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Abstract. Ginzburg-Landau equation has a rich record of success in describing a
vast variety of nonlinear phenomena such as liquid crystals, superfluidity,
Bose-Einstein condensation and superconductivity to mention a few. Fractional
order equations provide an interesting bridge between the diffusion wave
equation of mathematical physics and intuition generation, it is of interest to see if
a similar generalization to fractional order can be useful here. Non-integer order
partial differential equations describing the chaotic and spatiotemporal patterning
of fractional Ginzburg-Landau problems, mostly defined on simple geometries
like triangular domains, are considered in this paper. We realized through
numerical experiments that the Ginzburg-Landau equation world is bounded
between the limits where new phenomena and scenarios evolve, such as sink
and source solutions (spiral patterns in 2D and filament-like structures in 3D),
various core and wave instabilities, absolute instability versus nonlinear
convective cases, competition and interaction between sources and chaos
spatiotemporal states. For the numerical simulation of these kind of problems,
spectral methods provide a fast and efficient approach.

1. Introduction. Applications of fractional differential equations are widely en-
countered in applied disciplines, such as biology, cybernetics, viscoelasticity me-
chanics and statistics. In what follows, we report in brief to capture and reflect the
usefulness of fractional partial differential equations (FPDE) to most fields of
applied science and engineering, many others are classified in [13, 20, 46, 47] and
references therein.
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Viscoelasticity mechanics is known to be one of the major areas in which the
fractional differential equations are frequently and extensively utilized, with many
papers appearing in literature [4,5,56]. Since most deformed objects exhibit viscous
and elastic properties via simultaneous dissipation and storage of mechanical energy,
any viscoelastic material can be regarded to as a linear system with the strain as
the response function and the stress as excitation function.

For simple materials, Hooke’s law states u(t) = Eυ(t) for a solid, and Newton’s
law states u(t) = ηdυ(t)/dt for fluids, where u and υ represent the stress and strain
respectively. Both are regarded as mere mathematical models for ideal solid and
fluid rather than universal laws. They are often useful to adequately represent the
behaviour of real materials. But knowing well that the stress is proportional to
the first derivative of the strain for fluids and to the zeroth derivative of the strain
for solids, these little facts actually propelled Blair in the year 1947 to propose an
intermediate derivative models for such materials as

u(t) = E0D
α
t υ(t)

with α ∈ (0, 1) dependent of the material property. A year later, Gerasimov [18]
introduced Caputo fractional derivative in the interval 0 < α < 1 to obtain the
model

u(t) = κ−∞D
α
t υ(t),

where κ is a positive parameter commonly referred to as the diffusivity constant,
and Dα

t is the fractional Laplacian operator. With fractional derivative concepts,
one can obtain the Zener model, Voigt and Maxwell model. Both are known to be
special form of general high order model

n∑
j=0

ajD
αju(t) =

m∑
j=0

bjD
βjυ(t).

There are many other important fractional (time-space) models in other fields be-
side mechanics. Other areas of intensive studies include; space-time fractional diffu-
sion equation [12,48], fractional reaction-diffusion equation [43,51,52,56], fractional
Navier-Stokes equation [54], fractional Burger’s equation [9], semi-linear fractional
dissipative equation [27], fractional conduction-diffusion equation [27] and fractional
MHD equation [20,50,55] to mention a few.

Our aims in this paper are in folds: we first formulate the fractional com-
plex Ginzburg-Landau equation and secondly, report via numerical simulations an
overview of some of the phenomena that describe the complex Ginzburg-Landau
equation in 1D, 2D, and 3D in the context of condensed matter physicists. Nu-
merical experiment of multispecies noninteger-order system in high dimensions can
be found in [7, 32, 36–43], and references therein. We introduce some of the useful
definitions of fractional derivatives and formulation of fractional Ginzburg-Landau
equations in Section 2. Numerical techniques for solving a general class of fractional
diffusion problems is discussed in Section 3. The numerical techniques are utilized
with two notable examples in Section 4. We finally conclude the paper with Section
5.

