant (+°>0.2; p-Value
<0.05) drivers of community composition and struc-
ture. Variation partitioning analysis demonstrated that
only 3% community variations were explained by
these four predictive variables (Additional file 2 Parti-
tion of variance in RDA). Predictive variables which
included; breastfeeding, smoking, mode of birth and
location; all of which significantly influenced the fun-
gal community composition.

We conducted correlation analyses to explore the rela-
tionships among dominant gut species. Our results
showed a few highly positive correlations in the rural
participants: between Mucor and Dipodascus, Mucor and
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Naganishia, Clavispora and Lentendrea, and between
Udeniomyces and Lentendrea (Fig. 3). Whereas, the
strongest negative correlation was found between Dipo-
dascus with Trichoderma, Dipodascus with Ascotricha
and Dipodascus with Chalastospora. Within the urban
cohort, Xeromyces and Agaricus, Diutina and Clavispora,
and Dekkera and Diutina exhibited the strongest positive
correlations (Fig. 3). The strongest negative correlations
were detected between Clavispora with Filobasidium,
and with Verrucaria and Malassezia.

Biomarker taxa

Linear discriminant analysis (LDA) and the linear dis-
criminant analysis effect size (LEfSe) [32] test for bio-
markers was used to detect taxa that showed the
strongest effect on group differentiation (Fig. 4a). OTU
level analysis uncovered 14 urban-associated species
from 10 genera. Whereas, 17 rural-associated species
from 11 genera, were detected as possible biomarkers.
The most abundant rural-associated biomarker genera
were Hypopichia and Dipodascus, with species Hypopi-
chia burtonii and Dipodascus geotrichum being the most
abundant (Fig. 4b). The urban-associated biomarkers
were dominated by the class Tremellomycetes and genera
Dekkera and Hannaella. Species Dekkera bruxellensis
and Hannaella sinensis dominated the urban-associated
biomarkers.

Discussion

The results from this study suggest that the gut myco-
biome of the South African population is structured by
geography and lifestyle. This finding is supported by the
clustering of a large proportion of the fungal OTU’s into
discrete rural and urban groups within the Venn dia-
gram. Only a small percentage of OTUs were shared

Fig. 2 Overview of mycobiota structure and significant environmental drivers (@) The non-metric multidimensional scaling (NMDS) plot based on
Bray—Curtis dissimilarity and, (b) Redundancy analysis (RDA) showing community structure in response to four selective variables. The filled shapes
reflect fungal community composition in the different locations, with colours referring to location and the different explanatory variables
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between the two populations, which may suggest that
factors such as the environment, age and diet may play a
role in shaping the differences in OTU clustering. These
results were further corroborated by NMDS and PERM
ANOVA analyses, which not only show that both popu-
lations cluster distinctly and share just a few taxa, but
that they have diverse fungal community composition
consistent with rural and urban locality. Redundancy
analysis (RDA) also predicted that the measured vari-
ables account for only a small proportion of the variabil-
ity (R2=0.2) in fungal community composition.
Indicating that other undetermined factors may be driv-
ing differences in fungal community composition be-
tween the two groups.

Several studies have investigated the healthy human
mycobiome [6, 7, 19, 25, 30, 33]. In these studies, geog-
raphy was not considered as a potential factor structur-
ing the gut mycobiota. For instance, previous studies
found no association between host phenotypic charac-
teristics with mycobiome profile [6]. Nash et al. (2017)
also suggests that diet, the environment, diurnal cycles,
and host genetics may substantially influence the human
gut mycobiome. However, the finding that the majority
of the variation could not be explained by their metadata
does suggest that other environmental factors, such as
geography, may contribute to structuring the human
mycobiome [6].

Our study provides the first results showing the im-
portance of geography in African populations. Geo-
graphic locality may be associated with different
environmental factors, such as different climatic regimes,

which may effect structural changes in the mycobiota.
For example, climate significantly influences vegetation
and farming practices and leads to region specific diets.
These region-specific diets may ultimately influence the
gut mycobiota. This is a reasonable prediction given pre-
vious findings showing that fungi have climate
dependent biogeographic patterns [34, 35]. These pat-
terns are likely to determine the type of fungi individuals
may be exposed to, which may in turn impact the
colonization of fungi in the human gut. The most abun-
dant rural-associated biomarker species found in this
study, Dipodascus geotrichum, is ubiquitous in nature
[36] whereas, Hypopichia burtonii is commonly isolated
from corn, wheat, and rice [37]. The urban-associated
biomarkers were dominated by the species Dekkera
bruxellensis, which are commonly isolated from fermen-
ted food such as wine, beer, feta cheese and sour dough
[38-40]. In contrast, Hannaella sinensis is commonly
isolated from plants and soil [41, 42]. The staple diet of
the rural South African population primarily consists of
a corn-based porridge (called ‘pap’). It is therefore not
uncommon for a fungal species commonly isolated from
corn to be a dominant biomarker for the rural popula-
tion. Conversely, the urban population diet was more di-
verse and included fermented foods such as wine, sour
dough bread and feta cheese, which are commonly avail-
able in supermarkets. Thus, the species Dekkera bruxel-
lensis was identified as a dominant biomarker in the
urban population.

In addition to geographic location, we found that
smoking, mode of birth and breastfeeding significantly
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influenced gut fungal communities. Several studies have
previously reported that these factors may significantly
influence the initial colonization, subsequent compos-
ition and structure of bacterial members of the human
gut microbiome [28, 43-45]. Suhr et al. (2016) and
Hallen-Adams et al. (2017) investigated the gut myco-
biome of two cohorts that were exclusively on a vegetar-
ian or a western diet. These studies found that the
distribution of fungi differed considerably between the
two cohorts [7, 46]. Plant-associated Fusarium, Malasse-
zia, Penicillium and Aspergillus species were detected at
higher abundances within the vegetarian cohort, com-
pared to the cohort on a conventional diet. The finding

that smoking affected fungal community composition
and structure is supported by several studies [47-49].
The approximately 4000 chemical compounds produced
by cigarettes have been shown to alter the composition
of the gut microbiome [47, 49-52]. The reported in-
crease of Clostridia induced by smoking in murine
models has also been indirectly confirmed in humans
where an increased rate of C. difficile infection was
greater in former and current smokers compared to
never smokers [51]. Moreover, the abundance of the
fungus Candida tropicalis has also been reported to be
significantly higher in C. difficile infection patients com-
pared to healthy individuals [53]. The abundance of C.
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tropicalis has also been detected to be positively corre-
lated with levels of anti-Saccharomyces cerevisiae anti-
bodies (ASCA) [53]. In our study C. tropicalis was
detected to be higher in individuals who smoke compared
to non-smokers whereas the inverse was true for S. cerevi-
siae. These findings may confirm the antagonistic associ-
ation between the species C. tropicalis and S. cerevisiae, as
previously reported by Hoarau et al. (2016) [53].

Most studies have identified the genera Candida, Sac-
charomyces, Malassezia and Aspergillus as the three most
abundant in the gut of healthy individuals [6, 7, 25]. To
the best of our knowledge, our study is the first to report
Pichia as one of the top four (Pichia, Candida, Cladospor-
ium and Paraconiothyrium) most abundant genera in the
human gut mycobiome. This may be due to several factors
including differences in cohort characteristics (e.g., geo-
graphical location, diet, genetic predisposition and cli-
mate). Pichia have been identified as both constituent
members of the human oral [54, 55] and gut microbiome
[33]. Mukherjee detected a 1:1 abundance ratio in the oral
mycobiome of individuals when Candida and Pichia were
present together [55]. Pichia was also observed to have an
antagonistic effect against Candida, Fusarium and Asper-
gillus [55].