2. Fractional derivatives and problem formulation. In this section, we first
give some basic and useful definitions of fractional derivatives, and later proceed to
the derivation of fractional Ginzburg-Landau equation.
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2.1. Some basic definitions of fractional derivatives. Some basic useful defi-
nitions and properties of the fractional derivatives are reported in brief here.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ≥ 0
of a function f ∈ Cµ, µ ≥ −1 is defined as

Jν0 f(x) =
1

Γ(ν)

∫ x

0

(x− t)ν−1f(t)dt, ν > 0, J0f(x) = f(x).

The following also hold:
For f ∈ Cµ, µ ≥ −1, α ≥ 0 and γ > 1: (i) JJαf(x) = JαJf(x), (ii) Jαxγ =

Γ(γ + 1)

Γ(α+ γ + 1)
xα+γ .

The Caputo fractional derivative has been applied widely because it incorporates
both initial and boundary conditions in its problem formulation.

Definition 2.2. In Caputo sense [3, 14], the fractional derivative is defined as

Dν
∗f(x) = Jm−να Dmf(x) =

1

Γ(m− ν)

∫ x

0

(x− t)m−ν−1f (m)(t)dt,

for m− 1 < ν < m, m ∈ N, x > 0, f ∈ Cm−1.

Lemma 2.3. If m− 1 < α < m, m ∈ N and f ∈ Cmµ , µ ≥ −1, then

Dα
∗ J

αf(x) = f(x), JαDν
∗f(x) = f(x)−

m−1∑
k=0

fk(0+)
xk

k!
x = 0.

Proof. See Momani and Odibat [28], Odibat and Momani [31], Davison and Essex
[17].

Definition 2.4. The Atangana and Baleanu fractional derivative in Caputo sense
is defined as [4, 6, 21]

ABC
a Dαt [y(t)] =

M(α)

1− α

∫ t

a

y′(τ)Eα

[
−α (t− τ)α

1− α

]
dτ, (1)

where M(α) has the same properties as in the case of the Caputo-Fabrizio fractional
derivative.

Definition 2.5. The Mittag-Leffler function is defined as (Podlubny [44])

Eα,1(z) = Eα(z) =

∞∑
k=0

zk

Γ(1 + αk)
, α > 0, |z| <∞

and

Eα,β(z) =

∞∑
k=0

zk

Γ(1 + αk)
, α, β > 0, |z| <∞.

For a comprehensive review, we refer our readers to classical papers and books
[23,25,26,44,52,53,56] for details underlying theory as well as comprehensive review
of the fractional differential equations.
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2.2. Fractional Ginzburg-Landau equation. In literature, the complex Ginzburg-
Landau equation (CGLE) is known to be one of the nonlinear equations which at-
tracted a great deal of interest from physics community. The first case with real
coefficient was earlier derived by Newell and Whiteehead [30] to describe Bénard
convection, and was later applied to plane Poiseuille flow by Stewartson and Stu-
art [49]. It has also been used to describe a number of phenomena such as super-
conductivity, phase transitions, superfluidity and Bose-Einstein condensation [20]
to mention a few. The generalized standard CGLE is given as

∂tu = u+ (1 + ib)∆u− (1 + ic)|u|2u, (2)

where u is a scaled complex function in the space direction x and time t. The
real parameters b and c symbolize linear and nonlinear dispersion. The Laplacian
operator hosts the second-order spatial derivatives that gives a damping of short
wave excitations, the remaining nonlinear term provides energy flows from large to
small or short scales.