The yeast genera, Pichia, Candida and Cladosporium,
dominated the South African gut mycobiome. Our find-
ings agree with previous studies which show that mem-
bers of the Aspergillus, Candida, Debaryomyces,
Malassezia, Penicillium, Pichia, and Saccharomyces gen-
era were the most recurrent and/or dominant fungal
genera [33, 46, 56]. In contrast to previous findings, our
data indicate higher relative abundances of Cladospor-
ium, detection of Mucor and the absence or low abun-
dance of genera such as Cyberlindnera, and
Galactomyces [6, 19, 57]. Previous studies found that the
gut mycobiome of a cohort from Houston, Texas, was
dominated by Saccharomyces, Malassezia and Candida
[6]. By contrast, the genus Malassezia was not detected
in the gut mycobiome of a Pennsylvania cohort, which
was instead dominated by the genera Saccharomyces and
Candida [19]. Differences in study methodologies may
be a source of these conflicting findings [6]. One study
amplified the Internal Transcribed Spacer 2 (ITS2) re-
gion of the fungal rRNA gene [6], and the second ampli-
fied the ITS1 region [19]. Studies similar to the work by
Gardes et al. (1993) and White et al. (1990), where
ITS1F and ITS2 primer sets were used to amplify the
ITS2 region, did not detect Malassezia [58, 59]. The sec-
ond reason for the observed differences has been attrib-
uted to differences in cohort characteristics, such as diet
and/or geographical location. Strati (2016) and Raimon-
di’s (2019) investigating cohorts in Italy, detected same
dominant fungal genera [31, 57], and the investigation of
cohorts in two different states in the USA observed
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different results [6, 45]. We used ITS1 and ITS4 in this
study and found that the genera Pichia, Candida and
Cladosporium dominated the urban cohort, whereas
genera Pichia, Candida and Aspergillus dominated the
rural cohort. The dominant taxa identified in urban and
rural locations further support our assertion that geo-
graphic location plays a major role in the observed
differences.

Candida albicans was the most dominant taxon in our
cohort and is frequently reported as the most abundant
Candida species in both diseased [60] and healthy individ-
uals [61]. Candida spp. not only colonize the gut [19, 33]
but several other body sites, including the oral cavity
[54, 62], vagina [63], and skin [64, 65]. However,
Candida are autochthonous to the mammalian digest-
ive tract and species including Candida albicans, C.
tropicalis, C. parapsilosis, and C. glabrata may grow
and colonize at 37°C [7]. A review of the literature
suggest that C. albicans carriage in healthy individuals
ranges from 30 to 60% [66] and that living mammals
are considered a niche for these species as they are
not found in significant concentrations in soil, food
or air [67, 68]. Raimondi et al., (2019) reported that
C. albicans was frequently detected and dominated
the cultivable mycobiota of different faecal samples
[31].

Conclusions

This study provides the first insight into the importance
of geography and lifestyle factors on the gut mycobiome
in rural and urban locations in Africa. We found that
fungi in the gut display distinct patterns consistent with
geographic locality. Redundancy analysis showed that
several lifestyle factors were major drivers explaining the
distinct community structure. The results of biomarker
analysis revealed several ecologically important fungal
taxa, which were unique to individuals from urban and
rural areas. The finding that certain taxa may be bio-
marker species have potential consequences for certain
groups including immunocompromised individuals liv-
ing in rural and urban locations. Increases in the abun-
dances of these taxon may lead to deleterious effects on
the health of these groups. Such findings provide a valid
basis for the development of novel therapeutics or pre-
ventative measures reliant on modulating the gut
mycobiome.

Methods

Participant enrolment criteria for urban and rural areas
Volunteers were recruited from two rural locations and
one urban location. For rural volunteers, we recruited
individuals following traditional diets, with generally low
levels of processed foods. Urban cohorts reported mixed
diets and increased consumption of processed foods.
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Volunteers from the Ha-Ravele (females; n=1 and
males; 7 =15) and Tshikombani (females; 7 =24 and
males; n = 10) villages located in the Vhembe District of
the Limpopo Province comprised the rural cohort. Both
villages are approximately 391 km and 439 km, respect-
ively, from the closest city (Pretoria). This city, in the
Gauteng province of South Africa, served as the urban
sampling area. In total, 100 stool samples were collected
from healthy volunteers. These samples were equally di-
vided between gender and locality [i.e. rural (25 males
and 25 females) and urban (25 males and 25 females)].
Participants were categorized by age into young adults
(ages 18-27 years; n = 61), middle-aged adults (ages 28—
37 years, n=28), and older adults (aged older than 37
years, n =11). The height of the participants was mea-
sured in meters, weight in kilograms and the BMI was
calculated using the formula BMI = kg/m2 [69] where kg
is a person’s weight in kilograms and m? is their height
in meters squared. Participants were categorized by BMI
into Underweight = BMI < 18.5 (n =10), Normal weight
BMI =18.5-24.9 (n=46), Overweight BMI=25-29.9
(n =22) and Obese = BMI of 30 or greater (n = 22) [69].
Self-stool collection kits were provided to all volunteers
(Easy Sampler® Stool collection Kit, Hounisen Lab
Equipment A/S, Skanderborg, Denmark).