A fractional Ginzburg-Landau equation can be used to describe the weakly non-
linear phenomena for substance with fractional dispersion. The standard Ginzburg-
Landau equation of the form

η∆U = γU − ωU3,

derived as the variational Euler-Lagrange equation δE(U)/δU = 0 for free energy
function

E(U) = E0 +
1

2

∫
Ω

[
η(∇U)2 + γU2 +

ω

2
U4
]
dV. (3)

The easiest generalization of (3) takes the form of energy function

E(U) = E0 +
1

2

∫
Ω

[
η(∇U)2 + γU2 +

ω

2
U4
]
dVD, (4)

where dVD is D−dimensional volume element dVD = I3(D,x)dV . By using idea of
Riesz fractional integral representation, we have

I3(D,x) =

[
2DΓ(3/2)|x|D−3

Γ(D2 )

]
and with the Riemann-Liouville fractional integral definition, we have

I3(D,x) =

[
|xyz|D3 −1

Γ3(D3 )

]
.

If we let

E(U(x),∇U(x) =
1

2

[
η(∇U)2 + γU2 +

ω

2
U4
]
, (5)

then we can obtain the Euler-Lagrange equation

I3(D,x)
∂E
∂U
−

3∑
j=1

∇j
[
I3(D,x)

∂E
∂∇jU

]
= 0.

From (4), we obtain the generalized fractional Ginzburg-Landau equation

ηI−1
3 (D,x)∇j(I3(D,x)∇jU)− γU − ωU3 = 0

which has the equivalent form

η∆U +Gj(D,x)∇jU − γU − ωU3,
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where Gj(D,x) = I−1
3 (D,x)∂jI3(D,x). In fractional form, we can now generalize

the energy function as

E(U) = E0 +

∫
Ω

E(U(x), DαU(x))dVD,

where Dα denotes the Riesz fractional derivative and E is defined by

E(U(x), DαU(x) =
1

2

[
η(∇U)2 + γU2 +

ω

2
U4
]
. (6)

When (6) is compared with (5), it is obvious that the Laplacian operator for stan-
dard PDEs has just been replaced with the Riesz fractional derivative. The Euler-
Lagrange equation takes the form

I3(D,x)
∂E
∂U

+

3∑
j=1

Dα
xj

(
I3(D,x)

∂E
∂Dα

xjU

)
= 0

which is equivalent to

ηI−1
3 (D,x)

3∑
j=1

Dα
xj (I3(D,x)Dα

xjU) + γU + ωU3 = 0 (7)

is known as the generalized fractional Ginzburg-Landau equation. For a special
case of (7) in one dimension, we set U = U(x) and use fractional integration by
parts formulas ∫ ∞

−∞
f(x)Dα

x g(x)dx =

∫ ∞
−∞

g(x)Dα
xf(x)dx (8)∫ ∞

−∞
f(x)

dβg(x)

dxβ
dx =

∫ ∞
−∞

g(x)
dβf(x)

d(−x)β
dx (9)

to obtain the Euler-Lagrange equation

Dα
x

(
I1(D,x)

∂E
∂Dα

xjU

)
+ I1(D,x)

∂E
∂U

= 0, where I1(D,x) =
|x|D−1

Γ(D)
,

and by using (6), we get

I−1
1 (D,x)Dα

x (I1(D,x)Dα
xU) + γU + ωU3 = 0.

When D = 1, we have I1 = 1 in such that D2α
x U + γU + ωU3 = 0 where Dα

x is
known as the Riesz fractional derivative operator

Dα
xf(x) =

−1

2 cos(πα/2)Γ(n− α)

∂n

∂xn

(∫ x

−∞

f(u)du

(x− u)α−n+1
+

∫ ∞
x

(−1)nf(u)du

(x− u)α−n+1

)
.