Inclusion and exclusion criteria

The participants were all healthy adults age 18-50 years.
Volunteers reporting antibiotic use/other treatments
within 6 months prior to participating in the study and
sample collection were excluded from the study. Simi-
larly, individuals who had been diagnosed with any
inflammatory-related bowel diseases or gastrointestinal
diseases within 6 months prior to sample collection were
excluded from the study.

DNA extraction

DNA was isolated using the PowerSoil DNA Isolation
Kit (MO BIO Laboratories Inc., Carlsbad, CA) following
the manufacturer’s specifications with minor modifica-
tions. Briefly, approximately 0.25 g of stool sample was
transferred into the Power-Bead tubes using a sterile dis-
posable wooden spatula (Lasec Laboratories, RSA). The
sample was homogenized by gently vortexing the tubes
for 10 s before adding 60 pL of the lysis buffer. This was
then incubated for 30 min. at 55 °C prior to centrifuga-
tion at room temperature for 30s at 10,000 x g The
supernatant from this step was transferred to sterile 2
mL tubes and 250 pL of inhibitor removal reagent was
added to this. The samples were incubated on ice for 5
min., thereafter approximately 1.2 mL of binding buffer
was added. Next, 70% ethanol (500 pL) was added and
the contents precipitated by centrifugation at room
temperature for 60 s at 10,000 x g. The DNA was eluted

Page 8 of 12

with 100 uL filter-sterilised autoclaved Millipore water
and quantified using the NanoDrop™ 2000/2000c Spectro-
photometer (Thermo Scientific, Waltham, MA, USA).
The quality of isolated DNA was confirmed by agarose gel
electrophoresis, on 1% (w/v) agarose gel in 1 X TAE buffer
(0.2% [w/v] Tris, 0.5% [v/v] acetic acid, 1% [v/v] 5M
EDTA [pH8]) at 90 Volts for 45 min. in a BioRad Sub-
Cell® GT gel electrophoresis system with gel red visualis-
ing agent. The gel was visualised using the BioRad Gel
Doc system and viewed with a UV Trans-illuminator.

ITS gene region amplification, sequencing and data
processing

The internal transcribed spacer (ITS) region (420 to 825
bp) was amplified using fungal-specific primers [70]:
ITSIF (5'-CTTGGTCATTTAGAGGAAGTAA-3") [58]
and ITS4 (5'-TCCTCCGCTTATTGATATGC-3") [59]
with barcode inserted on the forward primer. Briefly, the
HotStarTaq Plus Master Mix Kit (Qiagen, USA) was
used for the PCR amplification reaction (94°C for 3
min., followed by 30 cycles of 94 °C for 30, 53 °C for 40
s, 72°C for 1. min and final elongation step at 72 °C for
5 min.). The PCR products were checked in 2% agarose
gel to determine the success of amplification and the
relative intensity of bands. Amplicons from different
samples were pooled to equal proportions based on their
molecular weight and DNA concentrations. The pooled
DNA was purified of short fragments using Agencourt
Ampure beads (Agencourt Bioscience Corporation,
USA). Then the pooled and purified PCR product was
used to prepare Illumina library. Paired end 2 x 250 bp
sequencing was performed on an Illumina MiSeq instru-
ment (Illumina Inc., San Diego, CA, USA) at Mr. DNA
(Shallowater, TX, USA).