For a more specific case, we consider wave propagation in some media where the
vector ~j satisfies ~j = ~j0+~p = ~j0+~p‖+~p⊥, where ~j0 defines unperturbed wave vector,

the direction of ~j0 is given by subscripts (‖,⊥). By considering the dispersion law
m = m(j) for the wave propagation with p� j0, we obtain

m(k) = m(|~j0 + ~p|) ≈ m(j0) + c(|~j0 + ~p| −~j0) ≈ m(j0) + c~p‖ +
c

2j0
~p2
⊥ (10)

where c = ∂m/∂j0, which in field U corresponds to coordinate space

− iUt = icUx1 +
c

2j0
∆U, (11)
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where x1 is given as the direction of ~j0. By generalizing the nonlinear dispersion
relation, we get

m(j, |U |2) ≈ m(j, 0) + ω|U |2 = m(|~j0 + ~p|, 0) + ω|U |2 (12)

where ω = (∂m(j, |U |2))/(∂|U |2) = 0. One can obtain the equation

− iUt = icUx +
c

2j0
∆U −m(j0)U − ω|U |2U, (13)

popularly known as the nonlinear Schrödinger equation (NSE). Again by generaliz-
ing the dispersion relation in equation (12) into the fractional case, we have

m(j, |U |2) = m(~j0, 0) + c~p‖ + cα(~p2
⊥)α + ω|U |2, 0 < α < 2,

where cα, a constant. By adopting the relation (−∆)α ↔ (~p2
⊥)α, we finally obtain

− iUt = icUx −
c

2j0
(−∆)αU +m(j0)U + ω|U |2U, (14)

which is known as the fractional nonlinear Schrödinger equation (FNSE) or the
fractional Ginzburg-Landau equation (FGLE). To the right hand side of (14), the
first term depicts the wave propagation in fractional regime, its fractional derivative
is caused as a result of super-diffusion wave propagation or any other physical
processes. The remainder terms are treated as wave motions interacting in nonlinear
media. This equation has been used to represent some related fractional scenarios.
For instance, the sign of ω results in two very different problems namely; the focusing
case if ω > 0 and the defocussing type if ω < 0.

3. Numerical techniques for solving fractional diffusion equations. Let
T > 0, u0 ∈ G, we seek a function u : [0, T ] → L(A) satisfying the initial value
problem

u′(t) +A(t)u(t) = F (u(t), t), 0 < t < T,

(15)

u(0) = u0,

with

A(t) = A+ ia(t)A, (16)

A : L(A) → G a time-independent, positive definite, self-adjoint linear operator
on the Hilbert space (G, (·, ·)), with the domain L(A) dense in G, i denotes the
imaginary unit, a(t) : [0, T ]→ is a continuous real-valued function, F (·, t) : L(A)→
G, t ∈ [0, T ] accounts possibly for the nonlinear operators. We assume the equation
(15) has a smooth solution. For instance, example of a parabolic equation with
linear operator written in the form (16) is the classical one-dimensional complex
Ginzburg-Landau equation given in (2).

We let (α, β) be a strongly A(0)−stable s−step scheme and (α, γ) be an explicit
s−step scheme, which is characterized by the polynomials α, β γ, that is

α(ω) =

s∑
i=0

αiω
i, β(ω) =

s∑
i=0

βiω
i, γ(ω) =

s−1∑
i=0

γiω
i.

Assume N ∈ N, k = T/N to be a constant time-step, and tn = nk, n =
0, 1, 2, . . . , N be a uniform sub-partition of the interval [0, T ]. Since we are consid-
ering s−step schemes, it is reasonable to also assume that starting approximations,
say U0, U1, U2, . . . , Us−1 are provided. We consider the discretization of the above
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initial value problem (15) by the three-parameter implicit-explicit (α, β, γ)−scheme.
precisely speaking, we employ the implicit scheme (α, β) to discretize the linear part
expected to be stiff, and for the nonlinear part of the equation we use the explicit
scheme (α, γ), see [1, 2, 32] and references therein for details of derivation and sta-
bility analysis. A sequence of approximations Um is thus recursively define to the
nodal values um = u(tm) of the solution u of (15) by

s∑
i=0

(αiI + kβiA (tn+i))Un+i = k

s−1∑
i=0

γiF (Un+i, tn+i) , (17)

for n = s, . . . , N . The unknown function Un+s appearing in the above equation
only linearly, since γs = 0. Therefore, to integrate in time with (17), we require
to solve, at each time level, the linear equation which transforms into a linear
system of equations, provided we discretize in space. The major setback of the
above scheme is that it requires a very small time-step to function well, otherwise
numerical instability occurs.

In mathematical modelling, the basic template to model a general class of para-
bolic partial differential equation is the heat or diffusion equation. In what follows,
we shall one-dimensional fractional-in-space diffusion equation

∂

∂t
u(x, t) = δ

∂α

∂xα
u(x, t) (18)

which is valid for −∞ < x < ∞ and 0 ≤ t < ∞ with 1 < α ≤ 2. The parameter
δ represents the diffusion coefficient and u(x, t) is density distribution function at

time t and position x. We define the fractional-in-space operator ∂α

∂xαu(x, t) on the
basis of the Fourier transformation given by

F̂ (k) = F{F (x)} =

∫ ∞
−∞

F (x)eikxdx,

and its corresponding inverse

F (x) = F−1{F̂ (k)} =
1

2π

∫ ∞
−∞

F̂ (k)e−ikxdk.

By applying the fractional-in-space operator on the density distribution u(x, t) de-
fined for −∞ < x <∞ and 0 ≤ t <∞ as

∂α

∂xα
u(x, t) = F−1{(−ik)αF [u(x, t)]},

∂α

∂(−x)α
u(x, t) = F−1{(ik)αF [u(x, t)]}. (19)

Due to (19), the Fourier transform of (18) results to an ODE

∂

∂t
û(x, t) = δ(−ik)αû(x, t). (20)

By choosing the initial function in the form

u(x, t = 0) = g(x),

û(x, t = 0) = F{u(x, t = 0)} = F{g(x)} = 1,

the solution of (20) becomes

u(k, t) = eδt(−ik)α û(k, 0) = eδt(−ik)α .
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With substitution α = a/b and b = n, we can rewrite the term (−ik)α as

(−ik)α =
(
|k|ei arg(−ik)

)α
= |k|αeiα(−sign(k)π2 +2nπ) = |k|αe−iαsign(k)π2

= |k|α cos
(απ

2

) [
1− isign(k) tan

(απ
2

)]
,

which results to

û(k, t) = exp
(
δt|k|α cos

(απ
2

) [
1− isign(k) tan

(απ
2

)])
and inverse Fourier transform

u(x, t) = F−1
{

exp
(
δt|k|α cos

(απ
2

) [
1− isign(k) tan

(απ
2

)])}
.

In the spirit of [43], the two dimensional representation of (18) can be formulated
in Fourier space as

Ut(χx, χy, t) = δ
(

(χ2
x)α/2 + (χ2

y)α/2
)
U(χx, χy, t) + F [f(u(x, y, t))],

where U is the double Fourier transforms of the probability density distribution
u(x, y, t). In other words,

F [u(x, y, t)] = U(χx, χy, t) =

∫ ∞
−∞

∫ ∞
−∞

u(x, y, t)e−i(χxx+χyy)dxdy.

We let Ωα/2 =
(
(χ2
x)α/2 + (χ2

y)α/2
)
, and set U = eδΩ

α/2tŪ , to explicitly remove the
stiffness property in the fractional-in-space partial derivative, we now have

∂tŪ = eδΩ
α/2tF [f(u)], (21)

We discretize the square domain of equispaced points Nx and Ny in the spatial
directions of x and y. We employ the discrete fast Fourier transform (DFFT) [33]
to transform (21) to a system of ODEs

∂tŪi,j = eδΩ
α/2
i,j tF [f(ui,j)], (22)

where ui,j = u(xi, yj) and Ω
α/2
i,j =

(
χ2
x(i)

)α/2
+
(
χ2
y(j)

)α/2
. Once the problem

has been converted to ODEs, any explicit higher-order time stepping solver can be
employed to advance in time.