The resultant data were analysed using the Quantita-
tive Insights into Microbial Ecology (QIIME2) software
version 2018.8.0 [71]. Demultiplexed sequences were
merged and assessed for quality. Sequences shorter than
200 bp, with quality scores below 25, containing more
than two ambiguous characters or more than one mis-
match to the sample-specific barcode or the primer se-
quences, were excluded from further downstream
analyses. Sequences were denoised, chimeric sequence
removed and operation taxonomic units (OTUs) were
defined by clustering at 3% divergence (97% similarity)
using USEARCH v11 [72]. Taxonomies were assigned to
each OTU using the UNITE (release 7_99) databases for
fungi [73]. Singletons were excluded, and each sample
was randomly subsampled (rarefied) to the same number
of sequences per sample (17980).

Statistical analyses
All statistical analyses were performed in R version 3.5.1
using R studio [74, 75]. Alpha diversity (observed



Kabwe et al. BMC Microbiology (2020) 20:257

richness), together with rarefaction curves were calcu-
lated and visualized using the R packages “phyloseq” and
“ggplot”. First, the Shapiro-Wilk’s test was used to deter-
mine whether the data had a normal distribution [76].
Subsequently, the unpaired two-sample Wilcoxon rank
sum test [77, 78] was applied to determine significant
differences between the alpha diversity indices using the
R packages “dplyr” version 0.4.3 and the “ggpubr” ver-
sion 0.1.8 [79, 80]. In these analyses, the rural or urban
location was specified as a random factor.

The R packages “phyloseq” [81] and “microbiomeseq”
[82] were used to calculate and visualize relative taxa
abundance at phylum and class level. OTU abundance
was transformed to relative abundance and taxa with
relative abundance less than 0.1% were removed. The
Wilcoxon rank sum test was applied to determine sig-
nificant differences between taxa relative abundance in
the urban and rural samples. Whereas, the Kruskal-
Wallis test [81, 83] was applied to determine significant
differences in taxa relative abundance between the four
sample types (rural female, rural male, urban female and
urban male).

The LCBD was calculated according to [84]. The
LCBD describes the degree of uniqueness of a given
sample in relation to the overall community compos-
ition. The taxa abundance was normalized to obtain the
proportion of most abundant taxa per sample. Location
was used as the grouping variable and the Hellinger
method [85] was used for the dissimilarity coefficients
calculation.

Pairwise similarities among samples were calculated
using the Bray—Curtis index of similarity. The resulting
matrix was represented visually in a nonmetric multidi-
mensional scaling (NMDS) plot to observe community
structure. Using the vegan package [86], a permutational
multivariate analysis of variance (PERMANOVA) [87]
based on 9999 permutations of the data, was performed
to test whether differences between sample groupings in
the NMDS ordinations were statistically significant. Mi-
crobial community similarities and the homogeneity of
dispersion between the rural and urban sample groups
were tested using the ANOSIM and ADONIS tests, re-
spectively [88, 89].

The effect of the different recorded environmental fac-
tors on fungal community composition and structure
was determined through redundancy analysis (RDA).
The contribution of highly correlating OTUs (p-Value <
0.05) with redundancy axes was identified using the
envfit function from the R package vegan [86].

Fungal-fungal relationships were interrogated using
SparCC [90]. Correlation was based on measuring the
linear relationship between log transformed abundances.
First, data were filtered to remove OTUs that had less
than 2 reads on average. SparCC was used to generate
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true correlation coefficients from which pseudo p-values
were calculated. The calculate pseudo p-values were
false discovery rate (FDR) adjusted [91] and the correl-
ation matrix was visualized using the “corrplot” function
[92] in R.

Potential biomarker taxa which differed in abundance
and occurrence between the two geographic groups were
detected by linear discriminant analysis (LDA) effect size
(LEfSe) [32]. The LEfSe was calculated using the online
Galaxy web application [93] with the Huttenhower lab’s
tool  (https://galaxyproject.org/learn/visualization/cus-
tom/lefse/). First the nonparametric factorial Kruskal—
Wallis sum rank tests (alpha =0.01) was used to detect
differential abundant features (at genera, family, class
and phylum level) within the two geographic locations
(rural and urban). The phylogenetic consistency was
then tested using the pairwise Wilcoxon rank-sum tests
(alpha = 0.01). Finally, the effect size of each differentially
abundant feature was estimated using the LDA. The all-
against-all classes were compared (most stringent) and a
linear discriminant analysis score value of 2.0 was
chosen as threshold for discriminative features.
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