For the temporal discretization, we adapt the improved fourth order exponential
time differencing Runge-Kutta (ETD4RK) scheme proposed by Cox and Matthews
[16,22,34,35] as

Un+1 = eLhUn + h[4ϕ3(Lh)− 3ϕ2(Lh) + ϕ1(Lh)]F(un, vn, tn)

+2h[ϕ2(Lh)− 2ϕ3(Lh)]F(µ2, tn + h/2)

+2h[ϕ2(Lh)− 2ϕ3(Lh)]F(µ3, tn + h/2) (23)

+h[ϕ3(Lh)− 2ϕ2(Lh)]F(µ4, tn + h),

with the stages µi given as

µ2 = eLh/2Un + (Lh/2)ϕ1(Lh/2)F(un, vn, tn)

µ3 = eLh/2Un + (Lh/2)[ϕ1(Lh/2)− 2ϕ2(Lh/2)]F(un, vn, tn) + hϕ2(Lh/2)F(µ2, tn + h/2)

µ4 = eLhUn + h[(ϕ1(Lh)− 2ϕ2(Lh)]F(un, vn, tn) + 2hϕ2(Lh)F(µ3, tn + h),
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where L,F are the linear and nonlinear operators with functions ϕ1,2,3 defined as

ϕ1(z) =
ez − 1

z
, ϕ2 =

ez − 1− z
z2

, ϕ3 =
ez − 1− z − z2/2

z3

which precisely coincide with the terms in the Lie group methods by Munthe-Kaas
[29]. For details derivation and stability of the ETD4RK method, see [22,33,34].

4. Numerical experiments. In this section, we now apply the numerical tech-
niques as discussed above to numerically solve a range of family of fractional-in-
space Ginzburg-Landau equations. We present results from two notable equations
that are still of current and recurring interest in one, two and three dimensions,
to illustrate the queries and points that naturally arise. Details analysis of the
complex Ginzburg-Landau on global well-posedness and long-time dynamics is well
established in [45].

4.1. The fractional-in-space complex Ginzburg-Landau equation. A large
number of nonlinear and physical systems have been described and modelled by
the Ginzburg-Landau equations. Notably, the complex Ginzburg-Landau equation
(CGLE) which was derived by Stewartson and Stuart [49] in the context of plane
Poiseuille flow with strongly subcritical bifurcation. The CGLE is often studied
in physics as an amplitude modulation equation that results to chaotic dynamics
in areas of fluid dynamical systems. The major element in the long time dynam-
ics of pattern forming systems is a family of solutions called coherent solitons or
structures, which could be classified as a profile of light intensity, temperature or
magnetic field [8,15]. Other phenomena include the superfluidity, superconductivity,
liquid crystals, Bose-Einstein condensation, nonlinear waves and phase transitions.

In accordance with (14), we present the generalized scaled fractional complex
Ginzburg-Landau equation (FCGLE) [36] formulated as

∂tu = (1 + ib)∆αu︸ ︷︷ ︸
L

+u− (1 + ic)|u|2αu︸ ︷︷ ︸
F

(24)

where b is the real parameter that characterizes the strength of the linear disper-
sion, that is, the dependence of the wave frequency on the waves number, c is real
coefficient that denotes nonlinear dispersion. The fractional Laplacian ∆α describes
a nonlocal operator bounded in the interval 0 < α < 2, except for the cases when
α = 0, 1, 2 which lead to standard CGLE. The fractional Laplacian operator of or-
der α provides a damping of the short wavelength excitations and nonlinear term
F evolves energy flows from large to short scales, and u is a scaled complex func-
tion in both time and space. Emerging structures and stability properties of (24)
depends on the parameters b and c, see [32] for details. Also, ∆α can be regarded
as a pseudodifferential operator with |ξ|2α, which can be realized via the Fourier
transform [45]

∆̂F(ξ) = |ξ|2αF̂(ξ),

where F̂ denotes the Fourier transform of F .
In one dimension, equation (24) is numerically solved with initial condition that

takes the form of a Gaussian series pulse form:

u(x, 0) = e−20(x−L/3)2/L − e−20(x−L/2)2/L + e−20(x−L)2/L (25)

where L is the domain length. In this experiment, we let b = 1 and c = 1.3 to
yield spatiotemporal evolution of u in Figure 1 at different instances of fractional
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power α for L = 150 and final time t = 40. This kind of turbulent wave is known as
defect turbulence [19] is shown for parameter values in the regime where the linear
stability analysis indicates that the uniform solution is stable.

Figure 1. Space-time mesh results of (24) showing chaotic states
in the spatiotemporal regime for parameters (b, c) = (1,−1.3) at
different instances of fractional index α and t = 40. simulation
runs for N = 200 with step size h = 0.1.

Though, our primary interest in this paper is not really in one dimensional results,
because they are relatively easily undertaken with either finite difference schemes or
finite element collocation methods. It is in higher dimensions that the ideas given
here actually become of serious value. Hence, to explore the dynamic richness of
FCGLE (24), we present the numerical experiments in higher dimensions.

In 2D, we also simulate with smooth initial condition in the form of Gaussian
pulse

u(x, y, 0) = e−20((x−L/3)2+(y−L/3)2)/L − e−20((x−L/2)2+(y−L/2)2)/L

+e−20((x−L/2)2+(y−L/3)2)/L. (26)

Theoretically, we expect travelling waves to evolve from such initial condition on an
infinite domain truncated at some large but finite value L. In the simulations, the
domain length L is chosen large enough to give enough room for the waves pattern
to propagate. The patterns that evolve in the unstable region are quite amazing
and justify the status of FCGLE in studying complex behaviour.

The computation in Figure 2 utilizes 128 × 128 Fourier nodes on a rectangular
domain of size 200×200 space units in a situation of spatiotemporal chaos obtained
when any of the conditions

1 + bc < 0 and 1 + bc > 0
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Figure 2. Solution of the 2D fractional complex Ginzburg-Landau
equation on [0, 200]× [0, 200] with b = 1 for both the focusing case:
c = 1.3 (first-column) and the defocussing case: c = −1.3 (second-
column) at final time t = 100, α = (0.85, 1.0, 1.50) and N = 200.

is satisfied, subject to zero-flux boundary conditions. We can categorize these results
into sub-diffusive (0 < α < 1), diffusive (α = 1) and super-diffusive at (1 < α < 2).
As seen in Figure 2, one obtains stable and chaotic spatiotemporal spiral wave
patterns for both the focusing (c > 0) and defocussing (c < 0) cases. It was
observed that the distributions of probability density u(x, y, t) in the sub-diffusive
and super-diffusive scenarios are similar to both focusing and defocussing cases in
the fractional regime. In the diffusive region, the stable patterns destabilize in
the simulations to form more complex chaotic spatiotemporal spiral patterns. The
spiral core is unstable in the parameter range where diffusive effects are weak when
compared to dispersion.

In 3D, we experiment (24) with both random and initial conditions. The initial
state is well mixed, with u0(x; y; z) taken from a random normal distribution about
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Figure 3. The first and second columns represent 3D results of the
fractional complex Ginzburg-Landau equation on [0, 20]3 obtained
at instances α = (0.5, 1.0, 1.50) for random and initial conditions
respectively. Other parameters are: b = 1, L = 20 and final time
t = 10 (N=100).

0:1, while we allow the smooth initial condition to take the form

u(x, y, 0) = e−20((x−L/3)2+(y−L/3)2)/L+(z−L/3)2)/L − e−20((x−L/2)2+(y−L/2)2)/L+(z−L/3)2)/L

+e−20((x−L)2+(y−L)2)/L+(z−L)2)/L. (27)

to obtain the 3D results displayed in Figure 3. We observed that the distribution
of u in space leads to series of chaotic and spatiotemporal phenomena irrespective
of the initial condition used here.

4.2. The fractional-in-space complex cubic-quintic Ginzburg-Landau equa-
tion. The fractional complex cubic-quintic Ginzburg-Landau equation (FCCQGLE)
can also be seen as another dissipative system that attracts the attentions of many
researchers in the recent times. The scenarios considered in 2D bifurcate from
trivial state supercritically in the parameter pair range of (b, c) where they remain
bounded [32]. The scenario here has not changed qualitatively with the addition of
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stabilizing higher order terms. Outside this parameter regime one requires at least
the quintic terms to saturate the explosive instability provided by the cubic term.
The space fractional CCQGLE is written in the form

∂tu = εu+ (φ+ ib)∆α − (ψ − ic)|u|2u− (ϕ− id)|u|4u, (28)

where ε is the linear loss constant, the parameters φ, ψ, ϕ are the angular spectral
filtering, nonlinear loss or gain, and saturation of the nonlinear loss or gain respec-
tively. Here, b represents the diffraction coefficient, c symbolizes self focusing and
d stands for saturation of the nonlinear refractive index. The case when α = 0, 2 is
standard.
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Figure 4. The 2D results of fractional-in-space problem (24)
showing the bound state of oppositely- and like-charged spirals at
some instances of fractional power α. simulation runs for N = 200.

We report in Figure 4 the 2D simulation results of the FCCQGLE (28) at some
instances of fractional index α subject to the smooth initial condition (26) and
zero flux boundary conditions clamped at the extremities of the square domain
size [0, 200] × [0, 200]. The parameters are taken to be ε = −0.05; b = 1.0, φ =
1.0, c = 1.3, ψ = 1.0, d = 0.105, ϕ = 0.03, L = 20 and final time t = 400. The
finite-amplitude results persist stably with respect to amplitude which fluctuates
below threshold ε < 0 in a certain parameter regime, where they coexist with the
linearly stable trivial solution. There exist moving fronts and stable localized spiral
pulses over a finite interval of length L. Evolution of an oppositely-charged spiral
and unlike-charged spiral pair from unstable into a stable antisymmetric state are
evident in Figure 4 at instances of α.

Similarly, we carry-out the 3D FCCQGLE simulations in Figure 5, subject to the
zero-flux boundary conditions and smooth initial condition in (27) on domain of size
[0, 20]× [0, 20]× [0, 20] with 256 Fourier modes. Other parameters are given in the
figure caption. It worth mentioning that other phenomena such as Turing patterns
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Figure 5. The 3D isosurfaces of |u(x, y, z)| of (24) showing chaotic
patterns at different instances of α for ε = −0.05; b = 1.0, φ =
1.0, c = 1.3, ψ = 1.0, d = 0.105, ϕ = 0.03, L = 20 and final time
t = 20. Simulation runs for N = 64.

are possible, depending on the choices of the initial functions and parameters. It
should also be noted in the examples considered that when α = 2, the fractional
reaction-diffusion equations correspond to the standard reaction-diffusion problems.

5. Conclusion. We have numerically studied equations of space-fractional reaction-
diffusion with cubic nonlinearity on finite but large spatial and time domains. We
have examined the temporal patterns behaviour in the steady-state solutions of two
family of complex Gizburg-Landau equation when the fractional derivative index α
is increasingly varied in the interval 0 < α ≤ 2. Although the coherent structures
discussed do reflect that the fractional complex Ginzburg-Landau and fractional
complex cubic-quintic Ginzburg-Landau equations (2D spirals and 3D filaments)
exhibits much richer and complicated behavior than the classical reaction-diffusion
equation. We have also demonstrated in the numerical experiment that at certain
value of fractional power α, the formation of patterns change from the steady-state
structure to the homogeneous oscillatory structure, given that the ratio of spatial
characteristics is relatively small. The study of fractional reaction-diffusion equa-
tions has yielded useful information regarding the dynamics of nonlinear phenom-
ena. The methodology discussed in this paper can easily be extended to systems of
fractional reaction-diffusion equations.
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